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This paper investigates the stability of an axisymmetric pancake vortex with Gaussian
angular velocity in radial and vertical directions in a continuously stratified-rotating
fluid. The different instabilities are determined as a function of the Rossby number
Ro, Froude number Fh, Reynolds number Re and aspect ratio α. Centrifugal
instability is not significantly different from the case of a columnar vortex due
to its short-wavelength nature: it is dominant when the absolute Rossby number |Ro|
is large and is stabilized for small and moderate |Ro| when the generalized Rayleigh
discriminant is positive everywhere. The Gent–McWilliams instability, also known
as internal instability, is then dominant for the azimuthal wavenumber m = 1 when
the Burger number Bu = α2Ro2/(4F2

h) is larger than unity. When Bu . 0.7Ro + 0.1,
the Gent–McWilliams instability changes into a mixed baroclinic–Gent–McWilliams
instability. Shear instability for m=2 exists when Fh/α is below a threshold depending
on Ro. This condition is shown to come from confinement effects along the vertical.
Shear instability transforms into a mixed baroclinic–shear instability for small Bu.
The main energy source for both baroclinic–shear and baroclinic–Gent–McWilliams
instabilities is the potential energy of the base flow instead of the kinetic energy
for shear and Gent–McWilliams instabilities. The growth rates of these four
instabilities depend mostly on Fh/α and Ro. Baroclinic instability develops when
Fh/α|1 + 1/Ro| & 1.46 in qualitative agreement with the analytical predictions for a
bounded vortex with angular velocity slowly varying along the vertical.
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1. Introduction
Vortices in geophysical flows have received much attention, especially in the oceans,

due to their important role in energy and scalar transports as well as mixing. For
example, Meddies (Mediterranean eddies) are formed by warm salty water flowing
from the Mediterranean sea into the Atlantic ocean. These mesoscale vortices can
live years travelling in the ocean (Armi et al. 1989; Hobbs 2007; Ménesguen et al.
2012a). Their thickness is typically 1 km and their diameter typically 100 km
(Richardson, Bower & Zenk 2000). Similar eddies, called Ulleung eddies, are formed
by warm northward and cold southward currents in the East/Japan sea. Once formed,
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the eddies are trapped in the Ulleung basin near Ulleung island (Chang et al. 2004).
These eddies are also pancake shaped with both warm and cold cores, and a lifetime
of approximately a couple of years. The characteristics of these mesoscale eddies are
important because they can greatly affect the fisheries (Kim et al. 2012). There exist
actually many observations of such mesoscale eddies in other places: for example,
Reddies (Red Sea eddies) (Meschanov & Shapiro 1998) and Swoddies (Slope water
oceanic eddies) (Pingree & Le Cann 1992; Carton 2001; Carton et al. 2013).

Idealized models of these vortices have been studied experimentally and numerically
with a layered density stratification (Saunders 1973; Griffiths & Linden 1981; Ikeda
1981; Helfrich & Send 1988; Ripa 1991; Hopfinger & van Heijst 1993; Dewar &
Killworth 1995; Killworth, Blundell & Dewar 1997; Dewar, Killworth & Blundell
1999; Baey & Carton 2002; Benilov 2003; Thivolle-Cazat, Sommeria & Galmiche
2005; Aubert et al. 2012; Lahaye & Zeitlin 2015) as well as in continuously stratified
fluids (Dritschel, de la Torre Juárez & Ambaum 1999; Reinaud, Dritschel & Koudella
2003; Nguyen et al. 2012; Lazar et al. 2013a; Lazar, Stegner & Heifetz 2013b; Hua
et al. 2013; Dritschel & McKiver 2015). Saunders (1973) studied experimentally
the stability of a vortex produced by releasing a cylindrical volume of fluid into
a fluid with a lighter density placed on a turntable rotating at a constant speed.
The spreading of the denser fluid at the bottom resulted in an anticyclonic vortex
which was stable when the Burger number Bu = (δρg/ρ)H/f 2R2 > 1.8, where δρ

is the density difference between the two fluids, g the gravity, H the height, f the
Coriolis parameter and R the radius of the inner cylinder. In contrast, when Bu< 1.8,
azimuthal disturbances grew on the vortex due to baroclinic instability. The azimuthal
wavenumber m scaled like m∼ 1.8Bu−1/2, i.e. the wavelength scales like the Rossby
deformation radius Rd = (δρgH/ρ)1/2/f , and the smallest wavenumber observed was
an m= 1 wandering mode of the whole vortex. Similar observations have been later
reported by Griffiths & Linden (1981) and Thivolle-Cazat et al. (2005) when the inner
cylindrical volume of fluid is less dense and has smaller depth than the surrounding
fluid. However, the m = 1 wandering mode has not been observed for these surface
vortices. Numerical simulations performed by Verzicco, Lalli & Campana (1997)
found good agreement with the results of Griffiths & Linden (1981). Griffiths &
Linden (1981) also conducted experiments when a fluid is injected at constant flux
into a rotating fluid with a different constant density or with a continuous stratification.
In this case, barotropic instability first developed and then baroclinic instability as
the anticyclonic vortex grew in size. In the case of continuous stratification, they
also observed layers above and below the vortex core that they attributed to the
viscous–diffusive instability of McIntyre (1970). A similar instability was observed
by Hedstrom & Armi (1988) but non-axisymmetric disturbances were not observed
to grow in contrast to Griffiths & Linden (1981). Hedstrom & Armi (1988) have
also shown that the aspect ratio and velocity field were in good agreement with
the prediction of the lens model of Gill (1981) in quasi-geostrophic fluids. Recently,
Aubert et al. (2012) and Hassanzadeh, Marcus & Le Gal (2012) have proposed and
validated a universal law for the vortex aspect ratio valid in general stratified-rotating
fluids which takes into account a density gradient in the vortex core.

Many numerical and theoretical results exist on the stability of axisymmetric
vortices for various vortex profiles in one-layer rotating shallow-water fluids (Ford
1994; Stegner & Dritschel 2000), two-layer quasi-geostrophic fluids (Ikeda 1981;
Flierl 1988; Helfrich & Send 1988; Benilov 2003) or two-layer rotating shallow-water
fluids for Rossby numbers smaller than unity (Ripa 1991; Dewar & Killworth 1995;
Killworth et al. 1997; Dewar et al. 1999; Baey & Carton 2002) In one layer, vortices



510 E. Yim, P. Billant and C. Ménesguen

with a monotonic potential vorticity may be subjected to a radiative instability while,
for isolated vortices, the barotropic shear instability is dominant but tends to be
stabilized as the Burger number Bu decreases. In contrast, two-layer vortices are
increasingly unstable to baroclinic instability as Bu decreases. Baroclinic instability
is also enhanced (stabilized) when the vortices in each layer are counter-rotating
(co-rotating). Recently, Nguyen et al. (2012) have conducted a numerical stability
analysis of a pancake vortex in continuously stratified quasi-geostrophic fluids. In
the case of a Gaussian angular velocity in both radial and vertical directions, they
found that the dominant instability when the Burger number Bu = N2Λ2/f 2R2 < 1
(where N is the Brunt–Väisälä frequency, Λ the half-thickness of the vortex and
R its radius) is generally a baroclinic instability with an azimuthal wavenumber
m= 2. However, for very small Bu< 0.1, higher azimuthal modes become dominant.
For Bu > 1, the dominant mode is an m = 1 barotropic mode anti-symmetric with
respect to the mid-horizontal plane. Such a bending mode is similar to the ‘internal
instability’ evidenced by Gent & McWilliams (1986) on columnar isolated vortices
in quasi-geostrophic fluids. Yim & Billant (2015) have shown that this instability,
which we will call ‘Gent–McWilliams instability’ herein, is due to the presence of a
critical point where the angular velocity of the vortex is equal to the phase speed of
the disturbances and where the radial gradient of base vorticity is positive. Hua et al.
(2013) have performed nonlinear simulations of the dynamics of a lens-shaped vortex
in continuously stratified quasi-geostrophic fluids. In addition to the development of
the asymmetric disturbances, they evidenced layering in the vicinity of critical levels
where the azimuthal phase speed of the disturbances equal the angular velocity of
the vortex.

The stability of axisymmetric vortices for larger Rossby numbers has been also
investigated (Smyth & McWilliams 1998; Billant, Colette & Chomaz 2004; Lazar
et al. 2013a,b; Lahaye & Zeitlin 2015). In the case of a columnar Gaussian vortex
in inviscid, continuously stratified-rotating fluids, Smyth & McWilliams (1998) have
shown that centrifugal instability becomes dominant over the Gent–McWilliams
instability and shear instability for sufficiently high Rossby number. Lazar et al.
(2013a,b) studied experimentally and theoretically the stability of vortices in linearly
stratified and rotating viscous fluids with respect to the axisymmetric centrifugal
instability. Taking into account the leading viscous effects, which scale like k2

for large vertical wavenumber k, they obtained analytic predictions for the most
amplified vertical wavenumber and the marginal stability curves in terms of the
Burger, Ekman and Rossby numbers. Lahaye & Zeitlin (2015) have investigated the
linear stability and nonlinear dynamics of anticyclones with a α-Gaussian profile in
a two-layer shallow-water model. They have shown that asymmetric centrifugal
instabilities become more unstable than the axisymmetric mode as the Rossby
number Ro decreases or as the Burger number Bu increases. For small Ro or high
Bu, the barotropic shear instability is dominant. Billant et al. (2004) have carried
out experiments on a columnar counter-rotating vertical vortex pair in a linearly
stratified and rotating fluid. They have shown that the dominant centrifugal instability
developing on the anticyclone is non-axisymmetric with an azimuthal wavenumber
m= 1 for moderate Rossby number and small Froude number.

Recently, Yim & Billant (2016) (hereafter referred as to part 1) have analysed the
stability of a Gaussian pancake vortex in continuously stratified non-rotating fluids.
Instabilities similar to those of columnar vortices have been observed. Centrifugal
instability is almost independent of the aspect ratio due to its short-wavelength
nature and occurs when the buoyancy Reynolds number ReF2

h is sufficiently large:
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ReF2
h > 103, where Fh =Ω0/N is the Froude number based on the maximum angular

velocity Ω0 and Re=Ω0R2/ν, where ν is the viscosity. Shear instability can develop
when Fh/α < 0.5 where α = Λ/R is the aspect ratio of the pancake vortex. In
addition, instabilities specific to pancake vortices can exist: baroclinic instability
when Fh/α > 1.46 and gravitational instability when Fh/α > 1.5.

In this paper, we will continue these stability analyses in the case of a stratified-
rotating fluid in order to link the infinite Rossby number limit (part 1) to the small
Rossby number limit (Nguyen et al. 2012). We show that some instabilities can be
traced continuously from the stratified non-rotating limit to the quasi-geostrophic limit,
while new types of instabilities arise as Ro is varied.

The paper is organized as follows: the stability problem and methods are formulated
in § 2. The effect of the Rossby number is investigated in § 3 while the effects of the
other parameters (Fh, α and Re) are studied in § 4. In § 5, the energetics of some
instabilities are analysed in detail in order to characterize their origin. Conditions of
existence for shear instability, Gent–McWilliams instability and baroclinic instability
are derived in § 6, § 7 and § 8, respectively. Finally, § 9 summarizes the domains of
existence of each type of instability in the parameter space (Fh/α, Ro) and (Bu, Ro).

2. Problem formulation
The problem formulation is the same as in part 1 except that the fluid is not only

stably stratified but also rotating about the vertical axis at rate f /2. For clarity, the
main steps of the methods are nevertheless recalled here.

2.1. The base state
As in Nguyen et al. (2012) and part 1, we consider an axisymmetric pancake vortex
with angular velocity

Ω(r, z)=Ω0e−(r
2/R2+z2/Λ2), (2.1)

where (r, θ, z) are cylindrical coordinates with z pointing upward, R the radius, Λ the
typical half-thickness and Ω0 the maximum angular velocity. The radial and vertical
inviscid momentum equations under the Boussinesq approximation for such steady
base flow are

−rΩ2 − frΩ =− 1
ρ0

∂pt

∂r
, (2.2)

0=− 1
ρ0

∂pt

∂z
− g
ρ0
ρt, (2.3)

where pt and ρt are the total pressure and density, respectively, g is the gravity and
ρ0 a constant reference density. Combining (2.2) and (2.3) gives the thermal wind
equation

∂ρt

∂r
=−ρ0

g
∂

∂z
(rΩ2 + frΩ), (2.4)

yielding
ρt = ρ0 + ρ̄(z)+ ρb(r, z), (2.5)

with ρ̄(z) = −N2ρ0z/g where N = √−g/ρ0(dρ̄/dz) is the Brunt–Väisälä frequency
which is assumed constant and

ρb(r, z)=−z
ρ0

g

(
R
Λ

)2

(Ω + f ) Ω, (2.6)

is the density field associated with the vortex.
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2.2. Linearized equations
We subject this vortex to infinitesimal perturbations of velocity u′ = [u′r, u′θ , u′z],
pressure p′ and density ρ ′ written as

[u′r, u′θ , u′z, p′, ρ ′] =
[

ur(r, z), uθ(r, z), uz(r, z), ρ0p(r, z),
ρ0

g
ρ(r, z)

]
e−iωt+imθ + c.c.,

(2.7)
where m is the azimuthal wavenumber and ω = ωr + iωi, with ωr the frequency and
ωi the growth rate. The linearized Navier–Stokes equations under the Boussinesq
approximation are

−i(ω−mΩ)ur − (2Ω + f )uθ =−∂p
∂r
+ ν

(
∇2ur − 1

r2
ur − 2

r2
imuθ

)
, (2.8)

−i(ω−mΩ)uθ + (ζ + f )ur + ∂rΩ
∂z

uz =− im
r

p+ ν
(
∇2uθ − 1

r2
uθ + 2

r2
imur

)
, (2.9)

−i(ω−mΩ)uz =−∂p
∂z
− ρ + ν∇2uz, (2.10)

−i(ω−mΩ)ρ + g
ρ0

∂ρb

∂r
ur + g

ρ0

∂ρb

∂z
uz =N2uz + κ∇2ρ, (2.11)

1
r
∂rur

∂r
+ 1

r
imuθ + ∂uz

∂z
= 0, (2.12)

where ζ = (1/r)∂r2Ω/∂r is the vertical vorticity, ν the viscosity and κ the diffusivity
of the stratifying agent. The viscous and diffusive damping of the base state are
neglected in (2.8)–(2.12) as classically done in stability analyses (Drazin & Reid
1981). This assumption is valid as long as the time taken by the perturbations to
grow to finite amplitude is small compared to the viscous decay time of the base
flow. The problem is governed by five non-dimensional numbers: aspect ratio (α),
Froude number (Fh), Rossby number (Ro), Reynolds number (Re), Schmidt number
(Sc), defined as follows:

α = Λ
R
, Fh = Ω0

N
, Ro= 2Ω0

f
, Re= Ω0R2

ν
, Sc= ν

κ
. (2.13a−e)

The Schmidt number is set to Sc = 1 throughout the paper. In part 1, the effect of
the Schmidt number has been studied and shown to affect only the axisymmetric
mode of centrifugal instability. The equations (2.8)–(2.12) in the inviscid and non-
diffusive limit are non-dimensionalized in appendix A and shown to reduce to the
quasi-geostrophic equation when Ro � 1 and Fh � 1 whatever the aspect ratio α.
For this reason, even if we consider here aspect ratios not as small as in the oceans,
the quasi-geostrophic regime will be reached for sufficiently small Rossby and Froude
numbers.

As explained in part 1, equations (2.8)–(2.12) are discretized with finite element
methods using FreeFEM++ (Hecht 2012; Garnaud 2012) in the domain 0 6 r 6 Rmax

and −Zmax 6 z 6 Zmax. The size is taken as Rmax > 10R and Zmax = 5Λ. These sizes
are slightly different compared to part 1 because some modes are more sensitive to
radial confinement in the presence of background rotation. The mesh is adapted to
the base flow so that the mesh is finer (∼0.001R) inside the vortex core than outside
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(∼0.1R). The boundary conditions at r= 0 are ur= uθ = 0 for m= 0, uz= p=ρ= 0 for
m= 1 and u= p= ρ = 0 for m > 2. At the other boundaries, R= Rmax and z=±Zmax,
all the perturbations are imposed to vanish: u = p = ρ = 0. The matrix version of
(2.8)–(2.12) built by FreeFEM++ is then solved by means of an iterative Krylov–Schur
scheme and a shift-invert method using the SLEPc and PETSc libraries (Hernandez,
Roman & Vidal 2005; Garnaud 2012; Garnaud et al. 2013; Balay et al. 2014; Roman
et al. 2015). More details can be found in part 1. The limit α→∞ corresponding
to a columnar vortex has been solved by means of a Chebyshev collocation spectral
method (Antkowiak & Brancher 2004).

In appendix B, it is shown that the equations (2.8)–(2.12) in the quasi-geostrophic
and inviscid limits (Ro→ 0,Fh→ 0,Re=∞) can be solved by separation of variables
and a shooting method for Bu = Ro2α2/(4F2

h) = 1. Hence, this particular case has
been used as a validation test for the code based on FreeFEM++ and SLEPc. The
eigenvalues obtained by the two numerical methods are in good agreement (see
appendix B).

3. Overview of the effect of the Rossby number
We first present an overview of the effect of the Rossby number for the azimuthal

wavenumbers m = 0, 1, 2 starting from the strongly stratified non-rotating limit
(Fh < 1 and Ro=∞) previously studied in part 1. This will enable us to connect the
purely stratified limit to the quasi-geostrophic limit studied by Nguyen et al. (2012).
Throughout the paper, the exploration of the parameter space will be restricted to the
region stable to gravitational instability, i.e. where the total density gradient

∂ρt

∂z
=−ρ0N2

g
+ ∂ρb

∂z
, (3.1)

is everywhere negative. This condition can be rewritten in the form

Fh

α
< cg(Ro), (3.2)

where cg is a constant depending on the Rossby number. When Ro = ∞,
cg = e3/4/

√
2 ' 1.5 whereas for Ro � 1, cg = e3/4

√
Ro/2 ' 1.06

√
Ro. However,

the constant cg cannot be expressed analytically for arbitrary Ro. The minimum of
the Richardson number

Ri=
− g
ρ0

∂ρt

∂z(
∂uθ
∂z

)2 , (3.3)

is always larger than 1/4 when the condition (3.2) is satisfied, meaning that a
shear instability due to the vertical shear should not occur in the region stable to
gravitational instability (Negretti & Billant 2013).

3.1. Azimuthal wavenumber m= 0
For m= 0, it has been found in part 1 that only a centrifugal instability exists in a
stratified fluid when the buoyancy Reynolds number ReF2

h is sufficiently high. This
remains true when the Rossby number is varied. Figure 1 shows two examples of
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FIGURE 1. Growth rate (ωi/Ω0) and frequency (ωr/Ω0) spectra for m = 0 for different
Rossby numbers Ro: (a) Ro = ∞, (b) Ro = 20 and (c) Ro = −10 for Fh = 0.5 and
Re = 10 000. Discrete symbols (E: for symmetric and for anti-symmetric modes)
correspond to pancake vortices for α = 0.5 and thick continuous lines ( ) correspond
to columnar vortices (α =∞).

(a)

CI

(0, 1)

0 1 2 3

−1

0

1

(b) (0, 3)
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0 1 2 3
−1

0

1

FIGURE 2. (Colour online) Real part of the radial velocity perturbation Re(ur) of
centrifugal instability (CI): (a) mode (0, 1) for Ro= 20 and (b) mode (0, 3) for Ro=−10
indicated in figure 1 (m= 0,Fh= 0.5, α= 0.5,Re= 10 000). The quasi-horizontal lines are
isopycnals of the base density field. The dotted line indicates the extension of the base
flow by showing the contour where Ω = 0.1Ω0. The dashed line indicates the contour
where the Rayleigh discriminant Φ vanishes.

spectra for Ro= 20 and Ro=−10 together with the one for Ro=∞, all for the same
set of parameters: α = 0.5, Fh = 0.5 and Re= 10 000. The unstable modes are shown
by symbols and are labelled (m, i) where i is the mode number. For each point, there
exist actually two modes with different symmetry with respect to the mid-plane z= 0:
anti-symmetric (E) and symmetric ( ). The maximum growth rate and the number
of modes vary with Ro but these variations are consistent with the spectra of the
most unstable mode of a columnar vortex for the same Reynolds, Froude and Rossby
numbers (grey continuous lines). Some examples of modes are shown in figure 2. The
modes are localized inside the region delimited by a dashed line where the Rayleigh
discriminant

Φ = 1
r3

∂

∂r

(
r4

(
Ω + f

2

)2
)∣∣∣∣∣

ρt

, (3.4)

is negative. The radial derivative in (3.4) is taken along constant density surfaces
as specified by the generalisation of the Rayleigh criterion to baroclinic vortices
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FIGURE 3. (Colour online) Maximum growth rate of centrifugal instability for m= 0 as
a function of Ro for a pancake vortex for α = 0.5 ( ) and a columnar vortex ( )
for Fh = 0.5 and Re = 10 000. The dashed grey line ( ) shows the maximum of the
asymptotic growth rate (3.5) and the solid line (——) shows the upper limit for the growth
rate of centrifugal instability for m = 0:

√−min(φ). The vertical shaded region is the
region unstable to gravitational instability. The upper x-axis indicates the corresponding
value of square root of the Burger number

√
Bu.

(Solberg 1936; Eliassen & Kleinschmidt 1957). The minimum of Φ is located on the
symmetry plane z= 0 whatever Ro but the region of negative Φ has a bean shape for
Ro> exp(2)= 7.39 and a croissant shape (extending to the axis at z=√ln(−Ro)) for
Ro<−1. The number of oscillations of the modes along the vertical increases with
the mode number but there is always a single oscillation along the radial direction
for the parameters of figure 1. The variation of the growth rate of the most unstable
mode as a function of Ro for α = 0.5, Fh = 0.5 and Re = 10 000 is summarized
in figure 3 (dashed line with circles). Centrifugal instability is stabilized for small
Rossby number in the range −3.5 < Ro < 17. A similar evolution of the maximum
growth rate is observed for a columnar vortex (grey continuous line). As shown
in part 1, the growth rate of the centrifugal instability can be predicted using the
asymptotic formula of Billant & Gallaire (2005) for large axial wavenumber k for
a columnar vortex with the addition of the leading viscous term as in Lazar et al.
(2013b):

ω=ω(0) − ω
(1)N
k
− iνk2, (3.5)

where

ω(0) =mΩ(r0)+ i
√
−φ(r0), (3.6)

ω(1) = (2n+ 1)i

2
√

2

√
φ′′(r0)− 2m2Ω ′(r0)2 + 2im

√−φ(r0)Ω ′′(r0)

−φ(r0)

√
1− φ(r0)

N2
, (3.7)

with n a non-negative integer, φ = (2Ω + f )(ζ + f ) and r0 is given by

φ′(r0)=−2imΩ ′(r0)
√
−φ(r0). (3.8)
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The maximum growth rate predicted by (3.5) for Fh = 0.5 and Re= 10 000 is shown
by the dashed grey line in figure 3. It is close to the maximum growth rate for both
columnar and pancake vortices. We can remark that the maximum growth rate for
Fh = 0.5 and Re = 10 000 is approximately three times smaller than the theoretical
upper limit for the growth rate of a centrifugal instability which is

√−min(φ) for
m = 0 (solid line in figure 3) and which is attained in the limit k→∞ and ν→ 0.
Note that min(φ)=min(Φ) since Φ is minimum on the symmetry plane z= 0.

3.2. Azimuthal wavenumber m= 1
A spectrum for m = 1 for a large Rossby number Ro = 20 and α = 0.5, Fh = 0.5
and Re = 10 000 is displayed in figure 4(b). The spectrum of a columnar vortex
for the same parameter is also shown by a continuous grey line for comparison.
These spectra are qualitatively similar to those for Ro=∞ (shown in figure 4(a) for
reference) in which three types of modes have been identified in part 1. From this
basis, we can easily classify the different modes in figure 4(b). The series of modes
((1, 1)–(1, 4), (1, 6)–(1, 8)) correspond to centrifugal instability. The eigenmodes differ
again by the number of oscillations along the vertical (compare modes (1, 1) and (1, 3)
in figure 5) but they have all a single oscillation along the radial direction. They are
localized near the region where Φ is negative and they tend to be aligned along the
base isopycnals (figure 5a,b). The mode (1, 5) in figure 4(b) corresponds to a mixed
Gent–McWilliams–centrifugal instability since it exhibits both the characteristics of
centrifugal and Gent–McWilliams instabilities (figure 5c). The latter instability, which
is also called the internal instability, bends the vortex and is due to the presence
of a critical layer where Ω = ωr and where the vertical vorticity radial gradient is
positive (Gent & McWilliams 1986; Smyth & McWilliams 1998; Yim & Billant
2015). The mode (1, 9) is almost neutral with zero frequency for large Re. Its radial
velocity perturbation (figure 5d) is almost identical to the angular velocity of the base
flow, implying that it displaces the vortex without deforming it. As shown in part 1,
this mode corresponds to the displacement mode originating from the translational
invariance. In § 4.1, it will be shown that the instability of the displacement mode is
due to viscous effects.

A similar spectrum is observed for Ro=−10 (figure 4c) except that there is a clear
separation between centrifugal and Gent–McWilliams instabilities. This is similar to
the columnar vortex case (grey solid line) where Gent–McWilliams instability and
centrifugal instability correspond to two distinct growth rate peaks for negative
Rossby numbers in contrast to positive Rossby numbers (Yim & Billant 2015).
The structure of centrifugal instabilities (figure 6a) is similar to those for Ro = 20
(figure 5a,b). Gent–McWilliams instability (figure 6b) is localized in the vortex core
and corresponds more clearly to a bending of the vortex as a whole than for Ro= 20
(figure 5c) where the mixed Gent–McWilliams–centrifugal mode tends to concentrate
at the top and bottom of the pancake vortex.

When the absolute value of the Rossby number is further decreased, the centrifugal
instability disappears since Φ > 0 everywhere when −1 6 Ro 6 7.39 and only the
Gent–McWilliams instability remains, as exemplified in figure 4(d) for Ro = 5. In
this case, there are three unstable Gent–McWilliams modes and the first two are
displayed in figure 7. The first one (figure 7a) is similar to the one previously shown
in figure 6(b) for Ro=−10 while the second one exhibits one more oscillation along
the vertical and is thus symmetric (figure 7b). There is still also the displacement
mode ((1, 4) in figure 4d) with a very weak frequency and growth rate. All these
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FIGURE 4. Growth rate (ωi/Ω0) and frequency (ωr/Ω0) spectra for m = 1 for different
Rossby numbers Ro: (a) Ro=∞, (b) Ro= 20, (c) Ro=−10 (d) Ro= 5, (e) Ro= 2 and
( f ) Ro= 1.43 for Fh= 0.5 and Re= 10 000. Discrete symbols (E: for symmetric and for
anti-symmetric modes) correspond to pancake vortices for α = 0.5 and thick continuous
lines ( ) correspond to columnar vortices (α =∞).

modes are close to the spectrum of a columnar vortex shown by the grey solid line
(figure 4d). The maximum frequency of the unstable branch of the columnar vortex
is ωr = Ω0e−2 = 0.135Ω0. This corresponds to the maximum frequency for which
the gradient of the vertical vorticity ζ ′(rc) is positive at the critical radius rc where
Ω(rc)=ωr.

So far, all the unstable modes observed for a pancake vortex derive from those
for a columnar vortex. However, when the Rossby number is further decreased to
Ro = 2 (figure 4e) and then to Ro = 1.43 (figure 4f ), all the unstable modes for
pancake vortices have no counterparts in columnar vortices except the displacement
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FIGURE 5. (Colour online) Real part of the radial velocity perturbation Re(ur) of
centrifugal instability (CI) (a) mode (1, 1) and (b) mode (1, 3), (c) mixed Gent–
McWilliams–centrifugal instability (GMW-CI) (1, 5) and (d) the displacement mode (DM)
(1, 9) for Ro= 20 (figure 4b) (m= 1, α= 0.5, Fh = 0.5, Re= 10 000). The quasi-horizontal
lines are isopycnals. The dotted line indicates the extension of the base flow by showing
the contour where Ω = 0.1Ω0. The dashed line indicates the contour where the Rayleigh
discriminant Φ vanishes.
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FIGURE 6. (Colour online) Real part of the radial velocity perturbation Re(ur) of (a)
centrifugal instability (1, 1) and (b) Gent–McWilliams instability (GMWI) (1, 5) for
Ro=−10 (figure 4c) (m= 1, α= 0.5,Fh= 0.5,Re= 10 000). The quasi-horizontal lines are
isopycnals. The dotted line indicates the extension of the base flow by showing the contour
where Ω = 0.1Ω0. The dashed line indicates the contour where the Rayleigh discriminant
Φ vanishes.

mode near the origin ((1, 4) in figure 4(e) and (1, 7) in figure 4f ). For Ro = 2
(figure 4e), the most unstable mode (1, 1) has a frequency larger than 0.135Ω0
but is still close to the spectra of the columnar vortex. The structure of this mode
(figure 8a) is similar to Gent–McWilliams instability for Ro = 5 (figure 7a) but it
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FIGURE 7. (Colour online) Real part of the radial velocity perturbation Re(ur) of
Gent–McWilliams instability (GMWI): (a) mode (1, 1) and (b) mode (1, 2) for Ro = 5
(figure 4d) (m=1, α=0.5,Fh=0.5,Re=10 000). The quasi-horizontal lines are isopycnals.
The dotted line indicates the extension of the base flow by showing the contour where
Ω = 0.1Ω0.
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FIGURE 8. (Colour online) Real part of the radial velocity perturbation Re(ur) of
the mixed baroclinic–Gent–McWilliams instability (BGMWI): mode (1, 1) for Ro = 2
(figure 4e) (m= 1, α= 0.5,Fh= 0.5,Re= 10 000). The quasi-horizontal lines are isopycnals.
The dotted line indicates the extension of the base flow by showing the contour where
Ω = 0.1Ω0.

tends to be distorted near r = R. In § 5, we will show that the energy source of
this mode is the potential energy of the base flow instead of the kinetic energy.
For this reason, we shall call it mixed baroclinic–Gent–McWilliams instability. Two
other modes start also to be observed near the frequency ωr = 0.25Ω0 (figure 4e)
but they are weakly unstable. In contrast, for Ro = 1.43 (figure 4f ), there are many
modes around this frequency and their growth rate is much larger. The leading mode
(1,1) corresponds in fact to baroclinic–Gent–McWilliams mode whose frequency and
growth rate have increased until merging with the series of modes aligned near the
frequency ωr = 0.25Ω0. A selection of these modes are depicted in figure 9. The
first mode (1,1) shows some similarities with the one for Ro= 2 (figure 8) but it is
clearly more concentrated in the vortex core r/R0 6 0.5 and is maximum at a slightly
higher vertical level z/Λ=±0.7. The next modes are similar but exhibit more radial
oscillations (figure 9b–d) with still two vertical oscillations, i.e. one per half-vertical
plane. Similar modes have been observed in stratified non-rotating fluids (part 1)
when the isopycnal deformations are sufficiently strong and have been attributed
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FIGURE 9. (Colour online) Real part of the radial velocity perturbation Re(ur) of the (a)
mode (1, 1), (b) mode (1, 2), (c) mode (1, 3) and (d) mode (1, 6) for Ro= 1.43 (figure 4f )
(m = 1, α = 0.5, Fh = 0.5, Re = 10 000). The quasi-horizontal lines are isopycnals. The
dotted line indicates the extension of the base flow by showing the contour where Ω =
0.1Ω0. The double dotted dashed line ( ) shows where the isopycnal potential vorticity
gradient (3.9) changes sign.

to baroclinic instability (BI). The isopycnals are indeed more and more distorted
when the Rossby number decreases for given aspect ratio and Froude number. The
isopycnals even overturn, i.e. max(∂ρt/∂z) > 0, when Ro 6 1.3 for α = 0.5 and
Fh = 0.5. In quasi-geostrophic fluids, a necessary condition for baroclinic instability
is the sign change of the potential vorticity gradient along the isopycnals (Charney
& Stern 1962; Eliassen 1983; Hoskins, McIntyre & Robertson 1985; Ménesguen,
McWilliams & Molemaker 2012b):

∂Π

∂r

∣∣∣∣
ρt

= ∂Π
∂r
− ∂Π
∂z

∂ρt

∂r
∂ρt

∂z

= 0, (3.9)

where Π = (ζ + f )∂ρt/∂z− r∂Ω/∂z∂ρt/∂r is the potential vorticity of the base flow.
The double dotted dashed line in figure 9 shows where ∂Π/∂r|ρt = 0. As can be
seen, the modes develop in the vicinity of this line suggesting that they are due
to baroclinic instability. In this respect, the leading mode (1,1) (figure 9a) is not
different from the following modes (figure 9b–d) and could be equally classified as
baroclinic. However, we will continue to call it baroclinic–Gent–McWilliams mode
since it derives continuously from Gent–McWilliams instability as Ro increases. A
detailed study of these baroclinic modes will be conducted in § 8.
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FIGURE 10. (Colour online) (a) Maximum growth rates and (b) corresponding
frequencies of the different types of instability as a function of Ro for m = 1,
α = 0.5, Fh = 0.5 and Re = 10 000: centrifugal instability , displacement mode ,
Gent–McWilliams instability , mixed Gent–McWilliams–centrifugal instability ,
mixed baroclinic–Gent–McWilliams instability and baroclinic instability . The
upper x axis indicates the corresponding value of the square root of the Burger number√

Bu. The shaded region is gravitationally unstable.

The effect of the Rossby number on the growth rate and frequency of the most
unstable modes of each instability for m = 1 is summarized in figure 10. As
already seen for m = 0, centrifugal instability (dashed line with circles) is stabilized
for small negative Ro & −2. For positive Rossby number, centrifugal instability
transforms continuously into the Gent–McWilliams instability (dashed line with
filled triangle) when Ro . 7 (Yim & Billant 2015). The growth rate of the mixed
Gent–McWilliams–centrifugal instability (dashed line with open triangle) is almost
constant for large Rossby number. For negative Rossby number, the Gent–McWilliams
instability stabilizes around Ro ∼ −2 as for the centrifugal instability. For positive
Rossby number, the growth rate of the Gent–McWilliams instability decreases as
the Rossby number decreases and becomes minimum for Ro ' 2 corresponding
to a Burger number Bu = (αRo/2Fh)

2 ≡ (NΛ/fR)2 of approximately unity, as
indicated in the upper x axis in figure 10. Below this Rossby number, the frequency
(figure 10b) increases beyond the cutoff frequency ωr = 0.135Ω0 above which the
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FIGURE 11. (a) Maximum growth rate and (b) corresponding frequency of centrifugal
instability ( ) for columnar (thick continuous lines) and pancake (α=0.5) ( ) vortices
as a function of Ro for m = 1, Fh = 0.5 and Re = 10 000. The dashed grey line shows
the maximum of the asymptotic growth rate (3.5). The dotted line indicates the Gent–
McWilliams instability.

Gent–McWilliams instability no longer exists in the case of a columnar vortex (Yim
& Billant 2015). Simultaneously, the growth rate again increases and the instability
becomes a mixed baroclinic–Gent–McWilliams instability (dashed line with star).
For smaller Rossby number, the instability merges with the pure baroclinic instability
(dashed line with diamond) with a growth rate increasing dramatically as Ro decreases.
However, the frequency saturates at ωr' 0.25Ω0. The growth rate of the displacement
mode (dashed line with square) remains very low for any Rossby number.

Similar results have been obtained by Nguyen et al. (2012) in quasi-geostrophic
fluids except that the centrifugal instability is absent since Ro� 1. Thus, they have
reported for m = 1 only two modes that they distinguish by their symmetry: a
symmetric and an anti-symmetric mode. When the Burger number is of order unity
or larger, the symmetric mode corresponds to the displacement mode herein and
the anti-symmetric mode is similar to the Gent–McWilliams most unstable mode. In
contrast, when Bu is small, the symmetric and anti-symmetric modes correspond to
the leading baroclinic modes herein (BGMWI or BI depending on Bu). The growth
rate of the anti-symmetric mode is minimum for Bu = 1 as in figure 10 when the
transition between the Gent–McWilliams and baroclinic–Gent–McWilliams instabilities
occur.

Finally, figure 11 shows that the maximum growth rate and corresponding
frequency of the centrifugal instability for pancake (dashed line with circle) and
columnar (grey continuous line) vortices are close. The maximum growth rate and
associated frequency predicted by (3.5) is also represented by a dashed line. It
underestimates the observed growth rate of both pancake and columnar vortices for
positive Rossby number. This discrepancy comes from the smooth transition between
Gent–McWilliams and centrifugal instabilities as Ro varies.

In summary, for m= 1, the baroclinic–Gent–McWilliams instability dominates when
Ro is small and the centrifugal instability takes over when Ro is large. In between,
there exists a Gent–McWilliams instability for positive Ro. For negative Ro, the
centrifugal instability is always dominant. Although only one particular set of
parameters (α = 0.5, Fh = 0.5 and Re = 10 000) has been presented, we shall see
in § 4 that this picture is typical of other parameter combinations in the strongly
stratified regime with moderate and strong rotation.
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FIGURE 12. Growth rate (ωi/Ω0) and frequency (ωr/Ω0) spectra for m= 2 for different
Rossby numbers Ro: (a) Ro=∞, (b) Ro= 20, (c) Ro= 0.8 and (d) Ro= 0.25 for Fh= 0.5
and Re = 10 000. Discrete symbols (E: for symmetric and for anti-symmetric modes)
correspond to pancake vortices for α = 1.2 and thick continuous lines ( ) correspond
to columnar vortices (α =∞).

3.3. Azimuthal wavenumber m= 2
Finally, we present the effect of the Rossby number on the stability of the azimuthal
wavenumber m= 2 for the set of parameters: α= 1.2,Fh= 0.5 and Re= 10 000. Note
that the aspect ratio is changed compared to m= 0 and m= 1 in order to show more
typical examples of spectra. In the strongly stratified non-rotating case (part 1), two
instabilities have been found: a centrifugal instability for sufficiently large buoyancy
Reynolds number ReF2

h and a shear instability when Fh/α 6 0.5. These correspond
to the modes (2, 1)–(2, 2) and (2, 3), respectively in figure 12(a). When the Rossby
number is decreased, a scenario similar to the one described for m = 1 occurs.
Centrifugal instability becomes less dominant for moderate Rossby number (see
figure 12(b) for Ro=20) and disappears for small Rossby number (see figure 12(c) for
Ro=0.8) since Φ>0 for −1<Ro<7.39. An example of the structure of a centrifugal
mode for Ro = 20 is depicted in figure 13(b). In contrast, a baroclinic instability
appears for small Rossby number (modes (2, 1)–(2, 4) in figure 12(d) for Ro= 0.25).
As for m= 1 (figure 9), the baroclinic modes differ by the number of oscillations in
the radial direction and by their symmetry with respect to the mid-plane z = 0 (not
shown).

For all the Rossby numbers presented in figure 12, the shear instability remains
present around the same frequency in the vicinity of the shear instability branch of
the columnar vortex (grey continuous line near ωr/Ω0 = 0.26). However, its growth
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FIGURE 13. (Colour online) Real part of the radial velocity perturbation Re(ur) of
(a) shear instability (SI) (2, 1) and (b) centrifugal instability (CI) (2, 2) for Ro = 20
(figure 12b) (m = 2, α = 1.2, Fh = 0.5, Re = 10 000). The quasi-horizontal lines are
isopycnals. The dotted line indicates the extension of the base flow by showing the contour
where Ω = 0.1Ω0. The dash dotted line in (a) shows the inflection radius rI where
ζ ′(rI)= 0. The dashed line in (b) indicates the contour where the Rayleigh discriminant
Φ vanishes.
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FIGURE 14. (Colour online) Real part of the radial velocity perturbation Re(ur) of the
mixed baroclinic–shear instability (BSI) (a) mode (2, 1) for Ro= 0.8 (figure 12c) and (b)
mode (2, 5) for Ro= 0.25 (figure 12d) (m= 2, α= 1.2, Fh = 0.5, Re= 10 000). The quasi-
horizontal lines are isopycnals. The dotted line indicates the extension of the base flow by
showing the contour where Ω = 0.1Ω0. The dash dotted line shows the inflection radius
rI where ζ ′(rI)= 0. The solid line in (b) show the critical layer where ωr =mΩ(r, z).

rate for the pancake vortex varies with Ro while the maximum growth rate for the
columnar vortex is independent of the Rossby number since the dominant mode
is two-dimensional. The shape of the shear instability mode also varies somewhat
with the Rossby number (see figure 13(a) for Ro = 20, figure 14 for Ro = 0.8 and
Ro= 0.25). The mode for Ro= 20 is almost identical to the one found for Ro=∞
(part 1). The mode for Ro= 0.25 (figure 14b) is similar but extends vertically around
r/R = rI/R = 1.4 where rI is the inflection point such that ∂ζ (r, z)/∂r = 0 at z = 0.
A similar mode has been found by Nguyen et al. (2012) in quasi-geostrophic fluids.
They argued that this mode originates from a baroclinic instability induced by the
critical layer where ωr =mΩ . As can be seen in figure 14(b), the mode tends indeed
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FIGURE 15. (Colour online) (a) Maximum growth rates and (b) corresponding frequencies
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value of the square root of the Burger number
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Bu. The shaded region is gravitationally

unstable.

to be distorted along the critical layer (shown by a solid line). However, figure 12
shows that this mode derives continuously from the shear instability. In addition, we
will show in § 5 that the energy source of this instability is the potential energy of
the base flow instead of the kinetic energy. For this reason, we will call here this
instability the mixed baroclinic–shear instability (BSI).

Figure 15 outlines the effect of the Rossby number on the maximum growth
rate and associated frequency of each instability. Centrifugal instability (dashed line
with open circle) is stabilized for −3 6 Ro 6 17 and is stronger for negative Rossby
number than for positive ones as already observed for m= 0 and m= 1. Strikingly, the
opposite behaviour is observed for shear instability (dashed line with filled circle): it
tends to be enhanced for moderate positive Rossby numbers and attenuated for finite
negative Rossby numbers. However, the growth rate of the shear instability decreases
to zero as Ro decreases from Ro= 7 to Ro= 1. Below Ro= 1 (which corresponds to
Bu= 1 as indicated in the upper x axis) it starts to increase again but the instability is
then of the mixed type: baroclinic–shear instability. Such a growth rate minimum for
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FIGURE 16. (a) Maximum growth rates and (b) corresponding frequencies of centrifugal
instability for columnar (thick continuous lines, ) and pancake (α = 1.2) (symbolled
lines, ) vortices for m=2,Fh=0.5 and Re=10 000. The dashed grey line ( ) shows
the maximum of the asymptotic growth rate (3.5).

Bu' 1 is consistent with the results of Nguyen et al. (2012). This mixed instability
exists down to Ro=−0.6 while the classical shear instability reappears for Ro'−23.
The baroclinic instability co-exists with the mixed baroclinic-shear instability for
small Rossby numbers in the range 0 6 Ro 6 0.4. Its growth rate becomes very high
as soon as the Rossby number threshold is crossed but its frequency remains almost
constant ωr ' 0.5Ω0 (figure 15b).

In figure 16, the maximum growth rate and associated frequency of the centrifugal
instability for m = 2 for a pancake vortex is further compared to the one for a
columnar vortex. As already seen for m = 0 and m = 1, they are close and in
reasonable agreement with the asymptotic formula (3.5).

4. Effects of the other parameters for a fixed Rossby number

In this section, we now fix the Rossby number and vary the other control
parameters: Reynolds number, Re, aspect ratio, α and Froude number, Fh. In most
of the section, the Rossby number will be fixed to Ro = 1.25 but smaller values
will be also investigated at the end. For these values of the Rossby number, the
centrifugal instability is not active but all of the other instabilities seen in § 3 may
occur for some parameter combinations. Only the most unstable mode for each type
of instability will be studied and the two azimuthal wavenumbers m = 1 and m = 2
will be presented together (m= 0 is stable for Ro 6 1.25). We will not study further
the centrifugal instability since it has the same characteristics as for columnar vortices
and is almost independent of the aspect ratio of the vortex. For Ro = ∞ (part 1),
its growth rate has been shown to depend mostly on ReF2

h and this is expected to
remain true for any given finite Ro.

4.1. Effect of the Reynolds number
Figure 17 shows the effect of the Reynolds number on the maximum growth rate
and associated frequency for α = 0.5, Fh = 0.3 and Ro = 1.25. For these parameters,
only the Gent–McWilliams instability and displacement mode are unstable for m= 1
while only the baroclinic–shear instability is unstable for m= 2. The growth rates of
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FIGURE 17. (Colour online) (a) Maximum growth rates and (b) corresponding frequencies
as a function of the Reynolds number Re for the Gent–McWilliams instability ( ),
displacement mode ( ) for m= 1 and the baroclinic–shear instability ( ) for m= 2
for α = 0.5, Fh = 0.3 and Ro= 1.25.

the Gent–McWilliams instability (dashed line with triangles) and the baroclinic–shear
instability (dashed line with stars) asymptote to a constant value for large Re and
decreases to zero for Re' 1000 and Re' 2000, respectively. Surprisingly, the growth
rate of the displacement mode (dashed line with squares) first increases when the
Reynolds number decreases. Thereby, it is most unstable for a finite Reynolds number
Re' 500. The instability of the displacement mode is therefore of viscous origin. A
similar viscous instability of the displacement mode of a columnar vortex exists in
stratified-rotating fluids (Billant 2010; Riedinger, Le Dizès & Meunier 2010). Further
analyses would be necessary to explain its detailed mechanism. In summary, for the
given parameters α = 0.5, Fh = 0.5 and Ro= 1.25, the m= 1 displacement instability
is dominant for Re< 2000 while the m= 1 Gent–McWilliams instability is dominant
for higher Re.

4.2. Effect of the Froude number
The Froude number is now varied for Re = 10 000 still for α = 0.5 and Ro = 1.25
(figure 18). The displacement mode (dashed line with squares) keeps a very low
growth rate and frequency independently of the Froude number. In contrast, the
growth rate of the Gent–McWilliams instability (dashed line with triangles) fluctuates
with Fh: it exhibits two successive maxima as the Froude number increases before
increasing widely when it transforms into the mixed baroclinic–Gent–McWilliams
instability. The structure of the mode for some selected Froude numbers is displayed
in figure 19. For Fh = 0.05, the mode exhibits five oscillations along the vertical and
is symmetric while for Fh = 0.2, it has only two oscillations occupying the whole
pancake vortex and is anti-symmetric as seen before (see figure 7a). This change of
structure explains why there is a slight frequency jump in figure 18(b) (dashed line
with triangles) and two growth rate maxima (figure 18a). For Fh = 0.4 (figure 19c),
the mode is of mixed type: baroclinic–Gent–McWilliams with a frequency above
the cutoff ωr = 0.135Ω0 of the Gent–McWilliams instability and slightly below the
frequency ωr = 0.25Ω0 of the baroclinic instability (figure 18b).

Shear instability for m = 2 (dashed line with filled circles in figure 18) is most
unstable as Fh→ 0 and stabilizes for Fh' 0.1. However, it becomes unstable again for
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FIGURE 18. (Colour online) (a) Maximum growth rates and (b) corresponding frequencies
as a function of the Froude number Fh for α = 0.5, Ro = 1.25 and Re = 10 000 of
the different instabilities: displacement mode ( ); Gent–McWilliams instability ( );
baroclinic-Gent–McWilliams instability ( ); baroclinic instability ( ) for m= 1; shear
instability ( ); baroclinic-shear instability ( ) and baroclinic instability for m = 2
( ). The shaded area indicates the gravitationally unstable region.
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FIGURE 19. (Colour online) Real part of the radial velocity perturbation Re(ur) of
the most unstable mode for different Froude numbers: Gent–McWilliams instability
for (a) Fh = 0.05 and (b) Fh = 0.2 and (c) mixed baroclinic–Gent–McWilliams instability
for Fh = 0.4 for m= 1, α = 0.5, Ro= 1.25 and Re= 10 000. The dotted line indicates the
extension of the base flow by showing the contour where Ω = 0.1Ω0.

Fh > 0.3 but under the mixed form of a shear–baroclinic instability (dashed line with
stars). When Fh > 0.4, the baroclinic instability for m= 2 (dashed line with crosses)
becomes quickly strongly unstable as Fh increases (with a growth rate higher than
the upper limit of figure 18a) but with a constant frequency ωr ' 0.5Ω0. Examples
of modes corresponding to these three types of instability for m = 2 are shown in
figure 20. For small Fh, the shear instability (figure 20a) is strongly localized near
z = 0 where the radial shear is maximum. In contrast, baroclinic–shear instability
(figure 20b,c) occupies the whole pancake vortex as already seen in § 3.3.

4.3. Effect of the aspect ratio
We now vary the aspect ratio keeping the other parameters to the same values as
before: Fh = 0.3, Ro= 1.25 and Re= 10 000 (figure 21). For m= 1, the displacement
mode (dotted line with squares) remains only marginally unstable while the growth
rate of the Gent–McWilliams instability (dashed line with triangles) is large and
varies non-monotonically with the aspect ratio. It exhibits two maxima, for α ' 1
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FIGURE 20. (Colour online) Real part of the radial velocity perturbation Re(ur) of the
most unstable modes for different Froude numbers: shear instability for (a) Fh = 0.05
and mixed baroclinic–shear instability for (b) Fh = 0.3 and (c) Fh = 0.45 for m = 2,
α = 0.5, Ro= 1.25 and Re= 10 000. The dotted line indicates the extension of the base
flow by showing the contour where Ω = 0.1Ω0. The solid line (—) is the critical layer
(rc, zc) where mΩ(rc, zc)=ωr.
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FIGURE 21. (Colour online) (a) Maximum growth rates and (b) corresponding frequencies
as a function of aspect ratio α for Fh = 0.3, Ro = 1.25 and Re = 10 000 of
the different instabilities: displacement mode ( ); Gent–McWilliams instability ( );
baroclinic–Gent–McWilliams instability ( ); baroclinic instability ( ) for m = 1;
shear instability ( ); baroclinic–shear instability ( ) and baroclinic instability for
m= 2 ( ). The shaded area indicates the gravitationally unstable region.

and for large α. For very small α, the growth rate rises again but the instability is
then under the form of the mixed baroclinic–Gent–McWilliams instability. The full
spectra for three aspect ratios are displayed in figure 22 along with the spectra for
α = ∞, i.e. for a columnar vortex (solid line). For small aspect ratio (figure 22a),
there exist only two unstable modes: the displacement mode near the origin and
the baroclinic–Gent–McWilliams instability near ω = 0.2Ω0 whose eigenmode is
shown in figure 23(a). This markedly differs from the columnar case (solid line). In
contrast, for larger aspect ratios (α = 3, figure 22b), many modes are present within
the frequency range of the columnar vortex. They are however less unstable than
for α = 0.38. At even larger aspect ratio α = 10 (figure 22c) the spectrum becomes
denser with a bell shape resembling the spectra of the columnar vortex. However,
the maximum growth rate for the columnar vortex is still higher. The most unstable
eigenmode for α = 10 (figure 23c) presents a vertical wavelength λ ' 5.23R close
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FIGURE 22. Growth rate (ωi/Ω0) and frequency (ωr/Ω0) spectra for m= 1 for different
aspect ratios: (a) α = 0.38, (b) α = 3 and (c) α = 10 for Fh = 0.3, Ro = 1.25 and Re =
10 000. The solid line (——) indicates the spectrum for the columnar vortex for the same
Fh, Ro and Re.
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FIGURE 23. (Colour online) Real part of the radial velocity perturbation Re(ur) of
the most unstable mode for different aspect ratios: mixed baroclinic–Gent–McWilliams
instability (a) α = 0.38 and Gent–McWilliams instability for (b) α = 3 and (c) α = 10
for Fh = 0.3, Ro = 1.25 and Re = 10 000. The dotted line indicates the extension of the
base flow by showing the contour where Ω = 0.1Ω0.

to the most amplified wavelength of the columnar vortex λ' 4.5R. A longer typical
wavelength λ' 6.16R is observed for α = 3 (figure 23b).

As seen in figure 21(a), the shear instability (dashed line with filled circles) is only
unstable for large aspect ratio α > 2. However, for small α, it reappears in the form
of the mixed baroclinic–shear instability (dashed line with stars). The pure baroclinic
instability for m= 2 (dashed line with cross) also arises for very small aspect ratio.

4.4. Scaling in terms of the vertical Froude number
The two previous sections have revealed different growth rate variations as a function
of the Froude number Fh and aspect ratio α. However, figure 24 shows that these
growth rate variations are actually almost identical when represented as a function of
the vertical Froude number Fh/α. The only deviation from this self-similarity is for
small Fh/α: when Fh/α < 0.1, the growth rate of the Gent–McWilliams instability
grows with decreasing Fh/α when α is varied and Fh kept constant, whereas it
decreases when α is fixed and Fh is varied. A small discrepancy is also observed
for m = 2 when Fh/α is small. These differences come from viscous effects due to
vertical shear since they scale like 1/R where R = ReF2

h is the buoyancy Reynolds
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FIGURE 24. (Colour online) Maximum growth rates as a function of vertical Froude
number Fh/α for Ro = 1.25, Re = 10 000, (a) m = 1 and (b) m = 2. The upper x
axis indicates the corresponding value of

√
Bu. The filled coloured symbols show the

results when Fh is varied for α = 0.5, open symbols when α is varied for Fh = 0.3,
Re=10 000 and black filled symbols when α is varied for Fh=0.05 and Re=360 000. The
shaded area indicates the gravitationally unstable region. Different symbols are used for
each instability: Gent–McWilliams ( ), baroclinic–Gent–McWilliams ( ), shear ( ),
baroclinic–shear ( ) and baroclinic ( ) instabilities.

number, because the typical vertical scale Lv scales like Lv ∼ FhR. Thus, viscous
effects increase when the Froude number decreases keeping the Reynolds number
constant. To prove this, the results for a smaller Froude number Fh= 0.05 but higher
Reynolds number Re= 360 000 are also displayed in figure 24 (black filled symbols).
This Reynolds number has been chosen so that the buoyancy Reynolds number
R = 900 is the same as for Fh = 0.3 and Re = 10 000. We see that the growth
rate variations are almost identical for these two parameter sets, confirming that the
vertical Froude number scaling holds if the buoyancy Reynolds number is sufficiently
large.

If the Rossby number is also varied but kept small, the growth rate curves for
different Ro collapse when represented as a function of 2Fh/(αRo) = 1/

√
Bu in

agreement with the quasi-geostrophic theory (figure 25). We note that the transition
from the Gent–McWilliams instability to the baroclinic–Gent–McWilliams instability
occurs near Bu' 1 as in figure 24(a) (see the upper x axis) and in a quasi-geostrophic
fluid (Nguyen et al. 2012). However, the growth rate curves are no longer self-similar
when 2Fh/(αRo) approaches the threshold (3.2) for gravitational instability. Indeed,
this threshold depends on Ro and is thus different for Ro = 0.2 and Ro = 0.5. The
transition from shear instability to a baroclinic–shear instability also occurs around
Bu= 1 (figure 25b).

5. Energy budget
The previous section has evidenced a transformation of both shear and Gent–

McWilliams instabilities into mixed baroclinic instabilities when the vertical Froude
number is above a threshold. This transformation is apparent from the frequency and
the structure of the modes. In order to confirm these transformations from the point
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FIGURE 25. (Colour online) Maximum growth rates as a function of 2Fh/(αRo) for Ro=
0.5 (open symbols) and Ro= 0.2 (filled symbols) for Fh= 0.3, Re= 10 000 (a) m= 1 and
(b) m= 2. The upper x axis indicates the corresponding value of

√
Bu. Different symbols

are used for each instability: Gent–McWilliams ( ), baroclinic–Gent–McWilliams ( ),
shear ( ), baroclinic–shear ( ) and baroclinic ( ) instabilities. The vertical dashed
and dashed-dotted lines show the thresholds for gravitational instability for Ro= 0.5 and
Ro= 0.2, respectively.

of view of the energetics, we have computed the energy budget of the modes. To
do so, the linearized equations (2.8)–(2.11) have been multiplied by the complex
conjugate (u∗r , u∗θ , u∗z , ρ

∗), respectively, and their real part have been integrated over
the flow domain. This gives the energy balances:

ωiEk − Sk =−B−Dk, (5.1)
ωiEp − Sp = B−Dp, (5.2)

where

Ek =
∫ Zmax

−Zmax

∫ Rmax

0

1
2
(uru∗r + uθu∗θ + uzu∗z )r dr dz, (5.3)

Ep =
∫ Zmax

−Zmax

∫ Rmax

0

ρρ∗

2N2
r dr dz, (5.4)

Sk =−1
4

∫ Zmax

−Zmax

∫ Rmax

0
r
∂Ω

∂r

(
u∗r uθ + u∗θur

)+ r
∂Ω

∂z
(u∗z uθ + uzu∗θ) dr dz, (5.5)

Sp =−1
4

∫ Zmax

−Zmax

∫ Rmax

0

(
g

ρ0N2

∂ρb

∂r
(u∗rρ + ρ∗ur)+ g

ρ0N2

∂ρb

∂z
(u∗zρ + ρ∗uz)

)
r dr dz, (5.6)

B= 1
4

∫ Zmax

−Zmax

∫ Rmax

0
(ρu∗z + ρ∗uz)r dr dz. (5.7)

Ek and Ep are the kinetic and potential energies of the perturbation. The term Sk

(Sp) represents the transfer of kinetic (potential) energy from the base flow to the
perturbation. The term B is the energy conversion from the kinetic to potential energy
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FIGURE 26. (Colour online) Kinetic and potential energy transfers Sk ( ), Sp ( )
and energy conversion B ( ) as a function of the vertical Froude number Fh/α for (a)
m= 1 and (b) m= 2 for Ro= 1.25 and Re= 10 000. The filled symbols indicate when Fh
is varied for α = 0.5 and open symbols when α is varied for Fh = 0.3.

of the perturbation. Dk and Dp are the kinetic and potential energy dissipations. They
are small and will not be discussed here. The transfers are plotted in figure 26 as
a function of Fh/α for m = 1 (figure 26a) and m = 2 (figure 26b) for Ro = 1.25
and Re = 10 000. These parameters correspond to the coloured filled/open symbols
in figure 24. For both m = 1 and m = 2, the kinetic energy transfer Sk is positive
for Fh/α < 0.5 (corresponding to Bu > 1.5), while the potential energy transfer Sp

is smaller and negative. This means that the source of the instability is the kinetic
energy of the base flow as for the instabilities of a columnar vortex (α = ∞). A
part of the kinetic energy of the perturbation is converted to potential energy since
the energy conversion B is positive except for m = 2 for Fh/α < 0.1 when Fh > 0.5
(figure 26b). In contrast, when Fh/α > 0.5 (Bu< 1.5), the potential energy transfer Sp

becomes positive while Sk is negative. The energy source of the instability is therefore
the potential energy of the base flow.

Figure 27 shows that a similar transition occurs when Ro is varied while Fh and
α are kept constant. The transfers for m= 1 (figure 27a) correspond to those of the
Gent–McWilliams and baroclinic–Gent–McWilliams instabilities shown in figure 10.
As Ro decreases, the source of the energy perturbation changes from kinetic to
potential around Ro ' 2–3 when the Gent–McWilliams instability transforms into
the mixed baroclinic–Gent–McWilliams instability. The same happens for m = 2
(figure 27b) around Ro ' 1 when shear instability changes into a baroclinic–shear
instability (see figure 15). This confirms that the baroclinicity plays an important
role for large Fh/α or small Ro and the instabilities are then of mixed nature:
baroclinic–Gent–McWilliams and baroclinic–shear instabilities.

6. Condition of existence of shear instability

In this section, we will show that the variations of the growth rate of shear
instability for m= 2 as a function of Ro, Fh and α can be directly understood from
the characteristics of the shear instability for a columnar vortex. As demonstrated in
part 1 for stratified non-rotating fluids, the shear instability for columnar vortices only
exists for vertical wavenumbers k in the range kRFh < 1.6. The minimum vertical
wavelength is therefore λmin ' 4FhR. One wavelength will fit in the thickness of the
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FIGURE 27. (Colour online) Kinetic and potential energy transfers Sk ( ) and Sp ( )
and energy conversion B ( ) as a function of the Rossby number Ro for (a) m = 1,
α= 0.5 and for (b) m= 2, α= 1.2 for Fh= 0.5 and Re= 10 000. The plot (a) corresponds
to the Gent–McWilliams, baroclinic–Gent–McWilliams and baroclinic instabilities shown
in figure 10. The plot (b) corresponds to the shear and baroclinic–shear instabilities shown
in figure 15.

pancake vortex 2αR only if Fh/α < 0.5. This condition turns out to explain very well
the existence of the shear instability for pancake vortices in stratified non-rotating
fluids. Here, we extend this criterion to arbitrary Rossby number Ro.

Figure 28(a) shows the growth rate of shear instability for a columnar vortex
for Ro = 2 as a function of the rescaled vertical wavenumber kRFh. The growth
rate is maximum in the two-dimensional limit k = 0 and decreases monotonically
as kRFh increases. When Fh is varied between 0.1 and 2 with Ro fixed, all the
curves remain similar and stabilize for kRFh ' 0.6. This illustrates the fact that
the growth rate depends only on kRFh for small Fh for any given Ro. The growth
rate of shear instability is shown in figure 28(b) as a function of Ro and kRFh.
The wavenumber cutoff kRFh first increases as Ro decreases from Ro = ∞ and
then decreases and follows the quasi-geostrophic scaling law kRFh/Ro = const. for
small Rossby numbers. For negative Rossby numbers, the cutoff again increases
monotonically as Ro decreases. This shows that the wavenumber cutoff can be
written kFhR= c(Ro), where c is a function of Ro. A similar evolution of the cutoff
of shear instability is observed for parallel horizontal flows sheared horizontally in
strongly stratified-rotating fluids. In particular, in the case of the hyperbolic tangent
(tanh) profile, Blumen (1971) has obtained an analytical expression for the neutral
wavenumbers: (Fhkz)

2(1 − 1/Ro)2 + k2
x = 1, where kx and kz are the streamwise and

vertical (spanwise) wavenumbers, respectively. In the present case, we did not find
an exact expression for the cutoff vertical wavenumber but, guided by the expression
of Blumen (1971), we have found that c(Ro) can be well approximated by

c(Ro)= 1√
c1 + c2

Ro
+ c3

Ro2

, (6.1)

where c1 = 0.44, c2 = −4.8 and c3 = 18.2 are empirical constants. The rescaled
cutoff vertical wavenumber kRFh obtained from (6.1) is shown by a dashed line in
figure 28(b). The minimum vertical wavelength of the shear instability for a columnar
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FIGURE 28. (Colour online) Growth rate of the shear instability for m= 2 for a columnar
vortex as a function of the rescaled axial wavenumber kRFh: (a) for different Froude
numbers Fh: Fh = 0.1; Fh = 0.5; Fh = 1; Fh = 2, for Ro = 2 and
Re = 10 000. (b) Growth rate ωi/Ω0 contours of shear instability for a columnar vortex
as a function of the Rossby number Ro and the rescaled vertical wavenumber kRFh for
Fh = 0.2 and Re= 10 000. The vertical dotted line is the wavenumber cutoff kRFh = 1.6
for Ro=∞. The dashed line in (b) shows the approximation (6.1) of the rescaled cutoff
vertical wavenumber.
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FIGURE 29. (Colour online) Maximum growth rate of shear instability for columnar (for
kR=π/α) ( ) and pancake ( ) vortices as a function of Fh/α for m= 2,Fh= 0.3 and
Re= 10 000 for (a) Ro= 1.25 and (b) Ro=−5. The shaded region is the gravitationally
unstable region. The line in (a) indicates the growth rate of the baroclinic–shear
instability.

vortex in a strongly stratified fluid for an arbitrary Rossby number is therefore
λmin = 2πFhR/c(Ro). Hence, one wavelength will fit within the thickness of the
pancake vortex if λmin 6 2αR, i.e. if Fh/α 6 c(Ro)/π.

Assuming further that the equivalent vertical wavenumber of the most unstable
mode of shear instability for the pancake vortex is always the smallest fitting along
the vertical, i.e. kR= π/α, one can compare the growth rate of the shear instability
for columnar and pancake vortices as done in figure 29 for two different Rossby
numbers Ro = 1.25 and Ro = −5. For both Ro, the growth rate for columnar and
pancake vortices are in good agreement and vanish around the same value of Fh/α

(or equivalently kRFh/π). For Ro= 1.25, the growth rate for the pancake vortex rises
again for Fh/α > 0.5 owing to the mixed baroclinic–shear instability.
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FIGURE 30. (Colour online) Maximum growth rate of shear instability for columnar (for
kR = π/α) ( ) and pancake (α = 1.2) ( ) vortices as a function of Ro for m = 2,
Fh = 0.5 and Re = 10 000. The shaded region is the gravitationally unstable region. The
line indicates the growth rate of the baroclinic–shear instability.

A similar comparison is made in figure 30 but now as a function of the Rossby
number for the parameters α= 1.2,Fh= 0.5 and Re= 10 000 that have been presented
in § 3.3. The maximum growth rate of the shear instability for the pancake vortex
agrees quite well with the one of the columnar vortex for the vertical wavenumber
kR=π/α. In particular, the shear instability is stabilized in the same range of Rossby
number: −22 . Ro . 3. Again, the growth rate for the pancake vortex rises for small
Rossby number but under the mixed form of the baroclinic–shear instability.

As a conclusion, these results demonstrate that the maximum growth rate of the
shear instability in pancake vortices corresponds in good approximation to its growth
rate in columnar vortices for the smallest vertical wavenumber kR=π/α fitting in the
pancake vortex. When this wavenumber is beyond the upper wavenumber cutoff, i.e.
π/α > c(Ro)/Fh, the shear instability is suppressed in pancake vortices.

7. Scaling laws for the Gent–McWilliams instability

The fluctuations of the growth rate of the Gent–McWilliams instability as a
function of the vertical Froude number Fh/α (figure 24a) can be also understood
by comparison to the columnar case. First, the equivalent vertical wavenumber k of
the Gent–McWilliams instability for pancake vortices can be estimated as k = 2π/λ
where λ is twice the vertical distance between contiguous minimum and maximum
of the radial velocity perturbation. The growth rate is plotted as a function of this
wavenumber scaled by FhR in figure 31 (symbols). The corresponding growth rate
for a columnar vortex is shown by the grey continuous line.

Let us first focus on figure 31(a) where the Froude number is fixed to Fh = 0.3
while the aspect ratio varies. When α increases from α= 0.5 to α= 3, the growth rate
of the Gent–McWilliams instability for the pancake vortex (dotted line with triangles)
increases and then decreases in a similar fashion as the columnar case. In particular,
the growth rate is maximum for kRFh = 0.6 near the most amplified wavenumber
kRFh of the columnar vortex. Nevertheless, the growth rate maximum for the pancake
vortex is much smaller than for the columnar vortex. Along the curve, the eigenmodes
remain similar to the one shown in figure 19(b), i.e. the mode has a single oscillation
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FIGURE 31. (Colour online) Maximum growth rate of the Gent–McWilliams instability
(m = 1) as a function of the estimated vertical wavenumber kRFh for Ro = 1.25 and
Re = 10 000. (a) α is varied for Fh = 0.3 and (b) Fh is varied for α = 0.5. The thick
grey line corresponds to the growth rate of the columnar vortex for the same parameters.
Two different symbols are used depending on Fh/α: for Fh/α > 0.1 and for
Fh/α < 0.1. Open diamond symbols ( ) in (b) indicate the growth rates when the
buoyancy Reynolds number is kept constant R=F2

hRe= 25 when Fh is varied for α= 0.5.

along the vertical and occupies the whole pancake vortex. However, when α = 3, a
secondary mode with several oscillations along the vertical (see figure 23b) starts to
have a growth rate as high as the primary mode. The wavenumber of this secondary
mode is much higher and its growth rate is shown by the dashed line with diamonds
in figure 31(a). When α is further increased, the growth rate of this secondary mode
increases rapidly but its estimated wavenumber decreases only slightly toward the
most amplified wavenumber of the columnar vortex. Along this curve, the eigenmode
has therefore more and more oscillations along the vertical like in figure 23(c). In
other words, the confinement effect due to the pancake shape becomes weaker as the
vortex becomes taller.

Alternatively, when α is kept constant at α = 0.5 (figure 31b) a similar evolution
is first observed when the Froude number is decreased from Fh = 0.3 to Fh = 0.05
(dashed line with triangles). When Fh = 0.05, a secondary mode (dashed line with
diamonds) becomes as unstable as the primary mode. This occurs for the same vertical
Froude number Fh/α = 0.1 as in figure 31(a). The structure of this secondary mode
can be seen in figure 19(a). However, the growth rate of the secondary mode first
increases slightly as Fh is further decreased and then it decreases toward zero while
its wavenumber also decreases. The difference in behaviour compared to figure 31(a)
comes from the fact that the buoyancy Reynolds number R =ReF2

h becomes too low
when the Froude number Fh is decreased below 0.05. Indeed, if the Reynolds number
is increased at the same time as Fh is decreased, so as to keep the buoyancy Reynolds
number constant R = 25, the growth rate (open diamonds in figure 31b) rises toward
the growth rate peak for the columnar vortex as Fh decreases as in figure 31(a).

8. Detailed study of baroclinic instability
In §§ 3 and 4, the baroclinic instability has been observed for m= 1 and m= 2 near

the threshold for gravitational instability. Here, we will further study its dependence
on the Rossby number Ro and the vertical Froude number Fh/α. In addition, we
will show that baroclinic instability destabilizes also higher azimuthal wavenumbers.
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FIGURE 32. Growth rate (ωi/Ω0) and frequency (ωr/Ω0) spectra for different azimuthal
wavenumbers: m = 1 ( ); m = 2 ( ); m = 3 ( ); m = 4 ( ); m = 5 ( ) for α = 0.5,
Fh = 0.3, Ro = 0.4, and Re = 10 000. Grey and black symbols indicate symmetric and
anti-symmetric modes, respectively.

A theoretical criterion and scaling laws for baroclinic instability will be next derived
following the approach used in part 1 for stratified non-rotating fluids.

8.1. A typical example
Figure 32 shows the spectra for α = 0.5, Fh = 0.3, Ro = 0.4 and Re = 10 000 for
different azimuthal wavenumbers m. These control parameters are just below the
threshold of gravitational instability which is Fh = 0.32 for α = 0.5 and Ro = 0.4.
Among all azimuthal wavenumbers, m = 2 is the most unstable. For each m, the
most unstable mode is anti-symmetric (black symbol) and the second most unstable
mode is symmetric (grey symbol). Nevertheless, the growth rate difference between
anti-symmetric and symmetric modes becomes very small as m increases. We will
show that these modes are due to baroclinic instability. However, the displacement
mode is also observed for m = 1 near the origin and the baroclinic–shear instability
for m = 2 is located near ωr/Ω0 = 0.18 with a small growth rate. Note also that
the leading mode for m = 1 is the baroclinic–Gent–McWilliams instability which
derives continuously from the Gent–McWilliams instability. For higher azimuthal
wavenumbers, m > 3, only the baroclinic instability exists. No instability has
been found for m = 0 and m > 6. The characteristic frequency of each azimuthal
wavenumber is proportional to m: ωr/Ω0 ' 0.25m, i.e. the azimuthal phase velocity
is constant. In fact, this corresponds to the angular velocity of the base flow
Ω(rb, zb) ' 0.25 at the point rb = 0, zb = 1.17Λ where the vertical density gradient
∂ρt/∂z is maximum for α = 0.5, Fh = 0.3 and Ro= 0.4.

Figure 33 shows the first three anti-symmetric eigenmodes for m = 3. As already
shown for m= 1 (figure 9), the number of oscillations in the radial direction increases
with the mode number while the vertical structure remains the same. Figure 34(a)
shows the growth rate as a function of the radial wavenumber l = 2π/λr where
the radial wavelength λr is estimated as twice the distance between two successive
extrema, as illustrated in figure 33(b). For each azimuthal wavenumber, the growth
rate decreases monotonically as l increases. As already visible in figure 32, the
maximum growth rate exhibits a bell-shaped curve as a function of m (figure 34b).
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FIGURE 33. (Colour online) Real part of the radial velocity perturbation Re(ur) for the
first three anti-symmetric baroclinic eigenmodes for m= 3: (a) (3, 1), (b) (3, 3) and (c)
(3, 5) for α = 0.5, Fh = 0.3, Ro = 0.4 and Re = 10 000. The dotted line indicates the
extension of the base flow by showing the contour where Ω = 0.1Ω0. The double dotted
dashed line ( ) shows where the isopycnal potential vorticity gradient (3.9) changes
sign.
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FIGURE 34. (a) Growth rate (ωi/Ω0) as a function of the radial wavenumber l for
different azimuthal wavenumbers: m= 1 ( ); m= 2 ( ); m= 3 ( ); m= 4 ( ); m= 5 ( )
and (b) maximum growth rate as a function of the azimuthal wavenumber m for α= 0.5,
Fh = 0.3, Ro= 0.4, and Re= 10 000.

These wavenumber properties are very reminiscent of baroclinic instability in parallel
shear flows (Vallis 2006).

8.2. Parametric study

Figure 35 outlines the effect of the Rossby number on the maximum growth rate and
corresponding frequency of the baroclinic instability for each azimuthal wavenumber
for α = 0.5, Fh = 0.3 and Re= 10 000. When Ro increases, the growth rate decreases
faster as m increases. Hence, m = 3 is the most unstable azimuthal wavenumber
when Ro is close to the threshold for the gravitational instability whereas m = 1
becomes the most unstable for Ro > 0.5. In between, m= 2 is the most unstable. In
contrast, the frequency of each azimuthal wavenumber is independent of the Rossby
number (figure 35b). Similarly, figure 36 shows the effect of the Froude number for
α= 0.5,Ro= 0.4 and Re= 10 000. The frequency is again independent of the Froude
number (figure 36b) whereas the maximum growth rate (figure 36a) increases with
Fh/α at a rate increasing with m.
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FIGURE 35. (a) Maximum growth rate and (b) corresponding frequency of the baroclinic
instability (dark solid lines) as a function of Ro for different azimuthal wavenumbers:
m= 1 ( ); m= 2 ( ); m= 3 ( ); m= 4 ( ); m= 5 ( ) for α= 0.5,Fh= 0.3 and Re= 10 000.
The shaded area indicates the gravitationally unstable region.
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FIGURE 36. (a) Maximum growth rate and (b) corresponding frequency of the baroclinic
instability (dark solid lines) as a function of Fh/α for different azimuthal wavenumbers:
m=1 ( ); m=2 ( ); m=3 ( ); m=4 ( ); m=5 ( ) for α=0.5,Ro=0.4, and Re=10 000.
The shaded area indicates the gravitationally unstable region.

8.3. A simple analytical model
In part 1, a model consisting of a bounded vortex with an angular velocity varying
only in the vertical direction has been considered and shown to account qualitatively
for the characteristics of baroclinic instability in stratified non-rotating fluids. Such
a model takes into account the main features of the base flow in the core of the
pancake vortex where the baroclinic instability develops. Its stability can be solved
analytically when the vertical variations are weak. Here, this model is extended to
take into account a background rotation. The base angular velocity of the vortex is
assumed to be

Ω = Ω̃0 − Ω̃1z, (8.1)

where Ω̃0 and Ω̃1 are constants. From the thermal wind relation (2.4), the base density
is obtained as

ρb = ρ0

g

[
Ω̃0 + f

2
− Ω̃1z

]
Ω̃1r2. (8.2)
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As in part 1, we consider that the base flow is contained in a rigid cylinder of radius R
and height H between z=−H/2 and z=H/2. By assuming that the vertical variations
are weak, i.e. Ω̃1H� |Ω̃0 + f /2|, the equations (2.8)–(2.12) in the inviscid limit can
be reduced at leading order in Ω̃1 to

1
r
∂

∂r

(
r
∂p
∂r

)
−
[

m2

r2
+C2 ∂

2

∂z2

]
p= 0+O(Ω̃2

1 ), (8.3)

where C = 2|Ω̃0 + f /2|/N. Note that the hypothesis Ω̃1H � |Ω̃0 + f /2| is not valid
around R̃o≡ 2Ω̃0/f =−1. Here, the dimensionless numbers are denoted with a tilde
in order to distinguish them from the ones defined in (2.13). The Coriolis parameter f
enters the problem only through the constant C in (8.3). The general solution of (8.3)
is

p= Jm(Ckr) (A cosh kz+ B sinh kz) , (8.4)

where Jm is the Bessel function of order m of the first kind and A and B are constants.
Imposing the boundary conditions uz(z = ±H/2) = 0 and ur(r = R) = 0 yields two
relations similar to those for the classical Eady problem (Vallis 2006)

ω=mΩ̃0 + mΩ̃1

k

√(
1− kH

2 tanh(kH/2)

)(
1− kH tanh(kH/2)

2

)
, (8.5)

CkR=µm,n, (8.6)

where µm,n is the nth root of Jm. Combining the condition for instability kH< 2.4 and
the fact that µm,n >µ1,1 = 3.83, yields the instability condition

F̃h

α̃

∣∣∣∣1+ 1
R̃o

∣∣∣∣> 0.8, (8.7)

where α̃=H/R and F̃h = Ω̃0/N. This condition simply states that the Burger number
B̃u = α̃2N2/( f + 2Ω̃0)

2 based on the absolute angular velocity Ω̃0 + f /2 should be
below a threshold B̃u < 0.4 for instability. When R̃o � 1, equation (8.7) recovers
the classical condition for baroclinic instability (Eady 1949; Saunders 1973; Hide &
Mason 1975). We can also derive scaling laws for the maximum growth rate and the
most amplified wavenumber (8.5). For any m, the growth rate is maximum for the
first root of the Bessel function n= 1. An asymptotic expansion of this root for large
m is µm,1=m+ 1.856m1/3+O(m−1/3) (Abramowitz & Stegun 1972). Taking only the
leading order of this expansion, i.e. µm,1 ∼ m, (8.6) implies m/k = CR. The growth
rate is thus maximum when the term inside the square root in (8.5) is minimum, i.e.
when kH = 1.6. The most amplified azimuthal wavenumber is therefore

mmax ' 3.2
F̃h

α̃

∣∣∣∣1+ 1
R̃o

∣∣∣∣ , (8.8)

and the maximum growth rate is

ωimax ' 0.6Ω̃1R
F̃h

α̃

∣∣∣∣1+ 1
R̃o

∣∣∣∣ , (8.9)
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FIGURE 37. (a) Maximum growth rate and (b) most amplified azimuthal wavenumber m
of the baroclinic instability for different combinations of Ro and Fh: Ro= 0.4, Fh varies
, Fh = 0.3, Ro varies , Ro = 1, Fh = 0.42 , Ro = 5, Fh = 0.67 , Ro = 10, Fh = 0.7
, Ro=−5, Fh = 0.8 and Ro=∞, Fh varies . Other parameters are fixed to α = 0.5,

Re= 10 000. The dotted line in (a) is a fit.

for large m. These scaling laws are tested in figure 37 for baroclinic instability of
the pancake vortex by assuming that Fh/α|1+ 1/Ro| is equivalent to F̃h/α̃|1+ 1/R̃o|.
Different combinations of Fh and Ro are shown for α = 0.5 and Re = 10 000. As
seen in figure 37(a), the maximum growth rates align along a straight line when
represented as a function of Fh/α|1 + 1/Ro|. Baroclinic instability only occurs for
Fh/α|1+ 1/Ro|> 1.46 in qualitative agreement with (8.7). Note that the leftmost point
(star) in figure 37(a), which is slightly away from the other points, is for a negative
Rossby number Ro = −5. Similarly, figure 37(b) shows that the most amplified
azimuthal wavenumber increases approximately linearly with Fh/α|1 + 1/Ro| in
agreement with (8.8).

Figure 38 displays a map of the domain of existence of the baroclinic instability
in the parameter space (Fh/α, Ro). The dashed line represents the threshold Fh/α|1+
1/Ro| = 1.46 deduced from figure 37(a). The shaded region is gravitationally unstable.
The circle symbols indicate the parameters for which the baroclinic instability has
been observed for m= 2, Re= 10 000 and α= 0.5 while the cross symbols correspond
to the parameters stable to the baroclinic instability for m= 2. We can see that there
is a good agreement between the threshold Fh/α|1+ 1/Ro| = 1.46 and the numerical
results for positive Rossby number. However, the threshold departs from the numerical
results for negative Rossby numbers around Ro'−5. This is most likely due to the
assumption of slow vertical variation Ω̃1H� Ω̃0 + f /2 used to derive the theoretical
scaling laws. This hypothesis indeed breaks down around R̃o=−1 and this may affect
a large range of negative Rossby numbers Ro. Furthermore, the location where the
density gradient is maximum actually varies with the Rossby number, implying that
Ω̃0 also varies with Ro. These variations could be taken into account in a refined
analysis.

9. Map of the instabilities
9.1. Parameter space (Fh/α, Ro)

Figure 39(a,c,e) summarize the different instabilities observed for each azimuthal
wavenumber m = 0, 1 and 2 in the parameter space (Fh/α, Ro) for Re = 10 000
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FIGURE 38. Domain of existence of the baroclinic instability for m= 2 as a function of
Fh/α and Ro for α= 0.5 and Re= 10 000: circles ( ) indicate the parameters unstable to
baroclinic instability, crosses (×) are for the stable case. The shaded area indicates the
region unstable to gravitational instability and the dashed line (– – –) corresponds to the
threshold Fh/α|1+ 1/Ro| = 1.46.

and various aspect ratios. The symbols indicate the instability type while the lines
indicate the different semi-theoretical thresholds that have been derived throughout
the paper. These conditions are generally in good agreement with the numerical
results for all the parameters investigated. In summary, a centrifugal instability
exists for m = 0, 1, 2 for sufficiently high Rossby and Froude numbers. The solid
lines correspond to the thresholds for centrifugal instability for α = 0.5 that can
be obtained from the asymptotic formula (3.5). This formula shows that the aspect
ratio of the vortex has no effect and there is a stabilization at low Froude numbers
because the buoyancy Reynolds number R = ReF2

h , which controls viscous effects,
decreases. Shear instability for m = 2 is present below a critical vertical Froude
number Fh/α depending on the Rossby number Fh/α < c(Ro)/π, where c(Ro) is
defined in (6.1) (dotted line in figure 39e). However, for higher Fh/α, it reappears
under the mixed form of a baroclinic–shear instability when the Rossby number
is not too large (dashed dotted line in figure 39(e) Ro . 10F2

h/α
2 for Ro > 0 and

Ro &−1.1Fh/α for Ro< 0). The Gent–McWilliams instability for m= 1 (triangles in
figure 39c) is observed over wide ranges of Ro and Fh/α except when it transforms to
the baroclinic–Gent–McWilliams instability (squares in figure 39c) for small Rossby
numbers such that Fh/α> |Ro|/(2√0.7Ro+ 0.1) (dashed dotted lines in figure 39c). A
baroclinic instability occurs when Fh/α|1+ 1/Ro|> 1.46 (dashed lines in figure 39c,e),
i.e. only in a small band close to the threshold for the gravitational instability (shaded
region).
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FIGURE 39. (Colour online) Domains of existence of the different instabilities for the
azimuthal wavenumbers (a,b) m = 0, (c,d) m = 1 and (e, f ) m = 2 as a function
of Ro and Fh/α (a,c,e) and Bu = Ro2α2/(4F2

h) (b,d, f ) for Re = 10 000 and various
aspect ratio α. The symbols indicate the different instabilities for each set of parameters
investigated: in (a–f ): centrifugal (CI) ; baroclinic (BI) ; and stable (×). In (c,d):
Gent–McWilliams (GMWI)q; baroclinic–Gent–McWilliams (BGMWI) +. In (e, f ): shear
(SI) q and baroclinic–shear (BSI) + instabilities. In the white region in (d), only
the displacement mode (DM) is unstable for finite Re. The shaded area indicates the
gravitationally unstable region (GI), the thick solid line shows the threshold for centrifugal
instability for α= 0.5 derived from (3.5), the dotted line is the threshold Fh/α < c(Ro)/π
for shear instability and the dashed line is the threshold for baroclinic instability: Fh/α|1+
1/Ro| = 1.46. The dashed dotted lines in (c,d) and (e, f ) show the empirical thresholds for
baroclinic–Gent–McWilliams instability (Bu= 0.7Ro+ 0.1) and baroclinic–shear instability
(Bu= 1.3/(−Ro+ 2.26) for |Ro|< 2 and Bu= 2.5Ro for Ro> 2) instabilities, respectively.
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9.2. Parameter space (Bu, Ro)
Figures 39(b,d, f ) display the same instability maps but focused on the region |Ro|< 2
which pertains to most mesoscale oceanic vortices. In addition, the x-axis is now the
Burger number Bu=Ro2α2/(4F2

h) instead of the vertical Froude number Fh/α. Indeed,
the Burger number is more appropriate to describe the region of small Rossby number
since it is the only non-dimensional parameter in the quasi-geostrophic limit. Only the
range 06Bu6 2 is displayed as in Nguyen et al. (2012). In these ranges, we see that
centrifugal instability for α= 0.5 exists only in the bottom left corner for sufficiently
negative Ro and small Bu. The Gent–McWilliams instability (triangles in figure 39d)
occurs when Bu & 1. In contrast, the baroclinic–Gent–McWilliams instability exists
mostly for positive Ro in a band adjacent to the domain of baroclinic instability.
The threshold can be fitted approximately by Bu ' 0.7Ro + 0.1 (dashed dotted
line in figure 39d). Hence, there is an intermediate range of Burger number where
only the displacement mode is unstable for m = 1 for finite Reynolds number. For
m = 2 (figure 39f ), the domain of existence of the baroclinic–shear instability is
also contiguous to the domain unstable to baroclinic instability. The upper Burger
number limit is given by Bu ' 1.3/(−Ro + 2.26). Just above this threshold, m = 2
perturbations are stable since shear instability starts to be active only when Bu & 7.
These results are in general consistent with those in the quasi-geostrophic limit
(Ro→ 0) in continuously stratified fluids (Nguyen et al. 2012) or in two-layer fluids
(Ikeda 1981; Flierl 1988; Helfrich & Send 1988; Benilov 2003). In particular, Flierl
(1988) reports for piecewise profiles that the m= 1 mode is unstable for Bu> 1 while
higher azimuthal modes, m > 2, are unstable to shear instability for Bu > O(1) for
sufficiently steep vorticity profiles and to baroclinic instability for Bu<O(1) (see for
example his figure 10b). A neutrally stable region around Bu=O(1) is also observed
for moderately steep vorticity profiles as in figure 39.

10. Conclusions
We have investigated the stability of an axisymmetric pancake vortex with Gaussian

angular velocity in both radial and vertical directions in stratified-rotating fluids. In
stratified non-rotating fluids, Yim & Billant (2016) (part 1) have shown that such
a pancake vortex can be unstable to centrifugal, shear, baroclinic and gravitational
instabilities. Centrifugal instability occurs when the buoyancy Reynolds number
R = ReF2

h is sufficiently large regardless of the aspect ratio while the three other
instabilities are mostly governed by the vertical Froude number Fh/α when the
Reynolds number is large. Shear instability develops when Fh/α 6 0.5 whereas
baroclinic and gravitational instabilities are active when Fh/α > 1.46 and Fh/α > 1.5,
respectively. In contrast, in quasi-geostrophic fluids, Nguyen et al. (2012) found that,
baroclinic instabilities are dominant for small Burger number Bu = α2Ro2/(4F2

h) < 1
while barotropic instabilities are dominant for Bu> 1.

In order to link the two limits: stratified non-rotating fluids and quasi-geostrophic
fluids, we have first investigated the effects of the Rossby number for fixed aspect
ratio α, Froude number Fh and Reynolds number Re. Then, the effects of the other
parameters have been investigated for a fixed Rossby number. When |Ro| is large,
centrifugal instability is dominant since the generalized Rayleigh discriminant Φ is
negative. As Ro decreases, it is stabilized before that Φ becomes positive everywhere
because of viscous effects. The asymptotic formula for the growth rate of centrifugal
instability for columnar vortices for large axial wavenumber (Billant & Gallaire 2005),
with the addition of leading viscous effects, works well also for pancake vortices
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for m= 0 and m= 2. For m= 1, it is in good agreement with the numerical results
only for negative Rossby numbers. For moderate positive Rossby numbers, there is
a discrepancy both for columnar and pancake vortices because centrifugal instability
merges continuously with the Gent–McWilliams instability. The latter instability,
also known as internal instability, is due to the presence of a critical radius where
Ω = ωr in which the radial gradient of vertical vorticity is positive ∂ζ/∂r > 0 (Gent
& McWilliams 1986; Yim & Billant 2015). Its growth rate for pancake vortices is
mostly a function of Fh/α and Ro. The particular dependence with Fh/α has been
explained qualitatively by considering the columnar configuration and confinement
effects. Gent–McWilliams instability is the dominant instability for m = 1 in the
centrifugally stable regime for Bu & 1. For small Burger number Bu . 0.7Ro+ 0.1, it
transforms into a mixed baroclinic–Gent–McWilliams instability for which the energy
source is no longer the kinetic energy but the potential energy of the base flow. Its
growth rate is also mainly a function of Fh/α and Ro. Just below the threshold for
the gravitational instability, baroclinic–Gent–McWilliams instability merges with the
pure baroclinic instability. For m= 1, the displacement mode which derives from the
translational invariance is also weakly unstable. It is destabilized by viscous effects
since its growth rate is maximum for a finite Reynolds number and vanishes for
Re → ∞. It is the sole instability for m = 1 in an intermediate range of Burger
number for small Rossby number.

Shear instability for m= 2 exists when Fh/α6 c(Ro)/π where c is defined in (6.1).
This condition derives directly from the fact that shear instability for a columnar
vortex exists in the vertical wavenumber band 0 6 kRFh 6 c(Ro). The minimum
wavenumber fitting inside the pancake vortex kR = π/α, is therefore unstable only
when Fh/α 6 c(Ro)/π. In addition, the growth rate of shear instability for pancake
vortices depends also mostly on Fh/α and Ro and agrees well with the one of
columnar vortices for the wavenumber kR = π/α. When the Burger number is
small (Bu . 1.3/(−Ro + 2.26) for |Ro| < 2 and Bu . 2.5Ro for Ro > 2), shear
instability transforms into a mixed baroclinic–shear instability whose energy source
is the potential energy of the base flow instead of the kinetic energy. Just below the
threshold for the gravitational instability, the pure baroclinic instability is triggered
and both baroclinic–shear and baroclinic instabilities can coexist. Baroclinic instability
can also destabilize higher wavenumbers m > 3.

An analytical model consisting in a bounded vortex with an angular velocity only
varying slowly in the vertical direction has allowed us to show that the maximum
growth rate and the most amplified azimuthal wavenumber of baroclinic instability
should scale as Fh/α|1 + 1/Ro| in good agreement with the numerical results for
positive Rossby numbers. Baroclinic instability develops only when Fh/α|1+1/Ro|>
1.46. For negative Rossby numbers around Ro=−1, the model breaks down because
the hypothesis of small vertical variation of the angular velocity compared to the
absolute angular velocity Ω0 + f /2 no longer holds.

In this paper, we have considered a vortex which rotates in the same direction
throughout the vertical. In the future, it could be interesting to study the stability
of vortices whose angular velocity has not the same sign along the vertical as
considered by Dewar & Killworth (1995), Killworth et al. (1997), Dewar et al.
(1999) in two-layer shallow-water rotating fluids and Nguyen et al. (2012) in
continuously stratified quasi-geostrophic fluids. It would be also interesting to study
the finite-amplitude evolution of the instabilities described herein.
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Appendix A. Non-dimensionalization of the Euler equations for small Froude
and Rossby numbers

In this appendix, we non-dimensionalize the equations (2.8)–(2.12) when the
stratification is strong and the rotation is rapid. In addition, we show that the
quasi-geostrophic approximation is obtained as long as Ro and Fh are small but
the magnitude of the aspect ratio α can be arbitrary. This differs from the original
derivation of the quasi-geostrophic equation by Charney & Stern (1962) where the
main assumptions are Ro � 1, α � 1 and Bu = α2Ro2/(4F2

h) = O(1). A similar
alternative derivation based on the smallness of the Froude number Fh is discussed
in Vallis (2006). We define dimensionless quantities denoted by a hat for the base
flow

Ω =Ω0Ω̂, ζ =Ω0ζ̂ , pt = Ω0fR2

2
p̂t, ρb = ρ0RΩ0f

2gα
ρ̂b, (A 1a−d)

and for the perturbations

ur =Ω0Rûr, uθ =Ω0Rûθ , uz =Wûz, p= Ω0fR2

2
p̂, ρ = Ω0fR

2α
ρ̂,

r= Rr̂, z=Λẑ, ω=Ω0ω̂,

 (A 2)

where W is the unknown magnitude of the vertical velocity. The pressure and density
scales have been chosen so that the geostrophic and hydrostatic balances hold for
small Ro and Fh. For simplicity, we will consider an inviscid and non-diffusive fluid.

Inserting the scales (A 1)–(A 2) into (2.8)–(2.12) with ν = κ = 0 give

Ro
(
−i(ω̂−mΩ̂)ûr − 2Ω̂ ûθ

)
− 2ûθ =−∂ p̂

∂ r̂
, (A 3)

Ro

(
−i(ω̂−mΩ̂)ûθ + ζ̂ ûr + W

Ω0Rα
∂ r̂Ω̂
∂ ẑ

ûz

)
+ 2ûr =− im

r̂
p̂, (A 4)

−RoWα
Ω0R

i(ω̂−mΩ̂)ûz =−∂ p̂
∂ ẑ
− ρ̂, (A 5)

−i(ω̂−mΩ̂)ρ̂ + ∂ρ̂b

∂ r̂
ûr + W

Ω0Rα
∂ρ̂b

∂ ẑ
ûz = WαRo

Ω0RF2
h

ûz, (A 6)

1
r̂
∂ r̂ûr

∂ r̂
+ 1

r̂
imûθ + W

Ω0Rα
∂ ûz

∂ ẑ
= 0. (A 7)

It is also useful to write the equation for the potential vorticity

i(−ω̂+mΩ̂)Π̂ + ûr
∂Π̂b

∂ r̂
+ ûz

W
Ω0Rα

∂Π̂b

∂ ẑ
= 0, (A 8)
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where Π̂b and Π̂ are the non-dimensionalized potential vorticities of the base flow
and the perturbation, respectively:

Π̂b = 1+ Ro
2
ζ̂ − F2

h

Roα2

∂ρ̂b

∂ ẑ
− F2

h

2α2

(
ζ̂
∂ρ̂b

∂ ẑ
− r̂

∂Ω̂

∂ ẑ
∂ρ̂b

∂ r̂

)
, (A 9)

Π̂ = Ro
2

ŵz − ∂ρ̂
∂ ẑ

F2
h

Roα2
− F2

h

2α2

(
ŵz
∂ρ̂b

∂ ẑ
+ ŵr

∂ρ̂b

∂ r̂

)
− F2

h

2α2

(
ζ̂
∂ρ̂

∂ ẑ
− r̂

∂Ω̂

∂ ẑ
∂ρ̂

∂ r̂

)
, (A 10)

where ŵz and ŵr are the vertical and radial vorticity components of the perturbation.
To be consistent, the equations (A 4), (A 6) and (A 7) require that

W 6 min
(
Ω0Rα, Ω0R

F2
h

Roα

)
, (A 11)

so that no term is larger than unity and so unbalanced. This implies that the order of
magnitude of the vertical acceleration term in (A 5) is

αWRo
Ω0R

6 min
(
α2Ro, F2

h

)
. (A 12)

Therefore, whatever α and W, this term is at most O(F2
h) and thus very small when

Fh� 1. Equations (A 3)–(A 5) reduce therefore at leading order to the geostrophic and
hydrostatic balances:

−2ûθ =−∂ p̂
∂ r̂
+O(Ro), (A 13)

2ûr =− im
r̂

p̂+O(Ro), (A 14)

0=−∂ p̂
∂ ẑ
− ρ̂ +O(F2

h). (A 15)

When Ro � 1, the terms O(F2
h/α

2) in the potential vorticities (A 9)–(A 10) can be
neglected compared to the terms O(F2

h/(Roα2)) regardless of the value of α. Hence,
equations (A 9)–(A 10) reduce to

Π̂b = 1+ Ro
2
ζ̂ − F2

h

Roα2

∂ρ̂b

∂ ẑ
, (A 16)

Π̂ = Ro
2

ŵz − ∂ρ̂
∂ ẑ

F2
h

Roα2
. (A 17)

We emphasize that the two last terms in (A 16) and (A 17) do not need to be of the
same order for these equations to be valid, i.e. the Burger number does not need to
be of order unity. Indeed, (A 16) and (A 17) are the leading-order expressions of the
potential vorticity for Ro� 1 and Fh� 1 whatever the value of the Burger number.
Using (A 13)–(A 15), the potential vorticity of the perturbation can be written

Π̂ = Ro
4

[
1
r̂
∂

∂ r̂

(
r̂
∂ p̂
∂ r̂

)
− m2

r̂2
p̂
]
+ F2

h

Roα2

∂2p̂
∂ ẑ2

, (A 18)
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which is nothing other than the quasi-geostrophic approximation of the potential
vorticity of the perturbation. Using (2.2)–(2.3), the potential vorticity of the base flow
reduces similarly to

Π̂b = 1+ Ro
4

1
r̂
∂

∂ r̂

(
r̂
∂ p̂t

∂ r̂

)
+ F2

h

Roα2

∂2p̂t

∂ ẑ2
. (A 19)

Furthermore, introducing (A 13)–(A 14) into (A 7) implies that W/(Ω0Rα)6 Ro since
the horizontal flow is nearly non-divergent. Thus, the vertical velocity in (A 8) can be
neglected, giving the quasi-geostrophic equation for the potential vorticity

i(−ω̂+mΩ̂)Π̂ + ûr
∂Π̂b

∂ r̂
= 0. (A 20)

We emphasize that the only assumptions used to derive (A 18)–(A 20) are Ro� 1 and
Fh� 1 but the aspect ratio α has been considered arbitrary. In other words, the Burger
number is not needed to be of order unity for the quasi-geostrophic approximation to
hold in this derivation. However, it should be kept in mind that if the Burger number
is very small, Bu 6 Ro/4.5, the base vortex is statically unstable (see (3.1)–(3.2)).

Appendix B. Validation of the numerical code in the quasi-geostrophic limit for
Bu= 1

In this appendix, we show that the quasi-geostrophic equation (A 20) can be solved
by separation of variables for Bu= 1 when expressed in rescaled spherical coordinates.
Hence, this particular case can be used as a validation test for the stability code based
on FreeFEM++ and SLEPc. Equation (A 20) can be rewritten

(mΩ̂ − ω̂)1p̂−m
p̂
r̂
∂1p̂t

∂ r̂
= 0, (B 1)

where
1p= 1/r̂∂(r̂∂ p̂/∂ r̂)/∂ r̂−m2/r̂2p̂+ 1/Bu∂2p̂/∂ ẑ2 (B 2)

and

1p̂t = 1/r̂∂(r̂∂ p̂t/∂ r̂)/∂ r̂+ 1/Bu∂2p̂t/∂ ẑ2 with p̂t =−Ω̂/4=−e−r̂2−ẑ2
/4 (B 3)

because of the non-dimensionalization (A 1)–(A 2).
When Bu= 1, (B 1) can be re-expressed as

1
ξ 2

∂

∂ξ

(
ξ 2 ∂ p̂
∂ξ

)
+ 1
ξ 2 sin ϕ

∂

∂ϕ

(
sin ϕ

∂ p̂
∂ϕ

)
− m2p̂
ξ 2 sin2 ϕ

− p̂(−10+ 4ξ 2)e−ξ2

e−ξ2 − ĉ
= 0, (B 4)

where (ξ , ϕ) are spherical coordinates such that (r̂, ẑ)= (ξ sinϕ, ξ cosϕ) and ĉ= ω̂/m.
Then, equation (B 4) can be solved by separation of variables

p̂= f (ξ)g(ϕ), (B 5)

where g(φ) are associated Legendre functions

g(ϕ)= Pm
l (cos ϕ), (B 6)
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with l an integer, while f satisfies

f ′′ + 2f ′

ξ
− l(l+ 1)

f
ξ 2
− f (−10+ 4ξ 2)e−ξ2

e−ξ2 − ĉ
= 0. (B 7)

The eigenvalue problem (B 7) has been solved by a shooting method with the
boundary conditions f (0) = 0 and f → 0 as ξ →∞. The eigenvalues are ĉ ≡ ĉ1 = 0
for l = 1 and ĉ ≡ ĉ2 = 0.0825 − 0.0030i for l = 2. Thus, there is no instability
for Bu = 1 in the quasi-geostrophic and inviscid limits. Since associated Legendre
functions exist only for m 6 l, this corresponds to two eigenvalues for m= 1, ω̂= ĉ1

(which corresponds to the neutral displacement mode) and ω̂= ĉ2 and one eigenvalue
for m= 2, ω̂= 2ĉ2. These eigenvalues for m= 1 and m= 2 are compared in table 1
to those obtained with the full stability code for small Rossby and Froude numbers
approaching the quasi-geostrophic limit and two distinct aspect ratios α = 5 and
α= 0.5 such that Bu= 1. For Fh = 0.01, the Reynolds number has been increased to
Re= 25 000 in order to have the same buoyancy Reynolds number as for Fh = 0.05
and Re = 10 000. A good agreement between the two numerical methods is found
for each case. The discrepancies are of the same order as the differences between
the eigenvalues for the two Froude numbers investigated. Hence, it is expected that
these discrepancies would decrease for smaller Ro and Fh provided that the buoyancy
Reynolds number ReF2

h is sufficiently high.
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