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In order to understand the dynamics of pancake shaped vortices in stably stratified
fluids, we perform a linear stability analysis of an axisymmetric vortex with Gaussian
angular velocity in both the radial and axial directions with an aspect ratio of α. The
results are compared to those for a columnar vortex (α=∞) in order to identify the
instabilities. Centrifugal instability occurs when R > c(m) where R = ReF2

h is the
buoyancy Reynolds number, Fh the Froude number, Re the Reynolds number and c(m)
a constant which differs for the three unstable azimuthal wavenumbers m = 0, 1, 2.
The maximum growth rate depends mostly on R and is almost independent of the
aspect ratio α. For sufficiently large buoyancy Reynolds number, the axisymmetric
mode is the most unstable centrifugal mode whereas for moderate R, the mode m=
1 is the most unstable. Shear instability for m = 2 develops only when Fh 6 0.5α.
By considering the characteristics of shear instability for a columnar vortex with the
same parameters, this condition is shown to be such that the vortex is taller than
the minimum wavelength of shear instability in the columnar case. For larger Froude
number Fh > 1.5α, the isopycnals overturn and gravitational instability can operate.
Just below this threshold, the azimuthal wavenumbers m = 1, 2, 3 are unstable to
baroclinic instability. A simple model shows that baroclinic instability develops only
above a critical vertical Froude number Fh/α because of confinement effects.
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1. Introduction

Several studies have been devoted to the stability of a columnar vertical vortex in
stably stratified fluids. Axisymmetric columnar vortices can be unstable to centrifugal
instability when the Rayleigh discriminant is negative (Smyth & McWilliams 1998;
Billant & Gallaire 2005). Shear instability may also occur when the vorticity
gradient vanishes at some radius (Rayleigh 1880) since it is a two-dimensional
instability. In addition, the vortex can spontaneously radiate internal waves owing
to an over-reflection mechanism (Smyth & McWilliams 1998; Billant & Le Dizès
2009; Le Dizès & Billant 2009; Riedinger, Le Dizès & Meunier 2010). However,
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many studies have shown that vortices have a pancake or lenticular shape in stratified
fluids rather than being columnar. For example, interacting columnar vortices are
unstable to zigzag instability (Billant & Chomaz 2000; Otheguy, Chomaz & Billant
2006; Billant 2010; Billant et al. 2010; Deloncle, Billant & Chomaz 2011) and
evolve into pancake vortices with a small aspect ratio. Coherent vortices generated
from wakes or turbulence in stratified fluids also have a pancake shape (Lin, Boyer
& Fernando 1992; Chomaz et al. 1993; Fincham, Maxworthy & Spedding 1996;
Spedding, Browand & Fincham 1996; Bonnier, Eiff & Bonneton 2000). In laboratory
experiments, pancake vortices can be directly generated by different devices, imposing
a rotation to a layer of fluid (Flór & van Heijst 1996; Beckers et al. 2001). Many
pancake vortices are also observed in oceans. Famous examples are the Mediterranean
eddies (Meddies) which are formed by salty water flowing from the Mediterranean sea
into the mid-Atlantic ocean (Armi et al. 1989; Hobbs 2007; Ménesguen et al. 2012).
Meddies typically have a horizontal extension of O(100) km and vertical thickness
of O(1) km (Richardson, Bower & Zenk 2000). For these vortices, planetary rotation
has an important effect, in addition to the stable stratification, but this effect will not
be considered in the present paper.

Despite the ubiquity of pancake vortices in stratified fluids, only a few studies
on their structure and stability exist. The internal structure of a pancake vortex in
stably stratified fluids has been investigated by Flór & van Heijst (1996), Bonnier
et al. (2000) and Beckers et al. (2001). Flór & van Heijst (1996) conducted an
experimental study on monopolar pancake vortices using three different generation
methods (rotating sphere, rotating rod and injection of fluids). They found that
disturbances with azimuthal wavenumber m=2 or m=3 are unstable when the Froude
number F=Vmax/NRvmax is larger than F> 0.1, where Vmax is the maximum azimuthal
velocity, N the Brunt–Väisälä frequency and Rvmax the radius of maximum azimuthal
velocity. They also showed that the nonlinear evolution of the instabilities (formations
of tripole (m= 2) and dipole splitting) is similar to that of two-dimensional vortices.
Some differences come from the faster decay rate of the satellites compared to
the core for pancake vortices. Bonnier et al. (2000) investigated experimentally the
dynamics of vortices in the far wake of a towed sphere. The density field inside the
vortices shows a pinching of the isopycnals in order to satisfy the hydrostatic and
cyclostrophic balances. Beckers et al. (2001) found similar isopycnal deformations
experimentally and numerically. They have shown that, when the vortex is not
initially in cyclostrophic or hydrostatic balance, adjustment processes occur and lead
to the generation of internal gravity waves. A Kirchhoff elliptic pancake vortex
in cyclostrophic balance also emits gravity waves (Plougonven & Zeitlin 2002).
Balanced vortices exhibit particular momentum and density diffusions. Beckers et al.
(2001) and Godoy-Diana & Chomaz (2003) have studied the effect of the Schmidt
number Sc = ν/κ , which is the ratio of the diffusion rates of momentum ν and
density κ . When Sc� 1, secondary circulations slow down the decay of the vortex.
In contrast, when Sc < 1, these secondary circulations accelerate the decay of the
vortex.

The stability of a pancake vortex as a function of Reynolds number and Froude
number is discussed in Beckers et al. (2003) experimentally and numerically for a
vortex profile with angular velocity Ω = Ω0 exp(−(r/R)q − (z/Λ)2), where Ω0 is
the maximum angular velocity, q the steepness parameter, R the radius and Λ the
thickness. Beckers et al. (2003) have determined only the most unstable modes by
performing nonlinear numerical simulations of azimuthally perturbed vortices using
the Navier–Stokes equations under the Boussinesq approximation. They focused on
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perturbations with azimuthal wavenumbers m > 2 with a Reynolds number up to
R̃e= 104 where R̃e= 2

√
πΛRΩ0/ν. They have shown that pancake vortices with an

aspect ratio fixed to α = Λ/R = 0.4 with q > 2 are generally unstable to barotropic
(i.e. shear) instability in the ranges of 500 6 R̃e 6 104 and 0.1 6 F̃ 6 0.8, where the
Froude number is defined as F̃ = 2

√
πΛΩ0/(RN). The instability is similar to shear

instability of two-dimensional vortices with the most unstable azimuthal wavenumber
increasing with the steepness parameter q (Carton & Legras 1994). When q= 2, they
found that the vortex is stable.

Recently, Negretti & Billant (2013) have conducted a linear stability analysis of
a pancake vortex with a Gaussian vertical vorticity profile in the radial and vertical
directions. They found that the vortex is unstable to gravitational instability when
the vortex aspect ratio α is small such that α/Fh < 1.1, where Fh = Ω0/N. When
this condition is satisfied, the isopycnals are indeed so deformed by the pancake
shape that they overturn. The barotropic shear instability does not exist because the
vorticity gradient does not vanish for a Gaussian vertical vorticity profile. They have
also shown that the vertical shear is never sufficient to trigger an instability when
α/Fh > 1.1.

In this paper, we investigate the stability of an axisymmetric pancake vortex with
the same angular velocity profile as in Beckers et al. (2003) in a stably stratified
fluid. The steepness parameter will be set to q= 2 throughout the paper. In contrast
to Beckers et al. (2003), all the unstable modes will be determined by solving the
eigenvalue problem by means of an iterative method. The Reynolds number will be
increased up to Re≡Ω0R2/ν= 105 and various aspect ratios and Froude numbers will
be studied. We have found that the vortex can be also unstable under some conditions
to the m= 2 shear instability when q= 2. In addition, we will show that other types
of instability exist: the counterpart of the centrifugal instability of columnar vortices
and two instabilities specific to pancake vortices. The latter constitute the gravitational
instability, already extensively studied by Negretti & Billant (2013), and the baroclinic
instability that has not been observed before in purely stratified fluids.

The paper is organized as follows: we first define the linear stability problem in
§ 2. In § 3, typical spectra and eigenmodes for the azimuthal wavenumbers m= 0, 1,
and 2 will be presented. The origin of the different modes will be identified thanks
to stability criteria and by comparison to the instabilities of columnar vortices. In § 4,
a parametric study of the most unstable modes for each m will then be conducted
as a function of the aspect ratio, Froude and Reynolds numbers. From the fact
that centrifugal and shear instabilities in pancake and columnar vortices have many
resemblances, we further show in §§ 5 and 6 that their occurrence in pancake vortices
can be understood from their growth rate dependence with the vertical wavenumber
in columnar vortices. The instabilities specific to pancake vortices will be discussed
in § 7. Finally, all the different instabilities for each azimuthal wavenumber m are
summarized in § 8 in the parameter space: Froude number and Reynolds number for
Re 6 104. In § 9, comparisons to previous experimental and numerical studies are
presented.

2. Problem formulation
2.1. The base state

We consider as the base flow an axisymmetric pancake vortex with only azimuthal
velocity ub(r, θ, z) = [ubr, ubθ , ubz] = [0, rΩ(r, z), 0] in cylindrical coordinates
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(r, θ, z). The angular velocity is chosen to be Gaussian in both the radial and
vertical directions

Ω(r, z)=Ω0e−(r
2/R2+z2/Λ2), (2.1)

where R is the radius, Λ is the half-thickness and Ω0 is the maximum angular velocity.
The total pressure and density are decomposed as follows:

pt = p0 + p̄(z)+ pb(r, z), (2.2)
ρt = ρ0 + ρ̄(z)+ ρb(r, z), (2.3)

where the values with the subscript 0 are reference values, those with a bar indicate
the background vertical profiles and those with a subscript b correspond to the
perturbations due to the base vortex. The Euler equations under the Boussinesq
approximation in the radial and vertical directions are

−rΩ2 =− 1
ρ0

∂pt

∂r
, (2.4)

g
ρ0
ρt =− 1

ρ0

∂pt

∂z
, (2.5)

corresponding to cyclostrophic and hydrostatic balances, where g is the gravity.
Combining (2.4) and (2.5) gives the thermal wind relation:

∂rΩ2

∂z
=− g

ρ0

∂ρb

∂r
. (2.6)

Hence, ρb is given by

ρb(r, z)=−z
ρ0

g

(
R
Λ

)2

Ω2
0 e−2(r2/R2+z2/Λ2). (2.7)

2.2. Linearized equations
The vortex is perturbed by infinitesimal perturbations (denoted with a prime) of
velocity u′ = [u′r, u′θ , u′z], pressure p′ and density ρ ′ according to

u(r, θ, z)= ub + u′ = (0, rΩ(r, z), 0)+ (u′r, u′θ , u′z), (2.8)
p= pt + p′, (2.9)
ρ = ρt + ρ ′. (2.10)

Since the vortex is axisymmetric, the perturbations are written as normal modes in the
azimuthal direction

[u′r, u′θ , u′z, p′, ρ ′] =
[

ur(r, z), uθ(r, z), uz(r, z), ρ0p(r, z),
ρ0

g
ρ(r, z)

]
e−iωt+imθ + c.c.,

(2.11)

where ω is the frequency and m the azimuthal wavenumber. We consider that
m is positive since negative wavenumbers can be recovered by the symmetry:
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ω(m)= ω∗(−m). Under the Boussinesq approximations, the linearized Navier–Stokes
equations are

−i(ω−mΩ)ur − 2Ωuθ =−∂p
∂r
+ ν

(
∇2ur − 1

r2
ur − 2

r2
imuθ

)
(2.12)

−i(ω−mΩ)uθ + ζur + ∂rΩ
∂z

uz =− im
r

p+ ν
(
∇2uθ − 1

r2
uθ + 2

r2
imur

)
(2.13)

−i(ω−mΩ)uz =−∂p
∂z
− ρ + ν∇2uz (2.14)

−i(ω−mΩ)ρ + g
ρ0

∂ρb

∂r
ur + g

ρ0

∂ρb

∂z
uz =N2uz + κ∇2ρ (2.15)

1
r
∂rur

∂r
+ 1

r
imuθ + ∂uz

∂z
= 0, (2.16)

where ζ =1/r∂(r2Ω)/∂r is the vertical vorticity, N=√−g/ρ0dρ̄/dz the Brunt–Väisälä
frequency which is assumed constant, ν the viscosity and κ the diffusivity of the
stratifying agent. The viscous and diffusive damping of the base state are neglected
in (2.12)–(2.16). This classical assumption in stability analyses is valid as long as the
growth rate of the instabilities is large enough compared to the viscous and diffusive
decay of the base state (Drazin & Reid 1981). The problem is governed by four
non-dimensional numbers: aspect ratio (α), Froude number (Fh), Reynolds number
(Re) and Schmidt number (Sc), defined as follows:

α = Λ
R
, Fh = Ω0

N
, Re= Ω0R2

ν
, Sc= ν

κ
. (2.17a−d)

In most of the paper, we keep Sc = 1 for simplicity. Nevertheless, the effect of the
Schmidt number will be briefly investigated in § 4.4.

2.3. Numerical method
Equations (2.12)–(2.16) are discretized with a finite element method using FreeFem++
(Garnaud 2012; Hecht 2012; Garnaud et al. 2013). Velocity, density and pressure
(u, ρ, p) are approximated with (P2, P1, P1) triangular elements (also known as
Taylor–Hood elements), respectively (Elman, Silvester & Wathen 2005; Hecht 2012;
De Vuyst 2013). The mesh is adapted to the base state and refined around the
vortex core. The domain is restricted to positive radius r = [0, Rmax] and is set to
z=[−Zmax,Zmax] along the vertical. The boundary conditions at r= 0 differ depending
on the azimuthal wavenumber m (Batchelor & Gill 1962; Ash & Khorrami 1995),

m= 0 : ur = uθ = 0,
m= 1 : uz = p= ρ = 0,
m > 2 : ur = uθ = uz = p= ρ = 0.

 (2.18)

At the other boundaries r = Rmax and z = ±Zmax, all perturbations are enforced to
vanish.

The resulting discretized equations (2.12)–(2.16) are written in the form

−iωBv = Lv, (2.19)
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Run Rmax Zmax Growth rate (ωi)

1
8R

3Λ 0.019198Ω0

2 6Λ 0.018639Ω0

3 10Λ 0.018640Ω0

4 5R
6Λ

0.018721Ω0

5 8R 0.018639Ω0

6 10R 0.018638Ω0

TABLE 1. Growth rate for different domain sizes Rmax and Zmax for m= 2, α = 0.5,
Fh = 0.5 and Re= 104 for mesh sizes Smax = 0.075R and Smin = 0.004R.

Run Smin Smax No. of triangles Growth rate (ωi)

1

0.004R

0.7R 40 144 0.022116Ω0

2 0.15R 74 807 0.018641Ω0

3 0.075R 189 396 0.018639Ω0

4 0.04R 306 144 0.018638Ω0

5 0.040R
0.075R

88 128 0.018740Ω0

6 0.010R 171 596 0.018635Ω0

7 0.004R 189 396 0.018639Ω0

TABLE 2. Growth rate for different minimum and maximum mesh sizes Smin and Smax for
m = 2, α = 0.5, Fh = 0.5 and Re = 104 for Rmax = 8R and Zmax = 6Λ. The number of
triangles is also indicated.

where v= [ur, uθ , uz, p, ρ]. The typical size of the matrices B and L is approximately
106 × 106. The generalized eigenvalue problem (2.19) is solved with an iterative
Krylov–Schur method using the libraries SLEPc and PETSc (Hernandez, Roman &
Vidal 2005; Garnaud 2012; Garnaud et al. 2013; Balay et al. 2014). The shift-invert
spectral transformation is used to find the most unstable eigenvalues/vectors around
shift values. Spurious modes are eliminated by excluding eigenvalues varying by
more than 10−6 between two successive shift values.

Tables 1 and 2 show examples of the convergence of the growth rate as a function
of the domain size (Rmax, Zmax) and mesh size, respectively. Table 1 shows that there
is only a relative variation of 0.005 % of the growth rate when Rmax is increased from
8R to 10R or when Zmax is increased from 6Λ to 10Λ. As seen in table 2, the growth
rate varies significantly when the maximum mesh size is varied from 0.7R to 0.15R
(see runs 1 and 2) but becomes almost constant when Smax is smaller than 0.15R (see
runs 2 to 4). In turn, when the maximum mesh size is fixed to Smax = 0.075R, the
growth rate varies very little when the minimum mesh size Smin is lower than 0.01R
(see runs 6 to 7). The mesh adaptation to the base vortex allows us to use sufficiently
fine meshes in the vortex core while keeping a reasonable total number of triangles. In
the following, the numerical results are mostly computed for a domain size Rmax= 8R
and Zmax=6Λ and for a mesh with a maximum size 0.075R and minimum size 0.004R
(runs 3 or 7).

For comparison purposes we have also conducted some stability analyses of a
columnar vortex with base angular velocity Ω = exp(−r2). The vertical dependence
of the perturbations can then be expressed in terms of normal modes with a
vertical wavenumber k. Equations (2.12)–(2.16) have been solved by means of
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a Chebyshev pseudospectral collocation method (Antkowiak & Brancher 2004;
Fabre & Jacquin 2004). An algebraic mapping and 320 collocation points have
been used. The numerical code based on FreeFem++ and SLEPc for α → ∞
has also been successfully checked against the Chebyshev code. For example, for
m= 1,Fh= 0.5 and Re= 104, the maximum growth rates obtained by these two codes
are ω/Ω0 = 0.149+ 0.143i and ω/Ω0 = 0.148+ 0.144i, respectively.

3. Some typical examples of spectra
In this section, we show typical examples of the spectra and eigenmodes for the

different azimuthal wavenumbers m = 0, 1 and 2. The Reynolds number is fixed
to Re = 104 but the Froude number and aspect ratio are varied from one azimuthal
wavenumber to the other in order to show the most general spectrum for each m.
To identify the instability, the spectra are compared to the corresponding spectra of
a columnar vortex for the same control parameters (Fh, Re). Detailed comparisons
between the eigenmodes of columnar and pancake vortices are also carried out.

3.1. m= 0
Figure 1 shows an example of the spectrum for the parameters m= 0, α= 1, Fh= 0.5
and Re = 104. The frequency (ωr) and growth rate (ωi) are non-dimensionalized by
the maximum angular velocity Ω0. The unstable mode are displayed by symbols and
are labelled (m, i) where i denotes the ith mode. For each point, there are actually
two modes with a different symmetry with respect to z = 0: symmetric (E) and
antisymmetric ( ). All the modes have zero frequency. The real part of the radial
velocity perturbation Re(ur) of the most unstable antisymmetric mode (marked (0,1)
in figure 1) is depicted in figure 2(a). The perturbation lies at the periphery of the
vortex core r/R > 1 and in the central region −0.5 6 z/Λ6 0.5 along the vertical. A
well-defined axial wavelength at λ' 0.2Λ can be seen. The symmetric mode marked
as (0,3) (figure 2b) is similar to the mode (0,1) but with a larger extent in the vertical
direction −0.7 6 z/Λ6 0.7 with a slightly smaller wavelength λ' 0.17Λ. The other
modes (0,2), (0,4) and (0,5) have similar characteristics to these two modes: they
only differ by the number of nodes along the vertical.

To determine the origin of this instability, we consider the Rayleigh criterion
for centrifugal instability extended to baroclinic vortices (Solberg 1936; Eliassen
& Kleinschmidt Jr 1957). Centrifugal instability is expected when the circulation
decreases with the radius along isopycnal surfaces

Φ = 1
r3

∂(r2Ω)2

∂r

∣∣∣∣
ρt

< 0, (3.1)

for some radius. The region where Φ is negative for α = 1, Fh = 0.5 is shaded in
figure 3. It extends from r= 1 to infinity with a minimum of Φ reached near r= 1.2R
and z = 0. As shown by the dashed lines in figure 2, the modes are localized in
this region. This shows that these modes are due to centrifugal instability. In order
to further understand their properties, the spectrum of a columnar vortex (α=∞) has
been computed for the same parameters (m= 0, Fh = 0.5, Re= 104). It is plotted in
figure 1 as a grey continuous line. Although the spectrum is discretized for α = 1
and continuous for α = ∞, since the vertical wavenumber varies continuously, the
maximum growth rate in both cases is very close but it is slightly smaller for pancake
vortices. Note that there exists a single unstable mode for each wavenumber in the
columnar case. The secondary centrifugal modes with more radial oscillations become
unstable only for larger Froude or Reynolds numbers. Furthermore, their growth rates
are much smaller than the primary modes both for columnar and pancake vortices.
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FIGURE 1. Growth rate (ωi/Ω0) and frequency (ωr/Ω0) spectra for a pancake vortex (α=
1) (E: for symmetric and for antisymmetric modes) and for a columnar vortex (α=∞)
( ) for m= 0, Fh= 0.5, and Re= 104. The mode (C,0) corresponds to the most unstable
mode of the columnar vortex.

(a)

0 2 4

1.0
Mode (0,1) Mode (0,3)
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0
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(b)

0 2 4

FIGURE 2. (Colour online) Real part of the radial velocity perturbation Re(ur) of (a)
antisymmetric mode (0,1) and (b) symmetric mode (0,3) of figure 1. The radius r and
height z are rescaled with the radius R and half-height Λ of the base vortex, respectively.
The dashed line represents the contour where the Rayleigh discriminant Φ vanishes. The
dotted line indicates the contour where the angular velocity Ω of the base vortex is 0.1Ω0.

3.2. m= 1
The symbols in figure 4 show a typical example of the spectrum for m= 1, α = 0.5,
Fh = 1/3 and Re = 104. Several unstable modes exist (labelled (1,1)–(1,7) using
the same notation as for m = 0). This time, all modes have non-zero frequency.
Figure 5(a) shows the real part of the radial velocity of the most unstable mode
(1,1). The mode is maximum near r/R= 1 and localized within −1< z/Λ < 1 with
a typical wavelength λ' 0.57Λ. It resembles the m= 0 centrifugal modes (figure 2)
except that the perturbations overshoot in the region of positive generalized Rayleigh
discriminant. The modes (1,2) and (1,3) are similar to the mode (1,1) except that they
exhibit more oscillations along the vertical. In contrast, the mode (1,5) is different
(figure 5b): the perturbation is localized within the vortex core r/R< 1 and maximum
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FIGURE 3. Contours of Φ/|Φmin| for α = 1, Fh = 0.5. The regions where Φ is negative
are shaded. The contour interval is 0.2.
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(1,5)

(1,6)(1,7)

FIGURE 4. Growth rate (ωi/Ω0) and frequency (ωr/Ω0) spectra for a pancake vortex for
α = 0.5 (E: for symmetric and for antisymmetric modes) and for a columnar vortex
( ) for m = 1, Fh = 1/3 and Re = 104. The modes (C,1,1) and (C,1,2) correspond to
modes of the columnar vortex whose frequencies are the same as the modes (1,1) and
(1,5), respectively.

near z=±Λ. The perturbation is mainly located in a region where Φ is positive and
is therefore probably not a centrifugal mode.

To identify this instability, it is useful to compare the spectrum to one of a columnar
vortex with the same parameters (shown by a thick line in figure 4). The growth
rate for a columnar vortex first increases with frequency and then decreases owing
to viscous stabilization since the corresponding vertical wavenumber is large. The
maximum growth rate is slightly higher than for the pancake vortex. Figure 6(a,b)
compare the radial profiles of the horizontal velocity (ur, uθ ) of the most unstable
modes of the pancake and columnar vortices (labelled (1,1) and (C,1,1) in figure 4,
respectively). The profiles for the pancake vortex are taken at the level zm where ur is
maximum. The velocities are normalized to the maximum radial velocity in each case.
We can see that the profiles are very close, confirming that the mode (1,1) originates
from centrifugal instability.
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FIGURE 5. (Colour online) Real part of the radial velocity perturbation Re(ur) of modes
(a) (1,1), (b) (1.5), (c) (1,4) and (d) (1,7) of figure 4. The dotted line indicates the contour
where the angular velocity of the base vortex is Ω = 0.1Ω0. The dashed line represents
the contour where the Rayleigh discriminant Φ vanishes.

A similar comparison is made in figure 7 between the mode (1,5) and the mode
(C,1,2) of the columnar vortex (figure 4). The latter mode has been chosen for
the comparison since it has the same frequency as the mode (1,5). The radial
velocity profiles of these modes for the pancake and columnar vortices are very
similar. For the columnar vortex, the mode (C,1,2) corresponds to a mixed mode
between centrifugal instability and Gent–McWilliams instability (also called internal
instability). The latter instability comes from a destabilization of the long wavelength
bending mode by the critical layer where Ω(rc) = ωr when the vorticity gradient
is positive ζ ′(rc) > 0 (Yim & Billant 2015). We can see in figure 7 that the radial
and azimuthal velocity components of the perturbation are non-zero on the axis in
contrast to the centrifugal mode (1,1) (figure 6). Thus, the perturbation partially bends
the vortex. For a columnar vortex in strongly stratified fluids without background
rotation, such a bending mode transforms continuously into a centrifugal mode,
explaining why there is a single continuous branch in figure 4. However, in the
presence of strong background rotation, the centrifugal instability disappears and
only the Gent–McWilliams instability remains (Gent & McWilliams 1986; Smyth &
McWilliams 1998; Yim & Billant 2015). For a pancake vortex in a stratified fluid,
a continuous transition is also observed: the modes (1,4) (figure 5c) and (1,6) also
exhibit the characteristics of the centrifugal mode but with a non-zero velocity on
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FIGURE 6. Comparison between the (a) radial ur and (b) azimuthal uθ velocities of the
eigenmodes (C,1,1) of columnar (thick grey lines) and (1,1) of pancake vortices (light
black lines) in figure 4. ——; real and - - -; imaginary parts.
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FIGURE 7. Same as in figure 6 but for the modes (C,1,2) and (1,5).

the axis, as for the mode (1,5). Interestingly, these modes seem to concentrate in
the regions where the vertical shear |∂ubθ/∂z| is maximum |z|/Λ = r/R ' 0.71. The
mode (1,7) in figure 4 has a very small growth rate and its frequency is slightly
negative. As shown in appendix B, the radial velocity of this mode (figure 5d) is
almost identical to the base angular velocity. It corresponds to the displacement mode
which derives from translational invariance and translates the base flow horizontally.

3.3. m= 2

Figure 8 shows an example of the spectrum for m = 2, Fh = 0.5 and Re = 104. For
a pancake vortex with aspect ratio α = 1.2, there are three unstable modes (labelled
(2,1)–(2,3)). The radial velocity perturbation of the most unstable mode (2,1) is shown
in 9(a). The perturbation is maximum near r/R= 1 and localized within −0.5< z/Λ<
0.5 with a typical wavelength λ' 0.26Λ. In the vortex core, it closely resembles the
most unstable centrifugal modes for m= 0 (figure 2a) and m= 1 (figure 5a). However,
inclined rays can also be seen outside the vortex core. We shall see in § 4.2 that these
perturbations outside the vortex core correspond to internal gravity waves radiated by
the centrifugal mode. For m= 1, such radiation of internal waves also exists but their
amplitude is too weak to be visible in figure 5(a). The mode (2,2) in figure 8 is a
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FIGURE 8. Growth rate (ωi/Ω0) and frequency (ωr/Ω0) spectra for a pancake vortex (α=
1.2) (E: for symmetric and for antisymmetric modes) and for a columnar vortex (α=∞)
( ) for m = 2, Fh = 0.5 and Re = 104. The modes (C,2,1) and (C,2,1) correspond to
modes of the columnar vortex whose frequencies are the same as the modes (2,1) and
(2,3), respectively.
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FIGURE 9. (Colour online) Real part of the radial velocity perturbation Re(ur) of (a) mode
(2,1) and (b) mode (2.3) of figure 8. The dotted line indicates the contour where the
angular velocity of the base vortex is Ω = 0.1Ω0. The dashed line represents the contour
where the Rayleigh discriminant Φ vanishes.

centrifugal mode similar to the mode (2,1) but the mode (2,3) is different. As seen
in figure 9(b), its radial velocity is localized in the core and does not exhibit many
oscillations along the vertical. For a columnar vortex, the spectra possess two separate
branches (thick grey lines in figure 8). The branch near ωr ' 0.45Ω0 corresponds to
centrifugal instability while the one near ωr = 0.27Ω0 corresponds to shear instability.
We see that there is a good correspondence with the spectrum of the pancake vortex
even if the maximum growth rates for the columnar vortex are again higher than those
for the pancake vortex. This confirms that the modes (2,1) and (2,2) are centrifugal
modes and shows that the mode (2,3) is due to shear instability. In addition, the radial
velocity profiles of the eigenmodes of columnar and pancake vortices are very close
both for centrifugal (figure 10) and shear (figure 11) instabilities. Oscillations at large
radii corresponding to radiation of gravity waves are also observed for the centrifugal
mode of the columnar vortex (figure 10a).
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FIGURE 10. Comparison between the (a) radial ur and (b) azimuthal uθ velocities of the
eigenmodes (C,2,1) of columnar (thick grey lines) and (2,1) of pancake vortices (light
black lines) in figure 8. ——; Real and - - -; Imaginary parts.
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FIGURE 11. Same as in figure 10 but for the modes (C,2,2) and (2,3).

4. Parametric study of the most unstable modes

In this section, we investigate the effects of the control parameters (α,Fh,Re,Sc) on
the most unstable mode of each instability type for m= 0, 1, 2. The control parameters
are varied only in the range Fh/α6 exp(3/4)/

√
2' 1.5, ensuring that the total density

gradient ∂ρt/∂z = −ρ0N2/g + ∂ρb/∂z is everywhere negative. When Fh/α > 1.5, the
maximum density gradient, which is located at r= 0, z=±√3/2, is positive so that
gravitational instability can occur.

4.1. Effect of the aspect ratio

When the aspect ratio is increased from α= 0.35 to α= 2 for Fh= 0.5,Re= 104, the
growth rate of the most unstable centrifugal modes for m= 0, 1 and 2 increase slightly
while the corresponding frequencies are almost constant (figure 12). The lower limit
α= 0.35 corresponds to the appearance of gravitational instability. It is interesting to
note that the overall most unstable centrifugal mode for these parameters is not the
axisymmetric mode but the m= 1 mode. The growth rate of the most unstable shear
mode (m = 2) is positive only for α > 1 and increases with α. The most unstable
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FIGURE 12. (a) Growth rate and (b) frequency of the most unstable modes of each
instability type as a function of α, for Fh = 0.5 and Re = 104. Centrifugal modes: ;
m= 0, ; m= 1, ; m= 2; Shear mode: , m= 2.

–1.0

–1

1

0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

0 2 4 0 2 4

(a) (b) (c)

(d ) (e)

FIGURE 13. (Colour online) Real part of the radial velocity perturbation Re(ur) of the
most unstable mode for different aspect ratios: centrifugal instability for m = 2 for (a)
α = 0.5, (b) α = 1, (c) α = 2 and shear instability for m= 2 for (d) α = 1, (e) α = 2 for
Fh = 0.5 and Re= 104. The dotted line indicates the contour where the angular velocity
of the base vortex is Ω = 0.1Ω0. Note that the vertical scale is not scaled by Λ as before
but by R.

centrifugal eigenmode and shear eigenmode for m= 2 are displayed in figure 13 for
different values of the aspect ratio. The vertical scale is non-dimensionalised by R
instead of Λ in order to have the same reference vertical scale for the three plots.
Hence, we can see that the wavelength of the centrifugal instability (figure 13a–c) is
approximately the same for all α, but the number of oscillations along the vertical
increases as the vortex becomes taller. Correspondingly, the number of distinct
centrifugal modes increases with α since the vertical confinement decreases: for
example for m = 2, for α = 0.5 there is one unstable mode; for α = 1, two modes
and for α = 2, five modes (not shown). In contrast, the height of the shear mode
(figure 13d,e) is proportional to the aspect ratio.
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FIGURE 14. (a) Growth rate and (b) frequency as a function of Fh, for α=1 and Re=104.
Centrifugal modes: ; m= 0, ; m= 1, ; m= 2; shear mode: , m= 2. The
dashed lines show the asymptotic formula (5.8) and (5.9).

4.2. Effect of the Froude number
Figure 14 shows that the growth rates of the most unstable centrifugal modes for m=
0, 1, 2 increase with the Froude number for α= 1,Re= 104. The growth rates seem to
asymptote to constant values as the Froude number increases but the pancake vortex
becomes gravitationally unstable beyond Fh= 1.5 for α= 1. The centrifugal modes for
m= 0 and m= 2 are stabilized when the Froude number goes below Fh = 0.3–0.35.
In contrast, the centrifugal mode m = 1 continues to be unstable for smaller Froude
number. Hence, the mode m = 1 is the most unstable mode when Fh 6 0.8 while
the axisymmetric mode is most unstable only above this threshold. The shear mode
for m = 2 exists when Fh 6 0.5 and its growth rate increases as the Froude number
decreases. As seen in figure 14b, the frequencies of the modes are almost independent
of the Froude number except for m= 1 for low Froude number Fh 6 0.5. The most
unstable eigenmodes for m= 1 and m= 2 are shown in figure 15 for different Froude
numbers. When Fh decreases, the typical wavelength of the eigenmode for m = 1
(figure 15a–c) varies little but the location of the maximum moves from r/R'1 to the
axis r = 0. Thus, the centrifugal mode transforms continuously into a bending mode
(Gent–McWilliams instability) as Fh decreases. In contrast, centrifugal instability for
m= 2 (figure 15d–f ) remains at the same radial location but the angle θ of the rays
with respect to the vertical decreases when the Froude number increases. This angle is
in good agreement with the dispersion relation of internal waves cos θ =ωr/N where
ωr'0.45 is the frequency of the centrifugal mode. Therefore, the perturbations outside
the vortex core correspond to internal waves forced by centrifugal instability. We can
also note in figure 15(d–f ) that the typical wavelength of the centrifugal mode for m=
2 increases slightly with the Froude number: λ' 0.28Λ(Fh= 0.4); λ' 0.34Λ(Fh= 1)
and λ' 0.36Λ(Fh = 1.5). The height of the shear mode (figure 15g–i) also increases
slightly with the Froude number.

4.3. Effect of the Reynolds number
Finally, figure 16 shows the dependence of the growth rate and frequency of the most
unstable modes on the Reynolds number for a fixed aspect ratio and Froude number:
α = 0.5, Fh = 0.5. The general tendency with Re is similar to that with the Froude
number: the growth rate of the centrifugal modes increases with Re for all azimuthal
wavenumbers m and tends to asymptote to a constant. For Re63×104, the centrifugal
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FIGURE 15. (Colour online) Real part of the radial velocity perturbation Re(ur) of the
most unstable modes for different Froude numbers: for m= 1 for (a) Fh= 0.06, (b) Fh=
0.14 and (c) Fh = 0.25, for centrifugal instability for m= 2 for (d) Fh = 0.4, (e) Fh = 1,
( f ) Fh = 1.5 and for shear instability for m = 2 for (g) Fh = 0.1, (h) Fh = 0.25 and (i)
Fh = 0.4 for α= 1 and Re= 104. The dotted lines indicate the contour where the angular
velocity of the base vortex is Ω = 0.1Ω0.
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FIGURE 16. (a) Growth rate and (b) frequency as a function of Re, for α = 0.5 and
Fh= 0.5. Centrifugal modes: ; m= 0, ; m= 1, ; m= 2. The dashed lines show
the asymptotic formula (5.8) and (5.9).

mode m= 1 is the most unstable mode while it is the axisymmetric mode above. The
centrifugal modes for m= 0 and 2 are both stabilized when Re6 5× 103 whereas m=
1 remains unstable even for small Re. The eigenmode for m=1 then changes gradually
to the bending mode. The shear mode for m = 2 is not present at any Reynolds
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FIGURE 17. (Colour online) Real part of the radial velocity perturbation Re(ur) of the
most unstable mode for different Reynolds numbers for m= 1 for (a) Re= 103, (b) Re=
2× 103 and (c) Re= 104 and for m= 2 for (d) Re= 8× 103, (e) Re= 3× 104, ( f ) Re= 105

for α= 0.5 and Fh= 0.5. The dotted lines indicate the contour where the angular velocity
of the base vortex is Ω = 0.1Ω0.
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FIGURE 18. Growth rate (ωi/Ω0) and frequency (ωr/Ω0) spectra for different Schmidt
numbers: (a) Sc= 1, (b) Sc= 7 and (c) Sc= 700 for a pancake vortex for α= 0.5 (E: for
symmetric and for antisymmetric modes) and for a columnar vortex ( ) for m = 0,
Fh = 0.5 and Re= 104.

number for the parameters α = 0.5, Fh = 0.5. The reasons why will be explained
in § 6. Figure 17 shows the radial velocity of the dominant eigenmode for m = 1
and m = 2 for different Re. As observed when Fh decreases (§ 4.2), the centrifugal
mode for m= 1 (figure 17a–c) changes continuously into a bending mode when Re
decreases. The typical wavelength increases significantly as Re increases. Regarding
the centrifugal mode for m= 2 (figure 17d–f ), the typical vertical wavelength clearly
decreases with Re: λ = 0.3Λ, 0.2Λ and 0.13Λ, for Re = 8 × 103, 3 × 104 and 105,
respectively.

4.4. Effect of the Schmidt number
So far the Schmidt number has been kept to Sc = 1. Figure 18 shows now the
spectra for three different Schmidt numbers Sc = 1, Sc = 7 and Sc = 700 for m = 0,
α = 0.5, Fh = 0.5 and Re = 104. The values Sc = 7 and Sc = 700 are typical of
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FIGURE 19. (Colour online) Real part of the radial velocity perturbations Re(ur) of the
mode (a) (0,1) for Sc = 7 and (b) (0,1) and (c) (0,3) for Sc = 700 for m = 0, Fh = 0.5
and Re= 104. The dotted lines indicate the contour where the angular velocity of the base
vortex is Ω = 0.1Ω0.
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FIGURE 20. Growth rate (ωi/Ω0) and frequency (ωr/Ω0) spectra for (a) m = 1, α =
0.5, Fh = 1/3, Re= 104 and (b) m= 2, α = 1.2, Fh = 0.5, Re= 104 for pancake (discrete
symbols) and columnar (continuous lines) vortices for different Schmidt numbers:E, :
Sc= 1;A, : Sc= 7 and@, : Sc= 700.

temperature and salinity, respectively. When Sc= 7 (figure 18b), the maximum growth
rate is lower and the frequency is no longer zero compared to Sc = 1 (figure 18a).
A similar spectrum is observed for a columnar vortex for the same parameters (grey
line). Nevertheless, the structure of the most unstable eigenmode (0,1) for the pancake
vortex (figure 19a) is similar to the one for Sc= 1 (figure 2). When Sc is increased to
700, these centrifugal modes remain approximately at the same location (figure 18c)
and their structure does not change (figure 19b). However, a new instability branch
appears near the origin (figure 18c). The most unstable eigenmode of this branch (0,3)
(figure 19c) exhibits inclined short-wavelength oscillations localized in the top and
bottom of the vortex. Such mode is similar to those observed by Meunier, Miquel &
Le Dizès (2014) around a rotating ellipsoid in a stratified fluid. This instability, which
is absent in the columnar configuration, is called the McIntyre instability (McIntyre
1970). It is due to a double-diffusion phenomenon between momentum and mass
diffusion. This instability is however less unstable than the centrifugal instability and
will not be investigated further here.

Figure 20 shows the effect of the Schmidt number on the spectra of the azimuthal
wavenumbers m=1 and m=2 presented in figures 4 and 8, respectively. In contrast to
the axisymmetric mode, there is almost no differences between the spectra for Sc= 1,
Sc= 7 and Sc= 700 for these azimuthal wavenumbers.
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5. Scaling laws for the growth rate of centrifugal instability
Billant & Gallaire (2005) have derived an asymptotic formula for the growth rate

of centrifugal instability for columnar vortices for large vertical wavenumber (k� 1)
in the inviscid limit:

ω=ω(0) − ω
(1)N
k
+O

(
1
k2

)
, (5.1)

where

ω(0) =mΩ(r0)+ i
√
−φ(r0), (5.2)

ω(1) = (2n+ 1)i

2
√

2

√
φ′′(r0)− 2m2Ω ′(r0)2 + 2im

√−φ(r0)Ω ′′(r0)

−φ(r0)

√
1− φ(r0)

N2
, (5.3)

with n a non-negative integer, φ = 2Ωζ and r0 is given by

φ′(r0)=−2imΩ ′(r0)
√
−φ(r0). (5.4)

Here, we show that the formula (5.1) can be used to predict the growth rate of
centrifugal instability in pancake vortices. First, since centrifugal instability is most
unstable in the limit k→∞ in inviscid fluids, viscous effects on the perturbation can
be easily taken into account at leading order in k by adding a damping term of the
form νk2 (Lazar, Stegner & Heifetz 2013). Thus, (5.1) becomes at leading order:

ω=ω(0) − ω
(1)N
k
− iνk2. (5.5)

Using (5.5) and imposing

∂ωi

∂k
= 0, (5.6)

we can deduce that the most amplified wavenumber is given by

kmaxR=
(
ω
(1)
i ReR
2Fh

)1/3

, (5.7)

where n should be set to zero in (5.3) to have the most unstable mode. Substituting
kmax into (5.5) gives the maximum growth rate,

(ωi)max =ω(0)i −
3Ω0

F2/3
h Re1/3

(
ω
(1)
i

R
2

)2/3

. (5.8)

For small Froude number Fh (i.e. large N), ω(1) becomes independent of Fh. Hence,
(5.8) shows that the maximum growth rate of centrifugal instability is a linear function
of (F2

hRe)−1/3. In other words, the maximum growth rate is only a function of the
buoyancy Reynolds number R = ReF2

h and is independent of the aspect ratio. The
same result applies to the corresponding frequency:

ωr =ω(0)r −
(2R2)1/3Ω0ω

(1)
r

(ω
(1)
i R)1/3

. (5.9)
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FIGURE 21. (Colour online) Maximum growth rate (a) and corresponding frequency (b)
of centrifugal instability as a function of R = ReF2

h for pancake vortices for m= 0 (red
symbols), m=1 (blue symbols) and m=2 (green symbols) for different control parameters.
The grey lines show the theoretical prediction (5.8) and the black lines correspond to
numerical results for a columnar vortex for Fh = 0.5 and various Re for m = 0 (solid
lines), m= 1 (dashed lines) and m= 2 (dotted lines). The different symbols correspond to:
u various Re for α= 0.5, Fh = 0.5;p various Fh for α= 0.5, Re= 104;a various Fh for
α=1,Re=104; + various Fh for α=0.5,Re=3×104; × various α for Fh=0.5,Re=104;
f various α for Fh = 0.5, Re= 5× 104.

The formula (5.8) and (5.9) are shown by dashed lines in figures 14 and 16. They
agree well with the numerical results. In addition, figure 21 shows the growth rate and
frequency of pancake vortices (symbols) as a function of R−1/3 for different Reynolds
numbers, Froude numbers and aspect ratios. They all gather on a single curve for
each azimuthal wavenumber m= 0, 1, 2. The theoretical predictions (5.8) and (5.9) are
also plotted with thin grey lines. They agree quite well with the numerical results for
pancake vortices for m= 0 and m= 2. However, the growth rate for m= 1 decreases
with R−1/3 slower than predicted. The growth rate and frequency computed for a
columnar vortex for Fh = 0.5 and various Re are also shown in figure 21 by black
lines. They also agree with the predictions of (5.8) and (5.9) except for m = 1 for
which the decrease of the growth rate with R−1/3 is also slower than predicted. This
slow decrease for large R−1/3 is due to the transition between the centrifugal and
bending modes at long wavelengths. The formula (5.5) no longer applies in this limit.
From figure 21, we can deduce that centrifugal instability for m = 0 and m = 2 is
stabilized when R = ReF2

h . 103 while the mode m = 1 becomes stable only when
R . 16. The mode m= 1 is more unstable than m= 0 when R . 4.6× 103.
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FIGURE 22. Growth rate for m= 2 for a columnar vortex as a function of the rescaled
axial wavenumber kRFh (a) for different Froude numbers Fh at fixed Re= 104: - - Fh =
0.1; Fh = 0.35; —— Fh = 0.5; , Fh = 1. (b) For different Reynolds numbers Re
at fixed Fh = 0.5: Re= 2× 103; Re= 5× 103; —— Re= 104.

6. Existence condition of shear instability

In § 4, we have observed that shear instability for m = 2 does not always exist
depending on the aspect ratio and Froude number. The purpose of this section is
to derive a condition for its existence. To this end, we first consider the stability
of a columnar vortex for different Fh and Re. Figure 22(a) shows the growth
rate for m = 2 as a function of the rescaled axial wavenumber kRFh for different
Froude numbers for Re= 104. There exist two distinct branches: shear instability for
kRFh < 1.6 and centrifugal instability for kRFh > 5. Shear instability is most unstable
in the two-dimensional limit (k = 0) while centrifugal instability is intrinsically
three dimensional. Even if the Froude number is varied, the growth rate curves for
shear instability remain almost identical when represented as a function of kRFh as
reported by Deloncle, Chomaz & Billant (2007) for parallel horizontally sheared
flows. In contrast, centrifugal instability branch varies greatly with Fh and becomes
more unstable as Fh increases because its maximum growth rate is a function of F2

hRe
for small Fh as shown by (5.8). The scaling of the shear branch is consistent with
the self-similarity of strongly stratified flows (Billant & Chomaz 2001). Such scaling
applies as long as the Froude number is small and viscous effects, as measured by
the buoyancy Reynolds number R = ReF2

h , are negligible. This is the case of all
the parameters investigated in figure 22 except Fh = 0.1. The growth rate of shear
instability for this Froude number departs slightly from the others because of viscous
effects. Similarly, figure 22(b) shows the growth rate for m= 2 for different Reynolds
numbers for a fixed Froude number Fh = 0.5. Similar behaviours are observed, the
shear instability branch is almost independent of the Reynolds number provided
that the buoyancy Reynolds number is not too small. In contrast, the centrifugal
instability branch is strongly dependent on Re. Because of these different behaviours,
shear instability becomes most unstable for small Froude numbers (see the dotted
curve for Fh = 0.35 and Re = 104 in figure 22a) and small Reynolds numbers (see
the dotted curve for Re= 5× 103 and Fh = 0.5 in figure 22b).

Nevertheless, shear instability is always present in columnar vortices for the range
of parameters investigated. In order to explain why it is absent for some parameters
for pancake vortices, confinement effects have to be considered. Figure 22 shows that
the upper wavenumber cutoff of shear instability is kMR = 1.6/Fh. In other words,
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FIGURE 23. (Colour online) Growth rate of the most unstable shear (coloured filled
symbols) and centrifugal (grey open symbols) modes as a function of Fh/α for different
Fh for fixed α and Re: α = 0.5, Re = 104, α = 0.5, Re = 3 × 104; α = 1,
Re= 104; α= 1.2, Re= 104 and for different α for Fh= 0.5 and Re= 104; ♦ for
α = 0.5 and constant buoyancy Reynolds number R = ReF2

h = 2.5× 103.

the minimum wavelength is λm ' 4FhR. Since the typical thickness of the pancake
vortex is Lv ' 2Λ, a condition for the existence of shear instability is that at least
one wavelength fits along the vertical λm 6 Lv, i.e.

Fh

α
6 0.5. (6.1)

Figure 23 summarizes the growth rate of the most unstable shear and centrifugal
modes for m = 2 as a function of Fh/α for various combinations of Fh, Re and α.
The growth rates of shear instability collapse approximately into a single curve. The
curve for α = 0.5, Re = 104 (filled diamonds) departs slightly from the others. As
explained above, this is because the buoyancy Reynolds number becomes too small
as Fh decreases. If the buoyancy Reynolds number is kept constant R = 2.5× 103 for
α= 0.5, the growth rate (open diamonds) collapse with the other curves. These curves
have the same shape as the growth rate curve of shear instability as a function of
kRFh for a columnar vortex (figure 22). Furthermore, the growth rate goes to zero for
Fh/α= 0.5 in agreement with (6.1). Hence, shear instability is not present in figure 16
because the Froude number Fh= 0.5 and aspect ratio α= 0.5 do not meet the criterion
(6.1). In contrast, the growth rate of the most unstable centrifugal mode for m = 2
varies in a disorganized way when represented as a function of Fh/α (grey symbols
in figure 23). This should be contrasted to figure 21 where a very good collapse for
the centrifugal mode was observed when plotted as a function of R = F2

hRe.
Finally, figure 24 shows the growth rate for m= 2 as a function of Re for Fh/α=

0.41, i.e. when (6.1) is satisfied. Both centrifugal (dashed line) and shear (solid line)
instabilities exist. The growth rate of centrifugal instability strongly depends on Re and
vanishes when Re6 5.5× 103 while the growth rate of shear instability is independent
of Re for Re > 7× 103 but eventually goes to zero around Re= 3× 103.

7. Instabilities specific to pancake vortices

In the previous sections, we identified and characterized centrifugal and shear
instabilities in pancake vortices by comparison to their counterparts in columnar
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FIGURE 24. Growth rate as a function of Re for m= 2 for α= 1.2, Fh = 0.5: most
unstable centrifugal mode; most unstable shear mode.
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FIGURE 25. Growth rate (ωi/Ω0) and frequency (ωr/Ω0) spectra for a pancake vortex (E:
for symmetric and for antisymmetric modes) for (a) Fh/α = 1.49 (b) Fh/α = 1.67 for
the same parameters m= 2, α = 0.5 and Re= 104.

vortices. We restricted the parameter range to Fh/α < 1.5 in order to avoid the
occurrence of gravitational instability. In this section, we now focus on the range
of parameters close to Fh/α = 1.5. We shall see that another type of instability can
occur in addition to gravitational instability.

Figure 25 shows two examples of spectra for two different Froude numbers such
that: Fh/α= 1.49 and Fh/α= 1.67 for otherwise the same parameters: α= 0.5, m= 2
and Re = 104. In figure 25(a), there exist two distinct groups of modes which have
different frequencies: the first group (labelled CI) is located around ωr/Ω0= 0.4 while
the second group (labelled BI) is around ωr/Ω0 = 0.8. The maximum growth rate of
these two groups are comparable for these parameters. Two distinct groups are also
seen for Fh/α = 1.67 (figure 25b), i.e. when the parameters are above the threshold
for gravitational instability. The frequencies are approximately the same as for Fh/α=
1.49 but the second group near ωr/Ω = 0.8 (labelled GI) has now a much larger
maximum growth rate.

Figure 26 shows the radial velocity perturbation of the CI and BI modes labelled
(2,2a), (2,1a) and (2,3a) in figure 25(a). The thick dashed line in figure 26 indicates
the contour where the generalized Rayleigh discriminant changes sign. The CI mode
(2,2a) is a centrifugal mode with similar characteristics as those described previously.
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FIGURE 26. (Colour online) Real part of the radial velocity perturbation Re(ur) for
Fh/α = 1.49, m = 2, Re = 104, α = 0.5 of the modes: (a) CI (2,2a) (b) BI (2,1a) (c) BI
(2,3a) (see figure 25a). The thick dashed line represents the contour where the Rayleigh
discriminant Φ vanishes. The dotted line indicates the contour where the angular velocity
of the base vortex is Ω = 0.1Ω0. The potential vorticity radial gradient along isopycnal
changes sign on the double dotted dashed lines.
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FIGURE 27. (Colour online) Real part of the radial velocity perturbation Re(ur) for
Fh/α= 1.67,m= 2,Re= 104, α= 0.5 of the modes: (a) GI (2,1b), (b) GI (2,5b) and (c) CI
(2,8b) (see figure 25b). The thick dashed line represents the contour where the Rayleigh
discriminant Φ vanishes. The thick dash dotted line delimits the regions where the vertical
gradient of total density ∂ρt/∂z is positive. The dotted line indicates the contour where the
angular velocity of the base vortex is Ω = 0.1Ω0. The potential vorticity radial gradient
along isopycnal changes sign on the double dotted dashed lines.

The BI mode (2,1a), however, shows different properties. The mode is concentrated
near r/R = 0 and z/Λ = ±0.7 which is near the regions of maximum total density
vertical gradient. Yet, the flow is stable to gravitational instability since Fh/α= 1.496
1.5. The second BI mode (2,3a) is located in the same regions but exhibits more radial
oscillations and some internal waves rays.

The GI and CI modes (2,1b), (2,5b) and (2,8b) of figure 25(b) are shown in
figure 27. The GI mode (2,1b) (figure 27a) is localized in the regions delimited by
thick dashed lines where the vertical gradient of total density ∂ρt/∂z is positive. This
proves that this mode corresponds to gravitational instability. The GI mode (2,5b)
(figure 27b) shows more complicated structures but is also localized near the regions
of positive vertical gradient of total density. The phase velocity of these gravitational
modes ωr/m' 0.45Ω0 is close to the angular velocity of the base flow Ω ' 0.47Ω0

at the point (r= 0, z=√3/2Λ) where the total density vertical gradient is maximum.
The CI mode (2,8b) is a centrifugal mode similar to mode (2,2a) shown in 26(a).
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FIGURE 28. (Colour online) Growth rate of the most unstable BI modes as a function of
(a) Fh/α: for α= 0.4 , α= 0.5 and Fh= 0.74 for Re= 2× 104 and (b) as a
function of Re for α= 0.5 and Fh= 0.74 for different azimuthal wavenumbers: (red)
m= 0, (blue) m= 1, (green) m= 2 and (black) m= 3.
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FIGURE 29. (Colour online) Isopycnals of the base vortex for α= 0.5 for different Froude
numbers (a) Fh/α = 1.33, (b) Fh/α = 1.49, (c) Fh/α = 1.67. The vertical gradient of
total density ∂ρt/∂z = 0 vanishes on the thick dashed line - - - (red) in (c). The dotted
lines indicate the contour where the angular velocity of the base vortex is Ω= 0.1Ω0.
The potential vorticity radial gradient along isopycnals changes sign on the double dotted
dashed lines.

Figure 28(a) shows the growth rate of the most unstable BI modes as a function
of Fh/α for different m for two different fixed aspect ratios α = 0.4 and α = 0.5 for
varying Fh, and for fixed Fh = 0.74 for varying α. As can be seen, the azimuthal
wavenumbers m = 1, 2, 3 are unstable but not m = 0 and m > 4. The growth rate
for each m is mostly a function of Fh/α only. The curve for m = 3 and α = 0.4
departs however slightly from the two other curves. BI modes only exist in a small
range: 1.436Fh/α6 1.5, i.e. just below the threshold for gravitational instability. This
means that BI modes are unstable only when the isopycnals are strongly deformed.
Figure 28(b) further shows that the growth rates of the BI modes decrease when the
Reynolds number decreases for a fixed aspect ratio and Froude number α= 0.5,Fh=
0.74. When Re 6 3× 103, BI modes are stable.

In order to understand the origin of the BI modes, figure 29(b,c) show the total
base density ρt for the same Froude numbers Fh/α = 1.49 and Fh/α = 1.67 as in
figure 25. The density ρt for a smaller Froude number Fh/α= 1.33 is also displayed
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for comparison (figure 29a). When Fh/α increases, the isopycnals are more and more
deformed in the vortex core due to the thermal wind relation (2.6). This suggests that
BI modes could be due to baroclinic instability. A necessary condition for baroclinic
instability is that the potential vorticity gradient along isopycnals

∂Π

∂r

∣∣∣∣
ρt

= ∂Π
∂r

∂ρt

∂z
− ∂Π
∂z

∂ρt

∂r
, (7.1)

changes sign somewhere in the flow (Eliassen 1983; Hoskins, McIntyre & Robertson
1985). The potential vorticity reads Π =ωb · ∇ρt where ωb is the base vorticity ωb=
−∂(rΩ)/∂zer + 1/r∂(r2Ω)/∂rez. The double dotted dashed lines in figure 26 indicate
the contours where (7.1) vanishes. The BI modes are located in the vortex core in
the vicinity of these lines. This strongly suggests that BI modes are due to baroclinic
instability. However, the condition (7.1) is also satisfied for Fh/α = 1.33 (figure 29a)
and continues to be satisfied as Fh/α decreases further while BI modes disappear for
Fh/α 6 1.43 for α = 0.5 and Re= 2× 104 (figure 28a).

To understand this, it is interesting to consider a simple model consisting in a vortex
with uniform angular velocity along the radial direction but varying linearly along the
vertical direction:

Ω = Ω̃0 − Ω̃1z, (7.2)

where Ω̃0 and Ω̃1 are constants. The corresponding base density is given from the
thermal wind relation (2.6) as

ρb = ρ0

g
r2Ω̃1(Ω̃0 − Ω̃1z). (7.3)

Such angular velocity and density fields are the simplest local approximation of the
base flow in the regions where the BI modes develop. For simplicity, we further
consider that the base flow (7.2)–(7.3) is bounded in a rigid cylinder of radius R and
height H between z=−H/2 and z=H/2. We also assume that the vertical variations
of the angular velocity are weak, i.e. Ω̃1H� Ω̃0. In appendix A, it is shown that the
linearized equations (2.12)–(2.16) in the inviscid limit can be approximated at leading
order in Ω̃1 by a single equation for the pressure

1
r
∂

∂r

(
r
∂p
∂r

)
+
[
−m2

r2
+ 4F̃h

2 ∂2

∂z2

]
p= 0+O(Ω̃1), (7.4)

where F̃h = Ω̃0/N. The general solution of (7.4) which is finite at r= 0 is

p= Jm(2F̃hkr)[A cosh kz+ B sinh kz], (7.5)

where Jm is the Bessel function of order m of the first kind and A and B are constants.
By imposing that the vertical velocity vanishes at the top and bottom: uz(z=±H/2)=
0, we obtain the dispersion relation

ω=mΩ̃0 + mΩ̃1

k

√(
1− kH

2 tanh(kH/2)

)(
1− kH tanh(kH/2)

2

)
. (7.6)
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This relation is very similar to the well-known dispersion relation for baroclinic
instability of a linear shear flow in a quasi-geostrophic fluid (Eady 1949). In order
that the normal velocity vanishes at r= R, we have also to impose

2F̃hkR=µm,n, (7.7)

where µm,n is the nth root of the Bessel function of the first kind of order m. As it
is well known from the Eady problem (Vallis 2006), (7.6) requires kH 6 2.4 to have
an instability. Combining this condition with (7.7) gives therefore

F̃h

α̃
>
µm,n

4.8
, (7.8)

where α̃ =H/R is the aspect ratio of the base vortex. Since µm,n >µ1,1 = 3.83, (7.8)
gives the condition for instability F̃h/α̃ >0.8. Below this threshold, the unstable modes
predicted by (7.6) are too large to fit inside the cylinder containing the base flow.
Although this model is very crude, it explains qualitatively why baroclinic instability
for the Gaussian vortex (2.1) develops only when the vertical Froude number Fh/α is
above a critical value.

8. Instability map for Re< 104

In this section, we build a map of the domains of existence of the different
instabilities in the parameter space (Re, Fh) summarizing the results derived in
the previous sections. We focus on the range of Reynolds numbers Re 6 104 and
low Froude numbers Fh 6 0.5α which pertain to laboratory experiments in the
strongly stratified regime. Centrifugal instability has been found to occur when
R = ReF2

h > 103, 16 and 1.6 × 103 for m = 0, 1, and 2, respectively. These
thresholds are shown by solid lines in figure 30(a–c) for m = 0, 1, 2, respectively.
A symbol is plotted in these figures for each parameter combination (Re, Fh) that
has been computed numerically for the aspect ratio α = 0.5. The different symbols
indicate if an instability exists or not and its nature. As seen in figure 30(a,c), the
threshold for centrifugal instability in terms of the buoyancy Reynolds number R
discriminates well the centrifugally unstable and stable domains for m= 0 and m= 2.
For m = 1, the threshold R = 16 departs slightly from the observed limit between
the stable and unstable regions for moderate Reynolds numbers. This threshold,
which has been derived from results for Re > 104 (see figure 21), is therefore less
accurate for moderate Re. For m = 2, shear instability develops when Fh 6 0.5α for
large Re (dashed line in figure 30c). For low Re, this threshold becomes dependent
of the Reynolds number and the dashed line corresponds to an empirical fit to
the observations. Finally, when Fh > 1.5α (dotted lines), gravitational instability
can develop for any azimuthal wavenumber. For Froude numbers just below this
threshold, baroclinic instability can also occur for m>1 for sufficiently large Reynolds
number.

All these thresholds are plotted together in a single diagram in figure 30(d) for
the aspect ratio α = 0.5. Only low Reynolds numbers are stable. The maximum
Reynolds number ReM which is stable is given by the crossing of the thresholds
for shear instability and the m = 1 centrifugal instability, i.e. approximately
0.5α ' 4/

√
ReM giving ReM ' 64/α2. Hence, the size of the stable domain depends

strongly on the aspect ratio. For example, the critical Reynolds number ReM varies
from O(102) to O(106) for vortices in laboratory experiments for which α = O(1)
to oceanic submesoscale vortices (for which background rotation effects are not too
important) with α =O(0.01). Nevertheless, the typical Reynolds number of the latter
vortices is higher than ReM.
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FIGURE 30. Stability diagram for α = 0.5 as a function of Re and Fh for different
azimuthal wavenumber m: (a) m = 0, (b) m = 1, (c) m = 2. The symbols indicate:
u centrifugal instability,p shear instability,A baroclinic instability and × stable. The solid
lines represent the thresholds for centrifugal instability: —— F2

hRe=103 for m=0; F2
hRe=

16 for m = 1; F2
hRe = 1.6 × 103 for m = 2. The dashed line - - - in (c) is a fitted curve

to numerical results and shows the threshold for shear instability. (d) Schematic diagram
of stability for all azimuthal wavenumbers. —— CI threshold for each m; - - - shear
instability (SI) threshold for m= 2; BI and GI threshold. Note that for m= 1,
due to the bending mode which is unstable in the long-wavelength limit, the CI threshold
is also marked with bending mode (BM).

9. Comparison to previous works

It is now possible to attempt some comparisons between the present results and the
laboratory experiments of Flór & van Heijst (1996) and the numerical simulations of
Beckers et al. (2003).

Flór & van Heijst (1996) have observed unstable monopolar vortices that evolved
into multipolar vortices when F = Vmax/NRmax > 0.1, where Vmax and Rmax are the
maximum azimuthal velocity and corresponding radius. In the case of the profile
(2.1), we have Fh = 1.7F. Since the aspect ratio of their vortices is around unity
α ∼ 1, the condition F > 1 corresponds to Fh/α > 0.17. At first sight, this seems
incompatible with the condition derived herein for the existence of shear instability
Fh/α6 0.5. However, the laboratory experiments of Flór & van Heijst (1996) are for
low Reynolds numbers O(100) so that the lower left part of the stability diagram
for m = 2 (figure 30c) should be considered. Furthermore, the Reynolds number
varies together with the Froude number since it is the maximum velocity which
is varied. Hence, we travel along a straight oblique line starting from the origin
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in figure 30(c). If the slope of this line is not too high, it is therefore possible to
enter the unstable domain as the Froude number increases. This would mean that
the stabilization observed by Flór & van Heijst (1996) for F < 0.1 is mostly due to
viscous effects.

Beckers et al. (2003) have also performed experiments and numerical simulations
on pancake vortices with an aspect ratio α∼ 0.4. In their numerical simulations, they
have not observed any instability for the profile (2.1) in the Reynolds number range
[500, 10 000] and Froude number range [0.1, 0.8]. Their definitions of the Reynolds
and Froude numbers are related to our definitions by: R̃e = VR/ν = 2α

√
πRe and

F̃ = V/RN = 2α
√

πFh since they have taken as the velocity scale V = 2
√

πΛΩ0.
Hence, using our definitions of Re and Fh, these ranges correspond to 340<Re<6700
and 0.2< Fh/α < 1.3. Therefore, according to our results, they should have observed
shear instability when Fh/α < 0.5 and Re is sufficiently large. However, Beckers et al.
(2003) have obtained their results from perturbed nonlinear simulations. Thus, the base
vortex decays by viscous effects during the simulations. For α < 1, these effects are
mostly due to vertical shear and thus scale like Ω0/(α

2Re). Since the growth rate of
shear instability is at most ωi' 0.015Ω0 for Fh/α> 0.2, the ratio between the growth
rate and the viscous damping of the base state is only of order ten for Re = 6700
and α= 0.4. This ratio is probably not sufficiently high for the perturbations to have
time to grow significantly before the base flow has decayed. Higher Reynolds number
or lower vertical Froude number would be necessary to observe the shear instability
for q= 2. In contrast, for steeper angular velocity profiles with q> 3, the growth rate
of shear instability is higher and Beckers et al. (2003) observed it when the Reynolds
number is sufficiently large in the range Re<6700. Furthermore, they reported that the
growth rate of shear instability decreases when the Froude number increases, which
is consistent with our results.

10. Conclusions
In this paper, we have investigated the stability of an axisymmetric pancake

vortex with Gaussian angular velocity in both radial and vertical directions in a
stratified fluid. The instabilities of columnar vortices such as the centrifugal and
shear instabilities have been observed in spite of this pancake shape. The maximum
growth rate of centrifugal instability is almost independent of the aspect ratio α,
meaning that it is weakly affected by the pancake shape. The asymptotic formula
for the growth rate of centrifugal instability at short wavelength derived by Billant
& Gallaire (2005) for inviscid columnar vortices has been extended to viscous fluids
and applied to pancake vortices. It shows that the maximum growth rate for each
azimuthal wavenumber m = 0, 1, 2 depends only on the buoyancy Reynolds number
R = ReF2

h , in good agreement with the numerical results for pancake vortices. The
critical Froude number for the apparition of centrifugal instability is therefore of the
form Fh = c/

√
Re, where the constant c depends on m. We have also found that

the azimuthal wavenumber m = 1 is more unstable than the axisymmetric mode for
moderate buoyancy Reynolds numbers R . 4600. In contrast, the shear instability
occurring for m= 2 is strongly affected by the pancake shape and observed only when
Fh 6 0.5α for sufficiently large Reynolds number. This condition can be understood
by considering again the columnar configuration: it ensures that the vortex is taller
than the minimum wavelength λm ' 4FhR of shear instability for a columnar vortex
for the same parameters. For m = 1, a displacement mode exists with almost zero
frequency and growth rate.
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Two other instabilities specific to the pancake shape have been found. They are due
to the deformations of the isopycnals of the base flow. Gravitational instability can
occur when the isopycnals overturn, i.e. when Fh > 1.5α. For Froude numbers just
below this threshold Fh > 1.43α, baroclinic instability has also been observed. In order
to explain this threshold, we have considered a simple model consisting in a sheared
vortex with an angular velocity uniform in the radial direction but varying linearly and
weakly along the vertical. When the vortex is assumed to be bounded in a cylinder
of radius R and height H, baroclinic instability occurs only when the vertical Froude
number is above a threshold. Although this model is only qualitative, it highlights
the fact that baroclinic instability cannot always occur because of confinement effects,
even if the necessary condition of sign reversal of the potential vorticity gradient is
satisfied. In the future, it would be interesting to study the nonlinear dynamics of these
instabilities.
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Appendix A. Stability equations for a vortex with almost uniform angular velocity

In this section, we derive the simplified stability equation (7.4) for a base vortex
with angular velocity (7.2), i.e. uniform in the radial direction and varying linearly
along the vertical. The associated density field is given by (7.3). In the inviscid limit,
(2.12) and (2.13) yield the radial and azimuthal velocities

ur = is∂p/∂r+ 2Ωimp/r+ 2ruzΩ∂Ω/∂z
s2 − 4Ω2

, (A 1)

uθ = −2Ω∂p/∂r− smp/r+ iruzs∂Ω/∂z
s2 − 4Ω2

, (A 2)

where s=mΩ −ω. The vertical velocity is obtained from the vertical momentum and
density equations (2.14) and (2.15)

uz = g/ρ0∂ρb/∂rur − is∂p/∂z
N2 − s2 − g/ρ0∂ρb/∂z

. (A 3)

Combining (A 1) and (A 3) gives

uz = g/ρ0∂ρb/∂r(is∂p/∂r+ 2Ωimp/r)/(s2 − 4Ω2)− is∂p/∂r
N2 − s2 − g/ρ0∂ρb/∂z− g/ρ0∂ρb/∂r(2rΩ∂Ω/∂z)/(s2 − 4Ω2)

. (A 4)

We now assume Ω̃1H� Ω̃0 and ω=mΩ̃0 +ω1 with ω1 =O(Ω̃1H). This implies

s=−ω1 −mΩ̃1z=O(Ω̃1H). (A 5)
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Hence, the velocity perturbations can be simplified at leading order in Ω̃1 to:

ur = is∂p/∂r+ 2im(Ω̃0 − Ω̃1z)p/r

−4Ω̃2
0 + 8Ω̃0Ω̃1z

+O(Ω̃2
1 ), (A 6)

uθ = −2(Ω̃0 − Ω̃1z)∂p/∂r− smp/r

−4Ω̃2
0 + 8Ω̃0Ω̃1z

+O(Ω̃2
1 ), (A 7)

uz = −iΩ̃1mp− is∂p/∂r
N2

+O(Ω̃2
1 ). (A 8)

Substituting (A 6)–(A 8) into the continuity equation (2.16) gives

is

[
1
r
∂

∂r

(
r
∂p
∂r

)
− m2

r2
p+ 4Ω̃2

0

N2

∂2p
∂z2

]
= 0+O(Ω̃2

1 ). (A 9)

Since s is different from zero, (A 9) reduces to (7.4). The general solution is given
by (7.5). The boundary conditions at r= R and z=±H/2 are assumed to be

ur(r= R)= 0, (A 10)

uz

(
z=±H

2

)
= 0. (A 11)

Using (A 6) and (A 8), these boundary conditions will be satisfied at leading order in
Ω̃1 if

p= 0 at r= R, (A 12)

s
∂p
∂z
+mΩ̃1p= 0 at z=±H

2
. (A 13)

Equation (A 12) leads to the relation (7.7). Using (7.5), (A 13) implies

Ω̃1m

−sinh
kH
2
−
(
ω1

Ω̃1m
− H

2

)
k cosh

kH
2

cosh
kH
2
+
(
ω1

Ω̃1m
− H

2

)
k sinh

kH
2

sinh
kH
2
−
(
ω1

Ω̃1m
+ H

2

)
k cosh

kH
2

cosh
kH
2
−
(
ω1

Ω̃1m
+ 1

H
2

)
k sinh

kH
2


×
[

A
B

]
= 0. (A 14)

This leads to the dispersion relation

ω1 = mΩ̃1

k

√(
1− kH

2 tanh(kH/2)

)(
1− kH tanh(kH/2)

2

)
, (A 15)

so that ω=mΩ̃0+ω1 is given by (7.6). The stability of the base flow (7.2)–(7.3) has
also been directly computed numerically for Ω̃0= 1, Ω̃1= 0.01, R= 5,H= 2,N = 1.2
for a large Reynolds number Re= 104. Figure 31 shows that the predictions of (7.6)
and the numerical results are in good agreement. For m= 1, 2 and 3, there are two
unstable modes for each m: the primary mode 2F̃hRk=µm,1 and the secondary mode
2F̃hRk=µm,2. For m > 4, only the primary mode is unstable.
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FIGURE 31. Growth rate (ωi/Ω̃0) and frequency (ωr/Ω̃0) spectra of the base flow (7.2)–
(7.3) for different azimuthal wavenumbers:Am= 1;@m= 2;Em= 3; ♦ m= 4;Cm= 5;
⊕ m = 6. Filled symbols indicate the prediction of (A 15) and open symbols show the
numerical results for Ω̃0 = 1, Ω̃1 = 0.01, R= 5, H = 2, and N = 1.2 for Re= 104.

Appendix B. The m= 1 displacement mode

For m= 1, there exists a mode which derives from the translational invariance. This
invariance states that the streamfunction ψ(x, y) for the base flow (2.1) translated by
arbitrary displacements (1x, 1y), i.e. ψ(x − 1x, y − 1y), remains a solution of the
two-dimensional Euler equations. The linear perturbation ψ ′ corresponding to a small
displacement 1x, 1y� 1 is

ψ ′ =ψ(x−1x, y−1y)−ψ(x, y)=−1x
∂ψ

∂x
−1y

∂ψ

∂y
. (B 1)

The radial and azimuthal velocity perturbations are therefore

ur
′ =−1

r
∂ψ ′

∂θ
= ubθ

r

[(
1x
2i
− 1y

2

)
eiθ −

(
1x
2i
+ 1y

2

)
e−iθ

]
, (B 2)

uθ ′ = ∂ψ̂
′

∂r
= i
∂ubθ

∂r

[(
1x
2i
− 1y

2

)
eiθ +

(
1x
2i
+ 1y

2

)
e−iθ

]
, (B 3)

since ubθ = ∂ψ/∂r. Such a perturbation with uz=0, ρ=0 is therefore a neutral solution
of the linearized equations (2.12)–(2.16) in the inviscid limit. The radial and azimuthal
velocities of the eigenmode are therefore (ur, uθ)∝ (Ω, i∂(rΩ)/∂r). Figure 32 shows
Ω and the radial velocity perturbation of the displacement mode Re(ur) computed for
α = 0.5, Fh = 0.5, Ro =∞ and Re = 104. As can be seen, they are almost identical.
The imaginary part of the azimuthal velocity Im(uθ ) is also similar to ∂(rΩ)/∂r (not
shown).
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FIGURE 32. (Colour online) (a) Theoretical radial velocity of the displacement mode (Ω)
and (b) real part of the radial velocity perturbation Re(ur) of the displacement mode for
m = 1, α = 0.5, Fh = 0.5 and Re = 104. The dotted line indicates the contour where the
angular velocity of the base vortex is Ω = 0.1Ω0.
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