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Experiments have shown that the well-known vortex pairing process may take place 
first in defect regions where the fundamental structure is weakest. A model is 
introduced here to describe this defect-induced pairing process. The model is 
constructed in such a way that, in a certain parameter range, a stable fundamental 
mode and a stable subharmonic mode may coexist. The numerical simulation 
demonstrates that, when initial conditions consist of a dominant fundamental with 
one or more defects, the subharmonic component is preferentially generated in the 
cores of these defects. Moreover, the results also indicate that pairing may first 
commence wherever the fundamental mode is weakest provided the white-noise level 
of the subharmonic is high enough. The numerical results are in good agreement with 
experimental observations. 

1. Introduction 
In  the evolution of mixing layers, the interactions between large-scale vortex 

structures play an important role. During a pairing event, two neighbouring vortices 
merge to form a single larger vortex, having a wavelength double that of the original 
two. Thus successive pairings of neighbouring vortices govern in a primary way the 
streamwise growth process, as demonstrated by Winant & Browand (1974), Brown 
& Roshko (1974) and Ho & Huang (1982) among others. For a review of the 
dynamics of coherent structures in mixing layers, the reader is referred to Ho & 
Huerre (1984). 

Experiments have shown that the large-scale vortices in mixing layers are not 
perfectly two-dimensional but only quasi-two-dimensional (Browand & Troutt 1980, 
1985 ; Browand & Prost-Domasky 1990). One such experimental result is illustrated 
in figure 1. A sequence of vortices is visualized by a two-level contour map of the 
longitudinal component of fluctuation velocity obtained from a multiprobe hot-wire 
rake situated several wavelengths downstream from the origin of the flow. In this 
case the darkened portions of the image correspond to velocities above the mean 
value (positive). The observed velocity field is consistent with vortices which are 
nearly parallel to the span (horizontal), but contain branching interconnections, as 
at A. Because of their similarity to dislocations in crystals, they are sometimes 
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FIGURE 1. Example of an experimentally generated defect in the mixing layer. Horizontal axis is 
spanwise position, vertical axis is time. Darkened regions represent positive streamwise 
fluctuations, the blank regions represent negative streamwise fluctuation velocity. 

referred to as dislocation defects or simply dislocations. They occur as at A or with 
opposite polarity (reverse the dark and light regions) with equal frequency. Such 
dislocations occur naturally and spontaneously in the flow, and are the most 
prominent pattern irregularities arising in the developing flow field. It is natural to 
ask what role they play in the further development of the mixing layer. 

A dislocation defect describes a point where the phase description of a field is 
singular. For instance, if v is the perturbed velocity in a mixing layer, we can write 

= A(%, *, t )  eifW. I ,  t )  e iaz  +c.c., 

where CL is the fundamental pattern wavenumber, A(x,  z, t )  its real positive amplitude, 
and O(x, z, t )  the residual phase. Around a simple dislocation defect as in figure 1, the 
value of the residual phase has a 2n jump. At  the cores of a dislocation, the phase 
singularity requires the field strength A ( x ,  z ,  t)  to be zero. It is not known what the 
vorticity field looks like in the immediate vicinity of such a defect. For our purpose, 
it is only necessary to identify such defects as regions of diminished pattern strength, 
as illustrated in figure 2. The defect in figure 2 was produced with a small acoustic 
perturbation to establish a phase reference and allow velocity measurements on a 
much finer grid. 

The nucleation and expansion of one stable state into a more complex metastable 
state containing defects have been investigated by Coullet, Gil & Repaux (1989). 
These authors use Ginzburg-Landau-type models as basic equations to describe the 
process and they exploit known results concerning the properties of fronts and 
defects in potential systems as described for instance in Balian, Klemann & Poirier 
(1981) and Lifshits & Pitaevskii (1981). For the particular one-dimensional model 

P A  
= pA+A3-A5+-,  

aA - 
at axz 

considered by Coullet et al. (1989), three uniform stable states A+,  A- and A, are 
possible in a certain range of control parameter p. The relative stability of the 
solutions can be compared by calculating the corresponding values of a potential 
functional F from which the model equation is derived. Solutions A+ and A- have the 
same absolute values but opposite sign. The corresponding values of the functional 
are the same, and so are their stabilities. Therefore, when F(A,) < F(A,), A,  is only 
metastable and the other two states A+ and A- are stable. WhenF(A+) - > F(A,), the 
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FIGURE 2. An example of a dislocation defect observed in the mixing layer. Horizontal axis is span, 
vertical axis is time. Contours are level value of velocity fluctuation modulus. The mixing layer is 
weakly forced to produce the defect. The values of the modulus associated with closed solid lines 
decrease inwards. 

stabilities are reversed. The symmetry between A, and A- allows the solution that 
connects them to be stationary. The solutions connecting A ,  and A- are referred to 
as defects because of the 27c phase jump associated with their opposite signs. The 
solutions connecting A, and A ,  (or A _ )  are not symmetrical, and they move with a 
finite velocity. The direction of motion depends on the relative stabilities of A+ and 
A ,  and always leads to the expansion of the stable state. When A,  is stable and A ,  
(and A_)  is metastable, a state consisting of A+,  A- and the defect connecting them 
will generate the A ,  state in the core of the defect. The defect is then replaced by two 
fronts - the solution connecting A ,  and A,, and the solution connecting A ,  and A _ .  
The motion of the fronts will result in the expansion of the stable A ,  state at  a cost 
to the A ,  and A- states. 

The pairing process observed in experiments is qualitatively similar to the 
phenomenon described by Coullet et aE. From an energetics point of view, one might 
argue that the pairing process in mixing layers is a competition between the energy 
associated with the vortices of wavenumber a and the energy associated with those 
of the subharmonic wavenumber ;a, with the subharmonic mode being dominant. In 
the present investigation we propose a phenomenological model to describe this 
energy exchange and in particular pairing events induced by defects of the 
fundamental. Rather than conducting an in-depth asymptotic analysis starting from 
the basic equations of motion, we postulate an amplitude evolution model that is 
consistent with the symmetry properties of the physical problem and with known 
linear and weakly nonlinear stability characteristics of mixing layers. It is not 
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claimed that the model presented here is unique but only that it contains the 
minimal structure necessary to account for the observed phenomena. This strategy 
has proven to be successful in pattern-formation studies in closed flows, for instance 
in describing nonlinear travelling wave states in binary fluid convection (Cross 1988). 
It has also been pertinent in qualitative descriptions of the onset of Karman vortex 
sheets behind circular cylinders (Chomaz, Huerre & Redekopp 1988). In the 
following sections, we will present the model equations, discuss the local bifurcation 
structure, and analyse the results of numerical simulations to compare them with 
experimental observations. 

2. The subharmonic interaction model 
2.1. Evolution equations 

An amplitude evolution model is proposed to describe the interactions between the 
fundamental and the subharmonic component. The streamwise, cross-stream and 
spanwise coordinates in the flows are denoted by x, y and z respectively. The 
assumption is made that the properties in the cross-stream direction y can be well 
represented by their values in a horizontal plane or by their averages in y. Therefore, 
the model is spatially two-dimensional, and it is described in space spanned by z and 
x. The equations are 

where the complex functions A ,  and A ,  represent the amplitudes of the subharmonic 
mode and the fundamental mode respectively. All the coefficients in the equations 
are assumed to be real; p, and p, are the control parameters; a, and a, are the 
Landau constants pertaining to each mode; b, and b, describe the coupling between 
A ,  and A,;  and yl, y,, S,, and 8, are diffusion coefficients. 

The above model cannot be rigorously derived by performing a multiple-scale 
analysis close to onset, as in classical weakly nonlinear studies. It can, however, be 
partially justified by appealing to symmetry considerations, to the known 
characteristics of linear instability waves in mixing layers, and to available results 
from previous weakly nonlinear investigations. First we note that (1) and (2) respect 
the symmetry properties of the mixing layers being modelled, namely invariance 
under time translation, space translations along x and x, and space reflections with 
respect to x and z. Furthermore, from the linear temporal stability properties of 
antisymmetric mixing layers (Michalke 1964) it is known that the dispersion relation 
between the frequency w and the wavenumber a is necessarily of the form w = iw,(a), 
where wi is real. This implies that the coefficients of all linear terms in ( 1 )  and (2) 
necessarily have to be real. Finally, it is known from previous multiple-scale analyses 
(Churilov & Shukhman 1987 ; Huerre 1987) that the nonlinear evolution of weakly 
amplified waves in mixing layers close to the cutoff wavenumber gives rise to a 
nonlinear self-interaction term &12A, with a real and positive Landau constant a,. 
We shall assume that the subharmonic A ,  is subjected to a similar nonlinear 
saturation term IA,('A, with a, > 0. The cubic terms IA,12A, and IAz)2A, have been 
included to account for energy exchanges between the two modes. 



A model of defect-induced pairing in mixing layers 407 

The fact that the interacting wavenumbers differ from each other by a factor of 
two might lead one t o  suspect that the model should also contain quadratic 
nonlinearities of the form A,A: in (1) and At in (2). Such terms should indeed be 
included when subharmonic resonance takes place, i.e. when the interacting 
disturbances have wavenumbers in the ratio 1 : 2  and propagate at the same phase 
speed. This mechanism has been examined in detail by Kelly (1967, 1968) and 
Monkewitz (1988) to account for the emergence of the subharmonic component in 
homogeneous or stratified mixing layers. As noted in Ho & Huerre (1984) 
subharmonic resonance modes with quadratic nonlinearities are not necessarily 
pertinent in the present context since the required resonance conditions are not 
satisfied: the subharmonic growth rate is order unity. We have therefore chosen to 
limit the study to cubic interaction terms only. This restriction preserves the 
variational nature of the model and greatly simplifies the interpretation of the result 
in terms of stable and metastable states. 

In  order to understand the meaning of the fields A,  and A ,  more clearly, we 
can write down a physical dependent variable, say the perturbed velocity v, as 
v = Re ($) where 

(3) 

is associated with the strength of the vortices in the mixing layer. When (A  ,( is much 
larger than IAJ, the vortices at the fundamental wavenumber a dominate. 
Conversely, the subharmonic mode of wavenumber ta overwhelms the field when JAll 
is much larger than IA,l. 

Equations (1) and (2) derive from a Lyapunov functional, and can be written in 
the form 

i[A,(x, z, t )  eiaXl2 + A,(z, z ,  t )  eiaz] @ = -  

with 

aA1 1 SF - = -_- 
at b, &AT ' (4) 

The asterisks denote complex conjugates and the Lyapunov functional density p is 
defined as 

The local bifurcation analysis is carried out for the spatially homogeneous form of 
(1)  and (2), that is without the diflusion terms. Under the condition 

a,a2-blb,  < 0, (8) 

the bifurcation diagram is sketched in figure 3. The stationary solutions are shown 
with p, fixed and p1 as the varying control parameter. The solid lines represent the 
stable states and the dashed lines indicate the unstable states. The corresponding 
phase portraits for some typical p1 values are given in figure 4. Figure 4 ( a )  illustrates 
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FIGURE 3. Local bifurcation diagram for the model under the condition a, a, -6,  b,  < 0. (pa = 
(al/bz)p,,pb = (bl/a,)pz). Solid lines represent stable states and the dashed lines unstable states. 

-0.3 0 0.3 0.6 0.9 1.2 

~ ~ G U R B  4. Phase portraits of stationary solutions under the condition a,a,-b,b, < 0 (al = 1.0, 
a,= 1 . 2 , b , =  1 . 6 , b , =  1 . 5 ; p , = 0 . 6 , p L , = 0 . 4 , p e = 0 . 8 ) . ( a ) p , < 0 ( p 1 = - ~ . ~ ) ; ( ~ ) 0 < p ,  < p , ( p l =  
0.2) ; (c) PL, < < pb (pl = 0*5)  ; (d )  pl ’ pb (rl = O”)’ 
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the case p1 < 0 where there are two stationary solutions, one being stable and the 
other unstable. The phase portrait in the range 0 < p1 < ,ua(,ua = (a l /b z )pz )  is given 
in figure 4 ( b )  where the number of stationary states increases to three with one 
being stable and the other two unstable. There are four stationary solutions when 
pa < ,ul < ,ub(pb = @,/a,) ,uz) as shown in figure 4 (c), two of them being stable and the 
others unstable. Figure 4(d )  represents a typical phase portrait for the case p1 > pb .  
The overall structure looks similar to the case 0 < ,ul < pa, figure 4(b) ,  but the two 
non-zero stationary solutions have exchanged their stabilities. 

The most interesting region is pa < pl < pb where two stable stationary states 
coexist. The two stable solutions, A ,  = 0 ;  [A,( = (,uz/a,)i and IA,J = (pl/al)i; A ,  = 0, 
represent the fundamental component and the subharmonic component respect- 
ively. In  terms of the Lyapunov functional, there are two local minima corresponding 
to the two solutions. Their relative stabilities can be determined by comparing the 
values of the Lyapunov functional for each. Since both the fundamental state and 
the subharmonic state are homogeneous, the comparison of the Lyapunov functional 
values can be made by considering the density p only. The value of p at the 
fundamental state (A,  = 0; [Az[ = (p2/az)i) is 

and the corresponding value for the subharmonic state (IAJ = (,u,/a,)i; A ,  = 0) is 
P V )  = - b l P ; m z ) ?  (9) 

P(Q = -b,Pu:1(2a1)- (10) 
One can obtain a critical value of the control parameter where p(F)  = p(X), which 
gives 

(11)  

When ,ul < pc, p(F)  < p(S), the fundamental solution is stable and the subharmonic 
solution is metastable. On the other hand, when p l  > ,uc,p(F) > p(S), the situation is 
reversed. During a time evolution with both F and X present, the two states will 
compete with one other. When the fundamental solution is stable (pl < ,uuc), the final 
state will likely be a pattern of fundamental wavenumber a. On the other hand, the 
pattern of subharmonic wavenumber ta  should eventually dominate the field when 

2.2. Model limitations 
The model has been required to possess the invariances and symmetries which 
underlie the physical circumstance. The equations have not been derived as a 
rational approximation (limit-process expansion) of the Navier-Stokes equations. 
While such an association would be most welcome, it seems beyond the range of 
possibility at present. It will be shown that some of the numerical coefficients can be 
chosen by tuning the model equations with the help of experimental observations. 
Several aspects of the correspondence between model and experiment must therefore 
be examined. 

The equations describe the temporal evolution of a perturbation field satisfying 
periodic boundary conditions in both space dimensions. They are most directly 
applicable to temporally evolving mixing layers. The experimental flow one wishes 
to represent develops spatially in a downstream (flow) direction. The connection can 
be made by supposing the flow to evolve in a coordinate system fixed to the large 
structure which is convecting down-stream at average speed between the two 
streams 0. That is, x and t are connected in the experiment and model by the relation 
z = ut. This transformation is not exact, but it is an often used approximation. 

14 FLM 248 
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FIGURE 5 .  Amplitude distribution of 1A.J and lAll in the (z,z)-plane as a function of time when 
p1 = -0.1, p, = 0.6. a,  = 1.0, u2 = 1.2, b, = 1.6, b ,  = 1.5; y1 = 0.5, y, = 0.7, 6, = 0.25, 6, = 0.35; 
q, = 0.1, q, = 0.1. (a )  Amplitude of the fundamental mode, wel; ( b )  amplitude of the subharmonic 
mode, IAJ. 

The physical mixing layer undergoes a succession of pairing events which are 
responsible for the increase of shear-layer thickness with downstream distance. The 
equations, however, are intended to describe a single pairing sequence and the 
resulting increase in local thickness is not considered. The model could be expanded 
by adding additional subharmonic components and appropriate equations, but this 
was not attempted. Finally, Dallard & Browand (1993) have shown that each of 
these localized pairings has a finite bandwidth. That is, the transition is centred at 
the subharmonic wavelength, but the growing subharmonic patch contains a spread 
of wavelengths. The degree of tuning, or the narrowness of the wavelength band, 
depends greatly upon how the mixing layer is forced. These subtleties are not 
incorporated in the present model. 
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FIGURE 6. Amplitude distribution of lAzl and lAll in the (2, z)-plane as a function of time when 
p1 = 0.2. The other parameters are the same as in figure 5. 

3. Numerical simulation of the pairing process: a qualitative comparison 
with experiments 

The model equations are numerically solved in a rectangular domain [0 ,2n/q,]  x 
[0 ,2x/q , ]  in the (x,z)-plane. A pseudo-spectral method is used for the spatial 
discretization with periodic boundary conditions in both x- and x-directions. The 
collocation points are uniformly distributed according to 

and 

2ni 
xi = - i = 0,1,  . . , , N, - 1 

nxNz’ 

with a total of Nx x N,  points. Initial conditions are specified by the values of A ,  and 
A ,  at T = 0. The Fourier transforms required in the spatial discretizations are 
performed by calling FFT routines and the time-marching procedure is a predictor- 
corrector algorithm based on the leap-frog scheme. 

The initial conditions for most of the numerical simulations are chosen as 

A ,  = cos (qs x) + i cos (qz x ) ,  (14) 
A ,  = white noise. (4 

14-2 
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FIGURE 7.  Amplitude distribution of IA,1 and lAll in the (z,  2)-plane as a function of time when 
,ul = 0.5. The other parameters are the same as in figure 5. 

In  all cases, this state quickly relaxes to a pattern composed of four dislocations 
located at the points x = 7c/2qZ, 3rc/2qx and z = rc/2qz, 3rc/2qz, the fundamental state 
lAal = (pu,/a,)i being attained everywhere else in the field. This initial configuration 
will be selected to study defect-induced pairing. The parameters in our computations 
are chosen to be: 

a, = 1.0, a2 = 1.2; b,  = 1.6, b, = 1.5; y1 =0.5 ,  7, = 0.7; 
S,=O.25, 6,=0.35; q x = O . l ,  q z = O . l ,  

and they satisfy the condition 
a,a,-b,b, < 0. 

As will be discussed in 53.4, variations in the diffusion coefficients y1,y2, 8, and 8, 
do not affect the major pairing process to be investigated. When p2 = 0.6, the 
bifurcation points in figure 3 take the specific values pa = 0.4 and p b  = 0.8. Four 
cases have been computed at  the control parameter values pul = -0.1,0.2,0.5 and 0.7 
respectively. These parameter settings correspond to points A, B, C and D on the 
bifurcation diagram of figure 3. 

3.1. The case p1 < pc : no pairing 

In order to explore the numerical results, the amplitudes v,I and IA21 are plotted 
with respect to x and z at different times. In  figure 5, we present the amplitude plots 
of the evolution for p, = -0.1 which corresponds to point A on the bifurcation 
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FIGURE 8. For caption see next page 

diagram of figure 3. The phase portrait at this parameter value is shown in figure 
4 ( a ) .  The only stable stationary state is the fundamental solution. From the 
amplitude plot of figure 5, one can see that the solution quickly relaxes to the 
required state composed of the fundamental solution with four dislocations. The 
white noise perturbation has died out at  T = 5 leaving A ,  = 0 everywhere. In the 
next computation, the control parameter is set at p1 = 0.2 which corresponds to 
point B of figure 3 and to the phase portrait displayed in figure 4(b). There is now 
one more fixed point than for the case ,ul = -0.1 : it represents an unstable 
subharmonic stationary solution. The amplitude development is plotted in figure 6. 
Note that the subharmonic A ,  mode grows initially a t  the dislocation points but it 
ultimately decays. The final state is again constituted of the fundamental solution 
with four dislocations. When the parameter is increased to p1 = 0.5, point C of figure 
3, the stationary states have reached the configuration shown in figure 4(c). In  this 
case, both the fundamental solution and the subharmonic solution are stable. 
However, the control parameter is smaller than its critical value, ,uul < pC, so that the 
fundamental solution is stable and the subharmonic solution is metastable as 
previously mentioned. One therefore cannot expect any dramatic changes to occur 
from the evolutions of the previous cases. The amplitude plots in figure 7 indicate 
that the subharmonic mode does increase in the dislocation cores over a relatively 
longer time than in the case p, = 0.2. But, ultimately the subharmonic mode decays 
to zero. 
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FIGURE 8. Amplitude distribution of IA,J and /All in the (2, +plane as a function of time when 
y, = 0.7. The other parameters are the same as in figure 5. 

3.2. The case ,ul > pc: pairing 

When the parameter ,ul is set to 0.7 (point D of figure 3, ,ul > pc),  the subharmonic 
solution is stable and the fundamental solution becomes metastable. The evolution 
for this case is illustrated in figure 8 with the same initial conditions as before. The 
early evolution is similar to the case ,ul = 0.5, with !All growing. However, the growth 
of lAll here does not stop as before but instead continues as shown in figure 8. At time 
T = 100, IA,I saturates and lAzl has uniformly decayed to a flat zero level in a finite 
region encompassing the original dislocations. At  this moment, pairing has taken 
place in these domains because the subharmonic mode becomes locally dominant. As 
time increases, the paired areas expand until, at T = 180, the entire computational 
area is fully occupied by the subharmonic solution lAll = (pl/al)i. The first-order 
pairing process is then completed. 

In order to compare with the experimental results, we introduce the carrier waves 
and represent the contour lines of the perturbed vertical velocity, Re (+), where @ is 
defined by (3) in $2.1. One plot of this kind is illustrated in figure 9 ( b ) .  The rolls in 
this figure can be considered as the spanwise vortices that dominate the development 
of mixing layers. One can clearly see the presence of dislocations from the appearance 
of extra rolls locally within the domain. To focus on only one isolated dislocation, we 
blow up the left bottom quarter of the figure and label the resulting plot figure 9 (c). 
The corresponding amplitude plot for this initial condition is given in figure 9 (a )  for 
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FIQURE 9. Initial amplitudes and contours of the perturbation velocity, Re(+). (a) Amplitude 
distribution of lAal (left) and [A l [ ;  (b)  level contours of Re($) in the entire computational field; (c) 
blow-up of lower left quarter of (b) .  Solid and dashed lines respectively represent positive and 
negative values. 

reference. In figure 10, contours are displayed a t  different times for the parameter 
value p1 = 0.7. The flow near the dislocation undergoes a continuous, gradual change 
in shape until T reaches about 80. For T > 80, pairing occurs in the centre of the 
domain due to the appearance of structures a t  the subharmonic wavenumber ia. As 
time increases further, the area occupied by the structures a t  the subharmonic 
wavenumber becomes larger and larger. The final state consists entirely of straight 
vortices of wavenumber +a as shown in the last plot of figure 10 at T = 180. No 
further changes take place for T > 180. 

Corresponding experimental results in mixing layers have been obtained as shown 
in figure 11, which displays spatio-temporal structures at different downstream 
stations Rx/hi, where R = AU/2l7 is the velocity ratio, x is the distance from the 
trailing edge of the splitter plate, and hi is the initially most amplified wavelength. 
The dark and light regions again form a two-level contour plot of the measured 
streamwise perturbation velocity. The initial dislocation in the velocity field is 
generated by acoustically forcing the mixing layer with a slight frequency mismatch 
along the span (Dallard & Browand 1993). The downstream evolution provides the 
evidence for defect-induced pairing in the mixing layer. The field near the dislocation 
steepens locally as the size of the dislocation region shrinks - a behaviour mirrored 
by the calculations. At the station Rx/h, = 1.5, two vortices at  the fundamental 
wavenumber pinch to form a small area dominated by subharmonic structure. The 
region dominated by the subharmonic continues to grow in size, as does the 
subharmonic region in the calculations. 
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7 

T =  20 

T =  40 T =  60 

T =  80 T =  100 

FIGURE 10. For caption see facing page. 

3.3. Pairing induced by defect-free initial conditions 
In the experimental observations, pairing may also appear in a region where the 
fundamental mode is weak but where a defect may not be present (Dallard & 
Browand 1993). In  this case also, the model equations exhibit phenomena that are 
consistent. One example is shown in figure 12, where the initial condition is chosen 
as 

(16) 

and the computational domain is of size a/qz x n/q,  with only one point where A ,  = 0. 
In contrast to the previous case, both parts of A, in (16) are positive, there is no 
phase jump, and therefore no defects are generated. The evolution of this defect-free 
state shown in figure 12 indicates that the fundamental mode A ,  increase everywhere 
initially when the level of the white-noise perturbation of the subharmonic mode A ,  
is low. In  spite of this, a t  the centre point where iA,I is smallest, lAll grows gradually. 
A t  around T = 6 (not shown), the growth of (A,[ a t  the centre point cannot proceed 
but instead lAzl begins to decay, while [All continues to increase locally. Saturation 
takes place as shown in the amplitude plot at about T = 50, and the remaining 
evolution is the same as the case with dislocations - namely the area dominated by 
the subharmonic expands. The final state is A,  = 0 and lAll = (,ul/al)i, the uniform 

A ,  = I cos (a, x) I + i I cos (qz z )  1, A, = white noise, 
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T =  160 T =  180 

FIGURE 10. Dislocation-induced pairing process when the subharmonic solution is stable for 
,ul = 0.7. The other parameters are the same as in figure 5 .  Level contours of Re ($) are shown in 
each frame with increasing time. 

subharmonic solution. Thus, the presence of defects is not necessary to promote a 
three-dimensional subharmonic transition. A localized region, where the fundamental 
has a low amplitude, is sufficient. 

3.4. Response to changes in model coeflicients 
When the diffusion coefficients y1,y2,6,, and 6, are changed, the basic pairing process 
remains unaffected but the geometry of the expanding area dominated by the 
subharmonic may change. Contour plots of lAll and lAzl indicate that the cross- 
sections are ellipses depending mainly on the ratio of y I / y 2 .  The major axes of the 
ellipses coincide with the directions of larger diffusion coefficient in (1). The ratio 
a,/&, plays the same role but it is effective only when yJy2 is close to one. 

The behaviour of the solutions near the critical parameter p, is not entirely clear. 
This is because this critical value is defined with respect to the stable or metastable 
nature of homogeneous solutions only. A stability analysis of stationary states with 
defects could be helpful in obtaining a more detailed understanding of the result. 
What has been confirmed in the numerical simulations is that there does exist a 
critical spatial state for each control parameter value p1 in the range pa < p1 < pb. This 
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FIGURE 11. Experimental results illustrating pairing in the vicinity of a dislocation defect 
generated in the mixing layer. The flow is weakly forced. Solid lines and dashed lines represent 
positive and negative streamwise fluctuation velocities respectively. Each frame pertains to a 
specific value of normalized streamwise distance Rxlh,. 

state is unstable and behaves as a critical size for a ‘bubble’ containing the 
subharmonic. When an initial state corresponds to a uniform fundamental plus a 
‘bubble ’ of subharmonic larger than the critical size, the ‘ bubble ’ will continually 
increase in size. On the other hand, if the initial ‘bubble’ size is smaller than the 
critical size, the ‘ bubble ’ will shrink and eventually disappear. 

4. Growth in the number of defects: a quantitative comparison with 
experiments 

From the constant Re ($) contours of figure 10, one can clearly detect the original 
defect by the extra vortex in the pattern. Once pairing takes place the original defect 
disappears, yet phase lines break and reconnect so as to produce a number of defects 
lying along the boundary of the expanding regions. Their number can be counted and 
compared with experimental observations as a quantitative measure of comparison. 
It is first necessary to tune the diffusion coefficients in the model by matching with 
experiment the rate of spread of the growing subharmonic region. 

Dallard & Browand (1993) have measured the rates of spread in x and z of the 
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FIQURE 12. For caption see next page 

subharmonic region. Since the time and space scales of the model have not been 
scaled to fit the real physical situation, the comparison of the velocities themselves 
is meaningless. The useful quantity is the ratio of the expansion velocity in the 
streamwise direction to that in the spanwise direction. It is this ratio which 
influences the number of defects. The ratio of velocities, r = VJV,, found from 
experiments is about r = 1.5k0.1 (Dallard & Browand 1993). The same ratio is 
obtained for the model as follows. Notice that only the diffusion terms contain x or 
z dependence. The terms 

can be transformed to 

by use of the transformation x = y i  x' and z = y: 2'. 

In  the coordinate system x', z', the spreading domain of subharmonic dominance 
must be circular. It follows that setting r = ( y2 /y l ) i  will give the appropriate 
spreading rate for the model. For the calculation, the diffusion coefficients are taken 
to be y 1  = 0.5, y z  = 0.5 x ( 1 ~ 5 ) ~  = 1.125. Finally, it is not unreasonable to choose the 
diffusion coefficients in the equation for the fundamental to have the same ratio. 
That is, we take 8, = yl, 8, = yz. All other constants are kept at the previous values, 
with p1 = 0.7. For these settings, the pairing is qualitatively similar to that shown 
in figure 8. 

y1 a 2 / a x 2  + y z  az/az2 

a 2 / w 2  + a 2 / a 2 ' 2  
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FIGURE 12. Amplitude distribution of and lAll in the (x, 2)-plane as a function of time for 
pI = 0.7 with defect-free initial conditions. The other parameters are the same as in figure 5.  

Following Dallard & Browand (1993), define the x, z centre of the expanding region 
of subharmonic dominance as 

(17) 

(18) 

1 
5, = -c c X i  1-41:,,, 

Q i  3 

1 
ZC = sr, z 4 IA,t:,*, 

i i  

and use the second moment about the centre 

as a measure of the planform boundaries. Here 

Q = X C BiI:,j 

= 8 l 4 l k a x  = Sal/Pu,, 

(21) 
8 3 '  

and the 1.4,1& are the local values of [All2 which are larger than a threshold value 
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FIGURE 13. Variations with time of 5, (-) and z, (----) defined by (19) and (20) in the text. 
Parameters settings are: y, = 0.7, yz = 0.6; a, = 1.0, a2 = 1.2, b, = 1.6, b, = 1.5; y1 =0.5, 
yz = 1.125. 8, = 0.5, 8, = 1.125. 

with s being chosen as a factor less than one. The indices i a n d j  are summed over 
one quarter of the computational domain, since only one defect is produced 
experimentally. The variations of xw and z, for s = 0.5 are displayed in figure 13. 
Though the values of V,  and V, calculated through the slopes of displacement-time 
lines depend on the threshold value s, the velocity ratio r is independent of this 
threshold, as is approximately true for the experiment. Our anticipated value is 1.5 
as discussed above. The measured value from the numerical result is about r = 1.57, 
and this is deemed close enough for comparison of the number of defects. 

The initial surface density of defects counted near the origin of the mixing layer 
is approximately 1-2 x lo+, where the unit of area is taken to be h x h (actually 
A x h/O in the experiment of Browand t Prost-Domasky 1991). Thus 1-2 defects 
would initially be found - on average - in an area of width 10h and length 10A (or 
time interval 10h/U). The corresponding calculation initially places one defect in an 
area 10h x 10h. The sequence is illustrated in figure 14 as a function of time. The 
largest number of defects spawned in the calculation domain is five. Thus the ratio 
of increase in number is 5 : 1. In the experiment, the average initial density is taken 
to be 1.5 x loW2, and the real maximum density is measured to be about 10-l. The 
ratio of increase in number is effectively about 7 : 1, close to the number estimated. 
This is taken to be additional verification of the ability of the model to predict the 
complex geometric properties of growing turbulent mixing layer. 

5. Concluding remarks 
The model of defect-induced pairing successfully describes how the subharmonic 

component is preferentially generated in the core regions of structural defects in the 
initial vortex pattern. Success is measured qualitatively by the correspondence of the 
pattern with the experimental results. There is quantitative agreement expressed by 
the correspondence in the number of new defects created during such a localized 
pairing process. The present description is somewhat different from the conventional 
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T = O  X T = 2 0  

T=80 
FIGURE 14. Temporal evolution of level contours of Re (+). Circles indicate defect locations. Note 
that additional defects are spawned during pairing process. Parameters settings are the same as in 
figure 13. 

manner of describing flows transitioning to turbulence. As mentioned in the 
introduction, similar evolution equation models have been used successfully to 
describe evolution in Rayleigh-BBnard convection, binary convection, and other 
closed flow systems. They have not been widely applied to the study of parallel shear 
flows. As used here, the model equations qualitatively describe the evolution of the 
large-scale structures in the shear flow. Unique values for the coefficients of the 
various terms have not been obtained from available experimental data. However, 
we have demonstrated that such a model can serve to describe interesting and 
complex physics. 
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