
Journal of Computational Physics 467 (2022) 111437
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A generalised drift-correcting time integration scheme for 

Brownian suspensions of rigid particles with arbitrary shape

Timothy A. Westwood a, Blaise Delmotte b, Eric E. Keaveny a,∗
a Department of Mathematics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
b LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 May 2021
Received in revised form 23 February 2022
Accepted 27 June 2022
Available online 8 July 2022

Keywords:
Brownian motion
Suspensions
Time integration
Fluctuations
Simulation

The efficient computation of the overdamped, random motion of micron and nanometre 
scale particles in a viscous fluid requires novel methods to obtain the hydrodynamic 
interactions, random displacements and Brownian drift at minimal cost. Capturing Brownian 
drift is done most efficiently through a judiciously constructed time-integration scheme 
that automatically accounts for its contribution to particle motion. In this paper, we 
present a generalised drift-correcting (gDC) scheme that accounts for Brownian drift for 
suspensions of rigid particles with arbitrary shape. The scheme seamlessly integrates with 
fast methods for computing the hydrodynamic interactions and random increments and 
requires a single full mobility solve per time-step. As a result, the gDC provides increased 
computational efficiency when used in conjunction with grid-based methods that employ 
fluctuating hydrodynamics to obtain the random increments. Further, for these methods 
the additional computations that the scheme requires occur at the level of individual 
particles, and hence lend themselves naturally to parallel computation. We perform a 
series of simulations that demonstrate the gDC obtains similar levels of accuracy as 
compared with the existing state-of-the-art. In addition, these simulations illustrate the 
gDC’s applicability to a wide array of relevant problems involving Brownian suspensions of 
non-spherical particles, such as the structure of liquid crystals and the rheology of complex 
fluids.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Brownian motion, the random motion exhibited by colloidal particles due to thermal fluctuations in the surrounding 
viscous fluid, is a common and important feature of fluidic systems at the micron and nanometre scales [1–3]. It plays a 
fundamental role in determining the distribution and configuration of polymers and particles that comprise complex fluids 
[4,5], which then in turn affect suspension rheology and bulk mechanical response to applied stresses [6–8]. Further, Brow-
nian motion and thermal fluctuations play a critical role in biological and cellular transport processes, often in conjunction 
with the cell’s active mechanisms that utilise chemical energy [9].

To simulate these systems, one often considers the equations of motion in the Brownian dynamics [10], or overdamped 
[11], limit where momentum variables are taken to have reached thermal equilibrium and the velocity field in the sur-
rounding fluid is governed by the steady Stokes equations. In the context of rigid particles, this means that the dynamics 
of the particle positions and orientations are provided by the overdamped Langevin equations, and accordingly, the dynam-
ics of the corresponding probability distribution of the particle positions and orientations is described by Smoluchowski’s 
equation.

The hydrodynamic interactions between the particles due to the surrounding fluid are embodied in the dense, position-
dependent mobility matrix [12,13] that relates the generalised forces on the particles to the resulting particle velocities. 
The hydrodynamic interactions between the particles also impact the fluctuations that they experience. The fluctuation-
dissipation theorem [14] stipulates that the covariance of the random particle velocities is proportional to the mobility 
matrix and hence so too is the particle diffusion matrix. This requires the random particle velocities to be proportional 
to the square root of the mobility matrix. Finally, due to hydrodynamic interactions, the overdamped limit produces a 
nontrivial thermal, or Brownian, drift term [10] in the equations of motion that is proportional to the divergence of the 
mobility matrix with respect to the particle positions and orientations.

Initially, the computations of these three quantities – the mobility matrix, random velocities, and Brownian drift – in 
approaches such as Stokesian Dynamics [15] utilised a variety of direct methods. The entries of the mobility matrix were 
determined by evaluating analytical expressions based on multipole expansions and lubrication theory, and the random 
particle velocities were computed using a Cholesky decomposition of the resulting matrix. Finally, Brownian drift was in-
corporated directly by evaluating expressions for the derivatives of the mobility matrix entries. A reliance on these direct 
approaches limited system sizes, as well as particle shapes to spheres.

Since these first computations, there have been several key advances, some of which have been incorporated into Stoke-
sian dynamics [16,17], including fast, matrix-free methods for determining the particle velocities given the forces applied to 
them. These methods provide the action of the mobility matrix on a vector in O (N log N) operations, where N is the vector 
length, without ever computing the matrix itself. Such approaches are built around fast summation techniques such as the 
FMM [18–20], or the FFT and include spectrally-accurate Ewald summation [21], positively split Ewald summation [22,23], 
Accelerated and Fast Stokesian Dynamics [16,17,24,25], in addition to the immersed boundary [26] or similar methods, such 
as the force-coupling method [27,28], that utilise fast, grid-based solvers.

Recent work on computational methods for Brownian suspensions has focused on developing similarly rapid computa-
tions of the random particle velocities that can be used with the matrix-free methods described above. While the early 
work of Fixman [29] relying on a Chebyshev expansion of the spectrum of the mobility matrix has been adopted in im-
plementations of Accelerated Stokesian Dynamics [17] and Brownian Dynamics [30], only more recently have techniques 
been developed that can be used more seamlessly with fast summation methods. These include the Lanczos algorithm [31]
which computes iteratively an approximation of the matrix-square root using the Ritz values and vectors generated at the 
final iteration. For methods that utilise grid-based solvers, the random particle velocities can be computed rapidly from 
the flows generated by the spatially uncorrelated fluctuating stress originally considered by Landau and Lifshitz [32]. This 
fluctuating hydrodynamics approach provides the foundation for several methods that capture particle Brownian motion 
including Lattice Boltzmann [33], distributed Lagrange multiplier technique [34], finite element methods [35], the fluctu-
2
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ating [36] and stochastic [37,38] immersed boundary methods and the fluctuating force-coupling method [39,40]. Further, 
computations that rely on decomposing the mobility matrix, as is the case with positively split Ewald summation [22,23]
or discretisations of the fluctuating boundary integral equations [41], may use the fluctuating hydrodynamics approach and 
the Lanczos algorithm side-by-side to compute different contributions to the particle stochastic velocities resulting from the 
decomposition.

The final aspect of the computation is to account for Brownian drift when advancing the particle positions. This is done 
most efficiently using a well-designed time integration scheme that automatically accounts for Brownian drift, yielding a 
numerical solution whose moments converge to the their true values as the time step size goes to zero. Fixman again 
provides [42,43] an early example of a midpoint scheme which, to leading order in the time step size, emits the Brownian 
drift term as part of its error expansion. This scheme, however, relies on a resistance formulation, where the dense, long-
ranged mobility matrix must be inverted, introducing costly additional linear systems. Recent work, however, has shown 
that similar integration schemes can be constructed that avoid these additional linear systems. It has been shown [36] that 
the drift can be incorporated into the Euler-Maruyama scheme using random finite differences (RFD). This involves applying 
the mobility matrix evaluated at randomly displaced positions to a random force vector with an appropriate covariance. 
This limits additional costs due to mobility matrix multiplications. For the grid-based methods built around fluctuating 
hydrodynamics, the drifter-corrector (DC) midpoint scheme [40] eliminates the additional mobility matrix multiplication 
completely. Here, the drift term is incorporated by advancing the particle positions to the midpoint using the particle 
velocity extracted from the flow generated by the fluctuating stress. The full mobility computation is then performed at the 
midpoint.

While RFD and the DC represent important advances in designing schemes that capture Brownian drift and naturally 
interface with matrix-free methods, they were originally limited to the case of spherical particles with mobility matrices 
obtained through singular multipole expansions, or their regularised equivalents. Recent work has extended the RFD ap-
proach for simulation of rigid particles of arbitrary shape that are represented by multiple discrete degrees of freedom 
constrained to move as a rigid body. Sprinkle et al. [44,45] proposed a family of time integration schemes that use the chain 
rule to split the computation of the divergence of the body mobility matrix into three contributions that can be obtained at 
a lower cost using RFD. The resulting schemes, called Euler-Maruyama Traction (EM-T) and Trapezoidal Slip (T-S), are both 
weakly first-order accurate, but achieve first (resp. second) order accuracy for deterministic problems and require two (resp. 
three) full mobility solves per time step.

In this work, we generalise the DC scheme to simulate rigid bodies of arbitrary shape. Like the original DC, the gener-
alised DC (gDC) scheme requires a single full mobility solve per time step. This significantly accelerates time integration for 
schemes built around grid-based solvers that can take advantage of the flows generated by a fluctuating stress. The gDC 
may also be used for matrix-based computations at a cost comparable to the existing state-of-the-art. The main idea be-
hind the scheme is to advance to the mid-step using particle velocities obtained by orthogonally projecting the fluctuating 
velocities onto the space of rigid body motions. At the midstep, the full mobility is treated and important factors based on 
the divergence of the projected fluctuating velocity are incorporated into the update. The gDC has the nice property that 
many of the additional computations needed to capture Brownian drift occur at the level of individual particles, and hence 
naturally lend themselves to parallel computation and larger-scale simulation. We show that the resulting scheme is weakly 
first-order accurate and, in practice, provides errors similar in magnitude to the T-S scheme. Finally, we demonstrate the 
applicability of the scheme for larger-scale simulation by considering confined suspensions of rod-like particles, as well as 
the rheology of Czech hedgehog particle suspensions.

2. Brownian Dynamics of rigid particles of arbitrary shape

Consider a suspension of N rigid particles where the centre of mass position of particle p at time t is Y p(t), while the 
rotation relative to its initial orientation is given by the unit quaternion qp(t) (see Fig. 1). We provide a detailed overview 
of using quaternions to represent rotations in Appendix A, but present some of the key facts here. Any vector b in the body 
frame of particle p is given by B(t) = R(qp(t))b in the lab frame at time t . The rotation matrix R is related to entries of 
the quaternion through

R (q) =
⎡⎣ 1 − 2q2

2 − 2q2
3 2 (q1q2 − q3q0) 2 (q1q3 + q2q0)

2 (q1q2 + q3q0) 1 − 2q2
1 − 2q2

3 2 (q3q2 − q1q0)

2 (q1q3 − q2q0) 2 (q3q2 + q1q0) 1 − 2q2
2 − 2q2

1

⎤⎦ . (1)

The quaternions are advanced in time using the formula

qp(t) = exp
(
up(t)

) • qp(0), (2)

where • is the Hamiltonian product (see Appendix A), u ∈R3 is the Lie algebra element, and

exp (u) =
(

cos

(‖u‖
2

)
, sin

(‖u‖
2

)
u

‖u‖
)

. (3)

We will be interested in numerically integrating the overdamped Langevin equations for hydrodynamically interacting rigid 
bodies that govern the positions, Y p , and Lie algebra elements, up , for each rigid body p.
3
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Fig. 1. Illustration of a rigid body with position Y p and orientation qp .

2.1. The overdamped Langevin equation for rigid body motion

Suppose that the particles are subject to an external potential U (Y 1, u1, . . . , Y N , uN), as well as non-conservative forces 
and torques collected into a single 6N × 1 vector F nc . The conservative force on particle p is then −∂Y p U , while the 
corresponding torque is −D−�

up ∂up U . A derivation of this expression for the conservative torque is presented in Appendix B. 
The matrix D−1

up is the 3 × 3 ‘dexpinv’ matrix defined by

D−1
up

= I − 1

2

[
up×]− 1

2‖up‖2

(
‖up‖ cot

(‖up‖
2

)
− 2

)[
up×]2

, (4)

where [v×]i j = εikj vk and [×v] = − [v×] = [v×]� for any v ∈ R3. The ‘dexpinv’ matrix relates the angular velocity of 
particle p, Ω p , to the time derivative of up through

dup

dt
= D−1

up
Ω p. (5)

In the overdamped limit, the force and torque vectors are linearly related to their contributions to the particle velocity 
and angular velocity vectors via the 6N × 6N mobility matrix, N , whose entries depend on the particle configuration. 
Specifically, we have

V = N F , (6)

where V is the 6N × 1 vector of all particle velocity and angular components, and F is the vector containing the forces and 
torques that the particles exert on the surrounding fluid. The application of the mobility matrix is equivalent to solving the 
Stokes boundary value problem for a collection of rigid particles subject to applied forces and torques. Thus, in the absence 
of Brownian motion, the equations of motion are given by the system of differential equations

dx

dt
= −Ñ

(
∂xU −Φ−� F nc

)
, (7)

where x = [
Y �

1 , u�
1 , . . . , Y �

N , u�
N

]�
describes the positions and orientations of all particles and Ñ =ΦNΦ� with

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I3 0 . . . . . . 0

0 D−1
u1

...
...

. . .
...

... I3 0
0 . . . . . . 0 D−1

uN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

From (7) one can identify the vector of total non-hydrodynamic force and torque acting on the particles as F = −Φ�∂xU +
F nc .

When Brownian motion is present, the particles will also move randomly due to thermal fluctuations in the surrounding 
fluid. In the overdamped limit, the effects of Brownian motion are captured through the inclusion of random increments of 
4
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Fig. 2. Discretisation of the rigid body surface with discrete degrees of freedom.

the positions and Lie algebra elements, turning the equations of motion into a system of stochastic differential equations. 
Specifically, these increments are given by 

√
2kB T Ñ1/2dW , where kB T is the thermal energy, Ñ1/2 =ΦN1/2 with N1/2 being 

the matrix square root of the mobility matrix, and W is a 6N × 1 vector of independent Wiener processes. The dependence 
on the mobility matrix ensures that the fluctuation-dissipation theorem is satisfied, a necessary condition for the Boltzmann 
distribution to be recovered at equilibrium.

Finally, along with the random velocities, the overdamped equations of motion require the inclusion of the thermal drift 
term, kB T ∂x · Ñdt [10]. This ensures that the stochastic differential equation with an Itô interpretation of the stochastic 
integral yields dynamics consistent with those of Smoluchowski’s equation for the corresponding probability distribution. 
Putting these terms together, we arrive at the equations of motion for the particle positions and orientations,

dx =
[
−Ñ

(
∂xU −Φ−� F nc

)
+ kB T ∂x · Ñ

]
dt +

√
2kB T Ñ1/2dW . (9)

2.2. Mobility matrix

The purpose of this paper is to develop time integration schemes for eq. (9) that avoid the direct computation of the 
thermal drift term and naturally interface with matrix-free methods for computing the random increments and particle 
velocities arising from the applied forces. In doing so, we will assume that the particles are discretised into M total degrees 
of freedom, as depicted in Fig. 2. This discretisation can involve the surface of the particles, as is done when considering 
the first-kind boundary integral representation of the Stokes equations [46,12], or can be related to a volume discretisation 
where elements of the particle volume are represented by regularised distributions of force, for example.

Let ri denote the position of discrete degree of freedom i, v i ≡ dri/dt be its velocity and λi be the force it exerts on the 
fluid. The hydrodynamic interactions between the discrete degrees of freedom provide a linear relationship between v i and 
λi such that

v i =
M∑

j=1

Mi jλ j, (10)

where Mi j is the matrix that relates the force on discrete degree of freedom j to the velocity of discrete degree of freedom 
i. Additionally, the requirement that all discrete degrees of freedom belonging to particle p move as a single rigid body (see 
Fig. 2) stipulates that

v i = Ẏ p + Ω p × (
ri − Y p

)
, ∀i ∈ Bp, (11)

where Ẏ p is the translational velocity of particle p, Ω p is its angular velocity and Bp is the set of discrete degrees of 
freedom belonging to particle p.

Introducing the vectors λ = [λ�
1 , . . . , λ�

M ]� and V = [V �
1 , . . . , V �

N ]� with V p = [Ẏ �
p , Ω�

p ]� , eqs. (10) and (11) for all 
particles p = 1, . . . , N can be equated to yield

Mλ = K V , (12)

where

M =
⎡⎢⎣ M11 . . . M1M

... . . .
...

MM1 . . . MMM

⎤⎥⎦ (13)
5
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is the 3M ×3M mobility matrix for the discrete degrees of freedom and K is a 3M ×6N block matrix that maps the velocity 
and angular velocity from the space of rigid body motions to the velocities of the discrete degrees of freedom. Specifically

K (p)

i =

⎧⎪⎪⎨⎪⎪⎩
[

I3
[×(ri − Y p)

] ]
, if i ∈ Bp,

[
03 03

]
, otherwise,

(14)

is the 3 × 6 block that relates the rigid body motion of particle p to the translational velocity of discrete degree of freedom 
i. Note that the specific form of M will depend on how the discretisation is performed, however, here we will assume that 
the discretisation results in a positive definite M , thereby preserving the structure of the underlying continuous equations. 
This is an important ingredient for the fluctuation-dissipation theorem to be satisfied exactly in the discrete setting [36].

In the absence of inertia, the conservation of linear and angular momentum reduces to the balance of force and torque, 
which can be written compactly for the N particles as

K�λ = F , (15)

where F is the total, non-hydrodynamic, force and torque vector applied on the particles.
The mobility problem given by eqs. (12) and (15) forms a saddle point system[

M −K
−K� 0

][
λ
V

]
=
[

0
−F

]
. (16)

After eliminating λ, one obtains

V =
(

K�M−1K
)−1

F (17)

and therefore the mobility matrix is given by

N =
(

K�M−1K
)−1

. (18)

As we describe later, our discretisation will follow from the rigid blob framework [47], but the gDC time integration 
scheme is applicable to any spatial discretisation provided that the resulting mobility matrix N can be related to the saddle 
point system in eq. (16). This particular decomposition has the advantage that the computation of the stochastic particle 
velocities can be readily incorporated into the system by including a random velocity for the discrete degrees of freedom 
[44]. Specifically, we consider the system[

M −K
−K� 0

][
λ
V

]
=
[ −v̆

−F

]
, (19)

with the random velocity,

v̆ =
√

2kB T M1/2W (t), (20)

where M1/2 is the square root of M which satisfies M1/2(M1/2)� = M , and W (t) is a 3M × 1 vector of Wiener processes. 
After eliminating λ, one obtains

V = N F + V̆ (21)

where V̆ = NK�M−1 v̆ . As a result the fluctuating body velocities are given by

V̆ =
√

2kB T NK�M−1M1/2W (t) =
√

2kB T N1/2W (t), (22)

where N1/2 satisfies the fluctuation dissipation balance with N1/2(N1/2)� = N .
As shown by Balboa-Usabiaga et al. [48], the symmetric saddle point problem (19) can be efficiently solved with an iter-

ative Krylov subspace method, such as GMRES, using a simple block diagonal preconditioner P . The matrix P is constructed 
by setting to zero the entries of M in (19) if they correspond to interactions between discrete degrees of freedom from 
different rigid bodies. As K is a block diagonal matrix, the cost of solving the linear system (19) will be related primarily to 
the costs of applying the matrix M and computing v̆ .
6
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3. The generalised drifter-corrector (gDC)

The primary result of this paper is the following generalisation of the DC scheme to rigid bodies of arbitrary shape. The 
gDC updates the particle positions and Lie algebra elements while automatically accounting for the Brownian drift term 
that arises in the equations of motion. It has the advantage of requiring only a single full mobility solve per time step. For 
grid-based solvers, the gDC incurs nearly the same cost as applying the well-known Euler-Maruyama scheme, outlined in 
Appendix D, which does not capture the Brownian drift. For matrix-based approaches the cost will be similar to the existing 
state-of-the-art [44,45].

Below we present the gDC algorithm. The time-step is indicated by superscript, n, e.g. Vn would correspond to V
(
xn
)=

V
(
x(tn)

)
in the continuous setting. For the purposes of implementing the algorithm, it should be noted that the collection 

of Lie algebra elements contained in xn is set to zero at the start of each time step (see Appendix A) and hence, as seen in 
Appendix E, the gDC algorithm requires no explicit mention of Φ.

For each time step n = 0, 1, 2, ...

1. Generate a vector W (or tensor W if using fluctuating hydrodynamics) of N (0, 1) random variables.
2. Solve the following saddle point problem at the start of the time-step,[

I −Kn

− (
K�)n

0

][
λn

Vn

]
=
[

−v̆n = −
√

2kB T
�t

(
M1/2

)n
W

0

]
, (23)

yielding

Vn =
((

K�)n
Kn

)−1 (
K�)n

v̆n
. (24)

Note that this is also the solution of the least-squares problem minVn ‖KnVn − v̆n‖. As discussed in section 5, we use 
the direct solution given by eq. (24) in practice.

3. Define ν = 1 + �t
2 (∂x ·V)n . For a small parameter δ, the divergence can be calculated via1

(a) finite-differencing:

(∂x ·V)n =
6∑

i=1

N∑
p=1

V(p)

i

(
xn + δe(p)

i

)
− V(p)

i

(
xn
)

δ
+O(δ2) (25)

where V(p)

i is the i-th component of the velocity of particle p, and e(p)

i is a 6N × 1 vector whose nonzero entries, 
corresponding to the position and orientation of particle p, are given by the i-th Cartesian basis vector of R6; or

(b) random finite-differences:

(∂x ·V)n =
〈

6∑
i=1

N∑
p=1

W̃ · e(p)

i

δ

(
V(p)

i (xn + δW̃ ) − V(p)

i (xn)
)〉

+O(δ2), (26)

where W̃ is a vector of independent N (0, 1) random variables which is also independent of W . By replacing the 
divergence in the definition of ν with the term inside the expectation in eq. (26), the appropriate value of ν will be 
achieved in expectation, which is ultimately all that is required to demonstrate weak-accuracy.

We find that option (a) is best partnered with grid-based mobility methods, whilst option (b) is best suited to matrix-
based methods to reduce the computational cost. We discuss this in more detail in section 5.

4. Move the body positions and orientations to the mid-step according to

xm = xn + �t

2
Vn. (27)

5. Solve the full mobility problem at the mid-step,[
Mm −Km

− (
K�)m

0

][
λm

V m

]
=
[

−v̆m = −
√

2kB T
�t

(
M1/2

)m
W

−F m

]
, (28)

for

1 In order to respect the physical units of the problem and to minimize the variance of the RFD approximation, we multiply δ by a typical length scale Lp

when computing the translational part of (∂x ·V)n [44]. Lp is the maximum distance between two discrete degrees of freedom in the body and represents 
the typical size of body p.
7
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V m = Nm
(

F m +
(

K�)m (
M−1)m

v̆m
)

= Nm F m + V̆
m
, (29)

where F m contains the forces and torques acting on the bodies at the mid-step. Note that quantities are evaluated at 
the mid-step using the mid-step quaternions qm

p = exp
(
um

p

) • qn
p .

6. Update the positions and orientations of the bodies according to

xn+1 = xn + ν�tV m, (30)

with the new orientation quaternion of each particle p defined by qn+1
p = exp

(
un+1

p

) • qn
p .

In words, the gDC first computes a set of particle velocities by solving a least squares problem to find the appropriate 
stochastic velocity, V , in the space of rigid body motions. This velocity is used to advance the particle positions to the 
mid-step where the full computation is performed. The positions are then updated using the velocity computed at the mid-
step scaled by a factor based on the divergence of V . As shown in Appendix E, the scheme recovers the first and second 
moments of the increment �x = xn+1 − xn to first-order in expectation.

4. Applying M and computing v̆

As shown in section 2.2, hydrodynamic interactions between bodies are directly obtained from the matrix M . The action 
of M on a vector is required to compute the deterministic velocities V = N F , while the product M1/2W is necessary to 
obtain the Brownian velocities V̆ . It is therefore essential to use and develop efficient methods to compute the action of M
and its square root.

In this section, we outline two distinct strategies with similar resolution of hydrodynamic interactions between the 
discrete degrees of freedom. The first follows directly from an implementation of the rigid multiblob model [47] where the 
rigid particles are discretised into surface or volume elements that interact via the Rotne-Prager-Yamakawa (RPY) tensor. 
The other approach called the fluctuating Force Coupling Method (FCM) is matrix-free and simultaneously applies M and 
computes V̆ by solving the fluctuating Stokes equations on a grid with a forcing term that accounts for the presence of the 
particles.

4.1. RPY tensor

The well-known RPY mobility matrix was originally developed to provide a symmetric positive definite, pairwise approx-
imation of the mobility matrix for a collection of spherical particles of equal radii in an unbounded domain [49]. Extensions 
of the RPY matrix for particles of different radii [50], in a background shear flow [49], and above a no-slip boundary [51]
are available in the literature. Following the rigid multiblob model, the RPY tensor can be used to provide the hydrodynamic 
interactions between the discrete degrees of freedom making up the rigid particles. When discretising a particle surface, the 
rigid multiblob model provides a first-order accurate approximation to the particle mobility.

In general, the computational cost of these matrix-vector products scales quadratically with the number of discrete 
degrees of freedom. More sophisticated methods, such as the fast multipole methods (FMM) [52] and Ewald methods, 
achieve a linear scaling. For periodic domains, one can use the positively split Ewald method [22,23] to compute the action 
of M on a vector. In our computations below, we perform a direct pairwise evaluation of the wall-corrected RPY tensor [51].

The action of M1/2 on the random vector W is obtained through the Lanczos algorithm [31]. To achieve convergence, 
the Krylov subspace K is enriched iteratively with basis vectors that are linear combinations of the powers of the mobility 
matrix times the random vector: K = span

{
W ,MW ,M2W , ...

}
. The cost of the method therefore depends on the number 

of basis vectors, and thus mobility-vector products, required to reach a given tolerance ε .

4.2. Fluctuating Force Coupling Method

The other approach relies on a matrix-free method called fluctuating Force Coupling Method (FCM) [53], which combines 
FCM [54] with fluctuating hydrodynamics [32]. With fluctuating FCM, the coupling between the discrete degrees of freedom 
and the fluid is achieved through a forcing term added to the fluctuating Stokes equations,

∇p − η∇2u = ∇ · W + f , (31)

∇ · u = 0, (32)

where η is the dynamic fluid viscosity, u the fluid velocity and p is the pressure.
The first term in the RHS of eq. (31) is the divergence of the fluctuating stress tensor, W . W is delta correlated in time 

and space with the following statistics,〈
Wαβ(x, t)

〉= 0, (33)〈
Wαβ(x, t)Wγχ (y, t′)

〉= 2ηkB T
(
δαγ δβχ + δαχ δβγ

)
δ(x − y)δ(t − t′). (34)
8
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The second term on the RHS of eq. (31) is the forcing transferred to the fluid with a spreading operator S,

f (x) = S[λ](x) =
M∑

i=1

λi�i (x) , (35)

where the finite size of the discrete degrees of freedom is accounted for with a Gaussian spreading envelope,

�i(x) = (2πσ 2)−3/2 exp

(
−‖x − ri‖2

2σ 2

)
. (36)

The length scale σ functions in a similar way to the bead radius, a, in the RPY tensor. The diagonal entries of the FCM 
mobility matrices will match those of the RPY tensor if σ = a/

√
π [54].

The fluid velocity, obtained after solving eqs. (31) and (32), is the sum of a deterministic part, due to the forcing λ, and 
a fluctuating term, stemming from the fluctuating stress. We may express the total fluid velocity as

u = L−1 (Sλ + DW ) (37)

= uD + ŭ, (38)

where S is the spreading operator in eq. (35), L−1 is the inverse Stokes operator (i.e. the fluid solver), and D the divergence 
operator applied to the fluctuating stress [36].

The velocities of the discrete degrees of freedom are then obtained from the fluid velocity using an averaging operator, 
J , such that

v i = (J[u])i =
∫

u�i(x)d3x = v D
i + v̆ i, i = 1, .., M, (39)

where J = S� is adjoint to the spreading operator.
We see then that the FCM mobility matrix can be written as the composition of three linear operators: MF C M = JL−1S. 

Additionally, as demonstrated in [39] the velocity v̆ satisfies the fluctuation—dissipation theorem with the covariance given 
by the FCM approximation of the mobility matrix,〈

v̆(t)v̆(t′)
〉= 2kB T MF C Mδ(t − t′), (40)

where v̆ = √
2kB T M1/2

F C M W (t), with M1/2
F C M = JL−1D.

Thus, we see that fluctuating FCM simultaneously computes the actions of M and M1/2 on λ and W , respectively, by 
considering solutions to the forced fluctuating Stokes equations.

Following [39,40], we implement fluctuating FCM in periodic domains. This involves first evaluating the forcing, f (x), 
and the fluctuating stress, W , on a regular grid. Next, the Stokes equations are solved using a Fourier spectral method. 
Finally, the trapezoidal rule is used to numerically integrate eq. (39) to obtain the translational velocity for each of the 
discrete degrees of freedom making up the rigid bodies.

5. Computational cost of the gDC

Due to the differences in their implementations, there is a distinct difference in cost between RPY and grid-based fluc-
tuating FCM that manifests itself when computing the random velocity vector, v̆ . For both implementations, the most 
expensive computation is applying the matrix M . With RPY, as we are directly handling M , any time the particle posi-
tions change, we must compute v̆ = M1/2W using the Lanczos algorithm, for which each iteration requires a matrix-vector 
multiplication involving M .

For fluctuating FCM, however, we are instead working with a decomposition of M1/2
F C M such that v̆ = √

2kB T JL−1DW (t). 
In this decomposition, the only matrix that depends on the particle configuration is J . Thus, provided that W remains 
the same, changing the particle positions simply requires reaveraging the fluid velocity ŭ at the new positions, and avoids 
having to recompute the velocity field itself.

Cost of Step 2: Along with the computation of v̆ , Step 2 of the gDC algorithm in section 5 involves solving a simplified 
mobility problem with M replaced by I . This is equivalent to solving the least squares problem minV

∥∥KV − v̆
∥∥, the solution 

of which is given by eq. (24) and involves the 6N × 6N symmetric, block-diagonal matrix K�K . The 6 × 6 block associated 
with body p is given by

(K�K )(p) =
⎡⎢⎣ M(p)I3

∑
i∈Bp

[×(ri − Y p)
]

∑
i∈Bp

[
(ri − Y p)×] − ∑

i∈Bp

[
(ri − Y p)×]2

⎤⎥⎦ , (41)
9
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where Bp is the set of M(p) discrete degrees of freedom belonging to body p. Therefore, computing 
(
K�K

)−1
just re-

quires inverting N small 6 × 6 blocks using dense linear algebra, which is negligible in terms of computational cost and, 
additionally, naturally lends itself to parallel computation.

Thus, the primary cost associated with Step 2 involves computing v̆ , which for fluctuating FCM incurs the cost of one 
Stokes solve and M averaging operations. The RPY implementation will require MLanczos mobility-vector products with the 
Lanczos method.

Cost of Step 3: The main cost of this step is computing the scalar term ν using finite differences (FD) or RFD to generate 
∂x · V . Finite differencing involves perturbing the positions and orientations of each rigid body and calculating the new 
fluctuating velocities for the discrete degrees of freedom at the disturbed states. With RFD, the new fluctuating velocities 
are only calculated once, after disturbing the particles’ positions and orientations with a random vector W̃ .

For fluctuating FCM, FD is straight forward and incurs minimal cost. Since the body velocities are uncorrelated in eq. (23), 
the finite-differencing step in eq. (25) requires 6M averaging operations. As discussed above, however, changing the particle 
position with the RPY-based implementation will require recomputing M1/2 W with each displacement. Thus, we require 
6N × MLanczos mobility-vector products. This is a cost that could rise quickly as the particle number increases. On the other 
hand, using RFD in eq. (26) only requires MLanczos mobility-vector products with matrix-based methods and M averaging 
operations with fluctuating FCM.

Cost of Step 5: This step involves the costliest computation of solving the full mobility problem, eq. (19), along with the 
additional computation of v̆ .

For the fluctuating FCM implementation, each GMRES iteration requires a full fluctuating FCM computation that involves 
spreading the force vector λ, solving the Stokes equations, and finally averaging the resulting flow field to obtain the veloc-
ities for the discrete degrees of freedom. A single additional averaging is needed to incorporate the fluctuating velocities, 
v̆m , on the RHS of eq. (28).

For matrix-based methods, each GMRES iteration will incur the cost of a matrix-vector product involving M . There will 
also be the cost of MLanczos Lanczos interactions needed to obtain v̆m .

For a tolerance of ε = 10−3, both the Lanczos and GMRES with block preconditioning require approximately MLanczos =
MGMRES = 5 interactions on average. The tolerance of ε = 10−3 has been shown [44] to be a suitable choice for simulations 
involving fluctuations. Adding these costs together assuming ε = 10−3, we see that the cost for one gDC-FD time iteration 
with fluctuating FCM is (1 + 5 =) 6 Stokes solves, 5M spreading operations and (1 + 6 + 1 + 5 =) 13M averaging operations. 
For the RPY based implementation, we have (5 + 6N × 5 + 5 + 5 =) 5 × (6N + 3) matrix-vector products involving M . With 
gDC-RFD the number of averaging operations reduces to 8M for fluctuating FCM, and the total number of matrix-vector 
products involving M with the RPY based implementation lowers to 20, becoming independent of the particle number N .

As shown in section 6.2, the gDC is more stable with FD than with RFD. For grid-based methods, the 5M additional 
averaging operations incurred by FD are negligible compared to the Stokes solve. This is not true for matrix based methods 
for which RFD represents a significant cost reduction.

Based on these costs, we see that the gDC with FD is well-suited for grid-based methods utilising fluctuating hydro-
dynamics such as fluctuating FCM [53,55], PSE [22,23] or the fluctuating and stochastic Immersed Boundaries methods 
[56,57,36,45], while gDC with RFD is the best compromise between numerical stability and computational cost for matrix-
based methods.

In order to better understand the computational effort associated with the gDC, we compare its computational cost 
with other state-of-the-art schemes. For matrix-based methods, the Trapezoidal-Slip (T-S) scheme from Sprinkle et al. [44]
requires 1 Lanczos call, 3 full mobility solves and 2 additional mobility-vector products, representing a total of 22 mobility-
vector products per time-step (see Algorithm 2, p8 in [44]), which is similar to the cost of gDC-RFD (20 matrix-vector 
products). For grid-based methods relying on fluctuating hydrodynamics, we compare with a recently developed first-order 
deterministically accurate scheme called the Split-Euler-Maruyama (SEM) [45]. Per time-step, the SEM algorithm requires 
2 full and 1 unconstrained mobility solves (approximately equivalent to 2 × 5 + 2 = 12 Stokes solves), in addition to 12M
spreading and 13M averaging operations (see Algorithm 1, p8 [45]). The gDC requires 1 full mobility solve and 1 uncon-
strained solve per time-step (≈ 5 + 1 = 6 Stokes solves), half as many as SEM, as well as 5M spreading and 13M (or 8M
if using RFD in step 3) averaging operations. Additionally, in practice, the gDC yields errors similar to the second-order 
deterministically accurate T-S scheme (see Section 6.2).

6. Simulations

In this section, we demonstrate the performance of the gDC by performing simulations of particulate suspensions under 
both dynamic and equilibrium conditions. In Section 6.2, we investigate the accuracy of the gDC by examining the equi-
librium distributions of the position and orientation of a boomerang-shaped particle in a gravitational field above a planar 
no-slip boundary. Owing to the small size of this system, we can integrate for long times and acquire many realisations 
to quantify the temporal accuracy of the gDC. We compare these results with those obtained using the state-of-the-art 
integrators developed in Sprinkle et al. [44]. After this, we demonstrate the suitability of the gDC for large scale simu-
lations of anisotropic Brownian particles. In Section 6.3, we study the equilibrium properties of confined suspensions of 
rod-shaped particles, a model for a liquid crystal or stiff-polymer system. Finally, inspired by recent experimental work [58], 
10
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in Section 6.4 we use the gDC to perform simulations to obtain the rheology of colloidal suspensions made from Czech 
hedgehog-shaped (CH) particles.

6.1. Implementations

The simulations that follow rely on two implementations: one using direct evaluations of the wall-corrected RPY tensor 
and the other using fluctuating FCM.

• Python with RPY: for the single boomerang simulations we use the collaborative code, called “RigidMultiblobWall”, 
that one of us co-developed [48] and used for large scale simulations of colloidal active particles [59,47]. The code 
contains most of the time integration schemes recently developed for matrix-based approaches [60,47,44]. It relies on 
the pairwise evaluation of the wall-corrected RPY tensor. The mobility computations can be accelerated in different 
ways: using C++ routines, Numba or GPUs via the PyCUDA interface. We implemented the gDC in the code to compare 
its performance with the most accurate scheme developed by Sprinkle et al.: the Trapezoidal Slip scheme (T-S).

• C++ with fluctuating FCM: for the confined liquid crystal and rheology simulations, we use an FFT-based fluid solver 
with fluctuating FCM in a periodic box. FFTs are parallelised with the scalable MPI library FFTW. MPI is also used to 
parallelise the spreading and averaging operations as well as the nearest neighbour search necessary to compute short-
ranged, pairwise interactions between discrete degrees of freedom. At each grid point, the entries of the fluctuating 
stress are independent Gaussian random variables. Since the fluctuating stress W is symmetric, at each grid point we 
generate six random numbers based on a Gaussian distribution with zero mean and unit variance. We then multiply 
the off-diagonal entries by 

√
2kB Tη/(�x3)�t−1/2 and the diagonal ones by 2

√
kB Tη/(�x3)�t−1/2. We truncate the 

Gaussian envelopes by setting �i(x) = 0 for ‖x − ri‖ > 3a, and the length scale of the envelope, σ , is related to the grid 
size, �x, through σ/�x = 1.86. For more details, we refer the reader to our previous work [40].

6.2. Convergence study: boomerang above no-slip boundary

In this section we study the accuracy of the gDC scheme by examining the equilibrium distributions of a boomerang 
particle in a gravitational field above a no-slip boundary. Micron-size boomerangs have been used extensively to study the 
diffusion of colloidal anisotropic particles in experiments [61] and simulations [60,48]. Following Delong et al. [60] and as 
shown in Fig. 3, we discretise the boomerang using 15 RPY-particles separated by distance a, the radius of the RPY-particle. 
The boomerang is subject to a gravitational force of magnitude mg = 0.18kB T /a and each RPY-particle interacts with the 
planar boundary through a short-ranged, repulsive potential,

V (h) = V 0a
exp

(
−h−a

b

)
h − a

, (42)

where h is the height of the RPY-particle’s centre from the surface, V 0 = 23kB T sets the potential strength, and b = 0.5a is 
the range of the potential.

Simulations are performed using both the T-S and gDC schemes for three different time-step sizes �t = 0.1, 0.2, 0.3τD , 
where τD = a2/D = 6πηa3/kB T is the typical diffusive timescale associated with an RPY-particle. The divergence term, ν , 
in Step 3 of the gDC algorithm (see section 3) is computed using both FD (25) and RFD (26). The solver tolerance for the 
GMRES and Lanczos algorithm is set to 10−4, and the finite difference parameter is δ = 10−6.

In order to obtain sufficient statistics, we run 36 different simulations for each value of �t . Each simulation is initialized 
using a Monte Carlo generated sample of the Gibbs-Boltzmann distribution and is run to a final time of 30000τD , where 
the solution is recorded at every t = 0.3τD .

Fig. 4 compares the height distributions from the T-S and gDC simulations with the true distribution obtained using 
Markov Chain Monte Carlo (MCMC). We see that, as expected, both schemes converge to the MCMC distribution as �t
decreases. The L2 errors for the distributions shown in the right panel indicate that the gDC achieves a similar accuracy 
and convergence rate as the T-S. However, the RFD computation of the ν term in the gDC algorithm leads to larger errors 
than FD. This is particularly true for the largest time-step, �t = 0.3τD , for which gDC-RFD exhibit numerical stability issues 
due to particle overlaps across the wall. Similar stability problems were also encountered with the T-S scheme, resulting in 
several simulations being discarded and restarted when �t = 0.3τD . We suspect that the loss of stability with gDC-RFD is 
due to overestimations of (∂x · V)n caused by the random sampling W̃ , which leads to large values of the corrective term 
ν , therefore potentially moving the particle too far into the wall at the next time step.

The orientation distribution, shown in Fig. 5, displays a similar trend, though the gDC exhibits a smaller error which 
does not change considerably with the time-step size.

6.3. Confined liquid crystal

Inspired by the alignment of slender molecules in liquid crystals, this section examines the equilibrium distributions of 
confined suspensions of rod-shaped particles. In this set of simulations, each rod is constructed from 22 particles of radius 
11
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Fig. 3. Colloidal boomerang made of 15 RPY-particles above a no-slip boundary. The height, h, is the distance between the centre of the boomerang-point 
RPY-particle and the no-slip surface. The angle θ is that between the vertical axis and the unit vector, ̂p, that is orthogonal to both boomerang arms.

Fig. 4. (left panel) Height distribution of the boomerang above a no-slip surface; error bars (only shown for �t = 0.1τD for clarity) denote 95% confidence 
intervals. (right panel) L2-error between the simulated distributions and the true distribution generated using MCMC.

Fig. 5. (left panel) Orientational distribution of the boomerang above a no-slip surface; error bars (only shown for �t = 0.1τD for clarity) denote 95%
confidence intervals. (right panel) L2-error between the simulated distributions and the true distribution generated using MCMC.

a as illustrated in Fig. 6. The simulations are performed using fluctuating FCM in periodic computational domains with 
dimensions [0, Lx] × [0, 2L y] × [0, Lz]. Confinement is introduced by first including slip boundaries at y = 0 and y = L y

through boundary conditions u · ê y = 0 and 
(

I − ê y ê�
y

)
∇u = 0 on the flow field. These conditions are enforced using an 

image system [40] for both the forces on the bodies, as well as the fluctuating stress, in the y > L y half of the computational 
domain. Second, the rods are kept away from the channel walls by including a repulsive harmonic potential
12
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Fig. 6. A rod formed of 22 FCM-particles.

Fig. 7. A snapshot from a rod simulation with channel width L y = L/2. Each rod has a randomly-selected greyscale colouring and the semi-transparent grey 
boundaries depict the locations of the slip boundaries.

V (r) =
{

K
2 (r − b)2 , r < b,

0, r ≥ b,
(43)

on each FCM-particle making up the rod. Here, r is the distance between an FCM-particle centre and the wall, b = 2.2a is 
the cut-off distance, and K = 40kB T

ab . Along with this potential, overlap between FCM-particles is also discouraged using the 
soft potential

U (r) =
⎧⎨⎩U0

(
1 + 2a−r

b

)
, r < 2a,

U0 exp
(

2a−r
b

)
, r ≥ 2a,

(44)

with r now denoting the centre-to-centre distance between 2 FCM-particles, U0 = 20kB T and b = 0.5a.
In the following simulations, the domain length is set to Lx = Lz = L = 77.65a. We consider three different channel 

widths, namely L y = L/8, L y = L/4 and L y = L/2, to explore how confinement impacts the rod distributions. The number 
of rods in these simulations is taken to be 63, 125 and 250 respectively to maintain a constant volume fraction of 10%. 
A representative simulation snapshot shown in Fig. 7. Each simulation was run until a final time of 50τD/3 and the time 
step size was set to �t = τD/600. Finally, the initial conditions for the gDC simulations were generated using samples from 
independent MCMC runs.
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To measure the distribution of the rods within the channel, we compute the distribution of the y-coordinates of geo-
metric centre of the rods. Additionally, we compute the distribution of the angle θ between the rod-axis and the xz-plane, 
such that θ = 0 corresponds to the rod being parallel to the channel boundaries. Fig. 8 compares the y-coordinate distri-
butions from the gDC simulations with the Gibbs-Boltzmann distributions calculated using MCMC. For all channel widths 
that were considered, good agreement is observed between these distributions. Similarly close agreement is found for the 
θ -distributions in Fig. 9; the shape of the distribution is well-preserved even when viewed on a logarithmic scale. All of the 
y-coordinate distributions exhibit the expected symmetry about the midpoint of the channel at y = L y/2, and have peaks 
in probability density near the slip boundaries. The position of the peaks depends on the width of the slip channel because 
of the finite thickness of the rods. It is also clear that the narrower the channel, the higher the probability of the y-positions 
associated with these peaks. The θ -distributions all decrease from a maximum value at θ ≈ 0, although for the narrowest 
channel, the distribution exhibits a second local maximum just below θ = π/8. The wider the channel, the more slowly the 
probability density decays, and hence the larger the range of likely orientations.

For the narrowest channel, the channel width, L y = L/8 ≈ 9.7a, is slightly larger than twice the diameter of the rod 
cross-section (2 × 4a = 8a), but less than the rod length of 16.14a. As a result, the harmonic potential which keeps rods 
away from the slip surfaces will also induce a torque on the rods even for small deviations from θ = 0. Thus, the rods 
are most likely to be found with an orientation θ ≈ 0 in one of the two layers displaced from the channel centre. The 
distance between these layers balances the repulsive potentials between different rods and between particles and the walls. 
The smaller peak at the channel centre represents the small number of rods that get ‘jammed’ between the two layers. 
Additionally, as there is insufficient space for all rods to have θ ≈ 0, they also tend to span the channel diagonally with 
their ends trapped between the channel walls, leading to the secondary peak in the θ -distribution below θ = π/8.

As the channel width increases when we have L y = L/4 ≈ 19.4a, the central peak in the y-coordinate distribution 
becomes more pronounced, as shown in Fig. 8. Additionally, we observe a wider range of possible θ -value for rods near 
the channel centre, although we note that a small, secondary peak in the θ distribution remains as seen in the log-scale 
plot in Fig. 9. Note that this peak occurs at a larger θ value than for the narrowest channel due to the increased channel 
width. Rods in the outer layers between this central layer and the slip boundaries are still most likely to have θ ≈ 0. As a 
consequence, the rods in the middle layer are also likely to align with θ = 0 with the two outer rod layers acting like the 
channel walls. Therefore, we see that the angle distribution retains its maximum at low θ .

For the largest width, the θ distribution still exhibits its peak value at θ ≈ 0 as the rods nearest the slip boundaries 
continue to align parallel to the boundaries. We again observe peaks in the y-coordinate distribution close to the channel 
boundaries, though their magnitude is now reduced as shown in Fig. 8. The central peak observed in the two previous cases, 
however, has now spread out to form a series of peaks of decreasing magnitude in the interior of the channel. Note that 
this persistent pattern of density peaks which are largest near the walls and which decrease towards the channel centre is 
consistent with existing observations on the layering of colloidal particles near repulsive boundaries [62–66]. Rods appear 
to spend comparable amounts of time between and in these internal layers, seemingly making layers away from the slip 
surfaces more transient than those near the boundaries where rods tend to spend significant amounts of time. Finally, rods 
in the channel interior achieve a broader distribution of θ values with no discernible secondary peak in the θ distribution.

6.4. Rheology of suspensions of Czech hedgehog colloids

In this section, we use fluctuating FCM with the gDC to perform nonequilibrium simulations that examine the rheology 
of Brownian Czech hedgehog-shaped (CH) particles, depicted in Fig. 10. This set of simulations is inspired by the recent ex-
perimental work of Bourrianne et al. [67], where suspensions of dendritic, silica particles, either hydrophobic or hydrophilic, 
were found to exhibit interesting rheological behaviour, including discontinuous shear thickening, depending on the particle 
interactions, as well as the relative strengths of shear and particle diffusion (Peclet number) and volume fraction.

In our simulations, the CH particles are formed of 19 FCM-particles of radius a, as shown in Fig. 10. This shape was 
chosen to reproduce, at some level, the complex structure and high specific surface area of the silica particles in the 
experiments. We consider two types of interactions between the CH particles, intended to offer holistic descriptions of both 
the hydrophobic and hydrophilic interactions in the motivating experimental work. For the first type, the FCM-particles 
comprising the CH particles repel at short-range through a soft potential, while attracting at longer range. Specifically, 
defining

φrc (r) = A exp

(
−
(

r − rc

λ

)2
)

(45)

for A = 5kB T and λ = 0.5a, the hydrophobic-inspired ‘repel-attract’ potential is given by

U1(r) = U (r) − φ3a(r), (46)

where U (r) is the soft-sphere potential defined in eq. (44). For the second type of interaction, we have the hydrophilic-
inspired ‘repel-attract-repel’ potential
14
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Fig. 8. The equilibrium distributions of rod positions across slip channels of widths L y = L/8, L y = L/4 and L y = L/2.

Fig. 9. The equilibrium distributions of rod orientations in slip channels of various widths, shown in both (left) linear and (right) logarithmic scales.

U2(r) = U (r) − φ3a(r) + φ7a/2(r), (47)

where a barrier is introduced in the potential just beyond the well. The resulting shapes of these potentials are shown in 
Fig. 10. Note that strictly these definitions are only r ≥ 2a, with the potentials continuously extended by linear functions for 
r < 2a to ensure that the force is constant for blobs which overlap, just as for the original soft-sphere potential U (r).

The simulations are performed in a triply-periodic computational domain with dimensions Lx = L y = Lz = 77.65a. In 
order ensure that a strong rheological response is observed, a high volume fraction of 20% was used for all simulations. 
This corresponds to 1177 CH particles, yielding a mobility problem for the 1177 × 19 = 22363 FCM-particles in each sim-
ulation. Simulations were run with a time step length of �t = τD/600. The initial conditions for the full simulations were 
constructed by running simulations that ignore thermal fluctuations and hydrodynamic interactions, i.e. using a diagonal 
mobility matrix, but retain interactions due to the potentials. In practice, we find that by allowing the CH particles to settle 
in this way before the shear is applied, the ‘long-time’ velocity profile is realised more quickly. The simulations were run to 
final times between 35τD/3 and 50τD and in all cases, a regular oscillatory velocity profile emerges long before the end of 
the simulation.
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Fig. 10. An illustration of a CH particle formed of 19 FCM-particles of radius a (left), and the different interaction potentials for suspended CH particles 
(right).

To measure the suspension viscosity from this emergent velocity field, we adopt the approach described by Vázquez et 
al. [68]. Here, the background fluid is forced using the periodic force density

f (x, y, z) = f0 sin (ky) êx (48)

where f0 is the force magnitude and k = 2π/L y is the wavenumber. The x-component of the resulting velocity field of 
the suspension is averaged over time and in the x- and z-directions, resulting in a sinusoidal velocity profile in y with 
magnitude vx . The effective viscosity of the suspension can then be defined as

ηef f = f0

k2 vx
. (49)

In Fig. 11, the ratio of the effective viscosity ηef f to the underlying fluid viscosity η is compared to the shear rate γ̇
for suspensions with both types of particle interactions. In this work, γ̇ is taken as the maximum slope of the sinusoidal 
velocity profile. We find that both the ‘repel-attract’ and ‘repel-attract-repel’ exhibit rapid shear thinning at lower shear 
rates, as found in the original experiments of Bourrianne et al. We do not observe, however, any shear thickening for 
the ‘repel-attract-repel’ CH particle suspensions whose interactions are meant to be similar to those of the hydrophilic 
particles in the experiments. Bourrianne et al. suggest that solid friction is required for the onset of shear thickening and 
that hydrogen bonding is additionally required for DST to be observed. Both of these interactions are absent from our 
simulations.

Given that this is a non-equilibrium problem, it is of particular interest to examine distributions of the particle states 
since they cannot be sampled using equilibrium procedures such as MCMC. Fig. 11 shows the radial distribution function 
g(r) where r is the centre-to-centre distance of r for the CH particles with ‘repel-attract’ interactions; the distribution for 
‘repel-attract-repel’ interactions is similar. Simulations with higher values of f0 correspond to darker curves in the figure. 
At the smallest f0, where the particle motion is dominated by the Brownian motion, g(r) increases from zero to a peak 
value at separations between r/a ≈ 8 and r/a ≈ 10. At larger separations, g(r) gradually decreases to approach values for a 
uniform distribution. As f0, and hence the shear rate, is increased, this peak diminishes and the distribution approaches a 
monotonically increasing function.

7. Summary and conclusions

In this paper, we developed the gDC scheme for the efficient time integration of hydrodynamically interacting rigid 
Brownian particles. The gDC automatically accounts for Brownian drift in advancing particle positions and orientations while 
retaining the need to perform only a single, full mobility problem at each time step, while achieving accuracy comparable 
to the current state-of-the-art. The gDC has been designed to be used with fast methods for applying the mobility matrix 
and generating random increments with the correct covariance and is ideally suited for grid-based computations that take 
advantage of fluctuating hydrodynamics. For some approaches, such as positively-split Ewald [22] and discretisation of the 
fluctuating boundary integral equations [41], the mobility matrix M is split with one (or more) of the resulting parts being 
treated using the Lanczos method to generate their contribution to the random velocity and the remainder handled using 
a fluctuating hydrodynamics-like approach. The matrices handled using the Lanczos algorithm are typically sparse, allowing 
for rapid matrix-vector multiplication, and hence an efficient application of Lanczos. As such, we expect the gDC to provide 
efficient time-integration for these methods as well. More generally, any fast method to compute the random velocities is 
compatible with the gDC. Additionally, many of the additional computations that the gDC requires are local to each particle, 
enabling parallelisation and large-scale computation. Our simulations demonstrate each of these features, as well as the 
applicability of gDC to enable simulations that complement experiments in modern suspension mechanics and colloidal 
science.
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Fig. 11. The effective viscosity of both types of suspension for different dimensionless shear rates (top), and the radial distribution functions for the different 
‘repel-attract’ simulations (bottom). The bottom right plot is displaying the same data as the bottom left plot but over a smaller r range. The colour of the 
curves fades from black to white as f0 decreases.
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Appendix A. Quaternions

In order to describe the state of an arbitrarily shaped particle, its orientation must be provided along with its position 
in space. This requires providing the rotation mapping from some reference configuration to the current orientation of 
the particle and thus a parametrisation for three dimensional rotations must be chosen. Perhaps the most natural choice 
is the axis-angle representation θ = θ ê, which describes the anti-clockwise rotation through an angle θ about the axis ê, 
but subsequent rotations cannot be easily combined under this representation. This problem is shared by the Euler angles, 
which further suffer from the need to specify a convention for their application as well as the gimbal lock phenomenon, 
wherein certain choices of one angle result in a loss of a degree of freedom. These issues are avoided when using rotation 
matrices, but they require significant amounts of redundant storage – storing nine variables to represent three degrees of 
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freedom – and they must be projected back to the nearest orthonormal matrix in the event of accumulated numerical error. 
An alternative representation, and the one used in this work, is that of the unit quaternions.

The unit quaternions can be identified with the unit sphere in R4, although they are often viewed as having separate 
scalar and vector parts and thus written as q = (q0, q), where q0 ∈ R and q ∈ R3; the unit length constraint is then 
expressed as q2

0 +‖q‖2 = 1. They form a group under the non-commuting, associative multiplication known as the Hamilton 
product,

p • q = (p0, p) • (q0,q)

= (p0q0 − p · q, p0q + q0 p + p × q),
(A.1)

with inverses q−1 = (q0, −q) and identity Iq = (1, 0). It is through the Hamilton product and the polar form for unit quater-
nions,

q =
(

cos

(
θ

2

)
, sin

(
θ

2

)
ê

)
, (A.2)

that the unit quaternions can be associated with the anti-clockwise rotation through an angle θ about the axis ̂e, with the 
image, x′ , of a vector x under this rotation satisfying

(0, x′) = q • (0, x) • q−1. (A.3)

Thus it is clear that the Hamilton product allows us to describe successive quaternion-represented rotations as another 
unit quaternion; rotating according to p • q is equivalent to first rotating according to q before rotating according to p. 
Consequently, the unit quaternions improve on the rotation matrix representation of rotations by reducing the storage cost 
from nine to four variables, reducing the cost of correcting accumulated errors to normalising a vector and by providing an 
intuitive correspondence with the axis-angle description.

If Ω denotes the angular velocity of the body, then the unit quaternion associated with the orientation of the body, 
viewed as an element of R4, satisfies

dq

dt
=ΨqΩ, (A.4)

where

Ψq = 1

2

[ −q�
q0I + [×q]

]
∈R4×3 (A.5)

satisfies ΨqΩ = 1
2 (0,Ω) • q.

Given an initial orientation quaternion q0 at time t = 0, this ODE could be solved using standard linear techniques. 
However, this will produce a quaternion with non-unit norm in general. The resulting quaternion could be projected back 
to unit length, but this represents an unnecessary source of error. Instead, we utilise the Lie algebra associated with the 
group of unit quaternions to perform multiplicative updates which preserve the norm to machine precision. Following the 
general frameworks of Iserles et al. [69] and Faltinsen et al. [70], we observe that the solution of the ODE for the orientation 
quaternion,

dq

dt
=ΨqΩ,

q(0) = q0,

(A.6)

is given by

q(t) = exp (u(t)) • q0, (A.7)

where u is the so-called Lie algebra element satisfying

du

dt
= D−1

u Ω,

u(0) = 0.

(A.8)

The exponential function for this Lie algebra corresponds to the polar form of the unit quaternions, i.e.

exp (u) =
(

cos

(‖u‖
2

)
, sin

(‖u‖
2

)
u

‖u‖
)

, (A.9)

and D−1
u is the ‘dexpinv’ matrix defined by
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D−1
u = I − 1

2
[u×] − 1

2‖u‖2

(
‖u‖ cot

(‖u‖
2

)
− 2

)
[u×]2 ; (A.10)

the Lie algebra considered here is isomorphic to (R3, ×) and so u should simply be thought of as a 3-vector. It should also 
be noted that D−1

u is continuously extended by D−1
0 = I .

As discussed by Faltinsen et al. [70], the numerical properties of the solution are preserved by in fact using u to describe 
the rotation we apply to the current quaternion rather than the initial condition q0. That is, at a given discrete time n
(i.e. t = tn = n�t) we solve for un+1 assuming that un = 0 and define qn+1 = exp(un+1) • qn . The fact that the Lie algebra 
element is always expressed in a coordinate system such that it is zero at the start of the current time-step will allow us 
to make some useful simplifications in Appendix E.

Appendix B. Expressing torques in terms of the Lie algebra element

Delong et al. [60] considered the change in energy due to an infinitesimal rotation to argue that if the quaternion q
describes the orientation of a particle then the torque it experiences due to a potential U can be written

T = −Ψ�
q ∂q U , (B.1)

where the matrix Ψq is as defined in eq. (A.5). In this section, we employ a similar argument to show that the analogous 
result holds for the corresponding Lie algebra element.

Consider the torque T = −∂ϕU generated by the potential U , where ϕ is the oriented angle. We want to express this 
torque directly in terms of the Lie algebra element u. Recalling eq. (A.8), we have

du = D−1
u dϕ

= dϕ − 1

2
u × dϕ − g (u) u × (u × dϕ) ,

(B.2)

where we have defined g(u) =
(
‖u‖ cot

( ‖u‖
2

)
− 2

)
/ 
(
2‖u‖2

)
for legibility. Hence, the change in energy dU due to an 

infinitesimal rotation dϕ satisfies

−T · dϕ = dU = ∂uU · du

= ∂uU · dϕ − 1

2
(u × dϕ) · ∂uU − g (u) [u × (u × dϕ)] · ∂uU .

(B.3)

Since the scalar triple product is invariant under cyclic permutation of the vectors we observe that (u × dϕ) · ∂u U =
(∂u U × u) · dϕ and [u × (u × dϕ)] · ∂u U = [∂u U × u] · (u × dϕ) = [(∂u U × u) × u] · dϕ , giving us

dU =
[
∂u U − 1

2
(∂uU × u) − g (u) (∂uU × u) × u

]
· dϕ. (B.4)

This permits the identification of the torque as

T = −
[
∂u U − 1

2
(∂uU × u) − g (u) (∂uU × u) × u

]
= −

[
I − 1

2
[×u] − g (u) [×u]2

]
∂uU

= −D−�
u ∂uU .

(B.5)

Appendix C. Equivalence between the Lie algebra and quaternion SDEs

Having shown that the torque on a body can be written in terms of the unit quaternion describing its orientation, q, 
according to eq. (B.1), Delong et al. [60] argue that q should satisfy the Itô Langevin SDE

dq =
(

kB T ∂q ·
(
ΨqNΩTΨ

�
q

)
−ΨqNΩTΨ

�
q ∂q U

)
dt +

√
2kB TΨqN1/2

ΩT dW , (C.1)

where NΩT is the rotational mobility matrix mapping the torque on the body, T = −Ψ�
q ∂q U , to its angular velocity, Ω , 

and N1/2
ΩT satisfies N1/2

ΩT

(
N1/2

ΩT

)� = NΩT as required by the fluctuation-dissipation theorem. In this work, we integrate unit 
quaternions in time using their associated Lie algebra elements rather than handle the quaternions directly. Thus, we seek 
an Itô SDE for the Lie algebra element such that the resulting quaternion, defined by eq. (A.7), satisfies eq. (C.1) and hence 
that the rotational dynamics in our approach are equivalent to those in the work of Delong et al. [60]. Given our result in 
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Appendix B, namely that the torque on the body can be expressed using the Lie algebra element as T = −D−�
u ∂u U , we 

propose that the appropriate Itô SDE is

du =
(

kB T ∂u ·
(

D−1
u NΩT D−�

u

)
− D−1

u NΩT D−�
u ∂uU

)
dt +

√
2kB T D−1

u N1/2
ΩT dW , (C.2)

the direct analogue of eq. (C.1). In the remainder of this section, we demonstrate that this does indeed result in the correct 
Itô SDE for the unit quaternion.

Loosely speaking, the approach here is to convert the Itô SDE for u to the Stratonovich interpretation, for which many 
standard calculus results are recovered, then to mirror the deterministic result “du/dt = D−1

u Ω =⇒ dq/dt = ΨqΩ” and 
finally to recover the Itô interpretation. To that end, recall that if y satisfies the Itô SDE

d y = h (y)dt + γ (y)dW , (C.3)

then the equivalent Stratonovich form of the SDE is

d y =
(

h (y) − 1

2
c (y)

)
dt + γ (y) ◦ dW , (C.4)

where ci = γ jk∂γik/∂ y j and ◦ denotes the Stratonovich product. Writing D−1 = D−1
u and N = NΩT (and hence N1/2 = N1/2

ΩT ) 
to simplify notation, we make the identification γi j = √

2kB T D−1
ik N1/2

kj by comparing eq. (C.2) to eq. (C.3) for y = u and 
hence obtain

1

2
ci = kB T D−1

jb N1/2
bk

∂
(

D−1
ia N1/2

ak

)
∂u j

= kB T

⎛⎝∂
(

D−1
ia N1/2

ak N1/2
kb D−1

jb

)
∂u j

− D−1
ia N1/2

ak

∂
(

D−1
jb N1/2

bk

)
∂u j

⎞⎠
= kB T

⎛⎝∂ Ñi j

∂u j
− D−1

ia N1/2
ak

∂
(

D−1
jb N1/2

bk

)
∂u j

⎞⎠ .

(C.5)

Now we claim that ∂ D−1
jb /∂u j = 0 and hence that ∂

(
D−1

jb N1/2
bk

)
/∂u j = D−1

jb ∂N1/2
bk /∂u j . For u �= 0, we can simply differentiate 

eq. (4) and observe that ∂ D−1
jb /∂u j ∝

(
[u×]2 u

)
b

= 0. The case u = 0 can be shown easily using the limit definition of the 
partial derivative. Thus

1

2
ci = kB T

(
∂ Ñi j

∂u j
− D−1

ia N1/2
ak D−1

jb

∂N1/2
bk

∂u j

)
, (C.6)

which allows us to cast eq. (C.2) in Stratonovich form as

dui =
(

kB T D−1
ia N1/2

ak D−1
jb

∂N1/2
bk

∂u j
− Ñi j

∂U

∂u j

)
dt +

√
2kB T D−1

ia N1/2
aj ◦ dW j

= D−1
ia

[(
kB T N1/2

ak D−1
jb

∂N1/2
bk

∂u j
− Nab D−1

jb

∂U

∂u j

)
dt +

√
2kB T N1/2

aj ◦ dW j

]
.

(C.7)

Applying Theorem 5.1 of Malham and Wiese [71] (recognizing the ξ as the columns of N1/2) we find that the corresponding 
orientation quaternion satisfies the Stratonovich equation

dqi = Ψia

[(
kB T N1/2

ak D−1
jb

∂N1/2
bk

∂u j
− Nab D−1

jb

∂U

∂u j

)
dt +

√
2kB T N1/2

aj ◦ dW j

]
, (C.8)

where we have dropped the q subscript from Ψq for legibility. Recalling Appendix B, we make the identification D−1
jb ∂/∂u j =

Ψ jb∂/∂q j and thus the above becomes

dqi = Ψia

[(
kB T N1/2

ak Ψ jb
∂N1/2

bk

∂q j
− NabΨ jb

∂U

∂q j

)
dt +

√
2kB T N1/2

aj ◦ dW j

]
. (C.9)
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Observing that the form of this equation is analogous to eq. (C.7) and noting that ∂Ψ jb/∂q j = 0 since the jth row of Ψ
doesn’t depend on q j , we simply perform the above procedure in reverse to obtain eq. (C.1).

Having established the appropriate Itô SDE for the Lie algebra element, it is simple to couple this to the corresponding 
equation for the position of the body to produce the complete Itô SDE for the state of the body we presented in eq. (9).

Appendix D. Algorithm for Euler-Maruyama scheme

For each time-step n = 0, 1, 2, ...

1. Generate a vector W (or tensor W if using fluctuating hydrodynamics) of N (0, 1) random variables.
2. Solve the full problem[

Mn −Kn

− (
K�)n

0

][
λn

V n

]
=
[

−v̆n = −
√

2kB T
�t

(
M1/2

)n
W

−F n

]
(D.1)

for

V n = Nn
(

F n +
(

K�)n (
M−1)n

v̆n
)

= Nn F n + V̆
n
, (D.2)

3. Move the rigid bodies to the next time-step according to

xn+1 = xn + �tV n, (D.3)

qn+1
p = exp

(
un+1

p

) • qn
p for 1 ≤ p ≤ N. (D.4)

Appendix E. Proof of consistency for gDC

In this section we offer a proof of the consistency of the gDC algorithm (section 3); i.e. that the increment �xn =
xn+1 − xn = ν�tV m produces the correct first and second moments for freely-diffusing rigid bodies,

〈�xn〉 = kB T �t
(
∂x · Ñ

)n
, (E.1)

〈�xn (�xn)�〉 = 2kB T �tÑn, (E.2)

to first-order in time. We begin by observing that D−1
0 = I =⇒ Φn = I (recall Appendix A) and hence that eq. (E.2) reduces 

to

〈�xn (�xn)�〉 = 2kB T �tNn. (E.3)

To similarly simplify eq. (E.1) we introduce the shorthand ∂i ≡ (∂x)i = ∂/∂xi and, summing over repeated indices, expand(
∂ j Ñi j

)n = (
∂ j
(
Φia NabΦ jb

))n

= Φn
ia Nn

ab

(
∂ jΦ jb

)n + Φn
iaΦ

n
jb

(
∂ j Nab

)n + Nn
abΦ

n
jb

(
∂ jΦia

)n

= Nn
ib

(
∂ jΦ jb

)n + (
∂ j Ni j

)n + Nn
aj

(
∂ jΦia

)n
,

(E.4)

since Φn
kl = δkl . In Appendix C we show that ∂ j

(
D−1

u

)
jb

= 0 and hence the first term vanishes. Furthermore, applying the 

definition of partial differentiation yields 
(
∂ j

(
D−1

u

)
ia

)n = − 1
2 εi ja , and hence the components of the third term which don’t 

vanish in the differentiation vanish as the inner product of a symmetric and skew-symmetric matrix. Thus we obtain the 
simpler expression

〈�xn〉 = kB T �t (∂x · N)n (E.5)

for the first moment in expectation. Note that these simplified forms for eqs. (E.3) and (E.5) mean that the gDC scheme can 
be implemented without any explicit mention of Φ (and hence D−1

u ).
To simplify notation, for the remainder of this section all quantities are evaluated at time n unless explicitly indicated 

otherwise. We start by expanding V m about time tn to obtain

V m
i = V i + �t

2
V j∂ j V i + �t2

8
VkV j∂k∂ j V i +O(�t). (E.6)

Recalling that ν = 1 + �t ∂ jV j we obtain
2

21



T.A. Westwood, B. Delmotte and E.E. Keaveny Journal of Computational Physics 467 (2022) 111437
νV m
i = V i + �t

2
V j∂ j V i + �t2

8
VkV j∂k∂ j V i

+ �t

2
V i∂ jV j + �t2

4
V j∂ j (V i) ∂k (Vk) +O(�t).

(E.7)

We recognize the second and fourth terms on the right hand side as a product rule expansion and re-write the above as

νV m
i = V i + �t

2
∂ j
(
V j V i

)+ �t2

8
VkV j∂k∂ j V i

+ �t2

4
V j∂ j (V i) ∂k (Vk) +O(�t).

(E.8)

All but the second term vanish in expectation, leaving us with

〈νV m
i 〉 = �t

2
∂ j〈V j V i〉 +O(�t). (E.9)

Note that if we are calculating the divergence using RFD instead, eqs. (E.7) and (E.8) only hold in expectation and are 
obtained by exploiting the independence of W and W̃ to separate terms. Nevertheless, we obtain eq. (E.9).

Now, recalling the definitions of V and V we have

〈V j V i〉 = 2kB T

�t
Nik K �

kl M−1
lm M1/2

mn

(
K �K

)−1

jq
K �

qr M1/2
rs 〈Wn W s〉. (E.10)

Using 〈Wn W s〉 = δns it is easy to verify that

〈V j V i〉 = 2kB T

�t
Nij. (E.11)

Substituting this into eq. (E.9) and multiplying through by �t reveals that eq. (E.5) is satisfied to first-order. To show the 
same for eq. (E.3), recall eq. (E.8) and observe that

�xi�xa = �t2ν2 V m
i V m

a

= �t2 V i Va + �t3

2

[
∂ j
(

V iV j Va
)+ V i Va∂ jV j

]+O(�t2).
(E.12)

The second term vanishes in expectation and we have

〈�xi�xa〉 = �t2〈V i Va〉 +O(�t2). (E.13)

If we are using RFD to calculate the divergence, then the expansion in eq. (E.12) only holds in expectation but we obtain 
eq. (E.13) nonetheless.

Again recalling the definition of V from section 3 we find that

�t2〈V i Va〉 = 2kB T �tNik K �
kl M−1

lm M1/2
mn Nab K �

bc M−1
cd M1/2

de 〈Wn We〉. (E.14)

In a similar way to before, substituting 〈Wn We〉 = δne and summing over repeated indices yields

�t2〈V i Va〉 = 2kB T �tNia, (E.15)

giving us the desired result.
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