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The presence of elongated streaks of high and low streamwise velocity in the shear layer of
circular jets breaks the axisymmetry of their steady-state solution. If the streaks are considered to
be part of the base flow, for the purpose of linear instability analysis, the instability eigenmodes
are thus affected by their presence. The resulting changes of growth rate and spatial shapes of
eigenmodes, related to the shear instability in jets, are investigated here for parallel base flows.
Optimal streamwise vortices (“rolls”) with prescribed azimuthal periodicity are computed, such
that the transient temporal growth of the streaks that they produce is maximal. The presence of
finite-amplitude streaks requires the formulation of eigenvalue problems in a two-dimensional
cross-plane. Sinuous rolls and streaks are found to have a stabilising effect on the Kelvin-
Helmholtz instability, whereas the varicose rolls and streaks have a destabilising effect. Absolute
instability is not found to occur. This work shows that the effects of rolls and streaks need to be
taken into account for more precise modelling of jet instability.

Key words:

1. Introduction
Rolls and streaks, and their role in instability dynamics and laminar-turbulent transition, have

been extensively studied in the context of wall-bounded shear flows (Butler & Farrell 1992;
Jiménez 2013). Rolls, defined as vortices in the cross-plane of the flow, transport high-speed
fluid towards the wall and low-speed fluid away from the wall, thereby creating streaks in the
main flow velocity (“lift-up effect”; Landahl 1975). These streaks are themselves subject to
instabilities (Park et al. 2011), and are even assumed to play a central role in the self-sustained
process of wall-bounded turbulence (Waleffe 1997; Hwang & Cossu 2010). However, the very
presence of rolls and streaks in free shear flows such as jets has seldom been recognised until
recently. Nogueira et al. (2019) documented the appearance of streaky structures in the turbulent
velocity field of a high-speed jet, by processing particle image velocimetry data with spectral
proper orthogonal decomposition. A linear analysis of the mean flow confirmed that the transient
growth of these structures is caused by the lift-up effect. Pickering et al. (2020) investigated
the formation of streaks in developing jets, obtained from large-eddy simulation, in response to
harmonic forcing input, concluding that streaks may be expected to dominate perturbations in
jets at low frequencies.
A linear analysis of the growth of streaks in round jets was conducted by Jiménez-González

& Brancher (2017), who computed optimal initial conditions for transient energy growth. These
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were found to take the shape of rolls, leading to the creation of streaks. Marant & Cossu (2018)
performed similar transient growth calculations for a parallel plane shear layer. Those authors
then went on to characterise the influence of finite-amplitude streaks on the linear Kelvin–
Helmholtz instability. It was found that “sinuous” streak structures have a stabilising effect,
whereas “varicose” structures destabilise the Kelvin-Helmholtz eigenmode over certain parameter
regimes. A similar analysis of wake flows was conducted by Del Guercio et al. (2014), where the
situation was found to be different: both the sinuous and varicose structures reduce the maximal
growth rate, and the varicose streaks have a more stabilising effect than sinuous streaks of the
same amplitude. A quadratic variation of the eigenvalues with respect to the streak amplitude
was found in both of these works, consistent with results from a second-order sensitivity analysis.
On the basis of these recent studies, the present article investigates how the presence of rolls

and streaks modifies the linear instability characteristics of round jets. The scope and study
programme are quite similar to the plane shear-layer investigation of Marant & Cossu (2018).
As streaks in turbulent jets are well modelled using a transient growth analysis (Nogueira et al.
2019), we evaluate here how optimal rolls and streaks, obtainedwith a similar procedure, affect the
Kelvin-Helmholtz mechanism in jets, which is relevant for understanding the interplay between
streaks and the well-documented wavepackets in jets (Jordan & Colonius 2013; Cavalieri et al.
2019). Differently from (Marant & Cossu 2018), the curvature of a jet shear layer induces self-
interaction effects, and in particular “jet-column” dynamics, which scale with the jet diameter
and are absent in single plane shear layers. Jet-column dynamics are similar to the interaction
dynamics between the two shear layers that form a plane jet or wake; the absolute mode in round
jets without counterflow is of the jet-column type (Lesshafft & Huerre 2007). While our present
study considers only streamwise-invariant base flow settings, the role of streaks in jets is not
limited to these. For instance, streak structures have been observed to appear prominently in the
braid regions between convecting ring vortices, as shown most recently in the experiments of
Kantharaju et al. (2020) and in the optimal perturbation analysis of Nastro et al. (2020).

The paper is organised as follows. In §2, linearly optimal roll structures are computed, consistent
with Jiménez-González & Brancher (2017), that maximise the transient temporal growth of
streaks in an axisymmetric jet base flow. The nonlinear flow development, in the presence of
finite-amplitude rolls, is then simulated in time. In §3, frozen instances of streaky parallel jets,
obtained in this way, are taken as base flows for linear stability analysis, and the sensitivity of
temporal eigenmodes with respect to rolls and streaks is discussed. The maximum temporal
mode as well as the absolute growth rate in jets distorted by rolls and streaks are investigated.
Conclusions and perspectives are given in §4.

2. Evolution of rolls and streaks in a parallel jet
We seek roll structures that lead to the fastest growth of streaks in a parallel and initially

axisymmetric jet (Jiménez-González & Brancher 2017). The initial velocity in the streamwise I
direction is given by the usual profile of Michalke (1971):

, (A) = 1
2
+ 1
2
tanh

[
1
41

(
1
A
− A

)]
, (2.1)

where 1 represents the non-dimensional momentum shear-layer thickness and A the radial
coordinate. The profile, as all quantities in what follows, is scaled with respect to the jet radius '
and the centreline velocity,2 . The viscosity a of an incompressible fluid is characterised by the
Reynolds number, Re = ,2'/a. Values Re = 104 and 1 = 1

20 are used throughout this study.
We define rolls as a set of counter-rotating vortices in the cross-stream plane, with radial

and azimuthal velocity components DA (A, \) and D\ (A, \), where \ is the azimuthal coordinate.
Through convection, the rolls distort the axisymmetric profile (2.1), such that the streamwise
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Figure 1. Optimal (a,c,e,g) and first suboptimal (b,d,f,h) linear rolls and streaks for streak wavenumbers
< = 2 (a,b,e,f) and < = 6 (c,d,g,h). Top row: streamwise perturbation vorticity (rolls) at C = 0; bottom row:
streamwise perturbation velocity (streaks) at C = ) = 1. Red colour is positive, blue colour is negative.

velocity changes in time as, (A) + DI (A, \, C). The perturbation DI represents the streaks. As we
limit all following instability analysis to streamwise-invariant base flows, rolls and streaks are
assumed to be independent of the streamwise coordinate I.

It is to be clarified at this point that the computation of optimal initial conditions for the transient
growth of streaks is not the focus of this study, but only a necessary step for the following instability
analysis of streaky base flows. The transient growth scenario over short and long time horizons has
been amply documented by Jiménez-González & Brancher (2017). Furthermore, in accordance
with that work as well as with Marant & Cossu (2018) and the connected studies cited in §1, we
deliberately stay within the classical assumption of a streamwise-invariant base flow (including
the rolls and streaks), in order to provide a first characterisation of the effect of streaks on the
shear instability in round jets. This choice allows us to restrict the number of parameters, and
to arrive at general conclusions from local instability analysis. It is hoped that these will be
beneficial for the future analysis of non-parallel streaky jet base flows, which will necessitate a
three-dimensional global framework, including nozzle conditions and justifications for turbulent
mean flow modelling.

2.1. Optimisation in the linear limit
Following the approach of Jiménez-González & Brancher (2017) and Marant & Cossu (2018),

and references therein, optimal roll shapes for streak generation are sought in the linear limit
of small velocities (DA , D\ , DI) � 1. The number of rolls and streaks around the azimuth is
prescribed by an azimuthal wavenumber <, such that the variations of DA , D\ and DI in \ are
given by a factor ei<\ . In the following, we refer to < as the “streak wavenumber”.
For a given value of <, temporal eigenmodes of the axisymmetric profile (2.1) are computed,

under the restriction of I-invariance (zero axial wavenumber). These computations are performed
in polar coordinates, such that only the radial coordinate is discretised via Chebyshev collocation
(Lesshafft & Huerre 2007), and non-oscillatory eigenmodes (in time) are recovered. The full
spectrum of these eigenmodes, which satisfy the incompressibility condition of zero velocity
divergence, is then used as a non-orthogonal basis for the optimisation of transient perturbation
growth.
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The optimal rolls and streaks are identified such that their kinetic energy is maximised in a
linear framework. For a perturbation u(A, <, C), the initial perturbation u0 = u(A, <, C = 0) is
sought such that the quotient

f2 =
‖u())‖2
‖u0‖2

(2.2)

is maximised, where ) is a prescribed finite evolution time. The norm is defined as ‖u‖2 =∫ A<0G

0
(|DA |2 + |D\ |2 + |DI |2) A3A, where A<0G denotes the maximal radial coordinate in the

computation domain. An orthogonal set of optimal and suboptimal initial perturbations u0 can
then be obtained by singular value decomposition (Schmid & Henningson 2001). All three
components of perturbation velocity are included in the norms in (2.2), which means that the
energies of both rolls and streaks are taken into account.
Identical optimal structures as shown by Jiménez-González & Brancher (2017) are recovered,

for the same base flow (2.1) and the same gain definition (2.2), characterised by roll structures
in the initial condition u0 (vorticity in the cross-plane), which give rise to streaks in u()) (axial
velocity). These structures, obtained over a time horizon ) = 1, are presented in figure 1 for
< = 2 and < = 6. Note that the shapes of these rolls and streaks are insensitive to the choice of
sufficiently short time horizons, so that ) = 0.1 or ) = 10 give practically identical results for the
optimal initial condition. According to Jiménez-González & Brancher (2017), viscous decay of
rolls and streaks becomes important at time scales ) = $ (1000), much larger than the turbulent
coherence scales in the jet flows that motivate the present study.
While Jiménez-González & Brancher (2017) computed, through direct-adjoint looping, the

optimal initial conditions that lead to the highest gain, the present singular value decomposition
technique also allows us to recover the following suboptimals. The optimal and first suboptimal
initial perturbations for both example values of < are shown in figure 1; in analogy with the plane
shear-layer results of Marant & Cossu (2018), we refer to the optimal structures in subfigures
(a,c,e,g) as “sinuous”, and to the first suboptimal ones in subfigures (b,d,f,h) as “varicose”.
Subsequent suboptimal structures are characterised by an increasing number of radial oscillations.

2.2. Nonlinear time stepping
In the following simulations, optimal and suboptimal initial conditions (DA , D\ ) are projected

onto a two-dimensional Cartesian mesh in the (G, H) cross-plane, and are added with a finite
amplitude to the initially axisymmetric streamwise base flow velocity profile (2.1). This perturbed
base flow is then advanced in time, according to the complete nonlinear Navier-Stokes equations
for incompressible flow,

mCu + (u · ∇)u = −∇? + '4−1∇2u, (2.3)

∇ · u = 0, (2.4)
expressed in Cartesian velocity components. Finite elements, provided by the FEniCS library
(Logg &Wells 2010), are used to discretise these equations in the (G, H) plane, and time stepping
is performed by use of the Crank-Nicolson method. The velocity components in these Cartesian
calculations are denoted u = (*,+,,).

Example results from these simulations, with < = 6, are shown in figure 2: the first case (top
row) develops from a sinuous initial condition;the second case (bottom row) starts from a varicose
one. The jet deformation due to the sinuous perturbation is more apparent, and reminiscent of
the profile shapes of jets from corrugated nozzles (Lajús et al. 2019). While the sinuous rolls
mostly lead to azimuthal variations of the radial position of the shear layer, the varicose rolls
lead to a thickening and thinning of the shear layer at different azimuthal positions. These effects
correspond to the parameters ' and Θ, respectively, of the velocity profiles in Lajús et al. (2019).

To quantify the intensity of rolls and streaks, their amplitudes �A and �B are defined in the
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(a) C = 2, �B = 28% (b) C = 4, �B = 49% (c) C = 6, �B = 63% (d) C = 16, �B = 90%

(e) C = 2, �B = 7% (f) C = 4, �B = 13% (g) C = 6, �B = 19% (h) C = 16, �B = 35%

Figure 2. Nonlinear time evolution of < = 6 streaks in jets: streamwise velocity. (a, b, c, d) Sinuous rolls
as initial condition (see figure 1g); (e, f, g, h) varicose rolls as initial condition (see figure 1h). Both cases
start from initial roll perturbations with amplitude �A (C = 0) = 3%, as defined in (2.5).
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Figure 3. Time evolution of the streak amplitude �B (C) and the roll amplitude �A (C), both normalised by
�A (0), with sinuous and varicose rolls of < = 6 as initial perturbations of amplitude �A (0) = 1%, 2%, 3%.

same way as in Marant & Cossu (2018) and references therein:

�B (C) = 1
2maxG,H (,1)

(
max
G,H
[, (C) −, (0)] −min

G,H
[, (C) −, (0)]

)
, (2.5)

and

�A (C) = 1
4maxG,H (,1)

(
max
G,H
[* (C)] +max

G,H
[+ (C)] −min

G,H
[* (C)] −min

G,H
[+ (C)]

)
. (2.6)

The growth of streak amplitude, caused by sinuous and varicose rolls, is shown in figure
3: these computations are initialised with rolls of amplitude 1% 6 �A 6 3%, and the streak
wavenumber is again chosen as < = 6. The streak amplitude, which initially is zero, is found to
increase approximately linearly in time, and the linear growth rate in the initial stage scales with
the roll amplitude. The amplitude growth of varicose streaks is slower. As the rolls experience
viscous dissipation, their amplitude �A (C) decreases slowly in time. Note that in our parallel-flow
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Figure 4. Validation and mesh convergence of the linear stability results computed in the (G, H) plane.
Eigenmodes with streamwise wavenumber : = 5 of an axisymmetric base flow (2.1) are shown. (a)
Validation against a polar formulation, where only the radial coordinate is discretised: the seven leading
eigenmodes (= = 0, . . . , 6) computed in the (G, H) plane (◦) and in polar coordinates (×). (b) Relative error n
of the growth rate l8 (solid line) and the frequency lA (dashed line) of the = = 0 eigenmode, as a function
of the number of grid points # in the (G, H) plane. Results for # = 22041 are taken as reference.

setting, rolls generate streaks, but streaks have no influence on rolls, even in the nonlinear regime.
Therefore, the roll amplitude may be set as an initial condition parameter, whereas the streak
amplitude is simply a function of time in the base flow evolution. The streak amplitude is then
chosen as a parameter instead of evolution time, because it indicates more directly the intensity
of the jet deformation. Snapshots of these time-evolving streaky jets, characterised by the values
of <, �A and �B , and by their sinuous or varicose symmetry, are now taken as base flows for the
purpose of linear stability analysis.

3. Linear stability analysis
Linear stability analysis is carried out in Cartesian coordinates (G,H,I). Velocity

perturbations (D′G , D′H , D′I) and pressure ?′ are assumed to take the form of normal modes
[D′G , D′H , D′I , ?′] (G, H, C) = [DG (G, H), DH (G, H), DI (G, H), ?(G, H)] exp(−ilC + i:I). The linear
perturbation equations are

−ilDG+*mGDG+mG*DG++mHDG+mH*DH+i:,DG+mG ?−'4−1 (mGGDG+mHHDG−:2DG) = 0, (3.1)

−ilDH+*mGDH+mG+DG++mHDH+mH+DH+i:,DH+mH ?−'4−1 (mGGDH+mHHDH−:2DH) = 0, (3.2)
−ilDI+*mGDI+mG,DG++mHDI+mH,DH+i:,DI+8: ?−'4−1 (mGGDI+mHHDI−:2DI) = 0, (3.3)

mGDG + mHDH + i:DI = 0. (3.4)
Finite-element discretisation is applied by use of the FEniCS library on a two-dimensional mesh in
the (G, H) plane. Second- and first-order Lagrangian elements are used to discretise perturbation
velocity and pressure, respectively. The discretised equations are assembled as an eigenvalue
problem Aq = lBq, where the eigenvalues l and the associated eigenvectors q = (DG , DH , DI , ?)
for a fixed : are computed via the Arnoldi algorithm. Eigenvalue calculations on the two-
dimensional (G, H) mesh have been validated against the one-dimensional polar formulation used
in §2.1, discretised only in A , for a strictly axisymmetric base flow. For a wavenumber : = 5,
the seven most unstable eigenmodes are compared in figure 4(a), and excellent agreement is
found between these two different formulations. Grid convergence is then examined to determine
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(a) (b) (c) (d)

Figure 5. First-order sensitivity of the growth rate with respect to base flow modifications: (a) an instability
eigenmode (= = 3, : = 5) of the axisymmetric base flow (axial velocity); associated sensitivity with respect
to (b) radial velocity, (c) azimuthal velocity and (d) streamwise velocity changes in the base flow.

the required number of grid points # in the (G, H) plane, to be used for linear stability analysis.
Real and imaginary parts of the dominant eigenvalue (= = 0, : = 5) are tracked. The eigenvalue
obtained with the largest number of points (# = 22041) is taken as reference, and the relative error
n , as a function of # , with respect to this reference value is presented in figure 4(b). A number of
# = 15821 grid points is deemed satisfactory, giving convergence within five significant digits,
and is kept for the following computations. As nomenclature, we define the temporal growth
rate as l8 = Im[l] and the frequency as lA = Re[l]. We denote the azimuthal wavenumber
of eigenmodes =, so as to distinguish it from the streak wavenumber <, which characterises the
azimuthal periodicity of the streaky base flow.

3.1. Linear sensitivity analysis
In the limit of infinitesimal base flow modifications, the effect of streaks on instability

eigenvalues (growth rate and frequency) can be predicted by way of sensitivity analysis (Hill
1992; Marquet et al. 2008). In the context of streaks in plane shear layers, Marant & Cossu (2018)
demonstrated that this analysis needs to be expanded to second order, if one wishes to correctly
retrieve the quadratic dependency of eigenmodes on streak amplitude. The same observation
had been reported before from studies of instability control in plane two-dimensional flows via
spanwise-periodic base flow modifications (Hwang & Choi 2006; Tammisola et al. 2014; Boujo
et al. 2019). If, however, in the present configuration, rolls and streaks in jets cause first-order
variations in the instability eigenvalues, then a sensitivity analysis will allow us to identify roll
shapes that optimally destabilise linear eigenmodes.
A given base flow variation XW = (X*A , X*\ , X*I) induces a variation XA of the matrix of

the linearised Navier-Stokes operator. The resulting first-order variation Xl of the eigenvalue
associated with a direct eigenvector q and an adjoint eigenvector q+ (appropriately normalised;
see Chomaz (2005) for details) is given by

Xl = q+HXAq = sHMXW. (3.5)

The superscript H denotes the transpose conjugate, the matrix M contains mesh-dependent
quadrature coefficients for a scalar product and s is the base flow sensitivity field (nomenclature
as in Lesshafft & Marquet 2010). The effect of a given base flow variation XW on the eigenvalue
is given by its projection onto the sensitivity field; consequently, if we restrict the norm of XW
to a fixed value, its optimal shape for maximum destabilisation of an eigenmode is given by the
imaginary part of the associated s.
Such a sensitivity field (imaginary part) is shown in figure 5, for an eigenmode with

wavenumbers (= = 3, : = 5) in an axisymmetric (non-streaky) base flow. It can be seen that,
at first order, the temporal growth rate is only sensitive to changes in the shear. All components
of the sensitivity are found to be axisymmetric, although the underlying eigenmode is not. This
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(a) = = 0 no streaks (b) = = 0 sinuous streaks (c) = = 0 varicose streaks

(d) = = 1 no streaks (e) = = 1 sinuous streaks (f) = = 1 varicose streaks

(g) = = 2 no streaks (h) = = 2 sinuous streaks (i) = = 2 varicose streaks

Figure 6. Eigenmodes (= = 0, 1, 2 and : = 5) of axisymmetric and streaky jets, with streak wavenumber
< = 6. Sinuous case: �A = 10%, �B = 40%; varicose case: �A = 10%, �B = 51%. Streamwise velocity is
shown.

result, consistent with the shear layer and wake studies cited above, indicates that rolls and streaks,
here defined as non-axisymmetric base flow modifications with zero mean along the azimuth,
can only have a second-order effect, but not a first-order effect, on the eigenmodes. Optimisation
could be performed on the second-order sensitivity operator to identify azimuthally non-uniform
base flow modifications for maximum change of an eigenmode (Boujo et al. 2015, 2019).

3.2. Linear stability of finite-amplitude streaky jets
Linear stability analysis is now carried out to identify the temporal growth ratel8 of eigenvalues

in frozen instances of streaky base flows. For illustrative purposes, the effect of rolls and streaks on
the shapes of some eigenmode shapes is shown in figure 6: basic eigenmodes in the axisymmetric
case, with azimuthal wavenumbers = = 0, 1 and 2, have been continuously tracked towards high
amplitudes �A and �B in base flows with sinuous and with varicose roll and streak structures.
In the caption, we extend the use of = to the high-amplitude cases in this loose sense of mode
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Figure 7. Temporal growth rate l8 as a function of : and < for �A = �B = 5%. Only positive (unstable)
values are represented. The first row with label “none” represents the growth rate found for the axisymmetric
base flow without streaks. (a) Sinuous rolls/streaks. (b) Varicose rolls/streaks.
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Figure 8. Parameter studies of the temporal growth rate l8 . Blue and red symbols represent sinuous and
varicose variations of the base flow, respectively. The temporal growth of the purely axisymmetric jet is
shown for comparison (dashed line). Maximum growth rate l8,<0G (a) as a function of streak amplitude
�B (C) for < = 6 and �A (0) = 5% (circle), 10% (square). (b) as a function of streak number < for the most
destablising : for �A = 5% and �B = 5%. (c) Growth rate l8 as a function of �A for < = 6, : = 6 and
�B = 0. The initially axisymmetric (= = 0) eigenmode is tracked in (c).

tracking, fully aware that the implied symmetries are not strictly preserved in these cases (see the
detailed discussion of mode tracking in Lajús et al. 2019).

Systematic variations of the dominant temporal growth rate (= = 0) over streamwise wavenum-
ber : are represented in figure 7. Amplitudes �A = �B = 5% are fixed, and instability growth
rates are plotted for streak wavenumbers < = 1, ..., 10. The range of unstable wavenumbers is
narrowed in the presence of sinuous streaks, but largely widened for cases with varicose streaks.
In figure 8(a), the maximum l8 over all streamwise wavenumbers : , denoted as l8,<0G , is

presented as a function of �B (C). The sinuous perturbations, decreasing l8,<0G , have a stabilising
effect, whereas the varicose perturbations, increasing l8,<0G , destabilise the jets. The maximum
temporal growth rate of a streaky jet with sinuous perturbations does not strongly change as the
streaks gain amplitude, whereas that with varicose perturbations increases monotonically with the
streak amplitude. These results are consistent with the findings of Lajús et al. (2019): the sinuous
streaks lead to an azimuthal change of the shear layer position (parameter ' in Lajús et al. 2019),
which has little effect on jet stability. In contrast, the varicose streaks lead to azimuthal variations
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Figure 9. Variations of the absolute growth rate l0,8 with roll amplitude �A . The streak amplitude �B is
zero.

of the shear-layer thickness (parameter Θ in Lajús et al. 2019), which has a destabilising effect.
While it is tempting to discuss these tendencies on the basis of the azimuthally averaged base
flow distortions, Marant & Cossu (2018) and Lajús et al. (2019) have demonstrated that such a
discussion is incomplete, because the periodic variations of the base flow contribute to the change
of eigenvalues on the same order as their average.
The effect of the streak wavenumber< onl8,<0G is presented in figure 8(b) for �A = �B = 5%.

Over all< studied, the varicose perturbations lead to an increase of temporal growth rate, while the
sinuous perturbations always decrease the temporal growth rate. The same qualitative behaviour,
as demonstrated here only for < = 6, is observed at all values of <, including the special case
< = 1 (“shift-up” as opposed to “lift-up”; see Jiménez-González & Brancher (2017)). In figure
8(c), the changes of the temporal growth rate of the dominant = = 0 eigenmode as a function of
small roll amplitude are tracked. It is found that the growth rate variations are initially quadratic
in �A , which indicates a second-order sensitivity. This is consistent with our findings in §3.1 that
the first-order sensitivity of azimuthally periodic base flow modifications, rolls and streaks, is
zero. A quantitative second-order sensitivity analysis is not attempted here, as the result can be
expected to be similar to that of Marant & Cossu (2018).

3.3. Absolute instability of streaky jets
Although the results of our jet study so far display the same trends as revealed by Marant

& Cossu (2018) for plane shear layers, the effect of streaks on the absolute instability mode in
jets deserves to be examined. In jets, the absolute mode is of the jet-column type (Lesshafft &
Huerre 2007), and therefore physically distinct from the plane shear layer case. In a similar study
of parallel wakes, Del Guercio et al. (2014) observed that sinuous as well as varicose spanwise
perturbations may reduce the absolute growth rate and even suppress the absolute instability.
Brandt et al. (2003) demonstrated a similar stabilising effect of streaks on the absolute mode in a
Blasius boundary layer.

For our standard jet base flow, variations of the absolute growth rate l0,8 (see Huerre &
Monkewitz 1990) with roll amplitude �A are shown in figure 9. The streak amplitude is set to
zero in this example. In the case of varicose perturbations, increasing �A slightly increases the
absolute growth rate l0,8 for streak wavenumbers < < 6, but even a very high roll amplitude
does not give rise to absolute instability. Varicose rolls with < > 6 are seen to decrease l0,8 .
Sinuous rolls are found to have a stabilising effect on the absolute growth rate, higher < being
more stabilising. Additional computations, not presented here, show that non-zero values of the



The effect of streaks on the instability of jets 11

streak amplitude �B do not lead to further significant destabilisation of the absolute jet-column
mode. In conclusion, a situation where rolls and streaks would give rise to absolute instability in
jets could not be identified.

4. Conclusions
The effect of rolls and streaks on the local instability properties of round jets has been

investigated in this work for various control parameters. First, optimal sinuous and varicose
rolls and streaks, in the sense of maximal energy growth, have been identified for prescribed
numbers of streaks along the azimuth. Optimal and suboptimal rolls and streaks take a form
similar to the sinuous and varicose perturbations found in plane mixing layers. In both scenarios,
streaks growwithin the jet shear layer due to the lift-up mechanism. Sinuous roll structures impart
wavy displacements of the shear layer, whereas varicose rolls lead to periodic variations of its
thickness. Nonlinear simulations show that rolls evolve slowly in time, only subject to viscous
decay, while streaks experience linear amplitude growth in their initial stage.
Linear stability analysis has been performed on frozen instances from nonlinearly evolved

streaky jet flows. The observed trends are clear and easily summarised: sinuous rolls and streaks,
which themselves represent the fastest-growing transient structures, induce a decrease in the
growth rate of Kelvin-Helmholtz instability modes. Varicose rolls and streaks, in contrast, lead
to increased instability. The first-order sensitivity of Kelvin-Helmholtz eigenmodes in a non-
streaky jet has been computed, and found to be strictly axisymmetric, even for non-axisymmetric
mode shapes. Therefore, the effect of low-amplitude rolls and streaks, with zero axisymmetric
projection, cannot be explained from such an analysis. Consistent with this result, the variations
of instability growth rates with roll amplitude have been shown to be nonlinear, presumably
quadratic, analogous to the more detailed sensitivity studies of plane shear flows in the recent
literature.
Finally, the absolute growth rate of the axisymmetric jet-column mode in streaky jets has

been examined. Although varicose rolls do lead to a slight destabilisation of this mode, the
instability has been found to remain convective over the investigated parameter space. On this
basis, the presence of rolls and streaks in jets, although certain to change the quantitative instability
properties, is not expected to lead to self-sustained oscillations.
The results from the present investigation lead to the conclusion that the presence of rolls and

streaks affects the instability properties of round jets in ways similar to those described by Marant
& Cossu (2018) for the setting of plane shear layers. The inclusion of roll structures in the base
flow, compared to the roll-free settings of Marant & Cossu (2018), has been found to have a
similarly strong, but not qualitatively different effect as the streaks alone. An important limiting
assumption in the present study, which is to be relaxed in future work, lies in the restriction
to streamwise-invariant rolls and streaks. Despite this limitation, the significant modification of
Kelvin-Helmholtz instability growth rates clearly indicates that roll and streak perturbations in
jets must be accounted for in future modelling of jet instability behaviour.
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