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Resonantly interacting modes in wake-shear layers

D. WALLACE*, L. G. REDEKOPP * and P. HUERRE **

ABSTRACT. — The resonant inleraction between the sinuous and varicose modes of a wake is studied for a
family of velocity profiles with symmetry-breaking perturbations. The leading-order nonlinear interaction,
which vanishes identically for symmetric wake profiles, increases dramatically as a small velocily ratio is
imposed across the wake. Coefficients of the coupled amplitude cguations describing the interaction in flows
with asymmetric mean profiles are evaluated numerically for finite Reynolds numbers. The dynamical system
defined by these equations is analyzed for temporally-forced, spatially-evolving modes for a velocity ratio
where the flow is convectively unstable. The leading-order model is shown to be inadequate to describe the
dynamical interactions for at least a limited range of velocity ratios.

1. Intreduction

The dynamics of the large-scale features of spatially-developing shear flows like mixing
layers, jets, and wakes exhibit distinctly different spectral characteristics. These differences
are believed to derive from the underlying stability properties, particularly the propagative
nature of the unstable modes, of the local, developing mean flow and the nonlinear
interactions between the modes accessible to the system. For example, it is weil established
that the sharp frequency spectra found in two-dimensional wakes at moderate Reynolds
numbers are intimately linked to the presence of a domain of sufficient extent in the
near wake where the sinuous mode of the mean flow profile is absolutely unstable. On
the other hand, the convectively unstable mode of mixing layers between co-flowing
streams renders them highly susceptible to upstream disturbances (either ambient noise
or controlled inputs) and they typically exhibit broad frequency response.

The nonlinear interaction of modes at large Reynolds numbers in a shear flow is
centered at critical levels where the primary nonlinear effect is the generation of mean
flow corrections. The strength of these mean flow corrections depends on the symmetry
properties of the basic flow profile and the nature of the eigenmodes. For example, in
symmetric wake or jet flows the inflection points occur in pairs and the streamlines
passing through these points have the same mean speed. The linear neutral modes for
such profiles are regular at the critical levels which are coincident with the inflection
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points. However, when the profile symmetry is broken, the streamlines passing through
the inflection points necessarily have different speeds and the linear neutral modes are
no longer regular, but singular. Now, the nonlinear interaction of singular modes can be
expected to be much stronger than that for regular modes. In fact, the Landau constant
for the self-interaction of a regular neutral mode in the viscous critical layer regime is
0 (Re*?) ([Churilov & Shukhman, 1987]; [Huerre, 1987)). The corresponding result for
singular neutral modes is O{Re) [Djordjevic & Redekopp, 1993]. The symmetry of the
profile also influences the nature of the bifurcation at the onset of instability. Djordjevic
& Redekopp [1990] have shown that the stationary bifurcation occurring in mixing layers
with a symmetric mean vorticity profile changes to a Hopf bifurcation when the symmetry
of the vorticity profile is broken.

The present study focuses on the nonlinear interaction of nearly resonant modes in
wake flows where the profile symmetry is broken by an imposed shear across the wake.
The leading-order interaction between the sinuous and varicose modes of a symmetric
wake flow vanishes identically by virtue of symmetrics. Hence, the wake-shear layer
provides an interesting example where the effect of broken symmetry and the consequent
appearance of singular inviscid neutral modes can be examined and the implications for
the nonlinear interaction of modes in this context can be explored. It also provides an
example of a truly open flow system, at least for a range of the relevant parameters,
where spatially chaotic dynamics can be modelled and studied. A reduced model for
spatial chaos in the convectively unstable domain of parameter space for a family of
profiles is derived.

In a convectively unstable or open shear flow, the developing, unsteady vorticity field
is created by the spatial amplification of input disturbances at the origin of the flow. As
a result, open flows are expected to be extremely sensitive to external forcing. Under
natural conditions with background noise acting as the forcing of the disturbance field,
it may prove difficult to establish whether a given open flow admits chaotic regimes or
not since the intrinsic dynamics cannot be easily distinguished from that forced by the
random excitation field. Under carefully controlled conditions and with only a few well-
defined excitation frequencies applied to the flow, however, one may hope to isolate the
intrinsic dynamical behaviour. This is one of the motivations behind the present study
where a model-based dynamical system is developed as a guide for experiments in
convectively unstable wake-shear layers.

Previous experimental investigations of chaos in open flows have, for the most part,
been restricted to wakes either behind bluff bodies or behind thin airfoils. It is presently
unclear whether the chaotic regimes observed in unforced cylinder wakes are purely
hydrodynamically generated [Sreenivasan, 1985] or the result of hydroelastic coupling
phenomena between the Karman mode of oscillation in the wake and bending modes of
vibration of the body [Van Atta & Gharib, 1987]. External forcing of cylinder wakes
docs, however, lead to chaos as a result of frequency competition between the natural
shedding frequency and the external frequency [Ollinger & Sreenivasan, 1988]. In any
case, Monkewitz [1988] has shown that the near wake behind a bluff body is known to
be absolutely unstable and this class of flows is, therefore, not strictly speaking “open”
according to the definition adopted previously. Thin airfoil wakes, by contrast, are
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RESONANTLY INTERACTING MODES IN WAKE-SHEAR LAYERS 141

convectively unstable everywhere and experiments by Arefl er al. [1987], Van Atta er al.
[1988], and Stuber & Gharib [1988] have indicated that excitation of the flow at several
incommensurate frequencies leads to a wealth of observable flow patterns.

2. Formulation

We consider a planar incompressible flow where the coordinates are chosen so that
Ox is in the direction of the undisturbed stream and Oy is in the cross-stream direction.
The dependent and independent variables are scaled with respect to a length / which
characterizes the cross-stream scale of the layer of mean vorticity and a reference velocity
scale V,, given by the average velocity of the streams on either side of the wake-shear
layer. The nondimensional velocity profile is taken as the sum of a symmetric wake
component and an antisymmetric shear layer part

(D U(y; f, y=1+fsech? y +r tanhy.

For simplicity, the length scale / is chosen to be the same for both the even and odd
parts of the profile. The form factor f and velocity ratio r appearing in (1) are defined
as

V.-V, V.V

2 = , =t les
(2) s v, 2V,

where V_ is the centerline (i. e., y=0) velocity and V_, are the ambient speeds on the
sides y — &+ <o, respectively. Negative values of f correspond to wake-shear layers and
positive values to jet-shear layers. When r=0, the profile is that of the Bickley wake or
Jet which admits two linear modes, the sinuous and varicose modes, which exhibit long
wave instabilities, For the nominal Bickley velocity profile U (y)=sech?y, the inviscid
neutral states for these modes satisfy the following relations between the frequency @,
the wave number &, and the phase speed C = w/k (¢f. Drazin & Reid [1981]):

(3) 0 =2 0,5 =4/3, kp=2k,p=2, Cw=Cp=2/3.

The subscripts s and » denote the sinuous and varicose modes, respectively, whose neutral
eigenfunctions for the perturbed streamfunction of the inviscid problem are

sp () =sech? y,
@ { ¢l:; {(y)=sechy tanhy.

It is evident from these relations that these modes are resonant when the flow is symmetric
(i. e, r=0). The growth rate of the varicose mode, either temporal or spatial, together
with its bandwidth of instability, is smaller than that of the sinuous mode. For this
reason, the varicose mode is not normally observed unless it is forced in a regime where
the flow is convectively unstable. However, it may play an important role in nonlinear
energy transfer processes and the examination of this effect is one goal of the present
study.
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Wallace & Redekopp [1991] found that the effect of a small antisymmetric component
of the mean velocity profile (i.e., 0<|r|<1) caused the inviscid neutral modes to be
singular. As soon as the profile symmetry is broken, the inflection points of the profile
occur at different velocities and so the regularity of the function U” (y)/(U ())—C)
appearing in the Rayleigh stability equation cannot be satisfied simultaneously on both
sides of wake-shear layer. This is likely to have a very important effect on nonlinear
interactions between the marginal modes which, at least for small values of |r|, are
(nearly) in harmonic resonance [viz., equation (3)]. The enhanced interaction in flows
with asymmetric velocity profiles is anticipated based on the asymptotic description of
the dynamics in a critical layer for large Reynolds numbers. In a viscous or nonlinear-
viscous critical layer, the dominant nonlinear contribution derives from a mean flow
generated in the vicinity of the critical level y=y, where U(y,)=C. The self-interaction
of a regular neutral mode is O (Re)!? (¢f. Huerre [1987]) while that for a singular neutral
mode is O (Re) [Djordjevic & Redekopp, 1993]. The nonlinear interaction between the
sinuous and varicose modes in the non-symmetric flow specified by (1) may experience a
similar enhancement. Of course, it should be recalled that the quadratic nonlinear
coupling between these modes in the weakly nenlinear theory for the purely symmetric
wake or jet vanishes identically because of profile and eigenfunction symmetries as first
demonstrated by Kelly [1968]. As a consequence, breaking of the profile symmetry is
essential if quadratic interactions between the sinuous and varicose modes of U {y; £, )
are to exist.

The governing equation for the flow is the iwo-dimensional vorticity equation

d é J 1 1
(5) {—+‘Py—‘PI——V2 Vi¥=-_—_U"
or dx dr Re Re

where ¥ (x, p, 1) is the total streamfunction, Re=V,//v is the Reynolds number, and
the body-force term on the right-hand-side is introduced so that the parallel flow (1)
satisfies the equations of motion. The latter term has no essential consequence in the
analysis presented here because the time scale for diffusion of the mean flow is slow
compared to the evolution time scale. The significance of the body force term is discussed
by Huerre [1980, 1987].

A weakly nonlinear analysis is performed where the total strcamfunction is divided
into a mean flow part and a perturbation in the manner

6) Y(x,y n= FU (W dy' +ed(x, y, 1)
=JyU(y')dy'+s{A(x, T) ¢, (3) e+ B(X, T)$, (») ™ +c.c. !

+e2 P, p, L X, D+

The nondimensional perturbation amplitude is e (0 <e< < 1) and (X, T)=¢(x, 1) are slow
space and time scales, The phases 8, and 9, are defined by

(N 0.=k x—o,1, 0, =k, x—o,¢
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where (k,, o) and (k,, ®,) correspond to neutral (i. e., real) eigenvalue pairs for the
sinuous and varicose modes, respectively, whose corresponding complex amplitude
functions are A(X, T) and B(X, T).” The analysis is carried out assuming that the
Reynolds number is finite so the neutral eigenfunctions (bs(y) and ¢v {y) are spectfied by
the Orr-Sommerfeld equation

(8) LI$1=[(D?—k%)?— ik Re { (U—C)(D?~ k?) - U" }]$ =0,

subject to the boundary conditions that ¢ and ¢’ vanish as y — +oc. In equation (8)
D=d/dy and C=w/k. As demonstrated later, a range of velocity ratios and Reynolds
numbers exist where the harmonic resonance conditions are closely satisfied. Assuming
this is the case, portions of the right-hand-side of the inhomogeneous equation for 2
lead to secular behaviour which can only be avoided by choosing the spatio-temporal
evolution of A (X, T) and B(X, T) to satisfy

(9 a) D"-‘s AT - Dks AX = C{n B2 ewR X 'l'),
(96) D, B;—D, By=B,ABe D,
Here and in what follows, the superscript ~ denotes the complex conjugate. The

phase 0, (X, T) measures the detuning from a precise 2: 1 resonance between the modes
and is defined by

(10) 0, (%, T)=(2k“_k5)X~(M)T.

€ 4

The phase detuning varies on the slow scales when the detuning bandwidth is 0(g). The
coefficients in the amplitude equations (9 a, b) are obtained via orthogonality conditions
yielding the integral relations

(11a) D,,= ki 1O —k2dydy,  a=s, v;
‘ i [ 4ik, " 3 " 5
kazi_ p UgE (¢c¢ _kud)u)iU 4)&_2](“([]*(:“) ¢u)¢u dy,

(118) kol
{ w=s, V;

k o
(1o =g - g0
and
. bF KB4 K4
o R B X L PR AU T

The functions y, () are the eigenfunctions of the adjoint Orr-Sommerfeld equation at
the neutral eigenvalue points(w,, k,, C,). They are specified by the equation

(12) LA 1=[(D? = &3)* = ik, Re { (U—C)}(D?— k2)+ 2U' D } |, =0,

subject to the boundary conditions that the function and its first derivative vanish as
¥y — Fo0.
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3. Numerical results

The Orr-Sommerfeld equation (8) is taken as an eigenvaluc problem with the phase
speed C as eigenvalue given the wave number & and the Reynolds number. A shooting
technique is employed to solve this two-point boundary-value problem. The velocity is
constant in the uniform flow regions external to the shear flow and analytical forms for
the eigenfunction can be obtained for these regions. Integration beginning from these
regions is accomplished using the asymptotic forms for $(y) as initial inputs and
integrating, using a fourth-order Runge-Kutta scheme, toward a matching point in the
shear region. Iteration on the eigenvalue C is repeated until the Wronskian of the
eigenfunction and its higher derivatives at the matching point is reduced to some small
value approaching zero (at least 1073, say). Since the two asymptotic solutions on
either side of the shear region have much different rates of exponential decay, an
orthonormalization technique is used to retain the linear independence of the solutions.
Eigenvalues are also computed using the Riccati method described in Drazin & Reid
[1981]. Excellent agreement (at least six significant figures) between the cigenvalues
calculated using the shooting technique and those obtained by use of the Riccati method
verified the accuracy of the calculations.

A first check of the Orr-Sommerfeld solver is to compare the computed eigenvalues
against those obtained from analytically-derived expressions. High-Reynolds number
approximations to the neutral wave number k, and associated phase speeds C, can be
inferred from Drazin & Reid [1981], pp. 233-237. For the Bickley wake profile [¢f. r=0
in eq. (1)], the two-term asymptotic resulls are

24, 42
(13a) k) =2 - 1;12133’ cgwl=1+§f—5 ;65 sgn f:
26.36 2 3.706
13 k=1 . =142 ~" Dsen f.
(13) |f|Re 3f Re gn./

A comparison of asymptotic and computed results is shown in Table I for a wake with
form factor f= —0.75. The agreement is seen to be progressively better as the Reynolds
number increases which is consistent with the asymptotic nature of £ and Cl=).

TaBLE 1. — Comparison of computed and asymptotic results for neutral cigenvalues of the Bickley wake.

Re k, K= C, o k, ki) C, cied
300 ... 18984 18921 05175 05181 08667 08829  0.5097 05124
00 ... ... 19550 19538  0.5076 05078  0.9474 09498 05049 05053
1500, ... ... 19787 19784 05036 05036 09761 09766  0.5024 05025

A second and more stringent test of the numerical method includes computation of
the eigenfunctions. One test involving the eigenfunctions is computation of the group
velocities C, defined in terms of the integral relations (11 a, b),

(14) CGm == Dku'[Dmm
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Evaluation of C, by this means involves computation of the cigenfunctions ¢,(») and
their second derivatives as well as the adjoint functions ¢, (v). The adjoint functions in
the inviscid limit are singular, being given by

¢ ()

15 = .
(15) L= e

For finite Reynolds numbers, and in the lincar, viscous limit being considered here, the
singularity is smoothed through a viscous critical layer of characteristic scale proportionai
to (k, Re) />, For high values of the Reynolds number these layers are quite thin and it
is difficult to resolve the adjoint eigenfunctions numerically in these regions. For this
reason, the path of integration for the Orr-Sommerfeld and adjoint equations, as well as
the integral expressions in (11), are evaluated on a deformed path in the complex y-
plane. The path chosen for this study is

(16) y;=—13 tanh(y,).

The functions ¢ (y}, % (), and U (p) are analytic in the vicinity of the real axis for finite
Reynolds numbers so no difficulties are encountered. Examples of the eigenfunctions
and their adjoints arc shown in Figures 1 and 2. Computations of these results were

12 1.2
i r ot
0.8 08 [
Red () Ooj :
0.2 mé,(») 0.2
0 0
-0.2 -02 |}
~04 | ] 04 |
—0.6 -0.6
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Re(y) Re(p)
3.5 05
3
2.3
2
Rey, (» 1.5
1
~0.5
0
-0.5 !
-6 —4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Re () Re(y)
Fig. 1. — Eigenfunctions for the sinuous mode (Re=700; —r=0, ... r=0.12).
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Fig. 2. — Eigenfunctions for the varicose mode (Re=700; —r=0, ... r=0.12).

used to evaluate the group velocity by means of (14) using (11 4, ). The computed values
were compared with the corresponding asymptotic relation which can be inferred directly
from results given by Drazin & Reid [1981], pp. 233-237. The asymptotic relations are

9.482 12.14
174 clor= 14 1.004 £{1-2232Y 0221 74( | F]-20),
(1740 t f( 8 ) (Ifl 2! )
(17b) clr= 1 +0.6428f(1 —@)_0.18065(|f|—2ﬁ'3§),
) Re Re

The data in Table II for f= —0.75 give reason to believe that the computed eigenfunctions
are quite accurate. The largest discrepancies occur for the imaginary parts whose domi-
nant contribution comes from the vicinity of the thin critical layer when the Reynolds
number is large. In fact, the imaginary parts in the inviscid limit come from the indented
contour around the critical point on the real axis. Hence, we conclude that our computed
values of the coefficients defined by (11) can be accepted with reasonable confidence.
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TasLe 1. — Comparisen of computed and asymptotic values of the group velocity for the Bickley wake.

Re C, cet Cy i
300, .. 02687-0.17914 0.2708—0.1573 0.5451—0.1050 i 0.5256—0.1196
00.. . 0256701734 0.2572—0.1624 0.5289-0.1245 i 0.5212—0.1286 i
100 .. 0.2518—0.1700/ 0.2518—0.1645 i 0.5229—0.1308 0.5194—0.1323

3. 1. RESONANCLE CONDITIONS

Eigenvalues at finite Reynolds numbers were computed to examine how closely the
exact resonance conditions (3) of the inviscid Bickley profile are approximated for profiles
where the cross-stream symmetry is broken. For this purpose a generalized asymmetric
velocity profile was used involving two symmetry breaking terms

(18) V(y)=sech? y+R tanh y+P sech y tanh y.

The last term adds a shear across the wake-shear layer centerline without affecting the
velocity ratio. It is included here because it has been employed to model the near-wake
of a splitter plate in mixing layer experiments (¢f. Zhang, Ho & Monkewitz [1985]) and
we wish to evaluate its effect on the resonance matching conditions. The alternate velocity
profile V() is selected for eigenvalue computations since it allows for the calculation of
the detuning parameters for arbitrary values of the wake-deficit parameter f. The change
in reference frame between the profile U(y), where

(19) Un=1+7V(y),

and V(y) is readily accounted for through a simple Doppler shift in the frequency. Since
the wave numbers are invariant with respect to the reference frame and the scaling
parameter f, the relation between the frequencies in the two frames is given by

(20) 9= f o 4 k.

The resonance detuning parameters for the two profiles are therefore related as follows:

2la) Qk,— k) =2k, — k),
(214) Qo,—0)"=fQ2o,~0)"+(2k,k,),
2le) (C, = CYW=1(C,~ C Y.

Their dependence on the velocity ratio #, or the asymmetry parameter p, for arbitrary f
is given by

(22) r=fR, p=fP.

In this way, general resonance detuning conditions can be computed by considering the
velocity profile V(). _

Since our interest is focused primarily on the effect of the symmetry breaking derived
from a small velocity ratio, tesonance detuning results from a series of eigenvalue
calculations are presented as a function of R for three different values of P in Figure 3.
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The fact that the detuning is not precisely zero at R=P =0 stems from the finite Reynolds
number used in our viscous calcylation. One observes that the detuning for P=0 is
relatively small for a range of velocity ratios (e. g, less than ten percent for |[R|<0.15).
For moderate values of the wake-deficit parameter f, this covers a reasonable range of
shear components across the wake. Of course, in a spatially-developing flow, the wake-
deficit parameter f will decrease in the downstream direction while the velocity ratio
remains fixed. It is clear that the flow will shift from a wake to a mixing layer at some
downstream position. This will occur when the number of critical levels [i. e., positions
where U (y,) =C] reduces from two to one. The boundary for this transition in the r—f
plane was defined by Wallace & Redekopp [1991]. One also observes from the results in
Figure 3 that negative values of P (i.e., P and R of opposite sign) significantly enlarge
the range of velocity ratios over which the resonance is strong. When the detuning
guantities in Figure 3 become large (exceeding twenty percent, say) the phase 6, in
equations (9 a, b) oscillates rapidly and the quadratic nonlinear terms will have negligible
effect on the average. In this case the evolution model will necessarily have to be extended
to higher-order terms {cubic nonlinearity) and one must confront the competition between
the slower evolution time scale and the time scale for diffusion of the mean profile.
These issues will not be pursued here.

3. 2. COEFFICIENTS OF THE INTERACTION EQUATIONS

The preceding results show that the harmonic interaction equations (9a, b) describe
the leading nonlinear interaction of the sinuous and varicose modes for a class of wake-
shear layer profiles. Consequently, it seems worthwhile to compute the coefficients in (9)
to gain some insight concerning the strength of the interaction of the two modes in
specific cases. Computations of the eigenfunctions and their adjoints at neutral conditions
were performed using the mean flow profite (19) and the integral expressions in (11)
were evaluated. Results were obtained at a Reynolds number of Re=700.

The first results we present are for the coefficients o, and B, of the nonlinear terms as
a function of the velocity ratio r at a fixed value of the wake deficit parameter f= —0.75
and with p=0. The results are shown in Figures 4 and 5 for the sinuous and varicose
mode evolution equations, respectively. We nolte first that these coefficients vanish
identically for the Bickley profile (i.e., r=p= 0) in the inviscid limit by symmetry consider-
ations (¢f. Kelly [1968]). The difference between our computed values and zero at r=0
can be used as a measure of the accuracy of our eigenfunction and integral computations.
It is noted that these coefficients differ significantly from zero as the profile symmetry is
destroyed. This is especially true for f, where the real and imaginery parts quickly attain
large values when r departs from zero. A possible explanation lies in the fact that, as
shown by Wallace & Redekopp [1991], both modes correspond to singular neutral modes
for nonzero + and that the contribution from the critical level regions can be expected to
be large for such cases.

Calculations of o, and f, were also performed for a range of the other parameters of
the problem to provide some insight to the broader parametric dependence of these
coefficients. The dependence on the wake-deficit parameter al fixed velocity ratio is
shown in Figures 6 and 7. Results were obtained for values of f in the range f> —09
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Fig. 3. — Resonance detuning conditions (Re= 1,000, —P=0, ... P=0.05, --@--P= —0.25).

where the wake-shear layer is convectively unstable. The boundary between the absolute
and convective instability regions in r —f space was determined by Wallace & Redekopp
[1991]. It is in the convectively unstable range where the model (9) for marginal modes
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is applicable to the evolution of waves forced at frequencies near the neutral points.
When the flow is absolutely unstable the wave numbers with maximum temporal growth
rates will dominate. The results in Figures 6 and 7 show that there are no significant
qualitative changes in o, or §, as f is varied. Calculations were also made for a range of
values of p with the fixed values f=—0.75, Re=700, and r in order to assess other
aspects of wake profile asymmetry. It is scen in Figures 8 and 9 that the coefficients o,
and B, depart rapidly from their zero values as p departs from zero when there is no
imposed shear across the wake (i.e., r=0). Nevertheless, the variations with r appear to
be more significant than that with p. Most importantly, the sign of terms can be changed
for selected combinations of r and p. As noted previously in reference to Figure 5, the
coefficient B, is considerably larger in magnitude than a,. An important conclusion from
these results is that profile asymmetry can have a significant effect on the nonlinear
evolution characteristics, particularly for the varicose mode.

There is also some interest to see how the coefficients of the nonlinear terms vary
with the Reynolds number. To examine this effect, calculations were made for a fixed
wake-shear layer profile (r=0.1, p=0, f= —0.75) over a range of Reynolds numbers.
The results in Figure 10 and 11 show that the variations are not monotonic for o, and
that the sign of P, may change at Jow Reynolds numbers. Although the change in the
imaginary part of g, is small over the range of Reynolds numbers shown and may not
be much greater than the numerical accuracy, the trend is smooth and probably real.
We anticipated a consistent asymptotic trend at higher Reynold’s numbers which could
be extracted from the results, but that is clearly not the case. One may conjecture that o,
is essentially independent of Reynolds number at higher values, but the real and imaginary
parts of B, have different curvatures at the righ Reynolds number end of the graphs.
Perhaps the asymptotic regime occurs at higher Reynolds numbers, but the group
velocity calculations (cf., Table II) suggest, at least for the Bickley wake profile, that the
asymptotic approximation is a good representation at the higher Reynolds numbers in
these figures. Of course, the eigenfunctions correspond to regular neutral modes for the
Bickley wake (r=p=0), but the modes are singular when r30 andjor p#0. In the latter
case, the asymptotic behaviour may be evident only at much higher Reynolds numbers.

3.3. GrROUP VELOCITY

Calculations of the coefficients D, and D,, a«=s, v, appearing in the evolution
model (94, ) were also computed as a function of the different parameters of the
problem. We present results here only for the group velocity (14) for selected parameter
values. In Figure 12 calculations for wake-shear layers with p=0 at fixed Reynolds
number are shown. The asymptotic relations (17) for the Bickley wake show that the
dependence on the wake deficit parameter f is lincar. For the most-part, this linear
variation persists for wake shear layers. Only the imaginary part of the group velocity
for the sinuous mode departs from the linear behaviour at smaller values of /. Figure 13
shows the behaviour with r and p. In ali cases, the dependence of the group velocity on
the various parameters is weak relative to the corresponding sensitivity of the nonlinear
coefficients o, and B,. Another point of interest regarding the group velocity, which is
evident in the values given in Table 11, is that the calculated values and the asymptotic
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Fig. 12. — Group velocities of the sinuous and varicosc modes for wake-shear layers
(p=0, Re=700; —r=0, --@--r=0.1).

results have the same trend with Reynolds number except for the imaginary part of the
sinuous mode. This is exhibited in Figure 14. In each case the computed results converge
to the asymptotic values except the imaginary part for the sinuous mode has opposite

curvature.

4. Analysis of the evolution system

The evolution system defined by (94, b) is analyzed for a spatially-developing wave
system which is temporally periodic. This subclass of solutions is applicable to situations
where the sinuous and varicose modes are temporally forced and the system is convectively
unstable. The complex amplitudes for the modes are expressed in the form

(23a)
(238)

A(X, T)= A, (X)e™ 0D
B(X, T)=B, (X)e ™'+

The frequencies Q, and £, will be selected to yield specific values for the sinuous and
varicose modes, respectively. With these definitions the spatial evolution of the two
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Fig. 14. — Comparison of the computed and asymptotic values of the group velocity
(f=-075 r=p=0).

modes is defined by equations which can be cast in the form

(240) KA+ 0]
(24b) TI-K,B,peh A, B,

The variables K, and K, are the respective (complex) spatial growth rates and p,, p,, $

5

¢, are the modulus and phase of the coefficients of the nonlinear terms:

(25) [ C!i'u |2 €

oU=3, V,
(26 ﬂ) Ps eu" = u‘n/Dk_,a
(26 H) pyetr=—B,/Dk,.

EUROPEAN JOURNAL OF MECHANICS, B/FLUIDS, vOL. 13, N* 2, 1994

c,. -
K, =K, +iK =" [Qﬁ‘”s zm"]ﬂ{l

C _ _
Far [Qa 1 Wy 2 w, _ks 2kv },
Cgu |2 & €

1600



158 D. WALLACE, L. G. REDEKOPP AND P. HUERRE

The pair of equations for the complex amplitudes A, (X) and B, (X) can be written in
terms of three equations for the real variables a (&), b(&), and 9 (&), where these functions
are defined by the transformations”

(27 a) A (X)= Eﬂ ity (E) el @),
Py

K, | .
(27d) B, (X)=——"_eb(E) ™,
(27 ¢} 8(£)=0,(8) 28,8 o
(27 d) ¢0 = ¢s+ (l)m
and
(27¢) £=K,X.

With these definitions the coupled pair of evolution equations can be written in terms of
the real, third-order system
da

(28 a) “=a+b?%cos 9,
8
db
(28 4) Z=Tb—ab cos(8+¢g),
s
2
(28¢) g—‘(%=7A—fL sin 92 a sin (9 + ¢o)
dt, a
where the two new parameters are defined by
K 2K, — K.
28 ==, A="2 =,
( 60 KSJ‘ KSF

This dynamical system has the disadvantage that the evolution of the phase 8(£) is
singular when a=0 (i. e., when the sinuous mode amplitude vanishes). An alternate real
form for the system which avoids this difficulty is obtained, following Vyshkind &
Rabinovich [1976], through the transformation

(294) U (E)=a(g) cos (S )+ o).
(295) V(E)=a(g) sin (3(§)+ o),
(29 ¢) W(E)=5"(%).

The system (28 @, b, ¢) then transforms to

(304a) %=U+AV—2V2+W cos g,
(30 6) %=V—AU+2UV+W sin b,
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(30¢) ﬂ=—zW(U—r).
€l

-

This form proves convenient for numerical calculations.

The interaction of the sinuous and varicose modes in a convectively unstable wake-
shear layer has been reduced to a third-order dynamical system for the spatial structure.
The system contains three parameters; A, I, and ¢,. Reference to the system (28) shows
that the parameter A characterizes the wavenumber detuning between the sinuous and
varicose modes. With the scaling used here, it is normalized by the spatial growth rate
of the sinuous mode. The parameter I' measures the relative growth rate of the varicose
mode and the parameter ¢, measures the phase misfit between the modes. In order to
limit the number of independent variables, we assume that the sinuous and varicose
modes are forced at frequencies satisfying the condition

(31) O =2 0,
This is equivalent to fixing the relation between Q, and Q, such that
(32) Q.=2Q.

With this choice, the parameters in the interaction equations are given by the following
relations:

a<Sof NG =2k 1 G (€
C C, o-20f0-1 C_lC

asi Gsi i

fvr

Cﬂslz_ l} Q
Cgv|2 Q-1

Qsr

glfir,p,Re)  Q
===+ _h(f,r,p, Re): (33
o i R (3)

1G,, IC,IP @ @
=— “ d = 3 -’ 5R ‘)
2C, |, fa-1 a1 V7R

(34)

Usi

(35) (I)O = arg (an) + arg (Bn) —arg (Dks Dkv)'

The control parameter for the system is Q which is a dimensionless forcing frequency
defined as

- -1
(36) Q=0 O _F7 "
1 s—1
-0, — @,
2
O o, . . . T
where p= and s=—— It is readily apparent that this parameterization is not useful

(Zw)

m\f h

when the neutral frequencies satisfy the precise resonance condition w,=2w, The
quantities A and I' are, however, still well-behaved in this limit. An alternate parameleriz-
ation which avoids the difficulties associated with this resonance condition when s=1
makes use of p as the control parameter,
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Then,
1 ¢ (c, lc, |2 C |

(37) - {J ”S|2(u—l)*(u*8)—| ”-‘—-(dl)}
H=s C.‘l‘sx Cysr Cgvl Cﬂsrc"’

and

(38) =_1_”'4 1 Cgv:: |C93|2

2

2p—sC

C,,

asi

k3

The parameter d appearing in (37) is defined by d= (Zkk . the resonant wave-number

V.

ratio. The singular behaviour of these coefficients when 1 =s arises because of the scaling
associated with the independent variable £ (¢f., eq’ #.27¢) which can be expressed as

Csi ms'_ms 2Csi
(39) &:K‘“'X=Tcg - PS x=|C”2mv(uAs)x.
gs s

The divergence of the flow defined by the dynamical system (30) is equal to 2(1+T)
implying that trajectories are unbounded for I'> —1. For I'< —1 volume elements in
phase space contract and bounded solutions are possible. There are two classes of fixed
points for the system; the origin and those sets associated with U=1T in (30 ¢). The origin
is always unstable while the fixed points associated with U=T" are stable for a restricted
range of the parameters (A, T, ¢,). Outside this range of parameters the system exhibits
either attracting solutions which undergo an infinite sequence of period-doubling bifurc-
ations leading to chaotic dynamics or else solutions which are unbounded. In that domain
of parameter space where solution trajectories are unbounded, the model (30} loses
physical relevance and must be augmented with higher-order terms {i. e., cubic nonlineari-
ties). The present system has been examined in some detail by Wersinger, Finn & Ott
[1980]. The dynamical model (28) or (30} has also been studied independently by Sauliére
& Huerre [1987] and more recently by Proctor & Hughes [1990] and Hughes & Proctor
[1993]. In the domain of attracting solutions, these investigators were able to reduce the
dynamical system to a one-dimensional map through asymptotic analyses. These are
remarkable achievements in that they provide specific examples where the Navier-Stokes
system is asymptotically equivalent to a one-dimensional map containing bifurcation
sequences leading to complex dynamics. Further detailed studies of the dynamics repte-
sented by (30) will not be attempted here except for the one sample result shown in
Figure 15. This figure shows a portion of the space of attracting solutions which are
possible for a fixed choice of ¢,. The dynamics implicit in this part of parameter space
involve periodic or intermittent bursts of the varicose mode. In this case the dynamical
system describes a periodically-forced, spatially-developing array of vortex structures
where the regularity of the vortex street associated with the sinuous mode 1s interrupted
at spatial positions with significant content of the varicose mode. In the chaottc region,
a spatially-chaotic arrangement of vortices exists.
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5. The evolution model for wake-shear layers

The evolution model described in the preceding section has been employed to examine
the (near) resonant coupling of the sinuous and varicose modes in a forced, spatially-
developing, wake-shear layer. In particular, the dynamical system (30) was studied with
Q as the control parameter for a wake-shear layer with r=0.1, p=0, and Re="700. Since
the wake deficit decreases with increasing distance in any spatially-developing wake-shear
layer, the coefficients in the dynamical system were evaluated for a range of values for f.

Referring to equations (33)-(35), four functions (g, 4, v and 4)0), each of which depend
on the parameters defining the character of local mean velocity profiles, are required to
specify the dynamical system for a fixed value of the control parameter. Calculations of
these functions based on results presented in Section 3 are shown in Figure 16. The
singular behaviour of the function g for the chosen value of the velocity ratio and the
Reynolds number when the wake-deficit parameter is around f= —0.7 shows that the
neutral frequencies satisfy the resonance condition m,=2w, for these conditions. The
remaining functions 4, y and ¢, are well-behaved. The significant result from these
calculations vis-d-vis the dynamical system (30) is the relative values of A and T.
Elimination of the control parameter Q in (33) and (34) leads to the relation
A=wr—g. The small value of vy in the present case places the parameters A and T

Y
im a domain where the dynamical system has unbounded trajectories, at least for the
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Fig. 16. — Velocity profile parameters functions {(r=0.1, p=0, Re=700).

chosen values of r, p and Re. In this instance, an extended evolution system along the
lines derived by Proctor & Jones [1988] in their study of spatially-resonant states in
thermal convection is necessary. Evaluation of these parameters for other choices of £, r,
p and Re could be accomplished to ascertain a possible family of profiles for which the
evolution model (30) has asymptotic validity. However, it is felt that such an exercise is
not warranted at this stage. A more meaningful effort would involve computation of
higher-order terms in amplitude equations. To extend the present model along those
lines requires restrictive assumptions concerning the parallel nature of the mean flow. In
this connection, a preferred approach to the interaction of the sinuous and varicose
modes in a spatially-developing flow would, perhaps, be that adopted by Leib &
Goldstein [1989].

6. Concluding remarks

The resonant interaction between the sinuous and varicose modes in wake-shear layers
has been studied for finite Reynolds numbers. It is shown that the broken symmetry of
the velocity profile at small velocity ratios can lead to a strong nonlinear coupling of the

EUROPEAN JOURNAL OF MECHANICS, B/FLUIDS, VOL. 13, N° 2, 1994



RESONANTLY INTERACTING MODES IN WAKE SHEAR LAYERS 163

modes. The broken symmetry forces the neutral modes to be singular on an inviscid
basis with consequent strong nonlinear interaction in the critical layer region at finite
Reynolds numbers. The present results Suggest that even weak asymmetries can stimulate
significantly aitered nonlinear development of flow instabilities or forced response. These
conclusions await further experimental and/or numerical investigations.

Several experimental studies have pointed to the significance of the nonlinear coupling
between the sinuous and varicose modes in a wake. Ongoren & Rockwell [1988] studied
the laminar wake behind a cylinder at an oblique angle o to the flow and forced at
frequency wg. For particular values of a and the frequency ratio wg/my, where wmy is the
natural frequency, the near-wake structure was completely synchronized in either of the
modes. For values of the frequency ratio below one-half, however, the varicose mode
appeared only very intermittently in short-duration pulses. As the frequency ratio was
gradually increased, the duration of the bursts of varicose-mode activity lengthened until
both modes became equally probable. Wygnanski, Champagne & Marasli [1986] have
argued strongly that both the sinuous and varicose modes should be included in a
description of the vortical structures in small-deficit turbulent wakes. They note that a
simple linear “superposition of the two mades of instability leads to physically acceptable
flow patterns associated generally with large coherent structures contained in the wake”
for deficit parameters in the range —0.15<f< —0.03. It was hypothesized by these
authors that the lack of universality of the far wake results from the interaction between
these modes. The present work suggests that weak asymmetries could be a contributing
factor, as well as possible spatial intermittency of the varicose mode, through nonlinear
coupling.
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