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Abstract

The motion induced by vortex shedding on slender flexible structures sub-
jected to cross-flow is considered here. This phenomenon of vortex-induced
vibration (VIV) is analysed by considering the linear stability of a coupled
system that includes the structure dynamics and the wake dynamics. The
latter is modelled by a continuum of wake oscillators, distributed along the
span of the structure. In the case of uniform flows over a straight tensioned
cable, VIV are found to arise as an instability related to the merging of
two waves. In the case of a cable of finite length, the selection of modes
that experience lock-in with the wake is found using the same stability ar-
gument. In non-uniform flows, several unstable wave systems are identified,
and competition between them is discussed. Comparison is then made with
existing experimental and computational data of VIV of slender structures
under uniform and non-uniform flows. Phenomena previously identified in
these systems, such as mode switching when the flow velocity is varied, time
sharing of the response between two frequencies, or the coexistence of several
regions of VIV with different dynamics in the same structure, are discussed
with the help of the proposed model.
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1. Introduction

Vortex induced vibrations (VIV) of cylindrical structures has been the
subject of extensive theoretical, experimental and numerical studies, see for
instance Williamson and Govardhan (2004), Sarpkaya (2004) and Gabbai and
Benaroya (2005) for recent reviews. A bluff body undergoing VIV can reach
an amplitude of motion in the direction transverse to the flow of the order of
one diameter. This occurs when the period of vortex shedding is comparable
to the free oscillation period of the structure. A strong interaction then takes
place between the cylinder and its wake, and both elements oscillate at the
same frequency, owing for the term lock-in. The underlying impacts of this
phenomenon on engineering applications, such as undesirable vibrations of
offshore structures, chimneys and heat exchanger tubes, explain the deep
interest in the subject. In fact, sustained vibrations of those structures can
lead to failures by fatigue or unacceptable increases of the drag on the system.

In this paper, the focus is on slender structures undergoing VIV, the
engineering application being related to offshore systems such as mooring
cables or underwater piping elements called risers. Those practical cases
are characterized by a flexible bluff body having an aspect ratio, length over
diameter, of order 10% and a ratio of structural mass over fluid displaced mass
of the order of one. As reported from field studies (Alexander, 1981, Kim
et al., 1985, Vandiver, 1993 and Marcollo et al., 2007), the vortex-induced
motion of those structures is sometimes characterized by travelling waves.
Since the ocean or sea currents usually vary with depth, those structural
waves may develop in non-uniform flow conditions.

Considerable knowledge has been gained on the physics of the interac-
tion between a rigid cylinder and its wake when the former is undergoing a
prescribed motion (for example Sarpkaya, 1978, Gopalkrishnan, 1993, Car-
berry et al., 2005) or is free to move transverse to the flow direction when
supported elastically (for example Khalak and Williamson, 1999, Vikestad
et al., 2000).

The behaviour of high aspect ratio flexible structures under non-uniform
or even uniform flows is however much less understood. Even though there
are similarities between the phenomenology of VIV of rigid and flexible bodies



as reported by Brika and Laneville (1993) and Fujarra et al. (2001), there is
indeed a gap between the two situations. Several aspects must be taken into
account: (a) in very slender structures the number of vibration modes that
may interact with the wake is large, (b) the local wake depends on the local
cross-flow that may vary in intensity and direction along the structure, (c) in
practical applications boundary conditions at the extremities of the structure
may be quite dissipative, and a wave description may be more appropriate
than a mode description. This leads to questions that are definitely more
complex than in the case of an elastically supported rigid cylinder under
uniform flows, as often used in analytical studies. For example, the issue of
the range of flow velocities that may lead to lock-in differs: for an elastically
supported rigid cylinder this is well defined, see for example King et al.,
1973 and Griffin and Ramberg, 1982, and may easily related to the ratio of
the frequency of shedding and that of the cylinder, with some effect of mass
ratio and structural damping. When the number of modes that may lock-in
is large, several time scales are present in the problem, and the existence
of one or several simultaneous lock-in must be evaluated. Moreover, as the
oncoming flow may vary in space, several time scales of vortex shedding
may also exist, further complicating the problem. Finally, the possibility of
travelling waves exists.

In fact, there are a number of publications reporting laboratory experi-
ments on VIV of high aspect ratio structures that bring some answers to the
questions above, for example King (1995), Chaplin et al. (2005b), Trim et al.
(2005), Lie and Kaasen (2006). In King (1995), results are reported from
a tensioned cable under uniform water flow. A stair-like shape is observed
for the evolution with flow velocity of the motion frequency of the structure.
Each step corresponds to the lock-in range of a distinct structural mode.
This type of experimental result was also reported more recently by Chaplin
et al. (2005b). Conversely, Trim et al. (2005), when testing a high aspect
ratio tensioned beam in uniform flows, observed that the evolution of motion
frequency is rather continuous with velocity.

In Chaplin et al. (2005b), it is also reported that VIV in uniform flows
can be either highly periodic or, in some cases, strongly modulated with time
in terms of modal content of the response. In the latter case, the response
would “switch” from one dominant spatial mode to another, justifying the
name “mode switching” used by Chaplin et al. (2005b) for this phenomenon.
The same behaviour was also observed from field experiments with a very
high aspect ratio riser in non-uniform currents, where distinct frequencies of



movement were “sharing” time (Swithenbank, 2007) leading to the term of
“time sharing” which we shall use here.

Numerical computations of VIV of slender structures are also available
in the literature, where the Navier-Stokes equations and the structural equa-
tions are solved jointly (Newman and Karniadakis, 1997, Lucor et al., 2006).
Due to the extensive computational cost, there are few three dimensional
computations for high aspect ratio systems. Newman and Karniadakis (1997)
found a cable response in form of a travelling wave in uniform flows, but
they obtained a mixture of standing and travelling waves for a non-uniform
flow. Lucor et al. (2006) studied a very high aspect ratio tensioned beam
with non-uniform flow loading. They reported that the structure vibration
frequencies varied with space, the low frequencies being located at low flow
velocity region and the high frequencies at the high flow velocity region. This
spatial variation of dominant vibration frequencies in non-uniform flows is
also observed experimentally, (Kim et al., 1985).

Apart from numerical solutions of the Navier-Stokes equations, one can
rely on semi-empirical models for predictions. By semi-empirical, it is meant
that results from rigid cylinder experiments are used as inputs to predict VIV
of slender flexible structures. These models can be divided in two subgroups.
For the first subgroup, the hydrodynamic loading on the structure is function
of its own movement. For example, Sarpkaya (1978) decomposes this load-
ing into two components: one in phase with the acceleration and the other
with velocity. The dependency of those quantities on the movement of the
structure is then obtained experimentally (see for example Gopalkrishnan,
1993). This approach is widely used in industry, see Vandiver (1994). On
the other hand, from experimental observations of the time evolution of the
lift force due to vortex shedding, Birkoff and Zarantanello (1957) and Bishop
and Hassan (1964) suggested that this quantity could be regarded as result-
ing from the dynamics of an oscillator. This is the basic idea of the second
subgroup of the semi-empirical models, where the wake dynamics is modelled
by a nonlinear oscillator, leading to the term “wake oscillator models”. Since
the development of the first wake oscillator model by Hartlen and Currie
(1970), several models have been introduced with different nonlinearities for
the wake equation and different coupling functions between the wake and the
structure. In a recent paper, Gabbai and Benaroya (2008) have shown that a
number of wake oscillator models in the literature can be recovered from us-
ing Hamilton’s principle, proving, to some degree, that this family of models
has some relevance in terms of fluid dynamics. More generally, representing
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the dynamics of the wake by a single self-sustained nonlinear oscillator is
consistent with the idea of a nonlinear global mode which is characterized by
its frequency, growth rate, and amplitude (Chomaz, 2005). Using a van der
Pol oscillator to model the fluctuating lift, Facchinetti et al. (2004a) showed
that the most appropriate forcing on the wake variable for reproducing the
physics of lock-in was proportional to the acceleration of the structure. Using
distributed wake oscillators along the span of the structure, the model was
then extended to flexible structures subjected to uniform and non-uniform
flows (Facchinetti et al., 2004b, Mathelin and de Langre, 2005) and validated
against results from numerical simulations and experiments on high aspect
ratio flexible structures under non-uniform flows (Violette et al., 2007). This
model has also been used by other authors since then to study certain aspects
of VIV of slender structures in non-uniform flows (Modarres-Sadeghi et al.,
2008 and Xu et al., 2008).

In Chaplin et al. (2005a), comparisons for a tensioned beam in uniform
flows between experimental results and most existing prediction methods are
presented. Those methods succeed at different levels at predicting quanti-
tatively the experimental results. However, there is certainly a need for a
systematic and comprehensive approach to address the issues raised above,
that are specific to slender structures: simultaneous lock-in of several modes,
travelling waves, time sharing and separation in space of dominant frequen-
cies. The focus needs to be more on the mechanisms that lead to such
behaviours than on the quantitative prediction.

In a recent paper, de Langre (2006) modelled vortex-induced vibrations of
an elastically supported rigid cylinder under uniform flow using a linearized
version of Facchinetti’s wake oscillator model. He showed that the lock-in
mechanism between the wake and the structure can be modelled as a linear
instability arising from the merging of the frequencies of the two modes of
the system: namely a structure-dominated mode and a wake mode. This
type of instability is commonly called coupled-mode flutter (Blevins, 1990).
Using this simple approach, de Langre retrieved analytically the influence of
the different parameters on the characteristics of lock-in. Clearly, such a lin-
ear stability approach could not lead to estimations of the amplitude of the
steady-state motion of the cylinder. Still, it was found that some character-
istics of the steady-state regime, such as the frequency or the dependence on
mass ratio, did not differ much from those of the most unstable mode found
in the linear stability approach. More generally, this allows one to describe
the lock-in between a flow instability and a vibration mode of a structure in



a linear framework: see for instance the case of flow over a canopy, Py et al.
(2006) and Gosselin and de Langre (2009), where a mixing layer instability
interacts with a flexible system.

Following the approach of de Langre (2006), the purpose of this paper is
therefore to present a simple theory for vortex-induced vibrations of slender
flexible structures based on a linear stability analysis, and thereby to furnish
simple explanations to the questions raised in this introduction. In section
2, we present the linear wake oscillator stability theory used for comparisons
with experiments and numerical results reported in the literature.

2. A linear wake oscillator model for Vortex-Induced Vibrations
under uniform flow

2.1. Model description

For the vibrating structure, a tensioned cable model is considered here
for its simplicity. Considering only the cross-flow movement of the cable, its
equation of motion in dimensional form is

0?Y . oY @82}/ e (1)
m ., — _ _— =
sor? ' >tor T azr TV
Y (Z,T) being the structure displacement at the spanwise position Z and
time T, © being the tension, mg the linear density of the cable and (g the
structural damping coefficient. Following Facchinetti et al. (2004b), the fluid
force Fy is written

2

Fy = 1pU*DOL(Z,T) = T pD*Co 0y — 2 pDCoUS (2)
where p is the fluid density, D the cross sectional diameter, U the flow ve-
locity, Cy, the inviscid added mass coefficient, C'p the mean sectional drag
coefficient and C7,, the fluctuating lift coefficient amplitude for a rigid cylin-
der under uniform flow. The dynamic of the local fluctuating lift coefficient
q(Z,T)=2CL(Z,T)/CL, appearing in the forcing term Fy is here modelled
using a linear oscillator, following de Langre (2006)

9% U\ 9q U\? Y



where St is the Strouhal number. The forcing of the structure over the
wake is proportional to its local cross-flow acceleration through an empir-
ical constant A, see Facchinetti et al. (2004b). In this simple model, the
phenomenology must be introduced through the coeflicients C'r,, Cp, Sy, A
and e. Of these, the first three quantities are well documented, for instance
in terms of their dependency on the Reynolds number (see Norberg, 2003).
The empirical parameters € = 0.3 and A = 12 are deduced from wake mea-
surements obtained from forced vibration experiments on rigid cylinders (see
Facchinetti et al., 2004a). Note that no spanwise interaction of the wake
variable ¢ is considered: an interaction by diffusing and stiffening terms was
studied by Mathelin and de Langre (2005) for flexible structures and it was
shown then that its effect was negligible, the spanwise interaction in the wake
resulting essentially from the structure movement. From equations 1 and 3,
the wake and the structure will now be considered as a single one-dimensional
medium, the dynamics of which is defined by Y (Z,T) and ¢(Z,T). This
medium will be analysed with propagating wave solutions. These propagat-
ing waves have two components, namely the structure displacement Y (Z,T')
and the lift fluctuation ¢(Z,T), figure 1.

2.2. Dimensionless form

Equations 1 and 3 are now put in dimensionless form. The cable un-
damped phase velocity in stagnant fluid C is used to define the dimensionless
time,

C= m (4)
where m,, = mg + (7/4)pD?C)y, is the sum of the structure mass and the
inviscid fluid added mass. Using the diameter D as the reference length
scale, the dimensionless time ¢, displacement y and spanwise position z are
expressed respectively as t = CT/D, y = Y/D and z = Z/D. The dimen-
sionless equations are then

P’y v\ 0y Py 2
9*q q ., Py
where
. . CD . CLO . m,
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As outlined by Facchinetti et al. (2004a), M is a mass number that scales
the effect of the wake on the structure. The parameter u is referred to as the
reduced velocity and is defined by

U
In de Langre (2006), it was shown that damping terms did not signifi-
cantly affect the instability mechanism causing lock-in. We therefore disre-
gard them now for the sake of simplicity. The set of equations used in the
theoretical development in the next two sections therefore simply read

Py 0%y

o2 o2 = Mve (9)
0?q 0%y

Only three dimensionless parameters, u, A and M are left in this model
of vortex-induced motion of a tensioned cable. The control parameter is u,
the reduced velocity, which scales the flow velocity with the velocity of waves
in the cable, equation 8. The parameter A scales the sensitivity of the wake
dynamics to the motion of the cylinder, equation 3, while M is essentially
a mass ratio, equation 7. Their respective values are of the order of 10 for
A (A = 12 was found by Facchinetti et al.), and 1072 for M in the case of
neutrally buoyant structures, such as found in offshore engineering. These
two parameters only affect the result through their product AM, as can be
seen by a change of variable () = q/A. The typical order of magnitude of the
combined parameter AM is therefore 1071, We will refer to the AM term as
the mass parameter, in reference to its dependency on the mass ratio u.

3. Linear stability analysis in the case of uniform flow

3.1. Infinite tensioned cable

The stability analysis of the system 9 and 10 is presented first for the
case of an infinite cable-wake medium. Searching for solutions in the form of

propagating waves
[ y(z, 1) ] _ { z ] ei(thrkz)’ (11)



where w is the frequency, k& the wavenumber, § and ¢ the complex amplitude
of the structural and wake part of the waves respectively, the dispersion
relation reads

D(w, k;u) = w* + [(AM — 1)u? — k*w? + k*u? = 0. (12)

Note that this relation can be put in the reduced form D(w/u, k/u) = 0,
however, the form 12 is kept in order to facilitate the physical interpretation
of the results. The stability analysis of the cable-wake is now done for the
temporal problem, i.e. with k£ real. The pulsation w as a function of k and u
is derived from 12,

1/2
ik, u) = i% K24 (1= AM) u? % \/ (K2 + (1 — AM) u2)® — 4k2u2]
(13)

Frequencies come in pairs of opposite signs corresponding to propagation in
opposite directions. Assuming AM < 1, which is consistent with practical
cases, w is complex when

—2ku < k* 4+ (1 — AM) v® < 2ku. (14)

The range of wavenumbers k that give complex w at a given reduced velocity
u is therefore

u(l—vVAM) <k <u(l+VAM). (15)

For wavenumbers that satisfy 15, the complex frequency is

) .
we = 5/ + 2uk + (1= AM)e? £ %\/—k:? +2uk + (AM — 1)u?. (16)

From equation 16, two unstable and two damped waves are found for each
wavenumber inside the range defined by 15. This defines a temporal insta-
bility for the coupled cable-wake system.

Before going any further, the physical characteristics of this instability are
analysed. Figure 2 illustrates the real and imaginary part of w as a function
of k for typical values of AM. Here, the velocity u is taken equal to one,
recalling that the dispersion relation may be put in a reduced form on w/u
and k/u. The figure also shows the ratio G between the wake amplitude and
the cable amplitude

k? — w? Aw?

q
G:§: Mu2 w2 -2 (17)




These results may be interpreted as follows. For wavenumbers outside the
lock-in range defined by relation 15, two waves are found: one with a strong
wake amplitude (denoted W) and one with a strong structure amplitude
(denoted S). The frequency of the S waves increases linearly with &, which is
expected for a tensioned cable. The frequency is nearly constant for the W
waves, which is expected for a wake with no spanwise interaction. The two
wave frequencies merge in the lock-in range leading to complex conjugates
frequencies w. This is identified on the figure as coupled-wave flutter (CWF).
In this range of wavenumbers the phase angle between the cable and the wake
varies from 7 to 2m.

From figure 2, it is found that the cable-wake medium displays a temporal
instability, similar to that of the elastically supported rigid cylinder reported
by de Langre (2006). It results from the merging of the frequencies of two
neutral waves, a structural wave S and a wake wave W. For a given reduced
velocity u, the most unstable wavenumber is k,,,, = u. The corresponding
complex pulsation reads

AM  VAM

=y )1 — _ . 18
w u 1 u— (18)

Conversely, at a given wavenumber k, one can retrieve from equation 15,
the range of reduced velocities u for which w is complex

k k
— << ——.
1+vVAM 1—vVAM

The frequency w is then given by equations 16. Outside this range, equation
13 gives the neutral frequency. Figure 3 shows the evolution of w and G
as a function of u for a given wavenumber. The same instability related
to merging of the frequencies of two waves is observed. The evolutions of
the pulsations and of the phase angle with the flow velocity are identical to
that given in de Langre (2006) for an elastically supported rigid cylinder.
This is expected, as fixing the wavenumber k is equivalent to replacing the
spanwise second derivative of the displacement in 9 by a constant times the
displacement: the equation for the structure is then identical to that of an
elastically supported rigid cylinder.

(19)

3.2. Tensioned cable of finite length

We seek now to analyse the stability of the cable-wake medium when
boundary conditions are imposed. This is done by imposing a restriction on
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the admissible wavenumbers. For a tensioned cable of dimensionless length
A = L/D with fixed ends, figure 4, the boundary conditions read

y(0,t) =0, y(A,t)=0. (20)

As no spanwise interaction is considered for the wake, no boundary condition
is required on ¢q. Admissible real wavenumbers for such a configuration are
thus

n, (21)

where n = 1,2, 3 ... In this case, the terminology “mode number” applies to
the variable n. Rewriting 19 using 21, one finds the range of reduced velocity
in which Mode n is unstable

<7T> n <y< (71') n (22)
— ) ————<u — ) —

AN 1+ VAM A1 —VAM

Inside this range of reduced velocities, the frequency of Mode n is

Wy, = (%) [\/nQ +2n6+ (1 — AM)B? — i\/—n2 +2n6 — (1 - AM)B2] ,
(23)
with 0 = (A/7)u. Figure 5 shows the evolution of w with u for n = 1,2 for
two values of AM. For the sake of clarity, neutral frequencies are not shown.
From figure 5, it is seen that Re[w] varies almost linearly with v and that
the transition from one mode to another involves a jump in this quantity
(stair-like shape).

It can also be noticed that the range of instability for two adjacent modes
can overlap. This is the case for AM = 0.3 but not for AM = 0.05. This
shows that it is possible for more than one mode to be unstable for a given
flow velocity. As seen on figure 5, the unstable modes have distinct frequen-
cies. Using relation 22 and defining Au, as the range of reduced velocities
where mode n and n + 1 are both unstable, one finds

20/ AM
(27, o

s
Au,, = —
Uy, A

4. Linear stability analysis for non-uniform flow

Here, a generic case of non-uniform flow is studied. It consists in an
infinite tensioned cable submitted to two uniform flow profiles, u; for z > 0
and uy for z < 0, with u; > uy (figure 6).
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4.1. Configuration characteristics

Denoting wq, wy and k, p the frequencies and wavenumber for Medium 1
and 2 respectively, the dispersion relations read

Dl(wl, kf, Ul) = w14 + [(AM - 1)U12 - k:z]quQ + k?2U12 = O, (25)
Dy(wa, pyua) = wo' + [(AM — 1uy? — p?lws® + p*uy® = 0. (26)

Solving equations 25 et 26 for k and p one finds

AMU12 AMU22

k= twi[1+—; 5y D= Fway 1+ 5 (27)

w1e — Up CUQ2 — U2

The configuration shown on figure 6 implies a connection between the
two media at z = 0. As no spanwise interaction is considered for the wake
variable, this connection imposes conditions only on the structural part of
the waves,

(0. = 13(0.8), 2(0,0)= T2 (0.0) 29

This implies that w; = wy = w. We restrict our analysis to temporally unsta-
ble wave systems, corresponding to a complex w with a negative imaginary
part. Also, only waves with finite amplitude at infinity are considered.

The cable displacement y and the fluctuating lift amplification ¢ are in-
cluded now in one variable for each medium, namely x;(z,t) and x2(z,t)

y1(z,1) 1 ya(z,1) 1
= . . z,t), =1 . . z,t). (29
a0 = Laa e 200 ] =] o [ @
From equation 27 two waves are found in each medium. The response for
the entire system is thus in the general form

X1(27 t) _ Plei(wt+k+z) + Nlei(wt-i-k_z)’ (30)
X2(Za t) — P2€i(wt+p+z) + NQei(wt—i—p*z), (31>
where P and N are the amplitudes of the waves that are propagating toward
positive and negative z respectively. For the sake of clarity, £ and p are

noted for now on without the + and — signs. Figure 7 illustrates the type of
response implied by equations 30 and 31.
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4.2. Admissible wave systems

Admissible wave systems should satisfy (a) the dispersion relations (equa-
tions 27), (b) the connection condition (equation 28) and (c) the condition
of finite amplitude at infinity. The most general case implies complex values
of k and p. From equations 27, there is one wave in each medium that re-
spects the finite amplitude condition at infinity, figure 8. However, condition
28 cannot be satisfied in this case if both wavenumbers are not equal. This
form of response is thus not admissible.

The second type of response corresponds to both wavenumbers k£ and
p being real. This configuration satisfies condition 28 for all wavenumbers.
Since the complex frequency must be the same in both media, the ranges of
unstable k£ and p must overlap. From equation 15 this condition reads

vy 1 - VAM (32)
Uy 1—AM
This form of response is now referred to as the Conditional Wave System (C)
because of this requirement, and is illustrated on figure 8.

The last possible type of response is composed of two neutral waves inside
one medium and one wave with spatially decaying amplitude in the other
medium. This form of response satisfies condition 28. Two new wave systems
are thus identified: the first for which £ is real and p is complex and the second
with p real and k& complex. The first wave system is from now on called the
Primary Wave System, (P), and the second Secondary Wave System, (S),
figure 8.

In order to compare wave systems, a common length scale is used to
normalise the variables. This length scale is set equal to the most unstable
wave length in Medium 1. From the discussion in section 3.1, the corre-
sponding wavenumber is k,,,. = u1. The normalised quantities are therefore
Z = zuy /27, k = k/u; and p = p/u,. Variables t and w are also normalised by
uy in order to obtain ¢ = tuy /27w and @ = w/uy. The velocity ratio R = ug/uy
is also introduced. The relations between the normalised variables @, k and
p read

Re [ \/kz2+2k:+(1—AM \/p 2R+ (- AMRE,  (33)
Im [] :——\/ R2 42k + (AM — 1) = ——¢ " 2Rp+ (AM — DR,
(34)
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AM _ _ AM R?
‘f‘ﬁ, p::I:w 1+m. (35)

At a given reduced velocity u, there is a real wavenumber for which the
growth rate in time is maximum, see section 3.1. The most unstable (P)
wave system is for & = 1. In the same way, the (S) system with the highest
growth rate is for p = R. The most unstable normalised frequency for each
system thus reads, from equation 18,

wp=4/1—

AM VAM
1 — i 5 ws = R wp. (36)

Note that as R < 1, both the real and imaginary part of the complex fre-
quency are smaller for (S) than (P).

While in (P) and (S) all frequencies are admissible, there is only one
possible frequency w at a given velocity ratio R for the wave system (C).
The corresponding wavenumbers are derived using 33 and 34

k=+RV1—AM, p=+V1—-AM, (37)
and the frequency reads
2 = 2Rva+a (1+R)]? —i[2RVa—a (1+ RY)]?,  (39)

with « = 1 — AM. It appears that the growth rate of the conditional wave
system (C) is always smaller than that of both the (P) and (S) systems. We
shall therefore assume that its role in the response can be neglected and will
not discuss it any further.

4.83. Spatial forms of (P) and (S)

The spatial form of the wave systems (P) and (S) is examined here for
fixed values of the velocity ratio R and of the mass parameter AM. A
parametric analysis of their effect presented in Violette (2009), not shown
here for the sake of brevity, shows that : (a) the form of the wave system is
fairly independent on R and (b) high values of AM lead to stationary waves
instead of propagating waves.

The evolution in space of wave systems (P) and (S) is fully determined
by the wavenumbers k and p and the amplitude coefficients Ny, N, P, and
P,. For (P), we have k = 1 and p is obtained from equation 35. The finite
amplitude condition at infinity requires that P, = 0. The amplitudes Ny, N,

14



and P; are determined from the connection conditions, equation 28. As there
are only two equations for three unknowns, N; = 1 is used as a reference.
Solving equation 28 for Ny and Ps, one finds

[Ny, P, Noy B =11, 1=p) /(1 +p), 2/(1+p), 0]. (39)

Leaving out the growth in time of the amplitude, the response of (P) is shown
on figure 9. The global response can be summarized as a wave propagating
towards negative z. Its amplitude decreases exponentially for z < 0 and is
spatially modulated for z > 0. This modulation is caused by the relatively
low modulus of P, with respect to the reference value N;. Figure 9 shows
that there is a jump in amplitude for the wake variable at z = 0, which is
expected since the amplitude ratios ¢; /91 and a2 /9, are not equal (equation
17).

The spatial shape of (S) is found following the same steps. We have p = R
and the wavenumber k is found with equation 35 for the pulsation obtained
from equation 36. The amplitude coefficients read

[N1, P, Ny, Py} = [0, 2R/ (R+Fk), (R—Fk)/(R+k), 1]. (40)

Figure 9 shows the form of the response (S). Except for the wavelength and
the direction of propagation, the spatial form of (S) is similar to that of (P).

4.4. Coexistence of primary and secondary wave systems: Space sharing

Considering that the growth rate of the wavesystem (P) is always larger
than that of (S) one may expect that the former will dominate the long term
steady-state response of the system. This is evidently true in Medium 1, the
region of higher velocity, but not in Medium 2 where the amplitude of (P)
exponentially decays with distance from the interface. Hence the question
of how far into Medium 2 the wavesystem (P) penetrates must be analysed
carefully, by taking into account both spatial and temporal forms. Still using
the linear framework we consider the locus where both wave systems have the
same amplitude, when an arbitrary unit initial condition is taken for both,
figure 10(a). This locus moves into Medium 2 as time grows, as illustrated
on figure 10(b). The phase velocity of this motion is given by

P] — Im[a)s]
Im(p,]

Im[w

Cps =

(41)
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This quantity is found to be of the order of unity, in dimensionless variables,
and to depend on the velocity ratio R but weakly on the mass parameter
AM, figure 10. This velocity scales the rate at which the wave system (P),
associated with the higher velocity, penetrates into the region of lower ve-
locity. It may therefore be used, in a system of finite length, to estimate
the possibility that the secondary wave system persists in the region of lower
velocity. A persisting (S) system in the response results in a separation in
space of the dominant frequency, a phenomena which we shall refer to here
as “space sharing”. In section 5.4, we look into the question of space sharing
in a practical case.

5. Comparisons with experimental and numerical results

The linear theory presented in Sections 3 and 4 is now used to anal-
yse some reference cases of vortex-induced vibrations of slender structures
published in the literature.

5.1. Range of unstable wavenumbers

In Section 3.1, we have shown that, for a given reduced velocity u, there
is a range of real wavenumbers £ for which the cable-wake system is unstable
in time. Outside of this range of wavenumbers, the waves are neutral so that
their amplitude should rapidly be negligible in comparison to their unsta-
ble counterparts. We therefore expect wavenumbers of motions observed in
practice to fall inside this range.

To verify this assumption, we use the experimental results by King (1995),
who measured the response vibration frequency and mode number of a ten-
sioned cable undergoing VIV in uniform flows. The vibration frequency as
a function of the flow velocity is shown on figure 11(a), and experimental
conditions are summarized in table 1. The stair-like shape of the frequency
evolution with flow velocity mentionned in Section 3.2 for a tensioned cable
(figure 5) is clearly seen in the experiments.

The experimental results from King (1995) are used here to verify the
validity of relations 15 and 16, which give the expected range of unstable
wavenumbers and the corresponding frequency of motion. In order to do so,
the parameter M from equation 7 needs to be quantified. As the mass ratio
is known, the only inputs needed are C',, and Sp. For the range of Reynolds
numbers considered here, a value of C, = 0.2 is reported by Norberg (2003).

16



As for the Strouhal number, a value of S = 0.17 is used, consistent with ex-
perimental results from Chaplin et al. (2005b) for similar Reynolds numbers
on a tensioned beam under uniform flows. In order to collapse the data on to
one graph, the dimensionless frequency Re[w] is normalised by the reduced
velocity u. The frequencies and wavenumbers reported by King (1995) are
put in dimensionless form using

SZ (2AnST> (%pofu/w— 1>> ’ RZ[W] - SfT—% 42)

The term n refers to the dominant spatial mode observed in the experiment
and f to the observed vibration frequency, figure 11(a). The comparison
between the experimental results and the theoretical prediction, equations
15-16, is shown on figure 11(b). Most of the experimental points are located
inside the range of unstable wavenumbers. Moreover, the normalised fre-
quencies of motion fall very close to the curve predicted by the linear theory.

5.2. Transition between modes

From the analysis presented at Section 3.2 for a finite system, there are
possible overlaps of reduced velocities ranges of instability of two (or more)
adjacent modes. In the case of such overlaps, we assume that only the most
unstable mode is observed in practice. To test this assumption, results from
the experimental study of Chaplin et al. (2005b) are used.

A sketch of the experiment is shown on figure 12. It consists of a tensioned
beam of low flexural rigidity subjected to a uniform water flow on part of
its length, the other part being in stagnant water. Chaplin et al. (2005b)
represent the transverse displacement of the structure by

Y(Z,T) = ;Yn(T) sin (#) (43)

where n is the mode number and Y,,(T") is the corresponding modal weight
derived from measurements. Note that these modes are not the free vibration
modes of the structures. They are now referred to as Fourier modes, to clearly
distinguish them from the eigenmodes of the dynamical system.

Figure 13(a) shows the value of the dominant Fourier mode number for
five consecutive flow velocities, as observed in the experiments. In that case
Fourier mode 2 dominates for the low velocities and Fourier mode 3 for the
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highest. This transition from mode 2 to mode 3 is now analysed using the
results of Section 3.2.

In order to properly model this configuration several aspects must be
taken into account, which makes it differ from the idealized system described
by the set of equations 9 and 10: (a) the beam has a small, but non-negligible
bending rigidity, (b) the tension in the beam varies linearly with the vertical
position, due to gravity, (c) there is no flow on the upper part of the beam, (d)
the damping terms are not neglected. The corresponding set of dimensionless
linear equations read

0%y 1 0 dy 1 My B 9 ¥ 8y
T (—1+F) 92 (93_) * (1+1/r) g~ Mva- (‘) o 4

——5va—+vq: —. (45)

We have used here the dimensionless time variable ¢ = BT'/D defined with
the bending wave velocity

B:

) ET
m— + — (46)

m,D?’

recalling here that m, = mg+ (7 /4)pD*Chy,. The other dimensionless quan-

tities are oy U
ref
F:@, UZQWST( B ), (47)

where © is the tension at the top of the structure, F1 is the bending rigidity.
The values of the structural parameters are given in table 1. Note that in the
region where no cross-flow exists the fluid force acting on the right-hand side
of equation 44 is set to zero. In that region the wake variable ¢ is undefined.
The flow-induced damping term, scaled by v, and the wake negative damping
term, scaled by e are those defined in section 2.1. The structural damping
term, proportional to £, is neglected, being here of much lesser magnitude.
To model the attachments at the structure extremities, conditions of no
bending moment and displacement are imposed
2 2y
00 = ok

As the Reynolds numbers are similar to those of the previous section, the
same values of Cf, and St are used (King, 1995). A value of Cp = 2 is

(L/D,t) =0,  y(0,t)=y(L/D,t)=0.  (48)
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taken for the mean drag coefficient, consistently with measurements of this
quantity by Chaplin et al. (2005b).

Eigenmodes of the system defined by equations 44 and 45 with the con-
ditions 48 are now computed using a second order centered finite difference
scheme in space. The structure displacement is discretised by j points in the
spanwise direction and the wake variable by r points only, as no wake model
is needed in the upper part of the beam where no flow exists. The discretized
form reads

s QR RIS 10)-
(49)

where Y = [yy(T) --- y;(T)]" and Q@ = [@(T) --- ¢(T)]". The dynamic
system 49 is solved for solutions of the form

R)-()= W

where w is the eigenfrequency, and V,, et V; are the eigenvectors of the struc-
ture and the wake respectively. Results are now given in terms of dimensional
variables, for easier comparison with the experimental results.

The computed growth rates of the two most unstable modes are shown
on figure 13(b), as a function of the flow velocity parameter. Mode 2 has
a growth rate higher than Mode 3 for the lowest velocities. At U = 0.46
m/s, the growth rates of both modes are equal and, for higher velocities,
Mode 3 becomes the most unstable. This transition in terms of growth
rates from Mode 2 to Mode 3 compares well with the experiments where a
switch is observed in terms of the dominant mode seen in the response. The
corresponding eigenvectors V,, and V, are complex quantities. Figure 13(b)
shows the structure modal shape V, for the most unstable mode, respectively
Mode 2 and Mode 3 for low and high velocities. These are close to the Fourier
mode shapes 2 and 3 assumed in equation 43.

It may be concluded that a simple linear stability analysis can predict here
some important characteristics of the steady-state response of the system: the
most unstable mode corresponds to the observed beam motion.

5.3. Time sharing

In the previous experiments, the response at a flow velocity U = 0.46
m/s is a particular case where the time evolution of the modal factors Y,,(7T),
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otherwise strongly periodic, are modulated in time. This type of multimode
response is discussed now.

In their paper, Chaplin et al. (2005b) report several cases of what they
refer to as “mode switching”. The term “time sharing” used by Swithenbank
(2007) is also appropriate, and shall be used hereafter to make a clearer
distinction from the switch of modes caused by changing the flow velocity,
as discussed in the previous section. In the experiments this time sharing
was triggered by disturbances such as vibrations in the carriage system due
to irregularities in the rails on which it is mounted.

Figure 14 shows one such case of time sharing in terms of the time evolu-
tion of the Fourier modal variables Yg(7T'), Y7(T') and Yg(T'). The flow velocity
in this case is U = 0.90 m/s. Those time traces are the ones presented in
figure 7 in Chaplin et al. (2005b). Two regimes of response are observed. The
first regime, named here Regime A, is dominated by Fourier mode 8 and the
second, Regime B, by a combination of Fourier modes 6 and 7. Figure 14 also
shows the evolution of the pseudo-frequency of the Fourier modal variables
Ys(T), Yz2(T) and Yg(T') using a wavelet analysis: at each vibration cycle,
the frequency corresponding to the maximum wavelet coefficient is noted for
each signal, and averaged over ten cycles of vibrations. For Fourier modes
6 and 7 a constant and common frequency is found during Regime B, when
they dominate the response. During Regime A their frequency of motion is
ill-defined, as may be expected from the time evolution shown in the upper
part of the figure. Conversely, for Fourier mode 8 a constant frequency exists
only in Regime A. In figure 15 the corresponding experimental space-time
evolutions reconstructed using equation 43 are shown.

For this configuration, the eigenmode calculation using the coupled linear
system 49 predicts that the two most unstable modes have almost identical
growth rates, Im[w,]/Im[w,] = 1.007. This confirms the possibility of coex-
istence of these two modes in the response. They can be associated to each
regime A or B unambiguously, by considering the dominant wavelength in
their spatial evolutions, figure 15: one of them is close to a Fourier mode 8
and the other to a Fourier modes 6. The eigenfrequencies of these two most
unstable modes are shown on figure 14, in comparison with the experimental
data, showing good agreement.

We may therefore conclude that time sharing is symptomatic of the fact
that two (or more) modes of the linearized system possess similar growth
rates and are therefore likely to both exist in the saturated response.
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5.4. Non-uniform flow : Space sharing

Lucor et al. (2006) reported results of a numerical study on a high as-
pect ratio tensioned beam free to vibrate only in the cross-flow direction
and subjected to non-uniform flows. They solved by direct numerical simu-
lation (DNS) the three-dimensional flow around the structure coupled with
the beam dynamics. Two flow profiles were analysed: one linearly sheared
called here Case L, and another exponentially sheared called Case E. These
are illustrated in figure 16. Results for these two cases were found to differ
significantly in terms of the dynamics of the beam: in Case L a unique fre-
quency of motion sets on the whole beam, as can be seen on the spatially
averaged amplitude spectrum in figure 16. Conversely in Case E the beam
moves with a local frequency that varies along the span. The spatially av-
eraged amplitude spectrum shows therefore a large set of frequencies. Lucor
et al. (2006) found that the higher frequencies dominate in the upper part of
the structure and the lower frequencies in the bottom part. The frequency
at the bottom are close to five times lower than the frequencies of the up-
per part. There is therefore in Case E a clear separation in space of the
dominant vibration frequencies that is absent in Case L. These features also
appear in the space-time evolution of the displacement of the beam figure 16:
for case L a single frequency and a single wavelength combine in a downward
propagating wave, but several frequencies and wavelengths coexist in Case
E, with a low frequency wave propagating from bottom to top. We seek now
to explain these results on the spatial organisation of frequencies using the
linear theory developed for the case of non-uniform flows in Section 4.

The model used for the beam and the wake dynamics is identical to that
of the Sections 5.2 and 5.3 except for two aspects: (a) there is no spanwise
variation of tension, so that #(z) = 1, and (b) there is a spanwise variation
of velocity so that the dimensionless velocity parameter v must be replaced
by 1(2)v where ¢(2) = U(Z)/Uyes is the flow profile. Here the maximum
velocity is used as the reference velocity, U,y = U(L). For the drag coefficient
Cp and Strouhal number St the values of Section 5.2 and 5.3 are used. We
use here a fluctuating lift coefficient of Cr, = 0.8 to be consistent with
results from Norberg (2003) for the range of Reynolds numbers of Lucor
et al. (2006) DNS. The structural parameters can be found in table 1. The
boundary conditions are identical to that of the previous section. Using
the same discretisation technique as above, the unstable linear modes are
derived, in each case of flow profile, L and E. By a simple analogy with
the wave systems of section 4 the modes can be classified as (P) or (S),
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the former corresponding to the most unstable mode, and the latter being
the second most unstable mode localized in the low flow region. The ratios
of frequencies and growth rates are given in table 2. Figure 16 shows the
corresponding eigenvectors. Note that for Mode (P) the eigenvectors are
complex, meaning a travelling wave response, while they are essentially real
for Mode (S), meaning a stationary response.

In Case L, the maximum amplitude is located in the middle of the domain
for (P) and in the lower part for (S). The exponential decay of amplitude with
space is clearly seen for both modes. Figure 16 shows the comparison between
the response of the beam in time and space computed by the DNS, and that
of the linear model where Mode (P) and Mode (S) are superimposed and
the exponential growth in time has been removed. The DNS predicts waves
that are propagating downward (indicated by an arrow on the figure), with
a velocity that compares well with that of Mode (P). Also, the wavelength
of Mode (P) is close to the one obtained by DNS. However, there is no trace
of a structural response close to Mode (S) in the DNS prediction.

For Case E, the shape of Mode (P) and Mode (S) are shown on figure 16
for the beam displacement. The maximum amplitude region of Mode (P) is
much higher in this case than in Case L. Also, Mode (S) has a high amplitude
for a much wider zone. Figure 16 shows the comparison between the DNS
calculation and the linear modal analysis results. The superposition of the
forms of Mode (P) and Mode (S) is shown. In the upper part of the beam, the
linear model predicts well the response computed by Lucor et al. (2006): the
wave length and the propagation velocity are well reproduced. As mentioned
earlier, one observes in the DNS calculation a low frequency wave in the lower
part that propagates upward. Its half period and wavelength are similar to
that found for Mode (S), figure 16.

We may conclude that the computed linear Mode (P) provides a good
approximation for the wavelength and propagation velocity of the main vi-
bration waves. Three common points with the theory of Section 4 are high-
lighted. First, a high frequency and dominating mode, with respect to tem-
poral growth rate, Mode (P), has been found for both flow velocity profiles.
Second, the wave-length observed for (P) is lower than that of (S). Third, the
amplitude of Modes (P) and (S) decreases exponentially outside the range
of velocities that is favourable to the establishment of their temporal growth
rate. Those common points indicate that the theoretical results in Section 4
for an idealized geometry and flow profile seem applicable to more complex
configurations.
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Finally, we analyse the issue of the coexistence of several frequencies, or
space sharing : as noted above a significant difference between the responses
obtained by Lucor et al. (2006) for a linearly sheared flow and an exponen-
tially sheared flow, is the coexistence of two zones with distinct frequencies
of motion in the latter case. This may be analysed in terms of Modes (P)
and (S), using the results of Section 4.4 for an idealized non-uniform flow.
The phase velocity of the invasion of the primary wavesystem (P) into the
region of lower velocity was given by equation 41. Here a similar velocity,
Cps, may be computed by fitting a spatial decay coefficient on the computed
eigenshape of Mode (P), and using the growth rates of the two modes. The
time needed for Mode (P) to invade the domain of lower velocities is given by
t.. = —Lg/Cpg where Lg is the size of the domain of Mode (S), as defined in
figure 16. Table 2 shows that this time is longer for the exponentially sheared
flow, so that Mode (S) can be expected to persist longer in the response for
the latter case than in Case L. This is consistent with the results of Lucor
et al. (2006).

6. Discussion and conclusions

We have presented here a simple approach to vortex-induced vibrations
and waves for slender structures. This simplicity is based on several strong
assumptions, which are now recalled. First we have assumed that the local
dynamics of lift on the cylindrical section of the structure follows that of a
wake oscillator. The concept of wake oscillators has had renewed interest re-
cently, with systematic comparison with experiments and computations that
have been made available, and discussion on its physical basis, in particular
in relation to global modes. Moreover, it is now more systematically used,
as in this paper, without ad-hoc additional terms that have sometimes been
introduced to fit a particular experiment, at the risk of losing generality. Re-
cent applications of this concept of wake oscillators have shown its ability to
capture some essential features of VIV, even in complex geometries. Second,
we have only considered here the linear stability of a model coupling the
structure and the wake dynamics. In doing so we have assumed that the
fully saturated state of the system, in its steady-state motion, has charac-
teristics very similar to that of the most unstable linear modes. Third, we
have only considered straight cables and beams, assuming that the response
for these geometries were somewhat generic. Finally, we have disregarded
vortex-induced motion in the direction of flow, which is known to have some
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effect on the overall response (see for example Jauvtis and Williamson, 2004
and Dahl et al., 2007 for the case of a rigid cylinder free to vibrate in both
in-flow and cross-flow directions and Vandiver et al., 2006 for flexible struc-
tures).

Because of these assumptions, closed form solutions could be derived
for uniform and non-uniform flows. A discretized version of the equations
allowed us to use a straightforward eigenmode computation to derive the
most unstable modes in more complex cases. Such computation is orders of
magnitude faster than a DNS with a flexible cable or beam. Still, the most
important result is that several phenomena that have been observed in exper-
iments or computations of VIV of slender structures could be interpreted in
this simplified framework: range of unstable wavenumbers, mode transition
or mode switching with flow velocity, time sharing and space sharing

Therefore, the approach presented in the paper may be used for different
goals : (a) in a design perspective, as a first step to identify the risk of lock-
in and the corresponding frequencies and wavelengths, (b) as a more general
tool for the understanding of the complex phenomena observed in VIV of
slender structures.

Of course, the linear stability analysis based on wake oscillators bear some
limits, many of which can be overcome. First, no estimate of the amplitude
of VIV can be obtained. This is not a critical issue, even in practice, as
amplitudes in VIV are always close to one diameter or so. Moreover, in terms
of fatigue assessment, frequency of motion and wavelength, which affects
curvature and therefore stress, are of the utmost importance. These can be
derived by the present approach. Second, specific behaviour in time and space
that may be caused by nonlinearities of the problem cannot be predicted, for
instance hysteretic behaviour of nonlinear coupling between waves. Currently
these effects do not seem to play a major role in practical cases of vortex-
induced vibrations. Third, the wake oscillator used to model the lift dynamics
may be easily improved by considering the dependence of its coefficients with
the Reynolds number, or by adding another oscillator for the drag fluctuation.
Finally, the adaptation of the present approach to other geometries such as a
curved cable would only require a proper linearization of the cable dynamics
and a model to take into account the angle between flow and cable axis in the
wake oscillator. Similarly, considering a flow that varies in direction along the
span requires a proper three-dimensional model of the cable. As of today,
a linear stability approach with a wake oscillator is probably the simplest
way to explore these cases and understand the complex coupling that arises
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between the wake and the structure dynamics.
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Parameters Section 5.1 Section 5.2 Section 5.3
W 4.16 T m

r - 19.3 34.6

L/D 280 469 469

960/0z - 1.76 10~ 3.16 10~
v - - 7.72 1073
Re 9 000 - 40 000 2 500 - 25 000 22 500

Case L
Case E

Section 5.4

2.785
165
2 028

2.79 1073
1 000

Table 1: Parameters of experiments and numerical computations.

2nSrw, Jv 2mnSrw, /v Im[p,] Cps Lg
0.766 - 0.297¢ 0.287 - 0.148: 0.0080 -18.6 660
0.827 - 0.2471¢ 0.117 - 0.0432: 0.0079 -25.8 1 565

Table 2: Linear computation results for Case L and E.

vt,o/2mSt

35.5
60.7



Figure 1: Model of a tensioned structure undergoing vortex-induced vibra-
tions VIV. Left: Transverse displacement Y and tension ©.

\

q

Right: Schematic

view of the model using a distributed wake oscillator variable q.
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Figure 2: Linear stability analysis of vortex-induced waves in the coupled
wake-cable system. Temporal analysis, k real. The complex pulsation w and
the amplitude ratio G are shown as a function of the wavenumber k for a
mass parameter AM = 0.25. The flow velocity is arbitrarily set to u = 1.
(a) Real part of w, (b) imaginary part of w, (c) module of amplitude ratio
|G|, (d) phase angle between the wake and the structure, . In the figure,
W stands for a wake dominated wave, S for a structure dominated wave and
CWEF for the unstable wave resulting from coupled-wave flutter.
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Figure 3: Same results as figure 2, but as a function of the flow velocity u,
for an arbitrary wave number k£ = 1. (a) Real part of w, (b) imaginary part
of w, (¢) module of |G|, (d) phase angle between the cable and the wake pg.
Symbols S; W and CWF have same meaning as in figure 2.
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Figure 4: Tensioned cable under a uniform flow. Extremities are fixed.
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Figure 5: Complex frequencies of the first two modes of the coupled wake-
cable system for a cable of finite length, as a function of the flow velocity.
Only unstable frequencies are shown. In the case AM = 0.3, right, a range
exists where the two modes are simultaneously unstable. (a), (c¢) Evolution
of Re[w] and (b), (d) of Im[w]. Mode n =1 (solid line), n = 2 (dashed line).
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Figure 6: Non-uniform flow on a straight cable. Two semi-infinite media
having different reduced velocities u; and uy are connected at z = 0.

Figure 7: Wave configuration corresponding to equations 30 and 31.

36



— - _'_:,
- <]
— > §> T <:? )
<> = - <)
. =f - =
~_> <-—’ -

- 2 2 p )
= i --= &‘_)
- T = “+ =

_f= S g <
> :? - { .
. q T I
< i <
- VT +=
Not admissible ©) (P) (S)

Figure 8: Definition of the unstable wave systems in non-uniform flows: Left,
two complex waves (non admissible), (C) four spatially neutral waves Con-
ditional Wave System, (P) two spatially neutral waves and one spatially
decaying, Primary Wave System, (S) two spatially neutral waves and one
spatially decaying, Secondary Wave System.
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Figure 9: Unstable cable-wake wave systems for an infinite tensioned cable in non-uniform flows. Top :
Primary Wave System, (P). (a) Evolution with time and space of the cable displacement, (b) envelope of
the cable displacement, (c) evolution with time and space of the wake, (d) envelope of the wake variable.
Bottom : Secondary Wave System, (S). (e) Evolution with time and space of the cable displacement, (f)
envelope of cable displacement, (g) evolution with time and space of the wake, (h) envelope of the wake
variable. The exponential growth in time of the amplitude omitted for clarity. For all figures, R = 0.5 and
AM = 0.25.
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Figure 10: Schematic view of the competition between the Primary and
Secondary wave system. (a)-(b) Evolution of the envelopes of each wave
system with space and time. Bold line, (P), thin line, (S). The black dot
marks the boundary between the two systems, moving with the phase velocity
Cps, equation 41. (c) Evolution of Cpg with the velocity ratio R. AM = 0.25
(dashed line) and AM = 0.8 (solid line).
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Figure 11: Comparison between the linear stability analysis and experimen-
tal data on the motion of a tensioned cable under uniform cross-flow. (a)
Experimental data of the evolution of the vibration frequency f with the
flow velocity U, redrawn from King, 1995. Results are shown for two differ-
ent tensions: O; (black dots), ©y = ©/2 (open circles). (b) The same data
in dimensionless form, compared with the prediction of the linear stability
analysis, solid lines.
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Figure 12: Schematic view of the experimental setup used by Chaplin et al.
(2005b).
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Figure 13: Mode switching in VIV of a tensioned beam. Comparison between
the experimental data and the linear stability theory prediction for the dom-
inant mode: (a) dominant spatial Fourier mode number n in the experiment
as reported by Chaplin et al. (2005b), (b) growth rate predicted for Mode 2
(circles) and Mode 3 (squares). Also shown are the computed unstable mode
shapes, |V, | (dashed line) and Re[V,)] (solid line).
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Figure 14: Time sharing between two regimes of motion in VIV of a tensioned
beam, Chaplin et al. (2005b). (a)-(c) Time evolution of the modal weight of
Fourier mode 6 to 8, showing the change of regime, from A to B. (d) pseudo
frequency evolution with time of Mode 7 (thin line) and Mode 6 (thick line),
(e) pseudo frequency evolution with time for modal weight of Mode 8. On
(d) and (e), the linear theory prediction for frequencies is shown with dashed
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Figure 15: Characteristics of the two regimes for the case of time sharing,
Section 5.3. Experiments by Chaplin et al. (2005b) and most unstable modes
using the linear stability theory. Top, Regime A: (a) Experimental evolution
with time and space of the structural displacement, (b) a corresponding
instantaneous displacement of the structure, at the instant indicated by the
arrows in (a), (¢) and (d) structure and wake components of one of the two
most-unstable modes. Bottom : (e) -(h) same information for Regime B and
the other most unstable mode.
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Figure 16: Tensioned beam undergoing VIV under non-uniform flows. Comparison between numerical
predictions by Lucor et al. (2006), using DNS, and the linear stability of the coupled structure-wake system.
Top, linearly sheared flow, Case L: (a) flow velocity profile, (b) beam eigenshape for the most unstable
mode, Mode (P), (c) same quantity for most unstable mode in the low flow velocity region, Mode (S), (d)
reconstructed time space evolution of the beam displacement by recombination of these two modes, (e)
time-space evolution in the DNS computation of Lucor et al. (2006), (f) space averaged spectrum of the
DNS beam motion. Bottom, exponentially sheared flow, Case E: (g-1) same quantities than above.



