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Abstract

We consider here the dynamics of flexible slender systems undergoing vortex-induced vibration (VIV). This type of motion results
from the coupling between the oscillating wake due to cross-flow and the structure motion. Practical applications are mainly found
in the field of ocean engineering, where long flexible structures such as risers or mooring cables are excited by sea currents. The wake
dynamics is here represented using a distributed wake oscillator coupled to the dynamics of the slender structure, a cable or a tensioned
beam. This results in two coupled partial differential equations with one variable for the solid displacement and one for the wake fluc-
tuating lift. This simplified model of the wake dynamics has been previously validated on simple experiments. Here, comparisons with
direct numerical simulation results are done for both uniform and non-uniform flow. Comparison is also performed between the wake
oscillator predictions and some experimental results on long cables. The results of those comparisons show that the proposed method can

be used as simple computational tool in the prediction of some aspects of vortex induced vibrations of long flexible structures.

© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow past a circular bluff body creates an unstable wake
in the form of alternating vortices. Those vortices are shed
from the cylinder at a frequency defined by the Strouhal
law. They create periodically varying lift forces on the cyl-
inder. The later, if flexible enough, undergoes vortex-
induced vibration (VIV), see recent reviews by Williamson
and Govardhan [21], Sarpkaya [18] and Gabbai and Bena-
roya [9]. Vortex-induced vibration is a major concern
regarding fatigue life of marine structures like risers used
in offshore petroleum production. The prediction of those
VIV is still an open research field especially for risers of
very large aspect ratio (L/D ~ 2000-3000) subjected to
depth varying flow. Since the vortex shedding frequency
varies with flow velocity, a depth varying flow past a flex-
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ible cylinder will result in multifrequency excitation.
Depending on the range of velocity covered by the flow
profile, many vibration modes of the structure can be
excited. Understanding the vibration mechanisms of the
structure in those cases is not a simple task. For instance,
Vandiver [19] and Vandiver et al. [20] did experimental
parametric studies of risers subjected to non-uniform flow
in order to determine when the response is monomodal
or multimodal. Marcollo and Hindwood [13] experimen-
tally studied the mode competition of a flexible beam sub-
jected to a step current. Recent experimental and numerical
investigations such as in [5] and [1] showed the complexity
of the issue of VIV of long flexible cylinders.

Numerous methods for predicting the dynamic behavior
of structures experiencing vortex-induced vibration are
available in the literature. One VIV prediction method con-
sists of solving the Navier-Stokes equations by direct
numerical simulation (DNS) for the fluid around the flexi-
ble cylinder and to compute the hydrodynamic loads


mailto:delangre@ladhyx.polytechnique.fr

R. Violette et al. | Computers and Structures 85 (2007) 1134-1141 1135

resulting on it. The deformation of the flexible cylinder and
its resulting effect on the flow field is also computed, the
two being coupled, see for instance [15]. An alternative
approach is to model the principal features of vortex shed-
ding in the cylinder wake using a dynamical system. The
main difference between this phenomenological approach
and DNS is that the dynamic behavior of the fluid in the
cylinder wake is modeled instead of being computed.
Bishop and Hassan [3] and Birkoff and Zarantanello [2]
were the first to consider the use of the van der Pol oscilla-
tor equation to model the behavior of the cylinder wake.
Hartlen and Curie [10] applied this concept and developed
the first so called wake oscillator model that used the van
der Pol oscillator equation for the cylinder wake modeling.
Recently, the van der Pol oscillator was revisited for VIV
prediction: Facchinetti et al. [7] verified the effect of the cyl-
inder movement on the lift fluctuation via different type of
coupling (displacement, velocity and acceleration). They
came up with a formulation of the wake oscillator model
that was qualitatively and, in some point, quantitatively
reproducing some aspects of VIV observed experimentally
for rigid cylinders elastically supported. Facchinetti et al.
[8] extended the model to predict VIV and VIW (vortex-
induced waves) for cables and successfully predicted the
experimental response behavior of a towed cable. Mathelin
and de Langre [14] pushed further Facchinetti’s work to
predict VIV of cables subjected to sheared flows.

The purpose of this paper is to verify, following [7,8,14],
how this simple approach can predict some of the dynamics
of cables or flexible beams observed in both DNS and
experiments. Here, the focus is on cases of long flexible
structures subjected to uniform and non-uniform flow. In
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Fig. 1. Long flexible structure under a depth-varying flow: (a) definition of parameters and (b) present model using a distributed wake oscillator locally
coupled with a tensioned beam, Egs. (5) and (6).

Section two of this paper, the VIV prediction model devel-
oped by Facchinetti et al. [8] and by Mathelin and de Lan-
gre [14] is summarized. In Section three, comparison of the
wake oscillator model results is made with DNS results
available in the literature for tensioned cables and beams
subjected to uniform and non-uniform flow. The fourth
section contains a comparison between the model and
experimentally observed cable behavior.

2. Model description

The main features of the wake oscillator model by Fac-
chinetti et al. [7], Facchinetti et al. [8] and by Mathelin and
de Langre [14] are summarized in this section. A straight
slender cylinder oscillating in the direction transverse to
the flow is considered here (Fig. 1). The reference length
scale used is the cylinder diameter D. The dimensional dis-
placement Y and span position Z are Y= yD and Z =:zD,
respectively. The cylinder diameter, the Strouhal number
St and an arbitrary reference flow velocity U,.r define the
Strouhal pulsation of vortex shedding Q,cr = 2nStU,i/D.
This pulsation is used to define the reference time scale.
The dimensional time T is thus expressed as T = 1/Q,.

Considering the reference length and time scale men-
tioned above, the dynamics of a straight cylinder can be
described by the dimensionless equation
Py L0y 50l yoor Oy
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and the dimensionless bending stiffness b by b* = (EI /(mey+
maia))/(22:D*). The dimensional cylinder tension and
bending stiffness are K and EI, respectively. The parameters
Mgy1 and mgy;q are the mass per unit length of the cylinder and
the fluid added mass respectively. The second term on the
right hand side of (1) is the fluid induced damping resulting
from drag effects [4]. It depends on the mass ratio
= (Mg + Mayiq)/ pD?* where p is the fluid density, the nor-
malized shedding pulsation ;= Q(z)/Qer = U(2)/ Uyer and
the stall coefficient y. The later is expressed as y = Cp/4nSt
where Cp is the mean sectional drag coefficient. The fluid
forcing term generated by the cylinder’s wake, .S, will be dis-
cussed below. The cylinder structural damping is neglected
in this paper.

A forced van der Pol oscillator equation is used to
describe the dynamics of the cylinder’s wake

2
S won - 1) ot =G )
As in [7], the variable ¢ is here defined as the local fluctu-
ating lift coefficient ¢(z,t) =2Cy(z,t)/CLo, the coefficient
CLo 1s the amplitude of the fluctuating lift for a fixed rigid
cylinder subjected to vortex shedding. The term G ex-
presses the effect of the structure motion on the wake
and is discussed below. In Eq. (2), the linear negative
damping term allows for an amplitude increase of ¢ if
perturbed from ¢ =0. The non-linear term ensures the
saturation of ¢ for the unforced case (G =0). Note that
all direct coupling of the wake variables in the z-direction
is here neglected: a diffusion coupling was analysed in [6]
but it was showed in [14] that it plays a negligible role
when the cylinder motion is significant, as will be the case
here.

The forcing term on the structure due to the wake
dynamics in Eq. (1) is assumed to be

) C 1
S=Mwiq, M= T (3)
The forcing on the wake due to the cylinder motion in Eq.
(2) has been evaluated by Facchinetti et al. [7], using exper-
imental data of VIV of elementary systems (one degree of
freedom) in uniform flow. They found that with the accel-
eration of the structure as the forcing term, the van der Pol
model was qualitatively and, in some point, quantitatively
describing some of the typical physics of vortex-induced
vibrations observed experimentally. That way, the coupling
term in Eq. (2) is expressed as
oy

G=4 R 4)
The value of 4 in Eq. (4) as well as that of ¢ in Eq. (2) has
been determined from experimental data of fluctuating lift
on a rigid cylinder driven in forced vibration. The values
found for those parameters are 4 = 12 and ¢ = 0.3 [7].

The set of partial differential equations in y(z,¢) and
¢(z,1) to solve can be summarized as

oy yordy Ly L0y,
T w o o eiMe (5)
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In this system, all coefficients can be estimated using partic-
ular characteristics of the flexible cylinder, D, K, EI, my,
of the flow, mguiq, p, U(z), and phenomenological param-
eters derived from elementary experiments on wake
dynamics and vortex-induced vibrations. Those phenome-
nological parameters are St, Cp, Crg, 4 and ¢. The Strou-
hal number St, drag coefficient Cp and fluctuating lift
coefficient Cpy may for instance be found in [16] as they
are only related to wake dynamics of fixed cylinders. The
values of those parameters used throughout this paper
are Cp=1.2, C1o=0.3 and Str=0.2 (except in Case I
and II where St =0.16 for consistency with the reference
data). All dimensionless coefficients in (5,6) are constant
in the z-direction, except w{z) which depends on the local
flow velocity U(z). The dependence of phenomenological
parameters with the Reynolds number, and therefore with
z for non-uniform flows, is neglected here for the sake of
clarity. This system is numerically integrated in time and
space using a standard centered finite difference method
of the second order in both domains. Description of this
method can be found, for example, in [17]. The time step
used in all calculation is chosen much smaller then the crit-
ical time step and its effect on the results was checked.
Boundary conditions and initial conditions are described
below for each case of computations.

3. Comparison with DNS results

The objective of this section is to verify if some aspect of
the dynamics observed with DNS models predictions can
be reproduced by the wake oscillator model described in
the previous section. Fig. 2 shows a schematic representa-
tion of the three configurations analysed here.

The first case analysed is a simple tensioned cable sub-
jected to uniform flow. Complexity is added in the follow-
ing cases: in the second one, the flow is varying in a
sinusoidal manner in space and in the third case, compar-
ison is performed for a tensioned beam subjected to a lin-
early sheared flow.

3.1. Case I: Infinite tensioned cable under uniform flow

Newman and Karniadakis [15] performed spectral DNS
simulation studies of flexible cables under VIV conditions.
They considered in particular the preferred response
behavior of infinite cables subjected to a uniform flow. In
order to limit the spatial computation domain, they
imposed periodic conditions on the limits in z-direction.
The geometrical changes of the computational domain
due to the cylinder motion were taken into account by
using body-fitted coordinates. They modeled the cylinder
as a tensioned cable without structural damping. For the
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Fig. 2. Configurations used for comparison between predictions of DNS and wake oscillator model: (a) infinite tensioned cable under uniform flow, Case
I; (b) infinite tensioned cable under non-uniform flow, Case II; (c) finite tensioned beam under linearly sheared flow, Case III; A is the aspect ratio L/D.

case considered in this section, Fig. 19(c) in Newman and
Karniadakis [15], they used quasi-random initial conditions
for the cable and the fluid variables.

The PDE system (5,6) is integrated for this particular
cable configuration, extending the results of [§8]. The
parameters used in the simulation appear in Table 1 (Case
I). Boundary conditions are posed as periodic on y:
¥(0,7) = y(A, ). As initial conditions, a random noise with
amplitude of order O(10~2) is applied to the fluid variable
q. Zero displacement and velocity initial conditions are
applied to the structure. The first time derivative of the
fluid variable is also set to zero as initial condition. For
the spatial discretization, 252 points are used for the simu-
lation and a dimensionless time step of 0.01 is used. The
integration is carried for a dimensionless time ¢ of 600.
The results obtained for DNS at a Reynolds number
(UegD/v) of 100 and wake oscillator model prediction
appear in Fig. 3.

Fig. 3 shows the time evolution of the cable’s transverse
displacement at every span position computed by the DNS
(Fig. 3a) and wake oscillator model (Fig. 3b). One can
observe that the frequency and wavelength are similar for

the two models. This is expected since in both cases the
cable is tuned to resonate with the vortex shedding fre-
quency at that particular mode. In the DNS results, a
standing wave response for the cable emerges first. This
standing wave progressively transforms into a travelling
wave after several vibration cycles, typically 10. Fig. 3b
clearly shows that this global behavior is well reproduced
by the wake oscillator model. It also shows that the number
of cycles for which the standing wave persists is quite com-
parable for both models. For the wake oscillator model, it
is found that the travelling wave response constitutes the
permanent vibration regime. The propagation direction
of those travelling waves is arbitrary.

3.2. Case II: Infinite tensioned cable under non-uniform flow

In addition to the cases simulated for cables under uni-
form flow, Newman and Karniadakis [15] performed a
computation for a tensioned cable under non uniform flow.
The configuration they studied appears in Fig. 2b. (Fig. 26
in their paper). The flow profile is sinusoidal and the max-
imum flow velocity Uy, is twice the minimum value Upy;,.
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Fig. 3. Infinite tensioned cable under uniform flow, Case 1. Evolution of cable displacement with time and space: (a) DNS [15] and (b) wake oscillator
model. In both figures the displacement level is shown ranging from —0.6 to 0.6 with equally spaced intervals.
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The spatial computational domain is extended so that the
aspect ratio now is A = 100. The Reynolds number corre-
sponding to the maximum velocity is 100. The boundary
conditions used are the same as for Case I. This case is
now computed using the wake oscillator model. The
parameters used in the simulation appear in Table 1. As
initial conditions, zero displacement and velocity are
imposed for the cable. A sinusoidal shape identical to the
flow profile is used as initial value for the fluid variable ¢,
with a magnitude of order O(10~%). This particular choice
of the initial value is discussed below. The time derivative
of the fluid variable is set to zero as initial condition. The
number of points used for the spatial integration is 1001
and a dimensionless time step of 0.01 is used for the inte-
gration. The PDE system is numerically integrated for a
dimensionless time ¢ of 800. The lowest flow velocity is used
as reference U, = Upin. The results for both the DNS and
the wake oscillator appear in Fig. 4a and b, respectively.

Fig. 4a shows that DNS predicts a combination of
standing and travelling waves for the cable response.
Standing waves dominate the response near the center
and at the limits of the spatial computational domain. In
between those regions, travelling waves can be observed.
The wake oscillator (Fig. 4b) predicts the same dynamical
behavior. Moreover, the prediction of wavelength, pulsa-
tion and wave velocity is similar for both computational
methods. Note that in both DNS and wake oscillator sim-
ulations, the amplitude is the lowest at the center cable
where the flow velocity is maximum, which is rather coun-
ter-intuitive.

0
440 460 480
t/27zSt

Fig. 4. Infinite tensioned cable under non-uniform flow, Case II.
Evolution of cable displacement with time and space: (a) DNS [15] and
(b) wake oscillator model. In both figures the displacement level is shown
ranging from —0.4 to 0.4 with equally spaced intervals.

1/ 278t

Numerical simulations with the wake oscillator model
were also done with a random noise of order O(1073)
amplitude as initial conditions for the fluid variable ¢q. A
different cable dynamical behavior was obtained: a combi-
nation of standing and travelling waves as the one shown in
both Fig. 4a and b emerges first, but this regime is unstable
and transforms into travelling waves response with a spa-
tial modulation of the vibration amplitude. The cable
response is thus found quite sensible to initial conditions.
This instability of the regime shown in Fig. 4 is also found
for sinusoidal initial conditions, but at a longer a time.

3.3. Case III: Finite tensioned beam under linearly shear flow

Lucor et al. [12] performed DNS simulations of a very
high aspect ratio tensioned beam (A = 2028) with non-uni-
form flow loading (Fig. 2c). They simulated a linearly
sheared flow with a velocity variation of 70% of the maxi-
mum value (AU/Upax =0.7). They used the tensioned
beam equation with zero structural damping to model the
structure. The Reynolds number for the simulation, based
on the maximum flow velocity Upnax, was 1000. The num-
ber of beam vibration modes included in the flow excitation
frequency bandwidth is 14. The beam is pinned at both
ends.

The same case is computed with the wake oscillator
model. The parameters used for this calculation are shown
in Table 1. For this case, 2000 points are used for the spa-
tial discretization with a dimensionless time step of 0.001.
The integration is carried for a dimensionless time ¢ of
1600. A zero displacement and bending moment conditions
are imposed on the boundaries for the beam. As for the
case of a uniform flow shown earlier, a random noise of
order O(10*) amplitude is applied on the fluid variable ¢
as initial conditions. The first time derivative of the fluid
variable is set to zero at t=0. Zero displacement and
velocity are posed for the cable at r=0. As in Lucor
et al. [12], the maximum flow velocity is used as reference.
The r.m.s. value of the transverse displacement obtained as
a function of z is shown in Fig. 5a and b for the DNS and
the wake oscillator model, respectively.

It can be concluded by comparing Fig. 5a and b that the
DNS and the wake oscillator predictions display good
similitude. The wake oscillator is able to model the pseudo
standing waves near the beam’s end predicted by the DNS
model. Away from the beam ends, the DNS predicts that
the travelling waves dominate the beam response. This is
also predicted by the wake oscillator model.

Table 1
Simulation parameters used in the wake oscillator model
Case I Case II Case 111 Case IV
St 0.16 0.16 0.2 0.2
A 8n 100 2028 781
n 1.785 1.785 2.785 1.75
¢ 4 3 23.6 33.1-47.1
b 0 0 303 0
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Fig. 5. Finite tensioned beam under linearly sheared flow, Case III. r.m.s.
value of the displacement along the beam: (a) DNS [12] and (b) wake
oscillator model.

4. Comparison with experimental results

The ability of the wake oscillator to reproduce some
predictions from DNS models has been addressed in the
previous section. Here, the focus is on evaluating the capa-
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bility of the same model to predict some experimentally
observed results on slender structures. Vandiver et al. [20]
presented a summary of a large experimental campaign,
where cables were tested in linearly sheared flow condi-
tions. Fig. 6 shows a simplified illustration of their experi-
mental setup.

As seen in Fig. 6, the cable experiences a linearly sheared
flow on part of its span. The other part is in stagnant water.
They studied the effect of two parameters on the cable
vibration response. The first one is the shear of the flow,
B = AU/ U, and the second one is the number of the cable
vibration modes that are in the range of vortex-induced
excitation. These modes are such that their frequency f falls
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Fig. 6. Experimental configuration of tensioned cable under shear flow,
Case IV [20].
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Fig. 7. Effect of the flow shear parameter § on the number of modes contributing to the response of the cable, Case IV. Low shear, f = 1.2, shows
multimodal response. High shear, f = 1.8, shows single-mode response. (a), (b) PSD of cable displacement for f = 1.2 and = 1.8 respectively; (c), (d)

r.m.s. value for f = 1.2 and = 1.8 respectively.
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in the range of shedding frequencies corresponding to the
range of flow velocity, i.e.

St AU St AU
B (Uref - T) <f < 5 (Uref + 7) . (7)

Vandiver et al. [20] observed multimodal cable response for
low shear value, but when increasing the shear over a
threshold value, while keeping the number of excited
modes constant, the cable response became dominated by
one mode (Fig. 3 in [20]).

The same configuration is computed with the wake
oscillator model to reproduce the aforementioned experi-
mental result. Two test cases reported here are referred to
Case IV. The parameters used for both simulations appear
in Table 1. The shear values ff used for the first and second
test case are 1.2 and 1.8, respectively. For both cases, the
number of excited cable modes is 10, which requires to
adapt the dimensionless tension ¢ (see Table 1). As in the
previous section, a random noise of order O(107°) of
amplitude was applied as initial condition to the fluid var-
iable ¢. Cable extremities are fixed. The numerical integra-
tions are carried out for several hundreds vibration cycles
in order to achieve acceptable frequency resolution for
spectral analysis. Fig. 7a and b shows the dimensionless
power spectrum density (PSD) of the cable response at
an arbitrary point for both numerical integrations
(z = 680). A single dominant peak appears for the integra-
tion done with the shear value of 1.8 (Fig. 7b). This means
that the response is then dominated by a single frequency
as the cable response is thus characterised by a single vibra-
tion mode. For the simulation done with a shear value of
1.2 (Fig. 7a), there are multiple peaks in the PSD meaning
a multimode response. Fig. 7c and d shows the displace-
ment profile along the cable span for the two cases. In
Fig. 7c, several modes contribute to the response, while
Fig. 7d shows a single mode response. The transition from
multimode to single-mode response was found by Vandiver
et al. [20] near f = 1.6 (see Fig. 3 in [20]). From the results
shown in Fig. 7, it can be concluded that the wake oscilla-
tor model reproduces in a qualitative manner the transition
of the cable dynamic behavior observed experimentally by
Vandiver et al. [20].

5. Concluding remarks

In the comparison presented above, it was shown that
some of the important features of the dynamics of long cyl-
inders undergoing VIV can be modeled using a simple
wake oscillator approach. These features are essentially
the standing or propagative nature of waves (Case I-11I),
and the modal content of the response (Case IV). These
three dimensional characteristics have been recovered using
only a phenomenological model based on two dimensional
modelisation of VIV. No additional term has been used in
the model for the wake dynamics and the coupling with the
structure. Because of the simplicity of the model, all the
results presented in this paper required a small computa-

tional time: typically, a few minutes to an hour of CPU
on a PC. As of today, this is one of the main advantages
of the phenomenological approach over the DNS compu-
tations. This would allow undertaking large parametrical
studies of VIV of long systems which are needed for prac-
tical applications.

In terms of applications to cases of higher Reynolds
numbers, it is only needed in this phenomenological
approach to incorporate the dependence of the coefficients
on Reynolds number. Most of these are known from two
dimensional experimental results. In fact, this is another
advantage of this approach as state of the art knowledge
on wake dynamics and VIV can be incorporated in the
model. Computation costs are thus independent of Rey-
nolds number here. However, by nature, this method
cannot provide refined results on the wake structure such
as those obtained by DNS in [15].

In all presented cases as well as in recently published
results cited in this paper, it appears that the dynamics of
long slender system undergoing VIV is quite complex. To
illustrate this, it was found that different initial conditions
sometimes lead to distinct steady state behaviors as could
be expected in a strongly non-linear autonomous system.
Thus, a statistical assessment of the effect of initial condi-
tions and even of all parameters would be useful. This is
in the range of feasibility with the wake oscillator model.

An important issue is also the range of applicability of
this kind of model. By nature, all empirical (or phenome-
nological) models make use of experimental data from sim-
ple experiments to predict more complex cases. In VIV, this
is the case of most approaches, as the direct computation of
the flow (DNS) is still impossible in engineering practice.
Systematic validation, as presented here, and the search
for a physical understanding of the elementary mechanisms
that take place in VIV and VIW is of the utmost impor-
tance to assess the range of applicability. Note that the
discretization errors are certainly far smaller than all uncer-
tainties pertaining to the physical mechanisms involved.

Finally, it is hoped that some of the essential features of
three dimensional dynamics of these VIV and VIW can be
understood using an energy balance or even linear stability
analysis with our model. This is under current investiga-
tion; see for instance [11].
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