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Abstract Measuring the mechanical properties of cells and tissues often involves indentation with a sphere
or compression between two plates. Different theoretical approaches have been developed to retrieve mate-
rial parameters (e.g., elastic modulus) or state variables (e.g., pressure) from such experiments. Here, we
extend previous theoretical work on indentation of a spherical pressurized shell by a point force to cover
indentation by a spherical probe or a plate. We provide formulae that enable the modulus or pressure
to be deduced from experimental results with realistic contact geometries, giving different results that
are applicable depending on pressure level. We expect our results to be broadly useful when investigating
biomechanics or mechanobiology of cells and tissues.

1 Introduction

In 1932, K. Cole [1] introduced the mechanical compres-
sion of a sea urchin egg cell between two plates as a way
to probe cell mechanical properties. This technique is
now widely applied to both living and non-living objects
ranging from microcapsules [2] and cell nuclei [3] to sin-
gle animal [4,5], plant [6] or, yeast [7] cells, as well as
animal embryos [8] and multicellular spheroids [9] to
name a few examples.

As might be expected with such a range of applica-
tions, nuances and differences of protocol have arisen,
particularly with regard to the type of loading that is
used. Different types of loading have different advan-
tages and disadvantages: parallel plate compression is
generally used to probe cells globally, while atomic force
microscopy (AFM) has been used to make more local
measurements [10,11]. In the first implementations of
AFM, the cantilevers had relatively sharp pyramidal
tips, which could damage cells. Spherical beads used
as tips appear to be less invasive and to generate less
damage than sharp tips; they also make it possible to
modify the range of applied stress by changing the bead
diameter [12].

Despite differences in loading protocol, all experimen-
tal approaches are similar in that they yield data for the
force as a function of plate/tip displacement (or vice
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versa). Interpreting such force–displacement curves is
therefore key, yet, since these curves depend on sam-
ple geometry and structure, the deduction of material
parameters involves the use of mechanical models. In
several cases, the sample can be approximated as a
spherical thin shell, which might correspond to the cor-
tex of an animal cell, the cell wall of a plant cell, or a
peripheral stiff cell layer. Moreover, this shell is often
pressurized from inside, whether that pressure arises
from cytoplasmic pressure in the case of a single cell
or pressure from inner cells in a multicellular spheroid.
Here, we aim to establish a suitable model for the com-
pression of a pressurized spherical shell by a rigid flat
or spherical probe. The first related work in this regard
concerned compression by a flat plate, but neglected
the effect of bending stiffness within the shell [13]. This
model was later corrected for the incompressibility of
the cell fluid content [14], though the effect of bending
stiffness was still neglected.

Moduli estimated by compression between two plates
may significantly differ from moduli estimated with an
AFM tip due to the difference of scale at which cells are
probed [15–17]). A model for a point-like probe indent-
ing a pressurized shell was developed in [18,19], yielding
analytical formulae to retrieve both the inner pressure
and Young’s modulus of the shell. Nevertheless, a model
applicable to probe sizes between a point (the ideal-
ized AFM tip) and a flat plate is still missing. Here, we
establish such a model: we use an efficient formulation
for the nonlinear contact problem for a shallow shell
without friction that was introduced in [20] and provide
an analytical solution of the linearized problem that is
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Fig. 1 Geometry of the problem: a pressurized spherical
shell in contact with a spherical probe. a Three-dimensional
schematic drawing showing the indenter (green, partially
transparent sphere) indenting the shell (blue, deformed
sphere). b Cross section and notations showing the pres-
surized sphere before indentation (dotted black curve),
the pressurized sphere after indentation (continuous black
curve), and the rigid spherical probe (gray curve). Here,
w is the normal displacement of the probe, while R is the
radius of the pressurized sphere and Ro the radius of the
rigid sphere (the indenter)

valid for small displacement. Beyond this, we solve the
nonlinear boundary value problem numerically.

2 Formulation and numerical solutions

We consider a rigid spherical probe of radius Ro (the
planar case is recovered by taking Ro = ∞) pressed
against a spherical shell of radius R, thickness h, Pois-
son ratio ν, and Young’s modulus E, that is inflated
by a pressure P . We assume axisymmetry and express
all variables as functions of the curvilinear coordinate
s (along the meridional direction). The periphery of
the contact region between the probe and the shell

is defined by its curvilinear coordinate sc. Following
[20], we formulate the equations using the rotation
Ψ = −dw/ds, w being the displacement normal to
the sphere, the meridional (the ss component of) mem-
brane stress Σ, and the total reaction force integrated
up to a disk of radius s, denoted φ(s) (see Fig. 1b).
The total contact force is F = φ(sc). The governing
equations are given by the compatibility equation [20]:

3sΣ′ + s2Σ′′

Eh
+ s

Ψ

R
+

Ψ2

2
= 0, (1)

and by the vertical force balance

sΣ
( s

R
+ Ψ

)
− Eh3

12(1 − ν2)

(
d(sΨ ′)
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+

Ψ

s

)

= p
s2

2
− φ

2π
. (2)

These equations are complemented by the boundary
conditions at the edge of the contact region, s = sc,
which require continuity of rotation, curvature and
stress at the edge of the contact set, i.e.,

Ψ(sc) = −sc

(
1
R

+
1

Ro

)
, Ψ ′(sc) = −

(
1
R

+
1

Ro

)
,

Σ′(sc) =
Eh

√
εsc

8R

(
1 −

(
R

Ro

)2
)

, (3)

and boundary conditions at infinity, which require that
the membrane stress returns to the isotropic value pre-
compression (given by Laplace’s equation) and that
there is no rotation, i.e.,

Σ(∞) =
pR

2
, Ψ(∞) = 0. (4)

The hypothesis behind the kinematics is that strains
are small but rotations may be moderate, i.e., that
the typical rotation angle is much smaller than unity,
but much larger than the membrane strain; these are
expressed in Eqs. (12.11b), (14.11), and (14.12) of [20],
for example. (The resulting equations are not “exact”
but are a truncation of the exact results with the elastic
strain terms truncated following the linear term in dis-
placement, while rotation terms retain terms quadratic
in the rotation—the smallest-order term that includes
the rotation.) The resulting equations also assume that
the shell is “shallow” and hence are valid while displace-
ments are restricted to a zone of the shell that is well
approximated by a parabola centered at the apex, i.e.,

s � R, s � Ro, (s)

≈ s, (s) ≈ 1, z′(s) ≈ −s

R
(5)

(There is no restriction on the indenter size, provided
that the contact zone satisfies these requirements.)
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Fig. 2 Numerical solutions for the contact of a pressur-
ized spherical shell with a rigid spherical or flat probe. a.
Dimensionless displacement ŵ as a function of the dimen-
sionless coordinate ŝ for p̂ = 1 and R/Ro = 1. The gray
(resp. black) part of the line correspond to the contact zone
(resp. free zone). b Dimensionless force as a function of the
dimensionless displacement at the origin ŵ0. The dashed

line is a linear fit for small compressions ŵ � 1. c Dimen-
sionless force as a function of the dimensionless coordinate,
ŝc, at which contact between the shell and the probe is lost.
In b and c, the dimensionless pressure p̂ = 8; black, dark
gray, and gray lines show results for R/Ro = 0 (a plane),
R/Ro = 1, and R/Ro = 10, respectively

The equations are made dimensionless by introduc-
ing the small parameter ε = (B/Y R2)1/2 in which
B = Eh3/[12(1 − ν2)] is the bending stiffness and
Y = Eh is the membrane stretching stiffness; hence ε =
h/R/[12(1 − ν2)]1/2 � 1 for a thin shell. The balance
between the terms representing bending stresses and
those representing curvature-induced in-plane stresses
in (2) introduces the bending length R

√
ε ∼ (hR)1/2

as a natural unit for the curvilinear coordinate s [21];
we also use the shell radius R as a unit of verti-
cal displacement w, and EεRh as the unit of force.
The dimensionless quantities are then ŝ = s/(R

√
ε),

ŵ = w/R, Ψ̂ = Ψ/
√

ε, Σ̂ = Σ/(Ehε), p̂ = pR/(Eεh),
φ̂ = φ/(EhRε), F̂ = F/(EhRε). The compatibility and
vertical force balance equations then take the form

3ŝΣ̂′ + ŝ2Σ̂′′ + ŝΨ̂ +
Ψ̂2

2
= 0, (6)

ŝΣ̂(ŝ + Ψ̂) − d(ŝΨ̂ ′)
dŝ

+
Ψ̂

ŝ
= p̂

ŝ2

2
− φ̂

2π
. (7)

Continuity conditions at the periphery of the contact
region are

Ψ̂(ŝc) = −ŝc

(
1 +

R

Ro

)
, Ψ̂ ′(ŝc)

= −
(

1 +
R

Ro

)
, Σ̂′(ŝc) =

ŝc

8

(
1 −

(
R

Ro

)2
)

,

(8)

and the boundary conditions at infinity become

Σ̂(∞) =
p̂

2
, Ψ̂(∞) = 0. (9)

The system (6)–(9) is a fourth-order system with F̂
determined as a function of ŝc or vice versa. The only
other parameters in the problem are the dimensionless
pressure, p̂, and the ratio of shell to probe radius, R/Ro.

The boundary value problem was solved using the
“bvp5c” solver of Matlab which provides F̂ as part of
the solution; the boundary conditions at infinity were
imposed by continuation by varying an end point [22]
(Fig. 2a). As for a shell indented by a point tip, there
is a linear relationship between force and displacement
at small displacement (Fig. 2b). The numerical method
works well at higher τ : the largest displacements that
can be obtained numerically range from a few tenths
of the thickness at τ = 0 to ten times the thickness
at τ = 1000; the numerical accuracy closely follows
the accuracy of the initial guess provided by the ana-
lytical solution. In particular, for contact with a plane
at high τ , and with large displacements, we find that
the membrane limit is retrieved, i.e., the force scales
as the area of the contact region multiplied by the
pressure (data not shown). This reproduces the known
membrane behavior of a pressurized membrane–shell,
as found in the previous study by Feng and Pangnan
[13].

3 Small displacement behavior

For small displacement (w � h), we expand Eqs. (6)–(7)
around the solution at zero force, ψ̂ = 0 and Σ̂ = p̂/2.
We linearize the equations in terms of Ψ̂ and μ̂ = ŝ(Σ̂−
p̂/2) for ŝ > ŝc:

Ψ̂ = − d
dŝ

[
1
ŝ

d
dŝ

(ŝμ̂)
]

(10)

μ̂ŝ + ŝΨ̂
p̂

2
− d(ŝΨ̂ ′)

dŝ
+

Ψ̂

ŝ
=

F̂

2π
. (11)

Substituting (10) into (11) yields a single fourth-order
equation for μ̂
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2
d
dŝ
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1
ŝ

d
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]
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=
F̂

2πŝ
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The analytical solution is a sum of the particular solu-
tion F̂ /(2πŝ) and a solution of the homogeneous equa-
tion, i.e., a linear combination of the derivatives of
f+(ŝ) = K0(

√
λ+ŝ) and f−(ŝ) = K0(

√
λ−ŝ), K0 being

the zeroth-order modified Bessel function of the second
kind, and

λ± = p̂/4 ±
√

(p̂/4)2 − 1. (13)

Accordingly, we may write (for ŝ > ŝc)

μ̂(ŝ) = − a

λ+
f ′
+(ŝ) − b

λ−
f ′

−(ŝ) +
F̂

2πŝ
. (14)

Substitution in (10) yields

Ψ̂(ŝ) = af ′
+(ŝ) + bf ′

−(ŝ) (15)

The boundary conditions at infinity are verified by the
choice of K0(·) and the constants a and b are obtained
by imposing the boundary condition (8) for Ψ̂ and Ψ̂ ′.
We find that

a =
(
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R
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)
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+(ŝc)][f ′
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The boundary condition (8) for Σ̂′ yields a relation
between F̂ and ŝc:
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)
π
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8
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Finally we obtain the main physical quantities. From
Eq. 14, the meridional membrane stress is

Σ̂ss =
p̂

2
− F̂

2πŝ2
− a

ŝλ+
f ′
+(ŝ) − b

ŝλ−
f ′

−(ŝ). (19)

Following formula (14.20) of [20], the dimensionless
membrane circumferential stress is

Σ̂θθ =
p̂

2
+

F̂

2πŝ2
− a

λ+
f ′′
+(ŝ) − b

λ−
f ′′

−(ŝ). (20)

The geometrical displacement is obtained by integrat-
ing (15):

ŵ(ŝ) = −af+(ŝ) − bf−(ŝ). (21)

To obtain simple analytical formulae, we further con-
sider the limit of a small contact region (relative to the
bending length), i.e., ŝc � 1—this is an approximation
that holds for most of the range of simulations shown
above. We also return to dimensional quantities, recall-
ing that the dimensionless parameters

ε =
h

[12(1 − ν2)]1/2R
(22)

p̂ =
pR

εEh
(23)

with ε in particular used in the definition of the hori-
zontal length scale.

The relation between the vertical displacement at the
origin w0 and sc, the radius of the contact region, is
given by

w0 = Rε
1 + R/Ro

k1
[
k2 − k3 log(sc/(R

√
ε))

] , (24)

where we introduce three constants

k1 =
4π

√
(p̂/4)2 − 1

arctanh(
√

1 − (p̂/4)−2)
, (25)

k2 =
p̂

8k1
+

γ − log(2)
4π

, (26)

k3 = 1/4π, (27)

and where γ is Euler’s γ constant. The first and third
constants have the following limiting behaviors as a
function of dimensionless pressure: k1 ∼ 8 and k2 ≈
γ−log(2)

4π for small p̂, while k1 ∼ πp̂/ log p̂ and k2 ≈ log(p̂)
8π

for large p̂. We manually got some point on the curve
(w vs F/(2π)) of ([20]) (Figure 14.15): the slope at the
beginning is 1.39 which times 2π gives 8.75 close from
k1 = 8. Note, in particular, that the expression (25) is
well-defined and real for p̂ < 4.

The relation between the force and sc is given by

F = ε2ERh
1 + R/Ro

k2 − k3 log(sc/(R
√

ε))
. (28)

Taking the ratio of (28) and (24) leads to a consid-
erable simplification; at lowest order in ŝc, the force–
displacement relationship is linear:

F = εEhk1w0. (29)

Surprisingly, this equation does not involve the probe
size, Ro. Indeed, the lowest-order term (in ŝc) of F/w
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Fig. 3 Comparison of analytical and numerical solutions
at small displacement. Panels a, b, and c show the con-
stants k1, k2, and k3 that are involved in the equations relat-
ing size of contact region, probe displacement, and force,
respectively, plotted as functions of the dimensionless pres-

sure, p̂. Circles represent the constants estimated from fits
to numerical solutions, while curves show the predictions
of the analytical solution of the linearized equations. Black,
dark gray, and gray circles stand for R/Ro = 0 (a plane),
R/Ro = 1, and R/Ro = 10, respectively

that depends on R/Ro is

− εEhπ

(
1 − R

Ro

)
k1k3 log(sc/(R/

√
ε))(sc/(R/

√
ε))4

8
(30)

which remains negligible for small ŝc.
To compare these results with our numerical results,

we fitted numerical solutions (Fig. 3a–c) to the func-
tional forms (29, 28, 24), with k1, k2, and k3 taken as
free parameters, and we compared these values to the
theoretical values [Eqs. (25–27)]. Consistent with our
approximation, the match is good for small displace-
ments when the pressure is high enough (Fig. 3a–c).
The w versus F curve is independent of Ro/R at lowest
order, explaining that the dimensionless stiffness k1 is
identical to that obtained for a point indenter [18].

4 Conclusion

We find that, at small compression, the pressurized
spherical shell behaves as a linear spring with stiffness
given by

K = εEh
4π

√
(p̂/4)2 − 1

arctanh(
√

1 − (p̂/4)−2)

(with ε and p̂ defined by Eqs. 22–23) independently of
the probe geometry. This result is potentially useful for
the wide range of experimental protocols mentioned in
the introduction. At low pressure, stiffness K is mostly
sensitive to modulus and at high pressure stiffness is
mostly sensitive to pressure. Therefore, experiments in
both normal medium and high-osmolarity media make
it possible to deduce modulus and pressure (assuming
Poisson’s ratio has a standard value). If the monitor-
ing of the contact area is possible, then the comparison
of observed contact radius with theoretical radius at a

given force F

sc =
√

εR exp
[
4π(k2 − ε2ERh(1 + R/Ro)/F )

]

(with ε and p̂ defined by Eqs. 22–23 and k3 defined by
Eq. 27) provides a simple test of whether it is appro-
priate to model the sample as a pressurized shell.

There are an increasing number of studies on
mechanoperception and mechanotransduction in living
systems—see reviews about plants [23], animals [24,25],
fungi [26], or bacteria [27]. These studies call for theo-
retical descriptions of how external probes affect force
distributions in cells and tissues. Indeed, the simplest
experiment on invasive growth by plant roots or fungal
hyphae involves putting the growing body in front of a
plane and measuring the force upon impact ([28,29]).
The deformation at the tip triggers a growth response:
a quantitative study of this response first requires a pre-
cise description of tip deformation at contact, for which
our study provides a first basis.
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