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Oblique two-fluid stagnation-point flow 

B. S. TILLEY *y 1 and P. D. WEIDMAN *y 2 

ABSTRACT. - Exact similarity solutions for the impingement of two viscous, immiscible oblique stagnation flows forming a flat interface 
are given. The problem is governed by three parameters: the ratios of density p = pt /pi and of viscosity ~1 = PI //by of the two fluids and 
R = tan or/ tan 6’2 where 01 and 02 are the asymptotic angles of the incident streamlines in each fluid layer. For given values of p. 11, and Hz, 
the compatible flows in the lower fluid, as measured by the strain rate ratio 0 = pt /a of the two fluids and the asymptotic angle of incidence Ht , 
are found such that the interface remains horizontal in a uniform gravitational field. For /, = 1, explicit solutions show that a family of co-current 
and counter-current shears supporting a flat interface exist for all finite, nonzero values of R. For p # 1, the normal stress interfacial boundary 
conditions restricts the flow to a unique combination of asymptotic far-field shear and Hiemenz stagnation-point flow in each fluid layer. The 
displacement thicknesses in each layer are always positive when the fluid densities are not equal, but vanish simultaneously as p + 1. At each 
value of p the interfacial velocities increase with increasing viscosity ratio ,I. As a generalization of the present oblique two-fluid stagnation-point 
flow problem, we discuss how the flat interface may be inclined with respect to the horizontal in a uniform gravitational field. 0 Elsevier, Paris. 

1. Introduction 

Stagnation-point flows are ubiquitous in the sense that they inevitably appear as a component of more 
complicated flow fields. In some situations flow is stagnated by a solid wall, while in others there is a free 
stagnation point or line interior to a homogeneous fluid domain, or at the interface between two immiscible 
fluids. These can be either viscous or inviscid, steady or unsteady, two-dimensional or three-dimensional, normal 
or oblique, and forward or reverse. The classic problems of two-dimensional and axisymmetric three-dimensional 
stagnation-point flow are associated with the names (Hiemenz, 1911) and (Homann, 1936), respectively. Forward 
and reverse two-fluid stagnation-point flows occur naturally, for example, at the front and rear of a liquid sphere 
of one fluid in uniform translation through a quiescent immiscible fluid of a different kind, a problem solved 
in the low Reynolds number limit by (Hadamard, 1911). Generalized three-dimensional stagnation-point flow, 
composed of the nonlinear interaction between two orthogonal Hiemenz flows of arbitrary strain rate, was 
reported by (Howarth, 1951). Reverse stagnation-point flow against an impermeable flat wall does not exist 
in two dimensions, but (Davey, 1960) showed that certain reverse flows in three dimensions are possible. A 
novel radial stagnation flow impinging axisymmetrically on a circular cylinder was reported by (Wang, 1974). 
Of interest in the present study is oblique stagnation-point flow. (Stuart, 1959) first gave the solution for planar 
oblique stagnation-point flow impinging on a flat plate, a result later rediscovered by (Tamada, 1979) and 
(Dorrepaal, 1985). Unsteady stagnation-point flows abound, and an interesting solution was found recently by 
(BurdC, 1996) that corresponds to reverse stagnation flow with time-dependent blowing through a flat porous 
surface. The pervasive feature of the stagnation flows cited above is that they all represent exact solutions 
of the Navier-Stokes equations. 
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Two papers by C. Y. Wang bear on the present study. In the first (Wang, 1985) considered the normal 
stagnation-point flow of one fluid on a quiescent second fluid. Implicit in that paper is the assumption that the 
normal-stress boundary condition at the two-fluid interface is satisfied approximately, by virtue of the fact that 
the two-fluid density ratio is large, or that the solution is valid only in a small neighborhood of the flat interface 
around the stagnation point. In the second paper (Wang, 1992) solved for the spatially-developing boundary 
layers produced by uniform shear flow of one fluid (eg. air) over a second quiescent fluid (eg. water). The 
two-fluid oblique stagnation flow considered here combines certain aspects of both these problems. In another 
two-fluid flow study, (Coward and Hall, 1996) considered the class of flows whereby an upper stagnation-point 
flow of one fluid (eg. gas) impinges normally on a uniform depth liquid layer (rg. liquid) undergoing blowing 
or suction at its lower boundary. Intended as a model of air flow over flow over a swept wing covered by a 
thin layer of water, they found unique steady solutions dependent on the strength of blowing or suction in the 
lower liquid layer. The stability of that two-fluid system to transverse periodic pertubations was analyzed. In the 
current problem, there is no equivalent to the suction/blowing flows due to the lack of a lower boundary, but it 
would be interesting, and perhaps more realistic from an application point of view, to generalize the (Coward 
and Hall, 1996) problem by considering an oblique stagnation-point flow of the gas. 

Our paper is organized as follows. The two-fluid similarity formulation is given in $2. Explicit solutions 
for equally dense fluids are given in 53. Numerical solutions of the governing ordinary differential equations 
covering a comprehensive range of density and viscosity ratios are presented in $4, and concluding remarks 
are given in $5. 

2. Problem formulation 

Consider a liquid of density pr and viscosity ~1 in static equilibrium beneath a second immiscible fluid of 
density p2 and viscosity ~2 in a uniform gravitational field y. The far-field stagnation flow is characterized by 
strain rate ,&I and streamline angle 02 and we take, without loss of generality, 0 < 02 5 7r/2. When velocity 
fields u(l) and u(~) are nonzero the flow of each fluid is assumed to be incompressible. Scaling coordinates 
with dm, time with l/,/$2, velocites with ,,/s, and pressures with /~a/&, the continuity and 
Navier-Stokes equations in each fluid are given by 

(1) v u(l) XI () 

Du(l) ~ = -1vp(‘) 
nt P 

(4) 
Du(2) 
___ zz 

Dt 
-VP(‘) + v2u(2) 

where p = pr /pz is the density ratio, IL = /or 1~12 is the viscosity ratio, and p (‘), i = 1,2, are the reduced pressures 
that take into account the different uniform static pressure gradients in each fluid. The Cartesian coordinates for 
the planar problem are (XJ, 2) and the uniform gravitational field points along negative x. For static equilibrium, 
p > 1. We seek the compatible oblique stagnation-point flow of the lower fluid, characterized by strain rate [jr 
and the asymptotic streamline angle 0 < Hi < K. Since the strain rate [j2 of the upper fluid has been scaled 
out of the problem, the input parameters are p, 11, and 02. A typical two-fluid solution showing the Cartesian 
coordinates and our reference system defining the asymptotic stagnation angles Hr and 6’2 is given in Figure I. 

It is convenient to introduce a streamfunction satisfying continuity equations (1) and (3) in each fluid 
according to 

u(‘) = -V A 
[ 
li/(‘)(x, z) j . 1 
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Fig. I. - Oblique two-fluid stagnation flow streamline field for LL = 10, p = 15 and 02 = 72.2”. The solution for the lower fluid response gives 
0, = 115.2O and [l’ = 0.223. Also displayed are the Cartesian coordinate system and our definitions for 01 and Hz. Note the difference in scales 
between the horizontal and vertical directions which distort the asymptotic streamline angles. 

As shown by (Stuart, 1959), the rotational far-field motion for oblique stagnation-point flow is a linear 
superposition of uniform shear and Hiemenz flow. Following (Dorrepaal, 1985) we parameterize the relative 
strengths of these far-field flows in each fluid layer according to 

(5) dl) N P( zsincrl - ZCOSCQ) (2 + -cm) 

69 $1”’ - II: sin (1.2 + z cos cry (z -+ +m). 

It must be emphasized that the angles ~1 and ~2 are simply parameters that provide a continuous transition 
from Hiemenz stagnation-point flows at a; = 7r/2 to continuous or discontinuous uniform shear flows at a; = 0, 
% = I,2 for the inviscid problem. By the convention shown in Figure 1 the actual asymptotic angles of the 
impinging flows are given by 

(7) 8; = tar?(2 tan a,) (a = 1,2). 

The boundary conditions at the horizontal interface we locate at z = 0 are continuity of streamfunction, 
tangential velocity, and horizontal and normal stresses which, applied in that order, are given by 

@I p - p = 0, $I”’ - p = 0) @’ - lL1/l~;) 1 () 

(9) p(l) - p(‘) + 2 [& - qq = 0. 

Inserting similarity solution forms 
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into the far-field conditions (5) and (6) yields 

(11) fi(-co) = [jsinflr, 

(12) f;(m) = sinflz; 

,$-cc) = -pcosa, 

g; (cc) = cos Q2 

where a prime denotes differentiation with respect to x. Inserting ( 10) into momentum equations (2) and (4) 
furnishes a system of homogeneous partial differential equations which may be integrated once with respect 
to Z. Evaluation of those equations in the far-field using (11) and (12) then yields 

where K1 and Kz, to be determined numerically, are related to the constant dimensional displacement thicknesses 
ST in each fluid through the relations 

(17) 
K1 . 

sin Q2 ’ 

Also, j’r and f2 satisfy the far-field relations 

After determining the primary flow solutions fi ( .z) and fx ( z), the pressure fields in each fluid may be calculated 
from the equation 

p(‘)(n:,z) = -;f; - if; + (-1)‘~K;ra,sir; + 

where the P; are constant reference pressures. Application of the normal stress condition (9) gives the following 
three results 

1 sina 
’ = \lis sin al ’ 

K2 tan ~1 = -JiTKl tan ~2. 9 = Pl + (p - l).g(O). 

Thus the far-field structure of the flow in the lower fluid, governed by ,Br and ~1 (through which one obtains HI), 
is completely determined by matched solutions of equations (13) and (15); then equations (14) and (16) are 
solved to smoothly connect the uniform far-field shear components across the interface. 

Canonical Hiemenz equations in each fluid may be obtained using the affine transformations 

(21) 
CL 

fl(Z) = -s1 E(w), g;(z) = -33 ( 1 SlZ coscq ) 
P Sl 

(22) f2;(z> = -52 F2(52X)! 
1 

g;(z) = & I&(s2z) COSQ2 
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where sr = -prf’/-~-‘/~dz and s2 = ,/‘s. Then equations (13)-( 16) become 

w Fi” + FIF:’ - (F;)” = -1, Ry + F217f - (F;)” = -1, 

(24) H; + FIH; - F;Hl = Al, H; + &Hi - i7;H2 = -AZ: 

with A1 = p 3/’ --‘I2 KI I&&!& and A2 = Kx/ds. The selections s1 < 0 and sz > 0 gives a positive p 
independent variable C in each layer defined by 

introduced to facilitate the numerical integrations. The far-field boundary conditions are now 

(26) F;(m) = H;(m) = F;(m) = H;(m) = 1, 

and the interfacial conditions are given by 

(27) Fl(O) = F2(0) = 0, p’l’F;(O) - F;(O) = 0, p’/‘F$(O) + $/“F;‘(O) = 0 

(28) p1/2H2(0) + $(O) = 0, pl/iH;(()) - $I2 $H;(O) = 0. 

Finally, cul may be calculated from (20)~ which now reads 

P 112 Al 
tan Q1 = - $14 A2 

-- tana 

wherein 

(30) A1 = limC+W {Fl(C) - 0, A2 = limciX{c - ~?22(<)). 

In $53 and 4 the factors A1 and AZ, proportional to the displacement thickness in each fluid layer, are found to 
be positive, as expected. Thus CQ, and therefore 81 calculated from equation (7), both fall in the range [0, ~1. 

3. The case p = 1 

Explicit solutions may be found for equally dense fluids in each layer. By inspection, Fl = F2 = < are exact 
solutions satisfying the normalized Hiemenz equations and all associated boundary conditions. This represents 
the normal impingement of two, equal-strength, potential stagnation-point flows for which K1 = K2 = 0 and 
hence equation (20)~ is satisfied identically. Note that equation (2O)r then yields a one-parameter definition for 
p in terms of or, for fixed LYZ with p = 1. The H; satisfy the identical second-order equations 

(31) H;“+(:H;-H;=O 

with interfacial and far-field boundary conditons given by 

(32) 

(33) 

RH2(0) - &HI(O) = 0, RH;(O)+pH;(O) =0 

H;(C) + 1. as <-‘cc, 
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where we have introduced R = tan or/ tan (rz. By inspection Hi = < is one solution of (31) and the second 
homogeneous solution may be found by standard techniques leading to the general solution 

Hj(<) = c; ( + D; [e~i’li+~<erf(--$)]. 

Boundary conditions (32) and (33) form a linear system determining the unknown constants C; and D;, with 
solution 

(35) 

(36) 

cl= fi-R D1= 2 
J 

/L + R 

JP(vG+ 1)’ c/x&+1) 

CL = &i R-l/F 
R(1 + fi>’ 

A final integration of (34) provides the full solution, written here in the original variable z as 

C 
sin 02 2 g1(2) = -pcotcq cl-,? + 

2 IL 

in which y(~, Z) is the incomplete gamma function of parameter CJ and variable z as defined in (Abramowitz 
and Stegun, 1972). The horizontal interfacial velocity ~(2; 0), calculated with the aid of (34) and the position 
(Q, 0) of the stagnation point are readily determined to be 

A sample solution for 1-1 = 5 and R = 0.5 is given in Figure 2. There is a turning point along the separating 
streamline in the upper fluid that extends horizontally beyond the stagnation point. This point coincides with the 
minimum (maximum) horizontal fluid velocity for values of z greater than (less than) zero. Figure 2 also exhibits 
horizontal velocity profiles at positions z = ~0, z = ~0 f 5 and n: = ~0 f 15, symmetrically distributed about the 
stagnation point. Although the shape of the curves are x-independent, the velocity profiles at the different spatial 
locations are markedly different, with flow reversal occuring near to, and upstream of, the stagnation point. 

Topological characteristics of the flow may be understood through a determination of the streamline slopes at 
the stagnation point. We first calculate the slope dz/dx along an arbitrary streamline. Values of the streamline 
slopes at the stagnation point (~0, 0), along with knowledge of the oblique stagnation flow angles 191 and 02, 
can be used to determine the existence of turning points (dz/dx infinite) along the separating streamlines in 
each fluid layer. Setting 1c = :cg in the expression for dz/dx and taking the limit z --+ 0, using L’Hospital’s 
rule, furnishes the stagnation-point slopes 

(41) dz 

(-> (I + &jR tan a2 
m1 = dx (,ro,o-) = &&,‘ii - R) ’ 
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0 5 IO 0 I  10 ii 

Fig. 2. - Streamline field given by the equal density explicit solution h~ = 5, R = 0.5, and 0~ = 192 = 28.65”. Note the turning point where 
the separating stagnation streamline is at an extremum in :r. Below are the horizontal velocity profiles at axial positions .I’ = .I’~~, .I’ = .I’” f 5 
and .I; = .cg It 15, where .I;() = -3.91. 

The following observations may now be made. Firstly, the streamline slopes at the stagnation point in each 
fluid are of the same sign, regardless of the values of ,u and R. Secondly, /ml 1 < 1~~2 1 for 11, < 1, [ml 1 > 1~~2 1 
for p > 1, and the ratio of the magnitude of the slopes is Irnl/m2/ = /I 3/2. Thirdly, the slopes at the interface 
are continuous only when p = 1. The location of the stagnation point (so, 0) at the interface and the nature of 
possible turning points depends on the sign of R. Consider R > 0 in which case 20 < 0 always according to 
(40)~. Then for p ‘1’ > R one has ml > m2 > 0 when 0 < ,u < 1, or 0 < ml < m;! when 1 < p < 00, and a 
turning point in the stagnation streamline must exist in the upper fluid layer in order that the streamline match 
its negative slope in the far field as z ---f cc. For p Ii2 < R, on the other hand, one has m2 < ml < 0 when 
0 < p < 1, or ml < m2 < 0 when 1 < p < co, and a turning point on the stagnation streamline appears in the 
lower fluid. In the special case ,LL ‘I2 = R # 1, the stagnation streamlines in each fluid join smoothly with infinite 
slope at the interface, but the flow possesses no symmetry: only for identical fluids for which R = 1 is the flow 
symmetric about the interface. Next consider R < 0 in which case the stagnation-point streamline slopes in each 
layer are always negative and no turning points exist anywhere. In this circumstance the horizontal position of 
the stagnation point may be positive or negative. In particular, ZJ) < 0 for p > JRJ, :r() > 0 for 11 < /RI, and the 
stagnation point is precisely at the origin whenever /1 = JRI. The above results are summarized in Table 1. 

4. Numerical solutions 

For p # 1 the coupled system of equations (23) and (24) are solved numerically, shooting with a fourth order 
Runge-Kutta integration routine embedded in a Newton-Raphson method for ascertaining subsequent estimates 
of unknown interfacial velocity and shear stress parameters. The Hiemenz equations (23) are solved first to 
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TABLE 1. - Topology of the turning point of the stagnation streamline and the relative location of the stagnation point for 0 = I 
Note that ic’/’ = X corresponds to the case when the stagnation point is the turning point. 

I R > 0 i R < 0 I 

Turning Point in Upper Layer 

Turning Point in Lower Layer 

.ro < 0 Always 

No Stagnation Streamline Turning Points 

,L > R ,I’(, < 0 

,L < R .I’(, > 0 

determine, inter alia, the constants A; from (30). Subsequently, the coupled system (23) and (24) are integrated 
simultaneously, iterating only on the unknown parameters in the interfacial conditions (28) determining H;. In 
Newton’s method, an iteration is made on the coefficients Sj and 7’i in the asymptotic behaviors 

(42) Fi N r,; - s; l&2 
vf 

(43) H; N T)j + (-1)’ A; - T, e-f/f/‘, 

where 71; = C - (-1)’ A;, until the interfacial conditions are satisfied to prescribed accuracy. In the following 
only statically-stable stratifications (p > 1) are considered. 

Figure 3 exhibits the displacement thicknesses K; as a function of l/p at selected values of 1~. (Davey, 
1960) has shown that the displacement thickness in certain three dimensional saddle-point stagnation flows may 
be negative, but here the displacement thicknesses are positive for all values of p and ~1. Both displacement 
thicknesses vanish at p = 1, as noted in $3, and the lower fluid’s thickness parameter Al tends to zero as 
~1 ---+ co. For this latter limit, the lower fluid begins to behave as a solid impermeable wall, and the flow 
then resembles oblique stagnation-point flow over a rigid plate. Indeed, we find AZ -+ 0.6479 as ~1 + CC, in 
agreement with (Dorrepaal, 1985) for stagnation-point flow of a homogeneous fluid impinging on a flat plate. 
Figure 4 gives the scaled interfacial velocities f’(O)/ sin CQ and g’(O)/ cos CQ for different density and viscosity 
ratios. Both velocity components tend to zero as the density of the upper fluid vanishes. 

From equation (20)~ it is apparent that once the quantities K; cos ai are nonzero, a specific relation between 
nr and o.2 must exist in order for the interface to remain flat: namely, for each value of p # 1 and 0 < a2 < 7r/2 
there is a unique value of ~1 lying in the range 7r/2 < (~1 < 7r. Furthermore, the relation (2O)l specifies a 
particular strain-rate ratio p. Figure 5 shows the solution for an air-water system, with the corresponding 
horizontal velocity components at x = 0, z = f50 and 2 = &15() displayed below the streamline field. Note 
that the lower fluid in the z = -150 profile has a minimum at z cz -3.18. The flow in each fluid layer 
asymptotically approaches the respective rotational oblique far-field streamline flows as 1~1 -+ cc, and the 
intensity of the horizontal motion increases linearly with 1x1 - ~0. Figure 5 shows the variation of 81 as a 
function of 192 for three different two-fluid systems, viz. air/water, water/mercury, and olive oil/water. For p > I 
one obtains solutions 191 > 02 + 7r/2, with near equality for the olive oil/water system. 

5. Discussion 

We have considered the interaction between two planar oblique stagnation-point flows of different immiscible 
fluids, each occupying a half-plane of infinite horizontal extent normal to gravity. Only oblique flows that 
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Fig. 3. - Displacement thickness parameters K, and Kz as a function of the inverse density ratio for selected values of the viscosity ratio. 
One sees that the displacement thickness in each fluid is positive and that K1 is not a monotonic function of the density ratio. 

possess a flat interface have been studied. For equal density fluids a variety of impinging oblique stagnation 
flows exists, the sole requirement being that the Hiemenz component of the flow in each fluid have identical 
strain rates, viz. ,L3 sin cyr = sin (~2. In this case, the uniform shear components can be either co-current or 
counter-current. When the densities are not equal, on the other hand, the interfacial normal stress in each fluid 
depends on both the displacement thickness of the Hiemenz flow component and the strain rate of the uniform 

EUROPEAN JOURNAL OF MECHANICS, B/FLUIDS, VOL. 17, No 2, 1998 



214 B. S. TILLEY AND P. Il. WEIDMAN 

1 

0.8 

f ‘(0) 0.6 
sin ct.* 

0.4 

0.2 

0 

1 

0 

-1 

-2 

g'(O) -3 

cos a2 -4 

-5 

-6 

-7 

-8 

. . . _: -- _ 
,_‘. 

I 

,’ 
/’ .. />” 

___* , __a’ ,/’ _/ / ,/ 
_,’ 

+ ,,;,$” _j______ 

,,*// 

.,,,,I/ ,/’ ,’ ,,I’ ,,,’ : ,’ ,’ 

Y 

: : 

p=100 
,o 

1 

0.1 
0.01 

L I 

0 0.2 0.4 0.6 0.8 I 

1 IP 

‘1 

p=lOO-- ‘\\. 10 -\ 
1 

opd; ~~.. --,. --.. 

ii-- I 
0 0.2 0.4 0.6 0.8 1 

l/P 
Fig. 4. - Hiemenz and shear-flow components of the intefacial velocity as a function of l/p at selected values of 11,. 

shear component; in this case the uniform shear components s’(z) form a unique counter-current flow at each 
value of 82 for a given pair of immiscible fluids. 

The explicit exact solutions found for p = 1 are special in the sense that for prescribed values of p, k~, and 
0 < 192 < 7r/2, there is an infinity of solutions 0 < 191 < rr in the lower fluid. Equation (40)~ shows that 
the shift of the stagnation point from the origin has the same functional dependence on cy:! as that found by 
(Dorrepaal, 1985) for oblique stagnation-point flow impinging against a flat wall; however for the case most 
closely resembling his, that of the symmetric impingement of identical fluids obtained when p = R = 1. 
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Fig. 5. - Streamline pattern for an air-water system for p = 64, p = 815, 0 2 = 72.2O The lower fluid solution response gives 
0, = llY.75” and [j = 0.027. Horizontal velocity profiles at z = 0, n: = f50 and :r = f150 are displayed below the streamline field. 

the shift ~0 is smaller since the multiplicative constant in equation (40)~ is k = -m G -0.798, whilst 
(Dorrepaal, 1985) found k A -1.411. 

One can readily generalize the present results to include the effect of buoyancy across an inclined interface. 
Taking a coordinate system (2, 5) tangential and normal to the interface inclined at angle 4 with respect to the 
horizontal, the balance in normal stress at the interface yields, to within a constant pressure, the conditions 

G (P - 1) sin 4 - [,OKl cos & + K2 cos k22] = 0, P=$S, 

where 61 and & correspond to the parameterization (7) with Oi replaced by & + (-l)‘$, and G = g/a 
is the appropriately normalized gravity. The first relation determines a unique interface tilt angle 4 necessarily 
lying between a given pair of far-field angles Oi. This relation is implicit since the C& depend on 4. Note also 
the obvious result that buoyancy effects for an inclined interface vanish when p = 1. 

One may also consider the problem of finding the response of a quiescient lower fluid to an imposed oblique 
stagnation-point flow of the upper fluid, as did (Wang, 1985) for the special case of normal stagnation-point flow. 
In Wang’s problem, however, the interfacial normal-stress condition at the flat interface is only approximately 
satisfied either by considering small values of /3 or by restricting the analysis to a region local to the stagnation 
point. The same holds true when the upper fluid is an oblique stagnation-point flow, and one would solve the 
modified form of equations (23)r and (24)~ 

F,“’ + Fl Fi’ - (F;)” = 0, H:’ + FiH; - F;Hl = 0, 
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Fig. 6. - Compatible asymptotic streamline angles tll plotted as a function 
of asymptotic driving streamline angles Hz for three different two-fluid systems. 

with the original interfacial conditions, except that the far-field conditions become &‘i (oo) = Hi (co) = 0. In 
order to satisfy the normal-stress boundary condition exactly, one would have to allow for a spatially deformed 
interface. A linearized study of interfacial deformation for an inviscid two-fluid stagnation-point flow has been 
reported by (Erickson and Olfe, 1978). The viscous interfacial deformation is also of interest, and is currently 
part of our work in this area. 

Consideration must be given to the stability of these exact solutions to the Navier-Stokes equations. Self-similar 
disturbances for plane stagnation-point flow on a solid plate are known to be linearly stable (Lye11 and Huerre, 
1985; Brattkus and Davis, 1991), but the presence of the interface allows for the possibility of a spatial-temporal 
instability. A Reynolds number Re,, based on the distance 3; - ~0 from the stagnation point can be introduced 
to perform the stability analysis for positive and negative values of Re,. We speculate that the neutral stability 
boundaries will be, in principle, qualitatively similar to those found by (Coward and Hall, 1996) for uniform 
blowing of one (finite depth) fluid against an oncoming Hiemenz stagnation-point flow. In the present problem 
competing instability mechanisms will come into play at different values of cr;. For example, at low values of 
ai when the flow is predominantly a discontinuous shear flow across the interface, the motion will be unstable 
to viscosity and/or density stratification across the interface as in the work of (Hooper and Boyd, 1983). An 
excellent review of such instability mechanisms in two-fluid systems is given in (Joseph and Renardy, 1993). 
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