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Abstract

The transport of liquid plugs in networks of branching channels is experimentally studied.

Liquid plugs are pushed at different driving conditions in a tree-like network of microchannels

with widths either narrowing or widening with the generation number. The global flow pattern

can be either symmetric or asymmetric, with daughter plugs dividing in synchrony or asynchrony

as a function of the driving force and the network geometry. This behavior is explained by plug

interactions at work in a fundamental element of the network, which consists of three adjacent

bifurcations. When a single plug is pushed at constant pressure, its daughters can reach the

exits only if the driving pressure is higher than the thresholds in the network. For a plug pushed

at constant flow rate, its daughters can arrive at the exits of the narrowing network even when

the flow rate is low. Conversely, in the widening network, only some daughters can reach the

exits while others get stuck at intermediate bifurcations. Moreover, a linear relation between

the driving pressure and total flow rate in the network is derived and found to be applicable in

the presence of successive plugs. In this case, the total flow rate can be influenced by the initial

distance between plugs when the driving pressure and plug lengths are fixed. Furthermore, some

preliminary results about network reopening through plug ruptures at high pressure driving are

also presented.

Keywords: Microfluidics, Networks, Two-phase flow, Liquid plug





Résumé

Nous étudions expérimentalement le transport des bouchons liquides dans les réseaux branchés

de microcanaux. Les bouchons liquides sont poussés sous différentes conditions dans un réseau

arborescent de microcanaux de largeur croissante ou décroissante avec le numéro de génération.

Le motif global d’écoulement peut être symétrique ou asymétrique, avec des bouchons se divisant

de manière synchrone ou asynchrone, selon la nature et l’intensité de la force de poussée et la

géométrie du réseau. Ce comportement s’explique par des interactions entre bouchons à l’œuvre

au sein d’un élément fondamental du réseau composé de trois bifurcations adjacentes. Quand

un unique bouchon est poussé à pression constante, ses descendants atteignent les sorties du

réseau uniquement si la pression est supérieure aux seuils du réseau. Les descendants d’un bou-

chon poussé à débit constant, atteignent toujours les sorties d’un réseau de largeur décroissante,

même lorsque le débit est faible. Inversement, dans un réseau à largeur croissante, seuls certains

descendants peuvent atteindre les sorties alors que les autres restent bloqués aux bifurcations

intermédiaires du réseau. De plus, nous montrons qu’une relation linéaire existe entre la pression

et le débit total dans le réseau, dont la validité est vérifiée en présence de bouchons succes-

sifs. Dans ce cas, le débit total varie avec la distance initiale entre les bouchons, à pression et

longueurs de bouchons fixées. Finalement, des résultats préliminaires sont présentés, concernant

la réouverture sous haute pression de réseaux par ruptures des bouchons.

Mots-clés: Microfluidiques, Réseaux, Écoulement diphasique, Bouchon liquide
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Chapter 1

Introduction

1.1 Motivation of the study

We are motivated by two-phase flows that take place in the pulmonary airways. Since the airway

is coated with a liquid lining, the flow of air can be impeded by discrete plugs that are formed in

pathological situations (Grotberg, 1994). In addition, the instillation of liquid into the airway is

very common in medical treatments such as partial liquid ventilation and drug delivery (Leach

et al., 1996). In these cases, the ultimate distribution of liquid within the pulmonary tree is

of great importance but not clearly understood yet. The difficulties include: (1) the nonlinear

relation between the local pressure jump and flow rate due to the presence of liquid plugs in

the conduit; (2) introduction of bifurcations, which changes the flow behavior and introduces

more daughter plugs through plug division; (3) interactions between daughter plugs in distinct

subregions of the tree; and (4) flow evolution at different lengthscales resulting from the inherent

complexity of the lung structure.

For these reasons, most previous studies have considered either the detailed motion of a single

plug in one conduit and one bifurcation or the statistics of liquid transport in the network on

a global scale. There remains a large gap between the understanding about the two-phase flow

that develops in one straight channel (or one bifurcation) and the global organization of the flow

in networks of connected channels. Therefore, we aim to build a simple model, representing the

basic building element of the airway structure, which allows experimental investigations of liquid

transport in this element with fine control over the parameters and can be adopted in studies

about flow in the whole pulmonary tree.

As illustrated in figure 1.1, the complex structure in the conducting zone of the airway,

generations 0 to 16, can be simplified as a branching binary tree. We particularly focus on the

transport of liquid plugs in the middle section of the lung, generations 9 to 16, where the diameters

of bronchioles become small so that microfluidic techniques are relevant. Networks consisting

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Simplified image of the structures in the pulmonary airway. There are branching
binary network in the conducting zone, generations 0 to 16, and clusters of small ducts in the
respiratory zone, generations 17 to 23. Taken from (Weibel, 1984).

of a few generations of branching microchannels are made to model the binary structure of the

airway. By injecting liquid plugs into the network and pushing them at different pressures or

flow rates, we can record the motion of plugs with the help of a microscope and fast camera.

Based on the images thus obtained, the flows, including plug advancements across generations

and divisions at bifurcations, are studied.

1.2 Two-phase flows in networks

1.2.1 Liquid plug in the pulmonary airway

The pulmonary airway presents a branching network of complex structures which is illustrated

in figure 1.2. The inner airway is coated with a thin layer of liquid, which protects the underlying

cells from drying and traps inhaled particles that are dangerous to the lung (Grotberg, 2001).

However, when the volume of liquid is sufficiently large, the lining may experience a surface-

tension-driven (Rayleigh-Plateau) instability which causes the closure of airways, for example

by the formation of liquid plugs (Halpern & Grotberg, 1992; Otis et al., 1993). The schematic



1.2. TWO-PHASE FLOWS IN NETWORKS 3

Figure 1.2: Image illustrating the structures of the airway in the lung.

Figure 1.3: The schematic picture of a branch of the airway. (a) Open with the liquid lining. (b)
Closed by a liquid plug. Taken from (Majumdar et al., 2003).

pictures show a section of the airway that is open, figure 1.3(a), and closed by a liquid plug,

figure 1.3(b).

The airway closure caused by surface-tension-driven instabilities has been studied experimen-

tally (Macklem et al., 1970) and theoretically (Heil et al., 2008). In Heil’s paper, they described

the mechanics of plug formation by instabilities of the liquid lining and illustrated the possible

equilibrium states of the liquid lining in the axisymmetric rigid airways, as shown in figure 1.4.

Supposing that the liquid had a lining with uniform thickness as shown in image (a), the instabil-

ity introduced by some perturbation caused the deformation of the lining, with the possible new

configurations shown in figures 1.4(b) and (d). In all the configurations, the air-liquid interfaces

had to be a surface of constant mean curvature to avoid motion induced by curvature variation.

The resulting state, whether a liquid plug could be formed, depended on the initial thickness of

the liquid film, h0 noted in figure 1.4(a). A minimum value of h0, hmin, was required to form

a liquid plug. When h0 < hmin, the lining would be stabilized as the unduloid shaped interface

(figure 1.4(b)).
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Figure 1.4: Four possible equilibrium states of liquid lining in an axisymmetric rigid airways: (a)
an axially uniform film of liquid; (b) an unduloid shaped interface; (c) a minimum liquid bridge;
(d) a liquid plug of finite thickness. Taken from (Heil et al., 2008).

Plug formation is naturally present in the breathing cycle of healthy people, which happens

near the end of expiration when the airway diameter is small (Grotberg, 2001). However, the

closure of airway may cause respiratory problems if it remains for a long time. Moreover, the

airway can be occluded in pathological situations (Grotberg, 1994) such as asthma, pneumonia,

or respiratory distress syndrome when the flow of air is blocked by liquid plugs. In these situa-

tions, the subsequent reopening of the airway becomes an important issue (Grotberg & Jensen,

2004). Previous studies have investigated the reopening in many aspects, ranging from (1) the

effects of viscoelasticity of the liquid lining (Hsu et al., 1996; Low et al., 1997) to (2) dynamic

instabilities of pressure during the inflating process (Alencar et al., 2002), (3) the sequence of

sound waves associated with the explosive opening (Alencar et al., 2001) and (4) the mechanical

model related to the lung structure (Majumdar et al., 2001). These studies have been performed

using different approaches, such as experiments, simulations, and theoretical analysis, and it is

normally acknowledged that the reopening process involves the dynamics of the liquid lining

and/or the elasticity of the airway.

On the other hand, the instillation of liquid, especially surfactant, into the pulmonary airway

is very common in medical treatments. Surfactant insufficiency can result from either prematu-

rity or from protein leakage from the vascular system as a result of a septic infection. Particularly

with premature babies, it may be necessary to deliver surfactant to reopen and stabilize airways

(Bertram & Gaver, 2005). These treatments include partial liquid ventilation, in which ven-

tilation with perfluorocarbon liquids improves lung function in conditions such as surfactant

deficiency and dysfunction (Leach et al., 1996), and Surfactant Replacement Therapy, which can
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Figure 1.5: Schematic images of the liquid transport and distribution in two cases. Case A: (a)
initially inserted liquid and (b) localized distribution of liquid after inspiration. Case B: (c) a
plug formed in the trachea and (d) more uniform distribution of liquid after inspiration. Taken
from (Cassidy et al., 2001a).

be employed to reduce the incidence of respiratory distress syndrome for premature neonates

(Engle & the Committee on Fetus & Newborn, 2008).

In these cases of drug delivery, the only available control over the plug distribution is at

the entrance of the network, at the level of the patient’s trachea. Once the liquid is injected,

little is known, in reality, about the ultimate distribution of liquid within the pulmonary tree,

although some people have attempted to investigate the delivery process (Halpern et al., 1998;

Espinosa & Kamm, 1999; Cassidy et al., 2001a; Bull et al., 2004; Kleinstreuer et al., 2008).

Using an experimental method, Cassidy et al. (2001a) traced the transport of the liquid bolus

of surfactant after it was injected into the trachea of an excised rat lung and found that the

formation of plugs led to more uniform distribution of surfactant in the lung. Two methods

were used in their experiments: in Case A, the liquid inserted into the trachea fell very rapidly

into the airways and drained by gravity; Case B involved the formation of a plug in the liquid

instillation. Images were given for the liquid distribution before and after the inspiration in two

cases, as shown in figure 1.5. For the liquid that was drained by gravity, the formation of plug

could happen in a subsequent generation, as shown in figure 1.5(a), when the liquid was driven

through the airway by inspiration. This resulted in a limited liquid dispersion in the deeper

airways, image (b). However, when the liquid was instilled as a plug as shown in figure 1.5(c), it
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was transported in a homogeneous pattern, image (d). At the same time, it was also found that

there was liquid deposited on the airway wall behind the plug that was advancing.

1.2.2 Immiscible displacement in porous media

The motion of immiscible fluids in complex geometry, such as porous media, has also been a typi-

cal problem, in which people have been interested for a long time. The multiphase flows in porous

structures can be found in many fields such as agriculture, chemistry, biology, construction and

petroleum engineering (Sahimi, 1993). Examples include oil displacement process in petroleum

industry (Chandler et al., 1982), flows of water and air in the vadose zone in the subsurface

environment (Olbricht, 1996) and the flow of aqueous-liquid-gas mixtures in the underground

reservoir rocks (Gerritsen & Durlofsky, 2005).

For all these phenomena, the basic issue lies in the displacement of multiphase fluids in

structured pores, in which little mechanism is applicable for the complex interaction among

capillary force, viscosity and gravity. People have studied the global behavior of the flow by local

units either by simulations (Koplik, 1982) or statistical approach (Larson et al., 1981). With

the Laplace Law expressing the relation between the capillary pressure and interface curvatures,

Lenormand investigated, experimentally and theoretically, the mechanism of displacement of one

fluid by another in etched networks with pores (Lenormand et al., 1983; Lenormand & Zarcone,

1985). Good agreement was found between experiments and calculations. Two mechanisms

involved in the meniscus displacement were summarized in his later paper (Lenormand, 1990),

as shown in figures 1.6 and 1.7.

When the wetting liquid was invading the pores, the deformation of interface in the pore

(figures 1.6(a) and (b)) introduced a variation of capillary pressure. At a given pressure, the

meniscus touched the opposite wall, figure 1.6(c), and the liquid “instantaneously” invaded the

adjacent channels toward the next pores as shown in figure 1.6(d). In the other case, the liquid

first advanced along the rough walls of adjacent channels as shown in figure 1.7(a), which formed

a film coating the channels. However, at a certain pressure, the motion of the film turned out

to be unstable, resulting in the formation of a plug that filled the channel and helped invading

the pore, figure 1.7(b). It was also found that in a media with small pore-to-throat ratio (aspect

ratio), where the size of the pore was small compared to the channel connecting the pores, the

liquid invaded the pore through interface advances. In media with large aspect ratio, the main

mechanism in imbibition was the collapse in the adjacent channels, as shown in figure 1.7.

Although these findings seem direct at a single pore scale, they can lead to complicated

interactions at the macroscopic scale, for example in the wetting process on structured materials

(Courbin et al., 2007). More broadly, the displacement of multiphase interfaces and the ultimate
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Figure 1.6: Mechanics of pore invasion of the wetting liquid (black). (a) and (b): The radius of
curvature of the meniscus increases as the liquid invades the media. The interface touches the
wall (c) and the fluid invades the adjacent channels (d). Taken from (Lenormand, 1990).

Figure 1.7: Mechanics of collapse of the wetting fluid (black). The wetting liquid advances
along the wall (a) until its film becomes unstable and collapses in the channel (b). Taken from
(Lenormand, 1990).
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macroscopic distribution of different fluids vary according to the global topology of the porous

media (Berejnov et al., 2008; Xu et al., 2008).

1.2.3 Microfluidic approach

Microfluidic techniques, the control and regulation of flows along with the design and fabrication

of channels at small scale, have attracted much attention in the past decades (Stone et al.,

2004). Besides the scale, microfluidic problems are characterized by small Reynolds numbers.

The Reynolds number Re = ρlUD/η compares fluid inertia with viscous effects. In this formula,

ρl is the fluid density, U the characteristic velocity, D the characteristic diameter and η the fluid

viscosity. In most microfluidic regimes, Re is very small and inertial forces are negligible, so that

the flow is governed by the Stokes equations. In studies involving bubbles or drops, the Bond

number is often used to compare the gravity to the surface tension. It is defined as Bo = ρlaD2/γ,

where a denotes the gravity acceleration and γ is the surface tension. The capillary length LC for

a given fluid can be known when Bo = 1. If D < LC, Bo < 1 and the effects of gravity become

small compared to surface tension effects. Since LC is generally around a few millimeters for

most liquids, the effects of gravity can be neglected at micro scales. There is another important

parameter, the capillary number Ca = ηU/γ, which compares the fluid viscosity with surface

tension. Ca distinguishes the flow by the importance of surface effects over viscosity as the scale

varies.

From the technical point of view, the introduction of soft lithography into the field of mi-

crofabrication was a great progress in microfluidics by simplifying and speeding the fabrication

process (Xia & Whitesides, 1998). Once the patterned surface with microstructures is fabricated,

the microchannels can be made of polydimethylsiloxane (PDMS) through a simple procedure,

which can be repeated to fabricate more than 50 replicas. Since then, microfluidics has developed

rapidly in many related fields such as chemical reactions in networks (Delamarche et al., 1998;

Song et al., 2003), in vitro biological studies about tissues (Huh et al., 2007), physical mixing

of two fluids (Gunther et al., 2005; Garstecki et al., 2005) and liquid transport through passive

pumps driven by capillary forces (Zimmermann et al., 2007; Gervais & Delamarche, 2009).

At the same time, microfluidics has opened a wide range of possibilities for addressing ques-

tions of complex flows, e.g. studies about multiphase flows (Darhuber & Troian, 2005; Gunther

& Jensen, 2006), which refer to flows in microscale where surface tension is important. Due to

the ability to offer fine control over the geometry and provide detailed optical access to the fluid

behavior, microfluidic devices have also been employed in modeling flows in networks (Lenor-

mand et al., 1983; Krishnamurthy & Peles, 2007; Berejnov et al., 2008) and in the investigation
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Figure 1.8: (a) Gas-liquid flow over structured surface with micropillars. When the gas flows at
a high velocity, here 14 m/s, liquid bridges are formed between pillars. (Krishnamurthy & Peles,
2007). (b) Droplet breakups at T shape junctions. Small droplets are formed during sequential
breakups of drops at successive junctions and the drop sizes can be controlled by changing the
lengths of the daughter channels. (Link et al., 2004). (c) Hydrodynamic control of droplet
division at a bifurcation. When no liquid is introduced through Inlet 3, the droplets have equal
divisions as shown here. When the continuous phase is flowing into the system from Inlet 3,
smaller droplets will go into the lower branch. (Yamada et al., 2008).

of flows involving the passage of droplets through bifurcations (Link et al., 2004; Schindler &

Ajdari, 2008; Yamada et al., 2008).

Some previous studies about two-phase flows in complex geometry, in which microfluidics is

employed, are illustrated in figure 1.8. Figure 1.8(a) is obtained in the investigation of gas-liquid

flow over structured surface with micropillars, where the flow patterns vary according to the

velocities of the injected gas and liquid. Liquid bridges are formed during the liquid traverse of

the pillars when the gas velocity is high. Figure 1.8(b) illustrates the study of droplet breakups

at bifurcations. The presence of successive bifurcations is found to be helpful in forming small

droplets through the breakups of long drops. Figure 1.8(c) shows that the ratio between the sizes

of the daughter droplets can be controlled by varying hydrodynamic situations in two daughter

branches.

Microfluidics has also been proposed recently as a way to model branching geometry in the

lung, at least in the generations where gravity and inertial effects are negligible (Baroud et al.,

2006). The relevant region is characterized by lengthscale below the capillary length and small
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Reynolds numbers. The two criteria D < LC and Re < 1 are met in a large range of generations

of the lung, starting from about generation 9 through the respiratory bronchioles, to around

generation 20 (Weibel, 1984).

1.2.4 Flows in complex geometries

In the fluid flows in networks, complex dynamics can always result from the nonlinear relation

between the local pressure and flow rate, for example when the flow propagates in compliant

conduits (Hazel & Heil, 2003) or in the presence of immiscible interfaces (Howell et al., 2000).

In such situations, the local flow-rate fluctuations lead to instantaneous, global reequilibration

of the pressure, thus producing long-range couplings in the flow. This can play a dominant role

for flows in porous or biological media, where the evolution of multiphase flows occurs through

a competition between viscous and capillary effects, both of which are influenced by the local

details of the geometry. Generalizing these studies can yield understandings of many mysterious

phenomena in nature: for example, the water transport in plants (West et al., 1999; McCulloh

et al., 2003), the physiological organization of animals’ vascular systems (Murray, 1926) and the

exploration of optimal transport networks (Katifori et al., 2010; Corson, 2010). Furthermore,

the large scale rearrangement in complex geometries, involving the modeling of fluid transport,

social interactions and disease propagation in networks, has also been a challenging issue of long

standing interest with many related applications (Strogatz, 2001; Newman, 2003).

1.3 Preliminary understanding of the physics

Many efforts have been made to study the contact of two kinds of liquids and a solid surface

in the previous decades (Dussan, 1979). However, the difficulties arise due to the interactions

between the immiscible interfaces and the complex geometry, which can significantly affect the

statics and the dynamics of the liquid flow. Some fundamental results are found in previous

studies about the moving contact line on horizontal (Tanner, 1979) or rough surfaces (Jansons,

1985) and in capillaries (Hoffman, 1975). When considering the flow in a confined geometry, the

contact dynamics as well as the geometry constraint become more important (Ajaev & Homsy,

2006). Bretherton (1961) made great contribution to the investigation about the motion of

a long bubble in tubes. The nonlinear relation between the driving pressure P and bubble’s

capillary number Ca was found to be P ∝ Ca2/3 when the capillary number is very small (Ca <

5 × 10−3). Predictions of the bubble profile in the capillary tube could be made by using this

model. Later on, Wong et al. (1995) studied the bubble motions in different polygonal capillaries

and the pressure drop across the bubble was found to scale as Ca2/3. A similar problem was
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Figure 1.9: Schematic of a plug of wetting liquid in the rectangular channel. Planes A and B
denote the in-plane and in-thickness sections. The curvatures of the air-liquid interfaces in the
two planes are illustrated. Taken from (Ody et al., 2007).

investigated by Hodges et al. (2004) who considered a viscous drop in a cylindrical tube and the

liquid viscosity was found to have an effect on the film thickness around the drop.

Recently, some characteristics of the drop motion in milli- or micro-sized tubes have been

found (Stone et al., 2004; Fujioka & Grotberg, 2004; Fuerstman et al., 2007). The pressure jump

in the tube due to the presence of drops was studied numerically (Fujioka & Grotberg, 2004)

and experimentally (Aussillous & Quéré, 2000; Pehlivan et al., 2006). A nonlinear relationship

between pressure difference and flow rate of the drop was introduced by surface tension, through

the addition of Laplace pressure (Bico & Quéré, 2001; Ody et al., 2007). For a single plug of

wetting liquid in a straight rectangular microchannel, the relation between the driving pressure

and the plug’s capillary number was obtained by taking into account the changes of the interface

curvatures in both Plane A and B, as shown in figure 1.9. While the plug was advancing, the

front interface, illustrated by solid curves deformed and exhibited a non-zero contact angle with

the channel wall although the liquid was wetting. Meanwhile, a thin film of liquid was deposited

on the walls of the channel behind the plug, which changed the curvature of the rear interface

illustrated by dashed curves. Based on this approach, the following formula was found to be valid

for a long plug of wetting liquid moving at low capillary numbers in a rectangular microchannel

whose width was much larger than the height: Pdr = FCa + GCa2/3, in which Pdr was the

driving pressure and F ,G were functions of the channel geometry, the physical and geometrical

properties of the plug.

While these nonlinearities already appeared in flow through straight channels, they were

amplified when the plug passed a bifurcation since the interfaces must strongly deform in this

case, which was also explored in (Ody et al., 2007): The presence of a bifurcation could lead to
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Figure 1.10: Phase diagram for the plug behavior at a T-bifurcation. Taken from (Ody et al.,
2007).

a local blockage if the pressure was below some threshold value. Instead of passing through the

bifurcation, the plug stopped after it entered the bifurcation (experimental data points denoted

by △ in figure 1.10). When a short plug was pushed at a pressure higher than the threshold,

it ruptured (�) and the maximum length for a plug to rupture Lcrit was found to vary as a

function of the driving pressure. If the plug was longer than Lcrit and pushed by a pressure

higher than the threshold, it passed through the bifurcation and split into two daughters. These

were summarized in figure 1.10 as the phase diagram for plug behavior at a T-bifurcation.

The existence of a threshold pressure was also verified in capillary-valve experiments, where

the flow was regulated simply due to the strong variation of the channel geometry, both in

rectangular channels (Man et al., 1998; Cho et al., 2007) and in axisymmetric tubes (Chen et al.,

2008). A sequence of images showing how this kind of valve works is given in figure 1.11, where

a minimum value of pressure is required across the liquid (black part inside the channel) to make

the valve burst. This pressure can be calculated at the stage when the liquid interface is just

about to burst as shown in figure 1.11(b). After that, the liquid can flow through the valve,

figure 1.11(c). The flow is controlled by just changing the driving pressure and the capillary

burst valves are widely used in Lab on a CD applications (Madou et al., 2006; Chakraborty

et al., 2009), chemical assay (Duffy et al., 1999; Lai et al., 2004) and physics exploration (Vig

et al., 2009). When several valves are connected in a predesigned system, multiple steps of

experiments can easily be implemented (LaCroix-Fralish et al., 2009).
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Figure 1.11: Image sequence of the bursting of a capillary valve, where the black part represents
liquid. (a) The liquid interface touches the valve edge at the center of the left channel. (b) The
very moment just before the valve bursts. (c) The valve has burst, which makes the liquid flow
into the lower chamber. Taken from (Cho et al., 2007).

In the case of fluid mechanics, the introduction of bifurcation can further change the behavior

of two-phase flow containing bubbles or droplets (Engl et al., 2005; Jousse et al., 2006). For

instance, the symmetry of the bubble splitting at a bifurcation depends on the flow’s capillary

number and the angle the bifurcation plane makes with the horizontal (Calderon et al., 2005).

When a liquid plug flows through a junction and divides into two daughters, the sizes of daughter

plugs will be influenced by the liquid volumes in the downstream branches (Cassidy et al.,

2001b). All these effects make the flow more complicated, especially in the presence of a few

bifurcations. Therefore, although people have studied flows in networks consisting of many

bifurcations theoretically (Corson, 2010) and numerically (Kitaoka et al., 1999; van Ertbruggen

et al., 2005), there are few experimental observations where the flow can be realized under fine

control.

1.4 Outline of the thesis

In this thesis, we start from the criteria for choosing the network geometry to model the structure

of the airways, followed by the introduction of plug motions in the straight channel and across the

bifurcation in Chapter 2. The plug motion in the straight channel is predicted by the formula

expressed in (Ody et al., 2007), which provides a general idea of the flow. Meanwhile, the

capillary pressure variation due to the interface deformations during the plug’s passage through

a bifurcation is discussed in term of adding a capillary pressure difference across the plug.

A detailed description of the experimental setup is given in Chapter 3. Contents of this

part include the procedure of microfabrication, an illustration of the network geometry, the
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experimental configurations and realizations. There are also discussions about the fundamental

observations and measurements.

Experimental investigation of the transport of a single plug in the network is presented in

Chapter 4. A single plug injected into a binary network of five generations of narrowing channels

is pushed either at constant pressure or at constant flow rate. Different flow behaviors are found

for pressure and flow rate drivings at different values. Moreover, the transport of liquid can be

strongly modified when the plug is pushed at constant flow rate in the network with widening

channels.

Further, the flow involving a train of plugs pushed at a constant pressure is explored in

Chapter 5. These experiments are done in the narrowing network when a few plugs are injected

into the network and flow through different generations. A linear relation between the driving

pressure and the total flow rate is derived and found to account for the resistance associated with

daughters of one plug in the network. This relation is proved to be applicable in the presence of

a train of successive plugs.

Besides the transport of liquid plugs in the network, some preliminary results on the reopening

process of airways occluded by a random distribution of liquid plugs are presented in Chapter

6. A straight channel or a network is initially closed by liquid plugs, which have a random

or quasi-random distribution, and later opened by breaking plugs at a very high pressure drop

between the channel inlet and exits. Since the plugs are broken successively in a very short time,

this reopening process is considered as a result of cascades of plugs ruptures.

The last chapter is devoted to our conclusion and some perspectives for future work.



Chapter 2

Models of the plug motion

2.1 Description of the network

The network considered in the thesis is designed in this way: there are several generations of

branching channels, which have the same shape but different sizes. At each generation, the cross-

section area of the channel is rectangular with a height h = 50 µm and width w which changes

with the generation number at a constant rate ρ. The generation number starts from 0 so the

channel width in the ith generation (i ≥ 1) is wi = wi−1ρ = w0ρ
i, where the subscript denotes the

generation number and w0 is the width of the first generation. The channel length decreases at

another ratio ρ′ < 1, which avoids the intersection of branches in the same generation. The angle

α, which the daughter channel makes with the parent channel as shown in figure 2.1, measures

half the angle between the two daughter branches of the same origin and is kept constant in the

network.

The top view of an example network is shown in figure 2.1, where the numbers indicate the

generation number of the channel. There are eight generations in total. The width ratio ρ = 0.6

and the bifurcation half-angle is α = 45◦. A basic unit of three connected channels is taken out

from the network and the perspective view is zoomed in figure 2.2. This unit consists of one

parent channel in generation i and two daughter channels in generation i + 1, and is repeated in

the network. The dimensions of channels are labeled in the figure, the height h and width wi (or

wi+1 = wiρ) on the cross-section as well as the channel length Lchannel perpendicularly to the

cross-section.

For networks with the channels of same size in generation 0, the channel widths can be

different in other generations due to the width ratio ρ. Since wi = w0ρ
i, the channels get

narrower with the generation number when ρ < 1 while becoming wider in networks with ρ > 1.

This can be seen in figure 2.3, where the variations of channel widths in networks with ρ ranging

from 0.3 to 1.3 are plotted by fixing w0 = 720 µm.

15
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α

α

Figure 2.1: Top view of a network with eight generations of branching channels to illustrate the
design of networks. The width ratio ρ = 0.6 and the bifurcation half-angle α = 45◦.

Generation i

hh

wi

Lchannel,i
h

h

 wi+1 

 wi+1 

Generation i+1

Figure 2.2: Perspective view of the basic unit consisting of one parent channel in generation i
and two daughter channels in generation i+1. The cross-section of each channel measures h×w,
with w varies with the generation number and the channel length is denoted as Lchannel. The
angle between two daughter channels is 2α as shown in the top view in figure 2.1.
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Figure 2.3: Variation of channel width with the generation number. The width of the first
generation is w0 = 720 µm and the width ratio ρ changes from 0.3 to 1.3.

When a liquid plug is injected into the network from generation 0 and then pushed through,

it will advance across successive generations and divide into two daughters when passing a bi-

furcation. We assume each plug divides into two daughters of equal size, which also agrees with

experimental observations, so all the plugs in the same level of generation have the same length

Li. The plug length varies as Li = L0/(2ρ)i according to mass conservation, where L0 is the

initial length of the plug measured in the first generation.

For a network with ρ < 0.5, the daughter becomes longer while the plug is advancing through

different generations. When ρ = 0.5 all the plugs have the same length in different generations.

The plug length becomes smaller as the plug moves in a network with ρ > 0.5. This is summarized

in figure 2.4(a) where L0 = 2 mm and the width ratio of the network changes from 0.3 to 1.3.

Since the channel length decreases at the ratio ρ′, which agrees with the fact that the bronchiole

sizes decrease in the airway, it is reasonable that the plug length also decreases with the generation

number. Otherwise the plugs in the later generations may fill the short channels, for example

when ρ = 0.3, which will change the flow characteristics. Therefore, the networks with ρ > 0.5

is mainly considered and figure 2.4(a) is zoomed at the curves for ρ > 0.5 in 2.4(b). The rate

of the plug length variation increases when ρ increases, which means that the plug is shortened

very quickly through generations. The initial plug injected has to be long enough to avoid the

plug breaking because of small size in the later generations, especially when ρ > 1.

The plug has different types of motion according to its position in the network, as shown in

figure 2.5. It can move in the straight channel, when both the interfaces are inside the channel as
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Figure 2.4: Variation of plug length with the generation number. The initial plug length L0 =
2 mm and the width ratio of the network changes (a) from 0.3 to 1.3 and (b) from 0.7 to 1.3. For
ρ < 0.5, Li increases with the generation number i, remains the same for ρ = 0.5 and decreases
with i for ρ > 0.5.

(a) (c)(b)

Figure 2.5: Plug motions in the network. (a) Moving in the straight channel. (b) Passing through
a bifurcation. (c) Divided into two daughter plugs that move in their respective channels.

shown in (a), or pass the bifurcation, when at least one interface is at the bifurcation (b). After

its passage through the bifurcation, the plug divides into two daughters as shown in figure 2.5(c)

and the daughters continue the behavior of their parent as shown in (a). Basically, there are two

types of motions, i.e. either the plug moves in the straight channel or it passes the bifurcation.

In the following two sections, we model the two types of plug motions separately and assume

the switch between them is instantaneous. On one hand, the pressure–flow rate relation in (Ody

et al., 2007) is used to obtain quantitative variations of pressure drop and flow rate for the plug

in the straight channels. The flow behavior is generally predicted. On the other hand, for a

plug in a bifurcation, the deformation of its interfaces due to the geometry change introduces

a strongly nonlinear evolution of the pressure with the plug’s position. A threshold pressure

associated with the bifurcation is calculated.
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2.2 Plug in the straight channel

2.2.1 Nonlinear relation between pressure and flow rate

The presence of one liquid plug in a straight channel with rectangular cross-section introduces

a resistance to flow through its viscosity and surface tension. The relation between the visco-

capillary pressure Pvc and the plug’s capillary number Ca= ηU/γ can be written as (Ody et al.,

2007):

Pvc = F (w)LCa + G(w)Ca2/3, (2.1)

in which η and γ are the viscosity and surface tension of the liquid, U is the plug velocity, L is

the plug length, F (w) and G(w) are expressed as follows:

F (w) = γ

[

12

h2

(

1 − 6
25h

π5w

)−1
]

(2.2)

G(w) = 2γβ

(

1

h
+

1

w

)

(2.3)

where h and w are the height and the width of the channel. β is a nondimensional coefficient

obtained from Bretherton’s and Tanner’s laws (Hoffman, 1975; Bico & Quéré, 2001). For the

same liquid, F (w) and G(w) are functions of the channel geometry. Equation (2.1) is valid for

a long plug that moves in a rectangular channel with large aspect ratio w/h. The linear part

represents viscous effects, which change with the channel geometry and plug length. Meanwhile,

the capillary effects introduced by the air-liquid interfaces are expressed by the nonlinear part,

which also changes with the channel geometry.

2.2.2 Flow rate evolution under constant pressure

When a single plug is pushed at a constant pressure, the velocity of its daughters in generation

i, Ui, varies with the generation number, which results from the variation of F (w) and G(w) in

(2.1) due to channel sizes and plug lengths. For every single daughter plug in a given generation

i, (2.1) can be rewritten as:

Pdr = F (wi)LiCai + G(wi)Cai
2/3. (2.4)

Here Pdr is the constant driving pressure, wi is the channel width in the ith generation and Li

is the length of the daughter plug with the assumption of equal division at every bifurcation.

Cai is thus calculated based on the velocity of a daughter plug Ui, which is shown in figure 2.6.

All the parameters related to the calculation are given in table 2.1. The velocities in the first
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Figure 2.6: Evolution of plug velocity (a) and capillary number (b) in the first five generations
of the network when L0 = 2 mm and Pdr = 250 Pa. w0 = 720 µm and the width ratio ρ varies
from 0.7 to 1.3. The plug velocities are obtained at different generations and connected by a
single line. The velocity increases with the generation number. The Capillary number is very
small and has the same pattern of variation with velocity.

Table 2.1: Parameters for calculating the velocities in the network.

Liquid viscosity Surface tension Driving pressure Length of the initial plug

η (Pa s) γ (N/m) Pdr (Pa) L0 (mm)

5 × 10−3 15 × 10−3 250 2

Channel height Initial channel width Width ratio Nondimensional coefficient

h (µm) w0 (µm) ρ β

50 720 0.7 - 1.3 16

five generations are plotted according to the experimental realization, in which an initial plug

of 2 mm long is pushed at 250 Pa into a network with w0 = 720 µm (see Chapter 3 for more

details), although (2.4) is valid for networks of any levels of generations.

When the pressure difference between the entrance and the exits of the network is constant,

the velocity of the daughter plug varies at different generations. In figure 2.6, these values of

plug velocities are calculated at different generations while taking geometry parameters of the

branches and the isolated data points are connected by a single line to improve the visualization.

The velocity of daughter plug increases with the generation number and all the Capillary numbers

are very small. The plots of the Capillary number in figure 2.6(b) have the same pattern as in

2.6(a), which can be easily understood by the definition of Ca.

Although the relation between pressure and velocity is nonlinear and complicated, it is known

from figures 2.4 and 2.6 that the velocity evolution is affected by the plug length and the channel

width when L0, w0 and Pdr are fixed. Since the plug length is related to the network topology
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Figure 2.7: Reynolds number variation of the flow with L0 = 2 mm and Pdr = 250 Pa.

within the assumption we made, the velocity evolution, in fact the global behavior of the flow,

is determined by the geometry ratio ρ.

It is noted that the flow is within the region where gravity can be neglected since the length-

scale is below 2 mm, the capillary length. The variation of Reynolds number is plotted in

figure 2.7, in which calculation U represents the plug velocity and the characteristic length is

taken as the channel height h while other related parameters can also be found in table 2.1. The

Reynolds number is very small here, ranging from 0.05 to 0.25, which indicates the flow is much

more viscous than inertial.

With all the above results, we start to know the global behavior in the network. Compared

to the velocity of a single daughter, the total flow rate, the variable related to the motion of

all the daughters in the network, is more concerned in the study about network dynamics. The

network can be separated to several paths, each of which connects the network entrance and one

exit. The flow rate in every path is obtained from the product of plug velocity in that path Uk

and the cross-sectional area of the channel where the plug moves (hw)k, where k denotes the

numbering of the path. By adding the flow rate in all the paths, the total flow rate is known as

a function of the generation number and the width ratio of the network, as shown in figure 2.8.

The sum of the flow rates in all the paths is found to increase. When 0.5 < ρ < 1, the plug

velocity increases while the channel width decreases in the later generations. The increase of

total flow rate at ρ = 0.7 and 0.9 implies that the increases of plug velocity (nonlinear with the

generation number i) and the number of branches (exponential with i) are more rapid than the

decrease of the channel width (linear with i). Recalling that the plug velocity increases when
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Figure 2.8: Variation of the total flow rate in the network with ρ varying from 0.7 to 1.3. The
total flow rate increases with the generation number.

ρ > 1 in figure 2.6(a), the widening of channels leads to a straightforward increase of total flow

rate as the plug advances, which is confirmed in figure 2.8.

2.2.3 Pressure evolution under constant flow rate

In this section, the flow is pushed at a constant flow rate instead of a constant pressure. Similar

to the previous case, the plug is assumed to divide equally at the bifurcations. The difficulty

comes when considering the symmetry of the flow. There may be different distributions of flow

rate among different branches in the network as long as the total flow rate is conserved. The

flow is not forced to develop symmetrically in the network. We thus assume two types of flow

patterns here: a symmetrical development of the flow, which means that all the daughters move

together in branches of the same generation, and an asymmetrical flow where only one daughter

divides at one level of bifurcation leaving others stuck there.

When the flow develops symmetrically, the velocity of daughter plug varies with the generation

number due to the conservation of total flow rate as well as the variation of channel geometry

and the number of branches. This can be expressed by Qdr = UisiNi where Ui is the daughter

velocity, si is the cross-sectional area of the channel, Ni is the number of branches and i denotes

the generation number. si is given as hwi and Ni = 2i. Then Ui can be calculated in different

generations of different networks and plotted in figure 2.9 for L0 = 2 mm and the driving flow

rate Qdr = 2 µL/min. The same variables as in table 2.1 are used except the driving pressure.

The velocity decreases with the generation number because of the exponential increase of the
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Figure 2.9: Symmetrical flow with all the daughters moving, L0 = 2 mm and Qdr = 2 µL/min.
(a)Plug velocities and (b) Capillary numbers in different generations of different networks with
ρ changing from 0.7 to 1.3.

branches, the number of moving plugs, in the later generations and the flow is within small

capillary number regime (see figure 2.9(b)).

As the flow will possibly not develop symmetrically, another case is also discussed here. This

time when the plugs arrive at the same level of bifurcation, only one of them passes, which leads

to two new daughters moving in the next generation while others staying at the bifurcation they

enter. There are always two daughter plugs flowing in the network beyond generation 0. The

velocity is higher than in the symmetrical case as a result of reducing the number of moving

plugs, as shown in figure 2.10(a). A turning point appears at generation 1 in all the four curves,

where the initial plug divides into two daughters. After that, the number of moving plugs does

not change and smooth curves are observed. The plug accelerates in the later generations when

ρ is smaller than 1. This can be explained by the deduction of the asymmetrical assumption

Qdr = 2siUi which is Ui+1 = Qdr/2si+1 = Qdr/2ρsi = Ui/ρ. When ρ < 1, Ui+1 > Ui, the plug

accelerates. Otherwise ρ > 1 ⇒ Ui+1 < Ui, and the plug velocity decreases.

Equation (2.4) can be used for calculating the viscocapillary pressure that pushes the plug

since the velocity is known. In the case of constant flow rate driving, the pressure difference across

the plug, the difference between the network inlet and exits, varies to preserve the plug velocity

and thus conserve the total flow rate in the network. The pressure, as shown in figure 2.11, varies

in a similar way with the velocity. Meanwhile, the Reynolds number also has the same pattern

of variation with the plug velocity and pressure difference, as shown in figure 2.12.

2.2.4 Applications

With all the calculations in the previous two subsections, we have basic understandings of the

flow evolution in the network. In the region of interest, the flow evolves within the regime of small
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Figure 2.10: Asymmetrical flow with only two daughters moving after generation 0, L0 = 2 mm
and Qdr = 2 µL/min. (a)Plug velocities and (b) Capillary numbers in different generations of
different networks with ρ changing from 0.7 to 1.3. The turning point at generation 1 is brought
by doubling the plug number after the division of the initial plug.
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(b)
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Figure 2.11: Pressure difference across the plug, between the network inlet and exits, varies as
a function of the generation number and network geometry (ρ = 0.7 − 1.3). (a) The flow is
symmetrical. (b) Only two daughters move after generation 0.
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Figure 2.12: Reynolds number of the plug pushed at a constant flow rate in the network. (a) In
the symmetrical flow, the Reynolds number decreases as the generation number increases. (b)In
the asymmetrical flow, a turning point is observed at generation 1 and after that the Reynolds
number increases with the generation number when ρ < 1.

Bond number (Bo << 1), Reynolds number (figures 2.7 and 2.12) and Capillary number (fig-

ures 2.6(b), 2.9(b) and 2.10(b)). This makes microfluidics a suitable method in the experimental

investigation.

As the primary motivation, we would like to study the plug transport in the pulmonary

airway, where the mean diameters d of successive branches can be described as a function of the

generation number i: di = 2−1/3di−1 (Weibel, 1984). Supposing one section of the airway has

the diameter 720 µm in the initial generation, the branch sizes in later generations can be known

if we assume every branch in the binary airway is axisymmetric. This size variation is shown by

the dash-dotted line in figure 2.13(a). Meanwhile, in networks of rectangular channels with our

recursive rules, the sizes of branches vary with i and ρ. Given the width of the first generation

to be 720 µm, the sizes of the branches in the network with different ρ are plotted by different

symbols and compared to the airway. The dash-dotted line, corresponding to an equivalent ratio

of 0.8, exists between those for networks with ρ = 0.7 and 0.9.

Since the flow behavior may be different depending on whether ρ is smaller or bigger than

1, see figure 2.10, two networks are studied in the following. One of them has a recursive

ratio ρ = 0.83 to represent the variation of branch sizes in the airway, although our network

is rectangular and the airway branch has circular cross-section. The channel length decreases

with the generation number at the proportional constant ρ′, which is chosen to preserve the

ratio of plug length to channel length in each generation Li/Lchannel,i, when the plugs divide

symmetrically at the bifurcations. Since Li = L0/(2ρ)i, Lchannel,i = Lchannel,0/(2ρ)i and thus

ρ′ = 1/(2ρ) = 0.6. The other network has widening channels with ρ = 1/0.83 = 1.2 > 1.



26 CHAPTER 2. MODELS OF THE PLUG MOTION

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

Generation number

B
ra

nc
h 

si
ze

 (
m

m
) 

 

 

(a)

ρ = 0.7
ρ = 0.9
ρ = 1.1
ρ = 1.3
Airway

2α

Generation i

Generation i+1

(b)

Figure 2.13: Criteria to choose the geometry ratio ρ and α in our network. (a) Comparison of
the branch sizes in four networks to the airway. (b) The basic unit of three branches illustrating
the bifurcation half-angle α

The bifurcation half-angle α is 60◦, which yields the same angle between any two of the three

branches in the basic unit of the network shown in figure 2.13(b). In this way, all the branches

are well separated from each other and the daughter branches can both be lengthened to the

same extent without intersecting branches in other generations. This is particularly helpful when

there are many generations, since the network with α = 60◦ achieves the optimal filling of space

under our recursive rules.

2.3 Passage through a bifurcation

When the plug passes a bifurcation, its interfaces have to deform due to the geometry change in

the bifurcation. These interface deformations can introduce a capillary pressure difference across

the plug, since the radii of curvature at two interfaces are no longer the same. In this section,

we begin by considering the details of the passage of a plug through a bifurcation, then define

a threshold pressure associated with the bifurcation and in the end discuss how this pressure

variation may influence the flow in our network.

2.3.1 Position-dependent capillary pressure difference

There are different stages during the passage through a bifurcation depending on the plug posi-

tion in the bifurcation. The plug becomes affected by the bifurcation at the position shown in

figure 2.14(a), where the front interface reaches the branching corner and its curvature starts to

decrease until it touches the opposite tip, 2.14(b). After the touching, the front interface enters

the next generation and the curvature increases very quickly as shown in figure 2.14(c). We here

assume that the plug is long enough so that the rear interface remains in the straight channel be-

fore the front one touches the next generation, and that the rear interface advances very quickly
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(a) (c)(b) (d)

Figure 2.14: Different stages during the plug passage through a bifurcation. The front interface
reaches the bifurcation corner (a), touches the opposite wall (b) and enters the next generation
(c). (d) The entire plug passes the bifurcation and divides into two daughters.

through the bifurcation to the next generation due to the capillary pressure difference explained

below. Therefore, the stage of two daughters in the next generation comes after 2.14(c).

The interface deformations imply position-dependent capillary pressure variation. At a given

plug position, there exists a capillary pressure difference, cross the plug, which may resist the

driving force. This is a three-dimensional problem and the largest curvature of the interface exists

in the direction perpendicular to the plane of the network, which does not change since the height

of the channels is constant. Accordingly, the capillary pressure difference is mainly driven by

curvature differences in the plane of the network. Therefore this difference Pcap between the rear

and front interfaces can be expressed as:

Pcap = Pr − Pa = γ/rr − γ/ra, (2.5)

where Pr, Pa denote the capillary pressures at the receding and advancing (rear and front) in-

terfaces and rr, ra are the signed radii of curvature of the interfaces in the plane of the network.

rr, ra depend on the liquid contact angle θ on the wall and the bifurcation half-angle α. The de-

termination of Pcap with respect to plug positions during the passage is provided in Appendix A.

For a plug passing a bifurcation, the curvature of the front interface decreases before the

rear one is affected by the bifurcation, as sketched in figure 2.15(a). We have |ra| > |rr| and

|ra| increases as the plug advances. So Pcap takes on increasing positive values until the front

interface touches the opposite facing tip. Beyond this point, the plug starts to divide, as shown

in figure 2.15(b), and Pcap decreases rapidly. At this stage, the sign of Pcap depends on whether

|ra| is smaller or larger than |rr|. In a network with narrowing channels ρ < 1, Pcap becomes

negative (|ra| < |rr|) and pulls the daughter plug to pass through. Conversely, in a network with

widening channels ρ > 1, the Pcap remains positive after the touching and still resists the plug
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Figure 2.15: Passage through a bifurcation. (a) One plug arrives at the bifurcation. The radius
of curvature |ra| is bigger than |rr| and increasing while the plug is advancing. (b) After the
front interface touches the facing tip and enters the next generation, |ra| varies according to the
channel width. (Notice that here 2α = 90◦ for convenience.)
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Figure 2.16: Pcap variation versus the distance of the front interface from the facing tip. (a) In
the network with ρ = 0.83. (b) In the network with ρ = 1.2.

advancement. When the plug has fully passed the bifurcation (figure 2.14(d)), Pcap cancels, since

|ra| ∼= |rr|.

The variations of Pcap during the plug passage in our networks are plotted in figure 2.16.

For the network with ρ = 0.83 and w0 = 720 µm, the calculation is done by using (2.5) for

a PFD plug (see Chapter 3 for physical properties) and taking the parameters of the second

bifurcation, where the parent channel has a width w1 = 598 µm and the daughter channels have

w2 = 496 µm. In the network with ρ = 1.2, w0 equals 342 µm, which is the channel width in the

last generation of the other network. Figure 2.16(b) also shows the pressure variation for a plug

passes the second bifurcation.

Pcap begins to increase from 0, when both interfaces are in the straight channel and there is

no capillary pressure difference. As the front interface advances in the bifurcation, Pcap increases
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Pdr

∆P = Pdr-Pcap      P=0

0+P     cap    ∆P = 
(a) Constant P driving (b) Constant Q driving

Figure 2.17: Pressure condition across the plug in a bifurcation. The noted pressure indicates
the pressure difference between the two points. (a) Constant pressure driving. (b) Constant flow
rate driving.

until it reaches a maximum value, when the front interface just touches the facing tip. After that,

a rapid decrease of Pcap is observed and its value remains constant afterward. Similar curves are

found in both networks although the sign of Pcap after the touching depends on the width of two

successive channels.

The plug is always pushed by a driving force from the first generation to the last one. When

it is pushed at a constant pressure Pdr, the pressure difference across the plug can be expressed

as ∆P = Pdr − Pcap, as illustrated in figure 2.17(a). The variation in Pcap will modify the value

of effective driving pressure and thus lead to the variation of ∆P , which is given in figure 2.18

for the two networks when Pdr = 250 Pa. Opposite to the variation of Pcap, ∆P decreases before

later increasing as the plug advances in the bifurcation. ∆P must remain positive during the

passage in order to push a plug through a bifurcation.

When the plug is forced at a constant flow rate, the passage is treated as a quasistatic

process, which implies there is no pressure difference inside the plug, as shown in figure 2.17(b).

In this case, Pcap will induce variations in the pressure upstream of the plug position since the

downstream pressure is fixed to atmospheric pressure. The pressure difference across the plug,

∆P = 0 + Pcap, increases until the plug touches the opposite wall, where it decreases rapidly as

shown in figure 2.19. However, the pressure condition after touching is not very clear in the flow

rate driving case, since the plug is experiencing the switch between two types of motions, where

the pressure differences are estimated differently.
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Figure 2.18: ∆P variation versus the distance of the front interface from the facing tip under a
constant pressure driving. The dotted line represents the driving pressure Pdr = 250 Pa. (a) In
the network with ρ = 0.83. (b) In the network with ρ = 1.2.
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Figure 2.19: ∆P variation versus the distance of the front interface from the facing tip under a
constant flow rate driving. (a) In the network with ρ = 0.83. (b) In the network with ρ = 1.2.
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Figure 2.20: ra and Pcap reach their maximum values when the front interface touches the facing
tip. wi and wi+1 are the channel widths in two successive generations.

2.3.2 Variation of threshold pressures in the network

There exists a maximum value of Pcap in the variation of capillary pressure difference both

in figures 2.16(a) and (b). This maximum value is then defined as a threshold pressure Pthr

associated with the bifurcation geometry and must be overcome for pushing a plug through a

given bifurcation. Pthr can be estimated as: Pthr = Pcap,max = γ/rr − γ/ra,max where ra,max

is the maximum possible value of ra. ra,max is reached just before the front interface touches

the facing tip, as shown in figure 2.20, where wi and wi+1 denote the channel widths in two

successive generations. Pthr is computed from the network geometry as:

Pthr =
2γ cos θ

wi
−

γ(cos θ − sin α)

wi+1
(2.6)

where θ is the static contact angle of the liquid (PFD) on the channel wall (PDMS) (around

23◦) although variations in the contact angle is however observed in experiments when the plug

is moving. For the same liquid (fixed γ and θ) and bifurcation geometry (fixed wi and wi+1),

the threshold pressure is a function of the angle α and a bigger α results in a higher threshold

in the bifurcation.

Pthr varies as Pthr,i+1 = (1/ρ)Pthr,i, which is similar to the variation of wi in the network. In

a network with ρ < 1, which means wi > wi+1, Pthr,i+1 > Pthr,i indicates the threshold pressure

increases with the generation number. Conversely, in the widening network where ρ > 1, Pthr

decreases when the generation number increases. The threshold pressures in our two networks

are plotted in figures 2.21. Pthr increases from 51 Pa at the first bifurcation in the narrowing

network with w0=720 µm and ρ = 0.83. At the ninth bifurcation Pthr goes up to 227 Pa, which
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Figure 2.21: Threshold pressure variations in both narrowing and widening networks of 10 gen-
erations. The narrowing network has w0=720 µm and ρ = 0.83 while the widening network with
w0=342 µm and ρ = 1.2.

quadruples the value at the first bifurcation. In the widening network, the threshold decreases

slowly from 110 Pa at the first bifurcation to 26 Pa at the ninth bifurcation.



Chapter 3

Experimental setups

3.1 Network concerned

3.1.1 Microfabrication

Soft lithography techniques, which are widely used in micro- and nano-fabrication (Quake &

Scherer, 2000), are employed to make the network of branching microchannels with the usage

of dry film photoresist (Stephan et al., 2007). There are three steps in the fabrication: drawing

the mask, creating the master and replicating the micro structures, all of which are illustrated

in figure 3.1.

First of all, the geometry of the microchannels is designed with the help of the computer

software Adobe Illustrator and printed on a transparency with high resolution. This transparency

as shown in figure 3.1(a) is called the mask, here for a network with narrowing channels.

Secondly, in order to create a master, a layer of photoresist, a dry film photopolymer (Etertec

XP-800), is deposited on the glass slide, as shown in 3.1(b), where the height of the photoresist

is noted as h. The mask obtained previously is now put on top of the photoresist and the whole

package is exposed to UV light source for 5 minutes. In this way, the black portion in the mask

protects the photoresist underneath from exposure while the rest is patterned through chemical

reactions. The patterned photoresist is then developed by immersing it in an aqueous solution

of potassium carbonate (K2CO3) at a concentration of 1% by weight. The developing process

takes around 10 minutes, after which the etched photoresist becomes a master that can be used

to replicate micro structures, as shown in 3.1(c).

In the last step, the liquid prepolymer of polydimethylsiloxane (PDMS) is poured onto the

master and cured for a few hours, 3.1(d). Once PMDS switches to solid state, the block can be

peeled off the master and microchannels are cast on the surface with the depth of h, 3.1(e). The

micro structures are successfully fabricated through soft lithography and the remaining work is

to bond them on a substrate. The prepolymer of PDMS is spread all over a glass slide in a spin

33
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Figure 3.1: Procedure of microfabrication. (a) Mask to be printed on a transparency. (b) and (c)
Creation of the master. (d) and (e) Replication of microchannels on PDMS. (f) and (g) Sticking
microchannels on a substrate.
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Figure 3.2: Image of a real network of branching channels. Red ink is injected through one inlet
so that the whole network can be seen.

coater. After curing, a film of PDMS is deposited on the slide, 3.1(f). Finally, the microchannels

are bonded to the substrate with PDMS film through oxygen plasma treatment (Bhattacharya

et al., 2005; Eddings et al., 2008), to guarantee identical boundary conditions at all the channel

walls, as shown in figure 3.1(g), where the channels are found between PDMS block and the

substrate separated by the dotted line while other portion of the two is stuck together.

One example of the network of branching microchannels is shown in figure 3.2, where holes

are punched through the PDMS block at the entrance and exits. One tube is plunged into the

entrance hole to flow red ink into the network, which provides good visualization. In experiments,

tubes are plunged at the entrance holes, through which fluid flows into the network. The holes

at the exits are open to let fluid go out.

3.1.2 Network geometry

Top views of our networks through a microscope are given in figure 3.3, where there are five

generations of branching channels and four levels of bifurcations in both. Generation numbers

are labeled with Arabic numerals while Roman numerals are used for bifurcations. The height

(in the direction perpendicular to the image of figure 3.3) of all the branches in the network is

50 µm, which equals the thickness h of the photoresist used in the microfabrication. The channel

width wi changes at the constant ratio ρ. At the end of the last generation, sixteen exit holes

(black in figure 3.3) are punched to fix the exit condition at atmospheric pressure Patm.

Two networks, with ρ = 0.83 (figure 3.3(a), referred to later as the N network) and ρ = 1.2

(figure 3.3(b), the W network) are fabricated. In both of them, the channel width varies between

342 µm and 720 µm. This gives a width of the first generation to be 720 µm and the last

generation to be 342 µm in the N network. Conversely, in the W network, the first generation

has a width of 342 µm and the last generation is 720 µm wide.
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Figure 3.3: Microscope images of the microfluidic networks with five generations. Generation
numbers are labeled with Arabic numerals while Roman numerals are used for bifurcations.
Sixteen holes are made at the exits to fix the boundary condition at atmospheric pressure. (a)
N network and (b) W network.

3.2 Setups

The network inlet consists of a Y-junction connected to the first generation for creating and

injecting liquid plugs (Ody, 2007). A picture of the Y-junction is shown in figure 3.4, where the

liquid plug is represented by bright column surrounded by gray which corresponds to the air.

One inlet of the Y-junction provides the passage for the liquid perfluorodecalin (PFD) entering

the network. PFD is a fluorocarbon whose viscosity and surface tension are η = 5 × 10−3 Pa s

and γ = 20 × 10−3 N/m, respectively. It has good wetting properties on PDMS and does not

swell the channels (Lee et al., 2003). Through the second inlet of the Y-junction, the air goes

into the network and a driving force is applied between the first and the last generations.

A sketch of the experimental setup is shown in figure 3.5. The liquid inlet of the network

is connected to a syringe which is filled with PFD and can be pushed by a pump, so that the

liquid can enter the network. Through the air inlet, either constant pressure P or constant

flow rate Q can be applied. When providing a constant pressure, the air inlet is connected

to a computer-controlled (Computer 2) pressure source (FLUIGENT, MFCS-8C) by a flexible

microtube. The precision of the pressure source is experimentally testified since the output

value can be measured and recorded by FLUIGENT during operation. For the input values

of P = 200 Pa and P = 900 Pa, the output pressure is plotted in figure 3.6, when there is a

constant resistance between the network entrance and exits. Pressure values are chosen here to

cover the need in the experiments and the machine gives satisfactory control of pressure at the

given parameters.
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Air Inlet

Liquid Inlet

Liquid Plug

Air

Figure 3.4: Y-junction in the inlets of the network. A liquid plug of PFD (bright part) surrounded
by air (gray part) is created and ready to be pushed into the first generation of the network.

For flow rate driving, the syringe for air is connected to the inlet by a microtube and pushed

by a pump, which ensures a constant flow rate. Supposing the air cannot be compressed, the

total flow rate in the network does not change during the experimental process. However, the air

pressure has to vary in order to keep the flow rate constant and this makes the air compressed (or

expanded), which results in asynchrony between the pump pushing and the plug moving. The

asynchrony become visible when a pressure variation is required to resume the flow, e.g. during

the passage of a bifurcation. In this case, a rapid change of pressure is desired to improve the

pushing condition and better provide the constant flow rate. More discussion about this can be

found in Appendix B.

In the setup, the syringe contains 50 µL of air and the microtube is 20 cm long (PTFE

Tube 0.56 × 1.07 mm). The volume of the N network is VN = 2.2 µL, so the air inside the

syringe and the tube is 50 times of VN . The air pushing the plug needs a long time, compared

to the time of a single experimental run, to be compressed when the pressure increases. For this

reason, the syringe and the microtube are filled with water and only 1 cm of air near the network

entrance is left in the tube. The syringe pump pushes the water which then pushes the air into

the network. The air between the water and PFD plug has the same volume as the network and

its compression time is reduced by up to 98% in this way. .

The improvement is demonstrated by the experimental measurements shown in figure 3.7,

where evolutions of total flow rate in the network are compared when the driving flow rate

4 µL/min is applied by two different configurations. When a single plug is injected into the N

network and pushed through successive generations, the flow rate in each branch is obtained from

the plug motion and the total flow rate is calculated by summing up those in each branch. The

measurements of plug motion will be discussed in detail in the next section. When the syringe

and the connecting tube are filled with air, big fluctuations in flow rate is found in figure 3.7(a).
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Figure 3.5: Experimental setup for the investigation about transport of liquid plug in the network.
A syringe is filled with liquid and connected to one inlet of the network. The syringe can be
pushed by a pump so that the liquid inside goes into the network. The other inlet of the network
is connected either to a pressure source controlled by computer 2 or to a syringe through a
microtube, in the way that constant pressure or flow rate driving can be realized respectively.
The flow in the network is recorded with a high speed camera through a microscope and the
acquired image sequences are stored in computer 1.
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Figure 3.6: The pressure output of the computer-controlled pressure source when the inputs
are P = 200 Pa (Dashed line) and P = 900 Pa (Solid line) with a duration of t = 10 s when
stationary resistance exists between the network entrance and exits. Satisfactory constancy of
pressure is observed.

There is little flow between t = 8 and t = 11 during which the air is being compressed instead

of pushing the plug forward. In the other case, when the syringe and connecting tube are filled

with water, the control over flow rate is much improved as shown in figure 3.7(b). The plotted

flow rate however varies in the latter case due to difficulties in measuring and calculating the

flow rate in bifurcation areas.

Experiments are recorded with a high speed camera (Photron Fastcam, 1024 PCI) through

a stereomicroscope (Leica, MZ 16) at 0.7× magnification. The resolution of the camera is

1024 × 1024 pixels, which yields 1 pixel for 24.8 µm. For the single plug experiments, images

are taken at a rate of 60 frames per second for the constant pressure driving. For the flow rate

driving, the frame rate varies from 30 to 500 images per second and the specific choice is taken in

order to have image sequence of the flow at a satisfactory resolution. For two or three successive

plugs under constant pressure driving, 125 images per second are recorded. The frame rates for

different experiments are summarized in table 3.1 for reference. The image sequences are stored

in Computer 1 and analyzed afterward.

3.3 Preliminary studies

3.3.1 Measurements

The positions of the front and the rear interfaces of the plug and its daughters, xa and xr, can be

manually recorded from the image sequence obtained while the plug is traveling in the straight
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Figure 3.7: Total flow rate variation in the network under two configurations for flow rate driving.
A single plug is pushed through successive generations and the flow rate in each branch is obtained
by measuring the variation of plug position versus time. The total flow rate is plotted by summing
up the flow rate in each branch. For both cases, the input value of flow rate, indicated by the
dash-dotted line, is 4 µL/min and ensured by the pump. (a) The air fills the syringe and the
connecting tube to the inlet. (b) The connecting tube is filled with water and only 1 cm of air
near the network entrance is left in the tube.

Table 3.1: Frame rates taken when recording the experiments.

Number of plugs Network Driving Condition P or Q Frame Rate (images/sec)

1 N Pressure P = 250 Pa 60
1 N Flow rate Q = 2 µL/min 30
1 N Flow rate Q = 5 µL/min 60
1 N Flow rate Q = 20 µL/min 250
1 W Flow rate Q = 2 µL/min 30
1 W Flow rate Q = 4 µL/min 30
1 W Flow rate Q = 20 µL/min 500

2 or 3 N Pressure P = 500 Pa 125
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Figure 3.8: Measurement of the interface positions in the straight channel. The dotted line
shows the center of the channel and the position vector x is the coordinate of the point where
the interface intersects the dotted line. xa and xr are recorded at every time step with a interval
dt so that the plug length L and velocity U can be calculated as illustrated.

channel. The interface positions are measured at the center of the channel width, as shown in

figure 3.8. x is the coordinate of the point, marked by the circle, where the liquid interface

intersects the central line of the channel (the dotted line). The length of the plug can be thus

known as: L = |xa(t) − xr(t)|. More importantly, by tracking the position of the rear interface,

the velocity of the plug U can be calculated as: U = [xr(t)− xr(t− dt)]/dt, where dt is the time

step between two images. Therefore, the flow rate in this branch can be known from the relation

Q = Uwh, where w is the width of the channel.

Since the bifurcation connects straight channels in the network, the axes of these three chan-

nels intersect at one point T , as shown in figure 3.9. When a plug passes a bifurcation, the

position of the rear interface is measured in the previous generation (the horizontal channel in

the figure) before it passes point T , see figure 3.9(a). After the interface passes point T , the

position is measured in the daughter branch of the next generation, figures 3.9(b) and (c). In

this way, the interface position is continuously recorded and the main characters of the passage

can be captured. The switch of generation in measurements may introduce less precise tracking

of the interface at the bifurcation but the error is tolerated, since the focus is on the global

behavior of the flow rather than the detailed evolution at the bifurcation.

Combining figures 3.8 and 3.9, the motion of the daughter plugs can be tracked along different

branches. Four paths, as labeled in figure 3.10, for the N and W networks are selected for

experimental measurements. The distance, from the network entrance, traveled by the daughter

along one path is calculated as Dis =
∑

[xr(t) − xr(t − dt)]. The last generation is not tracked

because it is close to the network exits and the flow there is affected by the boundary conditions.
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Figure 3.9: Interface tracking at the bifurcation. The axes of three connected channels intersect
at point T . Before passing point T , the interface position is measured in the horizontal channel
(a) and after that, the positions are recorded in the branched channel (b) (c).

Path 2

Path 1 Path 3
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Path 1

Path 4

Path 2
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Figure 3.10: Paths along which plug positions are measured in the N (a) and W (b) networks.

The motion of daughters in these four representative paths provides a good global description of

the flow, since two daughters of one origin move symmetrically at least until one of them divides

at the next bifurcation; see experimental results in Chapter 4.

3.3.2 Interface tracking

The position of the plug is tracked as the position of its rear interface. For a plug pushed at

P = 250 Pa, a sequence of images are obtained and shown in figure 3.11. The vertical dashed line

marks out the position of the rear interface along the axis, which is normalized by the channel

length. This yields a range of the normalized plug position Pos to be 0 < Pos < 1. As the plug

moves from left to right, its length L is recorded, as illustrated by the two sloping lines.
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Figure 3.11: Image sequence tracking the normalized position of the plug in a straight channel.
The dashed lines denote positions of the plug by its rear interface and the length of the plug L
is recorded as time varies.

Variations of plug length versus the normalized position are plotted in figure 3.12 when the

plug advances through generation 0 and one branch in generation 1 in the same experiment

shown in figure 3.11. The plug length remains constant inside the generation and varies as

L1 = (0.5/0.83)L0 between two generations, as expected theoretically.

When a plug passes a bifurcation, both interfaces are deformed due to geometry, as shown

in figure 3.13 by the images from the same experiment as in figure 3.11. The front interface

first enters the bifurcation and its curvature decreases until the interface touches the opposite

wall, 3.13(c). After the splitting of the front interface in 3.13(d), the rear interface arrives at the

bifurcation, deforms (3.13(d)) and reaches the next generation, when the plug passes completely

as shown in figure 3.13(f).

During the passage, the plug length varies with its position since the cross-sectional area is

no longer constant as in the straight channels. Moreover, the shape of the plug can be complex,

for example in figures 3.13(d) and (e), which makes it difficult to measure or calculate the length.

However, the measurement of the plug position reveals the flow evolution and can be performed

as illustrated in figure 3.9. The dashed lines locate the measurements in the horizontal channel

in figures 3.13(a)-(e) but the measurement that should be done in the branched channel is not

located in figure 3.13(f).
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Figure 3.12: Plug length versus its position in the straight channel at driving pressure P = 250 Pa.
The lengths of one plug and its daughter are recorded in generations 0 and 1. The position of
the plug is measured along the channel direction and normalized by the channel length.
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Position Position

Figure 3.13: Image sequence tracking the plug motion at the bifurcation. The front interface
reaches the bifurcation corner (a), deforms afterward (b), touches the opposite wall (c) and finally
splits (d). The rear interface becomes affected by the bifurcation after the front one (e) and the
plug passes through when the rear interface arrives at the branch in the next generation (f).
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Chapter 4

One plug injected into the network

Articles appeared in Medical Engineering & Physics (2010), published online,

and Physical Review Letters (2010), 105, 134501.

4.1 Experimental observations

We begin our experiments by creating a single liquid plug at the root of the network and push it

at a constant pressure or flow rate. The motion of the plug is recorded by the camera connected

to the computer. At each bifurcation, the plug divides into two daughters of nearly equal size

and these daughters are transported in their respective branches. Different flow patterns are

found at different driving conditions.

Constant pressure pushes all the daughters of one plug synchronously in both networks. In

these cases, the initial plug slows down and next speeds up while passing the first bifurcation. It

then divides into two daughters which move in the second generation. This behavior is repeated

by both daughters at later bifurcations, which increases the number of daughter plugs in the

network. Those daughters move in synchrony through bifurcations and across generations and

the flow is globally symmetric.

In the N network, at a driving pressure Pdr, all the daughters can advance simultaneously

to a bifurcation where Pdr < Pthr. When the driving pressure is higher than the threshold at

the last bifurcation, all the daughters reach the exits of the network. In the W network, all the

daughters can reach the network exits simultaneously as long as the driving pressure Pdr is higher

than the threshold at the first bifurcation. A typical experiment in the N network is shown in

figure 4.1, where the driving pressure is Pdr = 250 Pa. The daughter plugs are labeled with a

letter or a letter plus number(s) and their positions are circled for clarity. The plug positions

47
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may vary slightly across the different generations, but they mostly advance in synchrony to the

network exits.

However, the flow can be strongly modified when pushed at constant flow rate, for example in

the experiment shown in figure 4.2, where the plug is pushed at driving flow rate Qdr = 2 µL/min

in the N network. Two daughters, A and B, of the initial plug advance in the same generation

simultaneously in image (a) but this synchrony is broken if one of the daughters divides further,

as shown in figure 4.2(b) where daughter B passes bifurcation II and its daughters, B1 and

B2, advance toward bifurcation III while plug A stops at bifurcation II. After B1 and B2 reach

bifurcation III and stop, plug A divides into A1 and A2, both of which then catch up with the

early ones. When all the daughters arrive at bifurcation III, plug B2 divides and advances until

stopping at bifurcation IV, image (c). After that another plug follows the foregoer, in which

way all plugs move forward one by one. The daughters wait for each other at every level of

bifurcation, as shown in figure 4.2(d) when they are waiting at bifurcation IV for A2 that is

about to pass bifurcation III. The whole network is penetrated by daughters of the initial plug

although there are only two daughters of one origin moving at one time.

When the driving flow rate increases to 5 µL/min, the flow symmetry can also be broken

by the division of plugs. Nevertheless, the plugs wait for each other at bifurcations and the

latecomers can catch up with others. Difference from the experiment shown in figure 4.2 exists

since there may be several daughters moving at the same time when Qdr = 5 µL/min. All the

daughters advance in synchrony when Qdr = 20 µL/min and flow looks qualitatively the same

as that in figure 4.1. Therefore, the liquid penetrates into all the regions of the N network

regardless of the driving flow rate.

Conversely, in the W network, the daughter plug blocked at a given upstream bifurcation

cannot advance when the driving flow rate is low, as shown in figure 4.3 when Qdr = 2 µL/min.

Plug B passes bifurcation II in image (b) but plug A gets blocked and remains at bifurcation II

until the end of the experiment. Similarly, plug B1 passes bifurcation III in image (c) but plug

B2 stops at bifurcation III and stays there. This results in large section of the network with

no flow while only a quarter of the network is penetrated by plugs B11 and B12. Asymmetric

divisions of the plug, attributed to the imperfection in the fabrication, are found in this case.

An increase in the driving flow rate improves the liquid penetration. When Qdr = 4 µL/min,

daughters of the initial plug can pass the second bifurcation successively but at bifurcation III

half daughters get blocked. At the end, half of the network is penetrated by liquid. When the

flow is pushed at Qdr = 20 µL/min, the daughters pass bifurcation II together but the cross-

ings of bifurcation III are not simultaneous, resulting in separate advancement of the daughters

afterward. No branch is blocked and the whole network is penetrated.
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(a) t = 3 s

(d) t = 7 s(c) t = 6 s
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Figure 4.1: Image sequence in the N network, obtained from experiment under constant pressure
driving Pdr = 250 Pa. The daughters advance in synchrony through bifurcations and across
generations. Each of the daughter plugs is labeled with a letter or a letter plus number(s) and
their positions are circled for clarity.
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(a) t = 10 s

(d) t = 33.3 s(c) t = 27.3 s

(b) t = 17 s
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Figure 4.2: Image sequence in the N network, obtained from experiment under constant flow
rate driving Qdr = 2 µL/min. The daughter plugs are labeled and circled for clarity. Two
daughters of the same origin advance in the same generation simultaneously but this synchrony
is broken when one of the daughters divides further. The latecomers catch up with their sister
in downstream bifurcations.



4.1. EXPERIMENTAL OBSERVATIONS 51

(a) t = 7.7 s

(d) t = 22.8 s(c) t = 19.7 s

(b) t = 14 s
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A A
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Figure 4.3: Image sequence in the W network, obtained from experiment under constant flow
rate driving Qdr = 2 µL/min. The plug cannot move once it gets suck and it blocks the flow in
the downstream subregions.
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Figure 4.4: Micrographs showing the typical positions in the plug motion: it advances in the
straight channel (a), the front interface enters the bifurcation (b), touches the opposite wall and
then splits into two (c). After the rear interface touches the opposite wall, the plug divides into
two daughters that will advance in their respective straight channels (d).

In the following sections, the flow behavior is studied in detail. Flows under constant pressure

and constant flow rate in the N network are compared and explored in section 4.2. In section 4.3,

a model is built to predict the organization of flows containing liquid plugs pushed at constant

flow rate in networks with different recursive rules.

4.2 Flow evolutions under different driving conditions

4.2.1 Constant pressure driving

Images showing the typical positions of the plug are summarized in figure 4.4, when the plug is

pushed at a constant driving pressure Pdr = 250 Pa in the N network. When the plug moves in

the straight channel, it is driven at Pdr as shown in figure 4.4(a) where the radii of curvature are

rr = ra. After the plug enters the bifurcation, the deformation of the front interface introduces

a capillary complement Pcap by varying ra as noted in images (b) and (c), and Pcap modifies the

pressure across the plug. When the plug fully passes the bifurcation and divides, the resulting

two daughters continue to move in their respective channels, image (d). These steps exist in all

the passages through bifurcations. Although 2α = 120◦ in our network, unlike the one illustrated

in figure 2.15, the equations and analysis in section 2.3 is also applicable by modifying the value

of α.
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Figure 4.5: Experimental measurements of velocity during the passage of a plug through a
bifurcation. The position of the plug is defined as that of its rear interface.

The velocity of one plug, when it is passing the second bifurcation, is measured and plotted

in figure 4.5. The evolution indeed accounts for the variation of ∆P during the passage. The

plug first slows down in the bifurcation (figure 4.4(b)), followed by a quick acceleration after

the front interface reaches the next generation, as shown in figure 4.4(c), since Pcap < 0 and

∆P = Pdr − Pcap increases. Accordingly, the passage of a plug through a bifurcation is always

associated with a large spike in the velocity evolution.

A quantitative measure of the overall synchrony of the motion at the pressure driving is given

in figure 4.6, which displays the plug velocity as a function of time along four paths, as labeled in

figure 3.10(a). As the daughter plugs advance in the network, their number increases and their

velocities vary as a result. The spikes that appear in the velocity time series are the signatures of

passages through bifurcations, as explained above. By tracking the moment at which the spikes

occur along each of the different paths, we see that the plugs reach the bifurcations and divide

at roughly the same time. This is in spite of imperfections in the network which lead to slight

asymmetry in the divisions and thus yield plugs of variable sizes. Moreover, a careful examination

of the time series reveals small differences in the passage times through the second bifurcation.

However, this difference is not amplified in later generations and the plugs all continue in a

steady fashion. The flow remains globally symmetric during its evolution. Here (and also in the

following chapters) the flow evolution after generation 3 is not taken into account, since the plug

motion in the last generation can be affected by the boundary condition, which is suggested by

large velocity fluctuations in all the paths after generation 3, shown in figure 4.6. Therefore,
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Figure 4.6: Velocity variations along four paths under a constant pressure driving Pdr = 250 Pa.
The vertical line indicates the time when the plug passes a bifurcation. Line colors are coded as
in figure 3.10(a).

vertical lines in figure 4.6 locate the passages until bifurcation III although velocity spikes are

also observed after that.

The flow behavior under constant pressure can be understood by knowing the thresholds in

the network. The driving pressure has to be higher than the threshold when pushing a plug

through a given bifurcation. Since the threshold increases in the N network, the plug can pass

the bifurcation when Pdr > Pthr and stays blocked if Pdr becomes smaller than Pthr. When Pdr

is higher than the threshold at the last bifurcation, for example Pdr = 250 Pa, the plugs can

pass all the bifurcations and reach the exits. Meanwhile, since the daughters in every branch are

subjected to the same driving pressure, their behavior is the same: All of them either move or

stop. The flow thus develops symmetrically.

This also holds in the W network except that the largest value of Pthr corresponds to the

first bifurcation: As long as Pdr > Pthr,1, the plug can pass all the bifurcations in the network

and the flow evolves symmetrically.

4.2.2 Constant flow rate driving

When the experiments are rerun by pushing the plug at a constant flow rate, the behavior is

strongly modified, since long-range interactions develop between plugs at different regions of
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Figure 4.7: The fundamental unit of three connected channels to understand long-range in-
teractions between two plugs under different driving conditions. (a) They both arrive at the
bifurcations. (b) Daughter A passes the bifurcation earlier than B.

the network. The fundamental unit to understand these interactions is shown in figure 4.7.

Two daughters (A and B) of the same plug arrive at two bifurcations simultaneously in image

(a). Slight variations in geometry, which are always present in the experiments, lead to one of

the plugs dividing before its sister, as shown in image (b). The velocity of A as well as the

flow rate QA increase. In case of constant pressure forcing, the driving conditions for plug B

are not modified; this plug also slows down and then speeds up as it crosses the bifurcation,

independently of plug A. This is no longer the case if the plugs are pushed at constant flow rate.

When the flow rate QA increases, QB has to decrease due to the conservation Qdr = QA + QB.

In fact, QB may become zero or even negative, which means that plug B may stop or even move

backward, depending on the value of Qdr.

For the experiment shown in figure 4.2 when Qdr = 2 µL/min, the velocities of the plugs

are displayed in figure 4.8 along the same paths as above. Due to flow rate conservation in the

network, the plugs adjust their velocities while advancing and acceleration in one path leads to

deceleration in the others. An uneven division, which introduces daughters of different lengths,

leads to significant velocity variations since a shorter daughter is easier to push forward than a

longer one. Velocity differences are visible, for instance, in the case of the two daughters of the

initial plug as they flow in generation 1: While the one in the black path speeds up, the one in

the blue path must slow down.
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Figure 4.8: Velocity evolutions along four paths under the constant flow rate Qdr = 2 µL/min.
The vertical line indicates the time when the plug passes a bifurcation. Line colors are coded as
in figure 3.10(a).

After one daughter passes a bifurcation and divides, a flow rate increase in the corresponding

branches results in a slowing down of other daughters which may get stuck at the bifurcations.

Once the early plug that has divided reaches the next bifurcation, the threshold pressures at two

successive bifurcations have to be compared and the plug with the lowest threshold will advance

first. In the N network, the threshold increases with the generation number, which implies

that the upstream plugs can catch up with the early ones. The most downstream plug must

therefore wait at the bifurcation for all other plugs to reach the same bifurcation level before it

can continue its journey. This is shown in the velocity evolution in figure 4.8, by the segments

with zero velocities before the passage of a bifurcation.

All the daughters eventually reach the network exits, although they do not always advance

together. Therefore the flow at Qdr = 2 µL/min remains symmetric but evolves through discrete

steps. Plugs are never more than one generation apart due to the increasing threshold pressure,

but they spend long periods of time stationary at bifurcations, waiting for plugs in the other

branches.

4.2.3 Flow patterns in the narrowing network

Results of experiments performed at different driving conditions are summarized in this subsec-

tion. As shown earlier, the flow is synchronous at Pdr = 250 Pa, but turns out to be asynchronous
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Figure 4.9: Time difference of daughters’ passage through bifurcations of the same level, data
normalized to the average traveling time in the next generation.

at Qdr = 2 µL/min. However, the flow pattern depends not only on the type of the driving con-

dition but also the value of the driving force, as shown below.

The synchrony of flow can be evaluated by measuring the time separating the first and last

plug divisions at the same bifurcation level, ∆t. This time difference is normalized by the mean

time taken to travel through the next generation (Ti+1) and is noted here as ∆t. ∆t = 0

represents a very symmetric flow, where all the daughters pass the bifurcation at exactly the

same time. ∆t < 1 indicates that the plugs travel nearly simultaneously through the generation,

while ∆t > 1 implies that divisions are separated by long times and that some plugs spend

some time stuck at the bifurcations. In the extreme case of ∆t = ∞, there is at least one plug

remaining blocked at the bifurcation. ∆t for different experiments are shown in figure 4.9, where

each data point corresponds to an average over several experimental realizations.

Two distinct behaviors are observed. Constant pressure driving yields values of ∆t that are

below 1, indicating that plug divisions are nearly synchronous. Note that for pressure drivings,

the uncertainty in the channel height ±2 µm will lead to plugs advancing at different velocities

due to the variations of the radii of curvature at plug interfaces. This effect is more significant

when the plugs pass the bifurcations where ∆P is modified as Pdr−Pcap. ∆P is of the same order

of the pressure variation as that brought by the uncertainty in the channel height; ∆t can also

display some fluctuations due to imperfections in the channel fabrication, as shown by the points

corresponding to Pdr = 150 Pa in figure 4.9. However, these small fluctuations are introduced by

the network itself but not by long-range interactions between daughter plugs. In contrast, the
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Figure 4.10: Distance traveled by daughter plugs along four paths in the N network. The shaded
and nonshaded areas represent successive generations as labeled on the right of the y-axis by
Arabic numerals and the line color is used to indicate the corresponding path shown in figure 3.10.
(a) Driving condition Pdr = 250 Pa. (b) Driving condition Qdr = 20 µL/min.

division times for constant flow rate drivings are above 1 for the second and third bifurcations

(Qdr = 2 µL/min) and for the third bifurcation (Qdr = 5 µL/min). The transition to ∆t > 1

occurs when the pressure necessary to ensure the constant flow rate decreases below the local

threshold, as will be described in section 4.3. The values of ∆t increase with the generation

number here since the number of daughter plugs increases and they must pass separately.

For high driving pressures (Pdr > 150 Pa) and flow rate (e.g. Qdr = 20 µL/min), the

plug movement is synchronous in both methods, as seen by the small values of ∆t. This can

also be observed by plotting the plug positions as a function of time, as shown in figure 4.10.

In this figure, the plug positions along four representative paths, i.e. the distance from the

network entrance traveled by the rear interface of the plug, are plotted using four colors. The

superposition of distance plots agrees with the fact that all four divide simultaneously both

in constant pressure and constant flow rate drivings. However, the plots display different flow

evolutions, which allows us to distinguish the driving conditions nevertheless. While the plugs

slightly accelerate in the first four generations in case of pressure forcing in agreement with data

in figure 4.6, they experience a clearly deceleration as advancing under flow rate driving, since

the number of daughters increases and the flow is distributed over a larger total area.

This information is confirmed by measuring the time spent traveling in the straight sections

in each generation (Ti), as shown in figure 4.11. Here, each data point represents the average

over all the daughters in a given generation and is shown with error bars for several experimental
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Figure 4.11: Comparison of traveling time in each generation for pressure and high flow rate
drivings, which yield symmetric flow patterns.

realizations. Ti is normalized by the total time for an experiment, i.e. the time from the initial

plug entering the first bifurcation to the last daughter passing the last bifurcation before exits.

For our network, we observe that the plugs spend a shorter time in the straight channel as they

advance when pushed at constant pressure. It is known from figure 4.6 that the plug velocity

increases from generation 0 to 2 and varies slightly from generation 2 to 3 under Pdr = 250 Pa.

Since the channel length decreases at the ratio 0.6, it takes a shorter time to pass the branch for

plugs in later generations. When the plug is pushed at a high flow rate, the travel time remains

constant with the generation number. This is because the plug velocity in successive generations

evolves as:

Ui+1 =
Qdr

Ni+1hwi+1
=

Qdr

2Nihρwi

=
1

2ρ
Ui = 0.6Ui,

(4.1)

which is in the same way as the decrease of the channel length.

4.3 Flow organization in different networks

4.3.1 Network with narrowing channels

In the previous section, we have seen that the flow evolution in the N network under flow rate

driving was more complicated than plug dynamics under pressure driving and that the flow
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Figure 4.12: Traveled distance (left column) and velocity evolution (right column) of daughter
plugs along four paths as a function of time in the N network. Driving flow rates vary as: (a)
2 µL/min (b) 5 µL/min (c) 20 µL/min. Line color is coded as in figure 3.10. In the left column,
the shaded and nonshaded areas represent successive generations as labeled to the right of the y-
axis by Arabic numerals. In the right column, a large velocity spike denotes the passage through
a bifurcation that is located by a vertical line.

organization was strongly affected by the evolution of threshold pressures in the network. We

now focus on the constant flow rate driving in two different networks (N and W).

A single plug pushed at a constant flow rate in the N network is first considered. The

distances traveled by the rear interfaces of the daughter plugs from the network entrance are

measured and shown in figure 4.12 in the left column. Three typical experiments are recorded

in this figure and the results are observed in many experiments under the same condition. The

color of the line denotes the path along which the daughter plug moves and the shaded and

nonshaded areas represent successive generations as labeled to the right of the y-axis by Arabic

numerals. The velocity measurements are given in figure 4.12 in the right column, where the

passage through a bifurcation can be distinguished by a large velocity spike.

In the experiment at a low flow rate (Qdr = 2 µL/min), the plug initially flows in generation

0 until it reaches the first bifurcation at which it divides into two daughters. During this period,

the single black line, in figures 4.12(a1) and (a2), leads to two lines (black and blue) for the

two daughters. For simplicity, the color will be used to identify the plug in that branch in the

following descriptions. The blue plug accelerates, decelerates and then stops at bifurcation II.

From this point, a horizontal segment in blue below the border of generations 1 and 2 is observed

in figure 4.12(a1) and the velocity goes down to zero in (a2). Whereas, the velocity of the black
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plug decreases before increases again, which is just the opposite behavior of its blue sister. The

black one however passes bifurcation II before the blue and its daughters (black and red) advance

to bifurcation III, where they stop. At this point, the blue plug divides through bifurcation II and

catches up with the black and red daughter plugs. The difference in traveled distance between

the blue and black, or green and red, which has increased up to one generation, decreases again.

When all of the four daughters have arrived at bifurcation III, the black one starts to advance

to the next bifurcation. After that the red, green and blue plugs divide one by one and travel to

the next bifurcation. It is clearly seen in figure 4.12 (a2) that the passages of bifurcation III are

well separated in time.

The evolution of distance plots for Qdr = 5 µL/min, figure 4.12(b1), is similar except that

the blue plug divides at bifurcation II while the daughters of the black are still moving in

generation 2. This corresponds to a period when flow exists in both branches and the difference

in traveled distance between the blue and black has not increased much. Also, two close spikes

for bifurcation II are seen in figure 4.12(b2). At the next bifurcation, three daughters also pass

through simultaneously and travel in generation 3 thereafter. Only the blue daughter that passes

bifurcation III later than its sisters advances on its own in generation 3. Nevertheless, all of them

reach the next bifurcation.

Finally, when the driving flow rate increases to Qdr = 20 µL/min, the daughter plugs can

advance simultaneously all along their journeys in the network. Therefore, the distance plots are

all superposed in figure 4.12(c1) and the velocity spikes for the same level of bifurcation are all

close to each other in 4.12(c2). With different evolutions, the liquid plug penetrates everywhere

in the N network in all the three cases regardless of the driving flow rate.

4.3.2 Network with widening channels

The flows in the W network are quite different from those in the N network. In comparison,

the single plug is also pushed at low, medium and high flow rates in experiments. The traveled

distance is plotted in figure 4.13 in the left column and the velocity evolution in the right column.

The initial behavior of the plug at Qdr = 2 µL/min is similar to that in the N network but

a difference arises at bifurcation II. At this stage, the blue daughter of the initial plug is blocked

and remains stationary until the end of the experiment, which is shown by the horizontal blue line

in figure 4.13(a1) and the blue velocity curve of value zero in figure 4.13(a2). The other plug, the

black one, divides at bifurcation II and its daughters reach the next bifurcation together. Similar

to the behavior of the blue plug, the black daughter stops at bifurcation III and remains there,

which leaves only the red daughter continuing advancing. In the end, only the red daughter

passes generation 3. On the velocity plots, only a red spike exists while all the other curves
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Figure 4.13: Traveled distance (left column) and velocity evolution (right column) of daughter
plugs along four paths as a function of time in the W network. Driving flow rates vary as:
(a) 2 µL/min (b) 4 µL/min (c) 20 µL/min. Line color is coded as in figure 3.10. In the left
column, the shaded and nonshaded areas represent successive generations as labeled to the right
of the y-axis by Arabic numerals. In the right column, a large velocity spike denotes the passage
through a bifurcation that is located by a vertical line.

have value zero. Since there is no flow in branches downstream of a bifurcation where a plug is

blocked, the flux is limited to only a quarter of the network on the level of generation 3 when

the driving flow rate is low, i.e. Qdr = 2 µL/min.

For Qdr = 4 µL/min, daughters of the initial plug pass bifurcation II successively but only two

daughters (black and red) pass through bifurcation III, while the other two get blocked. At the

end, flow develops in half of the network. Accordingly, two spikes (black and red) are observed

for the passage through bifurcation III in figure 4.13(b2), although they look small compared to

the biggest one at the first bifurcation due the strong decrease of daughter velocities.

When the flow is pushed at Qdr = 20 µL/min, the daughters pass bifurcation II together but

the crossings of bifurcation III are not simultaneous, resulting in asynchronous advance of the

daughters afterward as shown in figure 4.13(c1). As a result, four separated spikes are found in

figure 4.13(c2). Nevertheless, the whole network is penetrated at this high flow rate.

According to its definition, ∆t goes to infinity for flows pushed at low and medium flow rates

in the W network since daughters are blocked at intermediate bifurcations before reaching the

exits. When Qdr = 20 µL/min, ∆t decreases strongly but the daughters still do not advance

synchronously.
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Figure 4.14: Basic building block consisting of three connected bifurcations for exploring the
long-range interactions between different plugs and the global behavior in the binary branching
network under constant flow rate driving.

4.3.3 Global organization of the flow

The different flow behaviors in two networks can also be understood from the long-range inter-

actions across distinct subregions of the network introduced by the nonlinear pressure–position

relation when several plugs are present.

We again use the unit consisting of three connected bifurcations, as shown in figure 4.14.

Unlike in figure 4.7 where the plugs are pushed either at pressure or flow rate, here figure 4.14

represents the building block to understand plug interactions under constant flow rate driving and

explain the global behavior in the binary branching network. In image (a), the front interfaces

of plugs A and B are both deformed and the common pressure ∆P driving the two plugs is given

by Pcap. After plug A divides, as shown in figure 4.14(b), the behavior of plug B will be affected,

since the flow is pushed by a constant flow rate. Given that the flux in the system is fixed and

imposed by the syringe pump, ∆P will adjust to satisfy relation (2.1), evaluated for the two

daughters of A moving at the velocity U = Qdr/2wh, where w is the width of the channel in

which the two daughters move. The behavior of plug B can then be deduced by comparing Pvc

for the moving daughters of plug A and Pthr at the bifurcation. If Pvc < Pthr, plug B cannot pass

the bifurcation. It adjusts its position to equilibrate Pcap = ∆P and stays there. If Pvc > Pthr,

plug B passes the bifurcation and introduces two new daughters into the system. This leads to

a new value of ∆P that has to be calculated using (2.1) for four daughter plugs moving in the

next generation.
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Considering the network, this process has to be generalized to the case from 1 to 2i−1 plugs

that are dividing at the ith bifurcation, which gives a range of possible values for ∆P = Pvc

in generation i, as shown by the shaded areas of figure 4.15. When the first plug passes the

bifurcation, the motion of its two daughters conserves the total flow rate in the network, which

requires a high Pvc. At this moment, there exists the maximum possible value of Pvc in generation

i. All these maximum values in different generations are connected to form the top line of each

shaded area in figure 4.15. As more plugs pass the bifurcation they have entered, the number N

of the moving plugs increases and ∆P = Pvc decreases as a result. As long as Pvc > Pthr, the

late plugs continue to pass the bifurcation and introduce more daughters, which lowers ∆P even

more. When ∆P becomes lower than Pthr, some plugs in the ith bifurcation remain blocked

at a position where Pcap = ∆P is achieved. If all the plugs pass the bifurcation, N reaches its

maximum value 2i in generation i, and Pvc is expected to take on the minimum value in that

generation. The bottom lines in figure 4.15 displays these minimum Pvc values as functions of

the generation number and network.

Given the relative values of Pvc and Pthr for each generation in figure 4.15, the flow behavior

under different flow rate drivings can be predicted up to 10 generations in the narrowing (N )

and widening (W) networks. When the driving flow rate is low, Qdr = 2 µL/min, we have

Pvc < Pthr and only one plug can pass the bifurcation at one time. Since Pvc > Pthr in the

first four generations when Qdr = 20 µL/min, all the daughters can move and divide together.

However, for a network with more generations, in the later region where Pthr overlaps Pvc, some

of the daughters can advance simultaneously but some others have to stop at the bifurcations

they have entered. When the plug is pushed at a medium flow rate, e.g. Qdr = 4 µL/min or

5 µL/min, the threshold pressure curve overlaps the range of Pvc that is placed between the two

shaded areas in the figure. Therefore, some daughters move together through the bifurcation

while others stop there.

The main difference between the two networks appears once the plug that has divided earlier

reaches the next bifurcation. The threshold pressures associated with two successive bifurcations

must be compared at this stage and the plug with the lower threshold will divide. For convenience,

the definition of Pthr, which is given in (2.6), is repeated below:

Pthr =
2γ cos θ

wi
−

γ(cos θ − sin α)

wi+1
. (4.2)

Taking into account the variation of wi in successive generations, Pthr can be also expressed as:



4.3. FLOW ORGANIZATION IN DIFFERENT NETWORKS 65

0 1 2 3 4 5 6 7 8 9

0

100

200

300

400

500

Generation (Bifurcation) number

P
re

ss
u

re
 (

P
a

)

 

(a)

 

Threshold

Qdr=2 L/min

Qdr=20 L/min

90 1 2 3 4 5 6 7 8

0

40

80

120

160

200

Generation (Bifurcation) number

P
re

ss
u

re
 (

P
a

)

(b)

 

Threshold

Qdr=2 L/min

Qdr=20 L/min
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Pthr,i+1 =
2γ cos θ

wi+1
−

γ(cos θ − sin α)

wi+2

=
1

ρ

(

2γ cos θ

wi
−

γ(cos θ − sinα)

wi+1

)

=
1

ρ
Pthr,i,

(4.3)

which means that Pthr varies with the generation number as Pthr,i+1 = (1/ρ)Pthr,i. This leads

to Pthr,i+1 > Pthr,i in the N network and Pthr,i+1 < Pthr,i in the W network.

For a plug injected from the entrance of the N network, it gets harder to push it through

bifurcations as it advances. It is also harder for the plug located at a downstream bifurcation

(i + 1) to pass than the plug in a upstream bifurcation (i) for the same reason. In other words,

the upstream plugs always divide before plugs in the downstream bifurcations. This implies

that the advance of a downstream plug to an upstream plug cannot exceed one generation in a

narrowing network. In contrast, Pthr,i continuously decreases in the W network. The downstream

plug always divides first and the upstream plug can no longer advance once it is stuck at the

bifurcation. The distance between plugs can grow indefinitely.

The above analysis indicates that all the daughter plugs can advance to the same level of

generation in the N network regardless of the driving flow rates, which is in agreement with

the experimental observation in figure 4.12. However, the flow may evolve in different ways

depending on the value of Pvc. When Qdr = 2 µL/min, Pvc < Pthr, plugs advance one after

another, in agreement with the experimental observation in figure 4.12(a). Since Pvc > Pthr in

the first four generations when Qdr = 20 µL/min, the plugs move together, as confirmed by the

experiment results in figure 4.12(c). For the region between the two flow rates, Pthr overlaps Pvc

and some of the daughters first advance simultaneously. But the early ones will be caught up by

the latecomers at a downstream bifurcation, as shown in figure 4.12(b) for example.

In contrast, only fast daughters can reach the exits of the W network while others get blocked

at intermediate bifurcations. When Pvc < Pthr, only one daughter can advance while all the

others are blocked at different level bifurcations, in agreement with the experiment shown in

figure 4.13(a) for Qdr = 2 µL/min. However, since Pvc > Pthr for Qdr = 20 µL/min, all the

daughters are pushed to the exits (figure 4.13(c)). Given a network with more generations, we

can predict that Pthr will intersect the predicted range of Pvc after the divisions of a few plugs

due to the strong decrease of Pvc with the generation number. At this stage, some plugs will

stop before reaching the exits. This phenomenon is also observed when Pthr intersects the range

of Pvc predicted for Qdr = 4 µL/min in the experiment shown in figure 4.13(b).
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4.4 Summary

In studying the flow evolution when a single plug is pushed into the network at either a constant

pressure or a constant flow rate, we have identified the capillary pressure difference across the plug

introduced by the deformation of air-liquid interfaces during the passage through a bifurcation.

The resulted nonlinear pressure–position relation can influence the velocity at which the plug

advances in the bifurcation. When several daughter plugs and bifurcations are present, these

nonlinearities can further introduce strong long-range interactions between plugs in different

parts of the network when the flow is pushed at constant flow rate. This is particularly visible

when the flow rate is low and some plugs stop at bifurcations and wait for long periods of time

while others continue to advance.

In a branching network with narrowing channels, the liquid plug pushed at constant pressure

can penetrate all the branches with daughters moving in synchrony as long as the driving pressure

is higher than the thresholds in the network. But in a tree that is sufficiently deep with many

generations, the driving pressure will become lower than local threshold at a later bifurcation,

since the threshold increases with the bifurcation number. Therefore, the liquid cannot reach

the end of network. However, when the plug is pushed at constant flow rate, the tree with

narrowing branches can be fully invaded and this is regardless of the value of the driving flow

rates. Although daughters advance one after another at low driving flow rate, the fast ones

always wait for others at downstream bifurcations.

Conversely, a constant pressure can push plugs to the end of the widening tree when the

pressure is higher than the threshold at the first bifurcation. Since the threshold decreases with

the bifurcation number, the plug will advance to the network exits once it passes bifurcation I.

In the other case, when the flow is driven at constant flow rate, only fast daughters can reach

the end of the tree since they always reach the next bifurcation associated with a lower threshold

and the daughters blocked at a upstream bifurcation cannot advance any more. Although the

fully invasion of the W is observed in experiments, it is predicted that a network with more

generations will not be invaded by plugs driven at constant flow rate.

For a network other than the microfluidic models, the analysis of the plug passage through

a bifurcation also leads to the existence of a threshold value of the driving pressure. A similar

threshold is expected to exist in the case of the circular tubes forming the pulmonary airway tree,

although its value will strongly depend on the details of the geometry at the bifurcation. In this

sense, a better understanding of the penetration of liquid plugs into the branching tree and of

the long-range interactions in the tree should lead to improved models of liquid dispersion in the

lung, which is an important problem in view of its application to pathology and drug delivery.
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More broadly, a basic building element consisting of three adjacent bifurcations is identi-

fied for the analysis of the dynamically determined viscocapillary pressure and the geometrically

controlled threshold value. This element can be used to build any network topology and the anal-

ysis approach can be adapted to the general case. Therefore, the global transport of liquid plugs

in the network can be inferred from the interactions inside one element and between different

elements. Generalizing these results can have insights for many technological applications.



Chapter 5

A train of plugs in the network

Article appeared in Medical Engineering & Physics (2010), published online.

When several plugs are injected successively into the network, the nonlinearities associated

with one plug motion can influence the advancement of other plugs, which makes the flow evo-

lution more complex. Besides interactions between daughters of the single plug in different

subregions of the network, there also exist interactions between daughters of different plugs. In

this chapter, the flow containing successive plugs pushed at constant pressures is studied in the

N network and a simple empirical relation is found to predict the total flow rate in the presence

of a train of plugs. We begin from the case of a single plug injected into the network, build a

relation reproducing the results and then show that this relation can be applied to the case of a

train of plugs successively injected.

5.1 Empirical resistance to flow associated with one plug

In this section, we focus on the lengths and velocities of daughters of a single plug pushed at a

constant pressure Pdr = 250 Pa as they travel in the straight channels between two successive

bifurcations in the N network. The daughter plugs are constantly subjected to the same pressure

difference and should therefore all move at the same speed which in addition should be constant

during their passage in their respective branches.

For one plug moving in a straight channel, its velocity is measured as: U = [xr(t) − xr(t −

dt)]/dt, which is rewritten here for convenience. During the plug travel in one branch, U varies

slightly as a function of t. The time-averaged value of plug velocity U in one branch is taken and

plotted as one symbol ♦ in figure 5.1 according to the plug position in the network, generation

i. There are therefore 2i data points in generation i. The solid line drawn through these points

69
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Figure 5.1: Average plug velocity as a function of the generation number i. Experimental con-
ditions: Pdr = 250 Pa and L0 = 2.3 mm. Symbols correspond to values recorded in each branch
and the solid line to their average. The prediction from (2.4) is shown as a dashed line.

gives the average obtained over the 2i branches. Variations from branch to branch and within a

branch, to be attributed to imperfections in the microfabrication, are observed however. As the

channels get narrower, the flow becomes more sensitive to wall conditions, which brings bigger

separations between data points in later generations.

At this stage, it is interesting to compare these observations to the theoretical prediction

of (2.4), which is used to compute the velocities in all the generations by assuming that plugs

divide equally at each bifurcation while taking into account the narrowing of the channels, wi =

w0ρ
i, hence Li = L0/(2ρ)i. The result is given as a dashed line in figure 5.1, from which it is

immediately seen that the daughters experience a resistance larger than predicted as they progress

in the network. Since the formula is well validated in the case of long plugs, the discrepancy

is attributed here to the exponential shortening of the plugs with the generation number: For

the experiment corresponding to the data in figure 5.1, the plug length in the last generation is

L4 = 310 µm while the channel width is w4 = 340 µm. Plugs are therefore comparatively short

and the resistance is underestimated in later generations.

The limitations of the theory led to the development of an empirical relation that is de-

scribed in the following. As for an electrical network, we define a resistance RiLi associated with

the presence of daughter plugs in generation i, where the role of the voltage is played by the

driving pressure Pdr and the role of the current intensity by the total volumetric flow rate Qt

that varies with the generation number. By assuming further that each plug divides into two
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Figure 5.2: Evolution of the total flow rate in the network. Experimental data is obtained from
a single plug case: Pdr = 250 Pa and L0 = 2.3 mm and used for computing Ri.

daughters of essentially equal lengths at every bifurcation, Li = L0/(2ρ)i, which is consistent

with experimental observations, we can therefore write:

Pdr = RiLiQt. (5.1)

For the experiment shown in figure 5.1, Qt is given in figure 5.2 by Qt =
∑

ii Qi,ii =
∑

ii Ui,iihwi with Qi,ii and Ui,ii being the mean flow rate and velocity of the daughter plug

in branch ii of generation i, in which ii denotes the numbering of branches in generation i. The

values of Ri can be computed from the measurements since the driving pressure, the initial length

of the plug and the flow rate based on velocity measurements are known. The resistance RiLi is

found to decrease when the plug advances, as shown in figure 5.3, which leads to the increase of

the total flow rate as the plug reaches later generations (figure. 5.2).

5.2 Two plugs injected into the network

5.2.1 Flow rate dependence on the initial distance between plugs

An image from a two-plug experiment is shown in figure 5.4, where the two plugs are injected

successively into the network. The daughters (A and B) of the plug initially injected have reached

generation 1 while the second plug (C) is moving in generation 0.

This time the plugs are pushed at Pdr = 500 Pa through the network entrance, upstream the

second plug, and the initial lengths of the two plugs are 1.8 ± 0.2 mm while the initial distance

between them is varied in different experiments. The initial states of the plugs are chosen as
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Figure 5.4: Experimental image of two plugs injected successively into the network. Two early
plugs (A and B) in generation 1 are daughters of the plug first injected. The second plug (C) is
moving in generation 0.
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shown in figure 5.5, which yields different flow patterns in the network. In case (a), the two

plugs are injected closely one after the other through the network entrance, generation 0. The

initial distance between them is ∆D=3.0 mm, ∆D being defined as the distance between the

rear interface of the first plug and the front interface of the second plug. In case (b), two plugs

are far apart from each other in generation 0 and the initial distance between them is increased

to 10 mm. In case (c), two plugs are positioned in different generations initially and ∆D is

measured as its projection on the direction of the channel length in generation 0. ∆D is easily

measured in this way and has a one-to-one correspondence to the real positions of the plugs. In

the case shown in figure 5.5(c), the initial distance between plugs is ∆D=13.4 mm.

Since we are interested in the flow rate variation with the generation number, the flow patterns

to be discussed below is strictly for the time period when both plugs, or the daughters of them,

move in the straight channels, i.e. neither of them is passing the bifurcation. When the plugs are

initially close to each other as in case (a), their daughters mostly move in the same generation,

as shown in figure 5.6(a). This implies the distance between two plugs in the straight channel

is always smaller than one generation and is noted by ∆G = 0 later in this chapter. When the

initial distance between plugs increases in case (b), the two successive plugs will always move

in two successive generations in the network, as shown in figure 5.6(b) and noted as ∆G = 1.

With the initial state (c), there remains a separation of one generation between daughters of two

initial plugs as they advance, as shown in figure 5.6(c) and noted as ∆G = 2.

In the two-plug experiments shown in figure 5.6, the flow rates of the first plug Q
[1]
t and the

second plug Q
[2]
t are plotted versus the generation number in figure 5.7, where the superscripts

‘[1]’ and ‘[2]’ denote the first and the second plug. As the plugs advance in the network, the flow

rates increase in all the three cases. There is little difference between the curves for Q
[1]
t and

Q
[2]
t , which indicates that the air between the two plugs is not compressed and thus Q

[1]
t = Q

[2]
t

holds during the flow evolution. Although the driving pressure is kept the same and the lengths

of the plugs do not change much, the total flow rate displays a clear dependence on the initial

distance between the two plugs. As the plugs get further apart, a higher flow rate is observed.

This is to be explained in the next subsection using the empirical relation.

5.2.2 Applicability of the empirical relation

Linearity of (5.1) provides the possibility to analyze the dynamics when two plugs are injected

successively into the network. Like for two resistors mounted in series, the relation between the

driving pressure and the volumetric flow rate can be written as:

Pdr = R
[1]
i L

[1]
i Q

[1]
t + R

[2]
j L

[2]
j Q

[2]
t , (5.2)
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Figure 5.5: Initial states of the two-plug experiments. The difference is marked by the distance
between the rear interface of the first plug and the front interface of the second plug. This
distance ∆D increases as (a), (b) and (c). The dashed line denotes the direction of the channel
length in generation 0 and the horizontal solid segment with arrows measures ∆D.

(a) ∆G = 0 (c) ∆G = 2(b) ∆G = 1

Figure 5.6: Flow patterns involving two plugs with different initial distances. Half of the network
is shown for clarify. As the initial distance increases, the two plugs are (a) close together, (b)
moving in two successive generations and (c) advancing with a separation of one generation.
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Figure 5.7: Flow rates measurements at Pdr = 500 Pa when two plugs flow in the same generation
∆G = 0 (�), in two successive generations ∆G = 1 (△) and with a separation of one generation
∆G = 2 (▽). Symbols connected by dash-dotted lines denote flow rates measured based on

the motion of the second plug injected, Q
[2]
t , and dashed lines connect the points based on the

motion of the first plug Q
[1]
t . Data is plotted according to the position, generation number i, of

the daughters of the second plug.

where the subscripts ‘i’ and ‘j’ indicate the position of the plugs in the network by the corre-

sponding generation numbers.

With the measurements in figure 5.7, we can note Q
[1]
t = Q

[2]
t for (5.2), which can be then

expressed as:

Pdr = (R
[1]
i L

[1]
i + R

[2]
j L

[2]
j )Qt, (5.3)

in which Qt is the total flow rate in the network. Using the values of Ri determined above

and the initial lengths of two plugs, RiLi for both plugs can be computed. Flow rates for a

two-plug train predicted by (5.3) are compared to the experimental findings in figure 5.8, where

data points are plotted according to the position, generation number i, of the daughters of the

second plug. Open symbols connected by dash-dotted lines denote experimental data and closed

ones connected by solid lines are values derived from the linear law. Satisfactory agreement is

obtained for all the three experimental conditions, indicating that the linear description of the

flow in the network is applicable for a two-plug train and gives a good approximation.

Equation (5.3) can also be used for understanding the flow dependence on the initial distance

between plugs. As two plugs are treated as resistors mounted in series, the total resistance

becomes (R[1]
i L

[1]
i + R

[2]
j L

[2]
j ) that relates to the positions of both plugs in the network. For the
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Figure 5.8: Predicted and measured flow rates in two-plug experiments (Pdr = 500 Pa) when
they flow in the same generation ∆G = 0 (�), in two successive generations ∆G = 1 (△) and
with a separation of one generation ∆G = 2 (▽). Open symbols connected by dash-dotted lines
denote experimental data and closed ones connected by solid lines are values derived from the
linear relation. Flow rate data is plotted according to the position, generation number i, of the
daughters of the second plug.

second plug positioned in a given generation j, the position of the first plug depends on their

initial distance ∆D. As ∆D increases, the first plug that flows downstream becomes further

apart from the second plug, which results in a smaller resistance due to the first plug since RiLi

decreases with the generation number as shown in figure 5.3. In this way, (R[1]
i L

[1]
i + R

[2]
j L

[2]
j )

also decreases, which yields a higher flow rate in the network.

5.3 A train of plugs injected

Experiments are run with three successive plugs injected into the network, as shown in figure 5.9,

where the four daughters of the first plug has reached generation 2 while the last plug, the third

one injected, is advancing in generation 0. The driving pressure and the plug lengths are kept

to be 500 Pa and 1.8 ± 0.2 mm, respectively. During the experiment, plugs are always moving

in three successive generations and the flow remains in the state of ∆G = 1 between plugs. The

total flow rate in the network is plotted and compared to the two-plug experiment with ∆G = 1

in figure 5.10, where the data for three-plug experiment is shown by © while △ represents the

same data as in figure 5.8. Again the solid line connects data derived from the empirical relation

and this prediction is also in good agreement with the experimental data (dash-dotted line with

open symbols).
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Figure 5.9: The N network with three plugs injected successively. The four plugs in generation 2
are daughters of the first plug injected, two daughters of the second plug are moving in generation
1 and the last plug is in generation 0.

When the last plug moves in generation 0, there is little difference between the flow rates in

two-plug and three-plug situations. In the three plug case, the total resistance (R0L0 + R1L1 +

R2L2) almost equals the resistance of a two plug train (R0L0 + R1L1), since R2L2 << R0L0 +

R1L1 as shown in figure 5.3. This implies that the resistance to flow can be dominated by the

upstream plugs in the network. However, the flow rate difference between two situations increases

as plugs advance and the biggest difference in the figure appears when the last plug reaches

generation 2. At this stage, the difference between
∑

RiLi for three-plug (R2L2 +R3L3 +R4L4)

and two-plug (R2L2 + R3L3) becomes visible, since R4L4 is comparable to R3L3 and R2L2.

For many plugs of initially same sizes injected continuously into the network, the relation

between Pdr and Qt is Pdr = Qt

∑

RiLi, where
∑

RiLi sums up the resistances due to different

plugs. As plugs enter the network with the initial state of case (b), the overall resistance
∑

RiLi

increases before the daughters of the first plug reach the network exits, resulting a decrease in the

flow rate. Noticing that the variation of
∑

RiLi is due to the addition of contribution from the

most downstream plug in the train,
∑

RiLi increases slowly after the downstream plug arrives

at generation 2, since the resistances in the following generations are much smaller than those

in generation 0 and 1. As a result, the total flow rate will not bear strong decrease once plugs

arrive at generation 2, since
∑

RiLi can be then essentially fixed by the upstream plugs. After
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Figure 5.10: Comparison of flow rate evolutions in two-plug (△) and three-plug (©) experiments
at the driving pressure Pdr = 500 Pa. Flow rate data is plotted according to the position,
generation number i, of the daughters of the last plug. Open symbols connected by dash-dotted
lines denote experimental data and closed ones connected by solid lines are values derived from
the linear relation.

the first daughters reach the exits,
∑

RiLi becomes constant and the flow rate does not vary

any more.

5.4 Summary and discussion

Besides the long range interaction between daughter plugs at different positions in the network,

interactions between successively injected plugs, in the N network, are also found to exist. The

total flow rate in the network can be controlled by varying the initial distance between plugs.

An empirical relation is derived in the investigation of the pressure–flow rate evolution of

the two-phase flow and found to account for the resistance associated with daughters of a single

plug. Given the initial condition of the experiments, e.g. driving pressure and plug lengths, this

relation quantitatively predicts the flow rates in the presence of a train of successive plugs.

The flow rate in the network can be essentially fixed by the upstream plug when the succeeding

plugs are separated by a large distance. The downstream plug perceives a flow rate forcing, even

if the actual driving condition is through pressure. This is confirmed by the flow rates in the

two-plug and three-plug experiments in figure 5.10. Although a third plug is transported through

the network, the flow rate in the three-plug experiment increases comparably to the two-plug

case.
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Furthermore, if there are plugs injected continuously into generation 0, the flow rate in the

network can remain constant since the total resistance is dominated by the upstream plugs. This

provides a possible method, from the application point of view, to control the flow rate after the

injection of liquid at the network entrance. At the same time, the fact that downstream plugs

are exposed to a flow rate driving may modify the flow distribution in a branching tree through

inter-generation effects, which are expected to feed back on the flow everywhere in the tree.
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Chapter 6

Airway reopening through cascades

6.1 Introduction

In contrast to a few plugs present in the network discussed in the previous chapters, the catas-

trophic cascades involving trains of liquid plugs will be studied here. Since the airway is coated

by a thin film of liquid (Grotberg, 1994), the formation of liquid plugs, due to the elasticity of

the airways (Heil et al., 2008) or hydrodynamic instability (Macklem et al., 1970), may cause the

closure of the airways. In these situations, the subsequent reopening of airways becomes fatal

in sustaining the functions of the lung. Gaver et al. (1990) have studied the reopening process

by penetrating a finger of air into a flexible tube filled with liquid and later research about the

reopening in flexible tubes has also been presented (Majumdar et al., 2001; Hazel & Heil, 2003;

Grotberg & Jensen, 2004).

However, considering plug ruptures in rigid tubes, previous work has been focused on the

single plug movement in a straight channel (Huh et al., 2007; Fujioka et al., 2008) or its division

at one bifurcation (Cassidy et al., 2001b; Ody et al., 2007). Using a microfluidic model to mimic

the structure of the airway, we here show that the flow of several plugs is unstable at very high

pressures in the branching network, which is unlike the flow studied in Chapters 4 and 5. This

can happen through cascades of plug ruptures and flow acceleration brought by the cascades. At

the same time, the dynamics of plug ruptures can play a dominant role in the distribution of the

flow and in how much of the tree is reopened.

In our binary network, cascades occur along particular paths, which display dependence on

the initial distribution of the plugs and the conditions just before the cascades. Plug divisions

at bifurcations introduce further complexity to the system since the short daughters after the

division are easy to rupture, which can thus lead to an accelerated cascade. The experiments in

the network with branching channels capture the main attributes of multiphase fluid transport

in the airway and show that the cascades may happen through the movement of the liquid plugs

81
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Figure 6.1: Experimental setup for the investigation of cascades of liquid plugs at high driving
pressures in the straight channel. A syringe filled with liquid is connected to one inlet of the
entrance and can be pushed by a pump so that the liquid inside goes into the channel. The
other inlet of the entrance is connected to a water column which provides a constant pressure
that pushes the air. The exit of the channel is open, which fixes the boundary condition to
atmospheric pressure Patm. The flow inside the channel is recorded with the high speed camera
through a microscope and image sequences are stored in the computer.

(Majumdar et al., 2003) in the absence of the elastic effects of the wall. In this chapter, we

describe some preliminary study of the reopening.

6.2 Experimental setups

The experimental setups for flows in the straight channel are similar to those illustrated in

figure 3.5 in Section 3.2. The difference exists in the configuration for pushing the air as shown

in figure 6.1. The air is pushed at a constant pressure which is provided by a water column, whose

pressure is known as ∆P = ρwg∆h where ρw is the density of water, g is the acceleration due

to gravity and ∆h is the height difference between two surfaces of water. ∆h can be controlled

by positioning the water containers at different heights. For simplicity, ∆P will be noted as Pdr

later in this chapter, which is the pressure driving the plugs.
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Figure 6.2: Experimental setup for the investigation of cascades of liquid plugs at high driving
pressures in the network. The inlets for the air and the liquid are both connected to the pressure
source controlled by computer 2. At the end of the network, thirty-two holes are punched to fix
the exit pressure to Patm. The flow evolution is recorded with the high speed camera through a
microscope and image sequences are stored in computer 1.

Experiments are conducted in a straight channel with width w = 700 µm and height h =

50 µm. The entrance to the straight channel consists of a Y-junction with two inlets and the exit

is open to the atmosphere pressure. A train of several PFD plugs is created inside the straight

channel and pushed at a very high pressure by the water column through the entrance.

For the experiments in the network, the setups are illustrated in figure 6.2, where the inlets for

the air and the liquid are connected to two channels of the pressure source (FLUIGENT, MFCS-

8C) controlled by computer 2. Therefore, the air and liquid can be pushed at different pressures

at the same time since the machine provides different pressures through different channels.

The network here has six generations and the bifurcation half-angle α = 45◦, which yields

a right angle between two daughter branches in the same generation. All the branches are

50 µm high. The first generation is 720 µm wide and the widths of the channels in successive

generations decrease at the ratio 0.83. Several plugs are injected into the network at the beginning

of the experiments, which is done by alternatively pushing liquid and air. Plugs are created

automatically by the pressure source once the input program is fixed. The plug creation can
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(b) t = 0.12 s

(c) t = 0.18 s

(d) t = 0.27 s

(e) t = 0.35 s

(a) t = 0 s

Figure 6.3: Images of a cascade of plug ruptures in the straight channel. (a) Ten plugs of variable
sizes are created inside the channel at the beginning of the experiment. (b) Plugs are pushed at
Pdr = 4800 Pa toward the end of the channel. All of them are deformed and small droplets are
left behind. (c) The first plug breaks on the right of the channel, marked by the circle. (d) Two
plugs break nearby at the same time, both marked by circles. (e) All plugs have ruptured in the
cascade and the channel is opened to air.

be repeated in different experimental runs and the initial distribution of plugs in the network

can be kept over experiments. The air then pushes the plugs to advance. The flow evolution is

recorded by the camera through the microscope.

6.3 Cascades of plug ruptures

6.3.1 Cascades in a straight channel

We first simplify the problem and start from the investigation of plug ruptures in a straight

channel, which the network consists of. For the experiment in figure 6.3, ten plugs of variable

sizes are created inside the straight channel and their initial distribution is shown in image (a).

The plugs are pushed at Pdr = 4800 Pa and the motion is recorded at 1000 images per second

by the camera. As the plugs advance in the channel, their interfaces deform and many small

droplets are left behind the plugs due to the high velocity, which is observed in figure 6.3(b).

Later on, the plug that is first injected breaks at t = 0.18 s, which is pointed out by the circle in

image (c). After the first plug ruptures, all the other plugs accelerate and later two of them break

at the same time, marked by two circles in image (d). 0.35 s after the start of the experiment,

all the plugs have broken and the entire channel is opened.

The positions of the plugs on the central line of the channel are plotted as a function of

time in the spatio-temporal diagram in figure 6.4. The bright parts represent the plugs and the

horizontal distance between the two borders of the bright area equals the length of the plug at
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Figure 6.4: Spatio-temporal diagram of the cascade involving ten plugs in the straight channel.
The spatial evolution of position is tracked along the central line of the channel so the horizontal
distance between the two borders of the bright part equals the length of the plug. The slope
of the bright border represents the velocity of the plug interface. The dashed lines labeled by
letters c, d and e denote the events corresponding to figure 6.3(c), (d) and (e), respectively.

that moment. In this way, the plug rupture can be recognized by the merging of two borders.

Along the y-axis, the times when important events have happened can be known. Moreover, the

slope of the curves denotes the velocity of the plug.

When the pressure is applied between the entrance and the exit of the channel, all plugs

advance at the same velocity and accelerate very slowly due to the decrease of resistance resulted

from the liquid deposited on the channel walls, which in turn shortens the moving plugs. (The

liquid deposition is important here since the plugs move at high velocities.) The time-averaged

value of the plug velocity is V = 12 mm/s before t = 0.18 s, when the first plug breaks. This

plug rupture strongly decreases the total resistance to flow because of the disappearance of two

air-liquid interfaces and a large velocity increase is observed when the slopes of all the curves are

strongly modified between t = 0.18 s and 0.27 s. The time-averaged velocity of the plug increases

to 26 mm/s, which is more than double of the velocity before the first plug rupture. A second

strong increase in velocity is found when other two plugs break at t = 0.27 s. Therefore, the

rupture of plugs strongly decreases the total resistance to flow and results in sudden increase of

velocity. Meanwhile, the velocity increase leads to more liquid being deposited on the wall, which

shortens the liquid plugs and introduces the rupture of more plugs. We refer to the successive

ruptures of liquid plugs occurring in a short time as a cascade.

6.3.2 Observations in a network

Now we come back to our network to see how the cascade evolves when there are more than one

straight channels. A series of images taken during a typical experiment is displayed in figure 6.5,
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Table 6.1: Variables in the fit of Np = m1t
∗ + m2

Pdr m1 m2 t∗

2000 12 3 t

3500 34 -5 t1/3

5000 32.5 0.3 t1/3

where seven plugs are initially injected into the network and then pushed at Pdr = 3500 Pa. With

the initial distribution of plugs in image (a), the first cascade happens along one path in the

network, labeled in green in image (b), while plugs in other parts of the network continue to move

and divide. The cascade in the network involves a few generations of straight channels and the

opening of an upstream branch may result in the opening of downstream daughter branches. For

example four exits originating from the same upstream branch are opened in the first cascade.

The second cascade in the network happens far from the first one and also opens four exits, as

shown in image (c). As the flow develops, cascades happen in the network and open more exits.

The paths, where the first cascades occur, are labeled in figure 6.5(d) and the earlier cascade

involves opening of more exits than the later ones.

Since the plug ruptures are closely related to the happening of cascade, we sum up the

number of broken plugs in different experiments under three driving conditions in figure 6.6.

Each symbol corresponds to the averaged number in several experimental realizations under the

same pressure. Although the same amount of plugs break at three different pressures, it takes

more time to break the plugs when the driving pressure is low, 2000 Pa. When Pdr = 2000 Pa,

the cumulative number of broken plugs increases as a linear function of the time, as presented by

the solid line through ⋄. However, this number increases more rapidly when the driving pressure

is higher, 3500 and 5000 Pa. In these cases, the relation between the total number of broken plugs

Np and time t can be expressed as Np = m1t
∗ +m2, where t∗ represents t for Pdr = 2000 Pa and

t1/3 for Pdr = 3500 and 5000 Pa, and m1 and m2 are constant for a given experimental condition.

Therefore, the evolution of plug numbers can be summarized by a simple fit Np = m1t
∗ + m2

and the variables for three driving conditions are given in table 6.1 for obtaining the solid curves

in figure 6.6.

There also exists a power law fit for the cumulative number of opened exits Ne in the network

under three driving conditions as shown in figure 6.7, where each symbol gives the averaged

number over a few experiments and the solid curve represents the fit of Ne = n1t
∗ + n2. While

t∗ = t for low driving pressure 2000 Pa and t1/3 for the other two pressures, n1 and n2 are given
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Figure 6.5: Images of cascades in the branching network when the driving pressure is 3500 Pa.
(a) The initial distribution of plugs in the network when seven plugs are injected. (b) Some plugs
break at the same time and the first cascade happens along the path in green at t = 0.16 s. The
green path is opened by air flow and the number besides it denotes the order of the cascade. (c)
A second cascade happens through plug ruptures, as labeled in blue. Far from the green path,
this blue path lies in another half of the network. (d) In the end, many paths are opened through
cascades, of which the first five are labeled in color.
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Figure 6.6: Cumulative number of broken plugs in experiments under different driving pressures.
Each symbol represents the averaged value over several experiments and the solid line the fit by
the expression Np = m1t

∗ + m2.

Table 6.2: Variables in the fit of Ne = n1t
∗ + n2

Pdr n1 n2 t∗

2000 1.4 0.45 t

3500 16 0 t1/3

5000 11 0.8 t1/3

in table 6.2. The transition of t∗ implies a transition between two statistic states in the process

of network reopening, where the driving pressure can play an important role.

Since the plug division at the bifurcation introduces more daughters in the system, the number

of broken plugs does not always reveal the number of opened exits. The differences in the total

number of opened exits are found in figure 6.7 for different driving conditions. It is interesting

that the largest number of opened exits appears when Pdr = 3500 Pa, which is neither the

highest nor the lowest pressure. It can be explained basically by the competition between plug

advancements and their ruptures. The opening of an exit requires ruptures of all the plugs in

the path connecting that exit to the network entrance, which implies all plugs in that path have

to break before reaching the exit. When the driving pressure is too high, the plugs advance very

fast and their divisions introduce many daughters. Although some daughters break in cascades,

some others reach the exits before the happening of possible cascades, which makes those exits

not opened. However, when the driving pressure is low, fewer cascades can happen although



6.4. SUMMARY 89

0 0.5 1 1.5 2
0

5

10

15

Time (s)

T
ot

al
 n

um
be

r 
of

 o
pe

ne
d 

ex
its

 

 
2000 Pa
3500 Pa
5000 Pa

Figure 6.7: Cumulative number of opened exits in the network, out of thirty-two exits in total.
Each symbol represents the averaged value over several experiments at the same driving condition
and the solid line the fit by the expression Ne = n1t

∗ + n2.

plugs have not reached the exits. This is consistent with the findings in figure 6.6, where the

rapid increase of broken plugs is associated with cascades in which many plugs break at the

same time, Pdr = 5000 Pa. When the plugs break separately, Pdr = 2000 Pa, their accumulative

number increases slowly.

6.4 Summary

Microfluidic models are employed to investigate the airway reopening through cascades of plug

ruptures. A succession of plug ruptures within a short time interval is observed in both the

straight channel and the network when the flow is pushed at high pressures. This cascade of

plug ruptures involves the opening of the straight channel or a few exits in the network.

When several plugs are pushed at a high pressure in the straight channel, each of them

deposits a thin film of liquid on the wall, which shortens the plug itself and thus decreases

the total resistance to flow. Therefore, the plugs have a small acceleration while advancing.

This acceleration can increase rapidly because of the breaking of a single plug, which decreases

the total resistance in a very short time by the sudden disappearance of air-liquid interfaces.

However, the velocity increase increases the liquid deposition on the walls and makes the plugs

even shorter and easier to break. All these effects lead to the cascade of plug ruptures and the

opening of the entire channel thereafter.
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Different from the case in a straight channel, plugs in the network do not move at the same

velocity even at the beginning of the experiment. Due to the geometry variation of the channels

in different generations, the plug velocity also varies depending on the generation number and

this introduces a new mechanics to the cascade. Meanwhile, the division of plugs at bifurcations

results in more daughter plugs in the system and the plugs normally get shorter after the division.

The presence of short plugs speeds up the happening of cascade in a particular path, which will

influence the spatial distribution of other cascades in the network. As there can be a few cascades

happening in a row in the network, several exits can be opened in the end of the experiment.

The cumulative number of broken plugs in the network increases as a function of time:

Linearly with t at a low driving pressure and with t1/3 at medium and high pressures. These

fits are also obtained for cumulative number of opened exits under different driving conditions.

Furthermore, a medium pressure opens more exits than low and high pressures in the experiments.
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Conclusions

The transport of liquid plugs in binary branching networks is studied experimentally with mi-

crofluidic techniques to make networks of generations of connected channels. Liquid plugs are

pushed through networks of either narrowing channels or widening channels at different driving

conditions. The flow behavior is explained by plug interactions that can be demonstrated in a

fundamental element of the network, which consists of three adjacent bifurcations.

At constant pressure driving, daughter plugs divide in synchrony at bifurcations since they

are all subjected to the same pressure difference and there are no interactions between plugs.

This results in liquid penetration to the same bifurcation level in all the branches of the network.

However, plugs cannot reach the exits of a narrowing tree with infinite generations, since the

threshold will become larger than the driving pressure somewhere in the tree. Conversely, a

widening tree can be invaded by plugs as long as the initial plug passes the first bifurcation.

Differences are found when the plug is pushed at constant flow rate, when the flow is influenced

by the interactions of the pressure drop required for viscocapillary motion of plugs in straight

channels and the threshold pressure necessary for plugs to pass the bifurcation. For the network

with narrowing channels, plugs always reach the exits although daughters may advance in distinct

steps. In contrast, networks with sufficient generations of widening channels can never be fully

penetrated by liquid plugs pushed at constant flow rate.

By focusing on the relation between the pressure and total flow rate in the network, we have

derived an empirical linear relation from the data of a single plug experiment. The resistance

associated with the presence of daughters of one plug in the network is found to provide good

predictions for the flow involving a train of plugs pushed at constant pressure. This simple

relation can be used when the flow evolves in the given range and it can be improved by taking

into account more aspects in the future investigations, such as the effects brought by liquid

deposition on the wall after the first plug and the variations in the lengths of daughter plugs

due to uneven divisions. Generalizing these results can lead to better understanding of related

91
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biological issues, for example, the reopening process of airways occluded by discrete plugs, about

which some preliminary results were also presented at the end of this thesis.

The prediction of two-phase flow based on plug interactions in the fundamental element

connects the understanding of one plug motion in a straight tube (or at a bifurcation) and the

global evolution of two-phase flows in complex geometries. The flow containing one plug is well

studied through the comparison of interactions in the fundamental element and this element

can serve as a building block for many network topologies. Therefore, this element and the

accompanying approach can be adapted in the studies about two-phase flows in other networks

where the flow can be inferred from an analysis of interactions in one element and between

different elements.

Although the results in the thesis have been obtained in networks of rectangular channels

within two-dimensional considerations, the physical analysis in the fundamental element is ap-

plicable for channels with other cross-sectional areas and in three-dimensional realizations. The

narrowing network captures the main characteristic structure of the lung and thus a similar

fundamental element is expected to exist in pulmonary airways, while the value of the threshold

in that element depends on the local geometry of bronchioles. Since the sizes of actual airways

vary even in the same generation, the resulting variation of thresholds can introduce further

interactions between daughter plugs in different branches. This can account for the different

paths taken by liquid boluses in medical treatments of drug delivery into the airway.

This study provides insight for the process of liquid instillation into the lung, the airway

occlusion in pathological situations, fluid transport in porous media, and many technological

applications. Future work may include interactions between daughters of different plugs in the

element of three connected bifurcations under different drivings, since the presence of multiple

plugs in a train can strongly modify the interactions between them. It is also interesting to

have trains of plugs pushed at constant flow rate, where the introduction of later plugs may

improve the liquid transport at some conditions by changing the local resistance in one branch

and yielding the opening of more branches. Furthermore, liquid plugs exposed to oscillating

pressure differences can better model the flow that takes place in the lung during breath cycles.
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Appendix A

Variation of the capillary pressure

difference

A.1 Plug at the bifurcation

During the plug passage of a bifurcation, its front and rear interfaces will deform because of

the geometry restrict of the channel. At a given plug position, there exits a capillary pressure

difference between the front and rear interfaces of the plug. This pressure difference Pcap is a

function of the plug position and can be expressed as:

Pcap = Pr − Pa =
γ

rr
−

γ

ra
, (A.1)

where Pr and Pa are the capillary pressure at the rear and the front interfaces, rr and ra are the

radii of curvature of the interfaces, and γ is the surface tension of the liquid. It is also defined

that Pr and Pa are positive when the plug deforms as shown in figure A.1. Therefore, a positive

Pcap resists the driving pressure and tends to push the plug backwards while a negative Pcap

pulls the plug forwards.

There are three stages during the passage, in which (A.1) can be derived quantitatively and

differently. These expressions will be discussed in this section.

When the plug arrives at a bifurcation, its front interface is deformed because of the change of

channel geometry before the rear interface is affected by the bifurcation, as shown in figure A.1.

The curvature of the front interface decreases as the plug advances and, as a result, Pcap increases

(ra increases).

Here, it is assumed that the plug is long enough, so the rear interface enters the bifurcation

after the front one touches the facing tip. Therefore, Pr remains the same as 2γ cos θ/wi in stage

one and only Pa varies. With all the parameters noted in figure A.1, ra can be obtained as (A.2)

in triangle S1S2S3 based on the law of sines. In figure A.1, α is the bifurcation half-angle, d the

distance of the front interface from the horizontal channel, wi the width of the horizontal channel
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wi
 θ

α
rr

ra
 θ

wi/2
α

ra

Figure A.1: Plug at the bifurcation: Stage one, the front interface enters the bifurcation. The
radius of curvature ra > rr and ra increases while the plug is advancing. Parameters for calcula-
tion: Pr (Pa) capillary pressure at the rear (front) interface, rr (ra) the radius of curvature, θ the
contact angle of liquid on the channel wall, α the bifurcation half-angle, wi the channel width,
d the distance of the front interface from the horizontal channel, S1, S2, S3 three vertexes of the
triangle S1S2S3.

and θ the contact angle of liquid on the channel wall. Thus the capillary pressure difference Pcap

is expressed as (A.3).

ra

sinα
=

ra + d + (wi/2) cot α

sin(θ + 90◦)

⇒ ra =
sin α((wi/2) cot α + d)

sin(θ + 90◦) − sinα
(A.2)

Pcap = Pr − Pa =
γ

rr
−

γ

ra

=
2γ cos θ

wi
−

γ(sin(θ + 90◦) − sinα)

sin α((wi/2) cot α + d)

(A.3)

There exists a maximum value of ra, ra,max, reached just before the front interface touches the

facing tip, as shown in figure A.2. At this point, Pcap also reaches its maximum value Pcap,max,

which is called the threshold pressure at the bifurcation, Pthr . Similarly, ra,max can be calculated

(A.4) in triangle S1S2S3 in figure A.2, where wi+1 is the width of the branching channel and

wi+1 = ρwi in our network topology. Pthr is thus obtained from (A.5).

ra,max

sin(θ + 90◦)
=

ra,max − wi+1/ cos θ

sinα

⇒ ra,max =
wi+1

cos θ − sinα
(A.4)
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wi
α

wi+1

 θ

rr

ra,max

Figure A.2: The front interface is touching the facing tip. ra and Pcap reach their maximum
values respectively.

Pthr = Pcap,max =
γ

rr
−

γ

ra,max

=
2γ cos θ

wi
−

γ(cos θ − sin α)

wi+1

(A.5)

Given (A.1, A.3 and A.5), the capillary pressure difference is positive and increases until it

reaches the threshold value. In stage one of the plug passage, Pcap resists the driving force that

pushes the plug to advance.

After its front interface touches the facing tip, the plug starts to divide into two daughters

as shown in figure A.3. In stage two, the capillary pressure at the new front interface equals

2γ cos θ/wi+1, where wi+1 is the width of the branching channel. Pcap remains constant before

the rear interface enters the bifurcation.

Pcap = Pr − Pa

=
2γ cos θ

wi
−

2γ cos θ

wi+1

(A.6)

During stage two, the sign of Pcap depends on the width of two successive channels in the

network, which is associated with the geometry ratio ρ. If ρ > 1, Pcap is positive in (A.6) and

it continues resisting the driving force. Conversely, if ρ < 1, Pcap becomes negative and this

capillary pressure difference helps the plug advance through the bifurcation.

When the rear interface enters the bifurcation as shown in figure A.4, rr starts to increase as

the plug advances. By knowing the width of the horizontal channel wi and the distance of the

rear interface to it de, rr is also known by (A.7), based on the law of sines in triangle S1S2S3.
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wi
rr

ra

wi+1

Figure A.3: Plug at the bifurcation: Stage two, from the front interface touching the facing tip
to the rear interface entering the bifurcation, ra decreases rapidly and then remains constant.

Therefore, Pcap can be expressed as (A.8). In the network with ρ < 1, Pcap pulls the plug to

divide in this stage since rr > ra. However, in a network with ρ > 1, Pcap may still resist the

driving force since rr can be smaller than ra.

rr

sinα
=

de − rr + (wi/2) cot α

sin(90◦ − θ)

⇒ rr =
sin α((wi/2) cot α + de)

sin(90◦ − θ) + sinα
(A.7)

Pcap = Pr − Pa

=
γ(sin(90◦ − θ) + sin α)

sin α((wi/2) cot α + de)
−

2γ cos θ

wi+1

(A.8)

Although the above formulas are derived by assuming the interface shapes as shown in the

figures, there can always be a sign for the radius of curvature. In this way, the shape and

curvature of the interface are automatically taken into account by changing the value of the

contact angle. This indicates that the equations are applicable for any other situations, i.e.

liquid with other contact angle. A positive direction of the capillary pressure is already defined

in (A.1), which yields that a positive Pcap resists the plug motion.
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α
wi/2

θ

rr

ra

rr

Figure A.4: Plug at the bifurcation: Stage three, the rear interface enters the bifurcation. rr

increases as the plug is advancing. de denotes the distance of the rear interface from the horizontal
channel.

A.2 Plug at the exit

At the end of the last generation, the exit of the network has the same shape of a bifurcation

but without daughter channels. When the plug reaches the exit (figure A.5), its front interface

deforms in a similar way as the plug at the bifurcation. The capillary pressure difference Pcap,e

across the plug can be derived from (A.3) by replacing ra, d and wi by Rexit, dE and we respec-

tively, where we is the channel width in the last generation of the network. The new expressions

are given in (A.9, A.10).

Rexit =
sinα((we/2) cot α + dE)

sin(θ + 90◦) − sin α
(A.9)

Pcap,e = Pr − Pa =
2γ cos θ

we
−

γ

Rexit

=
2γ cos θ

we
−

γ(sin(θ + 90◦) − sin α)

sin α((we/2) cot α + dE)

(A.10)

Pcap,e keeps increasing until the rear interface also enters the exit as shown in figure A.6,

after which point the radius of curvature of the rear interface rexit starts to increase. rexit can

be obtained by replacing rr and wi in (A.7) by rexit and we respectively and written as (A.11).

Pcap,e is then written as (A.12). During stage two at the exit, the radii of curvature at both
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Rexit

w e

Rexit

α

 θ

we/2

Figure A.5: Plug at the exit: Stage one, the front interface enters the exit. we is the channel
width in the last generation of the network.

interfaces increase as the plug advances and Pcap,e remains positive. If the plug is pushed to

advance, the rear interface will catch up with the front one, at which moment the plug breaks

and Pcap,e cancels.

rexit =
sin α((we/2) cot α + de)

sin(θ + 90◦) − sin α
(A.11)

Pcap,e = Pr − Pa =
γ

rexit
−

γ

Rexit

=
γ(sin(90◦ − θ) + sinα)

sinα((we/2) cot α + de)
−

γ(sin(θ + 90◦) − sin α)

sin α((we/2) cot α + dE)

(A.12)
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Figure A.6: Plug at the exit: Stage two, the rear interface also enters the exit. Both rexit and
Rexit increase as the interfaces advance.
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Appendix B

Estimation of the air compressibility

The ideal gas law, which origin dates back to Boyle’s law first published in 1662 (Boyle, 1662;

West, 1999), is employed here to estimate the effects of the air compressibility.

This law is an equation of state and generally applicable for real gas under standard temper-

ature and pressure. At constant temperature, the equation of state for a given mass of gas can

be written as:

PV = const., (B.1)

where P and V are the pressure and volume of the gas. When the gas is compressed by (−∆V ),

its pressure can increase to (P + ∆P ) and the first order expansion of Taylor series gives

P∆V = V ∆P, (B.2)

when ∆V and ∆P are very small compared to V and P .

To be used in the flow rate driving case, (B.2) can be rewritten as:

PQ∆t = V ∆P, (B.3)

in which P is the air pressure pushing the plug, Q is the driving flow rate and ∆t is the time

of pressure and volume variation. The pressure variation ∆P needed to preserve the flow rate

is determined by the network geometry and experimental conditions. P , Q and ∆P in (B.3)

are all fixed for a single experiment. The time ∆t for compression is proportional to the initial

air volume V . The decrease in V results in a decrease in ∆t, meaning more rapid variation in

pressure and ultimately better preservation of the flow rate.

The air between the liquid in the syringe and the plug in the network consists of three parts:

the air in the syringe, in the microtube connecting the syringe to the network and in the network

inlet. The syringe is capable for 100 µL and we normally fill half of it, which gives the air volume
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in the syringe to be VS = 50 µL. The tube is 20 cm long with an inner diameter of 0.56 mm, so

the volume is VT ≈ 49 µL. The network inlet measures 240 µm ×50 µm ×2 mm in width, height

and length, respectively, and the air in the inlet is VI = 0.024 µL. The total volume of air makes

V = VS + VT + VI = 99 µL.

When the syringe and most of the microtube are filled with water as stated in Section 3.2, the

air volume is V ′ = VT
′ + VI = 2.46 + 0.024 = 2.5 µL with VT

′ for 1 cm of air left in the tube. A

comparison of V ′ to V reveals that the decrease of air volume reduces the compressibility effects

by (V − V ′)/V = 98%.

At the same time, the channel length Li equals 16 mm in generation 0 and decreases as

Li = 7 × 0.6i−1 mm starting from generation 1. The total volume of the network is VN =
∑

(whLN)i = 2.2 µL, where w, h, L and N denote the channel width, height, length and the

number of branches in generation i. Since VN ≈ 2%V , a small variation ∆V (or Q∆t) of V can

be very big compared to the volume of the network and ∆t can be comparable to the time to fill

the whole network, i.e. the time for a complete experiment. However, noticing that V ′ ≈ VN ,

the air left in the latter case is necessary to conduct the experiment and the side effects are

satisfactorily limited.
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