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Summary

The linear stability of axisymmetric jets is studied in a global frame-
work, such that the geometry and the non-parallelism of the base flow are
fully accounted for. In order to characterize the ”preferred mode” of the
jet, which is consistently observed in experiments and numerical simulations,
different types of analyses are carried out. As a well-known conjecture as-
cribes the existence of this ”preferred mode” to a resonance between external
noise and the least-stable eigenmode, a modal study is first performed. This
analysis prompted the development of a new numerical method allowing an
efficient treatment of compressible flows; however, the results indicate that a
modal representation is not well-suited for a description of the dynamics of
convection-dominated stable flows. Studies of simplified model problems are
presented that underpin this conclusion. Instead, the instability dynamics of
such flows are characterized in a consistent manner in terms of optimal initial
perturbations and optimal harmonic forcing. The latter approach robustly
reproduces experimental observations with regard to the frequency and the
spatial structure of the jet ”preferred mode”. Furthermore, the results allow
an interpretation of this global wavepacket structure as a cooperation of dif-
ferent families of local instability modes. The present analysis demonstrates
that the ”preferred mode” does not arise from resonance with an eigenmode,
but rather is to be interpreted as a pseudo-resonance.



iv

Résumé

La stabilité linéaire des jets axisymétriques est étudiée dans un contexte
global, c’est à dire en prenant en compte sans approximation la géométrie
et le non-parallélisme de l’écoulement. Afin de caractériser le mode préféré
du jet observé expérimentalement et numériquement, différentes analyses ont
été mises en oeuvre. Une conjecture étant que ces structures à une résonance
entre des perturbations extérieures et le mode propre le moins atténué, une
analyse modale de l’écoulement a tout d’abord été effectuée. Cette étude a
demandé la mise au point d’une méthode numérique spécifique pour pouvoir
traiter les écoulements compressibles de manière efficace. Cependant, les
résultats ont montré qu’une représentation modale n’est pas adaptée pour
décrire la dynamique des écoulements stable dominés par l’advection. Des
modèles simplifiés permettant de mieux comprendre les limites de cette ap-
proche sont présentés. Cette dynamique peut cependant tre caractérisée
par le calcul des perturbations optimales et du forage harmonique opti-
mal. Cette dernière approche reproduit de manière robuste les observations
expérimentales concernant la fréquence et la structure spatiale du mode
préféré. La structure de ce paquet d’onde global est interprétée comme
provenant de la coopération entre différentes familles de modes locaux. L’ana-
lyse présentée dans cette thèse montre que le mode préféré du jet ne vient
pas de la résonance d’un mode propre, mais qu’il s’agit en fait d’une pseudo-
résonance.
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cueilli au LadHyX pour effectuer cette thèse. Patrick a toujours été disponible
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donc à remercier toutes les personnes que j’y ai croisé et qui ne sont pas déjà
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Chapter 1

Introduction.

1.1 Forced and natural isothermal jets.

Isothermal jet flows are typical noise amplifiers, meaning that in an ideal sit-
uation the flow would be steady but in practice external perturbations even
at low levels are amplified by the flow. These disturbances may be hydro-
dynamic, e.g. coming from the fan in an experiment, acoustic, or produced
by the vibrations of the jet pipe. For a given configuration, if the velocity
of a jet U0 is gradually increased, the behavior of the structures excited in
the jet varies. The flow is initially laminar, with large-scale oscillations, as
schematically represented in figure 1.1(a−d). As the Reynolds number based
on the initial jet radius R increases, the initially laminar flow experiences a
transition to turbulence further downstream, as shown in figure 1.1(e). For
even higher jet velocities it becomes difficult to identify coherent flow struc-
tures in unforced (or natural) jets where perturbations are driven by the
background noise. “Orderly structure in jet turbulence” (Crow and Cham-
pagne 1971) can however be observed for Reynolds numbers of the order of
104 to 106 when a low level of controlled forcing is applied to the flow, as also
demonstrated by Moore (1977).

Perturbations in jet flows develop on top of a strongly non-parallel mean
velocity profile characterized by several length scales. The jet issues from a
cylindrical pipe of radius R, and the flow inside this pipe is characterized by
a boundary layer momentum thickness θ0. In practice, θ0 is tens or hundreds
of times smaller than R. The mean flow in the free-jet region, schematically
described in figure 1.2, is such that the thickness θ of the shear layer, which
is initially of the order of θ0 at the nozzle, increases linearly in the streamwise
direction over approximately eight jet radii. This region where the centerline
velocity remains approximately equal to the exit velocity U0 is referred to as

1
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(a)

(b)

(c)

(d)

(e)

Figure 1.1: (a−d): Schematic evolution of the jet instability as Re increases
from values of the order of 100 to values of the order of 1000. Picture taken
from Crow and Champagne (1971). (e): dye visualization of a water jet at
Re ≈ 2000. Image taken from Prasad and Sreenivasan (1990).

the potential core. At the end of the potential core the shear layer thickness
is of order R, and further downstream velocity profiles are approximately
Gaussian and the centerline velocity begins to decrease.

pipe flow Potential core Self-similar

region

x

r

L ≈ 8R

θ0

R
θ

Figure 1.2: Schematic representation of a mean turbulent jet flow. The jet
pipe, of radius R, is represented by the thick blue line. Gray lines represent
the limits of the boundary layer in the pipe and of the shear layer in the
free-jet.
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As described by Crighton (1981), two main types of instabilities, char-
acterized by different time and space scales, are usually found in isothermal
jet flows. First is the shear-layer instability that develops on the scale of the
shear layer momentum thickness θ. Michalke (1971) showed that the typical
frequency f of this instability (the frequency at which the associated spatial
growth rate is maximum) is characterized by a Strouhal number based on
the shear layer thickness Stθ0 ≡ fθ0/U0 ≈ 0.017, and that the corresponding
wave length is of the order of θ. In natural jets, the size of these structures
in the azimuthal direction may range from the order of θ0 to the order of
R. Due to the rapid variation of the shear layer thickness, such an instabil-
ity wave can only be sustained near the exit of the pipe. This mechanism
may however generate large scale oscillations through non-linear processes.
Kibens (1980) performed an experiment where a jet is forced at a frequency
close to that of the most amplified shear-layer instability at the nozzle. The
vortex passage frequency at different streamwise locations is displayed in fig-
ure 1.3. It appears that successive vortex pairings cause the frequency to be
halved several times until the Strouhal number based on the jet diameter,
StD = fD/U0, is of the order 0.4. The frequency decreases through discrete
steps roughly as 1/x, i.e. as 1/θ, so that the local Strouhal number Stθ
remains of the same order of magnitude through the potential core.

10−1 100 101

x/R

10−1

100

101

S
t D

×2

Figure 1.3: Vortex passage frequency in the shear layer in the forced jet
experiment performed by Kibens (1980), as a function of the downstream
direction (+ symbols). The dashed line, StD = D/x, corresponds to the
vortex pairing model of Laufer and Monkewitz (1980). Data taken from Ho
and Huerre (1984).
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Figure 1.4: (a): Velocity fluctuations on the centerline of an incompressible
jet: comparison between an unforced case (thick gray line) and a forced case
at StD = 0.3 (thin solid line). For the latter case, the dashed line corresponds
to the fluctuations at StD = 0.3, the dash-dotted line to the fluctuations at
StD = 0.6 and the dotted line to the rest. (b): smoke visualization of the flow
response to a forcing at StD = 0.3. Data taken from Crow and Champagne
(1971).

A different behavior has been observed in the experiments of Crow and
Champagne (1971). In this case forcing is applied at lower frequencies, for
Strouhal numbers based on the jet diameter ranging from 0.15 to 0.6. The
amplitude of velocity fluctuations measured on the jet axis is displayed in
figure 1.4(a) for a forcing at StD = 0.3. Results indicate that the dominant
frequency of the flow response, shown in figure 1.4(b), remains equal to the
forcing frequency throughout the potential core. The authors report that
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optimal excitation of these flow structures occurs for StD ≈ 0.3. This type of
unstable structures is referred to as the preferred mode or jet-column mode.
The preferred frequency varies depending on the experimental conditions
as well as on the physical quantity measured to evaluate the amplification:
Moore (1977), who performed experiments at low forcing levels so that non-
linear effects are weak, reports an optimal Strouhal number of 0.5 for velocity
fluctuations and 0.45 for pressure fluctuations. Gutmark and Ho (1983)
review results from a dozen of experiments that find values ranging from
0.3 to 0.6. Figure 1.5 shows that the preferred Strouhal number is also
observed in natural jets, i.e. when no controlled forcing is applied and only
the incoming noise is amplified. The azimuthal distribution of this jet column
mode is dominated by azimuthal wavenumbers m = 0, 1 and 2 as the typical
size of the vortical structures is of the order of the jet radius (see Parekh
et al. (1988) for helical forcing).
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Figure 1.5: Fourier spectrum of velocity fluctuations in an incompressible
natural jet on the centerline at x = 8R. Data taken from Crow and Cham-
pagne (1971).

1.2 Sound radiation from subsonic jets.

Acoustic radiation from subsonic jets has extensively been studied both ex-
perimentally and numerically. Figure 1.6 displays instantaneous contours of
the acoustic field radiated by natural subsonic jets obtained in numerical
simulations. The acoustic far-field exhibits a wide variety of wave-lengths as
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Figure 1.6: Vortical structures and acoustic far-field for two simulations of
Ma = 0.9 jets. (a): DNS result from Freund (2001), Re = 1800 and θ ≈
R/60. (b): LES result from Bogey and Bailly (2010), Re = 5 · 104 and
θ ≈ R/173.

well as a strong dependence on the angle of observation with respect to the jet
axis, ϑ, as shown in figure 1.7(b) (ϑ = 0 corresponds to the downstream direc-
tion). As reviewed by Karabasov (2010), these features are associated with
the presence of two sound generation mechanisms. First, fine scale turbulent
fluctuations in the near-field radiate a broad-band sound that dominates for
large values of ϑ. Closer to the jet axis, acoustic waves mostly come from
large scale structures and are characterized by a more peaky spectrum. A
typical frequency spectrum of the sound pressure level is displayed in fig-
ure 1.7(a): it exhibits a maximum at a Strouhal number StD ≈ 0.2, thereby
confirming the relevance of the jet-column oscillations in sound generation
processes.

1.3 Local and global stability

Flow stability has traditionally been studied within the assumption that the
wavelength of the instability mechanism is short compared to the typical
scale of the streamwise flow development. This allows the stability problem



1.3. Local and global stability 7
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Figure 1.7: Experimentally measured sound pressure levels for an isothermal
jet at Ma = 0.75 and Re = 6.6 · 105. (a): frequency spectrum at an angle
ϑ = 20◦ from the jet axis. (b): SPL as a function of the observation angle ϑ.
Data taken from Bogey et al. (2007).

to be Fourier-decomposed in the streamwise and azimuthal (or spanwise)
directions, so that only the cross-stream direction remains to be discretized.
This assumption results in numerical calculations small enough that they
have been performed since the 60’s. Several types of problems may be treated
within this framework, and they are referred to in this thesis as local stability
analyses:

• in temporal stability problems the long time behavior of perturbations
with a prescribed real streamwise wavenumber is considered (Michalke
1964).

• the signaling problem, i.e. the response of the flow to a time-harmonic
localized perturbation, is described in terms of spatial eigenmodes at a
given real frequency (Michalke 1965).

• the analysis of the dispersion relation between complex frequencies and
wavenumbers also allows to study the response of the flow to a spatially
and temporally localized impulse, and to distinguish between convec-
tive and absolute instabilities (Huerre and Monkewitz 1985).

• the short-term temporal amplification of spatially distributed pertur-
bations is described within the optimal perturbation formalism (Reddy
and Henningson 1993)
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• the receptivity to external forcing is analyzed in terms of the resolvent
of the flow equations for a given real frequency and real wavenumber
(Trefethen et al. 1993).

Non-parallel effects in the signaling problem may be approximately ac-
counted for while still considering the discretization of one-dimensional prob-
lems. In the WKB approximation (Crighton and Gaster 1976), the cross-
stream distribution of the perturbation is assumed to be that of the k+ spa-
tial instability branch (in the sense of e.g. Huerre and Monkewitz (1990)),
and its downstream evolution is solved forward in x. The Parabolized Sta-
bility Equations (Herbert 1997) also involve the solution of a series of one-
dimensional problems by neglecting upstream traveling information, but they
consider a general distribution of perturbations in the cross-stream direction.

It is now possible to treat linear stability problems in a framework where
no assumption is made regarding the order of magnitude of the perturbation
wavelength by discretizing all the non-homogeneous directions. Such ap-
proaches are referred to as global, in contrast with the local analyses described
above. This distinction does not correspond to a difference in the methodol-
ogy or mathematical concepts involved, but to the investigation of different
situations. Using a two- or three-dimensional discretization, the temporal
eigenmodes, optimal perturbations and optimal forcing (receptivity) can be
analyzed by using exactly the same formalism as in the local approach. The
modal analysis of the linearized flow equations gives access to the growth or
decay rate, to the frequency and to the spatial structures of the eigenmodes.
As finite domains are considered in the streamwise direction, the presence of
unstable modes characterizes situations where perturbations grow exponen-
tially in time at each location, in the same way as the absolute instability
introduced in a local framework. On the contrary, in a local approach, tem-
porally unstable modes may reflect either convectively or absolutely unstable
behavior. Temporal eigenmodes in a global framework allow the characteriza-
tion of flow bifurcations (Barkley et al. 2002) and, when the adjoint equations
are also considered, of their variation with respect to the base flow (Marquet
et al. 2008). The computation of eigenmodes for 2D problems may also be
used to study the coupling between instability mechanisms in different flow
regions (Mack et al. 2008). The meaning of optimal perturbation and optimal
forcing results obtained in a global framework (Monokrousos et al. 2010) also
differs from their counterparts in a local approach. In a global framework,
the optimal initial condition is streamwise localized, in contrast to the local
approach where it is extended in the streamwise direction. In a sense, the
global optimal perturbation analysis contains the impulse response problem.
The same holds for the global optimal analysis: it contains the signaling
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problem. The local and global approaches are therefore complementary to
describe and understand the dynamics of perturbations in non-parallel flows.

1.4 Objectives

The main objective of this thesis is to provide a description of the instability
mechanisms that lead to the development of the preferred mode of a jet while
still in a linear regime, as experimentally observed by Moore (1977). The
local spatial problem, solved by Michalke (1971), exhibits at most one unsta-
ble mode associated with the shear layer instability. In order to provide an
understanding of the large-scale instability structures, Crighton and Gaster
(1976) and Strange and Crighton (1983) treated the signaling problem using
a WKB approximation, which amounts to considering that the perturbation
continually evolves in the streamwise direction in the form of a local shear
layer mode. Such an analysis gives results that are in reasonable agreement
with measurements by Crow and Champagne (1971). Piot et al. (2006) and
Gudmundsson and Colonius (2009) treated this problem for compressible jets
using PSE, and found good agreement with experimental data obtained in
natural jets. Global approaches have been used in the context of laminar
supersonic isothermal jet flows by Nichols and Lele (2011b). Two families of
stable modes were identified: downstream traveling Kelvin-Helmholtz waves
and upstream traveling disturbances linked to acoustic waves in the outer
flow. The optimal perturbations of the jet were also computed, and very
high amplification levels were reached. In another study (Nichols and Lele
2011a) the authors report the presence of unstable Kelvin-Helmholtz modes
at low frequencies in a heated jet configuration.

By analogy with the Ginzburg–Landau model, Monkewitz (1989) and
Huerre and Monkewitz (1990) described the preferred mode as a “slightly
damped global mode” maintained by a low-level of forcing. This hypothesis is
investigated in this thesis in terms of the linearized Navier–Stokes equations.
Following the recent stability analyses in a global framework by for example
Mack et al. (2008), Nichols and Lele (2011b) and Monokrousos et al. (2010),
modal and non-modal linear stability concepts are applied to jet flows. In
order to consider both near field fluctuations and acoustic radiation, these
studies are carried out in both compressible and incompressible settings.
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1.5 Outline

The linear stability computations in this study require a discretization of
the linearized Navier–Stokes equations and a way to perform adjoint-based
optimization. Chapter 2 describes the tools used throughout this thesis for
the modeling of compressible and incompressible flows.

Krylov subspace methods allow the computation of selected eigenmodes
of linear operators. Standard algorithms that target inner modes require ei-
ther large memory resources when they are used with direct linear solvers,
or a suitable preconditioning when an iterative solver is chosen. These ap-
proaches did not allow the satisfactory solution of the compressible eigenvalue
problems encountered in the present study. Instead, the shift-relax method
described in chapter 3 was developed for precisely this purpose.

As no experimentally or numerically obtained turbulent mean flow was
available to perform the stability analysis, a model developed by Sohn (1986)
was adapted to fit the configuration displayed in figure 1.2, as described in
chapter 4.

Chapter 5 considers the global modal analysis necessary to identify the
least stable of the jet eigenmodes. This study leads to a more general discus-
sion about the modal representation of convection-dominated stable dynam-
ics. It is demonstrated that in a globally stable situation the computation of
optimal perturbations, which bypasses the global mode problem, provides a
robust description of the flow dynamics.

The receptivity of incompressible jet flows to external forcing is treated
in chapter 6. The analyses of Crighton and Gaster (1976) and Strange and
Crighton (1983), that respectively treated the signaling problems for ax-
isymmetric and helical perturbations, are considered from the point of view
of optimal forcing. The response to boundary and body forcing is considered.

Compressibility effects on the receptivity analysis are investigated in
chapter 7, in particular acoustic radiation by wave-packets and the exci-
tation of vortical structures by acoustic waves. The spatial distribution of
the forcing terms is not only optimized with respect to the energy of the flow
response but also with respect to its acoustic power.

Concluding remarks are given in chapter 8.



Chapter 2

Numerical methods

The flow configuration used for the present study is that of a cylindrical jet
exiting a circular pipe. Due to the axisymmetric geometry, the flow is con-
veniently described in terms of cylindrical coordinates (x, r, θ) (respectively,
the axial, radial and azimuthal directions), and all variables can be Fourier
decomposed in the azimuthal direction θ:

f(x, r, θ; t) =
∑

m

fm(x, r; t) exp(imθ).

Base flows are assumed to be axisymmetric, so only the m = 0 component
needs to be considered, and a two-dimensional discretization is therefore suf-
ficient. Perturbations however can be helical, and different values of m should
be considered. In a linear framework all the Fourier modes are independent
and can be treated separately using 2D simulations.

The present chapter describes how these 2D computations are carried out
in the case of compressible and incompressible flows.

2.1 Compressible flow

One of the reasons why compressible flows are considered here is to study
the acoustic radiation associated with the instability structures in the near
field of the jet. The first stage in Computational Aero-Acoustics (CAA)
studies is the resolution of the near field flow structures. This can be done
through Direct Numerical Simulation (see e.g. Freund (2001), Sandberg et al.
(2012)) or Large Eddy Simulation (see e.g. Bogey et al. (2011), Bogey and
Bailly (2006)). RANS or u-RANS methods are less suited for jet flows (see
Georgiadis and DeBonis (2006)). Different numerical methods can be used
for the simulation of compressible flows. A first approach, derived initially

11
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for hyperbolic systems, consists of splitting the flow variables at each loca-
tion into characteristics, which are then treated differently depending on the
propagation direction. These methods, implemented in a Finite Volumes
(e.g. in Johnsen and Colonius (2006)) or Finite Differences (FD) framework
(e.g. in Sesterhenn (2000), Yee et al. (1999)), can be coupled with explicit
time marching algorithms (e.g. Runge-Kutta schemes) to produce stable
discretizations for subsonic and/or supersonic flows. In such computations,
stability is achieved by introducing numerical dissipation through the use of
decentered schemes. Other methods, such as Entropy Viscosity (Guermond
et al. 2011), explicitly add viscosity at locations where entropy is created in
order to stabilize the simulation. These methods are well suited for the com-
putation of complex flows, but may be very costly for the direct computation
of acoustic propagation in the far field. Indeed, their numerical dissipation
requires a fine mesh in order to treat the propagation of acoustic waves. To
avoid excessive numerical costs, near-field solvers can be coupled with an
acoustic solvers in either the time or frequency domain through an acoustic
analogy or an integral method: this is the type of approach used in industrial
applications.

On the other hand acoustic propagation in the far field can be directly
computed together with the near field (Bailly et al. 2010). This approach,
referred to as Direct Noise Computation, is taken here. For this purpose,
the numerical scheme is designed for the accurate treatment of sound radia-
tion. The numerical code derives from an ONERA code (AJAX), which in
particular has been used in Lesshafft et al. (2006), Lesshafft (2007).

2.1.1 Non-dimensional equations

We consider a jet issuing from of a semi-infinite cylindrical duct of radius R∗,
with a velocity U∗0 on the jet axis. The jet exits into fluid at rest, characterized
by its density ρ∗∞ and its temperature T ∗∞. The fluid is assumed to be a
perfect Newtonian gas; furthermore, its adiabatic index γ = 1.4, thermal
conductivity κ∗, specific heat at constant pressure C∗p and viscosity µ∗ are
assumed to be constant.

Non-dimensional variables, denoted without asterisks, are defined with
respect to R∗, U∗0 , ρ∗∞ and T ∗∞ as reference length, velocity, density and tem-
perature scales. With this normalization, natural choices for the Reynolds,
Mach and Prandtl numbers are

Re =
U∗0R

∗ρ∗∞
µ∗

, Ma =
U∗0
c∗∞
, Pr =

µ∗C∗P
κ∗

,

where c∗∞ =
√
γr∗T ∗∞ denotes the ambient speed of sound. In terms of
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dimensionless variables, the equation of state becomes

p =
ρT

γMa2

and the internal energy e is given by

e =
T

γ(γ − 1)Ma2 .

Entropy may be defined as

s =
1

γ(γ − 1)Ma2 [log(p)− γ log(ρ)] .

Frequencies f ∗ can be non-dimensionalized either in form of a Strouhal
number (based on the jet diameter) or a dimensionless circular frequency ω,
according to

St =
2f ∗R∗

U∗0
=
ω

π
.

The flow is described in cylindrical coordinates r, x, θ, with x = 0 cor-
responding to the nozzle exit. Using the above non-dimensionalization,
the compressible Navier–Stokes equations are given by Sandberg (2007).
The characteristic formulation is used: the evolution of the flow field q =
(ρ, ρux, ρur, ρuθ, ρE)1 is given by

∂q

∂t
+
∂F x

e − F x
v

∂x
+
∂F r

e − F r
v

∂r
+

1

r

∂F θ
e − F θ

v

∂θ
+
Fe − Fv

r
= 0. (2.1)

The inviscid fluxes, denoted by the subscript e, are given by

F x
e (q) = (ρux , ρuxux + p , ρuxur , ρuxuθ , (ρE + p)ux),
F r
e (q) = (ρur , ρurux , ρurur + p , ρuruθ , (ρE + p)ur),

F θ
e (q) = (ρuθ , ρuθux , ρuθur , ρuθuθ + p , (ρE + p)uθ),
Fe(q) = (ρur , ρurux , ρurur − ρuθuθ , 2ρuruθ , (ρE + p)ur).

The viscous terms depend on the both the state variables and viscous stresses
s = (τ, qh):

F x
v (q, s) = (0 , τxx , τrx , τθx , τxxux + τrxur + τθxuθ − qx),
F r
v (q, s) = (0 , τrx , τrr , τθr , τrxux + τrrur + τθruθ − qr),

F θ
v (q, s) = (0 , τθx , τrθ , τθθ , τθxux + τrθur + τθθuθ − qθ),
Fv(q, s) = (0 , τrx , τrr − τθθ , 2τθr , τrxux + τrrur + τθruθ − qr).

1E = e+ 1
2u

2 is the total energy.
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The components of the stress tensor τ are given by

τxx =
2

3Re

[
2
∂ux
∂x
− ∂ur

∂r
− 1

r

(
∂uθ
∂θ

+ ur

)]
,

τrr =
2

3Re

[
−∂ux
∂x

+ 2
∂ur
∂r
− 1

r

(
∂uθ
∂θ

+ ur

)]
,

τθθ =
2

3Re

[
−∂ux
∂x
− ∂ur

∂r
− 2

r

(
∂uθ
∂θ

+ ur

)]
,

τrx =
1

Re

[
∂ux
∂r

+
∂ur
∂x

]
,

τθx =
1

Re

[
∂uθ
∂x

+
1

r

∂ux
∂θ

]
,

τθr =
1

Re

[
∂uθ
∂r

+
1

r

(
∂ur
∂θ
− uθ

)]

and the heat flux qh by

qh,x = − 1

(γ − 1)PrReMa2

∂T

∂x
,

qh,r = − 1

(γ − 1)PrReMa2

∂T

∂r
,

qh,θ = − 1

(γ − 1)PrReMa2

1

r

∂T

∂θ
.

2.1.2 Spatio-temporal discretization

Mesh

The compressible Navier–Stokes equations are discretized using finite dif-
ferences (FD) on a rectilinear grid. The mesh is designed as follows: let
the discretization points be denoted (xi), (rj). With δxi = xi − xi−1, the
stretching is given by

Si = 2
δxi+1 − δxi
δxi+1 + δxi

= 2
xi+1 − 2xi + xi−1

xi+1 − xi−1

.

If the grid stretching is prescribed as a function of the position and the mesh
size, then the discretization points satisfy

xi+1 − xi−1

2
S(xi, xi+1 − xi−1)− (xi+1 − 2xi + xi−1) = 0
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x

r

rmax

xmaxx+sx−s

1

xmin

rs

Figure 2.1: Numerical domain used for compressible computations. Sponge
layers are displayed as shaded regions.

which corresponds to the FD discretization of

S(x(η), Nx′(η))x′(η) +Nx′′(η) = 0

with 0 ≤ η ≤ 1 and N + 1 discretization points. This non-linear differential
equation together with the boundary conditions x0 = X0 and xN = X1 is
solved iteratively on successively finer grids as a steady solution of

ẋ = S(x,Nx′)x′ +Nx′′.

The stretching function S is prescribed in order to match the geometry of
the problem while keeping both the mesh size and the stretching within con-
trolled bounds. For example in the radial direction the following stretching
is imposed:

S(r,Nr′) =





Smaxf1(r)f2(Nr′) r ≤ Rs and Nr′ ≤ δmax
0 r ≤ Rs and Nr′ ≥ δmax

Smaxf3(r) r ≥ Rs

(2.2)

with

f1(r) =
r

r + 1
tanh

(
r − 1

r

)
,

f2(z) = 1 + tanh

(
0.05

δmax
z − δmax

)
,

f3(r) = 1− tanh

(
10

Rs − r

)
.
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Function f1 ensures that the mesh is refined around r = 1 and that it is
smooth on the axis. The maximum mesh size inside the physical domain
(r ≤ Rs) is set to δmax using function f2, and f3 allows a smooth stretching
throughout the sponge layers. A similar approach is used for the axial mesh,
resulting in the typical meshes displayed in figure 2.2.

−40 −20 0 20 40 60 80
x, r

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

δx
,δ
r

Figure 2.2: Typical grid size found as a function of the position for the axial
(solid line) and radial (dashed line) directions. The maximum stretching
allowed is 4% for the axial mesh and 5% for the radial mesh.

Spatial schemes

For a given stencil width, different approaches can be used for the design of
accurate FD schemes. In standard schemes the FD coefficients are chosen
such that the scheme is of maximum order, i.e. the scheme that will better
approximate the derivatives in the limit of arbitrarily small mesh size. One
can also derive numerical schemes that optimally approximate the dispersion
relation of the physical problem: these schemes are called Dispersion Rela-
tion Preserving (Tam and Webb 1993). The FD schemes used here, derived
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by Berland et al. (2007) are optimized in order to maximize, for a given order,
the resolution of the scheme: in this approach, originally described by Lele
(1992), the focus is not only on well-resolved structures. For this, the deriva-
tives of functions of the type f(x) = exp(ikx) are considered. In discrete
form, one has fj = exp(ikjδx) and, as the discretization scheme is linear,
the FD approximation of f ′(x) is of the form f ′j = ik′δx exp(ikjδx): the dis-
cretization error is therefore measured in terms of the difference kδx−k′δx as
a function of kδx (see figure 2.3 for the dispersion error of different schemes).
The idea is to best approximate the derivative of functions with typical wave-
lengths that are of the order of the size of the discretization, i.e. kδx ∼ 1,
rather than focusing only on kδx� 1. The schemes of Berland et al. (2007)
are designed such that the error in approximating the derivative is less than
10−5 with as low as four points per wavelength.

0 π/2 π

k∆x

0

π/2

π

k
′ ∆
x

Figure 2.3: Effective wavenumber k′ versus wavenumber k for different FD
schemes used in aero-acoustics: DPR scheme of Tam and Webb (1993) for a
7-point stencil (dash-dot line), and of the optimized schemes of Bogey and
Bailly (2004) with 9-, 11- and 13-point stencils (resp. dashed, solid and
dotted lines). Data taken from Bogey and Bailly (2004).
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Central schemes are used (except on boundary points) for the approxima-
tion of the derivatives for both convective and diffusive terms in the Navier–
Stokes equations. Such a discretization is unstable, as small wavelengths are
amplified. In order to maintain the stability for temporal simulations a se-
lective low-pass filter (also given in Berland et al. (2007)) is used which adds
additional damping at very small scales to counteract the “under-dissipation”
of centered schemes for advection problems.

Boundary conditions

Jet pipe The jet pipe is modeled as an infinitely thin adiabatic surface.
Although this approximation introduces a singularity, it allows us to elim-
inate the pipe thickness as an additional length scale of the problem. The
pipe wall is placed between two discretization points (the mesh designed as
described above is slightly modified such that r = 1 is exactly between two
discretization points) so that different values for the pressure and density
fields do not have to be considered on the inner and outer side of the jet
pipe. No-slip and no-heat-flux boundary conditions are imposed on the pipe
wall (x ≤ 0 and r = 1) directly through FD schemes that take into account
homogeneous Dirichlet or Neumann boundary conditions exactly at the pipe
wall location (i.e. between two discretization points).

Axis Ghost points are used for the treatment of the axis. As explained in
Tuckerman (2012), smooth scalar functions described in polar coordinates
should be such that

f(r, θ) =
∑

m∈Z

∑

j≥m, j+m even

αj,mr
j exp(imθ).

Consequently, one can impose that, depending on the parity of the azimuthal
wave number m, flow fields are either even or odd with respect to the axis.

m odd even
ρ, ρE, ux odd even
ur, uθ even odd

For this purpose, ghost points are used for r < 0. Note that in order to
avoid problems arising from the 1/r terms in the cylindrical formulation of
the differential operators, the radial location r = 0 is chosen to fall between
two discretization points.
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Outer boundaries Different types of boundary conditions are used for
the treatment of far-field conditions (x = xmin, x = xmax and r = rmax)
for the different studies. For eigenmode computations outflow boundary
condition play a crucial role, so the non-reflecting boundary treatment of
Bogey and Bailly (2002) is used together with sponge layers. For other
studies, perturbations are assumed to vanish at the outflow, and acoustic
waves are damped as they travel through the sponge regions. A more recent
version of the code now uses the Local One DImensional conditions of Poinsot
and Lele (1992).

Parallelism

For parallel computations, a domain decomposition approach is used using
MPI. In its most recent form, the code uses PETSc for this purpose.

2.1.3 Adjoint equations

Linear stability analyses often benefit from an implementation of the adjoint
Navier–Stokes equations. Two approaches can be used, referred to as the
continuous and discrete adjoint. The first method consists in first deriving
the adjoint equations for the continuous problem (Linearized Navier–Stokes
equations and boundary conditions) and for a given inner product, and then
discretizing them. This is for example the approach used in Meliga et al.
(2010): it has the advantage of giving results that are less sensitive to the
numerical discretization. But deriving the adjoint equations can be a very
tedious task, in particular for boundary conditions. In contrast, one can first
discretize the LNS equations and then compute its adjoint via the Hermitian
transpose (denoted by †) : if Q is the mass matrix, then

〈q|q〉 = q†Qq, (2.3)

so the adjoint L∗ of an operator L satisfies

〈p|Lq〉 = p†QLq = q†L†Qp = qQQ−1L†Qp = 〈q|L∗p〉 = 〈L∗p|vq〉 (2.4)

where overbar · denotes the complex conjugate, so L∗ = Q−1L†Q. If the
matrices corresponding to the LNS equations are available, this method is
straightforward to apply and has two advantages over the continuous adjoint
approach. First, it results in operators that are truly Hermitian, for exam-
ple in the context of optimal forcing or optimal perturbation studies. This
ensures fast and robust convergence of iterative algorithms. Then, changing
the inner product can be done very simply by modifying operators Q and
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Q−1, which is easily computed by hand when using FD discretizations. Since
in this approach one performs optimization on the discrete system, numerical
artifacts may be present in the results. This can be argued to be a drawback,
but can also be seen as an advantage as it shows the possible limitations of
the discretization. For a discussion on this subject, see Sirkes and Tziperman
(1997).

Assembling and storing the discretization matrices in the present applica-
tion would require significant storage (due to both the mesh size and the large
stencil of the FD schemes, see chapter 3). Instead the matrix-free framework
of de Pando et al. (2012) is used.

Let L be the linearized Navier–Stokes equations and q the discrete state
vector, containing the values of ρ, ρuu, ρux, ρuθ and ρE at each discretization
point. Using the formulation (2.1), the inviscid part of L can be written as :

Me = Ae +DxA
x
e +DrA

x
e

where Ae, Aex and Aer are block diagonal matrices 2 given by

Axe = ∇qF
x
e (q) Are = ∇qF

r
e (q) Ae =

1

r

(
im∇qF

θ
e (q) + ∇qFe(q)

)

and operators Dx and Dr correspond to the discrete derivatives in the axial
and radial directions. Numerically, Ae, Aex and Aer are built (and stored in
CSR format), but Dx and Dr are applied in a matrix free manner, resulting
in low memory requirements. The main advantage of this decomposition lies
in the ease of taking the transpose conjugate without assembling the full
discretization matrices:

Me
† = Ae

† + Axe
†D†x + Are

†D†r.

Operators Ae† Aex
† and Aer

† are applied by taking the Hermitian transpose of
the block diagonal matrices, while D†x and D†r are still applied in a matrix-free
framework.

Viscous terms are treated similarly: let us introduce a vector q̃ which
contains, at each discretization point, the approximations the flow variables
as well as the viscous stresses and heat fluxes. It can be written as

q̃ = Mτq = (Aτ +DxA
x
τ +DrA

r
τ ) q.

Using this vector, the viscous part of the LNS operator can be expressed as

Lvq = Av +DxA
x
v +DrA

x
v = MvMτq.

The adjoint of L is therefore computed as

L† = Me
† +Mτ

†Mv
†.

2Their 5× 5 blocks correspond to linear combinations of the flow variable at the same
discretization point.
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Boundary conditions Vector q contains ghost points used to impose sym-
metry boundary conditions on the axis. Consequently, not all components
of q are degrees of freedom. Let q′ correspond to the components of q that
are actual degrees of freedom. It is related to q by

q = Pq′.

In practice, the action of P is applied matrix-free. One should however notice
that P † 6= P . The operator P † has no obvious continuous interpretation. For
example in 1D, one may impose that the function is odd using

P =




−1 0 · · · 0
1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 1



,

in which case one would have

P † =




−1 1 0 · · · 0

0 0
. . .

...
...

...
. . . 0

0 0 · · · 0 1


 .

The same applies to ghost points used to communicate values between pro-
cesses.

Summary In order to apply the LNS operator, the code successively

• applies boundary conditions (P ),

• communicate ghost points around each subdomain (MPI parallelism)
and updates ghost points (BCs on the axis) (C),

• computes inviscid fluxes (Me) and viscous stresses (Mτ ),

• communicates viscous stresses and updates ghost points (C̃),

• computes viscous fluxes (Mv),

so the operator can formally be decomposed as

L = (Me +MvC̃Mτ )CP
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and
L† = P †C†(M †

e +M †
τ C̃
†M †

v ).

The above expression shows that when applying the adjoint operator, ap-
plying BCs and communicating ghost points occur in a modified manner
(P † 6= P and C† 6= C) and after computing the derivatives.

Free propagator Let us focus on the propagation in time of unforced
linear dynamical system of the form q̇ = Aq using a Euler or Runge-Kutta
scheme. At each time step, the state is updated using3

qi+1 =
k∑

j=0

(δtL)j

j!
︸ ︷︷ ︸

Aq

qi (2.5)

such that the state after N time steps is qN = ANq q0. We can then formally
write the direct propagator as

P = ANq .

Its adjoint is then

P† = A†q
N
.

The adjoint of the propagator is therefore applied by substituting L for L†

in the time stepping algorithm. If a filter is applied to the state after each
time step, however, slight changes have to be made. Let F denote the filter.
(2.5) becomes

qi+1 = FAqqi

such that the propagator is P ′ = (FAq)
N and P ′† = (A†qF

†)
N

. This shows
that in the adjoint algorithm, the adjoint of the filtering routine should be
applied before each time step.

Forced propagator In order to integrate q̇ = Aq + f , the operation at
each time step is

qi+1 =
k∑

j=0

(δtL)j

j!
︸ ︷︷ ︸

Aq

qi +
k∑

j=1

δt
(Lδt)j−1

j!
︸ ︷︷ ︸

Af

f . (2.6)

3This is the case of standard schemes of order k.
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If q0 = 0, this yields

qi =
i−1∑

j=0

AjqAff .

The adjoint of the discrete propagator

Pf =

[
N−1∑

j=0

Ajq

]
Af

which takes f as an input and returns qN after N time steps, is formally

P†f = A†f

[
i−1∑

j=0

A†q
j

]
.

The above expresses how the adjoint of the forced propagator is taken: if f
is the input, it should return q∗ such that

q∗0 = 0,

q∗i+1 = A†qq
∗
i + f for i = 1 . . . N − 1,

q∗ = A†fq
∗
N .

The same remark as in the previous paragraph about the effect of the filter
also applies here.

Local time step If δt is a scalar, applying A†q simply amounts to propa-
gating operator L† forward in time with the same algorithm as in the direct
case. If a local time step is applied, however, care should be taken as δt is an
operator that does not commute with L. If (2.6) still applies for the direct
time stepper4, we formally have

A†q =
k∑

j=0

(
L†δt

)j

j!

which means that the state should be multiplied by the local time step before
the increment is computed.

4This depends on the actual implementation, and corresponds to the fact that the
increment is computed and then multiplied by the local time step
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2.2 Incompressible flow

2.2.1 Equations

Using the same convention as for the compressible case, and replacing the
pressure p by p/ρ, the incompressible Navier–Stokes equations in cylindrical
coordinates are given by

1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂ux
∂x

= 0,

∂ux
∂t

+ ur
∂ux
∂r

+
uθ
r

∂ux
∂θ

+ ux
∂ux
∂x

=

− ∂p

∂x
+

1

Re

[
1

r

∂

∂r

(
r
∂ux
∂r

)
+

1

r2

∂2ux
∂θ2

+
∂2ux
∂x2

]
,

∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

+ ux
∂ur
∂x
− u2

θ

r
=

− ∂p

∂r
+

1

Re

[
1

r

∂

∂r

(
r
∂ur
∂r

)
+

1

r2

∂2ur
∂θ2

+
∂2ur
∂x2

− ur
r2
− 2

r2

∂uθ
∂θ

]
,

∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+ ux
∂uθ
∂x

+
uruθ
r

=

− 1

r

∂p

∂θ
+

1

Re

[
1

r

∂

∂r

(
r
∂uθ
∂r

)
+

1

r2

∂2uθ
∂θ2

+
∂2uθ
∂x2

+
2

r2

∂ur
∂θ
− uθ
r2

]
.

2.2.2 Spatio-temporal discretization

Incompressible computations were also performed. In this case, the far field
does not need to be resolved and acoustic propagation is not an issue. The
Finite Element Method is used for the discretization of the Navier–Stokes
equations. Classical P2 − P1 elements are used (using FreeFEM++ Hecht
(2011)) and no stabilization (e.g. SUPG) was required for the current com-
putations. A penalty method is employed for the treatment of the continuity
equation. The geometry used in this situation is slightly different from the
compressible situation and is shown in figure 2.4: a solid wall Γw now extends
for (r = 1, x ≤ 0) and (x = 0, r ≥ 1).
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Figure 2.4: Numerical domain used for incompressible computations. Gray
shades correspond to different mesh densities.

Treatment of the axis

Imposing symmetry conditions on the different flow variables (as was the
case for the FD discretization of compressible flows) is not convenient with
FreeFEM++. Instead on can impose the following homogeneous BCs:

m = 0 m = ±1 |m| ≥ 2
ρ, ρE, ux Neumann Dirichlet Dirichlet
ur, uθ Dirichlet Neumann Dirichlet

Terms 1/r (resp. 1/r2) in the equations given above do not correspond
to actual singularities, as the smoothness of the solution requires that the
terms they are multiplying decay at least as fast as r (resp. r2). However, in
order to avoid numerical problems the equations are multiplied by r2 before
integrating by parts to obtain the variational formulation.

Adjoint equations

As for compressible flows, the discrete adjoint is used in incompressible com-
putations. After the matrices corresponding to the FE discretization are
assembled, taking the Hermitian transpose of matrices is straightforward.

Steady state solver

As discretization matrices are reasonably small, direct solvers are used. There-
fore, steady states for the NS equations are computed within FreeFEM++
using Newton’s method, and UMFPACK (Davis 2009) or MUMPS (Amestoy
et al. 2000) are used for the solution of linear systems. This approach is com-
putationally cheaper than advancing an initial guess forward in time until a
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steady solution is reached. Starting from a parallel flow (given by the inflow
condition) it takes ∼ 15 Newton iterations to converge to a steady state with
a precision of 10−10.

Linear studies

As mentioned previously, discretization matrices are sufficiently small such
that direct linear solvers can be used. These matrices are exported from
FreeFEM++ and loaded into python to use solvers provided by PETSc
(Balay et al. 2008) and SLEPc (Roman et al. 2010) through petsc4py and
slepc4py (see § 2.3.1). This allows us to perform efficient parallel computa-
tions using MUMPS as a linear solver. Systems with up to one million DOFs
can be handled on a regular desktop computer with ∼ 10GB of memory.

2.3 External packages

Computations performed for this study heavily rely on external libraries. In
addition to FreeFEM++ mentioned above for incompressible analyses, the
libraries PETSc and SLEPc are used. The input/output library HDF5 has
also been used and allowed easy manipulation of data between the different
computer architectures and between the different programs and programming
languages.

2.3.1 PETSc (Portable, Extensible Toolkit for Scien-
tific Computation)

Many PETSc features have been used. Recent versions of the compressible
code use PETSc for managing the parallel computations through distributed
arrays, for storing and using the block matrices resulting from the lineariza-
tion and for time stepping. Incompressible computations rely on the imple-
mentation of parallel sparse matrices (CSR storage) and on the interfaces to
linear solvers, both direct and iterative. Among the different direct solvers,
MUMPS turned out to be more efficient than UMFPACK, SuperLU (sequen-
tial and distributed versions) and SPOOLES, both in terms of CPU time and
memory usage.
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2.3.2 SLEPc (Scalable Library for Eigenvalue Problem
Computations)

SLEPc contains implementations of various iterative algorithms for eigen-
value computations. In particular, the Krylov-Schur solver appeared to be
more robust than the Implicitly Restarted Arnoldi Method, implemented in
ARPACK. The Lanczos algorithm was also used for Hermitian problems5.

5using discrete adjoints given truly Hermitian discrete problems.
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Chapter 3

Eigenvalue solver for
compressible flows

3.1 Introduction

As described in § 2.1, using high-order schemes is necessary for the Direct
Noise Computation. With such schemes on a nx×nr mesh, the discretization
matrix for the inviscid terms would contain ∼ 5 × 5 × nx × nr × 2(2S + 1)
non-zero elements, where S is the half-width of the finite-difference stencil
(see figure 3.1). The 2(2S + 1) factor stems from the first-order derivatives
in x and r, and the 5 × 5 from the dependence of each of the five flow
variables (ρ, ρux, ρur, ρut, ρE) on the other variables (this term is slightly
over-estimated). With a typical mesh of nx = 1356 and nr = 768 grid points
and the schemes of Berland et al. (2007), this would correspond to ∼ 5 · 108

non-zero elements. The discretization matrix for the viscous terms, on the
other hand, would contain second-order cross derivatives, so the number of
non-zero elements would be ∼ (3× 2 + 5)×nx×nr× (4S+ (2S+ 1)2). Con-
sequently, the total number of entries in the complete discretization matrix
would be ∼ 1.6 · 109, and, in double precision complex arithmetic, storing
the matrix would require ∼ 25GB of memory, which is still affordable.

The costly part of standard linear algebra algorithms used in stability
analyses, however, is not the assembly or the storage of the discretization
matrix, but rather the computation of LU decompositions for the solution
of the linear systems. The number of elements in a sparse LU factorization
of a sparse matrix M is indeed not related to the number of elements in M .
One of the few guarantees is that the bandwidth or the skyline structure of
the L and U factors is not larger than that of M (Golub and Loan 1996).
The structure of sparse matrices depends on the ordering of the degrees of

29
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freedom and, consequently, so does the cost of the LU decomposition. In our
applications with nx ≥ nr, a natural ordering that reduces the bandwidth
is to index of the flow variable 1 ≤ iq ≤ nq at position (i, j) in the grid as
iq + nq(j − 1) + nqnr(i− 1). Using such a numbering, the bandwidth of the
matrix would be 2Snqnr

1, and therefore one could estimate that the L and U
factors would contain ∼ nxnrnq×2Snqnr ∼ 2 ·1011 non-zero elements, which
is untractable. The alternative proposed by Mack and Schmid (2010) is to
use instead a preconditioned iterative solver. For the present problems, the
robustness of this approach was poor, and a new solver had to be developed.

3.2 Paper: A relaxation method for large

eigenvalue problems, with an application

to flow stability analysis

1A factor of two could be gained by using specific schemes for second-order derivatives.
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Figure 3.1: Schematic view of the stencil for finite-difference computations.
Dark blue and red regions correspond to points used for the computations
of first derivatives in the x and r directions. Lighter blue and red areas
correspond to the stencil for second derivatives in x and r, and the gray area
to the cross derivatives. The degrees of freedom (DOFs) are numbered such
that the index of the flow variable 1 ≤ iq ≤ nq at position (i, j) in the grid is
iq + nq(j − 1) + nqnr(i− 1). In the present application S = 5 and nq = 5.



A relaxation method for large eigenvalue problems, with an application to
flow stability analysis
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Abstract

Linear stability analysis of fluid flows usually involves the numerical solution of large eigenvalue problems. We
present a spectral transformation allowing the computation of the least stable eigenmodes in a prescribed
frequency range, based on the filtering of the linearized equations of motion. This “shift-relax” method
has the advantage of low memory requirements and is therefore suitable for large two- or three-dimensional
problems. For demonstration purposes, this new method is applied to compute eigenmodes of a compressible
jet.

Keywords: eigenvalue solver, spectral transformation, Krylov method, matrix-free, global modes

1. Introduction

The stability of fluid flow is a fundamental question in fluid dynamics, which has significant implications
on the design, operation and control of flow devices. Consequently, hydrodynamic stability theory has
taken a central role in fluid dynamics research, and remarkable progress has been made over the past
decades. Early investigations of generic flow configurations, such as channel flows or boundary layers, have
recently given way to more complex two- and three-dimensional geometries and more complex flow physics.
The resulting eigenvalue problems from simple configurations were sufficiently small to allow their solution
by direct techniques (such as the QR-algorithm). For more complex stability problems, however, direct
techniques no longer provide a feasible solution; iterative eigenvalue algorithms have to be employed to
compute a subset of the full spectrum that effectively describes the essential dynamics of small disturbances
superposed on a steady base flow. Many of these algorithms for large-scale eigenvalue problems have been
developed within the linear-algebra community and are readily available through several public domain
libraries [12]. Among them, the two most commonly used in fluid-flow problems are the Arnoldi [16] and
the Krylov-Schur [23] algorithms. These methods can, in principle, extract any portion of the full spectrum
through the repeated application of a restarting step. In practice, however, only the dominant modes (i.e.
those associated with the eigenvalues of largest magnitude) can be computed in many applications; yet, these
modes may not provide relevant information about the physics of the problem and, in some cases, may even
be spurious. As far as the asymptotic stability behavior is concerned, the least stable modes (i.e., the modes
with the largest exponential growth rate) are far more important. They can be computed by coupling an
iterative eigenvalue algorithm to a time-stepping routine for the linearized equations of motion (abbreviated
by the linear operator L) over a given time interval ∆t[10]. This way, the iterative eigenvalue solver will
efficiently extract the modes that are most amplified over a time interval ∆t, that is to say, it extracts the
least stable modes of L. The propagation time ∆t, in general, affects the speed of convergence of the iterative
solver, but does not influence which modes the solver will converge to.

This technique is generally sufficient for bounded flows that are governed by a limited number of (or
even a single) dominant instability mechanism, since the associated spectrum consists of eigenvalues that are
well separated. In this case, the principal eigenvalues are easy to isolate by the iterative algorithm. When
multiple and competing mechanisms are at play, the spectrum is far more complicated, and physically relevant
modes are more difficult to extract. In particular, eigenvalue clusters near the neutral axis, stemming from
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continuous branches or even numerical artifacts, pose a great challenge to the convergence of the iterative
algorithm. Even though unstable modes may still be extracted, the stable part of the spectrum quickly
moves beyond the reach of the iterative algorithm; in this case, a different strategy is called for.

The region of convergence may be manipulated and adjusted by a rational transformation of the complex
eigenvalue plane. The “shift-invert” method [16] allows the computation of the modes whose eigenvalues are
closest to a complex shift parameter σ. But at each iteration of the eigenvalue solver, the method requires
the solution of a linear system of the form (L−σI)x = b. Most studies accomplish the latter solution using a
direct LU decomposition which has to be performed once at the start and is used for all successive iterations,
until the shift parameter σ is changed to access different parts of the spectrum. A variant of the shift-invert
method, known as the Cayley transformation, yields better convergence, if an iterative solution of the linear
system is chosen [18].

The LU decomposition is based on a matrix representation of the linear stability operator. Some global
stability investigations used spectral discretization methods which resulted in a dense matrix of moderate
size [2]. Later studies took advantage of a sparse representation, in particular, when the operator arises
from a finite-element or finite-difference discretization [5]. In this case, the number of non-zero elements is
proportional to the number of degrees of freedom N, making a sparse matrix representation convenient to
handle computationally. Highly efficient multi-frontal LU solvers for large-scale sparse matrices are readily
available (see e.g. [9, 3, 4]), but the sparsity of the output matrices is not always guaranteed. Even though
the bandwidth of the factorization is not greater than that of the original matrix [11, p.152], all elements
between the upper and lower band may be non-zero. Computing and storing the decomposition thus results
in substantial memory requirements. For example, for the discretization of a two-dimensional problem
with N degrees of freedom on a structured mesh, the bandwidth scales with N1/2, in which case the LU
decomposition would contain up to O(N3/2) non-zero elements. In three dimensions, as the bandwidth
increases to N2/3, the memory requirements go up as N5/3. For a discretization of the compressible Navier-
Stokes equations on a two-dimensional domain with 256× 512 points using a finite-differences scheme with
a six-points stencil, one can estimate that storing the LU decomposition requires about 80 GB of memory
(work space requirements during the decomposition tend to be even larger), thus illustrating the limitation
of this method for larger-scale problems. In some cases, appropriate reordering of the matrix entries can
somewhat alleviate the problem by improving the sparsity of the factorization; this approach, however, does
not provide a viable and extendable solution for large-scale problems.

An alternative that avoids the computation of the LU decomposition of the operator L consists of iterative
algorithms [24] to solve the linear system arising from the shift-invert or Cayley transformation. Together
with ILU-type preconditioners, this approach has been applied to incompressible [15] and compressible flows
[18]; in [22], the authors use un-preconditioned iterative solvers for the computation of unstable modes in
plasma flows. These methods yield a reduction of computational costs associated with the solution of the
linear system, but they do not provide the same level of versatility as direct methods do. Indeed, if one
chooses the shift parameter σ close to the spectrum of L, then (L − σId) becomes ill-conditioned. In this
case, the cost of preconditioning as well as the number of iterations for the linear solver to converge have
to be assessed critically. In contrast, if σ is selected farther from the spectrum, the iterative linear solver
is more likely to converge with a “cheap” preconditioner, but at the same time the focusing effect of the
shift-invert transformation is rather weak; consequently, it may not be possible to extract the desired modes.

The present paper presents a method for selectively extracting modal information from a linear operator
L without relying on the (iterative or direct) solution of a linear system. This approach has been inspired
both by the “shift-invert” technique for the solution of eigenvalue problems [16] and by the selective frequency
damping method of [1] for the computation of unstable steady flow. Similar to the latter method, we propose
to use a relaxation procedure to selectively stabilize parts of the spectrum away from a chosen frequency
shift, after which a standard Krylov method is employed to obtain the least stable modes of the relaxed
system. Although the spectral transformation involved in the present “shift-relax” technique is somewhat
less flexible than the “shift-invert” technique, its low memory requirement and ease of implementation make
it suitable and attractive for large-scale stability computations of two- or three-dimensional flows.
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2. Description of the method

2.1. Definition of the problem

Let the dynamics of the problem under consideration be governed by a set of non-linear equations of the
form

q̇ = F (q), (1)

where q is the state vector and F denotes a discrete integro-differential operator with appropriate boundary
conditions. For simplicity, only finite-dimensional operators (which arise after spatial discretization) will be
considered in this paper. We assume that this operator has a fixed point q0, such that F (q0) = 0. If this base
state is stable to finite-amplitude perturbations, it can be computed by integrating the dynamical system
(1) over a sufficiently long time. Algorithms such as the Newton-Krylov method [10] or Selective Frequency
Damping (SFD) [1] can be used to obtain a base state even in unstable situations. The SFD method relies
on low-pass filtering of the equations of motion in order to suppress high-frequency instabilities. The present
method generalizes this approach in order to compute modes of a linear operator in a selected frequency
band.

Let L = ∇qF (q0) be the linearization of F about the steady base state q0. Based on the decomposition
q = q0 + q′, the dynamics of small perturbations q′ is governed by the linear system

q̇′ = Lq′. (2)

Temporal modes of (2) are sought in the form

q′(x; t) = q̃(x) exp(−iωt),

such that the spatial structure q̃ satisfies
−iωq̃ = Lq̃. (3)

A complex eigenfrequency ω is associated with the eigenmode q̃.
If an iterative solver is used to compute the least stable modes of (3) using an iterative eigenvalue solver,

it is of advantage to consider the operator that takes a state q′(0) as an initial condition for (2) and returns
the state q′(∆t) after a given time ∆t. This operator is referred to as the propagator and can be formally
written as

P = exp(∆tL).

Krylov-based iterative eigenvalue solvers identify a subset of the eigenvalues λ = λr + iλi with the largest
absolute value |λ| (in the following, the subscript r and i respectively denote the real and imaginary parts
of a complex number). Modes of P with the largest |λ| are identical to modes of L with the largest growth
rate ωi. Even though the explicit computation of the matrix P would be an onerous task, its application to
vectors can be easily performed by a standard time marching method; this makes the use of P appropriate
for an iterative solver.

For some flows however, it may be interesting to investigate modes that belong to different frequency
ranges, as these may correspond to different physical mechanisms (see for example the case of the flow around
a leading edge [19] or that of supersonic jet flows [20]). In this case the objective is to compute the least
stable modes with a real frequency ωr close to a given value ω0. The present method achieves this goal by
applying a bandpass temporal filter to the propagator, such that modes with real frequency ωr far from the
target frequency ω0,r are attenuated.

2.2. Filtering

In this section we recall standard filtering results applied to a signal y(t) with t ∈ R. Its Fourier transform
reads

y(t) =

∫ ∞

−∞
ŷ(ω) exp(−iωt) dω.
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We proceed by damping out the components of y(t) with frequencies far from a given value ω0 using a
standard first-order bandpass filter whose transfer function is given by

H(ω) =
1

1− i
ω − ω0

τ

. (4)

The filtered signal ȳ(t) is then given by the convolution

ȳ(t) =

∫ ∞

−∞
H(ω)ŷ(ω) exp(−iωt) dω,

which satisfies the filtered ordinary differential equation

˙̄y = −iω0ȳ − τ(ȳ − y). (5)

The above bandpass filter is centered about the target frequency ω0 and has a half width at half maximum
of
√

3τ .
The presented analysis applies to signals defined for all times. If one wants to use the differential equation

(5) to filter a signal defined only for t ≥ 0, initial conditions have to be specified. The overall frequency
selection effect, however, will prevail independent of initial conditions, if the differential equations have been
sufficiently advanced in time. In this way, the differential equation (5) provides a way to filter a signal
without having to store its entire history.

2.3. Selective frequency damping of a linear dynamical system

Following [1], let us consider the following linear dynamical system:

q̇′ = Lq′ − χ(q′ − q′), (6a)

q̇
′

= −iω0q
′ − τ(q′ − q′). (6b)

Equation (6b) represents a differential equation corresponding to the bandpass filter introduced above. The
signal q′ is therefore a filtered version of q′, in which frequency components far from the target frequency
ω0 are damped.

The right-hand side of (6a) is a sum of two terms. The first one represents the linear operator, while the
second part acts as a proportional controller that drives the variable q towards its filtered counterpart q.

The SFD procedure of [1] applies the same filtering with ω0 = 0 to a non-linear operator instead of L
in (6). In this case, any fixed point of F corresponds to a fixed point of the extended system, the filtered
state q′ being then equal to the full state. However, the stability of the fixed point of the extended system is
modified and trajectories differ. Our shift-relax (SR) approach relies on the observation that the frequency
selection procedure not only preserves the fixed points of non-linear operators, but also the eigenmodes of
linear systems, as will be demonstrated next.

In order to study the relationship between the spectra associated with the original linear dynamical
system (2) and the SR extension (6), we introduce the composite filtered operator F defined as

F ≡
(
L− χId χId
τ Id (−iω0 − τ)Id

)
(7)

such that (6) can be rewritten as (
q̇′

q̇
′

)
= F

(
q′

q′

)
.

If the state vector q′ contains N elements, then a 2N -dimensional eigenvector of F associated with the
complex eigen-frequency Ω, i.e.

FQ̃ = −iΩQ̃,
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can be decomposed into two N -dimensional components, Q̃ = (q̃, ˜̄q)T . According to (6b), these two compo-
nents are related by

q̃ =
1

1− i
Ω− ω0

τ

q̃.

Consistent with the design of the filter, the scalar factor between q̃ and q̃ can be related to the transfer
function (4). We can substitute this result back into (6a) to obtain

Lq̃ = −iω(Ω)q̃ (8)

with

ω(Ω) = Ω + iχ


1− 1

1− i
Ω− ω0

τ


 . (9)

Equation (8) shows that q̃, i.e. the vector corresponding to the first N elements of Q̃, is an eigenvector of L.
This justifies the use of the SR system (6) as a spectral transformation, as the modes of L can be recovered
from those of F .

Equation (9) characterizes the mapping between the spectra of L and F . For any eigenvector Q̃ = (q̃, q̃)T

of F with complex frequency Ω, q̃ is an eigenvector of L with complex frequency ω(Ω) given by (9). This
latter equation can be re-arranged as a second-order polynomial in Ω where ω appears as a parameter. This
shows that two values of Ω correspond to a single value of ω, which is consistent with the fact that the
dimension of F is twice the dimension of L.

Proceeding with the analysis of the mapping between the spectra of the original operator L and its SR
extension F , let us introduce the following scaled variables

(ω′,Ω′, χ′) =
1

τ
(ω − ω0,Ω− ω0, χ).

Equation (9) can then be simplified as follows

ω′ = Ω′ + iχ′
(

1− 1

1− iΩ′

)
. (10)

It therefore appears that after a shift of origin (given by the parameter ω0) and a scaling (given by the
factor τ) of the complex-frequency plane, the transformation can be studied in terms of one single parameter
χ′ = χ/τ.

Effect of χ′. The parameter χ′ measures the gain of the proportional controller relative to the frequency
scale τ. The analysis (given in detail in Appendix A) shows how χ′ influences the spectral transformation.
We observe that the transformation is self-similar with respect to two transformations of ω′ and Ω′ : first,

by different shifts of origins of these two variables and, second, by a scaling by the factor χ′−1/2. The shift
of origin for Ω′ has no influence on the frequency selection effect of the filter, as it changes neither the order
in which modes will be extracted nor the separation between the eigenvalues of the filtered propagator. The
scaling is more relevant, but its effect on the transformation is the same as that of τ. Acting on χ′ therefore
adds no additional flexibility to the method. In an effort to keep the scaling of the complex plane and the
shift of origin as two parameters, we choose χ′ = 1 throughout our study and only use ω0 and τ as changing
parameters.

Study of the transformation for χ′ = 1 . For a given value of ω′, (10) is a second-order polynomial in Ω′. As
mentioned previously, this results in two solution branches, for which an analytic expression can easily be
obtained. We note that the distinction between the two branches is not unique, as it depends on the location
of the branch cut for the square root function with complex arguments. In the following representation we
chose the common branch cut for negative real arguments of the square root.
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Figure 1a, b illustrates the mapping between the original spectral plane ω′ and the two associated values
of Ω′1,2 by the SR transformation, respectively indicated by blue and black lines, together with the transfor-
mation of several sample values of ω′ represented by colored symbols. These values are chosen arbitrarily
for illustration purposes. The solid and dashed lines in figure 1b are, respectively, the images of iso-ω′i- and
iso-ω′r-lines in the ω′-plane represented in figure 1a. The mapping (with the chosen branch cut) defines two
regions of the complex Ω′-plane. Values of Ω′ inside the unit circle centered at Ω′ = −i correspond to the
first root Ω′1 while values outside the circle correspond to the second root Ω′2. Accordingly, the sample values
represented by colored symbols in figure 1a has two images in the Ω′-plane. We notice, however, that neither
the mapping ω′ → Ω′1 nor the mapping ω′ → Ω′2 is continuous.

Figure 1: Mapping between the original spectral plane ω′ (a) and its SR-transformed image Ω′ (b). The colored symbols
correspond to sample values.

The images of the sample values in figure 1b suggest another distinction between the two images of ω′. We
respectively define Ω′+ and Ω′− as the images of ω′ such that the following relation involving the transformed
growth rates is satisfied

Ω′
−
i (ω′) ≤ −1 ≤ Ω′

+
i (ω′).

See Appendix A for a proof. As τ is real and positive, the above distinction between the two branches
results in

Ω−i ≤ ω0,i − τ ≤ Ω+
i ,

expressed in terms of the non-scaled variables.
The least stable modes of the SR operator F (given in (7)) will then be extracted by applying an

eigenvalue solver to the filtered propagator

P = exp(i∆tF) (11)

as motivated in § 2.1. This will extract the least stable modes of the filtered operator F . Consequently, we
can restrict our attention to the Ω′+ branch. Furthermore, as only the growth rate rather than the frequency
decides which modes will be extracted, the relevant features of the transformation can be studied in terms
of the single-valued real function ω′ → Ω′+i . This function is represented in figure 2.

Three regions of the ω′-plane can be identified:

• For 1 . ω′i, the transformed growth rate Ω′+i behaves similar to the un-transformed growth rate ω′i. No
significant dependency with ω′r is observed, indicating that no noticeable frequency selection occurs.
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Figure 2: Imaginary part of the eigenvalue of the SR operator Ω′+i (ω′) as a function of the eigenvalue ω′ of the origin for χ′ = 1.
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Figure 3: Practical implementation of the method

• For −2 . ω′i . 1, the value of Ω′+i (ω′) exhibits strong dependency on the real frequency ω′r. Along
a line of constant ωi, the value of Ω′+i (ω′) reaches a maximum for ωr = 0, confirming that the filter
plays the expected role of stabilizing modes with real frequencies far from ω0,r.

• For ω′i . −2, Ω′+i (ω′) is approximately constant. The dynamics of the SR system is dominated by the
control term in (6a) which conceals the dynamics of the linear operator L.

The above representation allows to determine the behavior of the proposed method. For ωi & ω0,i + τ ,
the spectral transformation produces results similar to that of the propagator approach (see § 2.1 and [10]).
The frequency selection effect is insignificant in this region. Strong frequency selection is achieved in the
range of frequencies ω0,i − 2τ . ωi . ω0,i + τ , as the effect of the bandpass filter is clearly present. Modes
with real frequencies outside a bandwidth of order τ centered around ω0,r are damped. In this range of
growth rates, modes with real frequencies close to ω0,r will be extracted first. All modes with a growth rate
ωi . ω0,i−2τ will map to essentially the same growth rate for the SR operator. These modes will be difficult
to distinguish with an iterative eigenvalue solver.

2.4. Numerical considerations

Implementation. A practical implementation of the present method requires only few additions to a standard
DNS code. These are summarized in figure 3. First, a routine evaluating the linearized Navier-Stokes operator
is needed. The linearization may be carried out by hand, as done in the examples given in this paper, or
numerically “on the fly” from a non-linear routine, as done in [14].
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Next, the eigenvalue extraction is performed. Several libraries for both sequential and parallel imple-
mentations may be used for this task. The Krylov-Schur solver provided in the SLEPc library [23] is used
here to extract the eigenmodes of the SR operator, with 60 Krylov vectors. Better convergence behavior has
been observed compared to the Implicitly Restarted Arnoldi Method (IRAM), which is more frequently used
for the computation of modes in fluid flow problems[16]. In [22], the authors report good results using the
“harmonic extraction” solver of SLEPc for frequency selection. For our cases, this method has not produced
the desired outcome.

Finally, only minor changes in order to integrate the filtering procedure into a standard time-stepping
routine are necessary. The algorithm for the time stepping of the SR dynamical system is exemplified using
an explicit Euler scheme as outlined below. The variables q1 and q2, respectively, represent the state and its
filtered counterpart, L is the linear flow operator, and δt is a discrete time step.

1: t← 0
2: while t ≤ ∆t do
3: r1 ← L(q1)
4: r1 ← r1 − χ ∗ (q1 − q2)
5: r2 ← iω0 ∗ q2 − χ ∗ (q2 − q1)
6: q1 ← q1 + δt ∗ r1
7: q2 ← q1 + δt ∗ r2
8: t← t+ δt
9: end while

The algorithm differs from standard time stepping by the additional lines 4, 5 and 7. These correspond to
a small number of operations compared to the application of the operator L, in particular, when high-order
schemes are employed; the SR computations are therefore only slightly slower than regular time-stepping,
and they can be just as efficiently parallelized.

Memory requirements. The memory requirement of the present method is twice that of a standard propagator
technique, as the dimension of the phase space is doubled due to the presence of the filtered variables. If
the eigenvalue solver and the time stepper respectively require ncv and nts vectors of size N (the number
of degrees of freedom associated with the discretization of the equations) as workspace, most of the memory
requirement will originate from the storage of these 2N(ncv + nts) values. For the discretization of the
compressible Navier-Stokes equations mentioned in the introduction with ncv = 60, nts = 20 and double
precision complex arithmetics, the program would require 2×5×256×512×80×16 B ≈ 1.6 GB of memory,
which is substantially less than the 80 GB required for the sparse LU decomposition alone.

Effect of the propagation time. The effect of the propagation time on the SR operator is the same as for
the classical propagator method [10]. The actual value of the propagation time ∆t should not influence
which subset of modes will be extracted. The propagation time will however affects the convergence of the
eigenvalue solver. If ∆t is small, only a few time marching steps are required in each iteration; nonetheless,
a large number of iterations will be necessary in order to reach a desired accuracy. It will also require a
large number of restarts, which ultimately may affect robustness. On the other hand, if ∆t is too large, each
iteration will be rather costly since it consists of many time steps, and the method will make less use of the
orthogonalization step. A balance has to be found between the computational time needed to propagate the
solution forward in time, the cost associated with the eigenvalue solver and the robustness of the restarting
procedure.

Time stepping accuracy. Numerical time stepping methods such as Euler and Runge-Kutta schemes cor-
respond to an approximation of the exponential matrix propagator by a matching polynomial. Such an
approximation preserves the modes: it therefore introduces no error on the computed modes. In practical
applications, the time step δt of the time-stepping routine is much smaller than the characteristic time scale
of modes one wishes to compute. As a consequence, the spectrum transformation introduced by numerical
time stepping will be nearly exponential in the range of eigenfrequencies of interest, such that the rules
derived earlier for the choice of parameters remain valid.
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Eigenvalue recovery. As explained in § 2.3, recovering the eigenvectors of L is straightforward, as they
correspond to the first N components of the eigenvectors of the SR propagator. The eigenfrequency ω
associated with an eigenvector q of L may conveniently be obtained by computing the Rayleigh quotient

−iω =
〈q|Lq〉
〈q|q〉 . (12)

Alternatively, the eigenvalue Ω of the SR operator may be computed from the eigenvalue λ of the SR
propagator via

Ω =
log(λ)

−i∆t
, (13)

and (9). Method (12) has three advantages over the latter method. First, as the logarithm is multivalued,
the above formula yields the imaginary part only if one knows the Riemann sheet Ω lies on, i.e. for example
that 0 ≤ Ωr ≤ 2π/∆t. Second, the numerical time stepping makes (13) inexact: as discussed in § 2.4,
the transformation introduced by time-stepping is not exactly exponential but rather a polynomial approx-
imation. This problem does not arise for the Rayleigh quotient (12). Finally, (12) minimizes the residual
‖Lq + iωq‖/‖q‖, the norm being that corresponding to the inner product in (12). This inner product may
include weights that select specific flow quantities of regions. In all computation presented in § 3 and 4,
the l2 inner product on the state vector components is chosen as it is the one used in the Krylov–Schur
algorithm.

3. Application to the local and global stability analysis of a compressible jet

3.1. Governing equations for local and global computations

We consider a compressible jet of radius R, with characteristic velocity U0, density ρ0 and tempera-
ture T0 measured on the centerline, discharging into a fluid at rest with density ρ∞ and temperature T∞.
These same quantities are used to make the problem non-dimensional. In a cylindrical coordinate sys-
tem (x, r, θ), the nonlinear governing equations are expressed in terms of the conservative flow variables
q = (ρ, ρux, ρur, ρuθ, ρE)T , where ρ is the density, u = uxex + urer + uθeθ is the flow velocity, and E
denotes the total energy [25]. The Reynolds, Mach and Prandtl numbers are defined as

Re =
U0Rρ0
µ

, Ma =
U0

c0
, Pr =

µCp
κ

= 1, (14)

with c0 the reference speed of sound on the jet axis, Cp the ambient specific heat at constant pressure, µ the
dynamic viscosity and κ the thermal conductivity of the fluid. The fluid properties Cp, µ and κ are assumed
to be constant throughout the flow.

For the purpose of a stability analysis, the flow variables q are decomposed into a steady axisymmetric
base flow qb and unsteady perturbations q′, such that q(x, r, θ, t) = qb(x, r) + q′(x, r, θ, t). The governing
equations are then linearized around qb, and a normal mode ansatz for q′ allows to characterize the temporal
growth or decay of perturbation eigenmodes of the linear system. Both local (§ 3.2) and global (§ 3.3 and
4) normal modes will be considered in the following. Local theory assumes the flow to be infinite, parallel
and uniform in the x− direction. In this case, perturbations are Fourier-transformed in x, leaving only r
as an eigendirection. Global theory, by contrast, considers spatially developing base flows, and accounts for
boundary conditions at the inlet and outlet. In the global framework, both r and x are thus eigendirections,
which leads to a system size that precludes the use of direct eigenvalue solvers.

3.2. Validation: direct computation of local temporal eigenmodes

A validation of the present SR propagator method is conducted by computing the eigenmodes of a parallel
jet of infinite streamwise extent. This test case represents the local stability problem, as it has been widely
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used to describe the stability properties of slowly varying flows [13]. The base flow is prescribed as

ubx =
1

2

{
1 + tanh

[
2

(
r − 1

r

)]}
, (15a)

ubr = ubθ = 0, (15b)

T b = S + (1− S)ubx +
γ − 1

2
Ma2ubx(1− ubx), (15c)

ρb = T b
−1
, (15d)

from which we obtain the total energy ρbEb = γ−1(γ − 1)−1Ma−2 + ρbubx
2
/2, with uniform pressure pb =

(γMa2)−1. The ratio of specific heats is taken as γ = 1.4, and S = T∞/T0 denotes the ambient-to-jet
temperature ratio. A hot jet with S = 0.5 is chosen for the present configuration, along with the parameters
Re = 500, Ma = 0.4 and Pr = 1.

Azimuthal periodicity and streamwise invariance justify a normal mode ansatz of the form

q′(x, r, θ, t) = q̃(r) exp [i(kx+mθ − ωt)] + cc, (16)

where cc stands for the complex conjugate. Within the framework of a temporal stability analysis, the
complex frequency ω is sought as a function of prescribed streamwise and azimuthal wave-numbers k ∈ R+

and m ∈ Z.

One-dimensional reference solution. Upon substitution of the base flow (15) and normal mode perturbations
(16) into the linearized equations of motion, only the radial coordinate direction needs to be discretized. We
use a compact finite-difference scheme [17] for the spatial discretization and impose homogeneous Dirichlet
boundary conditions at r = 150, leading to the discrete local temporal eigenvalue problem of the form

A(k,m)q̃ = ωBq̃ . (17)

All eigenmodes (ω, q̃) are then computed via a QR-algorithm. The most relevant part of the spectrum for
values k = m = 1 is shown in figure 4a. Three families of eigenmodes may be distinguished based on their
frequency ωr, their growth rate ωi, and their spatial distributions of azimuthal vorticity (figure 4b) and
dilatation ∇ · u (figure 4c).

Vortical perturbations localized in the fluid at rest outside the jet form the classical continuous spec-
trum of unbounded shear flows [26] with near-zero real frequency. Due to the finite size of the numerical
domain, continuous branches results in densely clustered discrete modes in the discretized problem. These
are represented by blue symbols that line up close to the ωr = 0 axis in figure 4a. Acoustic waves in the
freestream form two continuous branches, both plotted in red in figure 4a. These are characterized by very
slow temporal decay (ωi ≈ 0) and frequencies in the continuous ranges ωr ≤ −k

√
S/Ma and ωr ≥ k

√
S/Ma

. These cut-off frequency ±k
√
S/Ma corresponds to cylindrical acoustic waves traveling parallel to the jet

axis at the speed of sound c∞ in the outer flow. Real parts of vorticity and dilatation fields are shown in
figures 4b, c as a function of r for particular modes (vortical mode with ω = 2.24.10−6 − 1.49.10−3i in blue
and acoustic mode with ω = 2.03 − 1.91.10−3i in red). A fourth branch of modes is represented by green
symbols in figure 4a. This branch consists of discrete modes with a single unstable one marked by a cross.
The spatial structure of the unstable eigenmode is plotted in green in figures 4b, c. This mode displays strong
vorticity perturbations inside the jet shear-layer around r = 1, and nearly no dilatation perturbation. As
the discrete modes (green symbols in figure 4a) have real frequencies below the acoustic cut-off value (i.e. a
subsonic phase velocity), no sound is radiated by these modes.

3.3. Local eigenmodes via the SR method on a two-dimensional periodic domain

In order to demonstrate the use of the SR technique, it is applied to reproduce a selected part of the
spectrum shown in figure 4a. Local modes may be computed as global eigenmodes on a two-dimensional
(x, r) domain,

q′(x, r, θ, t) = q̃(x, r) exp [i(mθ − ωt)] , (18)
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Figure 4: Temporal spectrum directly computed with the QR algorithm for the parallel base flow given by (15) for Re = 500,
Ma = 0.4 and Pr = 1, and for waves number k = 1 and m = 1. (a) The eigenvalue spectrum is displayed in terms of real
frequency ω′r and temporal growth rate ω′i of the modes. Blue symbols correspond to vortical modes in the outer flow; red
symbols to acoustic modes in the outer flow and green ones to shear-layer modes. (b) The real part of vorticity eigenfunction for
three selected modes (indicated by large color crosses in (a)) (Green: ω = 0.471+0.226i, label 1 in (a); red: ω = 2.03−1.91.10−3i,
label 2 in (a); Blue: ω = 2.24.10−6 − 1.49.10−3i, label 3 in (a)). (c) The real part of dilatation eigenfunction is represented for
the same modes as in (b).

with periodic boundary conditions in x and with a streamwise extent 0 ≤ x ≤ 2π/k. Using a two-dimensional
discretization allows the use of the same code here (for a parallel base flow) and in § 4 (for non-parallel base
flow), except for different boundary conditions. The base flow in the present case is still parallel, given by
(15). The objective is to compute a number of least stable discrete eigenmodes of the shear-layer type (green
symbols in figure 4a).

If a standard Krylov technique were to be applied to the propagator of the linear equations of motion
alone, only the single unstable shear-layer mode could be extracted, all other discrete modes being masked
by the less stable acoustic (red in figure 4) or vortical (blue) branches. The SR technique allows to stabilize
all modes outside a region of interest of the spectrum, and thereby may give access to otherwise masked
parts of the spectrum, in particular here by stabilizing the continuous branches.

The extended linear system (6) is discretized on an orthogonal grid, resolving the domain 0 ≤ r ≤ 15,
0 ≤ x ≤ 2π/k with 30 × 256 points. Explicit 5th-order centered finite differences in combination with a
spatial filtering scheme [6] are used for the spatial derivatives. The spatial filter merely suppresses numerical
instabilities of the finite-difference scheme; it is unrelated to the temporal filtering employed by the SR
method. Matrix-free time stepping of the extended linear equations is performed using a 3rd-order Runge–
Kutta algorithm. For the purpose of validation against the results of § 3.2, only modes with a streamwise
wavenumber k = 1 are sought, and higher harmonics of the periodic domain are continuously filtered out
during the time stepping, by means of an FFT in x.
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Choice of transformation parameters. In order to focus on the green branch represented in figure 4a, appro-
priate parameter values for χ, τ and ω0 must be chosen. As discussed in § 2.2, a value of χ′ = 1 is maintained,
such that χ = τ . The frequency shift ω0 selects the region of interest in the frequency plane; a choice of
ω0 = 1 + 0.2i has been found to be suitable. The parameter τ determines the width of the bandpass filter.
It should be chosen sufficiently small to efficiently damp undesired modes (here, the blue and red branches)
but large enough such that the modes of interest achieve growth rates ωi & ω0,i − 2τ, as discussed in § 2.3.
A value of τ = 0.5, yielding χ = 0.5, represents a good compromise for the present case. The propagation
time is set to ∆t = 0.5.

Results. Ten eigenvalues obtained with the SR method are shown as black circles in figure 5, alongside the
reference solution (identical to figure 4a). The agreement is excellent, with relative errors smaller than 10−4

on both the eigenvalues and the eigenmodes (in L∞ norm). The spectral transformation with the present
choice of parameters successfully selects the least stable shear-layer modes. Contour lines in figure 5 indicate
the transformed growth rate Ωi(ω) that governs the mode selection by the SR method.
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Figure 5: Application of the SR method to the computation of local modes of a compressible jet flow for the same parameter
settings as in figure 4. The spectrum from figure 4a is reproduced with the same conventions. The ten modes computed with
the SR method are denoted by black circles. The dotted lines represent isocontours of the growth rate Ω+

i of the filtered
propagator, based on parameters ω0 = 1 + 0.2i and τ = χ = 0.5, confirming that the computed eigenvalues correspond to the
largest Ω+

i . The insert on the bottom right of the figure shows a close-up view on the region marked by a black rectangle

4. Application: global eigenmodes of a compressible jet

4.1. Non-parallel base flow

The SR method is now applied to compute global modes (18) of a non-parallel jet. The geometry of
the computational domain is represented in figure 6. The jet exits from an idealized nozzle, modeled as
an infinitely thin adiabatic wall at r = 1 and x ≤ 0. Only the upper half-plane r > 0 is resolved in the
calculations, and appropriate symmetry conditions for axisymmetric flow are imposed on the jet axis r = 0.
In order to control the jet profile at x = 0 (diffusive effects inside the pipe can be particularly important at
low Reynolds and high Mach numbers), velocity and temperature profiles are imposed at x = x0, close to
the jet nozzle. The Navier–Stokes equations are solved downstream of x0 (domain II in figure 6a), with local
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Figure 6: Computational domains for (a) base flow and (b) global mode computations. The parameter values for these
computations are: xmin = −200, xmax = 300, rmax = 250, x0 = −2, L+

x = L−x = Lr = 150. The base flow is taken to be
parallel in region I, whereas the Navier–Stokes equations are solved in region II.

one-dimensional (LODI) boundary conditions [21] on the numerical boundaries at xmin, xmax and rmax.
The same explicit finite-difference scheme as described in § 3.3 is used. A steady solution of the nonlinear
Navier–Stokes equations, computed via the SFD method of [1] for Re = 100, Ma = 0.75, Pr = 1 and S = 1
is taken as a base flow. A parallel flow region is added upstream of x0 (domain I in figure 6a) to extend
the base flow to the domain used for the linear stability calculations. Axial velocity and angular vorticity
distributions of the spatially spreading base flow are shown in figure 7a, b. The momentum thickness

θ(x) =

∫ α

0

ρb(r, x)ub(r, x)

ρb(0, x)ub(0, x)

(
1− ub(r, x)

ub(0, x)

)
rdr, α =

{
1 x ≤ 0
∞ x > 0

is displayed in figure 7c, and selected axial velocity profiles are shown in figure 7d.
Temporal eigenmodes of the linearized Navier–Stokes equations, commonly referred to as “global modes”,

are computed on the domain displayed in figure 6b. Non-reflecting boundary conditions given by [7] are
employed at the inflow, outflow and upper boundary. Furthermore, perturbation quantities are artificially
attenuated in sponge layers [8], indicated by the outer gray regions in figure 6b, in order to further minimize
spurious reflections. Only axisymmetric modes (m = 0) are computed, and symmetry conditions on the
jet axis are imposed accordingly. The numerical domain spanned by −200 ≤ x ≤ 300 and 0 ≤ r ≤ 250 is
discretized with 1024× 512 grid points.

Five eigenvalues were requested for each of nine shift parameters ω0 with 0.3 ≤ ω0,r ≤ 0.75 and
ω0,i = 0.05, represented by black diamonds in figure 8a. Note that SLEPc may return more than the
requested number of eigenvalues. Parameters τ = χ = ∆t = 0.1 were used in all calculations. The resulting
eigenfrequencies are represented in figure 8a in the complex ω- plane and form a discrete branch of solutions.
For each value of ω0, one isocontour of the growth rate Ω+

i of the filtered propagator is drawn, corresponding
to the growth rate of the most stable mode computed with each particular shift; no eigenfrequency other
than those computed should lie above these parabola-shaped curves.

For ω0 = 0.8 + 0.05i, five eigenvalues were first requested, as for the other values of the frequency shift.
The computation was then continued to yield a total of fifteen modes. This portion of the spectrum is
displayed in more detail in figure 8c, together with iso-contours of the growth rate of the filtered propagator.
The first five modes that have been found are marked by red circles. Among the additional requested modes,
several are found to lie on a separate, slightly more attenuated branch. The spatial structure of the real
part of vorticity perturbations associated with three eigenmodes of the upper branch, marked by labels in
figure 8, are displayed in figure 9. Perturbations are concentrated in the jet shear layer region, suggesting
an inflectional instability mechanism. The time evolution of these modes show that the vortical structures
represented in figure 9 propagate downstream at a phase velocity of about half the jet centerline velocity; as
a consequence, their typical axial wavelength decreases with increasing real frequency. Modes belonging to
the more attenuated branch, which is only detected in figure 8 for the shift ω0 = 0.8 + 0.05i, display a very
similar structure (not shown).
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Figure 7: Base flow for the global linear stability study of a spatially developing jet with Re = 100, Ma = 0.75, Pr = 1 and
S = 1 (unheated). The axial velocity and angular vorticity distributions are respectively displayed in (a) and (b). Only a
portion of the computational domain is shown. The evolution of the momentum thickness θ is represented in (c). In (d), axial
velocity profiles are at various locations are shown together with the profile used in § 3.2 and 3.3.
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Fifteen modes were computed for a large frequency shift ω0 = 5.1. These are represented in figure 8b
by red and green symbols. Their dilatation fields, shown in figure 10, characterize these modes as being of
acoustic nature. Comparing the real and imaginary parts (not shown) of the dilatation fields in the pipe, it
appears that some modes correspond to acoustic waves propagating downstream inside the duct and being
scattered at the nozzle exit (green symbols in figure 8b). Others correspond to acoustic waves emanating
from a location close to the nozzle exit (red symbols in figure 8b). These modes propagate upstream in the
inlet duct.

One should keep in mind that free-stream vortical modes with near zero decay rates are also present in
the spectrum, similar as in the local analysis of § 3.2. Without shifting and relaxing of the propagator, all
modes shown in figure 8 would be masked by those least stable modes. In practice, however, the compu-
tation of these modes is challenging, as the separation between eigenvalues is very weak (on the order of
1/ [Re(xmax − xmin)]). No result could be converged with sufficient accuracy for this family of modes, and
they are not shown.

4.2. Convergence

Convergence of the eigenvectors through the iterations of the Krylov-Schur algorithm is usually monitored
in terms of a residual associated with the operator the algorithm is applied to, i.e the SR propagator in the
present case. Denoting by Qj,p the estimated pth leading eigenvector after the jth restart of the Krylov-Schur
algorithm, and by λj,p the corresponding eigenvalue, the residual is estimated

ej,p =
‖ exp(∆tF)Qj,p − λj,pQj,p‖

‖Qj,p‖
,

and Qj,p is accepted as converged if the estimation is smaller than a user-chosen tolerance ε. A typical
evolution of the estimation of this residual is displayed in figure 11a. Non-monotonous convergence is
observed, consistent with the fact that, in the present case for which the operator L is non-Hermitian, the
filtered propagator is non-Hermitian as well. For ω0 = 0.45 + 0.05i, computations were performed with
values ε = 10−3 (× in figure 11b), 10−4 (◦) and 10−5 (+). Five modes were requested in each computation.
The resulting spectra are shown in figure 11b. Significant scattering of the computed eigenvalues is noticed
for ε = 10−3. The absolute scattering being of the same order of magnitude in the real and imaginary
directions, relative errors in the real part of the eigenfrequency are much smaller than in the growth rate.
The scattering of eigenvalues becomes less important as requested accuracy increases. With ε = 10−4 and
ε = 10−5 eigenvalues seem to converge to a line trend, and eigenvalues in the overlapping region from the
two shift values ω0 = 0.45 + 0.05i and 0.5 + 0.05i are in reasonably good agreement, as shown in figure 11c.
However, this measure of convergence depends on the spectral transformation used, in particular here on ∆t
and τ . A more meaningful measure of accuracy may be defined based on the original operator L:

e′j,p =
‖Lqj,p + iωj,pqj,p‖

‖qj,p‖
with Qj,p = (qj,p, qj,p)

T

These residuals are computed after convergence (denoted by j =∞), and are displayed in figure 11d. A first
observation is that the values differ significantly from the values of the e∞,p ≈ ε discussed earlier, measured
with respect to the SR propagator. Furthermore, the values of e′∞,p decrease only slowly with ε; values on
the order of 3%, 2% and 1% are found for ε = 10−3, 10−4 and 10−5 respectively. This saturation seems to be
due to the spatial filtering which is applied during time-stepping in order to maintain stability. It introduces
a slight modification of the propagator which is not taken into account when the Rayleigh quotient (12) is
taken.

In order to achieve residuals e′ ≤ 2.2%, values of ε ranging from 10−4 to 10−7 had to be used for the
computations presented in the previous section, depending on the shift ω0 (larger values of ω0,r requiring
smaller values of ε in the present case).
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5. Conclusion

A new numerical procedure for the solution of large eigenvalue problems has been presented. A relaxation
technique using a first-order temporal bandpass filter is coupled to to the linearized equations of motion,
such that the least stable eigenmodes of the filtered system lie in a prescribed frequency band of interest
centered around a shift frequency. These modes are then recovered through propagation over a finite time in-
terval, using standard eigenvalue extraction techniques. This “shift-relax” transformation therefore requires
no solution of linear systems, which are computationally expensive or even untractable for global stability
problems involving two- or three-dimensional flows. Although not as flexible as the classical “shift-invert”
transformation or its variants, the present method has the advantage of considerably lower memory require-
ment, making it suitable for the analysis of complex two- or three-dimensional flow geometries. Another
advantage lies in the ease of implementation: only a simple filter equation needs to be added to an existing
simulation code in order to perform eigenmode extraction. No matrix needs to be built, and no precondi-
tioning is required. Finally, the algorithm can be parallelized as efficiently as a regular time stepper, as the
filter is local in space.
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Figure 8: Eigenvalues of axisymmetric modes in an isothermal jet at Re = 100, Ma = 0.75 and Pr = 1 computed using the
SR method. Tolerance was set to ε = 10−4 for ω0,r ≤ 0.5, ε = 10−5 for 0.5 < ω0,r ≤ 0.8 and ε = 10−7 for ω0,r = 5.1.
(a) Low frequency shear layer modes. Shift positions are indicated by diamonds. For each shift, an isocontour of the filtered
propagator growth rate is represented; its value corresponds to the least amplified mode computed by the Krylov-Schur solver.
For ω0 = 0.45 + 0.05i, the shift, the modes and the isocontour are represented in blue. (b) Low frequency vortical modes are
shown together with higher frequency acoustic modes. (c) Close-up on the 15 modes computed for ω0 = 0.8 + 0.05i, showing
the existence of two branches: dots correspond to the first five modes computed, crosses correspond to the next ten. Labels
correspond to the modes for which the vorticity or dilatation field is displayed in figure 9 and 10.
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Figure 9: Real part of the vorticity fields of typical eigenmodes, labeled in figure 8a, in an isothermal jet at Re = 100, Ma = 0.75
and Pr = 1. (a) ω = 0.26− 0.026i. (b) ω = 0.50− 0.040i. (c) ω = 0.71− 0.047i.

Figure 10: Real part of the dilatation fields of typical eigenmodes, labeled in figure 8a, in an isothermal jet at Re = 100,
Ma = 0.75 and Pr = 1. (a) ω = 4.9− 0.17i. (b) ω = 5.1− 0.18i.
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Figure 11: Convergence features. (a) A typical evolution of the estimated residual of the leading eigenvalue with the number
of restarts. (b) Spectra computed with ω0 = 0.45 + 0.05i and ε = 10−3, 10−4 and 10−5 (respectively represented by ×, ◦ and
+ symbols). 5 modes were requested. (c) Spectra computed for ε = 10−5 with ω0 = 0.45 + 0.05i and 0.5 + 0.05i are shown. (d)
Residual based for the computations of (b).

50 Chapter 3. Eigenvalue solver for compressible flows



Appendix A. Distinction between the two transformed eigenvalues

The eigenvalue transformation is given in terms of the scaled variables by (10). Let us introduce

Ω̃ =
Ω′ + i√
χ′

, ω̃ =
ω′ + i(1− χ′)√

χ′
.

Equation (10) then reads

Ω̃2 − ω̃Ω̃ + 1 = 0. (A.1)

The solutions of this second-order polynomial are given by

Ω̃ =
1

2

(
ω̃ ±

√
ω̃2 − 4

)
.

Let α =
√
ω̃2 − 4. One of these roots has a positive imaginary part and the other one a negative one if

|ω̃i| ≤ |αi|. In order to prove that this condition holds, real and imaginary parts are introduced in the
definition of α:

(α2
r − α2

i ) + 2αrαii = (ω̃2
r − ω̃2

i )− 4 + 2ω̃rω̃ii

so

ω̃rω̃i = αrαi α2
r − α2

i = ω̃2
r − ω̃2

i − 4.

The variable αi can then be written as

α2
i = ω̃2

i + 4− (ω̃2
r − α2

r) = ω̃2
i + 4−

(
α2
i

ω̃2
i

− 1

)
α2
r

which finally gives

α2
i =

ω̃2
i + 4 + α2

r

1 +
α2
r

ω̃2
i

= ω̃2
i

ω̃2
i + 4 + α2

r

ω̃2
i + α2

r

≥ ω̃2
i .

Let Ω̃+ denote the root of (A.1) with a positive imaginary part and Ω̃− the one with the negative
imaginary part. In terms of the primed variables, this corresponds to

Ω′
−
i ≤ −1 ≤ Ω′

+
i .
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Chapter 4

Base flows

The aim of this study is to describe the development of coherent structures,
such as those shown in figure 4.1, commonly observed over about ten jet radii
downstream of the jet pipe. The present chapter presents the different “base
states” that have been used. Steady solutions of the Navier-Stokes equa-
tions (§ 4.1) describe laminar flows that develop very slowly. Such solutions,
although stable, are not observed: incoming perturbations are amplified,
resulting in turbulent jets in most situations. Contrary to steady states, tur-
bulent mean flows (§ 4.2) are strongly non-parallel. As no mean flows were
available at the time when most of the studies were performed, a model flow
developed by Monkewitz and Sohn (1988) was adapted to fit the present flow
configuration (§ 4.3).

4.1 Steady jet flows

The Navier–Stokes equations are symbolically written as

B∂q
∂t

= N (q, q) + Lq = N(q) (4.1)

where N is bilinear and B and L are linear1. Let q0 be a steady state, such
that N(q0) = 0. The dynamics of infinitesimal perturbations q′ about this
state are therefore governed by

B∂q
′(t)

∂t
= ∇Nq0q

′(t) ≡ Lq′(t) (4.2)

which provides a convenient framework for the analysis. This approach has
been followed in many previous stability analyses, e.g. by Barbagallo et al.

1In the compressible case B = Id. For the incompressible case B is used to impose mass
conservation.
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Figure 4.1: Smoke visualization of a jet at Re = 104. Image taken from
Crow and Champagne (1971).

(2009) for the flow over an open cavity, by Meliga et al. (2009) and Meliga
et al. (2010) for wakes, by Barkley et al. (2002) for the flow over a backward-
facing step and by Akervik et al. (2008) for boundary layer flow.

Instead of computing a steady solution of the Navier–Stokes equations
Nichols and Lele (2011b) used a boundary layer approximation of the base
flow for their linear analysis of perturbations in free jets. As jet flows are
stable, steady solutions of the Navier–Stokes equations can easily be com-
puted by advancing in time an initial guess or, if a linear solver is available,
using Newton’s method. Compared to a boundary layer approximation, this
is computationally more expensive but allows us to take into account both
the jet pipe and the free-jet region. A typical steady solution for a jet flow
is shown in figure 4.2. As the inflow profile imposed at x = −5 is not a
Poiseuille flow, a slow viscous spreading is observed inside the jet pipe, and
the centerline velocity increases by 10% throughout the pipe. In spite of the
sudden change in geometry at x = 0, non-parallelism is weak for x > 0 since
viscous effects are weak. A Reynolds number of ∼ 100 would be necessary to
have a significant spreading for 0 ≤ x ≤ 10. Very similar results have been
found for the compressible regime.
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Figure 4.2: Axial velocity distribution of the steady solution of the in-
compressible Navier–Stokes equations at Re = 103 with an inflow profile
ux(0, r) = tanh(5(1− r)).

4.2 Mean turbulent flows

Figure 4.3 displays the axial velocity distribution of a turbulent mean flow
obtained by Direct Numerical Simulation by Sandberg et al. (2012) for a
jet Mach number of 0.46 and a co-flow Mach number of 0.2. Contrary to
the steady flow, the flow development is very rapid downstream of the pipe.
In the potential core, which extends over approximately 0 ≤ x ≤ 8, the
shear layer thickness increases quasi-linearly with x. This type of base flow
therefore seems more suitable than steady laminar flows for the description
of coherent structures, such as those of figure 4.1. However, a mean flow q1

does not satisfy N(q1) = 0, so the dynamics of perturbations about q1 is no
longer given by (4.2). Following Reynolds and Hussain (1972), we decompose
the flow field according to q = q̄ + q̃ + q′ where q̄ corresponds to the mean
flow, q̃ to the coherent structures and q′ to the turbulent scales. Let τc be
the characteristic time associated with coherent structures and τt the time
associated with turbulent scales. The average over long times τl � τc is
denoted by ·̄. Characteristic times are assumed to be such that there is an
intermediate time τs such that τc � τs � τt, and the average over this time
scale is denoted by 〈·〉. Taking the long-time average of (4.1) yields the
equation for the base state:

N (q̄, q̄) +N (q̃, q̃) +N (q′, q′) + Lq̄ = 0. (4.3)

The short time average gives

B∂q̃
∂t
−N (q̄, q̃)−N (q̃, q̄)− Lq̃

= N (q̃, q̃)−N (q̃, q̃) + 〈N (q′, q′)〉 − N (q′, q′). (4.4)

Equation (4.4) gives the dynamics of the coherent structures. Terms on the
left-hand side correspond to the LNS equations, similar to the case of pertur-
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bations about a steady state. The first two terms on the right-hand side are
quadratic in q̃ and can be omitted in a linear analysis. The last two terms
correspond to the influence of turbulent scales on instability waves and can
contribute to the linear dynamics. They cannot be explicitly computed and
need to be evaluated through a closure model (see Reynolds and Hussain
(1972) for possible models). The simplest approach, followed here and re-
ferred to as the “quasi-laminar model” in Reynolds and Hussain (1972), is to
simply neglect this term. This approximation proved to be sufficient for jet
flows in previous linear stability studies (Crighton and Gaster 1976, Plaschko
1979, Michalke 1984). Rodriguez et al. (2011) report that when performing a
stability study of a turbulent jet using the Parabolized Stability Equations,
modeling turbulent scales through an eddy viscosity did not alter signifi-
cantly the results. For boundary layer flows, on the contrary, modeling the
influence of turbulent scales on coherent structures is required in order to
capture the instability features. In a parallel-flow framework, eddy viscosity
models have been used, see Kitsios et al. (2010), Pujals et al. (2009). In a
non-parallel framework, Crouch et al. (2007) used a uRANS model to study
the stability of the flow around an airfoil.
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Figure 4.3: Axial velocity distribution of the turbulent mean flow for a Ma =
0.46 jet exiting into a Ma = 0.2 co-flow at Re = 7500. (Data given by
Sandberg et al. (2012)).

4.3 Model jet flow

Neither boundary layer approximations nor steady-state solutions of the
Navier–Stokes equations can reflect the rapid streamwise development ob-
served in turbulent jets. For the purpose of this study, a parametric model
of a turbulent jet is adapted from Sohn (1986) (see also Monkewitz and Sohn
(1988)) and schematically presented in figure 4.4. The model is designed to
match experimentally measured mean flows in the subsonic regime. As the
original manuscript is not widely available, the free-jet model is reviewed in
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Parallel pipe flow Potential core Self-similar

region

x

r

L

Figure 4.4: Model base flow. The parallel pipe flow region, the potential core
and the self similar region are connected by smooth transitions, indicated by
shaded areas.

§ 4.3.1. Downstream of the nozzle, experimental studies indicate that the
potential core typically extends over eight jet radii, and that in this region
the shear layer initially spreads linearly with x while the velocity on the axis
remains approximately constant. Further downstream, velocity profiles are
approximated as a Gaussian, and continue to spread radially. The flow in-
side the inlet duct is considered to be parallel (§ 4.3.2). A smooth transition
between the pipe flow and the free jet is realized in a small matching region
downstream of the nozzle (§ 4.3.3).

4.3.1 Free jet

The parametric model of a turbulent mean jet flow developed by Sohn (1986)
is used in this study. A family of profiles is described, characterized by the
density ratio at the inlet

S0 =
ρ(0, 0)

ρ∞

and the Mach number. A third parameter ε0, characterizing the shear layer
thickness at the outlet, is introduced in the present study.

Explicit analytical formulas are given for the length of the potential core
and the evolution of the jet axial velocity ux on the centerline. The shape of
the axial velocity profile is also given, up to a radial scale δ(x) that remains
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to be determined. At each axial position, the relationship between density
and axial velocity profiles is also given as a function of the density on the
jet axis S(x). δ and S are chosen such that momentum and energy flux are
conserved throughout the jet.

Potential core The length of the potential core is prescribed as

L = 8 + 2.5 log(S0). (4.5)
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Figure 4.5: (a): Distribution of axial velocity Uc(x) given by (4.7). (b) Dis-
tribution of the shear layer thickness parameter N(x) given by (4.8) (dashed
line) and by (4.11) with ε0 = 0.15 (solid line).

Axial velocity profile Axial velocity profiles are assumed to be of the
form

ux(r, x) = Uc(x)F

(
r

δ(x)
, x

)

with

F (η, x) =
{

1 +
[
exp

(
η2 log(2)

)
− 1
]N(x)

}−1

. (4.6)

The quantity Uc(x) denotes the velocity on the jet center-line: in order to fit
experimental measurements it is assumed to be given by

Uc(x) =

{
1. x

L
≤ 1.

1.682
[(

x
L

)7
+ 37.1

(
x
L

)−0.189
]−1/7

x
L
> 1.

(4.7)

The parameter N(x) governs the smoothness of the profile: N → ∞ corre-
sponds to a cylindrical vortex sheet, while N = 1 corresponds to a Gaussian
velocity distribution. The streamwise variation of N is given by

N(x) =

{ [
0.02 + 0.869

(
x
L

)
− 0.031

(
x
L

)6.072
]−1

x
L
≤ 1.35.

1. x
L
> 1.35.

(4.8)

and Uc and N are represented as functions of x in figure 4.5.
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Pressure field Pressure is assumed to be constant, and given as

p =
1

γMa2 .

Density / temperature distribution The relation between temperature
and velocity is taken from Schlichting (1955):

1/ρ(r, x)− 1

1/S(x)− 1
=

(
ux(r, x)

Uc(x)

)σ(x)

= F

(
r

δ(x)
, x

)σ(x)

, (4.9)

where the distribution of σ is given by

σ(x) =





1. x
L
≤ 0.64,

0.8 + 0.2 cos
(
2.49 x

L
− 1.60

)
0.64 < x

L
≤ 1.90,

0.6 x
L
> 1.90,

(4.10)

to match experiments.

Momentum and energy conservation The streamwise development of
δ and S is not prescribed: these quantities are computed so that momentum
and energy fluxes through sections perpendicular to the jet axis are constant:

∫ ∞

0

ρu2
xr dr =M

and ∫ ∞

0

ρux

[
T − 1

(γ − 1)Ma2 +
1

2
u2
x

]
r dr = E .

These expressions can be rewritten as

M = δ(x)2Uc(x)2

∫ ∞

0

F (η, x)2

1 + (1/S(x)− 1)F (η, x)σ(x)
η dη

and

E = δ(x)2

∫ ∞

0

1

2

Uc(x)3F (η, x)3

1 + (1/S(x)− 1)F (η, x)σ(x)
+

(1/S(x)− 1)

(γ − 1)Ma2

Uc(x)F (η, x)1+σ(x)

1 + (1/S(x)− 1)F (η, x)σ(x)
η dη.

The invariants M and E are determined by their values at x = 0, where
δ(0) = 1 and S(0) = S0. The ratio M/E is only a function of S(x) and
is solved numerically. This value is then used to obtain δ(x) by invoking
momentum and energy conservation.
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Thickness of the shear layer The thickness of the shear layer is esti-
mated through the momentum thickness

Θ(x) =

∫ ∞

0

ρ(r, x)ux(r, x)

ρ(0, x)ux(0, x)

(
1− ux(r, x)

ux(0, x)

)
r dr.

which is related to the distribution of N(x). The variations of N in the
potential core are such that:

• the shear layer thickness is of the order of 0.02 at the nozzle,

• the shear layer spreading is approximately linear in the potential core,

• the shear layer matches a Gaussian distribution at x = 1.35L: N and
its first derivative are continuous.

From a numerical point of view, the treatment of such a shear layer would
be expensive. The only modification to the free jet model of Sohn reviewed
above is to prescribe N in the form

N(x) =
[
ε0 + ax+ bx6

]−1
, x ≤ 1.35L. (4.11)

The parameter ε0 is chosen as ε0 = 0.15, which gives Θ = 0.054 at x = 0 (this
value is modified by the presence of the pipe flow as explained in § 4.3.2).
The coefficients a and b are determined in order to ensure continuity of N
and N ′ at x = 1.35L. The new distribution of N is illustrated in figure 4.5
together with the one given by (4.8); they have similar behavior except for
the value at x = 0.

4.3.2 Pipe flow

Parallel pipe flow The axial velocity profile in the pipe is assumed to be
of the form

ux(r, x) =

{
2
(

1 + [exp (r2 log(2))− 1]
N1

)−1

− 1 r ≤ 1.

0 r > 1.
(4.12)

The parameter N1 characterizes the maximum slope of the velocity profile.
It should be of the order of ε−1

0 such that it continuously matches (4.12)
with the jet flow velocity distribution given by (4.6). An adiabatic pipe is
considered, and thus uniform temperature, density and pressure distributions
are assumed inside and outside the pipe. The density is respectively equal
to S0 for r ≤ 1 and 1 for r > 1. This pipe flow profile defines the momentum
and energy fluxesM and E to be conserved throughout the jet. The resulting
distributions of δ and S are shown in figure 4.6.
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Figure 4.6: Application of momentum and energy conservation for ε0 = 0.15,
Ma = 0.75 and S0 = 1. A value N1 = 0.6/ε0 has been chosen to ensure
smoothness of the momentum thickness. (a): jet radial scale. (b): local
density ratio.

4.3.3 Matching

Matching of pipe and jet flow Let φ denote any of the flow field vari-
ables, ρ, ux or T . If φj(r, x) denotes the quamtity in the jet (given in §4.3.1)
and φp(r) the same field in the pipe (given in §4.3.2), a continuous matching
between each field is achieved as follows. Given a transition length xt, φb is
uniformly defined in the entire domain as

φb(r, x) =





φp(r) x ≤ 0,[
(1− ψ

(
x
xt

)]
φp(r) + ψ

(
x
xt

)
φj(r, x) 0 < x ≤ xt,

φj(r, x) xt < x,

(4.13)

where ψ is a smooth function with ψ(0) = 0 and ψ(1) = 1. The values of
xt and N1 are chosen such that the evolution of the momentum thickness is
continuous. The resulting axial velocity field is presented in figure 4.7.

Radial velocity: mass conservation Only momentum and energy fluxes
across sections perpendicular to the jet axis are conserved. Mass conserva-
tion is imposed locally, in order to obtain a radial velocity field u0,r from
the previously computed axial velocity and density fields using local mass
conservation:

∂ρbu0,x

∂x
+
∂ρbu0,r

∂r
+
ρbub,r
r

= 0.
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Figure 4.7: Base flow for ε0 = 0.15, Ma = 0.75 and S0 = 1 and xt = 1.. A
value N1 = 0.6/ε0 has been chosen to ensure smoothness of the momentum
thickness. (a): isocontours of axial velocity. (b): axial velocity profiles at
various x locations. (c): momentum thickness.



Chapter 5

Modal analysis of the jet
dynamics

5.1 Introduction

5.1.1 Spatial and temporal instability

Classically, flow stability has been studied under the assumption of parallel
base flows q0 (Schmid 2007). For non parallel base flows, slices at different
locations x0 are considered, and the stability of the base flow profile q̃0(x, r) =
q(x0, r) is considered. This type of analysis is valid when the typical scale
of variation of the base flow L is much larger than the wave length of the
perturbations λ. In these approaches as the domain is infinite pertubations
are assumed to be of the form

q(x, r; t) = q̃(r) exp [i(kx− ωt)] (5.1)

Using this decomposition, the LNS equations read

− iωMωq + ikMkq − k2Mk2q + Lq = 0 (5.2)

where Mω, Mk, Mk2 and L are linear operators. Two types of modal stability
analysis can be carried out in this framework:

• in the temporal approach, the wave length λ of the perturbation is
given, so the wave number k = 2π/λ ∈ R is imposed. In this case the
complex frequencies ω can be computed as eigenvalues of (5.2) using
e.g. a QZ algorithm. Depending on the sign of the imaginary part of
ω, the perturbation will either grow or decay exponentially in time .

65
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• in the spatial approach, the circular frequency of perturbations ω ∈ R
is imposed, so the wavenumber k ∈ C appears in (5.2) as the solution
of a quadratic eigenvalue problem, which can be converted to a regular
eigenvalue problem and solved similarly to the temporal case.

Figure 5.1 presents the spatial growth rate as a function of the frequency
for an inviscid incompressible plane shear layer with a tanh profile (data
taken from Ho and Huerre (1984)). In this case, the only length scale is the
shear layer thickness, so the relevant scaling for frequencies is to consider a
Strouhal number based on the momentum thickness

Stθ =
f ∗θ∗

U∗0
=

θ

R

ω

2π

It appears that only a limited range of frequencies is spatially amplified,
characterized by 0 ≤ Stθ ≤ 0.08. The optimal spatial growth is achieved for
Stopt = 0.032, and for this frequency the corresponding spatial growth rate
is

ki,θ = k∗i θ
∗ =

θ

R
k = 0.12

In the case of a spatially evolving shear layer, the momentum thickness
varies with the steamwise position x, and consequently, so does the range of
amplified frequencies and the associated growth rates. Long wavelengths are
weakly amplified at any position, but large spatial growth only occurs in a
limited region of strong shear.

In the case of a viscous jet flow profile, the stability features are similar
to the case presented above but additional length scales are introduced by
the jet radius and viscous effects. Figures 5.2 and 5.3 display temporal and
spatial stability features at various axial locations for the model mean flow
described in chapter 4. From such an analysis, one could expect that the
least stable structures would come from the shear layer right downstream of
the nozzle, and have sizes of the order of the inlet shear layer thickness and
frequencies scaling with Stθ. This is not what has been observed in experi-
ments: Crow and Champagne (1971) showed that, fairly independently of the
inflow conditions, the structures observed in the shear layer have frequencies
that scale with St which suggests that the dynamics of instabilities comes
from a “global” mechanism. Indeed for a typical jet mean flow, the shear
layer thickness increases through the potential core, such that quite indepen-
dently of the inlet conditions it is of order 1 at the end of the potential core,
x ≈ 8. Figures 5.2 and 5.3 show that for x ≥ 8 the flow is both spatially
and temporally stable to axisymmetric perturbations. Non-parallel effects
are therefore expected to play an important role in the “global” behavior of
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Figure 5.1: Spatial instability features of an inviscid incompressible shear
layer (data taken from Ho and Huerre (1984)).

perturbations. In order to capture them, Crighton and Gaster (1976) per-
formed a WKB analysis of jet flows in a spatial framework. Such a study
provides insight into the spatial behavior of forced structures, but can not
explain the intrinsic behavior, in particular the decay rates of the eigenmodes
as a function of their frequencies.

In the following paper, the “global” behavior is investigated through
eigenmodes of the LNS equations in a 2D domain, with no assumption on
the spatial structure or on the temporal evolution of the perturbations. This
analysis aims at (i) accurately taking into account the non-parallelism and
(ii) providing both the spatial and temporal evolution of eigenmodes.

5.1.2 Local shear-layer and jet-column modes

Figure 5.4 shows a portion of the spatial spectrum for one given frequency at
different streamwise locations. In addition to the shear-layer modes discussed
above, that may be stable or unstable, the local stability analysis also shows
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Figure 5.2: Temporal stability properties of the model incompressible jet for
m = 0. (a, b): real and imaginary parts of the unstable eigenfrequency are
displayed as a function of the wavenumber k for different streamwise loca-
tions. (c): maximum temporal growth rate as a function of the streamwise
location. The location where the flow becomes temporally stable for m = 0
is displayed by the blue dot.

the presence of a family of stable eigenmodes (shaded area in figure 5.4).
These modes are referred to as jet-column modes. The analysis of their
radial distribution reveals that these modes are concentrated close to the jet
axis. The least stable jet-column modes are very weakly damped, and their
phase velocity is approximately equal to the jet centerline velocity.

5.1.3 Convective instability

The modal analyses presented above are concerned with either the temporal
dynamics of perturbations of a given wavelength or with the spatial evolution
of perturbations with a given frequency. In a purely parallel flow, temporal
instability of a flow only means that the amplitude of some Fourier compo-
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Figure 5.3: Spatial stability properties of the model incompressible jet for
m = 0. (a, b): real and imaginary parts of the unstable eigenfrequency are
displayed as a function of the circular frequency ω for different streamwise
locations. (c): maximum spatial growth rate as a function of the streamwise
location. The location where the flow becomes spatially stable for m = 0 is
displayed by the blue dot.

nents will grow exponentially in time. In an infinite domain, a localized initial
condition (a Dirac delta function) will therefore generate a disturbance with
a L2 norm which will grow exponentially in time. Two situations may occur:
the disturbance may grow in time at any location for long times, in which
case the flow is referred to as absolutely unstable, or the disturbance may
grow as it travels downstream, in which case the flow is said to be convec-
tively unstable. Quantitative analysis of the absolute/convective behavior of
a flow can be carried out based on the saddle points of the dispersion relation
associated with (5.2). It has been shown (Monkewitz and Sohn 1988) that
isothermal jets are convectively unstable so the norm of any initial perturba-
tion measured on a finite domain will eventually decay to zero for long times.
The short time dynamics of perturbations is therefore of interest. These are
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Figure 5.4: Portion of the spatial spectrum at different locations for the model
incompressible jet for m = 0 and ω = 1.35. The shaded area corresponds to
jet-column modes.

studied in terms of “optimal perturbations” (Reddy and Henningson 1993)
for both compressible and incompressible flows.

5.1.4 Helical perturbations

Right downstream of the nozzle, where shear is strong, the instability features
of axisymmetric and helical perturbations are similar, but significant differ-
ences occur further downstream. Michalke (1984) showed that bell-shaped
velocity profiles, that are stable for an azimuthal wave number m = 0 are
unstable for m = 1. Figure 5.5 shows the maximum temporal growth rate
of the velocity profiles at different streamwise locations for the model mean
flow: while the flow is stable for x ≥ 8 for m = 0 is remains unstable through
the domain for m = 1.



5.2. Paper: Modal and transient dynamics of jet flows 71

0 10 20 30 40 50 60
x

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

m
a
x
(ω
i)

m = 0

m = 1

Figure 5.5: Maximum temporal amplification as a function of the streamwise
position x for m = 0 and m = 1. The location where the flow becomes
spatially stable for m = 0 is displayed by the blue dot.

5.2 Paper: Modal and transient dynamics of

jet flows

The following paper describes the dynamics of perturbations in incompress-
ible and compressible isothermal jets at both short and long times, through
the computation of the optimal perturbations and the 2D “global” eigen-
modes of the Linearized Navier–Stokes equations.



Modal and transient dynamics of jet flows
X. Garnaud,1, a) L. Lesshafft,1 P.J. Schmid,1 and P. Huerre1

LadHyX, Ecole Polytechnique – CNRS, 91128 Palaiseau, France.

The linear stability dynamics of incompressible and compressible isothermal jets are
characterized by means of their optimal initial perturbations and of their temporal
eigenmodes. The transient growth analysis of optimal perturbations is robust and
allows physical interpretation of the salient instability mechanisms. In contrast, the
modal representation appears to be inadequate as neither the computed eigenmode
spectra nor the eigenmodes themselves allow a characterization of the flow dynamics
in these settings. More surprisingly, numerical issues also prevent the reconstruc-
tion of the dynamics from a basis of computed eigenmodes. An investigation of
simple models reveals inherent problems of this approach in the context of a sta-
ble convection-dominated configuration, and provides an understanding of several
counter-intuitive results: the exponential spatial growth of a stable eigenmode does
not necessarily imply a convective instability of the flow.

I. INTRODUCTION

Jets are known to sustain large-scale perturbation structures, both in the laminar and
turbulent flow regime. These structures are commonly interpreted as wavepackets devel-
oping within a laminar steady base state, or a turbulent mean flow, due to inflectional
instability mechanisms. The spatial shape of the wavepacket envelope then depends on
the downstream development of the base or mean flow. In order to fully account for the
effects of non-parallelism, the present study seeks to identify wavepacket structures in the
form of temporal eigenmodes of the linearized equations of motion in a two-dimensional
domain. Linear “global modes” of this kind have been investigated for a large variety of
flow configurations in recent years; examples include vortex shedding in the cylinder wake1

or in a three-dimensional jet in crossflow2, and the flapping of a separated boundary layer3.
Weakly nonlinear flow dynamics may in some cases be described by a combination of several
dominant global modes4,5; furthermore, passive6 as well as active7 control strategies for the
suppression of flow oscillations have been devised based on the knowledge of the global mode
spectrum. However, Barbagallo et al.8 showed that a model reduction based on eigenmodes
successfully captures the unstable structures but fails to represent the stable dynamics.

All of the above examples represent oscillator-type flows, where intrinsic flow oscillations
observed in the nonlinear regime are found to be linked to the presence of at least one
unstable linear global mode. In open shear flows, global instability is typically associated
with the presence of a locally absolutely unstable flow region9, although feedback mecha-
nisms may also be responsible for the flow destabilization. In contrast, amplifier-type flows
are characterized by a stable global eigenspectrum. Consistent with the notion of local
convective instability, non-normal interaction of stable global modes may give rise to tran-
sient perturbation growth10, but ultimately all perturbations decay in time. Jets, unless
sufficiently hot11,12, are prominent examples of amplifier-type flows. Crow & Champagne13

measured the flow response in low-Mach number turbulent jets as a function of the forcing
frequency, and found maximum amplification to occur at a Strouhal number of 0.3. This
approximate value for the preferred mode has been confirmed in numerous later studies to
be remarkably universal over a large range of operating conditions, even in the supersonic
regime14. Huerre & Monkewitz9 hypothesized that the preferred mode was the manifesta-
tion of a “slightly damped oscillator” character of the flow, i.e. that the strong flow response
may be interpreted as a resonance of the least stable global mode in the presence of external

a)Electronic mail: garnaud@ladhyx.polytechnique.fr
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forcing. Such an eigenmode has been identified by Cooper & Crighton15 by extending the
dispersion relation of the local shear-layer mode into the complex X-plane. The authors
report a Strouhal number based on the diameter of 0.44 for this mode, in agreement with
experimental observations16. This earlier analysis is based on the hypothesis of the contri-
bution of one single local mode to the global response and of a slow streamwise development
of the flow.

Motivated by these results, the first objective of the present study is to compute the global
spectrum of subsonic jets. A laminar steady state as well as a turbulent mean flow are
considered in the incompressible limit, and the turbulent mean flow is further investigated
in the compressible setting at a Mach number of 0.75.

Stable global spectra have been successfully computed for supersonic jets by Nichols &
Lele17,18. In weakly non-parallel laminar settings, these calculations required extremely
large numerical domains, extending over up to 800 jet radii in the downstream direction, in
order to capture the wavepacket maximum and reach convergence. In turbulent mean flows
obtained from RANS calculations, the dominant modes were sufficiently localized near the
nozzle to be accurately resolved on much shorter domains. However, difficulties with the
computation of stable global modes have been reported for a variety of flow configurations.
Barkley et al.19 obtained easily converged modes that are localized within the recirculation
bubbles behind a backward-facing step, but no convergence was achieved for a family of
stable modes exhibiting spatial growth far downstream of the step; these modes therefore
were not further explored. Similar problems were encountered in planar wakes with surface
tension20,21. In a flat plate boundary layer22, all modes are stable and spatially growing.
Convergence with respect to the domain length was achieved in this case through the use of
carefully designed boundary conditions, based on the local dispersion relation. Amplitudes
at the in- and outflow differed by two orders of magnitude. Much larger variations occurred
in the analysis of a Batchelor vortex by Heaton et al.23; amplitude differences on the order
of 106 were found to prevent convergence. The second and principal objective of the present
paper is to expose the root cause for such computational problems of stable global modes,
and to delineate circumstances under which convergence may be impossible to achieve.

Earlier studies24,25 has been shown that individual eigenmodes may carry a limited phys-
ical meaning in the context of amplifier flows and that non-modal stability analyses are
more suitable to represent instability features in this case. An eigenmode representation of
the dynamics can however be used to carry out these analyses, and previous investigations
have shown that this provides a robust means of analyzing non-normal effects22,26 as well
as of performing control7 for weakly unstable flows. Optimal perturbations will therefore
be computed in order to characterize transient growth phenomena in jets. Results obtained
using both an adjoint method27 and a modal representation of the propagator28 will be
discussed.

The significance and challenges of a modal representation of the dynamics for advection
dominated flows is first investigated by means of model systems in § II. The flow configura-
tion of a round jet with a solid nozzle is then presented in § III, together with the numerical
procedure and the different base flows that are investigated. The results of optimal pertur-
bation (§ IV) and eigenmode (§ V) computations are then presented. Although most of the
discussion is established in the context of incompressible flows, compressibility effects are
also examined. Conclusions are drawn in § VII.

II. MODEL PROBLEMS: EIGENMODES OF ADVECTIVE SYSTEMS

Reddy & Trefethen29 investigated the features of the spectrum and pseudo-spectrum
of a 1D convection-diffusion problem with homogeneous Dirichlet conditions at the inflow
and outflow, a well posed Sturm-Liouville type of problem. The eigenmodes exhibit an
exponential spatial growth, and a boundary layer forms at the outflow. In contrast, in the
model considered in Cossu & Chomaz30 eigenmodes have a Gaussian envelope. The two
models presented below aim at reproducing some of the features of a flow where instability
mechanisms act in an upstream region, creating structures that are convected downstream
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by a neutrally stable flow. These models show features similar to the problem considered
by Reddy & Trefethen and provide an understanding of the relationship between the decay
rate of a mode, its spatial structure and local instability features.

A. Advection equation with upstream boundary forcing

The simplest possible model for the evolution of perturbations in an advection-dominated
flow is given by a pure advection equation with one spatial direction x and a constant ad-
vection velocity U0 > 0. The system is forced by an unsteady upstream boundary condition
with its own dynamics,

∂ψ

∂t
(x, t) + U0

∂ψ

∂x
(x, t) = 0 x > 0, (1a)

ψ(0, t) = ψ0(t), (1b)

ψ̇0(t) = −aψ0(t) a ∈ C. (1c)

The dynamics of this system are imposed by the linear ODE (1c). The system (1) only has

one single mode of the form ψ(x, t) = ψ̃(x) exp(−iωt), with eigenvector ψ̃(x) and eigenvalue
ω given by

ψ̃(x) = exp

(
a

U0
x

)
, ω = −ia. (2)

If the system is stable, ar ≥ 0 (subscripts r and i denote, respectively, the real and imaginary
parts of complex scalars and vectors), the amplitude of the mode grows exponentially in x
and diverges as x → ∞. A lower advection velocity U0 leads to stronger spatial growth of

ψ̃(x).
It is quite clear from this simple example how a temporally decaying source of perturba-

tions under pure advection gives rise to a spatially growing structure, since all perturbations
generated at a later time must be exponentially smaller than those generated earlier. Fur-
thermore, this model also serves to exemplify the occurrence of spurious numerical modes.
If (1) is discretized using a first-order upwind scheme on a uniform mesh, the mode (2)
is recovered independently of the size of the numerical domain, but a second eigenvalue is
found as −1/h, where h is the grid spacing. The corresponding spatial structure is localized
at the outflow discretization point. If a general non-uniform mesh with n points is used,
then n distinct modes exist, localized anywhere on the grid. In this particular example,
n − 1 of them have no physical meaning because they do not correspond to modes of the
continuous problem. In a more general case where no a priori knowledge about the modal
structure is available, care must be taken with numerically computed modes. Although the
discretization method is suitable for transient problems, it is possible that even the least
stable modes computed numerically may have no physical meaning.

B. Unforced Ginzburg–Landau equation

It may be argued that the above model is indeed too simple for a comparison with jet
dynamics, since information can only propagate downstream. This property, however, is
not the cause for the exponential spatial growth. A similar reasoning can be applied to the
linear Ginzburg–Landau equation, given as

∂ψ

∂t
+ U0

∂ψ

∂x
= −a(x)ψ +

∂2ψ

∂x2
x > 0, (3a)

ψ(0, t) = 0. (3b)

At each individual location x, the system is known31 to be locally stable if a(x) < 0,
convectively unstable if 0 < a(x) < U2

0 /4 and absolutely unstable if a(x) > U2
0 /4.

74 Chapter 5. Modal analysis of the jet dynamics



Cossu & Chomaz30 considered solutions of a problem of the form (3a) that are bounded
in R, and assumed the instability parameter a(x) to be of a parabolic shape a(x) = αx2 +β,
with α > 0, such that the spatial and temporal growth rates tend to −∞ as x → ±∞.
Eigenmode shapes are recovered analytically, and they are found to decay as exp(−x2) for
large x.

On the contrary, if a reaches a finite value a∞ as x → ∞, perturbations do not experience
arbitrarily strong spatial or temporal decay. For a demonstration of the spatial behavior, this
limiting value a∞ can be taken as 0 without loss of generality, as it only affects the temporal
eigenvalue but not the corresponding eigenfunction. In order to model a situation where
instability mechanisms are active around a given position, while passive convection and
diffusion of perturbations is dominant throughout the rest of the domain, let the instability
parameter a(x) be of the form

a(x) = a0(i − 1)e−(x−2)2 , a0 > 0. (4)

In order to numerically solve (3)–(4) on the interval [0, x∞], a boundary condition has to be
imposed at the outflow x = x∞. While a homogeneous Dirichlet boundary condition can be
imposed for a(x) = αx2 + β with α > 0, this would result in the formation of a boundary
layer at the outflow in our present case32. In order to take into account convective effects
at the outflow, ψ′′(x∞) = 0 is imposed. This “convective outflow”-type boundary condition
neglects viscous effects at x = x∞. Results are qualitatively similar when imposing a
homogeneous Neumann boundary condition, but the truncation effect is stronger.

Figure 1 shows the effect of the different parameters on the spectrum as well as on the
leading eigenmode ψ(0). Figure 1(a) shows that, for a0 = 1, the system changes from
globally unstable to stable as U0 is increased. At low values of U0, the leading eigenmode
reaches a maximum around x = 2 and decays exponentially downstream (figure 1(b)). As
U0 increases, the temporal decay of the mode becomes stronger, and the spatial maximum
eventually disappears: exponential growth is observed essentially throughout the entire
domain. As observed previously22, the spatial growth rate of the global mode corresponds
to the local spatial growth rate at the global frequency.

For U0 = 4 and U0 = 5, the largest values of U0 considered in figure 1(a, b), the overall
shape of the spectrum completely changes. Figure 1(b) shows that in these cases, exponential
growth occurs throughout the domain, and the amplitude of the mode varies by a factor of
1016 between x = 0 and the outlet at x = 25: the modes, and in particular the region 1 <
x < 3 where instability mechanisms act, cannot be resolved numerically. This phenomenon
can also be seen as the length of the domain is increased for fixed U0 and a0. The same
behavior is observed for a(x) ∈ R, in which case the spectrum should lie on the imaginary
axis, indicating that none of these computed modes actually correspond to modes of the
continuous problem. Figure 1(c) shows that the eigenvalues returned by the eigensolver
for U0 = 5 approximately lie on the 10−14 contour of the pseudospectrum of the discrete
operator which, in this case, does not provide a good approximation to the spectrum. In
situations where the amplitude of the mode cannot be represented throughout the domain,
even the QZ algorithm fails to compute an accurate approximation to the discrete spectrum.

The relative effect of the instability parameter and of the advection velocity is summarized
in figure 1(d), where the spatial growth rate of the leading eigenmode is represented as a
function of the two parameters U0 and a0. From this growth rate, it is possible to evaluate
the maximum domain length for which the computation is possible using double precision
arithmetics. The dashed lines displayed in figure 1(d) correspond to values of (a0, U0) for
which the numerical truncation errors prevented the computation.

C. Conclusions from model problems

The above examples have shown that the spatial behavior to be seen in § V A for the
eigenmodes of the Navier–Stokes equations is not inconsistent, and that it does not corre-
spond to a spatial instability within a local framework. In the case where the flow dynamics
are dominated by convection and diffusion effects, the downstream evolution of the modes
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FIG. 1. (a, b): effect of U0 on the leading eigenmodes for the Ginzburg–Landau model (for x∞ = 25
and a0 = 1). The least stable part of the eigenvalue spectrum is shown in (a), and the leading
eigenmode for each value of U0 (represented in (a) by circles) are displayed in (b). (c): spectrum
(+ symbols) and iso-contours of the pseudo-spectrum for x∞ = 25, U0 = 5 and a0 = 1 (logarithmic

scale). (d): Spatial growth rate of the leading global mode (measured as ψ(0)′(10)/ψ(0)(10)) as
a function of parameters a0 and U0. The solid contour represents the limit between growing and
decaying modes, the dashed lines gives the maximum value of the advection parameter for which
computation is possible in a domain of a given length (indicated on the curve).

results from two opposing mechanisms: the local stability of the flow tends to decrease the
amplitude of the mode in the streamwise direction, but the advection of the globally stable
structures has the opposite effect. In the case of a parabolic profile for a, the local stability
eventually dominates for large x and the global modes decay to 0. On the contrary for
a → a0 as x → ∞ the local stability is not necessarily strong enough to prevent exponential
spatial growth. The second model pointed out that, when convective effects dominate as
x → ∞, the size of the computational domain should be small enough that the amplitude
of the mode can be resolved throughout the domain, otherwise numerical accuracy becomes
problematic as the 10−15-pseudospectrum can extend far from the spectrum29. The follow-
ing section will present details on how this affects the computation and the convergence of
modes for the Navier–Stokes system.

III. SETUP OF THE JET PROBLEM

A. Flow configuration

a. Incompressible setting

A cylindrical jet of a Newtonian fluid with viscosity ν∗, of radius R∗ and exit velocity
U∗

0 is considered. The two latter quantities are used to make lengths and velocities non-
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FIG. 2. Flow configuration for (a) incompressible and (b) compressible computations . The incom-
pressible Navier–Stokes equations are solved on the 2D domain Ω using a Finite Element formula-
tion, with an inflow BC on Γi (thin solid line), a no slip BC on Γw (thick solid line), a stress-free
BC on Γo (dashed line) and compatibility conditions on the axis Γa (dash-dot line). No sponge
layers are used in this case. The compressible Navier–Stokes equations are discretized using high
order Finite Differences (FD) on the rectangular domain represented in (b). The shaded regions
correspond to sponge layers, and the presence of an infinitely thin adiabatic wall for r = 1 and
x ≤ 0 is taken into account by means of appropriate FD schemes.

dimensional. The outer fluid is at rest. The Reynolds number is taken as

Re =
U∗

0R
∗

ν∗ = 103.

Frequencies f∗ will be reported in terms of the non-dimensional circular frequency ω, related
to the Strouhal number St as

St =
2f∗R∗

U∗
0

=
ω

π
.

The axisymmetric flow domain, described in terms of cylindrical coordinates r, θ and x,
is represented in figure 2(a). The steady solution of the non-linear Navier–Stokes equations
(see § III B) is assumed to be axisymmetric. This assumption is no longer made for the
perturbations, but in a linear context all perturbation quantities can be decomposed into
independent Fourier-modes in θ, by introducing the azimuthal wavenumber m ∈ N. Con-
sequently, only the two-dimensional (r, x) plane needs to be discretized for both non-linear
and linear calculations.

The boundary of the computational domain Ω consists of Γi, Γw,Γt,Γo and Γa, corre-
sponding to the inlet, a solid wall, the outer radial boundary, the outflow and the jet axis.
The inflow velocity is imposed on Γi, a no-slip condition on Γw, and stress-free boundary
conditions are applied on Γt

33. Compatibility conditions on Γa ensure a smooth solution
on the axis34. Unless stated otherwise, stress-free boundary conditions are imposed at the
outflow Γo.

The length of the pipe included in the numerical domain is set to xp = 5, and it has
been verified that setting the domain height to rmax = 10 does not affect the results of all
incompressible calculations.

b. Compressible setting

In addition to the flow parameters introduced above, the compressible setting is charac-
terized by density and temperature scales ρ∗

∞ and T ∗
∞, defined as the respective values in

the outer fluid at rest. Natural choices for the Mach and Prandtl numbers are

Ma =
U∗

0

c∗∞
, Pr =

µ∗C∗
P

κ∗ ,

5.2. Paper: Modal and transient dynamics of jet flows 77



FIG. 3. Axial velocity field of the two base flows. (a) : laminar base flow, computed as a steady
solution of the Navier–Stokes equations. (b) : turbulent mean flow, adapted from an analytical
model36.

where c∗∞ =
√
γr∗T ∗∞ denotes the ambient speed of sound and Cp the specific heat at

constant pressure.
In order to capture the acoustic radiation, the typical extent of the numerical domain has

to be of the same order in the axial and radial direction. High resolution Finite Differences
(FD) on a rectilinear grid are used to treat such a large problem. Consequently, the geometry
(schematically displayed in figure 2(b)) is slightly different than in the incompressible case.
In compressible studies, the jet pipe is modeled as an infinitely thin adiabatic wall located
at r = 1 and x ≤ 0. Its presence is taken care of by using appropriate FD schemes. The
treatment of the far field boundary conditions depends on the type of study performed.
As will be shown later, the eigenmodes of the linearized Navier–Stokes equations are not
spatially localized, so an accurate treatment of the outer boundaries is needed. To limit as
much as possible the reflection of vortical or acoustic waves, the non-reflecting boundary
conditions described by Bogey and Bailly35 are used together with sponge layers. This is
not required for the computation of the optimal perturbations which have a limited spatial
extent. In the latter case, the sponge layers alone suffice to ensure that the solution decays
to zero at the outer boundaries without affecting the flow in the physical region.

B. Base flows

Two types of base flows are investigated in this study: a laminar steady-state solution
of the Navier–Stokes equations, and a parametric model of a turbulent mean flow. The
incompressible analysis is performed on both these base flows, whereas only the turbulent
case is considered in the compressible study.

a. Laminar steady state

A steady flow state is computed as an exact solution of the Navier–Stokes equations (see
§III C). The inflow velocity is prescribed on Γi as

ux(−xp, r) = tanh (5(1 − r)) ur(−xp, r) = 0 uθ(−xp, r) = 0.

This profile has a momentum thickness

δ =

∫ 1

0

rux(1 − ux) dr ≈ 1

20
.
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Stress-free boundary conditions are employed at the outflow Γo. The resulting base flow is
weakly non-parallel, as seen in figure 3(a). A slight growth of the boundary layer in the
pipe leads to an increase in the centerline velocity between x = −xp and 0, so that the exit
centerline velocity is 1.06 at x = 0.

b. Turbulent mean flow

Based on experimental measurements, Monkewitz & Sohn36 proposed a model for the
turbulent mean flow of compressible jets. The flow field comprises two regions: a potential
core extending over a distance of eight jet radii downstream of the nozzle, and an adjoin-
ing self-similar region with Gaussian profile shapes. This model is extended in our study
by a parallel flow region inside the pipe, which smoothly connects to the free jet over the
interval 0 ≤ x ≤ 1. The full model is described in detail in Garnaud et al.37. The resulting
streamwise velocity field is displayed in figure 3(b) for the zero-Mach-number case. The
formulation does take into account compressibility effects, and finite-Mach-number configu-
rations are used for the compressible analysis. The inflow momentum thickness is prescribed
as δ−1 ≈ 23, similar to the laminar case.

Following Hussein & Reynolds38, the stability of turbulent flows can be analyzed using a
triple decomposition of the flow field into a mean flow, coherent perturbations and fine-scale
turbulence. Using this decomposition, turbulent scales affect the motion of instability waves
through Reynolds stresses, for which a closure model needs to be provided39,40. For turbulent
jet flows, successful stability analyses41,42 have been performed while neglecting the effect
of Reynolds stresses, and this approach is also followed here as a first approximation.

C. Numerical methods

a. Incompressible setting

The incompressible Navier–Stokes equations are discretized using Finite Elements (P2-
P1), and the zero-divergence condition for the flow velocity is enforced by a penalty
method43. The incompressible laminar steady flow is computed using Newton’s method
and the FreeFEM++ software43. A direct solver44 is used for linear systems. Given this
steady state or a model turbulent mean flow (see § III B b), the linearized Navier–Stokes
equations that govern the evolution of perturbations may be written as

B
∂q

∂t
= Lq (5)

where q is the state vector, containing the values of all degrees of freedom of the velocity
and pressure fields. Equation (5) is discretized using FreeFEM++ and the resulting sparse
matrices are exported for the linear analysis. The solution of all the problems in § IV
and § V A relies on the software libraries PETSc45, SLEPc46 and MUMPS44. Eigenvalue
problems arising in § V A are non-Hermitian, so the Kylov-Schur method is used. In order to
compute the least stable eigenmodes the “shift-invert”47 spectral transformation is applied
using a direct linear solver.

In the study of optimal perturbations the amplitude of a perturbation needs to be mea-
sured. The square root of the perturbation kinetic energy integrated over the entire domain
Ω is used for incompressible flows. This results in a pseudo-norm, as pressure is not taken
into account. For the problem to be well posed, the amplitude of the initial condition needs
to be measured in terms of a norm. The initial disturbance is therefore assumed to consist
only of a velocity perturbation. Let qu be a vector containing only velocity-related degrees
of freedom, and P be a matrix that associates qu to a state vector where pressure-related
degrees of freedom are zero. Conversely, the operator P † removes these degrees of freedom
from a full state vector q. The pseudo-norm is then obtained as

‖q‖2 = q†
uQuqu = q†PQuP

†q = q†Qq (6)
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where Qu is a Hermitian definite matrix.

The computation of optimal perturbations described in § IV requires (i) a direct time
stepper, (ii) an adjoint time stepper and (iii) an eigenvalue solver. The linear equations of
motion are marched forward in time using the Crank-Nicolson method (steps (i) and (ii)). A
discrete adjoint is used for step (ii), based on the Hermitian transpose of the discretization
matrices. Finally, as the eigenvalue problem to be solved is Hermitian, the Lanczos method
is used.

b. Compressible setting

The linearized compressible Navier–Stokes equations are spatially discretized using a
finite-difference scheme designed for aero-acoustic studies48. The resulting discretization
matrix is sparse, but with an important number of nonzero elements, in particular due
to the stencil of the cross derivative terms which involves here 121 discretization points.
Another consequence of the large FD stencils is that the bandwidth of the sparse discretiza-
tion matrices becomes relevant, leading to excessive memory requirements for direct solvers.
Iterative solvers could be used instead49, but these methods are very sensitive to the de-
sign of an efficient preconditioner and robustness may be an issue. In order to circumvent
these problems, all of the analysis is performed using an algorithm based on time stepping
of linear equations (an explicit third order Runge-Kutta method is used here). In such a
framework, the structure of the discretization matrices is not needed, therefore a matrix-free
approach is used. Compressible eigenmodes are computed by use of a relaxation method50,
which is based on the application of a bandpass frequency filter to the equations of motion.
This method allows to solve very large eigenvalue problems with low memory requirements.
However, our experience shows that the relaxation method in general does not reach the
machine-precision accuracy that is possible with the shift-invert method.

The adjoint Navier–Stokes operator is needed for the computation of optimal pertur-
bations (§ IV). A discrete adjoint formulation is chosen, following the memory-efficient
approach of Fosas et al.51. The norm used is that of Hanifi et al.52. Care is taken with the
selective spatial filter so that the discrete propagator of the adjoint equations is the adjoint
of the discrete direct propagator up to machine precision.

IV. TRANSIENT GROWTH OF PERTURBATIONS

The initial condition q(0) that is most amplified over a finite time interval T is referred to
as the optimal perturbation for T . Reddy & Henningson32 established the notion of optimal
perturbations in order to characterize the transient (short-term) linear dynamics of flow
systems. Let the amplification factor be defined as

Gm(T ) = max
q(0)

‖q(T )‖
‖q(0)‖ . (7)

Furthermore, let PT be the propagator, i.e. the linear operator that advances an initial
condition over the time interval T according to equation (5). The optimal gain Gm(T )

is found as the leading eigenvalue of the operator Q−1
u PP†

TQPTP
†, and the associated

eigenvector represents the optimal perturbation. The eigenvalue problem is solved using

the Lanczos method, as implemented in the SLEPc library. The operators PT and P†
T are

applied using the time steppers described in § III C, and Q−1
u is determined using a Cholesky

decomposition (in the case of a finite-difference discretization, this decomposition is easily
performed by hand).
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FIG. 4. Spatio-temporal evolution of the optimal initial condition for m = 0 and T = 10 for the
turbulent jet mean profile in the incompressible case. The value of the axial velocity along the line
r = 0.9 is represented at various time steps, as indicated next to the curve.

A. Incompressible flow

In the incompressible setting, the length of the computational domain is chosen as x∞ =
40, and stress-free boundary conditions are employed at the outflow. The convergence of the
results with respect to the spatial and temporal discretizations has been verified by using
(i) a halved time-step and (ii) a finer mesh where the cell size in the near-nozzle region
is divided by more than 3. For both the laminar and the turbulent base flows, and for all
azimuthal wave numbers and time horizons, the optimal perturbation is found in the form of
structures localized in the boundary layer upstream of the nozzle, and the perturbations are
amplified as they travel downstream. A typical example is shown in figure 4, which displays
the evolution of the optimal perturbation of the turbulent jet for m = 0 and T = 10, along
the line r = 0.9.

The optimal gain as a function of time horizon T is displayed in figure 5 for both base
flows. In the case of the laminar base flow, this amplification factor grows monotonically
with T as long as the perturbation is contained inside the numerical domain. Very large
amplitudes are reached, comparable to similar computations in the supersonic regime by
Nichols & Lele17. In the case of the turbulent base flow (figure 5(b)), the gain reaches a
maximum for a finite time horizon Topt,m. This maximum is particularly pronounced for
axisymmetric perturbations (m = 0), with Topt,0 ≈ 10. This interval roughly corresponds
to the advection time of the initial perturbation across the potential core. Downstream of
the potential core, axisymmetric perturbations decay as they travel on. Non-axisymmetric
perturbations may still experience further growth beyond the potential core, and the decay
of Gm(T ) with T is slower as a consequence. This observation is consistent with the fact
that bell-shaped profiles in the self-similar regime may be unstable for m 6= 0 but not
for axisymmetric perturbations53. Both the laminar and the turbulent settings display
the largest gains for helical perturbations m = 1. It may be conjectured that a lift-up
mechanism54 is responsible for the strong growth of helical perturbations, since such a
mechanism can only exist at azimuthal wavenumbers m 6= 0. However, no firm evidence of
lift-up effects can be reported at present.
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FIG. 5. Gains associated with the optimal perturbations for (a) the laminar and (b) the model base
flows.Thick solid line : m = 0, dashed line : m = 1, dash-dotted line : m = 2, dotted line : m = 3
and thin solid line m = 4.

B. Effects of compressibility

Corresponding results of optimal perturbations of the turbulent mean flow at Ma = 0.75
are displayed in figure 6. The qualitative behavior of Gmax(T ) (shown in figure 6(a)) is
similar to that obtained for incompressible flows (figure 5(b)), and the amplification levels
are comparable, although perturbations are not measured in the same norm. The spatial
shape of optimal perturbations for short time horizons also resembles those found in the
incompressible setting. Figures 6(b, c) show the optimal perturbation for T = 12: vortical
structures in the pipe boundary layer are amplified as they travel through the jet shear layer.
However, compressibility allows a different scenario at longer time horizons T & 25, as shown
in figures 6(d, e): the optimal initial condition takes the form of a spherical acoustic pulse
that contracts and hits the nozzle at a finite time. A vortical wavepacket is thus created at
the nozzle, which is amplified while it propagates through the potential core. This result
illustrates that acoustic waves can be very efficiently converted into vortical perturbations
at the nozzle tip55–57.

V. MODAL ANALYSIS

A. Incompressible global modes

a. Spectrum of the laminar base state

Eigenmodes of the linear equations (5) are sought in the form q(t) = q̃ exp(−iωt), such
that q̃ and ω satisfy the generalized eigenvalue problem

− iωBq̃ = Lq̃. (8)

Stress-free boundary conditions are used at the outflow Γo, and eigenmodes are computed
for x∞ = 60 with various shift parameters. The resulting spectra for the laminar base flow
are shown in figure 7(a).

All eigenvalues have a negative growth rate ωi ≤ 0 and therefore are stable. This finding
is consistent with local instability results from the literature, which have shown isothermal
jets to be convectively unstable36, except in rare circumstances58.

Several families of modes can be identified from figure 7(a). A first branch of modes,
starting at the origin, is represented as blue circles. The least stable of these modes corre-
spond to vortical structures in the free-stream, as displayed in figure 7(b). The wavelength
of these nearly stationary modes scales with the size of the numerical domain. As the growth

82 Chapter 5. Modal analysis of the jet dynamics



FIG. 6. (a) Optimal perturbations for the model subsonic jet at Ma = 0.75 for m = 0 (solid line)
and m = 1 (dashed line). (b, c) : Azimuthal vorticity field for the optimal initial condition for
m = 0 and T = 12, and the corresponding perturbation at t = 12. (d, e) : Dilatation field for the
optimal initial condition for m = 0 and T = 30, and the corresponding perturbation at t = 30.

rate decreases along this branch, the branch is distorted and the mode structure tends to be
localized more towards the jet shear-layer. This is an effect of the finite extent of the numer-
ical domain that has been observed in other studies26,59. A second branch is represented by
black × symbols. These eigenmodes are localized inside the shear layer. At the lowest fre-
quencies, an exponential spatial growth in the streamwise direction is observed throughout
the computational domain, as shown in figure 7(c). This behavior is similar to what was
observed in the model problems of § II, and by this analogy we attribute the exponential
spatial growth to the temporal decay of these modes. At higher frequencies (figure 7(d)),
spatial growth is still found downstream of the nozzle, but the mode reaches a maximum
amplitude within the computational domain. The maximum growth rate along this branch
occurs around the frequency (ωr ≈ 1) for which the location of maximum amplitude of the
mode enters the computational domain, suggesting that the maximum in ωi is an artifact of
the finite domain size. Domain truncation effects are investigated in the following section.
The phase velocity of all modes along this branch corresponds approximately to half the jet
velocity on the centerline; modes at higher frequency therefore display shorter wavelengths,
as can be seen in figure 8.

A third family of modes is found, represented by red symbols in figure 7(a). None of
these eigenvalues are recovered identically with different shift parameters, indicating a lack
of convergence. However, these modes have been computed by the eigenvalue solver with
the specified convergence criterion, namely ‖Lq + iωq‖ < 10−10‖q‖. We attribute this class
of modes to spurious effects arising from finite machine precision. The spatial structure of
one such spurious mode is represented in figure 7(e).

All modes represented in figure 7 display very large amplitude variations throughout the
free-jet region. If these variations are of the order of machine precision, the low-amplitude
dynamics near the nozzle cannot be accurately resolved. The perturbation amplitudes shown
in figures 7(b − d) do not span more than ten orders of magnitude in the free-jet region,
and appear to be well-converged. The spurious mode in figure 7(e), in contrast, varies over
14 orders of magnitude, and seems to be affected by the double-precision round-off error as
a consequence. In fact, it may be surmised that its very existence is due to the round-off
error; this conjecture will be further investigated in the next section. A similar observation
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FIG. 7. Global modes computed for m = 0 on the laminar base flow. (a): eigenfrequency spectrum.
(b, c, d, e): axial velocity magnitude of four selected modes, in logarithmic scale, as indicated in (a).

FIG. 8. Axial velocity for global modes (c) and (d) of figure 7, in linear scale.

has been made by Heaton et al.23 in their modal stability analysis of the Batchelor vortex.
Those authors report that modes with amplitude variations above a factor of 106, between
the inlet and outlet of the computational domain, cannot be accurately resolved with their
numerical method. With the present algorithm, this limiting factor is approximately 1014.
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b. Influence of domain truncation

All eigenmodes displayed in figure 7 reach their maximum amplitude at or near the
downstream boundary of the numerical domain. It may therefore be expected that the
position of this boundary, as well as the numerical treatment of the outflow condition, should
affect the results. In order to evaluate this influence, different domain lengths between 40
and 100 radii have been tested. The results are compared in figure 9(a), which shows that
the branches of eigenmodes computed are domain-dependent. A similar behavior has been
obtained in the analysis of the Blasius boundary layer22, and is attributed to the fact that
the wavepackets travel throughout the domain. Most importantly, the maximum growth
rate of the shear-layer branch shifts to lower frequencies as xmax is increased. An inspection
of the associated spatial amplitude distributions reveals that this maximum growth rate
occurs roughly at the frequency at which the mode maximum amplitude is first captured
inside the numerical domain. At low real frequencies, the true amplitude maximum lies on
the outflow boundary of the numerical domain, and the eigenvalues are strongly affected
by truncation. With increasing real frequency, this amplitude maximum moves further
upstream, and the influence of the domain truncation lessens. The mode shapes shown
in figure 7 are consistent with this observation. If the trend with increasing domain size
is extrapolated, one may expect that the growth rate of the shear-layer branch decreases
monotonically with increasing frequency in an infinitely long domain.

While the spectra in figure 9(a) have been computed with stress-free outflow condi-
tions, figure 9(b) displays corresponding results obtained with a “convective outflow”
formulation60. Both boundary conditions are found to give very similar results. It is
inferred from this comparison that the outflow boundary conditions do not have a signifi-
cant impact on the eigenmode computations in this study.

It appears that the spurious branches become less and less stable as the domain length
increases. This branch is interpreted as a consequence of finite precision arithmetics. Under
the assumption of a quasi-parallel flow, let Cg be the group velocity of a spurious spatial
instability wave forced by numerical noise in the vicinity of the jet pipe,

ψsp = ψ̂(r) exp(i(kr + iki)x) exp(−iωt) (9)

where ω is the complex forcing frequency. This forced wave will be considered an eigenmode
by the solver if the forcing amplitude is of the order of the numerical precision ǫm, i.e. if
the amplitudes of this forced wave at the inlet and at the outlet are such that

ψ(x = 0) ∼ ǫmψ(x = x∞).

In this case, (9) gives ki = − log(ǫm)/x∞. Let ωt
i(kr) be the local temporal growth rate

associated with the axial wavenumber kr. In the limit of long wavelengths, jet flow profiles
are approximately marginally stable. Following an approach similar to that of the Gaster
transformation61, the global temporal decay rate ωi can be related to the global spatial
growth rate ki by

ωi ≈ Cgki + ωt
i(kr) ≈ Cg

log(ǫm)

x∞
. (10)

As the group velocity Cg is of the order of the base flow velocity U0, the decay rate associated
with such pseudomodes can be estimated as

σ ≡ U0
log(ǫm)

x∞
. (11)

Figure 9 shows that the above expression provides a reasonable estimate for the decay rate
of the spurious modes. Since σ varies as 1/x∞, this spurious branch will eventually become
less stable than the other two branches as x∞ increases, preventing their computation. It is
thus impossible to obtain converged results for the spectra, at least using standard double
precision arithmetic (ǫm = 10−15).
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FIG. 9. Spectra computed for various domain lengths using stress-free (a) and convective outflow
(b) boundary conditions at the outlet. Black × : x∞ = 40. Blue triangles : x∞ = 60. Green + :
x∞ = 80. Red circles : x∞ = 100. The dashed line corresponds to the estimated decay rate (11).

It appears that machine precision imposes severe constraints on global mode computations
for convective flows such as jets. The streamwise extent of the numerical domain must
be sufficiently large to capture the amplitude maximum of the mode, but the amplitude
variations must also be within the range of machine precision. At the same time, spurious
modes contaminate an increasingly large portion of the spectrum as the numerical domain
length is increased.

c. Spectrum of the turbulent mean flow

One would expect that for the turbulent mean flow profile the local spatial stability will
dominate over the effect of the advection as shear is less important downstream of the
potential core. However, as the advection velocity is also lower it tends to increase the
spatial growth rate due to the advection of stable structures. This spatial growth is not
compensated by the local spatial stability of the bell-shaped profiles. The estimate for the
decay rate of spurious structures given by (11) can be modified to account for the significant
variation of the base velocity on the jet axis, giving

σ′ ≡ log(ǫm)

(∫ x∞

0

1

u0
x(0, x)

dx

)−1

. (12)

The spectra displayed in figure 10 show that this estimate is also reasonably accurate. This
implies an even more stringent constraint on the size of the computational domain than in
the case of a nearly parallel flow.

Figure 11 displays selected global modes computed for x∞ = 60 : as for all the modes
presented in figure 10, the exponential growth continues throughout the computational
domain. Indeed, in light of the discussion of the model problems, there is no guarantee
that a maximum will ever be reached: the maximum amplitude may well continue towards
infinity. Consequently, even though the model base flow is more suitable for describing
the transient dynamics of perturbations than the laminar flow, it neither allows computing
global modes.
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FIG. 10. Global spectra computed for m = 0 for the model base flow. Black × : x∞ = 40. Blue
triangles : x∞ = 60. Green + : x∞ = 80. The dashed line corresponds to the estimated decay rate
of the spurious branch given by (11).

FIG. 11. Axial velocity fields of selected global modes computed for m = 0 for the model base flow
with x∞ = 60 and stress-free outflow boundary conditions (logarithmic scale). (a) : ω = 0.22−0.11i,
(b) : ω = 1.0− 0.17i, (c) : ω = 0.98− 0.23i .

B. Compressible eigenmodes

Eigenmodes have been computed for the model mean flow at Ma = 0.75. The computed
spectrum is displayed in figure 12(a). Similar to the incompressible case, it is worth pointing
out that the spectrum does not show any preferred frequency. The decay rates of the modes
are however significantly less stable than in the incompressible case, by more than a factor
of five. Although the solver used for this computation is less accurate than the one used for
incompressible computations, the results displayed in figure 12 are converged with respect
to the iterative eigenvalue solver. As a consequence of the very low decay rate, the spatial
growth of eigenmodes is weaker than in the incompressible case, and at high frequencies the
global modes decay right after the end of the jet pipe (see figure 12(b, c, d))

Several reasons may explain such a slow temporal decay. As it was seen in § IV, acoustic
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FIG. 12. Global modes computed for m = 0 on the model subsonic jet at Ma = 0.75 . (a):
eigenvalue spectrum. (b, c, d): azimuthal vorticity of three selected modes, as indicated in (a).

disturbances efficiently excite vortical structures, and, as the Mach number increases, the
acoustic wavelength gets closer to the wavelength of vortical wavetrains, so that excitation
can be efficient and lead to a feedback loop. The feedback could also be spurious: indeed,
although the optimal perturbation results of § IV are quite insensitive to the treatment of
the outer boundaries, this significantly affects the eigenmodes. In spite of the use of non-
reflecting boundary conditions and very weak sponge regions, it is expected that an effect
is still present here. Similarly, as the vorticity field grows in space due to the temporal
stability, the acoustic field also grows exponentially with the distance to the acoustic sources.
As a consequence, even for weakly damped modes, reflection can be significant in large
numerical domains. Finally, the low decay rate may be related to the fact that the numerical
dissipation is lower with the present FD formulation than with the FEM discretization used
for incompressible flows. Indeed, in situations where structures are convected outside of the
numerical domain, dissipative effects can be important at large times.

VI. PROJECTION OF THE TRANSIENT DYNAMICS ONTO THE SPACE SPANNED BY
EIGENMODES.

Optimal perturbations have been computed in § IV using a direct-adjoint technique. An
alternative method is to approximate the propagator using a reduced-order basis consisting
of the computed eigenmodes. This technique has, for example, been successfully used by
Akervik et al7 for the global analysis of an amplifier flow. Regardless of the relevance of the
eigenmodes to describe the dynamics, such an analysis is expected to yield accurate results
provided the eigenmodes are computed accurately. Figure 13 displays the optimal gains
computed for the laminar incompressible jet with m = 0: the N least stable eigenmodes

88 Chapter 5. Modal analysis of the jet dynamics



FIG. 13. Optimal transient amplification of axisymmetric perturbations for the laminar incom-
pressible jet. Thick line: computation using the adjoint equations, as computed in § IV. Thin lines:
optimal gains computed by projecting the dynamics onto the space spanned by the N least stable
eigenmodes.

have been used for the computation, with N varying from 5 to 18362. It appears that
even when all the computed eigenmodes are taken into account, the optimal gains are
under-estimated by up to two orders of magnitude. Eigenmodes are therefore not relevant
individually, which is already well known for amplifier flows, but also as a superposition
to represent transient dynamics. A similar study on a stable lid-driven cavity flow (not
shown here) yielded substantially better convergence towards transient energy gains when
the number of included eigenmodes was increased. This further emphasized the role of
advection in the representation of transient phenomena by global modes. The above finding
is contrary to that of Akervik et al7 and it is related to the much stronger streamwise growth
of eigenmodes in the present configuration. Indeed the optimal initial conditions consist of
structures in the jet pipe. In this region, all eigenmodes have very small amplitudes and
numerical inaccuracies (due to both the eigenmode computation and the projection) become
significant.

VII. CONCLUSIONS

The linear dynamics of perturbations in jet flows is the result of two mechanisms, advec-
tion by the base flows and shear layer instability. In order to investigate the effect of these
two features on the modal and non-modal stability properties of the flow, two types of base
flows have been considered. The first one is a laminar steady solution of the Navier–Stokes
equation, for which both advection and instability remain approximately constant in the
streamwise direction. A turbulent mean flow has also been used: in this case, instability
is limited to a region of about eight radii downstream of the jet pipe, referred to as the
potential core, where advection remains approximately constant. Further downstream the
base flow velocity decreases significantly and the jet profiles become stable to axisymmetric
perturbations.

An optimal perturbation analysis has been performed on these two base flows, revealing
that vortical structures are amplified throughout the laminar jet, but only in the potential
core for turbulent mean flows. In both cases the flow is globally stable.

Based on model problems reproducing the advection and instability properties of jet
flows, it has been shown that problems arise when studying such flows within a modal
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framework. Indeed, when eigenmodes represent the advection of stable, temporally decaying
structures, they grow exponentially in the streamwise direction. When computing such
modes, difficulties therefore arise due to the domain truncation, the modeling of outflow
boundary conditions and the finite precision of computer arithmetic.

Eigenmodes have been computed for jets in laminar and turbulent, compressible and
incompressible settings, and results display the same properties as those obtained from the
model problems. It has been shown that convergence of the spectrum of incompressible jets
is inhibited by the presence of spurious pseudomodes which impose strict constraints on the
size of the numerical domain.

As was shown with simple models, the exponential spatial growth of the stable modes is
not an indication of a local spatial instability, it is merely a reflection of the fact that the
eigenfrequency ω has a negative imaginary part. This has been further exemplified through
the computation of eigenmodes for turbulent mean flows that grow even faster than those
computed for a laminar base flow while the flow is stable downstream of the potential core
for m = 0. The temporally stable structures observed in the modes, generated by a shear
layer instability downstream of the nozzle, are convected downstream in a quasi-neutral flow
resulting in an apparent spatial growth. For both mean flows the global decay rates of shear
layer modes are of the same order of magnitude since the inflow shear layer thickness is
similar. As the advection velocity is much smaller for the turbulent mean flow, the spatial
growth is therefore larger.

For compressible flows, the computed eigenmodes are less stable than in the incompress-
ible case. As a consequence, the local stability of shear layer structures dominates over the
growth due to stable advection such that the exponential growth is not observed. How-
ever, this growth not only affects vortical structures but also acoustic waves. For acoustic
perturbations the exponential growth due to the advection of stable structures eventually
dominates over the algebraic decay: the acoustic waves radiated from a mode reach their
maximum amplitude at the boundaries of the computational domain, which represents con-
siderable challenges to avoid spurious reflections.

The present results found for jet flows are consistent with the literature on the stability
of the Blasius boundary layer. The qualitative features of the eigenmodes are similar for
both configurations, but the physical settings are quite different and eigenmodes are much
less temporally stable for the boundary layer problem. Consequently, the spatial growth of
the modes is weaker and numerical issues are less important in the latter case.

All the numerical challenges faced in the modal analysis of jet flows cannot be attributed
to a poor discretization and other numerical influence, since the numerical tools used in
this study provided robust results for the transient flow analysis. As the numerical schemes
employed for this study are linear, the transient simulations can be viewed as a superposition
of all eigenmodes of the discrete problem. The issues are not related to the convective
nature of the flow, since the transient analysis successfully and robustly reproduced the
flow behavior; they rather lie with the description of stable convective dynamics by global
modes, and their interpretation as coherent invariant structures.
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Chapter 6

Optimal forcing of
incompressible jets

6.1 Introduction

The previous chapter showed that a modal approach fails to describe the
dynamics of perturbations observed in isothermal jets due to the amplifier
nature of the flow, and due to the fact that downstream of the instability
region structures are advected in a flow which is close to neutrally stable1.
Studying the optimal perturbation, i.e. the structures that are most amplified
over a time horizon T , provided some insight into the instability mechanisms
at play in a strongly non-parallel jet. In most situations, optimal initial con-
ditions consist of upstream tilted structures in the boundary layer at the end
of the jet pipe: perturbations are first amplified through the Orr mechanism
in the boundary layer, and continue being amplified throughout the poten-
tial core via a shear layer instability. Further downstream perturbations with
azimuthal wave-numbers m 6= 0 can continue to slowly grow.

In order to relate the optimal disturbances obtained from such an analysis
to the structures actually seen in flows two questions should be answered:
can these structures be present in the flow in the first place, and is the
amplification very sensitive to the exact shape of the initial disturbance. The
second question can be answered through the distribution of the singular
values of the propagation operator: the larger the ratio between the first
two singular values is the most likely the optimal response will be observed
with a random initial condition. This ratio is generally large. Ehrenstein
and Gallaire (2005) showed that for the flat plate boundary layer the initial

1in a local approach, velocity profiles are weakly stable or unstable depending on the
azimuthal wave number m.
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amplification due to the Orr mechanism is sensitive (it is in particular poorly
represented on a truncated eigenmode basis), but the later growth is not. In
order to answer the first question, one should know where disturbances come
from.

Optimal perturbations can be viewed as a forcing distributed in space but
a Dirac in time. In this chapter the forcing is no longer assumed to be a Dirac
in time but an exponential, i.e. Fourier components of a general forcing are
considered. The results of this type of analysis can be viewed in the context
of flows disturbed by a low level random incoming noise, or in the context of
flows excited by a controlled forcing. Crow and Champagne (1971) excited
turbulent jets with a loud speaker of adjustable frequency, and measured
the velocity fluctuations on the jet axis. The amplification of the forcing
is displayed in figure 6.1 for different frequencies: the authors report that
the relevant scaling of the frequency of large scale structures is the Strouhal
number based on the jet diameter, and that this is fairly independent of
the inflow conditions. The structures observed for a Strouhal number of
0.3 (displayed in figure 4.1) are referred to as the jet preferred mode. The
purpose of this chapter is to describe such structures. Different procedures to
characterize the response of a flow to external forcing are briefly mentioned
below.

Signaling problem The response of a parallel flow to a harmonic forcing
localized in the streamwise direction is described for example by Huerre and
Monkewitz (1985), Gordillo and Perez-Saborid (2002). For convectively un-
stable flows and within the range of unstable frequencies a periodic forcing
generates spatially growing waves. Their structure is given by the solution of
the spatial instability problem. For slices of the mean turbulent flow, the spa-
tial instability features were represented in figure 5.3. They depend strongly
on the axial position x. For x ≤ 8 frequencies in the range 0 ≤ ω ≤ ωmax(x)
are amplified, and both ωmax(x) and the maximum spatial growth rate de-
crease approximately linearly with x. For x ≥ 8 the mean flow is locally
stable.

The most amplified frequency scales with the Strouhal number based
on the momentum thickness at the end of the jet pipe, and therefore does
not correspond to the frequency of the preferred mode, suggesting that non-
parallel effects play a dominant role in the frequency selection.

WKB analysis of weakly non-parallel flows The parallel flow approach
can be extended to weakly non-parallel flow through a WKB approximation.
In this framework it is assumed that information propagates only down-
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Figure 6.1: Velocity fluctuations on the jet axis in a turbulent jet triggered by
a speaker. The Strouhal number of the perturbations based on the jet diam-
eter is indicated next to the curves. Data taken from Crow and Champagne
(1971). A visualization of the structures corresponding to the preferred mode
is given in figure 4.1.
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stream, and that at each location x the perturbation velocity and pressure
profiles are those of the k+ spatial branch. Such an analysis has been per-
formed by Crighton and Gaster (1976). As shown in figure 6.2 their results
are in reasonable agreement with the experimental data of Crow and Cham-
pagne (1971) in the near nozzle region.
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Figure 6.2: Gain in centre-line axial velocity fluctuation: comparison be-
tween WKB results and experimental measurements by Crow and Cham-
pagne (1971) for a jet forced at St = 0.3 (Data taken from Crighton and
Gaster (1976)).

PSE analysis of weakly non-parallel flows The WKB approximation
can be generalized so that the perturbation distribution in the radial direc-
tion is no longer given by the spatial instability modes. In the Parabolized
Stability Equation framework, the perturbation distribution along r has to be
prescribed at the inflow, and is then solved for increasing x. This approach
has been applied to jet flows in particular by Gudmundsson and Colonius
(2009), Rodriguez et al. (2011) to describe the development of shear layer
structures and their acoustic radiation. Figure 6.3 displays a comparison
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of PSE results with experimental data obtained from an natural (unforced)
turbulent jet: the increase of the centerline velocity fluctuations within the
potential core is accurately predicted using this approach for Strouhal num-
bers St ≥ 0.3.
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Figure 6.3: Gain in centre-line axial velocity fluctuation: comparison between
PSE results and experimental measurements by Crow and Champagne (1971)
for a natural jet (Data taken from Rodriguez et al. (2011)). (a): St = 0.1,
(b): St = 0.3, (c): St = 0.5

Receptivity study: optimal forcing In both the WKB and PSE ap-
proaches, the shape of the disturbance at the inflow is imposed together with
the frequency, and the downstream development of the instability structures
is solved for.

The receptivity of a flow to external disturbances can be studied in terms
of the resolvent R(ω) = (L− iωId)−1 for ω ∈ R 2. The norm of the resolvent
R(ω) = ‖R(ω)‖ gives the maximum amplification of a time harmonic forcing
at the frequency ω (Trefethen et al. 1993). The corresponding optimal forcing
corresponds to the leading singular vector of R(ω).

For one dimensional discretization, an SVD of the resolvent operator can
be performed to compute the optimal forcing (see e.g. Cossu and Chomaz
(1997), Reddy and Trefethen (1994) for 1D PDEs and Trefethen et al. (1993),
Schmid (2007), Hwang and Cossu (2010) for local flow problems). A local
analysis however cannot be used to explain the pseudo-resonance of jet flows

2This formalism is very close to that of the pseudo-spectrum mentioned in the previous
chapter to explain the impossibility to compute eigenmodes in some flow configurations
(Trefethen and Embree 2005). In this case, complex values of ω are considered.
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since non-parallel effects are dominant, but this analysis applies in the way to
two dimensional problems (the only problem being the computational cost)

Optimal forcing in a “global” framework Considering the resolvent
operator for a two dimensional discretization, one can find the forcing at a
given frequency that generates the largest time harmonic response. This has
been done by Marquet and Sipp (2010) for the flow over a backward facing
step and by Monokrousos et al. (2010) for the flat plate boundary layer.3

Stochastic forcing Time harmonic forcing is appropriate to describe forced
experiments such as those of Crow and Champagne (1971), but less so to
study the case of a natural jet as in Rodriguez et al. (2011). In such cases,
one can consider the forcing to be a stochastic Gaussian white noise. This
situation has been studied by Farrell and Ioannou (1993) for parallel Couette
and Poiseuille flows. In this approach, the solution procedure to characterize
the variance of the flow fluctuations involves the solution of a Lyapounov
equation. For one dimensional discretizations, this can be solved by using
dense linear algebra but this procedure would be untractable for 2D or 3D
problems. Methods are being developed for such problems, but this remains
a very complicated task (Nong and Sorensen 2009).

6.2 Paper: The preferred mode of incom-

pressible jets

The following paper presents the application of the receptivity formalism to
the incompressible jet.

3This has also been examined by Nichols and Lele (2010) who present results for the
pseudo-spectrum of laminar supersonic flows. These authors compute the resolvent norm
using a projection of the linearized Navier–Stokes equations on the space spanned by some
of the least stable eigenmodes.
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The linear amplification of axisymmetric external forcing in incompressible jet flows is
investigated within a fully non-parallel framework. Experimental and numerical studies
have shown that isothermal jets preferably amplify external perturbations for Strouhal
numbers in the range 0.25 ≤ StD ≤ 0.5, depending on the operating conditions. In the
present study, the optimal forcing of an incompressible jet is computed as a function
of the excitation frequency. This analysis characterizes the preferred amplification as a
pseudo-resonance with a dominant Strouhal number of around 0.45. The flow response
at this frequency takes the form of a vortical wave-packet that peaks inside the potential
core. Its global structure is characterized by the cooperation of local shear-layer and
jet-column modes.

1. Introduction

Large-scale coherent structures develop in the shear layers of isothermal jet flows, for
both laminar and turbulent regimes. These structures are not self-sustained, but are
the consequence of strong amplification of incoming disturbances. Crow & Champagne
(1971) performed experiments where the flow was forced with a controlled frequency;
they showed that optimal excitation is achieved for a Strouhal number based on the
jet diameter of about 0.3. The corresponding flow perturbations, referred to as the jet
preferred mode, grow in amplitude starting at the nozzle until they undergo non-linear
saturation.

A local analysis of jets (Michalke 1984) identifies shear layer perturbations immedi-
ately downstream of the nozzle as the fastest growing instability modes, which would
indicate that the preferred frequency scales with the initial shear layer thickness. This
also suggests that the mechanisms underlying the selection of the preferred frequency
depend on the downstream flow development. Under the assumption of a slowly diverg-
ing base flow, Crighton & Gaster (1976) used a WKBJ approximation to describe the
spatial development of the instability wave. Their results are in reasonable agreement
with the experimental results of Crow & Champagne (1971) for the initial growth of
the structures. This approach has subsequently been generalized through the use of the
Parabolized Stability Equations (Ray et al. 2009; Gudmundsson & Colonius 2011; Ro-
driguez et al. 2011). While this approach also relies on the assumption of a slow variation
of the base flow in the streamwise direction, these results were found to yield good agree-
ment with experiments of natural turbulent jets.

The optimal disturbance of flows subjected to time-harmonic linear perturbations has
been described by Trefethen et al. (1993). This method has first been applied to general
non-parallel configurations using a projection of the flow dynamics onto a reduced space
spanned by a set of eigenmodes (Alizard et al. 2009; Nichols & Lele 2010). In other studies
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(Monokrousos et al. 2010; Marquet & Sipp 2010; Nichols & Lele 2011b; Sipp & Marquet
2012) the resolvent norm has been computed directly from the linearized Navier–Stokes
operator, such that the entire non-normal flow behavior captured by the discretization
is taken into account in the results. This approach is followed here to provide a better
understanding of the preferred frequency selection and the associated spatial structures;
in particular, the non-parallel nature of the flow, as well as the effects of a solid circular
jet-pipe, are taken into account. The present analysis is mainly restricted to axisymmetric
forcing and perturbations. Results for helical forcing are only briefly discussed.

After a description of the flow under consideration in § 2, two different models of the
external forcing are described in § 4, together with the numerical method used. The
results, presented in § 5, are then discussed and compared to classical local stability
analysis.

2. Flow configuration

2.1. Geometry

A cylindrical jet of an incompressible Newtonian fluid of viscosity ν∗, with radius R∗

and exit centerline velocity U∗
0 is considered. The latter two quantities are used to make

lengths and velocities non-dimensional. Frequencies f∗ can be non-dimensionalized to
yield either a circular frequency ω or a Strouhal number St based on the jet diameter.
These parameters are related via St = ω/π. Throughout the study, the Reynolds number
is taken as

Re =
U∗

0R
∗

ν∗ = 103.

The flow geometry, described in terms of the cylindrical coordinates r, θ and x, is
represented in figure 1. The boundary of the computational domain Ω is decomposed
into Γi, Γw,Γo and Γa, respectively corresponding to the inlet, a solid wall, the outlet
and the jet axis. No-slip boundary conditions are imposed on Γw, and stress-free boundary
conditions are used on Γo (Dick 2009). Compatibility conditions, ensuring the smoothness
of the computed fields are imposed on the axis r = 0 (Matsushima & Marcus 1995). At
the inflow, homogeneous or inhomogeneous Dirichlet boundary conditions are imposed
on the velocity as requested by the problem under consideration.

Two unstructured meshes with identical dimensions but different resolution are used
for the finite-element computations. The density of vertices in the domain is controlled by
the distance between discretization points on the boundary of the computational domain
as well as on interior boundaries (dashed lines in figure 1). This distance is denoted h4

for boundaries in the far field (r > r+3 ). It is smaller than h3 for r ≤ r+3 , and respectively
smaller than h2 and h1 in the inner regions defined by x ≤ x+

2 and 1−δ2/2 ≤ r ≤ 1+δ2/2
and by x−

1 ≤ x ≤ x+
1 and 1 − δ1/2 ≤ r ≤ 1 + δ1/2. These sub-domains are indicated by

gray shaded areas in figure 1. The values of the hi’s for both meshes are given in figure 1.

2.2. Base state

Linear stability analysis formally applies to base states that are steady solutions of the
governing equations. However, several studies have found that linearization around a
time-averaged mean flow yields better predictions of the nonlinear flow behaviour, in par-
ticular with regard to the frequency selection of intrinsic oscillations (Pier 2002; Barkley
2006). The present study employs the mean-flow model proposed by Monkewitz & Sohn
(1988) for a turbulent free jet, displayed in figure 2. This model consists of a potential
core, starting from a momentum thickness θ = 0.043, and extending over eight radii
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Figure 2. Axial velocity field for the model turbulent mean flow of Monkewitz & Sohn (1988).

downstream of the end of the jet pipe, followed by a self-similar region, where the veloc-
ity profiles have an approximately Gaussian shape. A parallel pipe flow region has been
added upstream, and a smooth transition is made for 0 ≤ x ≤ 1, as described in Garnaud
et al. (2011).

In the following, infinitesimal perturbations around the steady mean flow are consid-
ered, such that the flow field can be written as (u, p) = (U + ǫu′, P + ǫp′), where (U , P )
denotes the base state displayed in figure 2.

3. Modal analyis

Monkewitz (1989) and Huerre & Monkewitz (1990) conjectured that the preferred
mode observed in experiments corresponds to the resonance of the least stable eigenmode
of the jet with incoming disturbances. This issue has been investigated by Cooper &
Crighton (2000) by means of a WKB approximation. Upon making the assumptions that
(i) the global mode has the shape of a local shear-layer mode at each location and that
(ii) the base flow development is slow, the authors found a weakly stable global mode at
a Strouhal number of 0.44 which agrees well with experimental observations. In order to
avoid such strong assumptions, eigenmodes can now be computed using the axisymmetric
Navier–Stokes equations discretized on a two-dimensional domain. Such a modal analysis
has for example been performed by Nichols & Lele (2011a) in the context of supersonic
jets. This approach is followed in this section. Figure 3 displays the spectrum obtained
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Figure 3. Eigenvalue spectra of the linearized Navier–Stokes equations (Lq = iωBq)
computed for a domain of length xmax = 40 (black dots) and xmax = 60 (gray crosses).

for the global eigenvalue problem

∇ · u′ = 0,

−iωu′ + (U · ∇)u′ + (u′ · ∇)U = −∇p′ +
1

Re
∇2u′ + ψ(x)f ′,

(3.1)

with homogeneous Dirichlet boundary conditions on Γi ∪ Γw. All eigenmodes are stable,
and three families of modes can be identified. First, low-frequency free-stream modes
(eigenvalues close to the origin) correspond to standing vortical structures. These decay
very slowly due to viscous effects. Second, a branch of shear-layer / jet-column modes
is observed (upper branch in figure 3). Along this branch the decay rate −ωi increases
with frequency ωr, and the spatial structure of the eigenmodes is characterized by an
exponential growth throughout the computational domain. This growth can be under-
stood as a consequence of the stable advection of nearly neutral shear layer structures.
Finally, the lower branch of eigenmodes in figure 3 corresponds in fact to pseudomodes
that lie on the 10−10 contour of the pseudospectrum. Note that the actual spectrum is
quite dependent on the size of the numerical domain, but that qualitative features are
not. For more details, see Garnaud (2012).
The spectrum of the linearized Navier–Stokes equations therefore exhibits no isolated
or least stable eigenmode that could explain the preferred mode through a resonance
mechanism. In the next section, a pseudo-resonance analysis is carried out to investigate
the origin of the preferred mode.

4. Response to harmonic forcing

4.1. External forcing as a body force

Following Monokrousos et al. (2010), Marquet & Sipp (2010) and Sipp & Marquet (2012),
the external forcing can be modeled as a body force f(x, t) acting on the momentum
equation,

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u + ψ(x)f ,

while ∇ · u = 0 is maintained throughout the flow. The weight function ψ is used to
restrict the flow region where forcing is applied, and the forcing amplitude is assumed to
be small: f = ǫf ′. Infinitesimal perturbations around the steady mean flow are consid-
ered, such that the flow field can be written as (u, p) = (U + ǫu′, P + ǫp′) and f = ǫf ′,
where (U , P ) denotes the base state described in §. To leading order, the dynamics of
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perturbations are governed by the linear system

∇ · u′ = 0,

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U = −∇p′ +

1

Re
∇2u′ + ψ(x)f ′,

u′ = 0, Γi ∪ Γw

1

Re

∂u′

∂n
− p′n = 0. Γt ∪ Γo

(4.1)

In a linear framework, all signals are decomposed in time into independent Fourier com-
ponents. The forcing is therefore considered to be time-harmonic, f ′ = f̃ exp(−iωt),
prompting an asymptotic flow response (u′, p′) = (ũ, p̃) exp(−iωt) at the same frequency.
The amplification of the externally applied forcing at a given frequency ω is measured in
terms of the gain

Gbf
opt(ω) = max

f̃

(∫

Ω

|ũ|2r dr dx

)/(∫

Ω

|f̃ |2r dr dx

)
. (4.2)

The optimal forcing f̃opt(ω) realizes this maximum. For the results presented in §5.1, the
forcing is assumed to be localized inside the pipe only, i.e. the weight function is defined
as ψ(x) = 1 for x < 0 and ψ(x) = 0 for x ≥ 0.

4.2. External forcing as an inflow condition

Rather than forcing the jet through a distributed body force in the pipe interior as in
the previous section, one may model incoming perturbations in the form of an unsteady
upstream boundary condition of the linearized Navier–Stokes equations:

∇ · u′ = 0,

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U = −∇p′ +

1

Re
∇2u′,

u′ = 0, Γw

1

Re

∂u′

∂n
− p′n = 0, Γt ∪ Γo

u′ = f ′. Γi

(4.3)

Such a model corresponds more closely to the assumptions of local spatial stability,
WKBJ and PSE approximations. In this case, the gain between a harmonic inflow forcing
and the corresponding response is measured as

Gbc
opt(ω) = max

f̃

(∫

Ω

|ũ|2r dr dx

)/(∫

Γi

|f̃ |2r dr

)
. (4.4)

4.3. Numerical solution of the optimization problem

The linear systems (4.1) and (4.3) are discretized by P2-P1 finite elements using the
software FreeFEM++ (Hecht 2011). Let q be the discrete state vector containing all
degrees of freedom related to velocity and pressure fields. Both (4.1) and (4.3) can then
be written in their semi-discretized form as

Bq̇ = Lq +Bff , (4.5)

where f is the discrete forcing vector and L, B and Bf are sparse matrices resulting
from the finite elements discretization of the linearized Navier–Stokes equations. Let
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f = f̃ exp(−iωt) and q = q̃ exp(−iωt) be time harmonic such that

−(L+ iωB)q̃ = Bf f̃ . (4.6)

Perturbation amplitudes are measured in a pseudo-norm ‖q‖2 = q†Qq that represents
the discretization of the perturbation kinetic energy:

‖(u′, p′)‖2 =

∫

Ω

|u′|2r dr dx. (4.7)

The norm of the forcing vector f , which appears in the denominator of (4.2) and (4.4), is
expressed accordingly in discrete form as ‖f‖2

f = f †Qff . Note that f does not contain
pressure components, and that Qf therefore is symmetric positive-definite, in contrast to
Q, which is positive semi-definite. The discrete optimal forcing problem can be written
as

G2
opt(ω) = max

‖q̃‖2

‖f̃‖2
f

. (4.8)

Monokrousos et al. (2010) formalized a similar optimal forcing problem by use of
a constrained optimization approach involving Lagrange multipliers. For linear time-
harmonic problems, a more concise formalism is possible. The formulation used here,
similar to that of Sipp & Marquet (2012), is briefly outlined below. Substituting (4.6)
into (4.8) gives

Gopt(ω)2 = max
f̃

‖(L+ iωB)−1Bf f̃‖2

‖f̃‖2
f

,

= max
f̃

f̃ †B†
f (L+ iωB)−1†

Q†(L+ iωB)−1Bf f̃

f̃ †Qf f̃
.

Let M†
fMf be the Cholesky decomposition of Qf , and let g̃ = Mf f̃ , i.e. f̃ = M−1

f g̃. The
optimal gain can then be rewritten as

Gopt(ω)2 = max
g̃

g̃M−1
f

†
B†

f (L+ iωB)−1†
Q†(L+ iωB)−1BfM

−1
f g̃

g̃†g̃
.

The right-hand side of the above expression is a Rayleigh quotient, and Gopt(ω) is there-
fore the leading eigenvalue of the associated Hermitian eigenvalue problem

M−1
f

†
B†

f (L+ iωB)−1†
Q†(L+ iωB)−1BfM

−1
f g̃ = λg̃,

which can be re-written in terms of the forcing f̃ as

Q−1
f B†

f (L+ iωB)−1†
Q†(L+ iωB)−1Bf f̃ = λf̃ . (4.9)

The leading eigenvalue of (4.9) and its associated eigenvector, which respectively cor-
respond to the optimal gain and optimal forcing, are computed by using the Lanczos
solver implemented in SLEPc (Hernandez et al. 2005). The operator (L + iωB)−1 and
its adjoint are applied by using the sparse linear algebra package MUMPS through its
PETSc interface (Balay et al. 2008). Finally, the operator Q−1

f is applied by using a
Cholesky decomposition, if memory requirements permit, or otherwise by using an ILU-
preconditioned conjugate gradient method.
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Figure 4. Optimal gain as a function of the Strouhal number for body (a) and boundary (b)
forcing. The gains are computed for various domain lengths xmax. + symbols displayed in (b)
correspond to gains computed for a finer mesh (mesh #2 in figure 1), showing convergence with
respect to grid resolution. For boundary forcing on a domain of length xmax = 40, not only is
the most amplified mode displayed but the three leading eigenvalues of (4.9) as well.

5. Results

5.1. Optimal body forcing

Optimal harmonic forcing by means of a distributed body force inside the jet pipe,
as outlined in § 4.1, is computed first. The gain (4.2) is displayed in figure 4(a) as
a function of the Strouhal number. Different line styles represent results obtained for
various lengths of the computational domain, in order to assess the influence of domain
truncation. Figure 5 displays the spatial distributions of axial velocity of forcing and flow
response at selected Strouhal numbers, for a domain length xmax = 40. It is found from
figure 4(a) that domain truncation only affects the gains at very low Strouhal numbers.
The flow response structure in this regime extends far downstream, as can be seen in
figure 5(a), and the truncation at the outflow therefore leads to a lower measure of the
flow response norm. Neither the forcing distribution nor the captured part of the flow
response appear to be significantly influenced by the downstream truncation. Similarly,
it has been verified that a radial truncation at r = 10 has a negligible impact on the
results.

The largest gain is observed at St = 0.46. The perturbations in the free jet exhibit
a strong spatial growth in the shear layer just downstream of the nozzle exit; their
amplitude peaks near the end of the potential core at r = 8 (figure 5(b)). In the adjacent
decaying part of the wave packet, the radial amplitude distribution changes markedly,
with its maximum now at the centreline. The wavepacket structure at higher frequencies
displays similar characteristics, but the region of spatial growth is confined to an ever
smaller distance from the nozzle.

The optimal distribution of the body force inside the pipe also exhibits consistent
characteristics at all Strouhal numbers presented in figure 5. The amplitude is largest
within the boundary layer at the pipe wall, and it is increasingly concentrated near the
wall at higher Strouhal numbers. At the same time, the downstream spatial growth of the
response increases with the Strouhal number, and its wavelength shortens. In all cases,
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Figure 5. Spatial structures associated with the optimal body forcing at different Strouhal
numbers, indicated in the figures. In the left column, the real parts of the axial component of
the forcing is displayed. On the right, the figures show the axial component of the response
velocity (real part). Computations were performed for xmax = 40.

the forcing structures are tilted upstream away from the wall, suggesting that the Orr
mechanism contributes to the perturbation gain as in the case of boundary layer flow
(Sipp & Marquet 2012).

Use of the L2 norm as a measure of the amplification gain inevitably implies that
spatially extended structures are given more weight than spatially localized structures,
even though the latter may represent modes with high spatial amplification. This effect
is undoubtedly responsible for the slight increase of Gbf

opt at very low Strouhal numbers.
The infinity norm would provide a sensible and intuitive measure for the amplification
of perturbations; unfortunately, this norm does not lend itself to the formulation of the
optimization problem. It can however be determined a posteriori for the results obtained
with the present approach. Values are given in figure 5 for the four cases represented. It
is indeed found that the infinity norm follows the same trends as the gain defined by the
L2 norm, except for the increase at very low Strouhal numbers.

Figure 6(a) displays the maximum amplification curves obtained when the length of
pipe included in the computational domain is increased from 5 to 10. It shows that this
parameter affects the values of the gain but that the shape of the curve remains the same.
In particular the optimal Strouhal number does not change, which confirms the relevance
of the choice of geometric parameters used in this study. A more critical parameter in this
analysis is the Reynolds number, as a model turbulent mean flow is used as a base state
for the stability analysis so the choice is rather arbitrary: figure 6(b) indicates that the
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Figure 6. Optimal gains obtained for boundary forcing when (a) the length of pipe under
included in the computational domain increases from 5 to 10 and (b) the Reynolds number
increases from 103 to 5 · 103.

Figure 7. Spatial structures associated with the optimal boundary forcing at different Strouhal
number, indicated in the figures. In the left column, the modulus of the inflow axial velocity
component is displayed. On the right, the axial component of the response velocity is displayed
(real part). Computations were performed for xmax = 40.

optimal excitation frequency remains the same when the Reynolds number is increased
from 103 to 5 · 103.
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5.2. Optimal boundary forcing

The perturbation gain obtained from the problem formulation based on forcing at the in-
flow boundary, as given in § 4.2, is presented in figure 4(b). The trends are very similar to
those observed in the case of a distributed body force. The strongest amplification occurs
at St = 0.43. Domain truncation has no influence, except at very low Strouhal numbers,
and the results are converged with respect to mesh resolution. The radial distribution of
the optimal forcing input is displayed in figure 7, alongside the flow response at the same
four values of St as in the preceeding section. The flow response wavepackets are indeed
nearly identical to those of figure 5, except for the highest Strouhal number shown. The
forcing distributions display some unexpected features. At low St, the amplitude maxi-
mum is located on the centreline, whereas in the intermediate frequency range the highest
forcing amplitudes occur in the pipe boundary layer. The no-slip condition requires the
forcing to be zero at r = 1, but the amplitude is expected to jump to a finite value over
a distance of the order of the thickness of the Stokes boundary layer, which scales as
(ωRe)−1/2 (Batchelor 1967). Both forcing and flow response are of a different character
at the highest Strouhal number shown in figure 7. Perturbations are induced around the
centreline; they experience weak growth inside the pipe and immediately decay as they
enter the free jet. A closer inspection of the gain curves reveals that the high-St regime is
dominated by a formerly sub-optimal branch of singular values. Two additional branches
are displayed in figure 4(b). Although barely visible, one of these branches becomes dom-
inant around St ≈ 1. The perturbation distribution shown in figure 7(d) belongs to this
distinct branch.

5.3. Comparison with local instability results

The structure of the response wavepackets in figures 5 and 7 is readily understood from
well-known local instability characteristics of jet flows (Jendoubi & Strykowski 1994;
Lesshafft 2007). Strong spatial growth takes place in the potential core region, where the
shear layer is thin compared to the instability wavelength. The perturbation amplitude
of this local shear-layer mode is concentrated around r = 1. Downstream of the potential
core, the shear layer mode stabilizes, and the jet-column mode takes over as the least
stable, spatial local eigenmode. The amplitude of the jet-column mode in the self-similar
base-flow region peaks on the jet axis. The gradual streamwise transition from a shear-
layer mode to a jet-column mode is visualized in figure 8 for the wavepacket shown in
figure 5(b). The thick line represents the local growth rate of the wavepacket, computed
as 1

2∂x(logE) with E(x) as the perturbation kinetic energy at each streamwise station x
integrated in the radial direction. The thin solid and dashed lines trace the spatial growth
rates of the local shear-layer and jet-column modes, respectively, as functions of x. The
growth rate of the global wavepacket quickly adapts to that of the shear-layer mode near
x = 0, and it follows its decrease throughout the unstable interval. Downstream of x ≈ 5,
the global wavepacket gradually adjusts to the growth rate of the jet-column mode.

Contrary to what one might initially expect, the forcing structures displayed in fig-
ures 5 and 7 bear little resemblance to the local instability modes of the parallel flow
inside the pipe. In fact, the optimization algorithm aims at finding the inflow condition
that optimally excites shear layer structures such that the wave packet in the free-jet
is generated with a maximum amplitude. To this end, the inflow condition consists of a
superposition of local instability modes in order to exploit spatial transient amplification
mechanisms (Andersson et al. 1999).
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Figure 8. Spatial growth rate of the wavepacket envelope (thick line) corresponding to fig-
ure 5(b), compared to spatial growth rates of the local spatial shear-layer mode (thin line) and
the jet-column mode (dashed line) at St = 0.43.

Figure 9. Optimal amplification of body forcing for various azimuthal wave-numbers m.

6. Conclusions

The linear dynamics of forced structures in a jet has been studied within a fully non-
parallel framework, so that the effects of the base-flow spreading and of the presence of
a solid jet pipe can be taken into account. Unlike in approaches using the WKBJ of PSE
approximations where the frequency and inflow disturbance profile are imposed to solve
for the flow evolution downstream, the present method only seeks the optimal spatial
distribution of time-harmonic forcing at a given frequency.

It has been demonstrated that there is no least damped global mode that can resonate
in the presence of frequency forcing. The preferred frequency obtained in the present
analysis is therefore due to a pseudo-resonance rather than to a resonance as conjec-
tures by Monkewitz (1989) and Huerre & Monkewitz (1990). The analysis of Cooper &
Crighton (2000) relies on a tangent approximation of the local dispersion relation so as
to obtain a “global mode” with a Gaussian enveloppe. Such an assumption is unlikely to
hold in a full WKB approach or in the global analysis followed here. For this reason, one
should not expect to recover the “global modes” of Cooper & Crighton in the present
analysis.

Whether external forcing is modeled as an inflow condition or a body force, the am-
plification of external forcing has been found to be largest for a Strouhal number around
0.45. This preferred frequency is in good agreement with experimental observation at low
forcing intensity (Moore 1977; Crow & Champagne 1971). Note however that, as shown
in the latter reference, the preferred frequency depends on the amplitude of excitation
through non-linear effects. Around this optimal frequency, the excitation generates a
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wave-packet that develops in the free-jet shear layer. It is amplified through the poten-
tial core, where shear is important, and decays further downstream while it gets localized
on the centreline. This behaviour is consistent with local stability results that show that,
while shear-layer modes are spatially unstable in the potential core, the jet column mode
becomes the least damped spatial eigenmode further downstream.

The shape of the optimal body forcing indicates that the Orr mechanism is at play
to generate perturbations that grow in the jet pipe boundary layer and then optimally
excite the free-jet wave-packet. The results are not very sensitive to the actual shape
of the forcing term as similar results are obtained for body and boundary forcing. In
both cases, a good agreement is found between the most amplified wave-packet and the
experimentally observed preferred mode.

The framework of optimal forcing is therefore a suitable tool for the analysis of the
non-modal instabilities developing in convection dominated amplifier flows.

Local spatial stability analysis indicates that helical perturbations, unlike axisymmetric
ones, are spatially amplified downstream of the potential core, as shown e.g. by Batchelor
& Gill (1962) and Michalke (1984). This is especially true in the low frequency range.
Computations have been performed using the current framework for higher azimuthal
wave numbers m. For m 6= 0, Gopt(St) is a monotonically decreasing function of St, and
the levels obtained at low frequencies are indeed larger for m = 1, 2 than for m = 0 (see
figure 9). However this is not only due to a faster growth of the wave packet downstream
of the nozzle, but also and most importantly to a spatial amplification over a longer
streamwise distance, resulting in larger L2 norms for the flow response. The growth of
the wave-packet through the potential core is however similar for all values of m.

Experiments typically do not show a dominance of m = 1 helical modes in the self-
similar region. Several reasons may explain this discrepancy between the results in figure 9
and observations, in particular the effects of turbulence and nonlinear saturation, which
are not captured in the present analysis. In this light, the L∞ norm might provide a
more relevant and intuitive measure of the perturbation amplification. The use of such
a formulation will be explored in future studies.

This work was supported by DGA grant number 2009.60.034.00.470.75.01 and by a fel-
lowship from the EADS Foundation. Computational resources were provided by GENCI
(Grant 2012-026451).
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6.3 Effect of the azimuthal wave number

The effect of the azimuthal wave number m on the spatial development
of instability waves in non-parallel incompressible jets has been studied by
Strange and Crighton (1983) using a WKB analysis. In the compressible
regime such an analysis has been performed using PSE by Ray et al. (2009).
Their results showed that helical disturbances (m = 1) exhibit the largest
growth, followed by modes 2 and 0. At low frequencies the gain is one order
of magnitude larger for m = 1 than for m = 0; this ratio decreases with the
frequency, and gains are of the same order of magnitude for the different val-
ues of m at St ≈ 1. It should however be noted that even at low frequencies
the spatial growth rates associated with axisymmetric and helical perturba-
tions are comparable, the difference coming from the later development of the
perturbation. In particular the helical perturbation continue growing down-
stream of the potential core, consistent with findings of Michalke (1984) and
of chapter 5. The results of Gudmundsson and Colonius (2011) also show a
similar trend.
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Figure 6.4: Optimal amplification of external body forcing for azimuthal
wave-numbers m = 0, 1, 2.

The discussion in the paper was limited to axisymmetric forcing, but can
be extended to any azimuthal wave-number m. The optimal gains in the case
of body forcing are presented in figure 6.4 as a function of the Strouhal num-
ber. For non axisymmetric perturbations, the gain is a decreasing function
of the frequency, and therefore shows no preferred frequency. While at low
frequencies the gain is more than one order of magnitude larger for m = 1
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Figure 6.5: Streamwise evolution of the kinetic energy of the response, E(x) =(∫∞
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, for St = 0.2 and m = 0, 1, 2.

than for m = 0, this difference decreases with increasing frequency, and the
same amplifications are observed for m = 0, 1 and 2 for St ≥ 1. In order
to describe the streamwise development of the flow response at low frequen-
cies, the kinetic energy integrated along the radial direction is displayed in
figure 6.5 as a function of the streamwise direction x. It appears that while
the modes m = 1, 2 already grow faster than the modes m = 0 within the
potential core, the order of magnitude of difference in the gain observed in
figure 6.4 is a result of the growth of the helical mode beyond the end of the
potential core, in a region where coherent structures are no longer observed.

6.4 Optimal forcing of the laminar base flow

Figure 6.6 displays the optimal body forcing amplification for the laminar
base flow shown in figure 4.2. Compared to the case of the turbulent mean
flow, pseudo-resonance is much stronger and takes place at a lower Strouhal
number St = 0.4.
Although the Reynolds number is similar, much larger gains are obtained
for the laminar flow as a consequence of the slow spreading of the base flow.
Indeed, as shown in figure 6.7, the wave-packet is exponentially amplified
over longer streamwise distances. The shape of the optimal forcing, however,
is very similar to that found for the model mean flow, which is consistent with
the fact that forcing should optimally excite the shear layer right downstream
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of the jet pipe. At high frequencies the gains computed for the turbulent
mean flow are higher than for the laminar state. This is due to the fact that
the initial shear layer thickness in slightly smaller for the turbulent mean
flow (1/θ = 23 vs. 20 for the laminar steady flow).
It was shown in section 5.2 that the spectra obtained for laminar base states
display a parabolic shear-layer branch due to numerical artifacts, and that
the frequency of the least stable of these modes decreases with increasing
domain length. On the contrary, the dashed curve in figure 6.6 shows that
pseudo-resonance is not much affected by the numerical domain: indeed the
differences seen at low frequency correspond to the different measures of the
flow response, as explained earlier. The peak in the gain curve can therefore
not be interpreted as a resonance with the branch of shear layer modes.
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Figure 6.6: Optimal amplification of periodic body forcing for the laminar
and turbulent mean flows. The dashed lime displays the results obtained for
domain of length x∞ = 60 (x∞ = 40 is used otherwise).

6.5 A remark on the projection on stable eigen-

modes.

6.5.1 Method

One way to estimate the resolvent norm for two dimensional flows – whether
the objective is to compute the pseudo-spectrum or the receptivity to external
forcing – is to project the dynamics onto a subset of the eigenmodes (Schmid
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Figure 6.7: Axial velocity component of the optimal forcing (left column)
and of the corresponding flow response (right column) at different Strouhal
numbers for the laminar base state.

2007, Heaton et al. 2009, Nichols and Lele 2010; 2011b). Let qj be the
eigenmodes satisfying4

Lqj = −iωjBqj, (6.1)

and let the forcing and response belong to the space spanned by these modes:

q = αjqj, f = βjqj. (6.2)

Assuming that forcing is localized anywhere in the domain, the forcing and
response are such that

− iωBq = Lq +Bf . (6.3)

Using (6.1), (6.2) and (6.3), the coefficients αj and βj can be related by

− i(ω − ωj)αj = βj. (6.4)

4the summation convention is used
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Let Λ = diag (i(ω − ωj)−1) such that α = Λβ. The norm of the perturbation
is given by

‖q‖2 = 〈q|q〉
= 〈αjqj|αkqk〉
= α†j〈qj|qk〉αk
= α†j qj

†Qqk︸ ︷︷ ︸
Mjk

αk

= α†Mα.

As M is Hermitian positive definite it admits a Cholesky decomposition
M = LL†. The amplification factor on the basis of eigenmodes is then given
by

G(ω) = max
β

β†Λ†MΛβ

β†Mβ
= max

γ

γ†L−1Λ†LL†ΛL†
−1
γ

γ†γ
(6.5)

The optimal gain is therefore the leading singular value of L†ΛL†
−1

.

Robustness The method does not make use of the fact that the Cholesky
factor L is triangular, therefore for robustness the Cholesky decomposition
can be replaced by a factorization UΣ1/2Σ1/2U † based on a SVD.

6.5.2 Ginzburg-Landau problem

Let the method be first applied to the Ginzburg–Landau equation

∂f

∂t
= −U0

∂f

∂x
− a(x)f + ν(x)

∂2f

∂x2
, 0 ≤ x ≤ L, (6.6a)

together with the boundary conditions

f(0, t) = 0,
∂2f

∂x2
(L, t) = 0. (6.6b)

In order to describe a situation where the dynamics are dominated by ad-
vection except in a limited region, the following parameters are considered:

U0 = 1, a(x) = −a0(1 + i)e−(x−10)2 , ν(x) = 0.2e−
(x−10)2

4 .

The discrete operator L is obtained using high-order finite differences on a
uniform mesh containing 150 uniformly distributed points on 0 ≤ x ≤ 30.
The spectrum of the discretized operator, displayed in figure 6.8(a) for a0 =
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1.8, shows that the dynamics are stable. The spectrum is composed of several
distinct eigenmode branches; most of these are a result of the discretization
and do not represent eigenmodes of the continuous problem. Close to the
origin, a nearly-neutral isolated eigenvalue and a branch of more stable eigen-
modes are found. Figure 6.8(b) displays the corresponding eigenmodes that
grow exponentially downstream of the instability region, as shown in chap-
ter 5. For this problem with only 150 degrees of freedom, the resolvent norm
can be computed directly using a singular value decomposition of L− iωId.
The approach described in section 6.5.1 is however also followed here, and
the transfer function is approximated by projection the dynamics on the N
least stable eigenmodes. Figure 6.9 shows that although the discrete system
has only 150 modes, even 100 of them do not capture the resolvent norm
correctly for iω ∈ R. Furthermore, the projected and directly computed re-
solvent norms do not match even if all eigenmodes are taken into account
due to truncation errors.
Consequently, eigenmodes are not only unsuitable to individually describe
convection dominated dynamics, but even a collection of them is.

Figure 6.8: Ginzburg–Landau problem (6.6) for a0 = 1.8. (a): eigenvalue
spectrum. (b): Eigenvectors corresponding with eigenvalues ω = −1.53 −
0.05i and −1.38− 0.58i.

6.5.3 Application to the incompressible jet problem

Figure 6.10 presents the optimal gain computed using the methodology of
the paper together with the gain computed from the approximation based on
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Figure 6.9: Resolvent form of the Ginzburg–Landau problem (6.6) for
a0 = 1.8, computed directly and using N eigenmodes. (a): portion of the
eigenvalue spectrum for the projection of the dynamics. (b): Resolvent norm.
The thick curve corresponds to the direct computation. 150 discretization
points were used.

some of the least stable eigenmodes (see chapter 5). No agreement is found,
neither quantitatively nor qualitatively, reinforcing the idea that the modal
representation of the jet dynamics cannot reproduce the flow non-normal
dynamics. In order to evaluate how non-normal effects are captured by the
300 modes used here, the resolvent norm approximation on the subspace
spanned by the eigenmodes is displayed in figure 6.11. The distribution of
contours close to the free-stream branch of eigenmodes confirms the quasi-
normal behavior of this branch. Next to the shear-layer branch, the contours
of the pseudo-spectrum move away from the modes as the frequency of the
modes increases, a feature which is consistent with non-normal effects. This
phenomenon is however clearly under-represented as a negligible effect is
felt on the real ω axis, thereby resulting in a poor approximation to the
amplification of time-harmonic forcing.
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Figure 6.10: Amplification of external forcing computed using the full system
(+ symbols) and a projection on 300 eigenmodes (solid line).
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Shear-layer branch

Free-stream branch

Spurious modes

Figure 6.11: Spectrum used for the approximation of the resolvent norm
(black dots) and contours of the resolvent norm (pseudo-spectrum) in loga-
rithmic scale for a projection onto the modes.



Chapter 7

Optimal forcing of subsonic jets

7.1 Introduction

The results of the receptivity analysis for incompressible jets was presented
in chapter 6. This formalism provided a suitable explanation for the pseudo-
resonance of isothermal jets observed experimentally and numerically. The
analysis of different types of forcing, on the boundary and inside the do-
main, showed that the framework is robust in identifying both the preferred
frequency and the corresponding vortical structures in the jet shear layer.
Previous works have shown that large scale coherent structures, and in par-
ticular the preferred mode, are responsible for most of the acoustic radiation
close to the jet axis.

Crighton and Huerre (1990) modeled acoustic radiation from a traveling
wave as a Helmholtz problem forced on a boundary by a traveling wave with
a slowly varying envelope. These authors showed that, under certain condi-
tions on the shape of the wave-packet, the superdirective sound emission from
instability structures measured by Laufer and Yen (1983) could be recovered.
Obrist (2009) extended this study to include the effects of the cross-stream
envelope shape of a 2D wave-packet on the acoustic directivity pattern. This
analysis shows that subsonic wave-packets may radiate sound preferably at
oblique angles from the jet axis. Reba et al. (2010) modeled the instability
wave in a jet using the Parabolized Stability Equations. The near-field pres-
sure fluctuations obtained with this model are then used to compute the far
field radiation through a Kirchhoff-surface approach. In order to improve the
quality of the far field prediction at lower Mach numbers in a PSE approach,
Rodriguez et al. (2011) did not compute the noise radiation from the near
field pressure on a cone, but from the velocity distribution in the jet through
an acoustic analogy.

121
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In the present chapter, the aim is to apply the same formalism as in
chapter 6 in order to determine the most efficient forcing of the linearized
compressible Navier–Stokes equations without approximation, in order to si-
multaneously obtain the near- and far-field fluctuations.

7.2 Forcing and measure of the response

7.2.1 Forcing

In chapter 6, external forcing was modeled either as a body force acting
in the domain or as an inflow boundary condition. Good agreement was
found with respect to both the most amplified frequency and the structures
observed in the free-jet region. In the present compressible setting, the ge-
ometry of the computational domain differs from the case of incompressible
simulations (see chapter 2), in particular through the use of sponge layers at
the far field boundaries. Furthermore, the length of the pipe included in the
computational domain is roughly ten times larger in the compressible case.
As a consequence – in contrast with the geometry used in the incompressible
computations – modeling the forcing as an inflow condition would carry a
limited physical meaning, as forcing would be applied inside a sponge layer
and it would be strongly filtered by the pipe flow dynamics. Only body
forcing is therefore considered, and it is restricted to the interior of the jet
pipe.

Using the same notations as in chapter 6, the behavior of the discrete
time-harmonic response is symbolically written as

− iωq̃ = Lq̃ +Bf̃ , (7.1)

where B expresses the localization of the forcing.

7.2.2 Measure of the response

In order to measure the energy of perturbations in a compressible flow, the
approach of Chu (1965) and Hanifi et al. (1996) is followed, as briefly outlined
below. Let the energy be measured as

E =

∫

Ω

Aρ2 +Bu2 + CT 2 dx. (7.2)

The objective is to determine coefficients A, B and C such that in the far
field, where the flow is uniform, the propagation of acoustic waves does not
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contribute to the energy. The Euler equations linearized for a fluid at rest
read

∂ρ

∂t
+ ρ0∇ · u = 0,

ρ0
∂u

∂t
= −∇p,

ρ0
∂T

∂t
= −γ(γ − 1)Ma2p0∇ · u,

p

p0

=
ρ

ρ0

+
T

T0

,

so that in this case

∂E
∂t

= −2

∫

Ω

(
Aρ0ρ∇ · u+

B

ρ0

u ·∇p+ CT
p0

ρ0

γ(γ − 1)Ma2∇ · u
)

dx

= −2

∫

Ω

(Aρ0ρ−
B

ρ0

p+ CT
p0

ρ0

γ(γ − 1)Ma2)∇ · u dx+ 2

∫

∂Ω

Bu · np dx.

For B = ρ0, choosing A and C such that

A =
p0

ρ0

, C =
ρ2

0

γ2(γ − 1)Ma4p0

,

the compression work associated with acoustic waves does not contribute to
E . The following norm is therefore used in order to measure the amplitude
of time harmonic forcing terms and flow responses:

E(q̃) =

∫

Ω̃

(
ρ0ũ

2 +
p0

ρ0

|̃ρ|2 +
ρ2

0

γ2(γ − 1)Ma4p0

|T̃ |2
)
r dr dx. (7.3)

In order to avoid numerical artifacts at the outer boundaries of the compu-
tational domain where the grid is stretched, the integral is taken only on the
physical domain Ω̃ and not in the sponge layers.

Since the optimal forcing formalism does not require the measure of the
flow response to be a norm, the response can also be measured in terms of
its acoustic radiation. For this purpose, the acoustic power across radiated
across a control surface Σ is considered. Physically, the acoustic power is
then given as

F =

∫

Σ

p̂ûnr dl, (7.4)

where p̃ and ûn denote the “real” pressure field and velocity perturbations



124 Chapter 7. Optimal forcing of subsonic jets

normal to Σ, i.e.

F =

∫

Σ

<(p)<(un)r dl

=

∫

Σ

p̃e−iωt + p̃†eiωt

2

ũne−iωt + ũ†neiωt

2
r dl

=
1

4

∫

Σ

(
p̃ũ†n + p̃†ũn + p̃ũne−2iωt + p̃†ũ†ne2iωt

)
r dl.

The average power over one period is therefore given by

〈F 〉 =
1

4

∫

Σ

(
p̃ũ†n + p̃†ũn

)
r dl ≡ F(q̃). (7.5)

This is obviously not a norm, but since forcing is restricted to the inside of the
jet pipe it can be expected to be a positive value. Note that the averaging
procedure could be applied in exactly the same way for the compressible
norm in (7.3).

In the present chapter, the control surface Σ is taken to be a cylinder of
radius R = 10. Note that if Σ is a circle large enough so that perturbations
are purely acoustic, then the velocity fluctuations are given by u = Ma · p,
so that

F (q̃) =
1

2

∫

Σ

Ma|p̃|2r dl.

Whether the compressible norm or the acoustic power are used as an
objective functional for the maximization procedure, the amplitude of the
perturbation is always measured in terms of the norm (7.3) (the integration

domain is this time Ω̃f , the portion of jet pipe included in the physical
domain).

7.3 Numerical procedure

As it was mentioned before in chapter 3, direct solvers would be too costly
for the discretization of compressible flows, so the numerical procedure used
implemented in chapter 6 cannot be used here. The formalism being the
same, the optimal forcing is given by

f̃opt = arg max
f̃

f̃ †B†(L+ iωId)−1†Q(L+ iωId)−1Bf̃

f̃ †Qf f̃
, (7.6)

where Q corresponds to the discretization of either (7.3) (situation referred
to as the energy problem, or problem E) or (7.5) (situation referred to as
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the acoustic problem, or problem A). Qf corresponds to the discretization of

(7.3) on Ω̃f ; since it is positive definite, it admits a Cholesky decomposition,

Qf = M †
fMf . From (7.6) it appears that the optimal forcing can be computed

from the leading eigenvector g̃ of

M †
f

−1
B†(L+ iωId)−1†Q(L+ iωId)−1BM−1

f︸ ︷︷ ︸
Lω

g̃ = λg̃ (7.7)

As a finite difference discretization is employed, both Mf and M−1
f are easily

computed by hand. Consequently, in order to iteratively compute the leading
eigenvector g̃ (using a Lanczos method), the only costly part in applying Lω is
the application of (L+iωId)−1 and its adjoint. Based on the observation that
solving (L + iωId)x = y corresponds to finding the time harmonic response
x to a forcing y, (L+ iωId)−1 can be approximately applied through a time
stepping of the forced linearized Navier–Stokes equations over a sufficiently
long time interval so that transient effects die out. In Monokrousos et al.
(2010) the solution is then Fourier-transformed in time to extract the solution
to (L+iωId)x = y. A variation of the method is used here: instead of solving

ẋ = Lx+Bye−iωt

until convergence to a time harmonic state is achieved, the equivalent system

ẋ = (L+ iωId)x+By (7.8)

is integrated in time until a steady solution is found, which can be speeded-up
by the use of a local time step. The time of integration is determined a priori,
such that the same operator Pω ≈ (L+iωId)−1 is applied at each iteration of
the Krylov solver. The main difference between the present numerical proce-
dure and that of Monokrousos et al. (2010) lies in the approximate solution
of the adjoint system. In order to ensure a fast and reliable convergence
of the Lanczos method, (L† − iωId)−1 is approximated using P†ω: for this
purpose the number of time steps used for applying Pω and P†ω is the same,
and the time stepping algorithm used for P†ω is distinct from the standard
Runge-Kutta method implemented for Pω, as described in chapter 2.

7.4 Results

7.4.1 Optimal energy responses: near field

Optimal forcing have been computed for the model flow described in chap-
ter 4 at a Mach number Ma = 0.75, first for the energy problem. The
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Figure 7.1: Energy and acoustic power of the responses qopt to axisymmetric
(m = 0) forcing of unit energy (E(fopt) = 1 ) for a compressible jet at
Ma = 0.75. Results obtained for a maximization of the energy are displayed
as solid lines, and dashed lines are used for the responses maximizing the
acoustic power. (a): energy. (b): acoustic power across a cylinder of radius
R = 10. For consistency between (a) and (b), the gain in energy is displayed
in (a) while the gain in amplitude (i.e. the square root of the results presented
here) was used in chapters 5 and 6.

computed gains in energy are displayed in figure 7.1(a) as a function of the
Strouhal number. Although a quantitative comparison with the gains de-
scribed in chapter 6 would be meaningless as the norms used in both cases
differ, results are quantitatively very similar. The most amplified frequency
is found to be St = 0.40 and the corresponding gain in amplitude is larger
than 170. The vorticity fields of the flow response to the optimal forcing
at various frequencies are displayed in figure 7.2. Consistent with a phase
velocity that remains of the same order, the typical size of the structures re-
duces as the frequency increases, and so does the extent of the wave-packet.
While right downstream of the jet pipe the vorticity field exhibits lobes of
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positive and negative signs on each side of the shear layer – characterizing a
Kelvin-Helmholtz instability – only one structure is observed along the radial
direction further downstream. These structures are reminiscent of the results
for global modes and optimal perturbations in chapter 5 and are consistent
with structures being advected downstream.

The forcing structures, to be further described later, are also similar to
those found in the incompressible case.
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Figure 7.2: Azimuthal vorticity fields ((∇×u) ·eθ) for optimal axisymmetric
(m = 0) responses in a compressible jet at Ma = 0.75 (problem E).

The transition of the flow response from a shear-layer to a jet-column
perturbation is also observed in the PSE results of Rodriguez et al. (2011).



128 Chapter 7. Optimal forcing of subsonic jets

These authors however report a flow response that extends over a much larger
region in the streamwise direction. In addition to a different methodology,
this could also be attributed to a different base flow and Reynolds number.

7.4.2 Acoustic radiation of the responses of maximum
energy
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Figure 7.3: Dilatation field (∇ ·u) for the optimal axisymmetric response in
a compressible jet at Ma = 0.75 and St = 0.4. The limits of the sponge layer
are represented in dashed lines.

While with an incompressible analysis an acoustic analogy is necessary
to get information about the acoustic features of the most amplified forced
structures, the present compressible analysis gives direct access to the acous-
tic radiation. The acoustic field of the response at the preferred frequency is
displayed in figure 7.3. As for any other excitation frequency, the dilatation
field shows that acoustic waves are emitted from a region right downstream
of the jet pipe; these waves propagate outwards with a maximum amplitude
at an angle varying from 20◦ to 55◦ from the jet axis. In order to characterize
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Figure 7.4: Directivity of the acoustic radiation for optimal axisymmetric
(m = 0) perturbations at different frequencies (Ma = 0.75). The amplitude
of the dilatation field |∇ · u(ρ cos(ϑ), ρ sin(ϑ))| is displayed on a circle of
radius ρ = 20 as a function of the angle ϑ (in dB).

the directivity of noise emission, the amplitude of the dilatation field on a
circle of radius 20 centered at the origin is displayed in figure 7.4. Except
for the lower Strouhal number, St = 0.16, it appears that the maximum
amplitude of the radiated field is approximately constant for all excitation
frequencies. Figure 7.1(b), shows that the radiated power actually increases
slowly with the frequency. The angle of maximum variation increases from
20◦ for St = 0.24 to 55◦ for St = 0.64. This observation is in agreement
with experimental measurements (Lush 1971, Bogey et al. 2007) that show
that the peak frequency in the acoustic spectrum increases with the angle of
observation with respect to the jet axis.

7.4.3 Optimal acoustic radiation

Optimizing the forcing for maximum acoustic radiation (problem A) identifies
the same flow responses as the optimization of the norm of the flow response.
Results are presented in figure 7.5 for a Strouhal number of 0.48; on the left
column are displayed fields obtained for the energy problem and on the right
fields for the acoustic problem. The same color scales are used on both sides.
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Figure 7.5: Optimal axisymmetric (m = 0) forcing and flow responses for
Ma = 0.75 and St = 0.48. On the left, results are presented for an optimiza-
tion of the energy norm (7.3). Figures on the right display results computed
for the maximization of the acoustic power (7.5). (a, b) : dilatation ∇ · u,
(c, d) : azimuthal vorticity (∇× u) · eθ, (e, f) : forcing applied to the axial
velocity. The same color scales are used in the left and right columns for
vorticity and dilatation fields.

Figures 7.5(a− d) show that both the dilatation and vorticity fields present
very similar distributions. As expected the intensity of the dilatation field is
larger for maximum acoustic power and the intensity of the vorticity field is
larger for maximum energy norm, but they lie within a factor of 2 of each
other, as can be observed in figure 7.1(a, b).

The shapes of the forcing, presented in figures 7.5(e − f), are however
significantly different for the two objective functionals. Upstream tilted
boundary-layer structures are observed in case E, similar to the incompress-
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ible results presented in chapter 6. Such a forcing optimally excites the shear
layer structures downstream of the nozzle. In case A on the contrary, the
optimal forcing identified by the formalism takes the form of an acoustic
wave that is scattered at the end of the jet pipe – thus contributing to the
acoustic response – and that also efficiently excites shear layer structures in
the free-jet.

The similarity of the results obtained in cases E and A show the robust-
ness of the optimal forcing formalism in identifying relevant structures in the
jet.

7.4.4 Transients

The transient dynamics of forced perturbations is considered. For each exci-
tation frequency the optimal forcing fopt (normalized such that E(fopt) = 1)
is used to compute the temporal evolution of a perturbation set to zero at
t = 0. As shown in figure 7.6(a, c) the norm of the perturbation monotoni-
cally increases in time until it reached an asymptotic value for both acoustic
and vortical forcing. In order to evaluate the typical time where transient
dynamics dominate over the time harmonic response, the time Tsat is defined
for each forcing as E(q(Tsat))

1/2 = 95%E(q(∞))1/2. Figures 7.6(b, d) shows
that at low frequency the time harmonic regime is nearly attained after 5
forcing periods. At higher frequencies it takes of the order of 20 periods to
reach the time harmonic response, which is surprising as the extent of the
response in the streamwise direction decreases with the frequency.

7.5 Conclusions and outlook

The acoustic radiation for instability wave in compressible jets has been an-
alyzed in terms of the optimal time harmonic forcing. Computations have
been performed in order to identify the external disturbances that generate
flow disturbances with the maximum energy or acoustic radiation. As for in-
compressible jets in chapter 6, the results of this chapter identify a preferred
Strouhal number of around 0.4 for axisymmetric forcing. Optimal forcing
terms that maximize acoustic radiation take the form of acoustic waves prop-
agating through the jet pipe; while it is expected that the energy of the flow
response is lower in this case than when the latter is maximized, results show
that an acoustic forcing terms also efficiently excites vortical structures in
the jet. This shows the receptivity of jet flows to acoustic disturbances.

The acoustic field of the optimal responses, for both objective functionals,
show that sound waves are emitted at a preferred angle ϑ for the jet axis
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Figure 7.6: Transient evolution of the perturbation until the time harmonic
regime is reached for case E (top row) and A (bottom row). (a, c): temporal
evolution of the amplitude of the response. (b, d): number of periods required
for the norm of the response to reach 95% of its asymptotic value.

that increases from 20◦ to 55◦ as the frequency of excitation increases. It
is however unclear in this approach which portion of the sound is radiated
by the instability wave and which portion directly comes from the forcing.
Indeed Lighthill’s equation becomes

∂2ρ

∂t2
− c2

∞∇2ρ =
∂2

∂xi∂xj

(
ρuiuj + (p− c2

∞ρ)δi,j
)

+
∂fρ
∂t

+
∂fρui
∂xi

when forcing is applied. The contribution of the last two terms in the above
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equation to the acoustic field will therefore need to be assessed before con-
clusions can be drawn about the acoustic field radiated by the jet preferred
mode.
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Chapter 8

Conclusions and outlook

The relevance of different tools commonly used for the study of linear stability
features in a global framework have been assessed for the description of large
scale coherent motion in jet flows.

Optimal perturbations in jet flows, presented in chapter 5, are in most
situations localized in the boundary layer of the pipe, next to the nozzle. The
perturbations grow as they are convected downstream: they are amplified
first by the Orr mechanism and then by the shear layer instability in the
potential core. In the self-similar region a slow decay or amplification of the
wave-packet is observed depending on the azimuthal wave number. In such
a situation it has been shown that a modal representation fails to capture
the dynamics of perturbations for both numerical and physical reasons. The
eigenspectrum does not display any least stable frequency that could explain
the preferred mode, and even a superposition of all of the computed modes
cannot reproduce the transient features.

In chapter 6 the axisymmetric preferred mode of the jet was described in
terms of the optimal flow forcing in an incompressible setting. The transfer
function, which describes the maximum amplification of external forcing at
a given frequency, exhibits a clear maximum at St ≈ 0.4 for both boundary
and body forcing. The flow response is very similar for both types of external
disturbances. Results demonstrate that as the forcing frequency increases the
spatial extent of vortical structures in the flow decreases but that the initial
growth of the wave-packet just downstream of the nozzle increases. The
preferred mode may therefore be seen as a compromise between fast spatial
growth rates and the large spatial extent of the structures. Comparison with
local stability analysis reveals that the spatial structure of the flow response
gradually changes from a local shear-layer mode next to the nozzle to a local
jet-column mode downstream of the potential core.

Non-axisymmetric optimal gains do not exhibit a preferred frequency

135
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since helical low frequency perturbations remain amplified over very large
streamwise regions. As the amplitude of the flow response is measured in
terms of its L2 norm over the whole computational domain, such helical forc-
ings appear to be the most amplified. An analysis of the spatial development
of the flow response, however, demonstrates that results are consistent with
those of Strange and Crighton (1983).

Compressibility effects have been investigated in chapter 7. It has been
shown that acoustic waves efficiently excite shear layer structures, and that
wavepackets are responsible for a directive sound emission. Further investi-
gation will, however, be necessary in order to draw clearer conclusions.

In order to perform the linear stability analyses, existing solvers have
been adapted to provide memory-efficient and scalable methods that may
be applied to more complex two- or three-dimensional discretizations. In
particular, in a direct extension of this study, the optimal forcing analysis
will be performed on the turbulent mean flows computed by DNS in Sandberg
et al. (2012), in order to compare the preferred structures obtained for the
linearized equations to features of a randomly forced flow.

A missing ingredient in our analysis is the modeling of the effect of fine
scale turbulence on coherent structures, as presented by Reynolds and Hus-
sain (1972). Several methods are possible, ranging from a simple eddy vis-
cosity model (Pujals et al. 2009) to the linearization of a turbulence model
(Crouch et al. 2007). Such an approach however is uncertain due to the poor
prediction of coherent structures and their radiated sound by RANS models.
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