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Abstract

Local and global eigendynamics of free plumes are analyzed in this disser-
tation, with a particular focus on the possibility of self-sustained global os-
cillations. Such behavior in plumes is examined from the perspective of hy-
drodynamic stability. In this investigation, local absolute instability as well
as linear global instability are found in the plumes, suggesting that plumes
may indeed display self-sustained oscillator behavior. The frequency of the
most unstable global mode matches closely with the self-excited axisymmet-
ric puffing reported from experiments and direct numerical simulations of
plumes and buoyant jets. A low Mach number approximation is employed
for the global instability analysis, which captures the non-Boussinesq effects
in flows with arbitrarily large density variations. The Boussinesq setting
represents a special case of the low Mach number formulation, reached in
the limit of small density variations. In this limit, a local analysis indicates
the presence of an absolute instability of very low frequency for helical per-
turbations. However, this absolute instability does not appear to provoke a
global instability, possibly due to its small absolute growth rate. The dy-
namics of plumes are contrasted with that of buoyant jets; these two regimes
of the vertical flow of hot fluid are characterized by the Richardson number
Ri. An endogeneity analysis demonstrates that global instability in jets (low
Ri) is mostly driven by base flow shear, whereas the global destabilization
of plumes (high Ri) is dominantly caused by buoyancy. The local instability
modes in Boussinesq plumes are interpreted by means of the perturbation
kinetic energy equation.
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Résumé

Cette thèse vise à décrire la dynamique propre des panaches libres à partir
d’approches locales et globales. Il s’agit en particulier de déterminer si, dans
le cadre de la thorie de l’instabilité linéaire, des oscillations auto-entretenues
sont susceptibles de se produire dans le cas des panaches. Les configurations
considérées dans cette étude prsentent effectivement une instabilité absolue
locale ainsi qu’une instabilité globale linéaire. Les panaches peuvent donc
être le siège d’oscillations synchronisées. La fréquence prédite par la présente
analyse globale est en bon accord avec les observations expérimentales et les
simulations numériques directes de jets légers. Une formulation valable aux
faibles nombres de Mach est utilisée pour l’analyse d’instabilité globale, re-
tenant ainsi les effets non-Boussinesq présents dans les écoulements à forte
variation de masse volumique. Dans la limite des faibles variations de masse
volumique, cette formulation se rduit aux équations de Boussinesq. Une anal-
yse d’instabilité locale dans cette limite révèle alors la présence d’une insta-
bilité absolue pour des modes hélicöıdaux de très basse frquence. Toutefois,
cette instabilité absolue ne semble pas donner lieu à une instabilité globale,
vraisemblablement en raison de son faible taux de croissance absolu. La
dynamique des panaches est comparée avec celle des jets légers; ces deux
rgimes distincts, associés à un écoulement ascendant sous l’effet de la flot-
tabilité, sont caractérisés par leur nombre de Richardson Ri. Une analyse
basée sur le concept rcent dl’endogénéité démontre que l’instabilité globale
d’un jet (Ri faible) est principalement due au cisaillement de l’coulement de
base, tandis que la dstabilisation globale des panaches (Ri grand) est dominée
par la flottabilité. Les modes d’instabilité locale dans la limite Boussinesq
sont interprétés par le biais de l’équation de l’énergie des perturbations.
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Chapter 1

Introduction

“Any solid lighter than a fluid will, if placed in the fluid, be so far
immersed that the weight of the solid will be equal to the weight
of the fluid displaced.”

“If a solid lighter than a fluid be forcibly immersed in it, the solid
will be driven upwards by a force equal to the difference between
its weight and the weight of the fluid displaced.”

“A solid heavier than a fluid will, if placed in it, descend to the
bottom of the fluid, and the solid will, when weighed in the fluid,
be lighter than its true weight by the weight of the fluid dis-
placed.”

-Archimedes of Syracuse, c. 250 BC.

With these postulates by Archimedes [32], the quantitative study of buoy-
ancy began, possibly inside a bathtub, in ancient Greece.

A buoyancy force can be generated in a flow field under a multitude of
situations such as hot fluid injected into a cold ambient, low density fluid
injected into a high density fluid, change of phase or chemical reactions.
This force, in turn, results in a plethora of flow fields. Common examples are
atmospheric and oceanic circulations, ventilation in confined spaces, volcanic
plumes, under-ice convection, chimney exhausts, saline jets, lifted flames etc.

Most buoyancy-driven flows are unstable, resulting in large-scale unsteady
dynamics and the subsequent transition to a turbulent state within a few di-
ameters downstream of the inlet. Prediction of the laminar to turbulent
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transition and controlling the dynamics could be of great practical interest.
For instance, in the case of lifted flames, an instability upstream of the flame
front could result in large fluctuations in the flame front location and dras-
tically alter the combustion efficiency. The emphasis of this dissertation is
to understand the role of buoyancy in destabilizing the flow fields of buoyant
jets and plumes in a laminar setting before they transition into a turbulent
state.

1.1 Long-time response

In stability analysis, the question one seeks to answer is, “if the base flow
is perturbed infinitesimally at time t = 0, will it return to the initial state
provided one waits long enough?” In this investigation, the response of the
flow in the limit t→∞, referred to as the long-time response, is considered.
The perturbation is assumed to be a white noise which mimics the random
fluctuations of the ambient.

In order to predict the long-time response of the steady base flow to a
perturbation, a standard method is to superpose an infinitesimally small per-
turbation on the base state and linearize the governing equations about the
base state. The complex frequency ω, which is obtained as an eigenvalue of
the linearized governing equations and boundary conditions, determines the
evolution of the perturbation field in the asymptotic limit t→∞. Rayleigh
[76] first applied these techniques to understand the dynamics of inviscid
flows. This was later extended to include viscous effects by Orr [65] and
Sommerfeld [82] independently. Depending on the assumptions made on the
base flow as well as the perturbations, the stability problem may be posed
in a local or global sense

In a local analysis, the streamwise evolution of the base flow is assumed
to be much slower in comparison to the perturbation evolution. Therefore,
in a cylindrical coordinate system, the base flow is taken to be of the form

q = q(r), (1.1)

and perturbations of the form

q′ = q̂(r)ei(kz+mθ−ωt) + c.c. (1.2)

Here, q and q′ denote the state vectors which include all the variables of
the base flow and the perturbation respectively. In physical terms, the local
approximation amounts to considering a slice of the flow at some streamwise
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Figure 1.1: Schematic of various linear impulse responses in the x− t plane:
a. stable; b. convectively unstable; c. absolutely unstable. The figure is
adopted from figure 8 in Open shear flow instabilities by Huerre [34]

.

location and extending it to −∞ and +∞ along the streamwise direction.
This implies that, in order to satisfy the conservation of mass, given by the
continuity equation, only the streamwise component of the velocity survives
and other components of velocity vanish. Under these assumptions on the
base flow, and in the absence of any pressure feedback from the boundary, if
a steady flow is perturbed by an infinitesimally small impulse at time t = 0
and the response is recorded as t → ∞, the response can be classified into
three categories shown in the schematic 1.1: a. stable - the perturbation
decays in time as it is convected downstream; b. convectively unstable - the
perturbation grows in time as it convected downstream but in the long-time
limit, the perturbation is convected out of the domain and the flow returns
to the initial state; and c. absolutely unstable - the perturbation grows
exponentially in time throughout the flow field and the initial flow state is
never reached in the long-time limit. Such a classification of the flows can be
made based on the growth rate of the most unstable eigenmode, and for the
ansatz (1.2), the imaginary part of the complex frequency ω gives the growth
rate. If the maximum temporal growth rate is negative, then the flow is stable,
while in a convectively unstable flow the temporal growth rate is positive but
the absolute growth rate is negative, and in an absolutely unstable scenario,
both the absolute and temporal growth rates are positive. The notions of
convective/absolute instability and their computation through the method of
steepest descent were established in the plasma physics community by Briggs
[7] and Bers [3]. These concepts were later adopted to analyze open shear
flows by Huerre & Monkewitz [35].

In a global analysis, the streamwise evolution of the base flow is accounted
for and no assumption is made on the spatial variation of the eigenfunction.
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For a weakly nonparallel base flow, this may be accomplished through an
integration of the local stability properties of the base flow at each stream-
wise location in the z-direction under the WKBJ assumption [12]. However,
the applicability of such an analysis might be limited if the flow is strongly
nonparallel. A robust way to account for the streamwise variation in the
base flow is to assume a perturbation of the form

q′ = q̂(r, z)ei(mθ−ωt) + c.c., (1.3)

over a base flow of the form

q = q(r, θ, z) (1.4)

and then, as in the local analysis, linearize the governing equations to obtain
ω as an eigenvalue of the linearized system. The long-time response of the
flow is classified similar to the local framework: a. stable - all the global
eigenmodes decay exponentially in time and the resulting perturbation field
decays in time as it is convected downstream; b. amplifier - similar to the
stable scenario, all the global modes decay exponentially in time but through
non-normal interaction between the eigenmodes, the perturbation field grows
spatially as it propagates downstream [15] and it is eventually convected out
of the domain, thereby returning the flow to its initial state; and c. globally
unstable or oscillator - at least one global eigenmode grows exponentially
in time throughout the flow field. The amplifier and oscillator states are
the global analogues to the local convective and absolute instability states,
respectively. However, unlike the local stability analysis, it is not possible
to distinguish between globally stable and amplifier type flows purely on the
basis of global eigenvalue spectrum. Note that all the oscillator type flows
are necessarily absolutely unstable for some region while, only those flows
with strong absolute growth rates over a large enough streamwise extent
can become globally unstable. This was shown rigorously for the case of
the 1-D Ginzburg-Landau equation [12] but this has been observed to hold
true for many real flows such as wakes, jets, shear layers, etc. A typical
example of an oscillator type flow is the wake of a bluff body, which above
a critical Reynolds number presents intrinsic periodic oscillations [74]. A
similar behaviour holds for counter-flowing jets and shear layers. On the
other hand, co-flowing shear layers and homogeneous jets act as amplifiers
[38, 84].

The oscillator type behaviour is intrinsic to the base flow, i.e. continu-
ous external forcing is not required to sustain the oscillation of such global
modes and therefore, these modes are called self-sustained oscillations. They
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are triggered by the white noise of the system and sustained by the energy
transferred from the base flow through various mechanisms such as shear,
baroclinic torque, buoyancy, etc. Note that until now, only infinitesimal per-
turbations are discussed and such an analysis is called linear analysis. The
global modes obtained under this framework should be qualified further as
linear global modes. Once these infinitesimally small amplitude linear global
modes grow in time, they saturate and result in a limit cycle called nonlinear
global mode. An example of such nonlinear global mode is shown in figure 1.2
which presents a snapshot of the smoke rising from a cigarette, an archetype
of buoyancy-driven flow.

Figure 1.2: Photograph of the smoke rising from a cigarette taken from van
Dyke’s An album of fluid motion (figure 107) [92]. The flow rises from the
heat source steadily and evolves into an unsteady self-sustained oscillatory
pattern downstream of the source.

Unlike the linear global mode, where the entire flow field is contaminated
by the perturbation in the long-time limit, a nonlinear global mode exists only
downstream of a stable front. The location of such a front can be predicted
from the local absolute/convective behaviour and the departure from the
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local prediction is likely to increase with the nonparallel nature of the flow
[17, 18, 70, 71]. In experiments and DNS, one observes these nonlinear global
modes and they cannot be obtained through a linear stability analysis.

1.2 Buoyant jets and plumes

Consider a helium jet injected vertically upwards into quiescent air. The
fluid continues to rise up due to two forces: inertia imparted at the inlet
and the buoyancy force as helium density is lower than ambient air density.
Depending on the strength of these two forces, the evolution of the flow
downstream of the inlet varies. This is quantified by the Richardson number
Ri, which is a measure of the relative strength of the buoyancy and inertia
forces. In the limit of Ri� 1, referred to as buoyant jets, the inertia of the
fluid at the inlet has a stronger effect than the buoyancy and the flow evolves
in the same way as jets [64]. In the limit of Ri � 1, referred to as plumes,
the converse holds; the downstream evolution of the flow is determined by
buoyancy imparted to the fluid at the inlet.

The dynamics of pure jets, where the effect of buoyancy is completely
omitted, have been studied in great detail. Various types of stability analy-
ses, direct numerical simulations (DNS) and experiments were performed to
understand the dynamics of jets. It was established that the classical isother-
mal homogeneous density jets are convectively unstable locally and amplifier
type globally [25]. However, on addition of counter-flow [38, 84], or density
variation (either due to heating the fluid [64] or variation of species com-
position and thereby density [83]), global modes are observed. In all these
scenarios, it was demonstrated that the instability is either due to baroclinic
torque (jet column mode) [44] or stronger velocity gradient (shear mode) [84].

For the case of laminar plumes, however, such detailed investigations are
missing. Most of the plumes observed in nature become turbulent within a
few diameters downstream of the inlet. The evolution of the time-averaged
mean flow quantities along the streamwise direction were described by Mor-
ton, Taylor & Turner [61] in 1956 (further referred to as the MTT model)
by assuming that the mean entrainment velocity is proportional to the local
spatial average of the mean axial velocity. This is equivalent to assuming a
self-similar variation for the mean flow quantities. The MTT model is very
successful in predicting the mean flow quantities, height of the plume, radial
spreading of the plume etc. Corrections were proposed to predict the mean
flow close to the source where the flow has not yet reached the self-similar
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state [37]. List [48] and Woods [96] present a review of this MTT model
applied to various flow scenarios. Woods [96] particularly examines the flow
fields observed in natural convection such as atmospheric plumes, subma-
rine pumice plumes, ventilation in confined spaces etc. In all these analyses
on turbulent plumes, only spatially averaged mean flows were considered.
Hence, a discussion on the stability of these flows profiles is not possible.
Some recent studies have concentrated on the spatial structure of the turbu-
lent plume [73] and interaction of plumes in complex configurations relevant
to ventilation [5]. Stability analyses of such spatially resolved turbulent mean
states could be interesting but the current thesis is limited to the dynamical
characteristics of laminar plumes.

One of the first investigations of the stability of buoyancy-driven flows
was undertaken by Gill & Davey [28] for planar plumes along a heated wall.
Gebhart and his co-investigators have followed it up with numerous works
on flows along a heated wall, free planar plumes and axisymmetric plumes
[68, 67, 58]. Mollendorf & Gebhart [58] have studied the spatial stability
of axisymmetric plumes. However, buoyancy was included only as a small
correction parameter to the momentum equation. Given the difficulty in
computing the base flow as well as the coupled stability problem for round
plumes, many studies concentrated on planar plumes. A review article sum-
marizing the various works on the stability of laminar plumes was presented
by Gebhart [26]. Most of the early analyses were limited to the self-similar
region [93, 58, 67] but recent studies have examined the region close to the
buoyancy source as well [86, 30, 31, 10].

With regard to round plumes, for a long time, the analysis was limited
to Prandtl numbers of unity and 2. This is due to the availability of an
analytical solution for the base flow [98]. A robust method for computing the
base flow for other Prandtl numbers was proposed by Riley & Drake [77] and
Worster [97] independently. Later on, many works on the computation of the
base flow under various boundary conditions at the source followed [88, 94,
95]. The first temporal stability analysis of an axisymmetric free plume was
performed by Riley & Tveitereid [78] and it was shown that the helical mode
m = 1 is the most unstable mode in the streamwise wavenumber - Grashof
number (k−Gr) plane. Through a perturbation energy analysis, it was shown
that the instability in the low wavenumber and low Grashof number limit is
due to buoyancy while at high Grashof numbers, the dynamics are shear
dominated. Most investigations, however, considered the spatial stability
of the plume [58, 93]. It is to be noted that none of the spatial stability
investigations have established the validity of spatial analysis by showing the
flow to be only convectively unstable but not absolutely unstable [34]. Also,
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all these investigations have focused only on the self-similar region under the
Boussinesq approximation while most of the plumes observed in nature are
found to transition to a turbulent state within a few diameters downstream
of the inlet. Hence, the pertinence of the predictions made in the self-similar
region for real flows remains questionable.

Through a careful experiment, Subbarao & Cantwell [85] demonstrated
the existence of self-sustained oscillations in helium jets, injected into air at
Richardson numbers of the order unity, beyond a critical Reynolds number
Rec(Ri). These observations were confirmed experimentally by Cetegen &
Kasper [9] who also studied the dynamics of helium jets but for a much larger
range of Richardson numbers. Satti & Agrawal [80] varied the Richardson
number of the flow by altering the gravity in the DNS, and it was observed
that as Ri is decreased, the self-sustained oscillations ceased to exist. How-
ever, DNS of the heated fluid injected into air in the buoyant jet limit by
Nichols et al. [64], indicate the presence of a nonlinear global mode similar
to hot jets. This discrepancy is due to the choice of inlet velocity profile:
it is parabolic in the DNS of Satti & Agrawal [80] while it is a steep profile
in Nichols et al. [64]. Note that in the case of helium jets, the variation in
density along the cross-stream direction is large and the Boussinesq approx-
imation no longer holds. Hence, Nichols et al. [64] the low Mach number
approximation is used to model the flow in DNS studies. The present study
follows that choice.

1.3 Objectives

In this investigation, a base flow as shown in the schematic 1.3 is considered.
Here, heated fluid exits through a round orifice in an infinitely large, adia-
batic, rigid wall and as the flow evolves downstream, it reaches self-similar
velocity and temperature profiles which are independent of the inlet con-
ditions. The dynamical behaviour of such a flow field is analyzed with an
emphasis on understanding the role of buoyancy in the dynamics as well as
in the base state.

From the brief review of the literature on plumes presented in the previ-
ous section, it can be seen that the vast majority of the studies on plumes are
dedicated to turbulent plumes [61, 96, 73] and confined plumes [49, 63, 50].
Only a fraction of the studies are directed towards understanding the dynam-
ical characteristics of laminar round plumes from a hydrodynamic stability
point of view, and these were mostly limited to the classical local temporal
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Figure 1.3: Schematic of the flow considered in this thesis. A heated fluid
is continuously injected into a quiescent ambient from a round orifice in an
infinitely large wall. As the flow is convected upwards, it evolves to a self-
similar profile which is independent of the inlet profile.

and spatial stability analysis of the self-similar region under the Boussinesq
approximation. Thus, much remains to be explored about the local stability
characteristics, the role of buoyancy and how it varies in a plume in contrast
to a buoyant jet. In the non-Boussinesq regime, only DNS and experiments
have been undertaken until now. Furthermore, the dynamics in the plume
limit, Ri � 1, have not yet been investigated from the stability point of
view.

This dissertation envisages to uncover these missing pieces in our under-
standing of plumes and their dynamical behaviour. As a first step, both local
and global linear instabilities of the plume are examined for a wide range of
values of Richardson number and density variation, ranging from the Boussi-
nesq limit up to large density variations, such as in helium jets injected into
air. Rather than performing a mere parametric study, the objective here
is to understand the role of buoyancy and shear forces in destabilizing the
flow field. This is accomplished by studying the perturbation energy of the
temporal mode in the local framework [78, 62]. Also, a mechanism through
which buoyancy can destabilize the flow field has been proposed. In the
global setting, the interplay between buoyancy and shear is studied through
a new sensitivity metric: the endogeneity [51]. Comparisons will be drawn
between the stability characteristics of non-buoyant jets/pure jets, buoyant
jets and plumes to achieve a better understanding of the role of buoyancy.
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1.4 Outline of the thesis

This thesis is organized into two main chapters followed by Concluding re-
marks.

Chapter 2, Local linear stability of laminar axisymmetric plumes,
focuses on the local temporal and spatio-temporal behaviour of the self-
similar region of the plume. The spatio-temporal stability of the self-similar
Boussinesq plume is attempted for the first time and it is shown that only
the helical m = 1 mode transitions to absolute instability. Further, this ab-
solute instability is shown to be solely due to buoyancy. Most of the previous
temporal investigations were limited to Pr = 1, 2 and helical perturbations
m = 1 [78, 58, 93]. Here, in addition to the helical mode m = 1, the axisym-
metric mode m = 0 and the double-helical mode m = 2 are also analyzed
for a wide range of Prandtl numbers. The role of shear and buoyancy in
the temporal instability of the flow is examined by computing the perturba-
tion kinetic energy. For all the values of m investigated, buoyancy is shown
to be dominant at the low Grashof numbers and wavenumbers while shear
dominates in the high Grashof number regime. A mechanism through which
buoyancy could destabilize the flow is proposed. The predictions of the self-
similar region are demonstrated to hold good in the near-source region for a
specific case as an example.

Chapter 3, Global stability of buoyant jets and plumes, deals with
the linear global stability problem for a wide range of Richardson numbers
Ri and ambient to jet density ratios S. The main aim of this part of the
investigation is to examine the axisymmetric puffing observed in the helium
jet experiments by Subbarao & Cantwell [85] and Cetegen & Kasper [9] from
a hydrodynamic stability point of view. Under the Boussinesq limit, dis-
cussed in Chapter 2, the dynamics were predicted to be dominated by the
helical mode m = 1 but the experimental investigations report axisymmetric
puffing. Therefore, the local and global stability of the base flow is computed
for both m = 0 and m = 1. It is observed that the local absolute instability
of the helical mode present in the Boussinesq limit does not translate into an
unstable global mode for all S and Ri investigated. However, beyond a cer-
tain density ratio Scrit(Ri), an unstable global mode is observed in the global
spectrum of m = 0. Moreover, the oscillation frequencies reported in the ex-
periments are seen to match closely with the predicted axisymmetric linear
global mode. Through examination of the integral measure of endogeneity
for various terms in the governing equations, the relative contributions of
buoyancy and shear towards global instability are calculated. Furthermore,
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based on the spatial distributions of the endogeneity and the eigenfunctions,
plausible differences in the mechanism through which these forces destabilize
the flow are proposed.

The dissertation concludes with a summary of the main results, thereby
giving an overall perspective of the work. This is followed by a broad road
map for future extensions of the investigation.
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Chapter 2

Local linear stability of laminar
axisymmetric plumes

This chapter discusses the local stability of the laminar Boussinesq plume,
primarily for self-similar profiles. The main results of this chapter are the
following: the helical mode m = 1 is the dominant mode for most of the
parameters investigated and beyond a critical Grashof number, it becomes
absolutely unstable. The dominance of helical mode and its transition to an
absolute instability is also demonstrated in a region close to the buoyancy
source for a plume originating from a finite-sized inlet where the base flow is
not self-similar. However, this was limited to a particular example.

The bulk of the material in this chapter, till section 2.4, is presented in
the form of an article [10] which was published in Journal of Fluid Mechanics.
Additional details which were not conclusively understood or computational
details not presented in the article are discussed in sections 2.5 and 2.6.
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Local linear stability of laminar
axisymmetric plumes

R. V. K. Chakravarthy, Lutz Lesshafft and Patrick Huerre
Laboratoire d’Hydrodynamique (LadHyX), CNRS – École Polytechnique,

91128 Palaiseau, France

published in Journal of Fluid Mechanics, 780, pp. 344–369

Abstract

The temporal and spatio-temporal stability of thermal plumes is investi-
gated for laminar velocity and temperature profiles, under the Boussinesq
approximation, in the far self-similar region as well as in the region close
to a finite-size inlet. In the self-similar case, Prandtl and Grashof numbers
are systematically varied, and azimuthal wavenumbers m = 0, 1 and 2 are
considered. In the temporal analysis, helical modes of m = 1 are found to
be dominant throughout the unstable parameter space, with few exceptions.
Axisymmetric modes typically present smaller growth rates, but they may
dominate at very low Prandtl and Grashof numbers. Double-helical modes
of m = 2 are unstable over a very restricted range of parameters. Only the
helical m = 1 mode is found to ever become absolutely unstable, whereas
m = 0 and m = 2 modes are at most convectively unstable. In a temporal
setting, an analysis of the perturbation energy growth identifies buoyancy-
and shear-related mechanisms as the two potentially destabilizing flow ingre-
dients. Buoyancy is demonstrated to be important at low Grashof numbers
and long wavelengths, whereas classical shear mechanisms are dominant at
high Grashof numbers and shorter wavelengths. The physical mechanism
of destabilization through the effect of buoyancy is investigated, and an in-
terpretation is proposed. In the near-source region, both axisymmetric and
helical modes may be unstable in a temporal sense over a significant range
of wavenumbers. However, absolute instability is again only found for helical
m = 1 modes.
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2.1 Introduction

The present paper investigates the local stability properties of round laminar
plumes under the Boussinesq approximation. With these premises, the anal-
ysis pertains to physical situations where viscous forces are significant, and
where density variations are sufficiently small. Examples for such situations
are magma flows, saline jets, convective CO2 transport in water, under-ice
convection and algae suspensions (see Thorpe [89]; Lombardi et al. [49];
Nadal et al. [63] and references therein).

The velocity field of a steady plume resembles that of a jet, with the
fundamental difference that a jet emerges from a nozzle with a given amount
of streamwise momentum which merely diffuses radially as the fluid convects
downstream, whereas the buoyancy in a plume flow continues to generate
vertical momentum at any streamwise station. With regard to unsteady
dynamics, buoyancy may provide new mechanisms of perturbation growth in
addition to the well-known shear instabilities that are present in jets.

Mollendorf & Gebhart [58] investigated the spatial stability of a self-
similar plume, although in a simplified framework where buoyancy effects
were accounted for by adding a small forcing parameter to a non-buoyant
jet analysis, thereby avoiding the solution of the coupled system of tempera-
ture and momentum equations. A spatial analysis was performed for Prandtl
numbers Pr = 2 and 6.7. Weak buoyancy was observed to destabilize he-
lical perturbations, with azimuthal wavenumber m = 1, but no instability
was found for axisymmetric perturbations (m = 0). These conclusions were
confirmed by the spatial analysis of Wakitani [93], who solved the fully cou-
pled Boussinesq equations for settings with Prandtl numbers Pr = 0.7 and
2, and over a range of Grashof numbers. The observation of stable axisym-
metric and unstable helical perturbations is consistent with the instability
properties of fully developed non-buoyant jets [2].

The first temporal analysis of axisymmetric plumes was performed by
Riley & Tveitereid [78]. Their investigation was limited to Pr = 1, and
the results were congruous with the earlier spatial studies. By resorting
to the perturbation kinetic energy equation, it was demonstrated that the
instability at low Grashof numbers is mainly driven by buoyancy effects. The
absence of a lower branch of the neutral instability curve, i.e. a lower limit on
unstable wavenumbers, was attributed to the locally parallel flow assumption.
A subsequent nonparallel spatial stability analysis [91] did indeed yield such
a lower limit. However, the absolute or convective nature of the instability in
all these laminar base flows has never been established, and the pertinence
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of a spatial analysis therefore remains to be proven.

There is ample experimental and numerical evidence for oscillator be-
haviour in plumes and in related flows, suggesting the presence of absolute
instability. The large majority of those settings, however, involves strong
density differences outside the realm of validity of the Boussinesq approxi-
mation. Subbarao & Cantwell [85] as well as Cetegen & Kasper [9] observed
self-sustained axisymmetric oscillations in their experiments with helium jets
in air. Similar self-excited behaviour has been documented for planar plumes
[8] and diffusion flames [53]. Jiang & Luo [40, 39] numerically studied the
instability dynamics of thermal plumes and of diffusion flames, and they ex-
amined the role of buoyancy and baroclinic torque in the vorticity equation
in order to explain the occurrence of self-sustained oscillations. Hattori et
al. [31] identified an instability of the boundary layer over a heated plate
as the cause for sinuous oscillations in the rising planar plume. Satti &
Agrawal [79, 80, 81] performed a series of experimental and numerical stud-
ies on helium-air mixture injected into pure air. Their results indicate that
such jets transition from oscillator- to amplifier-type behaviour as gravity is
reduced. However, Lesshafft et al. [46] found oscillator behaviour in light jets
in the absence of gravity. For the case of a confined plume inside a cylindrical
container, driven by an extended heat source in the bottom wall, Lopez &
Marques [50] documented a succession of bifurcations, through direct numer-
ical simulation, leading from steady laminar flow to turbulence. The first of
these bifurcations gives rise to a regular formation of axisymmetric vortices.

Despite all these experimental and numerical studies of intrinsic plume
dynamics, the linear global stability of plumes appears to never have been
investigated so far. The absolute/convective character of local instability has
only been examined by Lombardi et al. [49] for the case of a planar plume in
a stratified environment. The present study extends that analysis to round
plumes, without the effect of background stratification, over a large range of
Grashof and Prandtl numbers and for azimuthal wave numbers between 0
and 2. The Boussinesq approximation is employed in order to exclude the
effect of the density ratio as an additional parameter.

The paper presents instability results for two different types of base flows:
a general self-similar set of velocity and temperature profiles, typical for the
flow field far away from a buoyancy source in section 2.2, and one specific
case of a “forced” plume close to an inlet in section 2.3, which may also
be characterized as a buoyant jet. Inside each of these sections, the base
flow is described first, the linear stability problem is posed, and then the
results of temporal and absolute/convective analysis are documented. The
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physical discussion focuses principally on the temporal instability modes of
the self-similar base flow sections 2.2.3 – 2.2.5. Conclusions are summarized
in section 2.4.

2.2 Self-similar plume

2.2.1 Base flow

A quiescent incompressible fluid is considered, characterized by its tempera-
ture T∞, density ρ∞, kinematic viscosity ν, volumetric expansion coefficient
α, thermal diffusivity κ and conductivity K. All fluid properties are assumed
to be independent of temperature. A point source of heat flux Q is introduced
into this quiescent medium. Buoyancy then induces a flow in the positive
z-direction, opposite to the gravity −gez.

The governing equations for primitive flow variables are written in the
Boussinesq approximation [90]:

∇ · u = 0, (2.1a)

Du

Dt
= −∇p

ρ∞
+ ν∇2u− (ρ− ρ∞)g

ρ∞
ez, (2.1b)

DT

Dt
= κ∇2T, (2.1c)

ρ− ρ∞
ρ∞

= −α(T − T∞). (2.1d)

The pressure p includes the hydrostatic correction for ρ∞gz. Under a boundary-
layer type approximation of slow streamwise variations, the steady self-
similar base flow is governed by

∂(ruz)

∂z
+
∂(rur)

∂r
= 0, (2.2a)

uz
∂uz
∂z

+ ur
∂ur
∂r

= gα(T − T∞) +
ν

r

∂

∂r

(
r
∂uz
∂r

)
, (2.2b)

uz
∂

∂z
(T − T∞) + ur

∂

∂r
(T − T∞) =

κ

r

∂

∂r

[
r
∂

∂r
(T − T∞)

]
, (2.2c)

with boundary conditions
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ur =
∂uz
∂r

=
∂

∂r
(T − T∞) = 0 for r = 0, (2.3a)

ur, uz, (T − T∞)→ 0 for r →∞. (2.3b)

Following [98], the similarity variables are chosen to be

ψ = νzf(η),

T − T∞ =
Q

Kz
h(η), (2.4)

η =
r

z1/2

[
αgQ

Kν2

]1/4

,

where ψ is a streamfunction defined by

uz =
1

r

∂ψ

∂r
, ur = −1

r

∂ψ

∂z
. (2.5)

Substituting these variables into equations (2.2a)–(2.2c), one obtains[
η

(
f ′

η

)′]′
= −ηh− f

[
f ′

η

]′
, (2.6)

ηh′ + Pr fh = 0, (2.7)

where the prime denotes differentiation with respect to η, and the Prandtl
number is defined as Pr = ν/κ. The boundary conditions (2.3) become

h′, f, (f ′/η)′ = 0 for η = 0, (2.8a)

h, f ′/η → 0 for η →∞. (2.8b)

With the above choice of variables for the similarity transformation, the
following scales for length, velocity and temperature have been adopted:

R(z) = z1/2

(
Kν2

αgQ

)1/4

, (2.9a)

U =

(
αgQ

K

)1/2

, (2.9b)

Θ(z) = Q/Kz, (2.9c)

where R(z) defines a measure of the local plume radius. With these scales,
the Grashof number is defined as

Gr =
gαΘ(z)R3(z)

ν2
=

(
αgQz2

Kν2

) 1
4

. (2.10)
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From equations (2.4, 2.5, 2.9), one obtains

uz = UU z = U
f ′(η)

η
, (2.11)

ur = UU r = U
1

Gr

(
f ′(η)

2
− f(η)

η

)
, (2.12)

T − T∞ = ΘT = Θ(z)h(η). (2.13)

Symbols with an overbar denote non-dimensional base flow quantities.

In order to have a unique solution, conservation of the heat flux at any
axial location z is imposed. Furthermore, due to the self-similarity assump-
tion, some boundary conditions in (2.8) are seen to become redundant. The
following conditions are retained:

f ′/η → 0, as η →∞, (2.14a)

f, (f ′/η)′ = 0, at η = 0, (2.14b)∫ ∞
0

f ′h dη = 1/(2πPr). (2.14c)

The base flow for any given Prandtl number can be derived by solving
equations (2.6, 2.7, 2.14). A closed-form solution to these equations is known
only for Pr = 1 and 2 [98, 6]. For all other values, the solution must be
constructed numerically as follows [97]. Guess values for f ′(η)/η and for h are
prescribed at η = 0, and the equations are integrated outward using a Runge–
Kutta algorithm. The guess values for f ′(η)/η and h at η = 0 are improved
based on the errors incurred in satisfying the boundary conditions (2.14a)
and (2.14c). The resulting base flow profiles at Prandtl numbers between
0.1 and 10 are shown in figure 2.1. As Pr increases, both the temperature
and the velocity mixing layers become thinner, measured by their vorticity
thickness (see solid symbols in figure 2.1d). Yet, remarkably, the maximum
value of the shear decreases at the same time (see open symbols in figure
2.1d).

2.2.2 Formulation of the linear stability problem

In the context of local stability analysis, the base flow is assumed to be
locally parallel, i.e. the radial velocity ur given by (2.12) is neglected, and
perturbations are assumed to be of the form

(ũr, ũθ, ũz, P̃ , T̃ ) =
[
Â(η), B̂(η), Ĉ(η), P̂ (η), T̂ (η)

]
ei(kz+mθ−ωt) + c.c. (2.15)
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Figure 2.1: Self-similar base flow profiles, computed from equations (2.11)–
(2.13) for various Prandtl numbers as specified in the legend. a) Axial veloc-
ity; b) radial velocity; c) temperature; d) vorticity thickness δω of the velocity
shear layer (scaled by a factor 1/100), and maximum value of the velocity
gradient.
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As in any local stability analysis, the locally parallel assumption can be taken
as valid as long as the Grashof number is sufficiently large. The limitations
of this assumption are critically discussed by Crighton & Gaster [19] in the
context of jets. The axial wavenumber k, which in the following will simply
be referred to as the wavenumber, as well as the frequency ω may take on
complex values (ω = ωr + iωi), whereas the azimuthal wavenumber m is an
integer. The nondimensional, linearized equations that govern the perturba-
tions are obtained as

ηÂ′ + Â+ imB̂ + iηkĈ = 0, (2.16a)

i
(
kU z − ω

)
Â = −P̂ ′ + 1

Gr

(
Â′′ +

Â′

η
− (k2 +

m2 + 1

η2
)Â− 2imB̂

η2

)
,

(2.16b)

i
(
kU z − ω

)
B̂ = −imP̂

η

′

+
1

Gr

(
B̂′′ +

B̂′

η
− (k2 +

m2 + 1

η2
)B̂ +

2imÂ

η2

)
,

(2.16c)

i
(
kU z − ω

)
Ĉ + U

′
zÂ = −ikP̂ +

T̂

Gr
+

1

Gr

(
Ĉ ′′ +

Ĉ ′

η
− (k2 +

m2

η2
)Ĉ

)
,

(2.16d)

i
(
kU z − ω

)
T̂ + T

′
Â =

1

PrGr

(
T̂ ′′ +

T̂ ′

η
− (k2 +

m2

η2
)T̂

)
(2.16e)

where U z and T are defined in equations (2.11, 2.13).

In the limit η → ∞, all perturbations vanish. The boundary conditions
on the axis depend on m [41]:

For m = 0: Â(0) = B̂(0) = 0, Ĉ ′(0) = P̂ ′(0) = T̂ ′(0) = 0, (2.17)

for m = ±1: Â(0)± iB̂(0) = 0, Â′(0) = Ĉ(0) = P̂ (0) = T̂ (0) = 0,(2.18)

for |m|> 1: Â(0) = B̂(0) = Ĉ(0) = P̂ (0) = T̂ (0) = 0, (2.19)

for all m: Â(∞) = B̂(∞) = Ĉ(∞) = P̂ (∞) = T̂ (∞) = 0. (2.20)

Equations (2.16) are solved numerically as an eigenvalue problem in ω
for given values of k, and for a set of parameters (Pr, Gr, m). The problem
is discretized using Chebyshev collocation on a finite interval 0 ≤ η ≤ η∞.
The value of η∞ is prescribed to be at least 5000, and up to 50 000 for very
low values of k and Gr. The domain is discretized with 300 - 350 points for
all the cases considered here and the points are distributed using a mapping
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function (equation 52 in Khorrami et al. [41]) which clusters the points close
to the axis. Convergence with respect to resolution and domain size has
been verified. In all cases, at most one unstable discrete eigenmode could
be identified, i.e. all other eigenmodes appear to belong to the continuous
spectrum. The convergence of the method is demonstrated in the figure 2.2
for two different parameters as an example.

2.2.3 Temporal analysis

Temporal analysis is performed on the self-similar base flow for Prandtl num-
ber values between 0.1 and 10, and for a range of Grashof numbers between
0.1 and 50 000. Azimuthal wavenumbers m = 0, 1, 2 are considered for each
(Gr, Pr) combination, and the axial wavenumber k is varied such as to cover
the entire unstable range. The principal result from these computations is a
set of neutral stability curves, traced in figure 2.3, representing contour lines
of zero growth rate. At nearly all Prandtl and Grashof numbers, the do-
main of instability of the helical m = 1 mode contains the other two modes.
An exception to this rule is observed at Pr ≤ 0.2, where instability sets in
for axisymmetric m = 0 modes at slightly lower Grashof numbers than for
m = 1 modes. Double-helical m = 2 modes are found to be unstable only
over quite restricted parameter ranges; higher azimuthal wavenumbers are
therefore not considered in this study. For Pr ≥ 5, the double-helical mode
is stable at all locations in the k−Gr plane and therefore, there is no neutral
curve to be shown for these Prandtl numbers in figure 2.3.

Another important observation from figure 2.3 is that the unstable range
of wavenumbers in general has no finite lower limit, at least within the con-
sidered range of k. As the present numerical method requires k to be finite, a
minimum value of 10−3 is used. In other words, the neutral curve for m = 1
in most cases has no lower branch, and it appears as if instability prevails
even in the limit k → 0, for Grashof numbers above a critical value Grc
that is a function of the Prandtl number. Values of Grc, as a function of
Pr, are reported in figure 2.4 for all m. In the absence of a lower branch,
Grc is taken to be the critical value for k = 10−3. The slight precedence of
m = 0 over m = 1 at very low Prandtl numbers is visible in figure 2.4. Above
Pr = 0.2, the self-similar plume will always first become unstable to helical
perturbations as the Grashof number increases.

The neutral curve for m = 0 modes in figure 2.3 shows a peculiar behavior
near a Prandtl number of unity. No unstable axisymmetric mode is found at
Pr = 1, and the unstable ranges of Gr and k are very different for Prandtl
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(a) m = 1, Gr = 70, k = 0.12

(b) m = 0, Gr = 100, k = 0.05

Figure 2.2: Eigenvalue spectrum for the base flow at Prandtl number of 2
for two different resolutions where asterisk markers correspond to 300 dis-
cretization points while open circles correspond to 350 points.
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Figure 2.3: Neutral curves for azimuthal wavenumbers m = 0 (dashed),
m = 1 (solid) and m = 2 (dotted) at various Prandtl numbers. Shaded
regions indicate the parameter space over which the flow is stable to m = 1
perturbations.
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numbers above and below Pr = 1. We associate this change with an obser-
vation in the context of an asymptotic expansion for large radial distances
η. Such a study was attempted, but as it remained inconclusive, it is not
presented here in detail. However, it can be reported that the analytically
obtained solution for the potentially unstable m = 0 mode contains a factor
(Pr − 1)−1. The present numerical results suggest that this factor indeed
causes a singularity at Pr = 1, separating two regimes of distinct character.
The m = 0 mode is found to be always stable in the limit Gr → ∞, which
implies that the mode is stable to shear mechanisms. This is consistent with
the Rayleigh criterion [2], which states that, for shear instability to exist in
an axisymmetric inviscid non-buoyant flow, the relation

η0

[
η0U

′

m2 + k2η2
0

]′
= 0 (2.21)

must be satisfied for some point η0 ∈ (0, η∞). For the base flow under
consideration, expression (2.21) is not satisfied anywhere for the m = 0
mode. Therefore, instability is excluded in the inviscid (large Gr) limit by
the Rayleigh criterion.

If the m = 1 mode is unstable over the largest range of parameters,
nothing has been said so far about the strength of the instability. Figure
2.5 compares the maximum values ωi,max reached by the growth rate over all
wavenumbers and Grashof numbers, at m = 0, 1 and 2, for different Prandtl
numbers Pr. Clearly, the m = 1 mode also dominates by this measure.
The overall maximum is reached at Pr = 1, where the axisymmetric mode
vanishes. A more detailed comparison is given for Pr = 2 in figure 2.6. Plots
to the left show the variations of the growth rate ωi with k for various values
of Gr and for all m; diagrams to the right show the corresponding phase
velocities cr = ωr/k. The growth rates are consistently largest for m = 1 and
smallest for m = 2.

The phase velocities display several characteristic trends. All axisymmet-
ric modes (figure 2.6b) have phase velocities approximately equal to the base
flow centerline velocity U(η = 0) = 0.315 (see figure 2.1a). Unstable helical
modes at high Grashof number (m = 1, figure 2.6d) display lower phase ve-
locities, corresponding to base flow velocities in the shear layer. The values
of cr at Gr = 50 000 are in fact within one percent of the base flow velocity
U(η0) at the radial station η0 where the Rayleigh criterion (2.21) is fulfilled
indicating that, in this limit, the instability is predominantly shear driven.
Remarkably, at low values of k and Gr, the phase velocity for m = 1 drops
sharply and even becomes negative. We do not have a clear explanation for

27



0 5 · 10−2 0.1
−1

0

1

2
·10−4

k

ω
i

50

100

500

1000

10000

50000

(a) m = 0

0 0.05 0.1

0.31

0.33

k

c r

50

100

500

1000

10000

50000

(b) m = 0

0 0.1 0.2 0.3 0.4
0

2

4

·10−3

k

ω
i

10

100

500

1000

10000

50000

(c) m = 1

0 0.1 0.2 0.3 0.4

−0.1

0

0.1

0.2

k

c r

10

100

500

1000

10000

50000

(d) m = 1

0 0.025 0.05

0

2

4

·10−5

k

ω
i

30

50

70

100

200

(e) m = 2

0 0.025 0.05

−3

0

3

6
·10−3

k

c r 30

50

70

100

200

(f) m = 2

Figure 2.6: Variations of growth rate ωi and phase velocity cr with wavenum-
ber k at a Prandtl number of 2 for various azimuthal wavenumbers m indi-
cated below each plot and Grashof numbers indicated in the legend.
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this behaviour at present. Unstable m = 2 modes (figure 2.6f) have phase
velocities near zero.

2.2.4 Perturbation energy analysis

A useful characterization of the various physical mechanisms that affect the
stability of the base flow can be inferred from the perturbation energy equa-
tion. Following the procedure outlined by Nacthsheim [62] and adopting the
notation of Riley & Tveitereid [78], the following equations are obtained:

2ωi

∫ λ

0

〈KE〉 dz =

∫ λ

0

〈Mu〉 dz +

∫ λ

0

〈B〉 dz −
∫ λ

0

〈Du〉 dz, (2.22)

2ωi

∫ λ

0

〈TE〉 dz =

∫ λ

0

〈Mt〉 dz −
∫ λ

0

〈Dt〉 dz, (2.23)

where

KE =
ũ2
r + ũ2

θ + ũ2
z

2
, TE =

T̃ 2

2
, (2.24a)

Mu = −(U z)
′ũrũz, B =

ũzT̃

Gr
, Mt = −T ′ũrT̃ , (2.24b)

Du =
χ̃ · χ̃
Gr

, Dt =
∇T̃ · ∇T̃
P rGr

, (2.24c)

〈( )〉 =

∫ ∞
0

( )ηdη, χ̃ = ∇× ũ, ũ = (ũr, ũθ, ũz),

and λ = 2π/k is the perturbation wavelength. While KE is the perturbation
kinetic energy, note that TE only represents an ad hoc temperature norm; it
is not rigorously defined as the thermal perturbation energy. The quantities
Du and Dt, which represent the dissipation terms associated with viscous
and thermal diffusion respectively, are positive definite. The only terms that
may give rise to a positive growth rate are therefore Mu, Mt and B. The
symbol Mu stands for the work of Reynolds stresses, i.e. shear-related insta-
bility mechanisms, B denotes the work of buoyancy, and Mt represents the
convective transfer of thermal energy between base flow and perturbations.
All these production terms may take on positive or negative values.

In order to compute the various terms in (2.22, 2.23), the equations are
cast in terms of complex eigenfunctions, leading to

2ωi〈K 〉 = 〈Mu〉+ 〈B〉 − 〈Du〉, (2.25)
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2ωi〈T 〉 = 〈Mt〉 − 〈Dt〉, (2.26)

with

K =
1

2
(Â∗Â+ B̂∗B̂ + Ĉ∗Ĉ), Mu = −U

′
z

2
(Â∗Ĉ + ÂĈ∗), B =

1

2Gr
(Ĉ∗T̂ + ĈT̂ ∗),

(2.27a)

Du =
1

Gr

[
m2|Ĉ|2
η2

+ k2|B̂|2−km
η

(B̂∗Ĉ + B̂Ĉ∗) + k2|Â|2+|Ĉ ′|2−ik(−Â∗Ĉ ′ + ÂĈ
′∗)

+
|B̂|2
η2

+ |B̂′|2+
|Â|2
η2

+
B̂∗B̂′ + B̂B̂

′∗

η
− imÂB̂

′∗ − Â∗B̂′
η

− iÂB̂
∗ − Â∗B̂
η2

]
,

(2.27b)

T =
|T̂ |2

2
, Mt = −T ′ Â

∗Ĉ + ÂĈ∗

2
, Dt =

1

PrGr

[
|T̂ ′|2+(k2 +

m2

η2
)|T̂ |2

]
.

(2.27c)

An asterisk denotes the complex conjugate. Riley & Tveitereid [78] gave
identical expressions for the special case m = 1. A typographical error in
their expression for B is corrected above.

Based on the kinetic energy equation (2.25), the separate contributions
of buoyancy, shear and viscosity to the flow instability can be quantified.
Viscosity is always stabilizing in the present context and will not be further
considered. The relative importance of buoyancy and shear for the helical
mode instability in the (Gr, k) plane is indicated in figure 2.7 by the contour
lines 〈B〉/〈Mu〉 = {0.2, 5}. Clearly, buoyancy-related effects dominate at
low Grashof numbers, and shear effects dominate at high Grashof numbers.
This is expressed in equation (2.27a) by the scaling B ∼ Gr−1. The shear-
dominated character of the instability at high Grashof numbers is consistent
with the accurate prediction of a critical point in η0, from the Rayleigh
criterion (2.21), as observed in section 2.2.3. Figure 2.7 shows that buoyancy
effects gain importance as the wavenumber is lowered. Markers in figure 2.7
indicate the (Gr, k) combination at which the highest growth rate is reached,
as reported in figure 2.5. Invariably, this combination is found in a region
where buoyancy and shear contributions are of similar importance.

Figure 2.8 compares eigenfunction shapes of two representative modes
in the buoyancy-dominated and shear-dominated regimes, respectively, for
a Prandtl number Pr = 2. The shear mode (thin lines) has significant
amplitudes only inside the plume, with peaks in several quantities at the
critical point η0 = 3.2, whereas the buoyancy mode (thick lines) spreads over
a much larger radial distance.

30



0.1 1 10 100 1000 10000
10−3

10−2

10−1

100

0.2

5

Gr

k

a) Pr = 0.1

0.1 1 10 100 1000 10000
10−3

10−2

10−1

100

0.25

Gr

k

b) Pr = 0.2

0.1 1 10 100 1000 10000
10−3

10−2

10−1

100

0.25

Gr

k

c) Pr = 0.5

0.1 1 10 100 1000 10000
10−3

10−2

10−1

100

0.25

Gr

k
d) Pr = 0.7

0.1 1 10 100 1000 10000
10−3

10−2

10−1

100

0.25

Gr

k

e) Pr = 1

0.1 1 10 100 1000 10000
10−3

10−2

10−1

100

0.25

Gr

k

f) Pr = 2

0.1 1 10 100 1000 10000
10−3

10−2

10−1

100

0.25

Gr

k

g) Pr = 5

0.1 1 10 100 1000 10000
10−3

10−2

10−1

100

0.25

Gr

k

h) Pr = 10

Figure 2.7: Neutral curves for m = 1 mode instability (thick lines), alongside
contour lines 〈B〉/〈Mu〉 = {0.2, 5} (thin lines), at various Prandtl numbers.
Triangles mark the point of maximum growth rate ωi,max.

31



0 5 10 15 20

0

0.5

1

η

|Ĉ
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Figure 2.7 indicates that a higher Prandtl number favors a stronger dom-
inance of buoyancy contributions to the instability at low and moderate
Grashof numbers. This trend may be partially ascribed to a base flow ef-
fect, as the base flow shear reduces with increasing Pr (see figure 2.1d). In
addition, the thermal dissipation of temperature perturbations is decreased
(equation 2.27c), which should lead to an increase in 〈B〉 (equation 2.27a).

In the high Grashof number regime, the unstable range of wavenumbers
increases steadily with Pr, as seen in figures 2.3 and 2.7. This is easily un-
derstood from the fact that the vorticity thickness of the base flow decreases
monotonically with the Prandtl number, as thinner shear layers are unstable
to a larger band of wavenumbers. However, the complete stabilization at
Pr = 0.1 cannot be explained from obvious shear instability arguments. The
growth rate variations with wavenumber, at m = 1 and for various Prandtl
number values, are shown in figure 2.9. The trends for Pr ≥ 1 are fully
consistent with classical results for non-buoyant inviscid shear layers: the
unstable range of k grows with increasing Pr, because the vorticity thickness
shrinks; the maximum growth rate diminishes with increasing Pr, because
the maximum base flow velocity gradient decreases. Yet the latter trend is
reversed for Pr < 1, and lower Prandtl numbers stabilize the flow. It is
observed, but not shown here, that the Reynolds stress ũzũr decreases in
amplitude at low Prandtl numbers.

Both the m = 0 and the m = 2 modes are stable in the inviscid limit
of high Grashof numbers (figure 2.3). According to equation (2.27a), the
buoyant energy production term vanishes as Gr grows large, and the only
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potential source of instability is the shear term Mu. However, the Rayleigh
criterion (2.21) for a cylindrical geometry predicts that all self-similar base
flows in the present study are stable with respect to m = 0 perturbations in
the inviscid limit. It is confirmed numerically that the term 〈Mu〉 takes on
negative values for m = 0 under all conditions. Any growth of axisymmetric
perturbations must be attributed to buoyancy effects.

Shear-related instability of m = 2 perturbations cannot be categorically
ruled out on the basis of the Rayleigh criterion; however, earlier studies
[2, 58] on non-buoyant and weakly buoyant jets have found m = 2 modes to
be stable in such flows in the presence of viscosity. Comparison of 〈Mu〉 and
〈B〉 in the present calculations consistently identify the buoyant term as the
dominant contributor to m = 2 instability.

2.2.5 Buoyancy-driven instability mechanism

While the shear-driven instability at high Grashof numbers is among the most
classical phenomena described in the literature (see Drazin & Reid [23]), the
buoyancy-driven instability that prevails in the low Grashof regime deserves
some further attention. Insights into the physical mechanisms are sought
from an examination of the instability eigenfunctions.

Figure 2.10 presents contour plots of some relevant perturbation quan-
tities for the case m = 1, Pr = 1, Gr = 5 and k = 0.01. A Cartesian
(y, z) plane is shown for convenience, where y is identical with the radial
coordinate η at positive values, and y = 0 is the centerline of the plume.
Perturbation streamlines are superposed on temperature perturbation con-
tours in figure 2.10(a). Note that the true streamlines in m = 1 geometry are
three-dimensional; for the purpose of our argument, the azimuthal velocity
component may be safely ignored, as it does not contribute to the convection
of base flow quantities. It is clear from figure 2.10(a) that the perturbation
velocity convects hotter fluid from the centerline, where the base flow tem-
perature is maximum, into the regions of positive perturbation temperature.
We may therefore interpret this temperature perturbation as an effect of the
velocity perturbation. In turn, this temperature perturbation induces a ver-
tical motion (figure 2.10b) that reinforces the circulating flow in the sense
of the streamlines. This action of buoyancy therefore constitutes a positive
feedback on the fluid motion, providing a plausible scenario for an instability
mechanism. Figure 2.10(c) demonstrates that the resulting buoyancy work B
is indeed positive everywhere for the chosen parameter combination, i.e. the
phase relation between T̃ and ũz is such that the feedback mechanism is
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Figure 2.10: Helical m = 1 eigenmode for parameters Pr = 1, Gr = 5 and
k = 0.01. All quantities are shown in a Cartesian plane, with the centerline of
the plume at y = 0. a) Perturbation isotherms and perturbation streamlines;
b) perturbation axial velocity; c) buoyancy work B; d) shear-related work
Mu.
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destabilizing at every point in space. The shear-related work Mu is visual-
ized in figure 2.10(d). Its net contribution is clearly positive, and therefore
destabilizing, but the amplitudes are lower than those of the buoyancy work
by a factor of around 5.

A similar situation for an unstable m = 0 mode is shown in figure 2.11.
Parameters Pr = 10, Gr = 50 and k = 0.1 are chosen, corresponding to
a comparatively strong axisymmetric instability. The perturbation stream-
lines show the presence of counter-rotating toroidal vortices. These vortices
deform the column of hot fluid, thus leading to positive and negative values
of the temperature perturbation along the axis, which in turn drive the ver-
tical convection. Stationary vortices would lead to maximum temperature
perturbation in the hyperbolic points, whereas buoyant acceleration would
be most efficient with the temperature maxima just between two hyperbolic
points. In the case shown in figure 2.11, the position of temperature maxima
is between these two extremes; by virtue of this compromise, temperature
perturbations grow due to convection of base flow temperature, and at the
same time they drive the convection rolls.

2.2.6 Absolute/convective analysis

Everyday observations for example in cigarette smoke (figure 107 in An al-
bum of fluid motion by van Dyke [92]), suggest that laminar plumes may
spontaneously bifurcate to a sate of periodic oscillations. Such behaviour is
usually linked to an absolute instability of the steady flow state. The possi-
bility of absolute instability, in parameter regimes defined by m, Gr and Pr,
is investigated in this section.

The absolute instability mode for a given base flow profile in section
2.2.1 is identified by tracking a saddle point of the complex-valued function
k(ω), according to the Briggs–Bers criterion (see Huerre & Monkewitz [35]).
This analysis turns out to be very delicate in the present flow case, and the
following procedure is found to yield the most accurate results: values of
ω are computed on a grid of complex k values in an area of interest in the
k-plane. The group velocity vg associated with these modes is obtained as
detailed in Lesshafft & Marquet [47]. The saddle point, characterized by
zero group velocity, is then identified through successive mesh refinements.
A convergence criterion |vg|< 10−4 is used for all results presented here. The
absolute instability mode is characterized by its complex frequency ω0 and
its complex wavenumber k0. If the growth rate ω0,i is positive, the flow is
absolutely unstable.
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Figure 2.11: Axisymmetric m = 0 eigenmode for parameters Pr = 10, Gr =
50 and k = 0.1. All quantities are shown in a Cartesian plane, with the
centerline of the plume at y = 0. a) Perturbation isotherms and perturbation
streamlines; b) perturbation axial velocity; c) buoyancy work B; d) shear-
related work Mu.
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Absolute instability is found to occur at Grashof numbers above a critical
value, Gr > Grca, which depends on the Prandtl number. The absolute mode
is always found to be of the helical type (m = 1). Indeed, no convective-
absolute transition is observed for any other azimuthal modes over the in-
vestigated parameter range. The variation of the critical Grashof number
Grca(Pr) is presented in figure 2.4 (circles). Its value is close to unity at all
Prandtl numbers.

The variations of ω0 and k0 with Grashof number at Pr = 1 are shown in
figure 2.12. Transition from convective to absolute instability (sign change in
ω0,i) takes place at Grca = 1.627, and the flow remains absolutely unstable
at all Gr > Grca. As the Grashof number is proportional to the square root
of vertical distance (2.10), this transition station will typically be located
close to the source. However, both ω0 and k0 asymptote to zero as the
Grashof number tends to infinity. Very small values of ω and k correspond
to perturbations that are quasi-steady in time and quasi-constant in z, and
such perturbation modes are difficult to track numerically. The analysis is
therefore limited to Grashof number values below 1000.

The near-zero asymptotic variations of both ω0 and k0 are rather pe-
culiar, and require a validation. In particular, it must be ascertained that
no other undetected saddle point might dominate the long-time dynamics.
Three-dimensional time-resolved direct numerical simulations are therefore
performed, using the linear evolution equations for perturbations of a parallel
base flow. The code of Deloncle [22] has been adapted to the present prob-
lem; typical simulations run over 2000 time steps on 108 grid points. Starting
from an initial impulse, the long-time perturbation wavepacket is computed,
and the absolute mode is recovered from a spatio-temporal Fourier transform
[21]. The (ω0, k0) values obtained with this procedure, represented as trian-
gles in figure 2.12, clearly validate the results found from direct solution of
eigenvalue problems. The eigenvalue procedure is significantly cheaper, and
more accurate.

Variations of the absolute growth rate ω0,i with Grashof number at various
Prandtl numbers are displayed in figure 2.13. The qualitative features do not
vary significantly with Pr; in all cases, absolute instability sets in at a Grashof
number around 1, and the maximum growth rate is reached shortly after. The
overall maximum of ω0,i is found at Pr = 1. The spatial distribution of the
eigenfunction for the absolutely unstable m = 1 helical mode at absolute
wavenumber k0 is shown in figure 2.14 for two different Grashof numbers
at Pr = 1. It is seen that the phase relation between the temperature and
velocity perturbations strongly resemble the temporal results shown in figure
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Figure 2.12: Variations of ω0 and k0 as a function of Grashof number at
Prandtl number of unity. Results obtained from eigenvalue problems (—)
and from direct numerical simulation of the linear impulse response (N).

2.10 indicating a similar mechanism for destabilization of the absolute mode.
Note that in order to show this correlation between velocity and temperature
perturbation clearly, the imaginary part k0,i is set to zero. However, as the
imaginary part of k0 only contributes to the amplitude, the arguments about
the phase continue to hold for the actual case of k0,i 6= 0.

We surmise that this quasi-steady absolute mode is the local trace of a
non-oscillatory global instability mode. If this is the case, then the spatially
developing plume is expected to first bifurcate to a new steady flow state
that breaks the axial symmetry; in analogy to axisymmetric wakes [69, 56],
the result would be a deflected steady flow, which may exhibit secondary
oscillatory instabilities. This scenario remains to be confirmed in future
studies.
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Figure 2.13: Absolute growth rate variations ω0,i(Gr) at various Prandtl
numbers Pr given in the legend.
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Figure 2.14: Perturbation isotherms and perturbation streamlines for helical
m = 1 eigenmode for Pr = 1 at the absolute wavenumber k0 at two different
Grashof numbers: a) Pr = 1, Gr = 4 and b) Pr = 1, Gr = 100. All
quantities are shown in a Cartesian plane, with the centerline of the plume
at y = 0.
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2.3 Plume near a finite-sized inlet

2.3.1 Base flow

The self-similar base flows investigated in the preceding section represent
laminar plumes far away from the buoyancy source. However, as it has been
found that the convective-absolute transition takes place at low Grashof num-
ber, i.e. close to the source, the global dynamics are likely to be determined
in the near-source region. The defining characteristic of the self-similar flow
regime is its generality; upstream of this region, the base flow profiles depend
on the specific form of the buoyancy source. Such a source may be a heated
body, a jet of light fluid, a flame, or other; and any such configuration would
require an individual analysis. In this section, the particular case of hot fluid
issuing from a circular orifice is examined. The fluid is injected at z = 0
with finite momentum; the initial flow near the orifice is therefore a buoyant
jet, characterized by a thin shear layer at z = 0. With increasing distance
from the orifice, the velocity profiles are more and more dominated by the
momentum that is induced by buoyancy, and the influence of the inlet condi-
tion is lost. The self-similar profile shapes of section 2.2.1 are asymptotically
recovered.

Specifically, the following flow configuration is considered: a fluid is in-
jected with a prescribed velocity u(r) and temperature T (r) from an inlet
of radius R into a quiescent ambient at temperature T∞ and density ρ∞.
Non-dimensionalizing the governing equations (2.1) with the centerline axial
velocity at the inlet Uc and centerline temperature difference (Tc − T∞) at
the inlet, one obtains

∇ · u = 0, (2.28a)

Du

Dt
= −∇p+

1

Re
∇2u +Ri(T − T ∗∞)ez, (2.28b)

DT

Dt
=

1

PrRe
∇2T, (2.28c)

where T ∗∞ = T∞/(Tc − T∞), Richardson number Ri = gαR(Tc − T∞)/U2
c

and Re = UcR/ν. These are related to the Grashof number from section
2.2 as Gr = RiRe2. All quantities are made non-dimensional with Uc as
the velocity scale, R as the length scale and (Tc − T∞) as the temperature
scale. The base flow is computed by a Newton–Raphson method, using finite
elements as implemented in FreeFEM++ [25], on a domain of size 20× 200

41



in the radial and streamwise directions. Analytic inflow profiles of the form

u(r, z = 0) = T (r, z = 0)− T ∗∞ =sech20
[
20 r20

]
, r ≤ 2, (2.29a)

u(r, z = 0) = T (r, z = 0)− T ∗∞ =0, r > 2. (2.29b)

are prescribed at z = 0, which give a momentum thickness of the shear
layer and the thermal mixing layer that is 1/46 of the orifice radius. At the
lateral boundary, vertical velocity is set to zero and temperature is set to
T∞, while a Neumann condition for the radial velocity allows an entrainment
influx. Stress-free boundary conditions are imposed at the outlet, and axial
symmetry is enforced at r = 0. Domain convergence is verified on a grid of
dimension 50× 300.

A single configuration is presented here, with parameters Pr = 1, Re =
100 and Ri = 1. The base flow is documented in figure 2.15(a) – 2.15(d),
which shows axial velocity and temperature as a function of r at several
streamwise positions, as well as the streamwise development of the centerline
values. The asymptotic behaviour of the latter characterizes the approach
towards the self-similar solution. It is stressed again that all following results
pertain to the very specific case that is considered here as an example.

2.3.2 Temporal analysis

The linearized instability equations for a local analysis are identical to equa-
tions (2.16), with the substitutions η → r, Gr → Re in the viscous and
thermal diffusion terms, and Gr−1 → Ri in the buoyancy term.

The temporal growth rates as functions of real-valued k are plotted in fig-
ure 2.16 for several vertical positions. Unlike in the self-similar flow, where
the helical m = 1 mode is clearly dominant, axisymmetric and helical modes
present similar growth rates in the near-inlet region. The axisymmetric mode
then stabilizes rapidly with increasing distance from the inlet. At large dis-
tance z, the results are fully consistent with those obtained earlier for the
self-similar region: the m = 1 growth rates at z = 190 from figure 2.16
match the corresponding values from the self-similar analysis, at Gr = 630
and appropriately rescaled, within 1%.

2.3.3 Absolute/convective analysis

Absolute frequency and wavenumber, as functions of the vertical distance
z, are displayed in figure 2.17 for the helical m = 1 mode. Also in the
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Figure 2.15: Velocity and temperature evolution of the base flow. (a) Ra-
dial profiles of axial velocity at various streamwise positions indicated in the
legend; (b) corresponding radial profiles of temperature; (c) streamwise de-
velopment of centreline velocity; (d) streamwise development of centreline
temperature.
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Figure 2.16: Temporal growth rate ωi(k) for (a) m = 0, (b) m = 1 at various
streamwise locations z given in the legend, for the spatially evolving base
flow shown in figure 2.15(a).

present case of a spatially developing base flow with thin initial shear layer,
axisymmetric perturbations are found to never become absolutely unstable,
just like in the self-similar analysis of section 2.2.6. However, the helical
mode is seen to be absolutely unstable everywhere along z, starting from
the inlet. The values of ω0 and k0 are again very small, especially at larger
distances from the inlet. Saddle points could be reliably identified only down
to z = 40, due to numerical difficulties that arise when ω0 and k0 tend to
zero.

All absolute/convective instability results presented herein are markedly
different from what is typically found in jet flows [44]. If the present anal-
ysis is consistent with classical jet results, the described helical absolute
instability must arise from the Boussinesq-type buoyancy term. The saddle
point represented in figure 2.17 is the most unstable one, which therefore
dominates the long-time behaviour of the linear impulse response, but other
saddle points arise as well. Several such saddle points in the complex ω-
and k-planes are displayed in figure 2.18. Open symbols represent saddle
points of the inlet profile if buoyancy is completely removed. The addition of
buoyancy (filled symbols) shifts the positions of these points moderately, but
most importantly it creates a new saddle point, with higher absolute growth
rate than all others, that has no counterpart in the non-buoyant case. This
is the saddle point that has been described above, the one that causes abso-
lute instability in the plume; it follows that the occurrence of this absolute
instability is conditioned by the presence of buoyancy.
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Figure 2.17: Variation of absolute frequency ω0 and wavenumber k0 with
streamwise distance.
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Figure 2.18: Saddle point locations computed for the evolving base flow at
the inlet (z = 0), with parameters Ri = 1, Pr = 1 and Re = 100; (a)
in the complex ω-plane; (b) in the complex k-plane. Filled symbols: with
buoyancy; open symbols: without buoyancy. Circles: m = 0 (axisymmetric);
triangles: m = 1 (helical).

2.4 Conclusions

The local linear stability of laminar plumes has been investigated, first in full
detail in the self-similar region far away from the buoyancy source, then for
one particular setting in the vicinity of an orifice from which exits a hot fluid
with imposed initial momentum. The temporal stability properties as well
as the absolute instability modes have been documented over a wide range
of Grashof and Prandtl numbers, under the Boussinesq approximation, and
the physical origin of the flow instability has been discussed. Shear and
buoyancy are the two ingredients that may give rise to instability. With
rare exceptions, helical perturbation modes (m = 1) have been found to
dominate the temporal instability properties of the self-similar flow under all
conditions. It has been shown for these modes that buoyancy effects drive the
instability at low Grashof numbers and wavenumbers, whereas shear effects
are prevalent in the high Grashof number and wavenumber regime. The
strongest temporal instability is found at intermediate parameters, where
both effects are of comparable strength. For axisymmetric perturbations,
the Rayleigh criterion precludes an instability of the self-similar flow profiles
by shear mechanisms alone; therefore a destabilization through buoyancy
effects is necessarily involved whenever an m = 0 mode becomes unstable.

Interpretations for the physical mechanisms behind buoyancy-driven in-
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stability in plumes have been proposed, both for m = 0 and m = 1 perturba-
tions, based on the observed eigenfunction shapes. Temperature perturba-
tions induce vortical structures through buoyancy, which in turn convect the
base flow temperature. Instability arises if the temperature perturbations
and the convection rolls co-operate constructively.

Instability persists down to Grashof number values near unity. However,
as instability appears to set in at inaccessibly low values of k, the critical
value of the Grashof number could not be determined unambiguously for most
Prandtl numbers. It cannot be excluded that zero-wavenumber perturbations
are unstable in the limit of zero Grashof number. Yet this question is quite
irrelevant for practical purposes, as the parallel base flow hypothesis is not
valid at low Grashof numbers and long wavelengths.

Absolute instability arises in all self-similar profiles above a critical Grashof
number close to unity. The absolute mode is always of the m = 1 type; abso-
lute instability of axisymmetric perturbations has not been observed at any
parameter setting in the present investigation. The dominant absolute in-
stability mode is linked to a saddle point of the dispersion relation that only
exists due to the buoyancy term in the governing equations; it vanishes if the
buoyancy term is removed. However, both the frequency and the wavenum-
ber of the absolute mode are nearly zero, which characterizes this mode as
being quasi-steady and quasi-constant in the vertical flow direction. An ad
hoc interpretation of this result, which will have to be confirmed in future
studies, is that this absolute mode is associated with a non-oscillatory global
instability of the spatially developing plume. Such an instability is expected
to provoke a first bifurcation that leads to a non-axisymmetric steady flow
state.

Classical theory predicts that the dynamics of globally unstable flows are
dominated by the local properties near the transition station from convective
to absolute instability. The results obtained for self-similar plumes suggest
that this transition station indeed lies far upstream (at small local Grashof
number), where the parallel flow hypothesis may not be well justified. This
consideration motivated the investigation of the flow region near a finite-
sized inlet. The principal conclusions from this extended investigation are
consistent with the observations in the self-similar region. Absolute instabil-
ity is found only for helical m = 1 perturbations, and indeed throughout the
flow domain, starting from the inlet, with very small values of the absolute
frequency and wavenumber. The temporal analysis shows that axisymmetric
perturbations, although convective, exhibit similarly strong growth rates as
their helical counterparts in the jet-like region very close to the inlet. The
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self-similar behaviour is recovered at a far distance from the inlet.

The dominance of helical modes in the jet-like region, where the shear
layer is thin compared to the inlet radius, contrasts with the absolute instabil-
ity of axisymmetric perturbations in non-buoyant light jets [59]. Experiments
as well as numerical simulations of plumes with strong density differences,
e.g. Subbarao & Cantwell [85], Satti & Agrawal [79] and Jiang & Luo [40],
also show evidence of axisymmetric self-excited instability structures. A ma-
jor difference between those settings and the present investigation lies in the
use of the Boussinesq approximation in this paper, which is valid only for
small density variations. In particular, the Boussinesq approximation elimi-
nates the baroclinic torque term from the dispersion relation, which has been
shown to be responsible for the occurrence of absolute instability in light jets
by Lesshafft & Huerre [44]. We hope to be able to report soon on our on-
going investigation about the influence of the density ratio on the instability
characteristics of plumes.

Errata

The equations 2.24c, 2.28b and 2.29 are corrected for notations from the
original article. Also, the labels for figures 2.15 and 2.17 are correspondingly
corrected for notations.
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2.5 DNS of the linear impulse response

In section 2.2.6, the absolute/convective analysis was performed through two
methods. One is to track the saddle point in the complex k-plane while the
second method is to perform a linear DNS of the evolution of the perturbation
filed. The methodology of the saddle point computation was detailed in
section 2.2.6 and the details of the DNS, which were omitted there, are
presented in this section.

In order to perform the time evolution of the perturbation field added to
the base flow, the governing equations are cast into a form convenient for
computations. Governing equations (2.1a) – (2.1d) are non-dimensionalized
with the scales defined in equations (2.9) and the equations are then linearized
about the base flow. Furthermore, a spatial Fourier transform is performed
on the equations to obtain

∂ũek
2t/Gr

∂t
= P(k)

[(
ũ×Ω + Ūzez × Σ̃

)
+

T̃

Gr

]
ek

2t/Gr, (2.30a)

∂T̃ ek
2t/(PrGr)

∂t
=
[
−ik ·

(
ŪzezT̃ + T̄ ũ

)]
ek

2t/(PrGr), (2.30b)

where () =
∫∫∫

()e−i(kxx+kyy+kzz)dxdydz is the Fourier transform in Cartesian

space, k = (kx, ky, kz) is the wavenumber, Ω = ∇ × (Ūzez) is the vorticity
of the parallel base flow, Σ = ∇ × ũ is the vorticity of the perturbation
velocity field and P(k) is the tensor Pij = δij − kikj/k2 denoting the projec-
tion operator. These equations are then integrated in time using 4th order
Runge-Kutta scheme. The method employed for this purpose in this study is
similar to the one previously used in the study of jets [66], wakes [21, 20] and
stratified flows [4, 22]. A parallel version of the code to perform the above
procedure was developed by Deloncle [22] and the same has been used in this
study. Note that in this DNS study, a Cartesian frame of reference is chosen
as it is easier to perform pseudo-spectral analysis.

For most simulations, the periodic box with dimensions Lx × Ly × Lz =
96 × 96 × 1536 which is discretized with Nx×Ny×Nz = 192 × 192 × 3072
equally spaced points with a time step of δt = 2.0 is used and 2000 time steps
are performed to reach the long-time asymptotic state. The results obtained
are verified for grid independence. As an initial perturbation, divergence
free, zero mean white noise is added over a small cuboidal domain of size
2.5 × 2.5 × 5.5 centered around the point (0.5Lx, 0.5Ly, 0.3Lz) to simulate
the impulse and the flow field is then marched in time. After performing the
prescribed number of time steps, the data are then analyzed to obtain the

49



asymptotic behaviour along each ray as described by Delebende & Chomaz
[20].

In brief, the data obtained from the DNS are analyzed as follows: Firstly,
the DNS data obtained in Fourier space are inverted into real space. Then, a
Hilbert transform of the data followed by decomposition into the azimuthal
components are carried out. Further, the streamwise Fourier transform fol-
lowed by an integration of the amplitude in the radial direction are performed
in the case of temporal analysis, while the amplitude of the perturbation
along each ray is computed by integration along the radial direction and
the temporal evolution of the amplitude along these rays are tracked in the
case of absolute/convective analysis. However, Hilbert transform is known
to have difficulty distinguishing between wavepackets when their boundaries
overlap [33]. In the current flow field, temporal analysis of section 2.2.3 shows
the existence of at least three wavepackets corresponding to m = 0, m = 1
and m = 2. Therefore, instead of the Hilbert transform, the Hilbert-Huang
transform was applied for few cases to verify the results obtained via Hilbert
transform. The results from both methods were matching closely for the
case of m = 0 and m = 1. The double-helical mode m = 2 however, could
not be analyzed through either of these transformations possibly due to its
extremely low growth rate in comparison to m = 0 and m = 1 (refer to the
temporal growth shown in figure 2.5). Performing the DNS for longer time is
likely to help analyze this double-helical mode as its amplitude would grow
larger in comparison to the initial white noise. Such an investigation was not
attempted in the present study because such low growth rates are unlikely
to be significant for the dynamics of the flow.

2.6 Singularity at Pr = 1

It can be seen from figure 2.4 in section 2.2.3, that for the axisymmetric mode
m = 0, the critical Grashof number Grc steeply increases and approaches
∞ as Pr → 1. At Pr = 1, no discrete eigenvalue could be obtained for
m = 0 for all the range of parameters considered. In order to understand
this rather strange behaviour, attempts are made to prove the non-existence
of an eigenfunction for m = 0 at Pr = 1. For this, the large η behaviour of
the eigenfunction is studied.

Following are the perturbation equations (2.16a) – (2.16e) cast into radial
velocity - radial vorticity formulation, valid for any azimuthal wave number
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at any radial location:

ik
[
U − ω

k

]
T φ− ik(k2η2 +m2)

η

[
ηU ′

k2η2 +m2

]′
φ =

1

Gr

[
T 2φ− 2kmT Ω− k

(
2m2T̂

k2η2 +m2
+ ηT̂ ′

)]
, (2.31a)

ik
[
U − ω

k

]
Ω− i

η

[
mU

′

k2η2 +m2

]
φ =

1

Gr

[
SΩ +

2kmT
(k2η2 +m2)2

φ− mT̂

k2η2 +m2

]
, (2.31b)

ik
[
U − ω

k

]
T̂ +

iTφ

η
=

1

PrGr

[
T̂ ′′ +

T̂ ′

η
− T̂

(
k2 +

m2

η2

)]
, (2.31c)

where

T =
k2η2 +m2

η

d

dη

(
η

k2η2 +m2

)
d

dη
− k2,

S =
1

η(k2η2 +m2)

d

dη

[
η(k2η2 +m2)

d

dη

]
− k2,

ûr =
iφ

η
,

ûθ =
−mφ′

k2η2 +m2
+ kηΩ,

ûz =
−kηφ′

k2η2 +m2
−mΩ.

For Pr = 1, the base flow is of the form

U =
α1

α2 + η4
, T =

α3

α4 + η6

while for Pr = 2, it is

U =
α5

α6 + η4
, T =

α7

α8 + η8

where the αj are real valued coefficients. In the limit η →∞, the base flow
quantities and their derivatives are set to zero and the equations (2.31a) -
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(2.31c) simplify to the form

−iωT φ =
1

Gr

[
T 2φ− 2knT Ω− kηT̂ ′

]
(2.32a)

−iωΩ =
1

Gr
[SΩ] (2.32b)

−iωT̂ =
1

PrGr

[
T̂ ′′ − k2T̂

]
(2.32c)

where

S =
d2

dη2
− k2,

T =
d2

dη2
− k2.

In addition to the base flow quantities, all the coefficients of φ, Ω, T̂ and
their derivatives which are of the form 1/η and higher powers of 1/η have
been neglected.

These above equations can be solved for any m. An analytical solution
for this set of equations is obtained by using Mathematica as

T̂ (η) = p1e
−λ1 + p2e

λ1 (2.33)

Ω(η) = e−λ2
[
c1

2
− c2η

2λ2

]
+ eλ2

[
c1

2
+
c2η

2λ2

]
(2.34)

φ(η) =
e−λ1kp1

ω3Pr2Gr3(Pr − 1)2

[
2ik2(2Pr− 1) +ωPrGr(−2−λ1 +Pr(4 +λ1))

]
+

eλ1kp2

ω3Pr2Gr3(Pr − 1)2

[
2ik2(2Pr−1)+ωPrGr(−2+λ1+Pr(4−λ1))

]
− ie±λ3

2kωGr
[2km(kc1 ± c2) + ζ(kc3 ± c4)− (kc5 ± c6)]

+
ie±λ2η

2ωGrλ2ζ

[
kmωGr

{
λ2

η
(−2i± λ2)c1 − i(±3− λ2)c2

}
+ 2k3m

(
λ2

η
c1 ± c2

)
+ ζ

{
k2

(
λ2

η
c3 ± c4

)
−
(
λ2

η
c5 ± c6

)}]
(2.35)

where, λ1 = (
√
k2 − iωPrGr)η, λ2 = (

√
k2 − iωGr)η, λ3 = kη and ζ =

k2− iωGr and p1, p2, c1, .... , c6 are constant coefficients and can be complex
valued functions of m, Pr, k and Gr.
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In equation (2.35), it is seen that there are exponential terms with co-
efficients of the form 1/(Pr − 1). The hypothesis is that, this 1/(Pr − 1)
singularity is somehow nullified for the case of m = 1 and we obtain a non-
trivial spectrum and eigenfunctions. Whereas, for the case of m = 0, it does
not seem to happen, i.e, no discrete eigenmode could be observed numerically
for m = 0 at Pr = 1. Again, it is important to note that the explanation is
far from being exact as the dependence of p1 and p2 with Pr and m could
not be obtained. With the current analysis, only a passing comment could
be made.
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Chapter 3

Global stability of buoyant jets
and plumes

In the previous chapter, the dynamics of a plume under the Boussinesq ap-
proximation was discussed and the presence of an absolute instability in the
helical mode was established. However, nothing was said about the global
dynamics of the flow. In experiments on helium jets, self-excited axisym-
metric puffing is observed whereas, the axisymmetric mode in a Boussinesq
plume is at most convectively unstable. To address this conundrum, linear
global stability analyses of plumes and buoyant jets are performed.

In this chapter, it is demonstrated that the large scale self-sustained os-
cillations reported in experiments [85, 9] are a result of a global instability
and the oscillation frequencies predicted by the linear global stability analy-
sis corroborate quantitatively with the experiments. Further, through a local
spatio-temporal analysis, these global dynamics are shown to be intrinsic in
nature. The role of various terms such as shear, buoyancy, viscosity, etc to-
wards instability are quantified through a linear sensitivity analysis of the
global eigenvalue, endogeneity.

As in the previous chapter, presentation will be in the form of an article
which will soon be submitted to Journal of Fluid Mechanics for review. A
small portion of this work was presented at The International Conference on
Jets, Wakes and Separated Flows held in Stockholm, 16 – 18 June, 2015. The
corresponding contribution to the proceedings is attached as an Appendix to
this dissertation.
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Laboratoire d’Hydrodynamique (LadHyX), CNRS – École Polytechnique,
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Abstract

The linear global stability of laminar buoyant jets and plumes is investigated
under the low Mach number approximation. For Richardson numbers in the
range 10−4 ≤ Ri ≤ 103 and density ratios S = ρ∞/ρjet between 1.05 and
7, only axisymmetric perturbations are found to exhibit global instability.
These linear predictions agree well with previous experimental studies on
the dynamics of helium jets. By varying the Richardson number over seven
decades, the effect of buoyancy on the dynamics and on the base flow is
explored in detail, and the distinct dynamics of buoyant jets and plumes is
demonstrated. Through a sensitivity analysis, based on the recently pro-
posed endogeneity formalism, the relative contributions of various terms to
the global eigenvalue are computed, thereby leading to the identification
of different destabilizing forces. The base flow shear provides the largest
destabilization effect at low Richardson numbers while the buoyancy force
is dominant at large Richardson numbers. The existence of unstable global
eigenmodes is consistent with the presence of local absolute instability in the
axisymmetric mode. For the helical mode of azimuthal wavenumber m = 1,
under local analysis, two absolutely unstable saddle points are observed.
However, these modes are shown to have either small growth rates or small
streamwise extent of the absolute instability. This plausibly explains the lack
of an unstable discrete global mode for m = 1.

3.1 Introduction

Many studies have investigated the dynamics of jets under various scenarios
and observed the presence of self-exited oscillations in the case of the heated
jets [60, 45], helium jets [83, 29] and also in jets with counter-flow [84]. These
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oscillations have been documented in experiments as well as direct numeri-
cal simulations (DNS) and the cause of this self-excited behaviour has been
attributed to the presence of an absolute instability of the base flow solu-
tion. In all these investigations, the importance of buoyancy force resulting
from the density difference in the base flow was shown to be insignificant in
comparison to the inertia of the fluid [13]. In the absence of either density in-
homogeneity or counter-flow, the classical homogeneous jet was shown to be
globally stable [25]. Some instability analyses have attempted to investigate
the effect of buoyancy on jets by including it as a weak forcing [58]. Overall,
it would be fair to say that the regime where buoyancy is either comparable
to or dominant over the inertia of the fluid, such as in plumes, has received
very little attention in comparison to jets.

The earliest investigations fully accounting for buoyancy were by Waki-
tani [93], and Riley & Tveitereid [78]. In these studies, local spatial and tem-
poral analyses were performed under the Boussinesq approximation. Both
these analyses were limited to the self-similar region of the base flow. Inves-
tigations aimed at determining the spatial stability characteristics have not
looked at the spatio-temporal behaviour to establish the validity of a spatial
investigation in the first place. Under the Boussinesq approximation, a recent
study by Chakravarthy et al. [10] focused on the spatio-temporal behaviour
of plumes both close to the heat source as well as in the self-similar region far
downstream of the source. The existence of an absolute instability for m = 1
helical perturbations was established. By switching off buoyancy numerically
in the stability analysis, it was demonstrated that the absolute instability is
unique to plumes and does not have a non-buoyant counterpart. However,
as the investigation was only performed in a local framework, it is still not
established whether the absolute instability reported by Chakravarthy et al.
[10] would result in a global instability. Lopez & Marques [50] performed
unsteady simulations of confined plumes under the Boussinesq approxima-
tion and reported a sequence of bifurcations as the Rayleigh number is in-
creased. Through a linear stability analysis of the same base flow, Lesshafft
[43] showed that the cause of these bifurcations is likely to be the reflections
from the downstream wall rather than the absolute instability of the base
flow.

Many experiments have been performed on flows with large density dif-
ferences, where the Boussinesq approximation is not justified. Subbarao
& Cantwell [85] studied the dynamics of helium jets injected into air and
observed that beyond a certain Reynolds number and Richardson number,
periodic axisymmetric puffing occurs. Similar observations were made by
Cetgen & Kasper [9] for a larger range of Richardson numbers. A power
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law relating the variation of the puffing frequency, non-dimensionalized as
a Strouhal number, was obtained. These experimental findings were cor-
roborated by numerical studies [40, 80]. By gradually changing gravity nu-
merically, Satti & Agrawal [80] have demonstrated that the self-sustained
oscillations do not exist in the absence of gravity. However, the mechanism
for this stabilization remains to be understood. Nichols et al. [64] performed
local spatio-temporal analysis of strongly heated jets injected into cold am-
bient and showed the existence of an absolute instability which matches with
the global frequency obtained from a DNS. Their study, however, was lim-
ited only to small Richardson numbers where the effect of buoyancy is not
dominant. Also, note that under the Boussinesq approximation, the helical
modes were found to be absolutely unstable while in the case of helium jets
injected into air, axisymmetric puffing is experimentally observed. This in-
dicates that density difference is an important parameter in the dynamics of
the flow and a competition between the modes might be possible. A careful
investigation of the parameter space is required to ascertain this possibility.

The current study is aimed towards understanding the reason for the self-
sustained oscillations from a hydrodynamic stability point of view both in
the local and global frameworks. As the Richardson number is increased, the
base flow transitions from a jet to a plume type flow field. A more interesting
issue we seek to understand through this study is the fundamental difference
between the dynamics as well as the base state of a plume and those of a
jet. In order to account for the large density variation in the base flow,
the analysis is performed in the low Mach number limit. The previously
investigated Boussinesq limit [10] will be shown to arise as a special case
of the more generic low Mach number limit. By varying the Richardson
number and density ratio of the fluid injected into the ambient, the dynamics
of the flows and the relative effect of various destabilizing mechanisms will
be investigated. The base flow under consideration is described qualitatively
and the numerically obtained base flow distributions are presented in section
3.2. The governing equations under the low Mach number limit are also given
in section 3.2. Section 3.3 formulates the linear stability problem under both
global and local frameworks, for arbitrary azimuthal wavenumbers. The
results of the global and local stability analyses are presented and discussed
in section 3.4 for both axisymmetric and helical modes. A sensitivity analysis
of the global eigenvalues is presented in section 3.5. In particular, the role
of various destabilizing mechanisms is discussed and also the most sensitive
regions with regard to the dynamics of the flow are identified. In section 3.6,
the global dynamics considered in the previous sections are related to the
local absolute/convective instability of the base flow. Further, a connection
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with the previously investigated Boussinesq limit is made. Finally in section
3.7, the main results are summarized and juxtaposed against previous works.

3.2 Problem formulation

3.2.1 Governing equations

A heated calorically perfect fluid is injected into an unstratified quiescent
ambient of the same fluid at lower temperature, from a circular orifice in
an infinitely large, rigid, adiabatic wall. In order to model a flow which
has a strong density variation but low flow velocity, a low Mach number
approximation of the fully compressible Navier-Stokes equation is used. One
of the first investigations to use this approximation was by McMurtry et al.
[54] in the case of non-buoyant jets. It was extended to include buoyancy
by Nichols et al. [64], Chandler [11] and the same equations are used in this
investigation. In dimensional form, the governing equations are

∂ρ̃

∂t
+∇ · (ρ̃ũ) = 0, (3.1a)

ρ̃
Dũ

Dt
= −∇p̃+ µ

[
∇2ũ +

1

3
∇(∇ · ũ)

]
− g(ρ̃∞ − ρ̃), (3.1b)

ρ̃
DT̃

Dt
= α∇2T̃ , (3.1c)

ρ̃RT̃ = p0 (3.1d)

where ρ̃, ũ, p̃, T̃ denote the dimensional density, velocity, pressure and tem-
perature respectively, ρ̃∞ is the ambient density, g is the acceleration due
to gravity, α is the thermal diffusivity, µ is the dynamic viscosity, and R
is the specific gas constant. Note that in (3.1d), p0 denotes the thermody-
namic component of pressure and it is a constant, unlike the hydrodynamic
part p̃ in (3.1b). It can be seen that under the low Mach number limit, the
continuity equation (3.1a) and momentum equation (3.1b) are the same as
the fully compressible conservation equations. However, the energy equation
(3.1c) simplifies to a simple advection - diffusion equation for temperature.
In order to close this system of conservation equations, the equation of state
for a perfect gas (3.1d) is used.

Non-dimensionalizing equations (3.1a) - (3.1d) by adopting the centreline
velocity at the inlet ũj as the velocity scale, the difference T̃j−T̃∞ between the
inlet centreline temperature and the ambient temperature as the temperature
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scale, radius of the inlet R as the length scale and ambient density ρ̃∞ as the
density scale, the following equations are obtained:

∂ρ

∂t
+∇ · (ρu) = 0, (3.2a)

ρ
Du

Dt
= −∇p+

1

ReS

[
∇2u +

1

3
∇(∇ · u)

]
+

Ri

S − 1
(1− ρ)ez, (3.2b)

ρ
DT

Dt
=

1

PrReS
∇2T, (3.2c)

ρ(1 + T (S − 1)) = 1, (3.2d)

where, T = (T̃−T̃∞)/(T̃j−T̃∞) is the reduced temperature, Pr is the Prandtl
number, S = ρ̃∞/ρ̃j denotes the density ratio of the ambient fluid to the
fluid injected at the inlet, Re = ρ̃jũjR/µ is the Reynolds number and Ri =
gR(ρ̃∞ − ρ̃j)/ρ̃jũ2

j is the Richardson number. Further, the thermodynamic
pressure p0 is scaled appropriately so as to have the right-hand side of (3.2d)
as unity. It can be seen that in the limit S → 1, state equation (3.2d)
becomes ρ → 1. Substituting it in equations (3.2a) - (3.2c), the governing
equations for the Boussinesq limit given in Chakravarthy et al. [10] are
recovered. Although the current investigation is limited to hot fluid injected
at the inlet, the analysis can be easily extended to the case of a lighter
density fluid injected into heavier density ambient at the same temperature
as the governing equations are similar: the Schmidt number takes a role of
the Prandtl number and temperature would be replaced by mass fraction of
the injected species [14].

3.2.2 Base flow

In a cylindrical coordinate system, where z denotes the axial direction and
r denotes the radial direction, the variables can be split into a steady and
unsteady component as

q = q(r, θ, z) + q′(r, θ, z, t) (3.3)

where q = (ρ,u, p, T )tr, q = (ρ,u, p, T )tr and q′ = (ρ′,u′, p′, T ′)tr. A steady
axisymmetric solution to the set of equations (3.2) is obtained by iteratively
solving these equations, using the Newton - Raphson method with finite
element method in FreeFEM++ [25] on a domain which is 80 radii along
the streamwise direction and 30 radii along the transverse direction. This is
equivalent to solving the system (3.2) for a solution of the form q′ = 0 and
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q(r, θ, z) = q(r, z). At the inlet z = 0, the boundary conditions

u = 0.5 + 0.5 tanh

[
R

4θ

(
1

r
− r
)]

(3.4a)

ρ = 1−
(

1− 1

S

)(
0.5 + 0.5 tanh

[
R

4θ

(
1

r
− r
)])

(3.4b)

are assumed, where a moderately thin value R/θ = 10 has been chosen
throughout the analysis and the radial velocity is set to zero at the station
z = 0. Such tanh profiles to model the flow near an inlet were introduced
by Michalke [57] and since then, it has been used to study buoyant jets as
well [64]. For the ease of computation, the variable T is eliminated from the
system of equations (3.2) by using the equation of state (3.2d). Therefore,
the boundary conditions on T will not be discussed explicitly. Apart from the
inhomogeneous Dirichlet type boundary condition for u and ρ at the inlet,
stress-free boundary conditions are imposed on velocity and pressure on the
far field radial and streamwise boundaries. The variable ρ is set to unity
in far field radial direction while in the streamwise far field, a homogeneous
Neumann boundary condition is imposed. On the axis, r = 0, a homogeneous
Neumann condition is imposed on uz, p and ρ while a homogeneous Dirichlet
boundary condition is imposed on ur [41].

The main objective of this study is to understand the effect of buoyancy
and therefore the Richardson number Ri is varied from 10−4 to 103, while
the density ratio S is varied between 1.05 and 7. It will be shown later that
the effect of Reynolds number Re on the dynamics is very weak. Hence,
the investigation is mostly limited to Re = 200 and in some cases Re =
500. Throughout this analysis, Prandtl number is set to 0.7. Following the
procedure described above, a steady axisymmetric base flow is obtained for
given Re, Ri and S. Figure 3.1 shows the distribution of axial velocity and
density in the r − z plane for extreme values of Ri, Ri = 10−4 and 103, at
S = 7 and Re = 200. Further in this article, the base flow corresponding
to Ri = 10−4 will be referred to as the buoyant jet while Ri = 1000 will
be referred to as the plume. Figures 3.1(a) and 3.1(b) show the variation
of axial velocity and density respectively for the buoyant jet. This base
flow is similar to a non-buoyant heated jet [64, 46], where the momentum
injected at the inlet dissipates radially as the fluid is convected downstream
and consequently the axial velocity along the centreline decreases as z−1 for
z � 1. However, for the case of the plume, i.e. Ri = 1000, shown in figures
3.1(c) and 3.1(d), the fluid injected at the inlet is continually accelerated
due to buoyancy as it is convected downstream and the centreline velocity
asymptotes to a non-zero constant as the flow approaches the self-similar
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Figure 3.1: Distribution of the axial velocity (left) and density (right) in the
r− z plane for Richardson numbers Ri = 0.0001 (a and b) and Ri = 1000 (c
and d) at S = 7, Re = 200.
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limit. Although this is not a new result and it was demonstrated analytically
in the Boussinesq limit by Yih [98], it is worthwhile to re-iterate the inherent
difference between the base flow of a plume and a jet, and demonstrate it
through the axial velocity and density distributions for the non-Boussinesq
case as well. Another feature of the base flow for the plume is the high
entrainment of ambient fluid. In figure 3.1(d), the density contour at r = 1
and z = 0 is seen to be squeezed towards the axis and within two radii
distance from the inlet, the local radius reduces by nearly 80%. While for
buoyant jets the variation is gradual, indicating a relatively small entrainment
velocity. Although the results are presented only for S = 7 and Re = 200,
qualitatively similar results are observed at other values of Re and S as well.

At low Ri, the flow field is very similar to non-buoyant heated jets in-
dicating a negligible dependence on buoyancy. This is consistent with the
definition of Richardson number, which is the ratio of buoyancy to inertia of
the fluid injected at the inlet. Large values of Ri indicate the dominance of
buoyancy over inertia in the streamwise evolution of the flow and therefore
the flow field is very different from a non-buoyant jet. Thus, the flow sce-
narios pure jet and pure plume can be interpreted as the asymptotic limits
for the value of Ri with pure jet corresponding to the limit Ri → 0 and
pure plume corresponding to the other asymptotic limit Ri→∞.

3.3 Formulation of the stability problem

3.3.1 Global Stability

As the base flow is highly nonparallel, especially at large Ri near the inlet,
the instability dynamics are analyzed in a global framework. In order to
accomplish this, a perturbation of the form

(ρ′,u′, p′, T ′) =
[
ρ̂(r, z), û(r, z), p̂(r, z), T̂ (r, z)

]
ei(mθ−ωt) + c.c. (3.5)

is superposed on the base flow. Here, the integer m denotes the azimuthal
wavenumber and ω = ωr + iωi is the complex frequency. Variables of the
form q̂(r, z) are complex-valued functions. Upon linearizing the governing
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equations (3.2) with the ansatz (3.5), the following equations are obtained:

−iωρ̂+∇ · (ρ̂u + ρû) = 0, (3.6a)

−iωρû + ρ(û.∇u + u.∇û) + ρ̂u.∇u = −∇p̂+
1

ReS

[
∇2û +

∇(∇ · û)

3

]
− Riρ̂

S − 1
ez,

(3.6b)

−iωρT̂ + ρ(û.∇T + u.∇T̂ ) + ρ̂u.∇u =
1

PrReS
∇2T̂ , (3.6c)

ρ̂+ ρ2T̂ (S − 1) = 0, (3.6d)

where variables with an overbar (q) denote the base flow solution. While
the base flow is taken to be swirl free, uθ = 0, the azimuthal perturbation
velocity u′θ is not a priori zero. A homogeneous Dirichlet condition is imposed
on û, ρ̂, T̂ as boundary condition at the inlet z = 0, while a homogeneous
Neumann condition is imposed on p̂. On the axis, depending on the azimuthal
mode considered, appropriate boundary conditions as detailed in Khorrami
et al. [41] and Chakravarthy et al. [10] are enforced. For the radial and
streamwise far field boundaries, a no-stress condition is implemented.

The system (3.6) is cast into the form of an eigenvalue problem

ωBq̂ = Lq̂, (3.7)

where

q̂ = [ρ̂, û, p̂, T̂ ]tr.

Solving this eigenvalue problem, q̂(r, z) is obtained as the eigenvector with ω
as the corresponding eigenvalue. According to the ansatz (3.5), the real part
of the eigenvalue, ωr, denotes the oscillation frequency while the imaginary
part, ωi, denotes the growth rate of the perturbation. As in the base flow
computation, the variable T̂ is eliminated by using the the linearized equation
of state (3.6d). The matrices L and B are constructed through discretization
of the operators by using a finite element method in FreeFEM++. The ma-
trices are then exported into MATLAB, where the eigenvalues are obtained
by a shift-invert method. This is the same strategy as in several previous
investigations [25, 13].

3.3.2 Local Stability

If the base flow is slowly evolving, i.e. weakly nonparallel, the unsteady dy-
namics can be predicted from local stability analysis. In the local framework,
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the perturbation is assumed to be of the form

(ρ′,u′, p′, T ′) =
[
ρ̂(r), û(r), p̂(r), T̂ (r)

]
ei(kz+mθ−ωt) + c.c. (3.8)

where k is the complex axial wavenumber. Linearizing (3.2) over a parallel
base flow with the above ansatz (3.8) for perturbation, equations

−iωρ̂+ ρ
∂ûr
∂r

+ ρ
ûr
r

+ ûr
∂ρ

∂r
+
imρûθ
r

+ ikρûz + ikuzρ̂ = 0, (3.9a)

−iωρûr + ikuzρûr = −∂p̂
∂r

+
1

ReS

[
∆ûr −

ûr
r2
− 2imûθ

r2
+

1

3

∂(∇.û)

∂r

]
,

(3.9b)

−iωρûθ + ikuzρûθ = −imp̂
r

+
1

ReS

[
∆ûθ −

ûθ
r2

+
2imûr
r2

+
im

3r
(∇.û)

]
,

(3.9c)

−iωρûz + ρ
∂uz
∂r

ûr + ikuzρûz = −ikp̂+
1

ReS

[
∆ûz +

ik

3
(∇.û)

]
− Riρ̂

S − 1
,

(3.9d)

−iωρT̂ + ρ
∂T

∂r
ûr + ikuzρT̂ =

1

PrReS
∆T̂ , (3.9e)

ρ̂+ ρ2T̂ (S − 1) = 0, (3.9f)

are obtained, where

∆ =
∂2

∂r2
+

1

r

∂

∂r
− k2 − m2

r2
,

∇.û =
∂ûr
∂r

+
ûr
r

+
imûθ
r

+ ikûz.

The system of equations (3.9) is cast in the form ωBq̂ = Lq̂, where a complex
ω is obtained as an eigenvalue for a prescribed complex k to determine the
spatio-temporal characteristics as described in Chakravarthy et al. [10].

3.4 Global spectra and eigenfunctions

The formulations of the local and global stability problem are valid for any
azimuthal wavenumber m. As experimental investigations by Subbarao &
Cantwell [85] and Cetegen & Kasper [9] have shown the self-sustained os-
cillations to be axisymmetric in nature, the stability to axisymmetric per-
turbations is presented first in section 3.4.1 and this is followed by a brief
discussion of the helical perturbations of m = 1 in section 3.4.2.
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Figure 3.2: Global stability spectrum for the axisymmetric mode m = 0, at
Re = 200, S = 7 for the Richardson number indicated in the captions. The
solid circles denote the spectrum of equations (3.6) while the spectrum indi-
cated by plus-shaped markers (+) is obtained by setting Ri = 0 in equation
(3.6b).

3.4.1 Axisymmetric perturbations

As in the discussion of the base flow in section 3.2.2, results will be presented
for the two extreme values of Ri for S = 7 and Re = 200, in order to motivate
the discussion on the effect of Ri. Figure 3.2 shows eigenvalue spectra at
Ri = 10−4 (buoyant jet) and Ri = 103 (plume) for S = 7 and Re = 200.
The solid circles denote the spectrum obtained by solving (3.6) and the plus-
shaped makers denote the spectrum of the same set of equations, but with
Ri = 0. In other words, although the base flow corresponds to a non-zero
value of Ri, the Richardson number is set to zero in equation (3.6b). First,
consider the spectrum denoted by the circular markers. For the case of a
buoyant jet, it can be seen that the spectrum has only one unstable discrete
mode and overall, the spectrum resembles that of a non-buoyant jet [13].
As the Richardson number is varied from Ri = 10−4 to Ri = 1000, the
plume limit is approached and the growth rate ωi as well as the frequency
ωr become much higher than for the buoyant jet. Also, there are multiple
discrete modes which are unstable. For the case of buoyant jet, as expected,
setting Ri = 0 hardly alters the dynamics of the flow, thereby indicating
that the dynamics are dominated by inertia forces as in the case of jet.
In the plume, however, switching off the buoyancy in the stability equations
completely alters the dynamics: all the unstable discrete modes are stabilized.
Although the buoyancy is seen to be the cause of unstable eigenmodes in the
plume, the same buoyancy simultaneously alters the base state from one that
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(a) Ri = 10−4 (b) Ri = 103

Figure 3.3: Spatial distribution of the absolute value of the axial velocity
eigenfunction ûz corresponding to the most unstable discrete mode shown in
figure 3.2 for the S = 7 and Re = 200 at the Richardson number Ri indicated
below the figure.

is unstable to inertia-driven instability mechanism at Ri = 10−4 to a profile
stable to such a mechanism at Ri = 1000. This will become clearer in section
3.5 where the role of various destabilizing mechanisms are discussed.

The distinct nature of the spectra for buoyant jets and plumes is also
reflected in the characteristics of their eigenfunctions. Figure 3.3 shows the
spatial distribution of the absolute value of the axial velocity perturbation of
the most unstable discrete mode for Ri = 10−4 (left) and Ri = 1000 (right).
At low Ri, the axial velocity eigenfunction has a significant magnitude only
beyond 3 radii downstream of the inlet and it has a maximum on the axis
around z = 10. The radial extent of the eigenfunction is on the order of the
plume radius similar to the jet column mode of a non-buoyant jet in Lesshafft
et al. [45]. In a plume however, see figure 3.3(b), the eigenfunction is signif-
icant right from the inlet and has a maximum along the region of maximum
density gradient. Also, the radial extent is confined to a thin region of large
temperature gradient of the base flow. These very different eigenvalue spec-
tra and the eigenfunction distributions at two extreme Richardson numbers
further imply fundamentally distinct instability mechanisms. The reason
why the instability in plumes is likely to live in the temperature mixing layer
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rather than the shear layer will become clearer when the spectra of parabolic
inlet velocity profiles are presented next.

Figure 3.4(a) displays the variations with Ri of the Strouhal number, St =
ωr/2π, corresponding to the most unstable discrete eigenvalue for different
parameter settings. The thick solid line corresponds to S = 7 and Re = 200,
the solid circular markers to S = 7 and Re = 500 and the dashed line to
S = 4.5 and Re = 200 with the same inlet conditions as given in equation
(3.4). The triangular markers denote a parabolic axial velocity profile at the
inlet but a tanh variation in density, as in (3.4), at S = 7 and Re = 200.
In the three cases presented with a tanh inlet velocity profile, two distinct
regions in the St − Ri plane are present. At low Ri, there is hardly any
variation of St with Ri, i.e. Ri ∝ Ri0, and at large Ri, there is strong
dependence of St on Ri. For 1 ≤ Ri ≤ 1000, the Strouhal number for
S = 4.5, Re = 200 follows the power law St = 0.29Ri0.42 and for S = 7
and Re = 200 it goes as St = 0.24Ri0.43. The transition between these two
regimes, however, is smooth. These observations corroborate quantitatively
with the experimental findings [85, 9]. Cetegen & Kasper [9] performed
experiments on pure helium and helium-air injected into quiescent air and
drew similar conclusions (figure 5 in Cetegen & Kasper [9]). Their study
obtained a single power law St = 0.26Ri0.38 for both pure helium and helium
- air mixtures for 1 < Ri < 250. Note that the coefficient for the power law
given in Cetegen & Kasper [9] has been rescaled to the current definition of
frequency and reference scales. Also, their experiments indicate the presence
of two power laws: St = 0.26Ri0.38 for 1 ≤ Ri ≤ 250 and St ∝ Ri0.28 for
250 ≤ Ri ≤ 5000. However, figure 3.4(a) indicates only a single power law
for the entire range 1 ≤ Ri ≤ 1000. It can be seen from figure 3.2(b) that at
large Ri there are multiple global modes which are unstable. Hence, in an
experiment, it is possible that these global modes interact nonlinearly and
result in different power laws which cannot be captured by the current linear
analysis. The power law holds only for the variation of the most unstable
discrete mode. For any other discrete mode, both the exponent and the
coefficient of the power law, if it exists, could be different.

In the experimental investigations mentioned before, helium/helium-air
mixtures were injected into air through a round pipe and hence, the velocity
profile at the exit of the pipe has a parabolic variation. Therefore, a better
measure of the success of this model would be to compare the prediction for
a parabolic inlet profile with a sharp density gradient and this is given by the
triangular markers in figure 3.4. It is seen that at large Ri, the dynamics are
independent of the inlet velocity profile and show a behaviour similar to tanh
profiles. This hints that at large Ri, the destabilizing mechanism is either
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Figure 3.4: Variation of the complex global frequency ω with Richardson
number Ri for the axisymmetric mode: solid line - Re = 200, S = 7; solid
circles - Re = 500, S = 7, dashed line - S = 4.5, Re = 200 and triangles
- parabolic inlet velocity profile at Re = 200, S = 7. Figure 3.4(a) gives
the variation of Strouhal number, St = ωr/2π, and figure 3.4(b) shows the
growth rate ωi variation.
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independent of the shear in the velocity profile or the strong acceleration
imparted by buoyancy creates a gradient in velocity profile which is much
stronger than that imposed at the inlet. This line of thought will be espoused
further in §3.5.2. At low Ri, however, there is a significant difference in the
global growth rates of parabolic and the tanh velocity profiles. The parabolic
velocity profile is globally unstable only for Ri ≥ 0.1 while tanh velocity
profile results in a global instability for Ri ≥ 0 (refer to figure 3.4(b)). This
is consistent with previous investigations. Lesshafft et al. [46] investigated
a tanh variation in velocity and reported self-excited behaviour while DNS
by Satti & Agrawal [80] and experiments [9] chose a parabolic variation
in velocity and do not observe self-excited behaviour at small Richardson
numbers, Ri� 1. For the parabolic inlet velocity profile, a power law of the
form St = 0.23Ri0.43 is obtained indicating a good qualitative agreement with
the experimental observation St = 0.26Ri0.38. The quantitative difference in
the numerical values of the exponent and coefficient of the power law is to
be expected because, in the current investigation, the density variation is
due to heating of the fluid rather than a change in the chemical composition.
Thus, the difference in the formulation of Fick’s law of species diffusion and
Fourier’s law of heat conduction is likely to result in quantitative differences
[14]. The species and heat diffusion terms have the same form only in the
limit of small density variations such as the Boussinesq approximation or the
incompressible limit.

Apart from the variation of St with Ri, the effect of S and Re can also
be seen from figure 3.4(a). The change in Re from 200 to 500 at S = 7 has
a negligible effect on the Strouhal number. Although the real part of ω is
independent of Re, the imaginary part is seen to increase as Re increases.
Figure 3.4(b) shows the variation of ωi with Ri for the same parameter
settings. Similar behaviour can be seen to hold for the variation of S as
well. As the density ratio increases, the growth rate increases and the effect
of increasing S reduces with increasing Ri. Note that for S = 4.5, Re = 200
and Ri < 0.1, there is no unstable global mode, and this explains why
the dashed line starts only from Ri ≥ 0.1 in figure 3.4(b). Therefore, for
these Richardson numbers, the Strouhal number plotted in figure 3.4(a) only
denotes the frequency of the least stable discrete mode and not the usual
unstable global mode. The same is true for the triangular makers denoting
the parabolic profile as well.

The effect of S on the growth rate ωi can also be seen in figure 3.5
where the neutral curve, i.e. the contour ωi = 0, at Re = 200 is plotted in
the S − Ri plane. The thick line represents the neutral boundary for global
instability while the thin line denotes the local convective-absolute instability
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Figure 3.5: Neutral curve in the S −Ri plane for the axisymmetric mode at
Re = 200. The thick line corresponds to the global stability boundary and
the thin line to the local absolute/convective instability boundary based on
the inlet profile.

boundary for the inlet profile. The local modes are further discussed in
section 3.6. The region enclosed by the curve and the coordinate axes is
globally stable while the region outside the neutral curve is globally unstable.
It is interesting to note the non-monotonic behaviour of the neutral curve.
This is likely to be due to the transition of the eigendynamics from a shear-
dominated regime to a buoyancy-dominated regime. As Ri is increased,
the effect of the shear decreases and the buoyancy force increases. During
this change of destabilization mechanisms, for a small range of Ri, the total
destabilizing force decreases and this results in an increase in the minimum
value of S required for the global mode to become unstable. This will be
further elaborated in section 3.5. The analysis is limited to S > 1 only, and
therefore the neutral curves plotted in figure 3.5 cannot be extrapolated to
S ≤ 1.

3.4.2 Helical perturbations

So far, the dynamics of the flow to axisymmetric perturbations were dis-
cussed. The global instability characteristics are in good agreement with the
nonlinear behaviour observed in experiments. However, all the experiments
were in a regime where the density ratio S is far from unity. It was shown
in Chakravarthy et al. [10] that in the Boussinesq limit S → 1, the helical
m = 1 mode is absolutely unstable while the axisymmetric m = 0 mode is at
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most convectively unstable. Hence, it is necessary to investigate the global
dynamics of m = 1 and verify if the absolute instability translates to a global
instability and if so, what the characteristics of this instability are.

As in the discussion of m = 0 modes in section 3.4.1, the global mode
spectra are determined for Ri = 0.01 and Ri = 10 at S = 7 and Re = 200
as shown figure 3.6. For the case of Ri = 0.01, the base flow is very similar
to a non-buoyant jet, and the global eigenspectrum is also similar: no un-
stable global mode is observed at m = 1. In figure 3.6(a) two branches of
continuous modes are present. On one branch, as ωr increases, ωi monotoni-
cally decreases; this is referred to here as the continuous branch. The second
branch, resembling a parabola, has a non-monotonic variation of ωi with ωr
and this will be referred to as the arc branch for further discussion. On in-
creasing the Richardson number from Ri = 0.01 to Ri = 10, the continuous
branch remains stable while the arc branch becomes unstable as shown in
figure 3.6(b).

Such an arc branch of eigenmodes, referred to as box modes in Coenen et
al. [13], has been observed for the case of jets, wakes [52] and boundary layers
[1, 24]. These modes were seen to be stable for the case of jets [25, 13] while
for the case of boundary layers, depending on the downstream boundary
condition, they could be either stable or unstable [1, 24]. An important
feature of these box modes is that, as one starts from the low frequency
end of the arc branch and goes further along the branch, the number of
zero crossings of the real part of the eigenfunction increases monotonically.
This has been demonstrated in the case of jets for m = 0 by Coenen et al.
[13]. Similar behaviour has also been observed for the eigenfunctions of both
buoyant jets and plumes for m = 1. In figure 3.7, the contours of log10|ûz,real|
for two consecutive points on the arc branch are shown for Ri = 0.01 and
Ri = 10. Here, rather arbitrarily, the second and third points along the arc
branch are chosen for demonstration. The plots on the left correspond to
the second point and the ones on the right to the third point while the top
row is for Ri = 0.01 and the bottom row is for Ri = 10. It is seen that
an additional cycle or wavelength is added to the eigenfunction of the third
mode in comparison to the second mode for both Ri = 0.01 and Ri = 10.
This suggests that the arc branch is a numerical artifact due to the numerical
condition imposed at the downstream boundary.

The dependence of the arc branch on the length of the numerical box is
documented in figure 3.8 for yet another parameter setting. Over the con-
sidered range, increasing the box length results in a slight destabilization of
the arc branch modes in the higher frequency range. The sensitivity of the
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(a) Ri = 0.01

(b) Ri = 10

Figure 3.6: Global stability spectrum for the helical mode m = 1, at Re =
200, S = 7 for Ri = 0.01 (top) and Ri = 10 (bottom).
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(a) Ri = 0.01 (b) Ri = 0.01

(c) Ri = 10 (d) Ri = 10

Figure 3.7: Distribution of the magnitude of the real part of the axial velocity
eigenfunction int r − z plane for 2 consecutive modes on the continuous
parabolic-shaped branch for the helical mode m = 1 at S = 7 and Re = 200
at Ri = 0.01 and 10. The data are shown on a log scale, i.e. as contours of
log10|ûz,real|.
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Figure 3.8: Global spectrum for the m = 1 mode at Ri = 1, S = 7 and
Re = 200 for various domains sizes, i.e. locations of the streamwise far field
boundary Lz: 50 (+), 80 (*) and 100 (solid circles) radii. For all cases, the
radial far field boundary Lr is set to 30 radii from the axis.

branch to box length seems to be rather weak in this setting. An important
observation in this context is that laminar self-similar plumes are convectively
unstable even infinitely far away from the inlet. Therefore, adding further
downstream extent to the box is unlikely to decrease the perturbation ampli-
tude at the outflow which might decrease the gain of the spurious feedback.
This is to be contrasted against the axisymmetric mode in jets [13], where the
arc branch stabilizes with increasing downstream extent of the box possibly
because the flow is locally stable far downstream and thereby decreasing the
gain of spurious feedback.

The physically relevant conclusion that can be drawn from this analysis
of the m = 1 mode is that no unstable discrete mode is obtained for the range
of S and Ri investigated in this study. Thus, the absolutely unstable m = 1
local mode reported in Chakravarthy et al. [10] does not seem to trigger
global instability. Also, the arc branch is inherent to any base flow that is
convectively unstable close to downstream boundary. A better numerical
treatment might make it stable, but it would still exist.
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3.5 Interplay of shear and buoyancy

In section 3.4.1 it has been demonstrated that there is a clear difference be-
tween the dynamics in the buoyant jet limit and in the plume limit. In this
section, a discussion on the cause of this difference is presented with specific
emphasis on identifying the underlying mechanisms in the various regimes.
As mentioned in section 3.4.2, the m = 1 perturbations have no discrete un-
stable global mode and the arc branch is most likely a numerical phenomenon
resulting from the presence of a numerical boundary and therefore, would not
warrant any discussion from the physical point of view. Hence, this section
will focus only on the axisymmetric modes.

3.5.1 Endogeneity Formulation

A new sensitivity measure for understanding the intrinsic dynamics of the
flow called endogeneity was proposed recently by Marquet & Lesshafft [51].
A brief note on this sensitivity measure is presented for the benefit of the
unfamiliar reader. The classical structural sensitivity analysis formulated by
Giannetti & Luchini [27] maps the sensitivity of the eigenvalues in various
regions of the flow, i.e. the maximum change in the magnitude of an eigen-
value that can be triggered by the modification of the operator L at a given
point in the flow field. Here, the matrix L is the same as the one described
in section 3.3.1 corresponding to the global stability equations (3.6). The
main disadvantage of the structural sensitivity is that one cannot distinguish
if the change in the magnitude of eigenvalue is due to the frequency ωr or
the growth rate ωi. By contrast, the endogeneity distinguishes the effect
of various terms in the operator L, on the real and imaginary parts of the
complex frequency ω. The spatial locations which are most relevant to the
dynamics may thus be identified, as well as the way that individual terms in
the equations contribute to the global eigendynamics.

The expression for the endogeneity E(r, z) is

E(r, z) = q̂†(r, z) · [Lq̂(r, z)], (3.11)

with q̂† denoting the adjoint eigenfunction obtained by solving the adjoint
eigenvalue problem of the form

LH q̂† = ω∗BH q̂†. (3.12)

Here, the superscripts ∗, H denote the complex conjugate and Hermitian
transpose respectively, and the dot in equation (3.11) only denotes the dot
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product of the vector q̂† with Lq̂ at a given (r, z) and not a spatial integration
which would result in E(r, z) being constant throughout the flow field.

Performing an integration of E(r, z) over the entire domain gives∫
Ω

E(r, z)dΩ = 〈q̂†, Lq̂〉 = ω. (3.13)

Note that in deriving the expressions (3.11), and (3.13), the eigenvector q† is
assumed to be normalized such that 〈q̂†, Bq̂〉 = 1. By splitting L into various
terms such as

L = Lshear + Lbuoyancy + Lviscous + Lrest, (3.14)

the contribution of the individual terms to the eigenvalue can be obtained.
Also, as these integrals are complex valued, the contribution of various terms
to the real and imaginary parts of the eigenvalue can be quantified separately.
A detailed derivation of the expressions (3.11) and (3.13) is given in Marquet
& Lesshafft [51]. Note that the endogeneity is only a linear sensitivity mea-
sure. Therefore, the contribution to the eigenvalue obtained from equations
(3.13) and (3.14) should be treated as the contributions in the infinitesimal
limit. Stated differently, this contribution is not to be confused with the
resulting change in the eigenvalue if that particular term in the operator L
was switched off numerically and the eigenvalue is re-computed.

This sensitivity analysis based on endogeneity is now extended to buoyant
jets and plumes to understand the role of various terms in the dynamics. In
order to do so, the governing equation (3.6b) is recast in the following form
that is easy to relate to the previously investigated Boussinesq limit and
interpret the physical meaning of the terms:

−iωû + u.∇û = S + P + B + V (3.15)

where

S = −û.∇u, (3.16a)

P = −∇p̂
ρ

+
ρ̂∇p
ρ2 , (3.16b)

B =
Ri

S − 1

−ρ̂
ρ2 ez, (3.16c)

V =
1

ReS

[
1

ρ

(
∇2û +

∇(∇ · û)

3

)
− ρ̂

ρ2

(
∇2u +

∇(∇ · u)

3

)]
. (3.16d)
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This form of velocity perturbation equation is obtained by dividing equa-
tion (3.6) by ρ and substituting the following expression for u.∇u which is
obtained from the base flow momentum equation

ρ u.∇u = −∇p+
1

ReS

[
∇2u +

∇(∇ · u)

3

]
+

Ri

S − 1
(1− ρ)ez. (3.17)

In equation (3.15), the effect of shear is given by S, buoyancy by B and
viscosity by V . Regarding the interpretation of the pressure term P , the first
term −∇p̂/ρ is related to the baroclinic torque through the curl operator
while the second term ρ̂∇p/ρ2 denotes the strongly nonparallel nature of the
base flow. Under the boundary layer approximation, in the absence of any
external pressure gradient, this term vanishes as ∇p is identically zero.

Given this interpretation of the various terms in the perturbation velocity
equation (3.15), the operator L can now be split into a form analogous to
equation (3.14) where

Lbuoyancy = B, (3.18a)

Lviscous = V , (3.18b)

Lpressure = P , (3.18c)

Lshear = S, (3.18d)

Lrest = L− Lshear − Lpressure − Lbuoyancy − Lviscous. (3.18e)

Note that the matrix L here corresponds to the same set of equations (3.6)
except for the momentum perturbation equation (3.6b) which is replaced
by the velocity perturbation equation (3.15). Therefore, Lrest contains the
contributions of continuity, temperature and state equations alongside the
convection term u.∇û of (3.15). Substituting equations (3.18) and (3.14) in
equation (3.13), the eigenvalue can be split as

ω = 〈q†, Lshearq〉+〈q†, Lpressureq〉+〈q†, Lbuoyancyq〉+〈q†, Lviscousq〉+〈q†, Lrestq〉,
(3.19)

ω = ωshear + ωpressure + ωbuoyancy + ωviscous + ωrest (3.20)

and the contributions of various terms in the governing equations may be
analyzed.

3.5.2 Results and discussion

Based on the above formalism, the role of various terms in the dynamics
of buoyant jets and plumes are analyzed. Figures 3.9(a) and 3.9(b) show
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the contributions to the growth rate while 3.9(c) and 3.9(d) represent the
contributions to the frequency at various Ri for S = 7 and Re = 200. For
the ease of interpretation, the variations of growth rate and frequency are
split into two plots each: low Ri, 10−4 ≤ Ri ≤ 10, corresponding to buoyant
jets are presented on the left and large Ri, 10 ≤ Ri ≤ 103, corresponding to
plumes are shown on the right. First, consider the variation of growth rates
with Ri. At low Ri, figure 3.9(a), the growth rate of ωshear is much larger than
any other term on the right-hand side of equation (3.20) and therefore, shear
is likely to be the dominant destabilizing term. On the other hand, at large
Ri, figure 3.9(b), the contribution of buoyancy is larger than the contribution
of shear towards ωi, indicating that the role of buoyancy is dominant in
determining the dynamics of plumes. This hypothesis is consistent with the
eigenspectra shown in figure 3.2 where at low Ri, absence of buoyancy does
not alter the spectrum while at large Ri, the absence of buoyancy stabilizes
the flow globally.

The above observation regarding the relative importance of shear and
buoyancy coupled with the spatial distributions of eigenfunctions shown in
figure 3.3, give an insight into the different nature of destabilization at work
in each of these regimes. For buoyant jets, the dynamics are similar to
non-buoyant hot jets where the instability was shown by Lesshafft & Huerre
[44] in a local framework to be a jet column type mode, i.e. the dynamics
scale with the radius of the jet and are caused by the base flow shear. This
is supported by the spatial distribution of the global eigenfunction given in
figure 3.3(a) which has a radial extent of the order of inlet radius and confined
within the shear region of the base flow. In plumes, the eigenfunction lives
in a thin region close to the temperature mixing layer of the base flow. This
can be reasoned from the dominance of B in the dynamics of the flow. The
expression for B, given by equation (3.16c), can be re-written as B = RiT̂
by using the linearized state equation (3.6d). Thus, it can be seen that the
only flow variable in B is the temperature perturbation T̂ and even a small
change in the base flow would result in a large variation in temperature if
the perturbation is concentrated around the region of maximum gradient in
the base flow temperature. Restating it differently, the instability in buoyant
jets may be interpreted as the result of the base flow shear region which is of
the same scale as the radius R, while in plumes the instability can be seen
as result of the gradient in temperature which is confined to much smaller
length which is of the order θ.

During this transition of the dominant destabilizing mechanism, over a
small range of Ri, neither the shear nor the buoyancy force are strong enough
to destabilize that flow globally. As a result, the minimum value of the
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Figure 3.9: Contribution of various terms in the operator L to the eigenvalue
ω as a function of Ri at S = 7 and Re = 200: thick solid line - ω; dashed
line - ωshear; thin solid line - ωbuoyancy; triangles - ωviscosity; circles - ωpressure
and (×) - ωrest. Figures (a, b) show the contributions to ωi and (c, d) to ωr.
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density ratio S required to destabilize the flow increases. This explains the
non-monotonic behaviour of the neutral curve shown by the thick line in
figure 3.5. Although the contribution of B towards ω is negligible for buoyant
jets, the contribution of S is not negligible for plumes. However, this does not
mean that the inlet velocity profile needs to have a strong gradient to trigger
an instability. It is shown in figure 3.4 that even for a parabolic inlet profile,
at large Ri the growth rate and frequency are close to that obtained with
a tanh inlet velocity profile. This could be interpreted as follows: at large
Ri, the gradient of the temperature profile is quickly imposed on the velocity
profile as the fluid is strongly accelerated because of buoyancy. Thus, the
velocity profile imparted at the inlet soon becomes irrelevant downstream and
even a parabolic velocity profile which has a smooth variation at the inlet,
transforms into a velocity profile with a strong gradient. Such a transition
in the shear production from one that is determined by the inlet profile to
one that is buoyancy induced can also be seen in the variation of ωi,shear
with Ri from figures 3.9(a) and 3.9(b). Until Ri ≤ 5, ωi,shear increases
monotonically with Ri. However, ωi,shear decreases slightly as Ri is increased
for 5 ≤ Ri ≤ 20 and for Ri > 20, it again increases monotonically. This
non-monotonic behaviour could be due to the switch in the shear from being
inlet determined to becoming buoyancy induced.

Even though the baroclinic torque is contained in P , its contribution to
the dynamics cannot be accounted for from the current formulation as it is
based on forces and not torques. In fact, the endogeneity of −∇p̂/ρ, whose
curl corresponds to baroclinic torque, can be shown to be zero. An analy-
sis based on velocity-vorticity formulation is underway to ascertain the role
of the baroclinic torque in the global dynamics of buoyant jets. Although
the endogeneity of the term resulting in the baroclinic torque is zero, the
total contribution of pressure, ωpressure, is non-zero. The component of pres-
sure resulting from the nonparallel nature of the base flow is seen to have a
strongly stabilizing influence on the global eigendynamics at large Ri. In the
analysis of non-buoyant jets, this term is usually omitted because the flow is
weakly nonparallel and therefore, the base flow is mostly modeled under the
boundary layer approximation where ∇p = 0. This is consistent with the
results from endogeneity calculations. At low Ri, where the base flow is very
similar to that of a pure jet, both the real and imaginary parts of ωpressure
are small. However, at large Ri, where the base flow is strongly nonparallel
(see figure 3.1), the contribution is substantial, and therefore should not be
neglected for analyzing plumes or any flow field which is strongly nonparallel.
Shifting the attention to figures 3.9(c) and 3.9(d) which detail the contribu-
tions to the global frequency ωr, it is observed that most of the contribution
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comes from Lrest (thin dashed line) which includes convection. The rest of
the terms of the operator, S,B,V and P , have a relatively smaller influence
on the global frequency ωr.

Until now, only the integral measure of endogeneity as defined by equa-
tions (3.13) and (3.20) is studied. For the case of the cylinder wake, Marquet
& Lesshafft [51] showed the spatial distributions of E(r, z) and mapped out
the stabilizing and destabilizing region of the flow. A similar analysis for
buoyant jets and plumes is shown in figure 3.10 where the real and imagi-
nary parts of the endogeneity are plotted for S = 7, Re = 200 at two different
Ri. The imaginary part given in figures 3.10(a) and 3.10(b) are discussed
first. It can be seen from figure 3.10(a) that the most endogenous region for
buoyant jets lies along the shear layer around r = 1, slightly downstream of
the inlet and for the plume at Ri = 100, it lies very close to the inlet along
the region of base flow temperature mixing layer. This mapping is consistent
with shear being dominant instability mechanism in the case of buoyant jets
while in the case of plumes, it is buoyancy. However, an oscillating pattern of
the sensitivity means that the flow is stabilized by the operator at a certain
location, while in the immediate neighborhood it becomes destabilizing. For
a highly nonparallel base flow, such as the plume at Ri = 100, it might not
be too counter-intuitive. However, for a buoyant jet at Ri = 10−4, where
the base flow is only weakly nonparallel, such patterns are indeed surprising.
Similar oscillating patterns were reported by Tammisola [87] for the sensi-
tivity of a wake instability with respect to base flow variations. The real
part of endogeneity shown in figures 3.10(c) and 3.10(d) looks qualitatively
similar to the imaginary part except that they differ in phase from the imag-
inary part, roughly by π/2. However, not much progress could be made with
regard to interpreting the spatial distributions of the endogeneity of these
global modes.

3.6 Local analysis

An approach to establish whether the global dynamics are intrinsic to the
flow or due to some forcing at the boundaries (pressure feedback) is to per-
form a local analysis of the flow field and see if it is absolutely unstable
anywhere in the domain as the existence of local absolute instability is a
necessary criterion for global instability [12]. Moreover, the nonlinear global
mode frequency, if it exists, can be predicted from the local spatio-temporal
behaviour [72, 18]. In this study, a local analysis is undertaken primarily to
show the intrinsic nature of the observed linear global modes. Also, as the
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Figure 3.10: Spatial distribution of the real (bottom row) and imaginary (top
row) parts of the endogeneity E(r, z) corresponding to the most unstable
discrete mode for S = 7 and Re = 200 at Ri = 0.0001 (left) and 100 (right).
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experimental investigations confirm the existence of axisymmetric puffing in
the case of helium jets, it may be interesting to see if the nonlinear selection
criterion for a semi-infinite domain holds good for the current situation.

The existence of absolute instability for buoyant jets and plumes is ac-
complished by tracking the saddle point of the dispersion relation (3.9) in
the complex k-plane. To perform this search in the complex k-plane, for any
given complex k, a complex ω is obtained as the eigenvalue for the system
of equations (3.9a) – (3.9f). The associated group velocity vg is obtained as
[47]

vg = q̂†
∂L

∂k
q̂. (3.21)

A saddle point of the dispersion relation is defined by vg = 0. The wavenum-
ber k0 = k0,r+ ik0,i corresponding to this saddle point is solved for iteratively
by using the secant method until the convergence criterion |vg|< 10−6 is satis-
fied. The complex frequency ω0 = ω0,r+iω0,i corresponding to k0 = k0,r+ik0,i

is obtained as the eigenvalue of the dispersion relation. Note that, in this
section, the matrix L refers to the local dispersion relation given by equations
(3.9a) - (3.9f). The local spatio-temporal results for the axisymmetric mode
m = 0 and the helical mode m = 1 are discussed in section 3.6.1 and section
3.6.2 respectively.

3.6.1 Axisymmetric perturbations

In this section, the spatio-temporal stability of axisymmetric modes is ana-
lyzed under the local stability formulation presented in section 3.3.2. Figure
3.11 shows the variations of ω0 and k0 with streamwise location for Ri = 10−4

and Ri = 100 at S = 7 and Re = 200. It is seen that for both these values
of Ri, the flow is absolutely unstable, starting from the inlet until 7 radii
downstream. For the buoyant jet case at Ri = 10−4, the base flow is weakly
nonparallel and the selection criterion for a semi-infinite domain determines
that the global nonlinear frequency would correspond to the absolute fre-
quency at the inlet. From figure 3.11, the real part of ω0 at z = 0 for
Ri = 10−4 is ω0,r = 0.54 and this matches closely with the global stability
prediction of ωr = 0.56 given in figure 3.4(a). The same comparison fails
at Ri = 100: ω0,r(z = 0) = 1.33 while ωr = 10.99. This huge departure
from the local absolutely unstable mode is expected because the base flow is
highly nonparallel and the selection criterion does not hold. The nonparallel
nature of the base state can also be seen from the variation of ω0,r with z:
it varies nearly by two decades within a distance of 10 radii from the inlet.
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Another interesting observation to be made is that the streamwise extent of
the sensitive region of the flow as per the spatial distribution of endogeneity
(see figure 3.10) is also within this domain of absolute instability.

In order to establish the existence of absolute instability over the entire
globally unstable regime, the neutral curve for absolute stability is plotted
in the S − Ri in figure 3.5 (thin line). It is observed that the convective to
absolute instability boundary is much below the global instability boundary
for m = 0. To compute this convective to absolute instability boundary,
only the velocity and density profiles at the inlet are considered. Therefore,
for some combination of S and Ri, it is possible to obtain ω0,i(z) > 0 for
some z > 0 while ω0,i(z = 0) ≤ 0. Although the contour ω0,i = 0 would be
different in such a scenario, it can not be outside the boundary obtained at
z = 0. However, the current analysis already shows that the region of global
instability is within the absolutely unstable region.

3.6.2 Helical perturbations

In this subsection, the local dynamics with respect to the m = 1 helical
perturbations are presented. It was shown in figure 18 of Chakravarthy et al.
[10] that, in the Boussinesq limit, there are two saddle points in the complex
k-plane and one of them is absolutely unstable while the other is convectively
unstable. In the present discussion, this absolutely unstable saddle point will
be referred as mode 1 and the saddle point which is convectively unstable in
the Boussinesq limit as mode 2.

Figure 3.12 displays the variations of ω0,i with density ratio S, for mode
1 and mode 2 at Re = 100, Ri = 1. The solid lines representing the variation
with S for the inlet velocity and density profiles given in equation 3.4 are
discussed first. As S is increased, there is not much change in the growth
rate of mode 1 (no markers) but the growth rate of mode 2 (solid circles)
increases with S. However, it never becomes absolutely unstable. For the
specific setting of S = 7, Ri = 1 and Re = 200, the streamwise evolutions
of mode 1 and mode 2 are tracked, and the results are presented in figure
3.13. It is seen that the mode 2, which is convectively unstable at the inlet,
remains convectively unstable throughout the domain and the growth rate
of mode 1 asymptotes towards zero. This asymptotic behaviour is similar
to the variation of ω0 and k0 in the Boussinesq limit [10]. For mode 1, as
ω0, k0 → 0 with increasing z, the variation could be tracked only till z ≈ 5.
Despite the presence of absolute instability, the global analysis of the m = 1
mode reveals that no discrete unstable global mode exists for the range of
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Figure 3.11: Variation of the absolute wavenumber k0 and absolute frequency
ω0 of the axisymmetric mode m = 0 with streamwise location z for Richard-
son numbers 10−4 (left) and 100 (right) at S = 7, Re = 200.
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Figure 3.12: Absolute growth rate ω0,i as a function of density ratio S at
Re = 100 and Ri = 1 for m = 1 at the inlet: circles - mode 2 and no marker
- mode 1. The solid lines correspond to a tanh variation in ρ and dashed
lines denote tanh variation for T at the inlet.

parameters investigated. A plausible explanation for this result could be
that the local absolute growth rate of mode 1 is too small to trigger a global
instability, while mode 2 is always convectively unstable. Moreover, the
growth rate of the weakly unstable mode 1 drops by a decade within 2 radii
from the inlet, thus reducing the effective region of absolute instability of the
mode. It was demonstrated in the case of the Ginzburg-Landau equation by
Chomaz et al. [12] that for a flow to exhibit a global instability, the absolute
growth rate must be sufficiently strong and the streamwise extent of this
absolute instability should be large enough.

Note that absolute instability of mode 1 is unlikely to be related to the
unstable arc branch because the ωr value of the arc branch is orders of magni-
tude different from the ω0,r value of mode 1. With regard to mode 2, though
it was shown to be convectively stable for Ri = 1, for larger Ri it becomes
absolutely unstable at the inlet. Figure 3.14 gives the variation of the abso-
lute growth rate of mode 2 with Ri at S = 7 and Re = 200. The absolute
growth rate is observed to monotonically increase with Ri and become abso-
lutely unstable for Ri ≥ 3. However, as in the streamwise evolution of mode
2 at Ri = 1, the absolute growth rate quickly drops and the flow becomes
convectively unstable within 0.5 radius from the inlet, as shown in figure
3.15 for S = 7, Re = 200 and Ri = 100. This is to be contrasted with the
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Figure 3.13: Streamwise variation of absolute growth rate ω0,i of helical mode
m = 1 at S = 7, Re = 200 and Ri = 1 for mode 1 (left) and mode 2 (right).

absolutely unstable mode for m = 0 (see figure 3.11(b)), where the region
of absolute instability extends until 7 radii downstream of the inlet for the
same inlet conditions. Therefore, though mode 2 is absolutely unstable for
some parameters, the region of absolute instability is too small to trigger a
global instability. This possibly explains the lack of any discrete global mode
for m = 1 over the entire range of parameters investigated.

As the absolute instability starts right at the inlet for m = 0 as well as for
m = 1, the inlet conditions are likely to greatly influence the dynamics. This
can be demonstrated by changing the density profile at the inlet in equation
(3.4) to

ρ =
1

1 + (S − 1)
(
0.5 + 0.5 tanh

[
R
4θ

(
1
r
− r
)]) . (3.22)

This amounts to choosing a tanh variation for the temperature T instead of
density ρ. This results in a 1/tanh dependence for the density. As for the
density profile 3.4, two saddle points are observed and their absolute growth
rate variation with S is shown as dashed lines in figure 3.12. Mode 2 is seen
to become unstable at S = 3.5. This is an example to illustrate the strong
dependence of the dynamics on base flow. Thus, the results presented in this
study are very sensitive to the choice of velocity and density profiles at the
inlet.
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3.7 Conclusions

The global and local stability of buoyant jets and plumes injected into quies-
cent ambient with imposed initial velocity and temperature variation at the
inlet has been investigated. The global dynamics have been documented for
a wide range of Richardson numbers and density ratios under the low Mach
number approximation in a fully nonparallel formulation. For the investi-
gated range of parameters, it was observed that only the axisymmetric per-
turbations could exhibit an unstable discrete global mode. This is consistent
with the experimental findings of Subbarao & Cantwell [85] and Cetegen &
Kasper [9] who report axisymmetric puffing in plumes. Moreover, the puffing
frequency predicted by the current global analysis closely matches their ex-
perimental results. The dynamics of helical perturbations were also analyzed
and no unstable discrete global mode could be found. Instead a continuous
branch of unstable modes was obtained. However, this continuous arc branch
is very likely to be present due to the numerical downstream boundary and
it therefore does not have any physical relevance. This is supported by the
lack of any local absolute instability with comparable frequency.

With regard to the global axisymmetric mode, its physical nature was dis-
cussed based on its endogeneity. Through an integral measure of endogeneity,
the contributions of various terms in the perturbation velocity equation to
the global eigenvalue were computed and thus, most dominant terms which
destabilize the flow were determined. It was demonstrated that two destabi-
lizing forces exist: shear and the buoyancy. At low Richardson numbers, the
contribution of shear is the dominant, while at large Richardson numbers,
buoyancy dominates. This is supported by the global eigenspectra computed
with and without buoyancy. Further, the contribution of various terms to
the global instability coupled with the spatial distributions of the endogenity
and eigenfunctions, led to identify the plausible mechanisms through which
buoyant jets and plumes are destabilized. In the case of buoyant jets, the
destabilization is due to the shear region and is likely to scale with R; while
in plumes, it is driven by the large gradient in the base flow temperature and
it is likely to scale with the steepness of temperature profile θ. Investiga-
tions are underway in order to verify this hypothesis, and also to understand
the role of baroclinic torque by solving the stability equations in vorticity-
velocity formulation. Besides, it would be interesting to see the effect of the
nonparallel component of pressure in the vorticity formulation. Overall, al-
though a good grasp of the integral measure of endogeneity was obtained,
much remains to be understood with respect to the spatial distribution of
this new sensitivity measure.
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To confirm that the observed global dynamics are indeed intrinsic to
the flow and not an artifact of the boundary conditions, a local stability
analysis of the flow was performed. The presence of global instability for
m = 0 is supported by the presence of local absolute instability within the
base flow. It was shown that the region of global instability was contained
within the region of local absolute instability in the S − Ri plane. More-
over, the global nonlinear frequency predicted by the local analysis matches
well with the global linear frequency at low Richardson number, where the
flow is weakly nonparallel. For m = 1, two saddle points were identified in
the complex k-plane, as in the previous Boussinesq analysis [10], where one
saddle point (mode 1) was absolutely unstable while the other (mode 2) is
convectively unstable. At small Richardson numbers, mode 2 is convectively
unstable everywhere in the physical domain while mode 1 is absolutely un-
stable throughout the physical domain. However, the absolute growth rate
of mode 1 is very small. For large Richardson numbers, the flow is absolutely
unstable with respect to helical perturbations via mode 2 as well and the
absolute growth rate is comparable to the axisymmetric mode. Even so, the
absolute growth was shown to quickly become negative within half a radius
from the inlet. Therefore, both m = 1 saddle points are incapable of trig-
gering a global instability: the absolute growth rate is either too small or
too limited in streamwise extent. This interpretation is consistent with the
absence of any discrete unstable global mode for m = 1.

This analysis as well as the previous investigation in the Boussinesq limit
[10] were done in a linear framework. Hence, the nonlinear dynamics cannot
be captured. This is possibly the reason why the predictions differ with the
experiments on helium jets at high Richardson numbers. The linear analysis
predicts the existence of multiple unstable global modes but does not say
much about the possible interaction between them. Moreover, in the range
of parameters where the flow is absolutely unstable and globally stable (lin-
early), it is possible to have a nonlinear global mode [16]. Another possibility
is a bifurcation to a new steady, possibly asymmetric, base flow as a result
of the linear instabilities. This was demonstrated by Lopez & Marques [50]
through a DNS in the case of confined plumes under the Boussinesq approx-
imation. Also, it was illustrated in the present work that a small change
in the inlet density profile from tanh to 1/tanh greatly alters the absolute
stability characteristics. Thus, caution must be exercised when extending
the results to a flow with different inlet profiles. Subbarao & Cantwell [85]
point out that helium jets and diffusion flames are two extreme examples of
plume profiles, based on the way buoyancy is released: in a diffusion flame,
it is concentrated in a thin annular region at the inlet while in helium jets, it
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is uniformly distributed across the inlet. The present study only investigated
the helium jet limit. Furthermore, the current investigation was limited to a
Prandtl number of 0.7 where the kinematic viscosity and thermal diffusivity
are of the same order. For Prandtl numbers much different from unity, the
dynamics could be different qualitatively as demonstrated by Lakkaraju &
Alam [42] for planar plumes.
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Chapter 4

Concluding remarks

4.1 Summary

The primary objective of this dissertation was to contrast the dynamics of
buoyant jets and plumes. This was accomplished by varying the Richardson
number in the case of flows driven from a finite-size inlet, and the Grashof
number in the case of point-source driven flows over a wide range of values.
The predictions of the linear global stability analyses compared well, both
qualitatively and quantitatively, with the experiments and direct numerical
simulations. The intrinsic nature of these linear global modes was supported
by the presence of local absolute instability. Additionally, through computa-
tion of the perturbation kinetic energy in a local temporal analysis and the
endogeneity in the global stability analysis, the role of shear and buoyancy
towards destabilizing these flows was quantified: shear was shown to be the
dominant destabilizing mechanism for buoyant jets while buoyancy drives
the instability in plumes.

Based on the assumptions on density variation, the above stability anal-
yses can be divided into two categories: 1. Boussinesq approximation - the
density variation is neglected everywhere expect in the buoyancy term in the
momentum equation and a linearized equation of state is invoked; and 2. low
Mach number approximation - a more general framework than Boussinesq
approximation where density variation due to the temperature is considered
via perfect gas law, but the variation due to the hydrodynamics, i.e. velocity
and pressure variations, is neglected. Both these approximations are more
general than the incompressible limit where any density variation is strictly
forbidden.
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Boussinesq approximation

The bulk of the stability analysis under this approximation was performed
under a local framework on a self-similar velocity profile. For most of the
domain in the streamwise wavenumber (k) - Grashof number (Gr) plane,
the helical mode corresponding to an azimuthal wavenumber m of unity was
seen to be the most unstable temporal mode. Through a budget of the
perturbation kinetic energy, the region of buoyancy and shear dominance
in the k − Gr plane was mapped out: buoyancy dominates for low k and
small Gr while shear dominates for large Gr. Furthermore, beyond a critical
Grashof number of the order of unity, the m = 1 mode was found to transition
to an absolute instability. This was obtained by computing the saddle point
of the dispersion relation in the complex k−plane as well as a DNS of the
linear impulse response. The absolutely unstable saddle point exists only in
the presence of buoyancy and does not have a non-buoyant counterpart. The
axisymmetric mode (m = 0) and the double-helical mode (m = 2) are also
temporally unstable, but only in small pockets in the k−Gr plane which are
mostly enclosed within the region where m = 1 is also unstable. Moreover,
the growth rates of these m = 0 and m = 2 modes are much smaller than the
m = 1 helical mode, and they are at most convectively unstable. Therefore,
these modes might be irrelevant to the long-time global dynamics of the flow.

Note that all the above predictions are based on self-similar flow pro-
files which are attained far downstream of the inlet. Hence, the pertinence
of the predictions was examined for a specific case close to the inlet. It
was observed that only the m = 1 mode is absolutely unstable throughout
the domain while the axisymmetric mode never becomes absolutely unstable
but, the temporal growth rates of m = 1 and m = 0 are of the same or-
der. Until now, only the local stability properties were discussed under this
Boussinesq approximation. Preliminary investigation of the global dynamics
of the Boussinesq plume suggests that the absolute instability of m = 1 mode
does not translate into a linear global instability possibly owing to its small
growth rate [12]. This is in agreement with the global stability computations
under the low Mach number approximation for density ratios close to unity,
where helical perturbations are seen to remain stable. However, the absence
of a linear global instability does not forbid the existence of nonlinear global
instability and such an analysis remains to be performed [72].

Low Mach number approximation

Although the Boussinesq plume does not seem to have any unstable linear
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global mode, experiments on low speed helium jets injected into quiescent
air exhibit spontaneous axisymmetric puffing beyond certain a Richardson
number Ri and Reynolds number Re. In order to analyze such a configura-
tion with large density variations in the base flow, the governing equations
were obtained under the low Mach number approximation. Within this set-
ting, linear global stability analysis is undertaken for the most part over
a wide range of Richardson numbers 10−4 ≤ Ri ≤ 103 and density ratios
1.05 ≤ S ≤ 7. The oscillation frequencies obtained via linear global stability
computations match well with the previously performed experiments [85, 9].
Furthermore, the presence of absolute instability in the flow was established.
This strongly suggests that the unstable linear global modes are intrinsic to
the flow and therefore, are related to the self-sustained axisymmetric oscilla-
tions observed in the experiments. Also, for the weakly nonparallel buoyant
jets, the real part of the absolute frequency predicts the nonlinear global
frequency of the DNS study [64] in accordance with the nonlinear selection
criterion obtained in the 1D Ginzburg-Landau equation [17, 18].

After establishing the intrinsic nature of the linear global modes, the cause
of this instability was explored next through computing the endogeneity of
various terms in the governing equations. At low Richardson numbers, the
instability is shear-driven while for plumes, i.e. high Richardson numbers,
it is buoyancy-driven. This relative importance of shear and buoyancy for
buoyant jets and plumes respectively, together with the spatial distributions
of their respective eigenfunctions, provide an insight into the plausible in-
stability mechanism. In buoyant jets, the instability mechanism is the same
as that of a jet column mode in non-buoyant hot jets and it scales with the
inlet radius. On the contrary, in the case of plumes, the instability is driven
by the buoyancy and the dynamics are likely to scale with the thickness of
the temperature gradient.

The global eigendynamics of helical perturbations was also investigated
and no discrete unstable modes were observed for the entire range of Ri and
S considered in this study. However, local spatio-temporal analysis reveals
that, depending on the Richardson number, either mode 1 or both mode 1
and mode 2 are absolutely unstable. These modes either have small absolute
growth rates or the absolute instability is limited to a very small region in
the streamwise direction. This is consistent with the absence of any unstable
discrete global helical mode [12].
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4.2 Future work

The current analysis focused on quiescent ambient and this is seldom the case
in real flows, say exhaust from a chimney. Recall the picture of smoke rising
from a cigarette by van Dyke [92] shown in figure 1.2. In a quiescent ambient,
under the Boussinesq approximation, linear global stability analysis indicates
that the flow is likely to remain stable. However, large scale self-excited
oscillations are observed in figure 1.2. In order to explain the oscillations, it
might be essential to consider cross-wind because these large scale structures
are inclined at an angle to gravity. This makes a study on the effect of
cross-wind very interesting and pertinent to real flows.

An important limitation of the current investigation is that all the predic-
tions are made under a linear framework. Although the helical perturbations
do not display any linear global mode, it is still possible that there might
be a nonlinear global mode as the flow is absolutely unstable with respect
to helical perturbations. Moreover, a steady absolute mode is known to
lead to a symmetry-breaking bifurcation in the wake past a sphere [69] and
past a disk [55]. In the case of confined plumes, Lopez & Marques [50] have
demonstrated that the flow undergoes a series of bifurcations as the Rayleigh
number is increased, eventually leading to an asymmetric base flow. Even in
the case of axisymmetric perturbations, at large Richardson numbers, there
is a departure of the linear global predictions from the experimental results.
Two plausible explanations for the departure are: 1. the global oscillations
could be the result of an absolute instability over a new steady base state
resulting from a bifurcation of the base state currently investigated; and 2.
due to the interaction of unstable linear global modes of the base state con-
sidered in this study. Thus, a possibly rich physics of the nonlinear regime
remains to be explored.

In the current flow configuration itself there are many unanswered ques-
tions. For instance, the oscillatory pattern of the endogeneity is largely
unexplained in physical terms. Furthermore, it was demonstrated that the
dynamics are very sensitive to inlet conditions. For the current tanh type
inlet temperature profiles, the effect of steepness at the inlet on the dynamics
remains to be explored. Besides, if the profile was changed from a tanh type
to one that mimics the heat release in a diffusion flame, the results could be
very different. The buoyancy released from a diffusion flame is very compact
in radial extent. This is in contrast to a helium jet, which has buoyancy dis-
tributed uniformly across the inlet. Buoyancy release in the current analysis
is close to that of a helium jet. In geophysical contexts, such as magma flows,
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saline conduits or carbon dioxide saturated flows, the Prandtl numbers and
Schmidt numbers are very different from unity. For large Prandtl numbers,
a new unstable mode was shown to exist in the case of planar plumes [42].
Therefore, for Prandtl numbers and Schmidt numbers much different from
unity, the current predictions might not hold. Also, ambient stratification
and Coriolis force might also be very important in oceanic contexts.

The current analysis therefore needs to be seen as a first step towards
studying the plethora of buoyancy-driven flows. In particular, it explored the
effect of buoyancy in shear flows, both in the base flow and the eigendynamics
by considering a fundamental case of the free plume in quiescent, unstratified
ambient.
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Abstract

The linear global stability of light jets and plumes is analyzed to exam-
ine the role of buoyancy on the dynamics of the flow by varying the Froude
number under low Mach number approximation. In this study, buoyancy is
generated due to the heating of fluid injected at the inlet (thermal plume).
The results also closely describe the dynamics of an isothermal light jet at the
corresponding density ratio, ρ∞/ρj, where ρj and ρ∞ are the jet and ambient
density respectively. The analysis is limited to a thermal plume which has a
density ratio ρ∞/ρj = 7 corresponding to the value for pure Helium injected
into air. At large Froude number (or small Richardson number), the dynam-
ics of the flow are shown to be determined by the baroclinic torque resulting
in the Kelvin Helmholtz instability as in the case of hot jets. However, as the
Froude number is lowered, the dominant growth rate and Strouhal number
increase monotonically and the dynamics become strongly buoyancy depen-
dent. The variation of Strouhal number with Richardson number (or Froude
number) resulting from the global instability is found to match closely with
the experimental and DNS investigations on Helium jets injected into air.
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A.1 Introduction

Many investigations have previously addressed, from the stability point of
view [11, 36, 44, 46], the local and global dynamics of light jets, and confirmed
the existence of self-sustained oscillations due to baroclinic torque. However,
the same cannot be said about their buoyant counterparts, plumes and light
jets. This study aims to extend the global stability analysis to strongly
buoyant light jets, plumes and explore the variation of the dynamics with
Froude number.

Firstly, due to the addition of buoyancy, the base flow of a plume differs
from that of a jet. The fundamental difference is that a jet emerges from
a nozzle with a given amount of streamwise momentum which diffuses as
the fluid convects downstream whereas, in the presence of buoyancy, plumes
continue to generate vertical momentum at any given streamwise station.

With regard to unsteady dynamics, the presence of buoyancy generates a
torque which could destabilize the flow, in addition to the baroclinic torque
and vortex stretching/tilting which result in the classical K-H instability.
One of the earliest experiments on strongly buoyant light jets were made
by Subbarao and Cantwell [85]. It was observed that Helium jets injected
into air, in a certain range of parameters, exhibit self-excited axisymmetric
puffing. Similar observations were made by Cetegen and Kasper [9] for pure
Helium and Helium - air mixtures over a larger range of parameters and
a power law describing the variation of Strouhal number with Richardson
number was obtained. More recent studies [11, 40, 64, 75, 80] performed
a DNS of light jets and their results corroborate the experimental findings.
These numerical experiments have demonstrated that at high Richardson
numbers, self-sustained oscillations cease to exist in the absence of gravity.
Similar observations were also made by Jiang and Luo [40] for the case of a
thermal plume. It must be noted that, in all these studies the density vari-
ation is strong and therefore non-Boussinesq in nature. However, under the
Boussinesq approximation there is no baroclinic torque and the spatiotem-
poral dynamics are shown to be dominated by the helical mode m = 1 rather
than the axisymmetric mode m = 0 [10].

The current investigation, however, is focused towards understanding the
axisymmetric puffing of strongly heated thermal plumes from a global in-
stability point of view. Note that in order to account for the strong inho-
mogeneity in density, the analysis is performed under the low Mach number
approximation. The paper is organised as follows: the governing equations,
computation of the base flow and its linear stability are discussed in Sect.
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A.2. Section A.3 documents the variation of stability characteristics of the
flow with Froude number and a discussion of the role of buoyancy in the
dynamics is presented. The findings are summarized and juxtaposed against
previous works in Sect. A.4.

A.2 Formulation

A calorically perfect fluid with Prandtl number Pr, is injected into a quies-
cent ambient of the same fluid with a prescribed velocity and density pro-
file at the station z = 0 through a nozzle of radius R at temperature Tj
and density ρj on the axis. Adopting the radius of the nozzle R as length
scale, ambient temperature T∞(< Tj) as temperature scale, ambient density
ρ∞(> ρj) as the density scale and centreline velocity at z = 0, uj, as velocity
scale, the non-dimensional governing equations, under the low Mach number
approximation, are obtained as:

∂ρ

∂t
+∇ · (ρu) = 0, (A.1)

ρ
Du

Dt
= −∇p+

1

ReS

[
∇2u +

1

3
∇(∇ · u)

]
+

1

Fr2
(1− ρ)ez, (A.2)

ρ
DT

Dt
=

1

PrReS
∇2T, (A.3)

ρ(1 + T (S − 1)) = 1, (A.4)

where T is the reduced temperature, Re = ρjujR/µ, Fr = uj/
√
gR, and

S = ρ∞/ρj. Instead of the Froude number Fr, one could also define a
Richardson number Ri = (S − 1)/Fr2 = (ρ∞/ρj − 1)gR/u2

j . As we wish to
extend this study in the future to various values of S, the Richardson number
Ri is preferred over Fr as it was demonstrated to be a better parameter to
analyze the variation of Strouhal number [9]. Throughout this analysis, the
Prandtl number Pr is set to 0.7.

The base flow is assumed to be axisymmetric and computed by the
Newton-Raphson method using the finite element method in FreeFEM++
[25] on a domain which is 80 radii along the axial/streamwise direction and
30 radii along the radial/transverse direction. The non-dimensional axial
velocity and temperature at the inlet (z = 0) are assumed to be of the form
uz(r, z = 0) = T (r, z = 0) = 0.5+0.5 tanh [0.25(R/θ)(1/r − r)] where a mod-
erately thin value R/θ = 10 has been chosen throughout the analysis and the
radial velocity is set to zero at the station z = 0. Apart from these Dirichlet
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type boundary conditions for velocity and temperature at the inlet, stress-
free boundary conditions are imposed on velocity and pressure at radial and
streamwise farfield boundaries. The reduced temperature T is set to zero
in farfield radial direction while in the streamwise farfield, a homogeneous
Neumann boundary condition is imposed. On the axis, r = 0, a Neumann
boundary condition is imposed on axial velocity, temperature and density
while a Dirichlet boundary condition is imposed on radial velocity [41].

On this base flow, an axisymmetric perturbation of the form q(r, z)e−iωt is
superposed where q = [ρ′, u′r, u

′
z, p
′]T is a column vector denoting the pertur-

bation of flow variables. The governing equations (A.1 - A.4) are linearized
to obtain a generalized eigenvalue problem of the form LNS(q) = ωM(q)
with ω = ωr + iωi being the eigenvalue. The matrices LNS and M , denoting
the discretized linearized Navier-Stokes operator and the mass matrix re-
spectively, are constructed in FreeFEM++ and the eigenvalues are obtained
through Arnoldi method.

A.3 Results and Discussion

A.3.1 Base Flow

In this paper, the analysis is limited to the case of Re = 200, 500, S = 7 while
Ri is varied from 0.0006 to 600. The base flow solution was found to be well
converged with a residue less than 10−9 and is also independent of the grid
resolution and domain size. Figure A.1 demonstrates the variation of axial
velocity in the r − z plane for Ri = 0.0006 and 600 at Re = 200. Note that
smaller Ri indicates small or negligible effect of buoyancy in comparison to
inertia while large Ri indicates dominance of buoyancy over inertia. It can
be seen that in the case of Ri = 0.0006, the inlet momentum is radially
dissipated as it is convected downstream similar to jets, while for Ri =
600 it is continually accelerated under the effect of buoyancy which is a
characteristic feature of plumes.

A.3.2 Global Stability

For the above two base flows, the global stability is analyzed in a linear
framework. Figure A.2 shows the spectrum in the complex ω−plane where
the black markers indicate the spectrum for Re = 200, S = 7 in the presence
of buoyancy, while the red markers indicate the spectrum in the absence
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Figure A.1: Spatial distribution of base flow axial velocity in the r− z plane
at Ri = 600 (left) and Ri = 0.0006 (right) for S = 7 and Re = 200.

of buoyancy. It is seen that the Strouhal number St (St = ωr/2π) and
growth rate ωi increase as Ri increases. Here, the effect of buoyancy on
the flow dynamics is captured by computing the spectrum with and without
buoyancy. For the case without buoyancy, the stability matrices LNS and
M are obtained by artificially setting the Ri to a very low value in the
linearized equations, while the base flow corresponds to the exact solution
at the higher Ri. The effect of buoyancy is negligible at low Ri (the spectra
almost coincide and cannot be distinguished visually), while at high Ri the
flow is stabilized in the absence of buoyancy. It is interesting to note the
distinct character of buoyancy: as Ri is increased, the base flow which is
unstable even in the absence of buoyancy becomes stable to shear while a
new instability is triggered by buoyancy on this new base flow.

The variation of St with Ri is shown in figure A.3 for Re = 200 (solid line)
and 500 (circular markers) on a log-log scale. It can be seen that Re only
weakly influences St. At low values of Ri, St is seen to be invariant with Ri,
indicating a negligible influence of Ri. However, for values of Ri > 1, St is
strongly dependent on Ri and follows the relation St ∝ Ri 0.42 which closely
matches the experimental result St ∝ Ri 0.38 obtained for light Helium jets by
Cetegen and Kasper [9] in the range 1 ≤ Ri ≤ 100 (Ri1 in [9] is equivalent to
the current definition of Ri). For 100 ≤ Ri ≤ 500, a different power law was
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Figure A.2: Eigenvalue spectrum in the complex ω−plane for Ri = 600 (left)
and Ri = 0.0006 (right) at S = 7 and Re = 200.The red markers denoted
the case where buoyancy is switched off in the perturbation equations while
black markers are obtained by solving the exact perturbation equations.
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Figure A.3: Variation of Strouhal number with Richardson number in a log-
log plot at Re = 200 (solid line) and Re = 500 (circular markers). At large
Ri, St scales as Ri 0.42.

proposed by these authors and also the spectrum was seen to exhibit multiple
peaks (figure 8(c,d) in [9]). The current investigation, however indicates that
the most unstable global mode follows the same power law for all Ri > 1.
This discrepancy between the two investigations could be due to the multiple
unstable modes observed at large Ri. In figure A.2, it can be seen that apart
from the most unstable global mode, which follows the St ∝ Ri0.42 power law,
there are multiple unstable modes with smaller ωi(> 0) which may interact
non-linearly resulting in a different St. This could be a plausible explanation
for the multiple peaks observed in their experiments and a different power law
for Ri > 100. Another interesting feature of the variation in St is the rather
smooth transition from shear-dominated to buoyancy-dominated behaviour
similar to the local stability characteristics of the Boussinesq plume [10].

Global stability of the m = 1 helical mode was also performed and for all
the parameters investigated in this study, the flow was found to be stable.
This is in contrast to the Boussinesq limit, where only the m = 1 mode is
absolutely unstable and the m = 0 mode is at most convectively unstable
[10]. A plausible explanation for this could be the absence of baroclinic
torque in the Boussinesq limit.
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A.4 Conclusions

The global stability of a thermal plume has been investigated in a linear
framework under the low Mach number approximation. Variation of the
global frequency, ωr or St, and growth rate, ωi, with Ri have been docu-
mented for S = 7 at Re = 200, 500. In the range of parameters investigated,
only m = 0 modes were found become globally unstable. At low Ri, the
behaviour of a jet was recovered and the dynamics were independent of buoy-
ancy. However, at large Ri, the instability is strongly effected by buoyancy.
It is important to note that the transition from baroclinic and shear domi-
nated behaviour to buoyancy dominated behaviour is smooth which can be
seen from the variation of St with Ri. The variation of St with Ri compares
well with the experimental data corresponding to isothermal Helium jets in-
jected into air [9, 85]. Also, St was observed to be only weakly dependent on
Re, which is again consistent with the experimental studies on Helium jets.

An important caveat of the current investigation is that it is non-Boussinesq
in nature and the dynamics are very different from the Boussinesq limit. The
local stability analysis on a Boussinesq plume indicates that only a helical
m = 1 mode is absolutely unstable and therefore might possible become
globally unstable [10]. However, in the current study m = 0 is seen to be
globally unstable indicating a strong dependence on the value of S. Further
analysis is required to establish if there is transition from m = 0 to m = 1
in a global scenario as we vary the density ratio S.

Acknowledgements

This work is being supported by the Agence Nationale de la Recherche (ANR)
under the Cool Jazz project, grant number ANR-12-BS09-0024.

108



109



110



Bibliography

[1] E. Akervik, U. Ehrenstein, F. Gallaire & D. S. Henningson,
2008.
Global two-dimensional stability measures of the flat plate boundary-
layer flow. Eur. J. Mech. B/Fluids 27(5), 501–513.

[2] G. K. Batchelor & A. E. Gill, 1962.
Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14, 529–
551.

[3] A. Bers, 1983.
Space-time evolution of plasma instabilities-absolute and convective. Ba-
sic plasma phys. 1.

[4] P. Billant & J.-M. Chomaz, 2000.
Theoretical analysis of the zigzag instability of a vertical columnar vor-
tex pair in a strongly stratified fluid. J. Fluid Mech. 419, 29–63.

[5] R. B. Bornoff & M. R. Mokhtarzadeh-Dehghan, 2001.
A numerical study of interacting buoyant cooling-tower plumes. Atmo-
spheric Environment 35(3), 589–598.

[6] R. S. Brand & F. J. Lahey, 1967.
The heated laminar vertical jet. J. Fluid Mech. 29(2), 305–315.

[7] R. J. Briggs, 1964.
Electron-stream interaction with plasmas. M. I. T. Press.

[8] B. M. Cetegen, Y. Dong & M. C. Soteriou, 1998.
Experiments on stability and oscillatory behaviour of planar buoyant
plumes. Phys. Fluids 10(7), 1658–1665.

[9] B. M. Cetegen & K. D. Kasper, 1996.
Experiments on the oscillatory behavior of buoyant plumes of helium
and heliumair mixtures. Phys. Fluids 8(11), 2974–2984.

111



[10] R. V. K. Chakravarthy, L. Lesshafft & P. Huerre, 2015.
Local linear stability of laminar axisymmetric plumes. J. Fluid Mech.
580, 344–369.

[11] G. J. Chandler, 2010.
Sensitivity analysis of low density jets and flames. PhD thesis, Univer-
sity of Cambridge, Cambridge, U. K.

[12] J. M. Chomaz, P. Huerre & L. G. Redekopp, 1991.
A frequency selection criterion in spatially developing flows. Stud. Appl.
Math. 84(2), 119–144.

[13] W. Coenen, L. Lesshafft, X. Garnaud & A. Sevilla, 2015.
Global mode analysis and frequency response of low-density jets. J. Fluid
Mech. in preparation.

[14] W. Coenen & A. Sevilla, 2012.
The structure of the absolutely unstable regions in the near field of low-
density jets. J. Fluid Mech. 713, 123–149.

[15] C. Cossu & J. M. Chomaz, 1997.
Global measures of local convective instabilities. Phys. Rev. Lett.
78(23), 4387–4390.

[16] A. Couairon & J. M. Chomaz, 1997.
Absolute and convective instabilities, front velocities and global modes
in nonlinear systems. Physica D: Nonlinear Phenomena. 108(3), 236–
276.

[17] A. Couairon & J. M. Chomaz, 1997.
Pattern selection in the presence of a cross flow. Phys. Rev. Lett. 79(14),
2666–2669.

[18] A. Couairon & J. M. Chomaz, 1999.
Fully nonlinear global modes in slowly varying flows. Phys. Fluids
11(12), 3688–3703.

[19] D. G. Crighton & M. Gaster, 1976.
Stability of slowly diverging jet flow. J. Fluid Mech. 77(02), 397–413.

[20] I. Delbende & J.-M. Chomaz, 1998.
Nonlinear convective/absolute instabilities in parallel two-dimensional
wakes. Phys. Fluids 10(11), 2724–2736.

112



[21] I. Delbende, J.-M. Chomaz & P. Huerre, 1998.
Absolute/convective instabilities in the batchelor vortex: a numerical
study of the linear impulse response. J. Fluid Mech. 355, 229–254.

[22] A. Deloncle, 2007.
Three dimensional instabilities in stratified fluids. PhD thesis, Ecole
polytechnique, Palaiseau, France.

[23] P. G. Drazin & W. H. Reid, 2004.
Hydrodynamic stability. Cambridge University Press, Cambridge.

[24] U. Ehrenstein & F. Gallaire, 2005.
On two-dimensional temporal modes in spatially evolving open flows:
the flat-plate boundary layer. J. Fluid Mech. 536, 209–218.

[25] X. Garnaud, L. Lesshafft, P. J. Schmid & P. Huerre, 2013.
Modal and transient dynamics of jet flows. Phys. Fluids 25(4), 044103.

[26] B. Gebhart, 1973.
Instability, transition, and turbulence in buoyancy-induced flows. Ann.
Rev. Fluid Mech. 5(1), 213–246.

[27] F. Giannetti & L. Luchini, 2007.
Structural sensitivity of the first instability of the cylinder wake. J. Fluid
Mech. 581, 167–197.

[28] A. E. Gill & A. Davey, 1969.
Instabilities of a buoyancy-driven system. J. Fluid Mech. 35(4), 775–
798.

[29] M. P. Hallberg & P. J. Strykowski, 2006.
On the universality of global modes in low-density axisymmetric jets.
J. Fluid Mech. 569, 493–507.

[30] T. Hattori, N. Bartos, S. E. Norris, M. P. Kirkpatrick &
S. W. Armfield, 2013.
Prandtl number dependence and instability mechanism of the near-field
flow in planar thermal plume. J. Fluid Mech. 732, 105–127.

[31] T. Hattori, N. Bartos, S. E. Norris, M. P. Kirkpatrick &
S. W. Armfield, 2013.
Simulation and analysis of puffing instability in the near field of pure
thermal planar plumes. Intl J. Therm. Sci. 69, 1–13.

113



[32] T. L. Heath, 1897.
On floating bodies, book I. In The works of Archimedes, pages 253–262.
Cambridge University Press, Cambridge.

[33] N. E. Huang & S. S. Shen, 2005.
Hilbert-huang transform and its applications (vol. 5). World Scientific.

[34] P. Huerre, 2000.
Open shear flow instabilities. In G. K. Batchelor, H. K. Moffatt &
M. G. Worster, editors, Perspectives in fluid dynamics, pages 159–230.
Cambridge University Press, Cambridge.

[35] P. Huerre & P. A. Monkewitz, 1985.
Absolute and convective instabilities in free shear layers. J. Fluid Mech.
159, 151–168.

[36] P. Huerre & M. Rossi, 1998.
Hydrodynamic instabilities in open shear flows. In C. Godreche &
P. Manneville, editors, Hydrodynamics and Nonlinear Instabilities, pages
81–294. Cambridge University Press, New York.

[37] G. R. Hunt & N. G. Kaye, 2001.
Virtual origin correction for lazy turbulent plumes. J. Fluid Mech. 435,
377–396.

[38] S. Jendoubi & P. J. Strykowski, 1994.
Absolute and convective instability of axisymmetric jets with external
flow. Phys. Fluids 6(9), 3000–3009.

[39] X. Jiang & K. H. Luo, 2000.
Combustion-induced buoyancy effects of an axisymmetric reactive
plume. Proc. of the Combustion Institute 28(2), 1989–1995.

[40] X. Jiang & K. H. Luo, 2000.
Direct numerical simulation of the puffing phenomenon of an axisym-
metric thermal plume. Theoret. Comput. Fluid Dynamics 14, 55–74.

[41] M. R. Khorrami, M. R. Malik & R. L. Ash, 1989.
Application of spectral collocation techniques to the stability of swirling
flows. J. Comput. Phys. 81, 206–229.

[42] R. Lakkaraju & M. Alam, 2007.
Effects of Prandtl number and a new instability mode in a plane thermal
plume. J. Fluid Mech. 592, 221–231.

114



[43] L. Lesshafft, 2015.
Linear global stability of a confined plume. Theoretical. Appl. Mech.
Lett. 5(3), 126–128.

[44] L. Lesshafft & P. Huerre, 2007.
Linear impulse response in hot round jets. Phys. Fluids 19(2), 024102.

[45] L. Lesshafft, P. Huerre & P. Sagaut, 2007.
Frequency selection in globally unstable round jets. Phys. Fluids 19(5),
054108.

[46] L. Lesshafft, P. Huerre, P. Sagaut & M. Terracol, 2006.
Nonlinear global modes in hot jets. J. Fluid Mech. 554, 393–409.

[47] L. Lesshafft & O. Marquet, 2010.
Optimal velocity and density profiles for the onset of absolute instability
in jets. J. Fluid Mech. 662, 398–408.

[48] E. J. List, 1982.
Turbulent jets and plumes. Ann. Rev. Fluid Mech. 14(1), 189–212.

[49] M. Lombardi, C. P. Caulfield, C. Cossu, A. I. Pesci & R. E.
Goldstein, 2011.
Growth and instability of a laminar plume in a strongly stratified envi-
ronment. J. Fluid Mech. 671, 184–206.

[50] J. M. Lopez & F. Marques, 2013.
Instability of plumes driven by localized heating. J. Fluid Mech. 736,
616–640.

[51] O. Marquet & L. Lesshafft, 2015.
Identifying the active flow regions that drive linear and nonlinear insta-
bilities. J. Fluid Mech. under review.

[52] O. Marquet, D. Sipp & L. Jacquin, 2008.
Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech.
615, 221–252.

[53] T. Maxworthy, 1999.
The flickering candle: transition to a global oscillation in a thermal
plume. J. Fluid Mech. 390, 297–323.

[54] P. A. McMurtry, W. H. Jou, J. J. Riley & R. W. Metcalfe,
1986.

115



Direct numerical simulations of a reacting mixing layer with chemical
heat release. AIAA journal 24(6), 962–970.

[55] P. Meliga, J. M. Chomaz & D. Sipp, 2009.
Global mode interaction and pattern selection in the wake of a disk: a
weakly nonlinear expansion. J. Fluid Mech. 633, 159–189.

[56] P. Meliga, D. Sipp & J.-M. Chomaz, 2010.
Effect of compressibility on the global stability of axisymmetric wake
flows. J. Fluid Mech. 660, 499–526.

[57] A. Michalke, 1984.
Survey on jet instability. Prog. Aerospace Sci. 21, 159–199.

[58] J. C. Mollendorf & B. Gebhart, 1973.
An experimental and numerical study of the viscous stability of a round
laminar vertical jet with and without thermal buoyancy for symmetric
and asymmetric perturbations. J. Fluid Mech. 61(2), 367–399.

[59] P. Monkewitz & K. Sohn, 1988.
Absolute instability in hot jets. AIAA 26, 911–916.

[60] P. A. Monkewitz, D. W. Bechert, B. Barsikow &
B. Lehmann, 1990.
Self-excited oscillations and mixing in a heated round jet. Phys. Fluids
213, 611–639.

[61] B. R. Morton, G. Taylor & J. S. Turner, 1956.
Turbulent gravitational convection from maintained and instantaneous
sources. Proc. Royal Soc. London A: Math., Physical and Engg. Sci.
234(1196), 1–23.

[62] P. R. Nachtsheim, 1963.
Stability of free-convection boundary layer flows. Technical Report 2089,
NACA TN D-.

[63] F. Nadal, P. Meunier, B. Pouligny & E. Laurichesse, 2011.
Stationary plume induced by carbon dioxide dissolution. J. Fluid Mech.
719, 203–229.

[64] J. W. Nichols, P. J. Schmid & J. J. Riley, 2007.
Self-sustained oscillations in variable-density round jets. J. Fluid Mech.
582, 341–376.

116



[65] W. M. F. Orr, 1907.
The stability or instability of the steady motions of a perfect liquid and
of a viscous liquid. part ii: A viscous liquid. pages 69–138. Hodges,
Figgis, & Co.

[66] J.-M. Chomaz P. Brancher & P. Huerre, 1994.
Direct numerical simulations of round jets: Vortex induction and side
jets. Phys. Fluids 6(5), 1768–1774.

[67] L. Pera & B. Gebhart, 1971.
The nature of vertical natural convection flows resulting from the com-
bined buoyancy effects of thermal and mass diffusion. Intl. J. Heat and
Mass Trans. 14(12), 2025–2050.

[68] L. Pera & B. Gebhart, 1971.
On the stability of laminar plumes: some numerical solutions and ex-
periments. Intl. J. Heat and Mass Trans. 14(7), 975–984.

[69] B. Pier, 2008.
Local and global instabilities in the wake of a sphere. J. Fluid Mech.
603, 39–61.

[70] B. Pier & P. Huerre, 1996.
Fully nonlinear global modes in spatially developing media. Physica D:
Nonlinear Phenomena 97(1), 206–222.

[71] B. Pier, P. Huerre & J. M. Chomaz, 2001.
Bifurcation to fully nonlinear synchronized structures in slowly varying
media. Physica D: Nonlinear Phenomena 148, 49–96.

[72] B. Pier, P. Huerre, J. M. Chomaz & A. Couairon, 1998.
Steep nonlinear global modes in spatially developing media. Phys. Fluids
10(10), 2433–2435.

[73] F. Plourde, M. V. Pham, S. D. Kim & S. Balachandar, 2008.
Direct numerical simulations of a rapidly expanding thermal plume:
structure and entrainment interaction. J. Fluid Mech. 604, 99–123.

[74] M. Provansal, M. Mathis & L. Boyer, 1987.
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