
HAL Id: tel-01713253
https://pastel.archives-ouvertes.fr/tel-01713253

Submitted on 20 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flow-induced deformations and stress reduction by
flexibility

Tristan Leclercq

To cite this version:
Tristan Leclercq. Flow-induced deformations and stress reduction by flexibility. Mechanics [physics].
Université Paris-Saclay, 2018. English. <NNT : 2018SACLX006>. <tel-01713253>

https://pastel.archives-ouvertes.fr/tel-01713253
https://hal.archives-ouvertes.fr


NNT : 2018SACLX006
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M. Emmanuel de Langre Directeur de thèse École polytechnique (LadHyX)
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Résumé

Au travers du processus d’évolution, les espèces végétales développent préférentiellement
au fil des générations des traits qui améliorent leur aptitude à faire face aux challenges
environnementaux qui se présentent à elles. En particulier, la flexibilité des individus
est positivement corrélée avec l’intensité des chargements fluides dans les différents
habitats. En effet, la déformation des structures flexibles exposées à des écoulements
permet classiquement, dans le régime statique, de réduire la trâınée à laquelle elles sont
soumises. Dans le domaine de la biomécanique, cette déformation d’éléments végétaux
flexibles conduisant à une réduction du chargement enduré est désignée par le terme de
‘reconfiguration’ pour souligner le caractère avantageux de ce processus adaptatif.

Dans le cadre d’une démarche de bioinspiration, l’objectif de cette thèse est d’ap-
préhender les différents mécanismes physiques qui sous-tendent le processus de recon-
figuration, par l’étude de systèmes modèles théoriques. Des extensions de la théorie
classique de reconfiguration statique sont proposées pour évaluer l’impact de différents
effets jusqu’à lors négligés dans la littérature. Dans un souci de simplicité, nous nous
concentrons dans cette thèse sur le cas de structures élancées, encastrées-libres, et
transverses à l’écoulement. La plupart des résultats présentés sont issus de simula-
tions numériques basées sur des modèles simplifiés d’interactions fluide-structure. Sont
analysés successivement, dans les différents chapitres, les effets de la variabilité spatiale
du système fluide-structure, ainsi que l’impact de la dynamique provenant au choix de
l’instationnarité de l’écoulement de base, d’un couplage fluide-structure conduisant à
une instabilité de flottement, ou de vibrations induites par vortex.

Dans le cas d’un système non-uniforme, nous montrons que la loi d’évolution de la
trâınée avec la vitesse de l’écoulement dépend de la distribution spatiale des propriétés
du système fluide-structure à l’échelle d’une longueur de courbure localisée à proximité
du bord encastrée. Par ailleurs, la faible sensitivité de cette loi d’évolution vis-à-vis des
détails des variations spatiales du système constitue un élément d’explication à la grande
homogénéité des lois de trâınée mesurées dans la nature. Dans le cas d’un écoulement
oscillant, nous mettons en lumière l’existence de différents régimes cinématiques de
déformation selon l’amplitude et la fréquence de l’écoulement. La réduction des efforts
par reconfiguration est généralement préservée dans ce cadre dynamique, à l’exception
de possibles situations de résonance du système dans le régime des très faibles ampli-
tudes. Les lois d’évolution de l’effort maximal en fonction des propriétés de l’écoulement
dépendent par ailleurs du régime cinématique. L’étude de l’instabilité de flottement
montre de plus que l’apparition d’une dynamique spontanée n’augmente généralement
pas suffisamment la trâınée sur le système pour contrebalancer le bénéfice apporté par
la déformation statique sous-jacente. De rares et courts épisodes d’accroissement ex-
ceptionnel des efforts peuvent survenir dans le cas de structures lourdes et peu élancées,
susceptibles de présenter une dynamique chaotique. Enfin, nous montrons de plus que
la reconfiguration présente l’avantage supplémentaire de permettre la réduction des
vibrations induites par vortex qui accroissent la trâınée sur le système.

Ainsi, dans cette thèse, nous montrons que l’aptitude des structures flexibles à



réduire le chargement imposé par l’écoulement est préservée en présence de non-uni-
formités ou de dynamique, à condition que le design de la structure soit tel que la
trâınée résistive domine les forces inertielles. Les structures légères et élancées sont à ce
titre les mieux adaptées pour limiter les risques d’origine inertielle. De plus, l’efficacité
de la réduction du chargement par reconfiguration élastique dépend faiblement de la
distribution spatiale des propriétés du système. Finalement, la réduction des efforts
résulte toujours, indépendamment du régime de reconfiguration, de la concentration
de la déformation sur une longueur caractéristique inférieure à la longueur réelle de la
structure.
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Chapter 1

Introduction

The process of natural selection described by Charles Darwin is believed to have led
to the differentiation of species based on their ability to survive and thrive in varying
environments (Darwin, 1859). Through the adaptive process of evolution, the different
species most likely developed traits that enhance their fitness to the challenges they
face as they grow. Building on that assumption, the process of bioinspiration aims at
transposing the design principles that have proved appropriate responses to given envi-
ronmental challenges to the design of man-made structures facing similar constraints.
With this in mind, arises first the need to identify the traits responsible for the par-
ticular fitness of given species to a specific constraint and to understand the physical
mechanisms underlying their efficiency.

Among the many traits that may affect the differential survivorship of plants, the
flexibility of the individuals is positively correlated to the magnitude of the flow-induced
forces in their habitat (Usherwood et al., 1997; Miler et al., 2012). As in the fable
of Le chêne et le roseau (The Oak and the Reed) by Jean de la Fontaine, flexible
plants able to deform in response to the flow appear better suited to resist the large
mechanical constraints due to flow-induced forces. This observation is inconsistent with
the usual strategy adopted in engineering, where structures exposed to large fluid loads
are usually stiffened in order to minimize their deformation. Of course, the design of
an engineered structure has to be in accordance with specifications much more diverse
than the sole ability not to break, but the same holds for the plants that also have to
accommodate their biological needs. Hence, to the very least, there should be room
for improvement and innovation if we prove able to understand the process and the
limits of the mechanisms that make flexibility an evolutionary advantage for plants
living in flow-dominated habitats. Besides, knowledge about the plant-flow interactions
is of paramount importance in many fields such as agronomy, ecology, biology, land
management, or even video processing (de Langre, 2008).

Plenty of work has already been carried on over the past decades, some of which
will be detailed in the subsequent pages of this introduction. Yet, given the diversity
of situations and the complexity of the flow-structure interactions in the field, much
remains to be done. The purpose of this work is to provide insight regarding the influ-
ence of flexibility on the internal stresses in structures deformed in flows, in situations
more complex than the overly idealized cases studied thus far. In particular, we analyse
possible limitations of the existing theories to assess whether flexibility is uncondition-
ally advantageous or if there are situations in which it might become detrimental to the
structural integrity.

In this introductory chapter, we first detail some of the motivations that have led to
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the study of plant-flow interactions, and in particular to the specific role of flexibility
in these interactions. We then present a review of the state of the art regarding the
response of flexible structures in fluid flows.

1.1 Motivations

1.1.1 Bioinspiration: flexibility as a strategy for surviving the
mechanical loads in flow-dominated environments

Plants living in flow-dominated habitats have to cope with the mechanical loads to
ensure their survival. In the perspective of designing sustainable, robust structures
able to withstand large flow-induced forces, we may be interested in the solutions that
evolution has brought to best accommodate this problem.

First, it is important to emphasize that the fluid forces are not necessarily the only
mechanical loads plants have to withstand. In fact, terrestrial plants are usually subject
to loads due to gravity greater than those due to the surrounding air. Growing stiff
notably appears as a necessary condition to avoid buckling under their own weight
(Usherwood et al., 1997; Ennos, 1999). On the other hand, water plants may rely on
buoyancy to avoid gravity loads, but the larger density of water compared to air makes
the fluid loadings absolutely dominant in aquatic environments.

Besides, it should be noted that survival does not necessarily mean avoiding break-
age. On the contrary, some species such as the feather boa kelp Egregia menziesii may
take advantage of the weakness of their tissue to avoid uprooting by self-pruning dur-
ing the most extreme events such as winter storms (Demes et al., 2013). The ability to
sacrifice some fronds in order to reduce the overall force on the root system acts as a
kind of “mechanical fuse” (Usherwood et al., 1997) that may prevent the whole plant
from being dislodged (Krumhansl et al., 2015). The details of this mechanism have
been theoretically analysed in Lopez et al. (2011) and Lopez et al. (2014). For some
coral species, flow-induced breakage may even constitute the main mechanism of repro-
duction by dispersing broken-off pieces that survive on their own and settle somewhere
else (Highsmith, 1982). But in the case of Egregia menziesii, self-thinning comes at the
expense of the reproductive output (Demes et al., 2013), and the weakness of its tissues
results from a trade-off between the necessity to survive and other considerations.

In fact, the morphology and tissue properties of the plants are meant to accommo-
date not only the mechanical loads, but also the biological needs such as light inter-
ception, nutrient, carbon and oxygen uptake or reproductive efficiency (Puijalon et al.,
2005; Bal et al., 2011). Generally speaking, growing large is beneficial in terms of these
biological considerations (Denny et al., 1985; Krumhansl et al., 2015; Bal et al., 2011),
but this comes at the cost of greater flow-induced forces that endanger the individuals.

To cope with the fluid forces while keeping the ability to reach large sizes, kelps grow
either strong tissues able to endure large stress levels, or flexible blades that provide the
ability to deform substantially to reduce the drag in a given flow (Starko and Martone,
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2016). Breaking strength and flexibility furthermore appear to be negatively correlated,
which suggests that drag avoidance and tolerance are two incompatible strategies in
nature that both lead to a greater chance of surviving large hydrodynamic loads.

The potential that flexibility bears for reducing the drag on plants with relatively
weak tissues is now believed to be one of the key factors that allow them to thrive in
flow-dominated habitats (Harder et al., 2004). Thus, understanding the mechanisms
responsible for alleviating the drag on flexible plant elements is undoubtedly of interest
from a bioinspired perspective.

1.1.2 Other motivations

Apart from possible applications in bioinspired design, knowledge about the plant-flow
interactions has been sought for many other reasons in diverse scientific communities.

In the agricultural sector, the effects of the wind on biomass production for the
food or wood industries may be the cause of massive economic losses. The damages
on cereal crops are responsible each year for productivity losses that may amount up
to 30% of the harvest (Berry et al., 2004). Similarly, the violent storms that swept
through France in December 1999 have caused the destruction of about 140 million
cubic meters of wood (Birot et al., 2000), which represents about 3 times the average
annual usage.

In biology, the wind-induced motion of leaves is believed to hinder foliage destruc-
tion due to herbivory (Yamazaki, 2011), to enhance water holding in the fog (Merriam,
1973), and to alter the photosynthesis and gazeous exchanges at the scale of the leaves
(Clark et al., 2000; Roden and Pearcy, 1993) and the light shedding at the scale of the
canopy (Pearcy, 1990; Roden, 2003). On a longer time-scale, the mechanical perception
of the stresses induced in the plant structure results in a selective biomass allocation
during the growth called thigmomorphogenesis. Eventually, this process improves the
morphological and mechanical fitness of the plant to its environment (Jaffe, 1973; Mou-
lia et al., 2011). For instance, the branches of the well-named ‘flag tree’ shown on
Figure 1.1(a) grow in the direction of the wind. Koehl and Alberte (1988) also reported
that the giant kelps Nereocystis luetkeana feature large ruffled blades in calm water
environments and thin flat blades in fast flows (see Figure 1.1(b)). This intra-specific
phenotypical difference most likely stems from different adaptive growth patterns in
response to the flow-induced loads in the two types of habitat.

In ecology, the depletion of the macrophyte population due to the currents in fresh-
water lakes may have dramatic consequences on the stability of the ecosystem (Carpen-
ter and Lodge, 1986) and the quality of the water (Van den Berg et al., 1998; Albertoni
et al., 2014). Moreover, the aquatic vegetation opposes a resistance to the flow that
affects the transport of the sediments and nutrients, or the erosion of river banks and
foreshores. In coastal ecosystems such as salt marshes, mangrove forests or reed swamps,
the flow dissipation due to vegetative resistance reduces the intensity of the waves and
protect the shores from being too severely impacted (Anderson et al., 2011; Vuik et al.,
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(a) (b)

1Figure 1.1: Examples of thigmomorphogenesis. (a) Flag tree with its branches aligned
with the direction of the wind, from WEB01. (b) Ruffled and strap-like blades of
Nereocystis luetkeana depending on the magnitude of the flow in their habitat, from
Koehl (1999).

2016). The efficiency of the wave attenuation is obviously highly dependent on the
standing biomass on the foreshore, so that flow-induced breakage of the vegetation may
substantially increase the impact of the wave loads on the shorelines or the flood de-
fense structures (Vuik et al., 2017). Similarly, riparian and floodplain vegetation are
increasingly seen as a potential protection against flooding that is both efficient and
sustainable. To this day, most available models of vegetated flow-resistance lack the
consideration of some critical plant characteristics such as their ability to deform due to
their flexibility (Anderson et al., 2011; Aberle and Järvelä, 2013). Some improvements
have been made recently to remedy this flaw (Whittaker et al., 2013, 2015; Luhar and
Nepf, 2013; Luhar et al., 2017), based on new progress made in the understanding of
the mechanical behaviour of flexible model systems in fluid flows, but much remain to
be done.

More generally, the determination of the key factors influencing the deformation of
plant elements in different types of fluid flows, the magnitude of the fluid forces that are
imposed on them, and the risk of breakage or uprooting they are subjected to all find
applications in the domains cited above. In order to further deepen our knowledge of
the plant-flow interactions, refined mechanical analyses of coupled flow-structure model
systems are necessary. In the following section, we present some of the existing theories
and results.

1.2 The mechanism of elastic reconfiguration

The process of elastic deformation resulting in an alleviation of the drag force on a flex-
ible structure is usually referred to as ‘reconfiguration’. This term was introduced by
Vogel (1984) in the field of biomechanics in order to emphasize the adaptive nature of
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the deformation: “Shape becomes a function of speed, and the scaling of drag with speed
assumes unusual interest. Indeed the word ‘reconfiguration’ may be more appropriate
than ‘deformation’ — we suspect specific adaptation and the latter carries some patho-
logical odor of disfunction.” Depending on the features of the flow and the structure,
the mechanisms involved in this phenomenon may vary. We first focus on the case of a
static deformation in a steady flow.

1.2.1 Reconfiguration in steady flow

According to observations made in Vogel (1984); Koehl (1984); Koehl and Alberte
(1988); Vogel (1989); Boller and Carrington (2006), the mechanisms by which reconfig-
uration affects the intensity of the fluid loads in a steady flow are manifold. The two
most well-documented effects are the frontal area reduction and the streamlining of the
shape. Indeed, the pressure drag force on a rigid object in a steady flow classically
reads

F =
1

2
ρCDAfU

2 (1.1)

where ρ is the density of the fluid, Af is the frontal area of the object (projected
on the plane normal to the flow), U the characteristic velocity of the flow through
the frontal area, and CD a drag coefficient (Taylor, 1952). The drag coefficient of
rigid objects depends essentially on the Reynolds number Re and on the shape of the
object. However, the Reynolds number on macroscopic plants in flows fast enough to
deform them is typically large enough (Re ∼ 105− 107, see Harder et al., 2004) so that
the Reynolds-related variations are negligible and CD is essentially a shape-dependent
quantity. The large value of the Reynolds number, and the geometry of the plants
generally facing the flow more than being aligned with it further justifies that friction
drag should be negligible compared to pressure drag. In the case of a flexible structure,
the shape of the object varies with the flow velocity, as illustrated on Figure 1.2 in the
cases of a tulip tree leaf and a red alder tree.

As a consequence, both the frontal area Af and the drag coefficient CD are functions
of the flow velocity U . In most cases, reconfiguration results in a reduction of the frontal
area. This is clearly visible in the case of the red alder tree on Figure 1.2(b). Besides,
the deformation of the plant generally leads to a more streamlined shape that allows a
better pressure recovery in its wake, so that the drag coefficient is lowered as well. For
instance, the experimental results of Boller and Carrington (2006), displayed on Figure
1.3, clearly show a reduction of both the frontal area and the drag coefficient of the
algaes Chondrus crispus as the water velocity increases. Thus, overall, the drag force
on a deforming plant does not increase quadratically with the flow velocity, but with a
different scaling

F ∝ U2+ν (1.2)
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(a) (b)U = 5 m/s

U = 10 m/s

U = 20 m/s

1Figure 1.2: (a) Rolling-up reconfiguration of a tulip tree leaf (side view, air flow from
left to right), from Vogel (1989) (b) Bending reconfiguration of a red alder tree (front
view, air flow from front to back of the page), from Vollsinger et al. (2005)

where the so-called Vogel exponent ν, first introduced in Vogel (1984), includes the
dependency on the flow velocity of the frontal area and drag coefficient. In most cases,
it takes negative values so that the drag increases subquadratically due to the effects
of the deformation. The effects of the deformation are not necessarily the same at
low and large velocities, so that the Vogel exponent is not necessarily a constant value
throughout the whole range of flow velocities.

(a) (b)

1Figure 1.3: Variations with the flow velocity of (a) the frontal area normalized by the
frontal area at rest and (b) the drag coefficient, for algaes Chondrus crispus in a water
flume, from Boller and Carrington (2006).

The first study to provide theoretical predictions of the drag reduction by elastic
reconfiguration on a model system was that of Alben et al. (2002, 2004). The authors
considered an elastic one dimensional fibre in an inviscid two dimensional flow, both
experimentally and numerically (see Figure 1.4(a)). Their model for the drag predicts
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a transition from the classical rigid-body U2 law to a new U4/3 scaling law at large
flow velocities (see Figure 1.4(b)), corresponding to a Vogel exponent in the asymptotic
regime (when the deformation is significant) ν∞ = −2/3.

(a) (b)

flexible
fiber

soap
film

U (m/s)

F
(d

y
n

e)

1Figure 1.4: (a) Experimental setup of Alben et al. (2004) and (b) evolution of the drag
force on the flexible fibre as a function of the velocity of the soap film.

Their study also revealed the importance of a single control parameter, which
they call the elastohydrodynamical number. This quantity is the square root of the
more commonly used Cauchy number CY (Tickner and Sacks, 1969; Chakrabarti, 2002;
de Langre, 2008) that scales the competing effects of fluid loading to the elastic restor-
ing force. When the Cauchy number is small CY < 1, deformation of the object is
negligible. On the other hand, when CY > 1, the drag on the structure is significant
enough to substantially deform it and we expect the scaling of the drag to deviate
from the quadratic law. In the case of slender structures bending under the effects of a
transverse flow, the Cauchy number reads

CY =
ρU2WL3

2EI
(1.3)

where W is the width of structure in the direction transverse to the flow, L its length,
and EI its bending stiffness (E the Young’s modulus of the material and I the area
moment of inertia of the cross-section). Subsequently, the study of Gosselin et al. (2010)
considered the reconfiguration of two dimensional plates clamped at the centre in a wind
tunnel (see Figure 1.5). To isolate the contribution of flexibility to the velocity-drag law
throughout the whole range of flow velocities, the authors defined the reconfiguration
number R as the drag on the flexible structure normalized by that on a geometrically
similar but rigid structure

R =
F

Frigid
∝ Uν . (1.4)

As the Cauchy number is proportional to the flow velocity squared CY ∝ U2, the Vogel
exponent can be inferred from the slope of the loglog plot R(CY ) according to
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ν = 2
∂ logR
∂ logCY

. (1.5)

A schematic view of the correspondence between the different representations of the
velocity-drag relationship is shown on Figure 1.6 in arbitrary units. In this particular
case, the Vogel exponent asymptotically goes to −1 for large Cauchy numbers, so that
the velocity-drag law goes from quadratic to linear. The work of Gosselin et al. (2010)
showed that variations in the drag coefficient of the cross-sections of the plates due to
blockage effects in the wind tunnel prevented the data from different plates to collapse
on a single curve. The proper definition of the Cauchy number should consequently
include the cross-section drag coefficient C̃Y = CDCY . The model used in this study
further leads to an asymptotic Vogel exponent ν∞ = −2/3 similar to that found by
Alben et al. (2004).

U

F

2L

W

1Figure 1.5: Experimental setup of Gosselin et al. (2010): a rectangular plate is clamped
in the middle in a transverse flow of velocity U .
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Figure 1.6: Schematic view of the loading-drag relationship in the different parameter
spaces (arbitrary units). U : reference flow velocity, F : drag force, CY : Cauchy number,
R: reconfiguration number, and ν: Vogel exponent.

Reconfiguration may also occur through other modes of deformations. In order to
explain the drag reduction due to the rolling up of daffodil leaves originally observed by
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Vogel (1989) and shown on Figure 1.2(a), Schouveiler and Boudaoud (2006) obtained
theoretical and experimental estimates of the asymptotic Vogel exponent for circular
plastic sheets cut along a radius (experimental setup shown on Figure 1.7). They found
a drag scaling as U2/3, while a theoretical and numerical study by Alben (2010) on
the same system concludes that the drag should increase as U1. From the assumption
that the scaling of drag reduction results from the loss of one typical length scale,
de Langre et al. (2012) showed that the Vogel exponent of any structure made of beams
and plates (such as most plants) should exhibit approximately the same behaviour.
By a simple dimensional analysis, they recovered the classical −2/3 Vogel exponent
found by Alben et al. (2004) and Gosselin et al. (2010) in the asymptotic regime.
They further claimed that non-linearity in the material constitutive law should have
little impact on the scaling of drag. Subsequently, the work of Luhar and Nepf (2011)
additionally proved that the effects of gravity or buoyancy should not significantly
alter the aforementioned results as long as the flow is the dominant source of loading
on the structure. On the other hand, the results of Zhu and Peskin (2007) and Zhu
(2008) regarding the reconfiguration of 1D fiber in 2D flows at low Reynolds number
concluded that viscosity mitigates the benefits of reconfiguration. Their study showed
a variation of the asymptotic Vogel exponent from −2/3 at Re = 800 to approximately
0 at Re = 10.

Figure 1.7: Experimental setup of Schouveiler and Boudaoud (2006): a circular plastic
sheet cut along a radius rolls up into a cone as the flow velocity (from left to right) is
increased, from left to right.

All these studies considered individual elements plunged in a uniform flow so that
the reference velocity U that appears in the expression of the drag (1.1) is not affected
by the deformation. However, when plants form bundles as is the case for instance for
the giant bull kelp Nereocystis luetkeana, a reduction of the drag due to the reduction
of the flow velocity inside the bundle was reported in Koehl and Alberte (1988); Koehl
et al. (2008). The flow impinging on the inner blades may thus be slowed down due to
a reduction of the porosity of the bundle as the blades clump together under the effect
of the flow. In this particular case, the drag force is of a different nature as it stems
from the friction on the blades aligned with the flow, but similar sheltering effects may
cause the alleviation of the pressure drag as well. In that regard, the work of Gosselin
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and de Langre (2011) found that the Vogel exponent of a poroelastic system made of
beams decreases from −2/3 when the beams are far enough to be considered isolated to
−1 when they shelter each other. The recent study of Barsu et al. (2016) also reported
the existence of sheltering effects in laterally confined two dimensional canopies, when
the spacing is small enough so that the downstream blades feel the influence of the
recirculating flow in the wake of the upstream blades.

Finally, the reference velocity may be affected by the deformation even in the case
of isolated elements, if the flow is non-uniform. This eventuality is suggested in Koehl
(1984), in the case where deflection might allow a structure to dive and encounter the
lower velocity of the boundary layer close to the substratum. We may also imagine
that a non-uniform distribution of the structural properties may lead to variations
in the deformation behaviour possibly leading to different scalings of the drag force
with the flow velocity. The influence of non-uniformities in the free-stream or
in the structure have nonetheless never been theoretically accounted for in
full. The properties of the flows and plants in the field are very unlikely to be uniformly
distributed, and a range of models is clearly missing to fill the gap between the idealized
cases studied thus far and the more complex natural configurations.

In spite of the large diversity of the plant-flow systems, it is quite remarkable to
see how robust the mechanism of drag reduction by elastic reconfiguration appears to
be. A plethora of experimental measurements of Vogel exponents of plants or model
systems can be found in the literature, and the vast majority of them indicate that the
drag on flexible systems of almost any type grow close to linearly with respect to the
flow velocity, ν ∼ −1 (de Langre, 2008). For instance, experiments on multiple species
of pines in wind-tunnels presented in Vogel (1984) or Rudnicki et al. (2004) conclude
to an approximately linear velocity-drag relation. Wilson et al. (2010) measured the
hydrodynamic drag over full-scale trees towed in a water tank and also reported a
linear increase of the drag. A similar conclusion was drawn by Sand-Jensen (2003) for
freshwater macrophytes and strap-like plastic blades in water. Finally, the extensive
lists of Vogel exponents for marine or aerial species of varying morphologies and sizes
provided in Harder et al. (2004) or de Langre et al. (2012) display values between 0
and −1.3, generally close to −1. None of the geometrical properties of the structure,
the nature of the fluid, or the mode of deformation appear to play a critical role in this
mechanism. This remarkable uniformity of the Vogel exponents with respect
to the properties of the particular flow-structure systems remains so far
unexplained.

1.2.2 Sources of dynamics in steady flow

Whether they explicitly mention it or not, most of the studies mentionned thus far
have focused on the static or averaged deformation and drag of plants or structures in
steady currents. The dynamic deformation of whole canopies in response to the Kelvin-
Helmoltz instability of the flow at their surface has received attention for some time
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(Inoue, 1955; Py et al., 2006; de Langre, 2008; Ackerman and Okubo, 1993; Ghisalberti
and Nepf, 2002; Okamoto and Nezu, 2009), but only little work has been devoted to
the flapping motion of individual plant elements in steady flows and the impact it may
have on the internal stress they have to bear. Such dynamics may arise on top of the
static deformation, in response to the turbulence in the free-stream, from coupling with
the vorticity wake of the object, or from fluid-structure instabilities (Blevins, 1990;
Päıdoussis, 1998; Päıdoussis et al., 2010).

The work of Siniscalchi and Nikora (2012) and Denny (1994) has brought to light
the close relation between the upstream turbulence and the variations of the drag force
on water-swept organisms. However, further results in Siniscalchi and Nikora (2013)
underline that the dynamic deformation of these plants is not related to turbulence
but most likely stems from a flag-like flutter instability. Based on the work of Lighthill
(1960); Barrett et al. (1999); Dong and Lu (2005) regarding the reduction of drag in
fish-like locomotion, the authors of Siniscalchi and Nikora (2013) suggest that this reg-
ular, large-amplitude dynamic deformation might similarly improve the drag reduction
ability of these plants. On the other hand, based on the work of Chang and Moretti
(2002); Moretti (2003); Morris-Thomas and Steen (2009) about the drag of fluttering
flags, the authors also mention the potential for drag enhancement that this instability
may bear. Similar fluttering motion have also been reported in Koehl and Alberte
(1988) and Koehl et al. (2008) for the giant bull kelp Nereocystis luetkeana, as well
as in Usherwood et al. (1997) for some aquatic buttercup species. All these studies
suggest that the inertial forces associated with the flapping motion should most likely
enhance the drag and potentially endanger the plants. However, none of them have
assessed the actual impact of flutter on the drag or internal stress inside the
plants. Whether flutter would help alleviating the loads, would counteract
the drag reduction due to reconfiguration, or would even fully offset the
benefits of reconfiguration and enhance the drag compared to a rigid struc-
ture remains an open question. More background elements regarding the problem
of flutter will be provided in Chapter 4.

Regarding the coupling of the structure with the vorticity wake, two different types
of interactions are observed depending on the geometry of the system.

First, in the case of the planar bending of large plates, equivalent to the one-
dimensional fibre bending in a two-dimensional flow studied by Alben et al. (2002,
2004) (voir Figure 1.4), vortex shedding may occur at the tips of the fiber. If this effect
was neglected in the model of Alben et al. (2004), it has subsequently been accounted
for. In the case of low Reynolds number Re ∈ [80, 300], the numerical simulations of
Zhu (2007) show that the coupling between the fibre and its wake is responsible for
small oscillations of the fibre about its mean position. The drag force similarly os-
cillates about its mean value. The features of the wake furthermore depends on the
Reynolds number (see Figure 1.8), and the dynamics of the structure is affected ac-
cordingly. The transition of the asymptotic Vogel exponent (for the average drag) from
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0 at low Re to −2/3 at Re = 800 shown in Zhu (2008) accounts for the coupling with
the wake. However, the variation of the scaling of the drag force is most likely due to
the switch of dominant fluid loading from skin friction to pressure drag and the effects
of the wake-induced dynamics are most likely secondary. Additional results presented
in Miller et al. (2012) show that the amplitude of the vortex-induced vibrations are
enhanced if the fibre is attached at its center to a flexible tether instead of a rigid one.

Figure 1.8: Flow past a flexible fibre at varying Reynolds number (a) Re = 82.5, (a)
Re = 165, (a) Re = 330 (a) Re = 660, for a fixed Cauchy number, from Zhu (2007).

In the large Reynolds number situation of Alben et al. (2004), the numerical study
of Yang and Liu (2016) concluded to the existence of four different bending modes
displayed on Figure 1.9, essentially depending on the value of the Cauchy number. As
the two deflecting branches of the fibre get closer to each other, the stability of the
U-shaped mode considered by Alben et al. (2004) is lost and alternate vortex shedding
forces the structure into slight oscillations. When the gap between the branches closes
further, flapping is enhanced until the two branches finally come together in a stable
closed shape. The scaling of the drag found in Alben et al. (2004) or Gosselin et al.
(2010) is valid in the stable U-shaped mode, but Yang et al. (2014) explains that the
effect of the dynamics in the flapping mode increases the drag substantially. Finally, the
closed mode exhibits a quadratic drag increase because its shape remains unchanged as
the velocity increases further.

The other configuration in which the effect of vortex shedding may impact the
dynamics is that of elongated structures that are thin in the direction transverse to
the flow. In this situation, the structure may locally be considered infinite in the axial
direction and the fluid-structure interactions in neighbouring cross-sections along the
span may be considered independent. As a consequence, vortex shedding from the tip
of the structure in the direction of the free-stream is of negligible influence, but the
vorticity shed locally in the wake of each cross-section may induce structural vibrations
(see Figure 1.10). Indeed, the wake behind a cylindrical object destabilizes at large
Reynolds number, and forms a Von-Karman street in which vortices of alternating signs
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(a) (b) (c) (d)

1Figure 1.9: Bending modes found by Yang and Liu (2016): (a) stable U-shaped mode,
(b) slight swing, (c) violent flapping, (d) closed mode.

are shed with a natural frequency fw = StU/D, where U is the velocity of the free-
stream, D the diameter of the cylinder and the Strouhal number St is typically of the
order of 0.2 for circular cross-sections (Blevins, 1990). This results in an oscillating lift
that forces the structure into a transverse motion of self-limited amplitude comparable
to the transverse dimension of the object D. The evolutions of the frequency and
amplitude of the oscillations of a flexibly mounted cylinder of natural frequency fs is
displayed on Figure 1.11 as functions of the reduced velocity UR = StU/fsD = fw/fs.
When the wake frequency is far away from the natural frequency of the structure, the
structure responds at the wake frequency fw with a very small amplitude. On the other
hand, when the natural frequencies of the wake and the structure are close to each other
UR ∼ 1, the vibrations and vortex shedding both occur at a frequency f that deviates
from the Strouhal law f = fw. This phenomenon is classically referred to as frequency
lock-in and stems from a strong bilateral coupling between the structure and its wake
(Williamson and Govardhan, 2004; de Langre, 2006). In the range of flow velocities
where that happens, the amplitude of the oscillations is enhanced due to the extended
resonance in the system. In the more complex case of elongated flexible cables, the
interaction between the structure and the distributed forcing by the wake along the
span is made much more complex due to the multiplicity of the natural frequencies
of the structure and the possible spanwise non-uniformity of the flow (see for instance
King, 1995; Trim et al., 2005; Facchinetti et al., 2004b; Mathelin and de Langre, 2005).
Additional background elements regarding the problem of the vortex-induced vibrations
will be provided in Chapter 5.

Flexible elongated cylindrical structures, whether natural or man-made, are liable to
such vortex-induced vibrations even when they are deflected under the effect of the flow.
The VIVs have been a prominent subject of research for many years, mostly because of
the threat they constitute for civil and marine engineering structures such as buildings,
power transmission lines, marine risers, towing cables, or mooring lines. In the case
of a structure heavily deflected under the effect of the flow, one might argue that the
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Figure 1.10: Vortex-induced vibration of a cable in transverse flow, from Violette et al.
(2010). The wake vortices alternatively shed in the plane of the cross-sections force the
structure into transverse oscillations.

(a) (b)

UR = StU/fsD UR = StU/fsD

1Figure 1.11: Lock-in of a flexibly mounted, rigid circular cylinder, from Khalak and
Williamson (1997). Evolution of (a) the frequency f of the VIVs normalized by the
natural frequency fs of the solid oscillator, and (b) the amplitude of vibrations Y
normalized by the diameter of the cylinder D, as functions of the reduced velocity
UR = StU/fsD. The grey zone corresponds to lock-in.

additional stress due to the VIVs is negligible, as the amplitude of the vibration scales
with the diameter of the structure D when the amplitude of the static in-line deflection
is comparable to its length L � D. However, the VIVs are the source of a fast cyclic
load that may be the cause of fatigue fracture after the repetition of a large number of
cycles, even though the amplitude of the load itself is small. Besides, the drag coeffi-
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cient of transversely vibrating cylinders is magnified by an amplitude-dependent factor
(Vandiver, 1983; Blevins, 1990; Chaplin et al., 2005), due to a larger apparent exposure
to the flow. The onset of VIVs may thus be responsible for a drag force up to twice as
large, in comparison to a structure that does not vibrate. Correctly predicting the
VIVs of immersed structures is therefore of paramount importance in order
to accurately assess their operating lifespans and risks of breakage. The fea-
tures of the VIVs, and particularily their amplitude, are surely affected by
the in-line deformation of the cylinder. No study has nonetheless explicitly
accounted for this effect thus far.

1.2.3 Reconfiguration in time-dependent flows

Compared to all the literature on the mechanisms of reconfiguration in steady flow
presented above, relatively little work has been done regarding the consequences of the
elastic deformations of flexible structures in time-dependent flows. Yet, as mentioned in
Section 1.1, this question is of paramount importance for the prediction of wave-energy
dissipation over coastal ecosystems, as well as for the understanding of the evolutionary
trade-offs that have led the near-shore kelps to reach such large sizes.

In fact, it is not even clear whether or not flexibility should systematically result in
an alleviation of the fluid loads in such circumstances, owing to the different nature of
the fluid forces. In the formulation of Morison et al. (1950), the force on a rigid object
in an oscillatory flow is the sum of the drag force (1.1) and an additional fluid inertial
force (Blevins, 1990; Gaylord et al., 1994)

Fa = ρV U̇ + CmρV U̇ (1.6)

The first term, often referred to as ‘virtual buoyancy’ (Koehl, 1984), is due to the
pressure gradient induced by the absolute acceleration of the fluid U̇ . It is equivalent to
the Archimedes force, only the acceleration of gravity is replaced by that of the fluid. It
is proportional to the displaced mass of fluid ρV where V is the volume of the object.
The second term, called ‘added mass force’, arises from the potential pressure field
due to the relative acceleration of the fluid and the object. As for the drag coefficient
in (1.1), the added mass coefficient Cm is of order O(1) and depends on the shape
of the object and on the Reynolds number. In an oscillatory flow of peak velocity
U and frequency f , both coefficients also depend on an additional parameter called
the Keulegan-Carpenter number KC = U/Wf (Keulegan and Carpenter, 1958), that
compares the typical excursion of the fluid particles over one cycle U/f to the typical
size of the object in the direction transverse to the flow W .

Koehl (1984) pointed out that the fluid acceleration forces in an oscillatory flow,
proportional to the volume of the plant when the drag is only proportional to its frontal
area, may be the dominant load that large organisms have to withstand. The author
thus suggests that the mechanical loads may set the upper size limit of organisms in
wave-swept habitats (see also Denny et al., 1985). However, the very large sizes reached
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by giant kelps seems to indicate that the morphology of these algae must be finely tuned
in order to overcome this limitation.

In fact, Koehl (1984) further suggests that flexible organisms may be able to reduce
the fluid loads by moving with the water, thus reducing the magnitude of the relative
flow. This mechanism of “going with the flow” (as worded in Gaylord et al. (1994))
should nonetheless have a drag-reducing effect only if the kelp is long enough not to
reach the end of its tether during the wave-cycle. Otherwise, the momentum of the algae
may impose large inertial forces when it reaches the end of its course. Hence, Koehl
(1984) is actually suspecting that two possible dynamic regimes may exist, delimited by
a condition on the length of the structure relative to the maximum excursion of the fluid
particles: one in which the structure “goes with the flow” and reduces the hydrodynamic
loads, and the other in which the structure may have to withstand large inertial forces.
In the first regime, the total drag should furthermore become independent of the actual
structure length, provided that it is large enough.

Different mechanical models have subsequently been proposed to replicate the mo-
tion of real macroalgae with different types of mechanical properties under the action
of waves. Two such models are schematically shown on Figure 1.12 (for more details,
see Friedland and Denny (1995) for fully submerged flexible plants, Utter and Denny
(1996); Denny and Cowen (1997) for algae larger than the water depth, and Gaylord
and Denny (1997) for stipitate kelps). Overall, the results of these simulations support
Koehl’s predictions of a regime where the force is reduced, for structures larger than
the wave excursion, as well as the potential for excessive swaying motion leading to
increased forces when this criterion is not met. The results of Denny and Cowen (1997)
further indicate that juvenile Nereocystis luetkeana would not be able to withstand the
hydrodynamic loads when they grow if they maintained the same aspect ratio through
isometric growth. Slenderness thus also appears as a factor affecting the intensity of
the flow-induced loads.

In order to better characterize the different dynamic regimes, Denny et al. (1998)
analysed the dynamic behaviour of simple unidimensional heuristic models subjected to
the hydrodynamic forces in an oscillatory flow. This work highlighted the importance
of an additional parameter, the ‘jerk number’ that basically compares inertial and
drag forces. For high jerk numbers, resonances between the flow and the structure were
found responsible for peak forces when the frequency of the flow was close to the natural
frequency of the solid oscillator. On the other hand, drag reduction was observed only
at low jerk numbers and far away from resonance frequencies.

This series of studies is very insightful and provides many leads regarding possible
key factors and parameters influencing the magnitude of the flow-induced forces on
flexible systems. However, the variety and the complexity of the systems considered,
and the diversity of the models used in these papers make it hard to draw general
conclusions from them. Besides, a proper analysis of the mechanisms ruling the different
regimes and of the precise role of the different parameters involved, as well as the various
scalings of the total force on the structure depending on them are still missing from
those studies.
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Figure 1.12: Examples of models used in the numerical work of Mark Denny: A.
cantilever beam model with lumped mass at the top, for the modelling of the bending
deformation of the stipitate kelp Eisenia arboarea. B. Spring-chain model with lumped
mass at the top, for the modelling of the tensile deformation of Nereocystis luetkeana,
from Denny et al. (1998).

Some of these issues were recently addressed in Luhar and Nepf (2016). Their
work suggests, based on experimental results, that the drag on deformable structures
may be expressed as that on a rigid structure with an effective length corresponding
to the part of the actual structure over which significant relative fluid motion occurs.
A scaling of this effective length with the flexibility was provided, with the aim to
provide a tool to account for the deformability of near-bed organisms in the models
of wave-energy dissipation (see also Luhar et al., 2017). But the work of Luhar and
Nepf (2016) focuses on the specific case where the amplitude of the flow is at most of
the order of the length of the structure. They do not investigate either the dynamic
interactions (such as possible resonance effects) due to high frequency loading. Besides,
for particular values of the parameters, Luhar and Nepf (2016) notice an increase of
the total drag force compared to the rigid case that is still not fully understood. Thus,
in order to identify and understand the different mechanisms involved in
the deformation and modulation of the drag and internal stress of flexible
structures in oscillatory flow, a systematic analysis exploring the space of
parameters is still required.
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1.3 Organization of the present thesis

From the presentation of the existing work on reconfiguration detailed in this introduc-
tion, we see that many of its aspects remain unexplored or poorly understood. The
static reconfiguration of simple model systems in steady, uniform flows has been exten-
sively analysed, and the main mechanisms enabling the fluid load to be reduced in this
simple case are quite understood. But actual plants or even engineered structures in
the field are likely to present more complex geometries and material properties, to be
exposed to non-uniform, unsteady flows, and to undergo some dynamics due to some
sort of coupling with the flow. It seems nonetheless that the ability to deform should
still lead to a reduction of the fluid loads, at least in the range of parameters that
characterizes natural systems, otherwise flexibility would likely not be as widespread
among the live organisms in flow-dominated habitats. We thus claim that:

“The alleviation of the internal stress by elastic reconfiguration of flexible
structures subjected to fluid flows is a robust phenomenon with respect to
both the possible non-uniformities of the flow-structure system, and the
dynamics that may arise from various physical origins.”

In the following chapters, we discuss this assertion, the physical mechanisms under-
pinning it, and also its domain of validity. In order to simplify the analysis and provide
general conclusions, we choose in the whole manuscript the same model system of a
slender, cantilever structure, clamped perpendicular to the flow. Most of the results
presented rely on numerical simulations of the behaviour of such systems, based on
suitable reduced order models depending on the situation considered. The technical
details regarding these models are referred to the first pages of each chapter.

To defend this thesis, we propose to analyse, in the following chapters, the re-
spective influence of different phenomena. The effect of the spatial variability of the
flow-structure system is discussed in Chapter 2, while the scaling of the internal stresses
due to the flow-induced dynamic reconfiguration in an oscillatory flow is addressed in
Chapter 3. Then, Chapter 4 focuses on the consequences of a self-induced fluttering
motion on the expected benefits of reconfiguration in terms of drag reduction, while
Chapter 5 analyses the impact of the reconfiguration on the severity of the vortex-
induced vibrations of circular cylinders. Finally, Chapter 6 summarizes the findings of
this thesis and offers some perspectives for future work.



Chapter 2

Static reconfiguration of spatially
variable flow-structure systems

Preamble

The mechanisms and scalings of drag reduction by static reconfiguration are well-known
in the idealized case of a uniform flow-structure system. Actual plants or man-made
structures and the flow they are plunged in are on the other hand very likely to show
some spatial variability. In this first chapter, we address the question of the influence
of such non-uniformities on the scaling of the drag with the flow velocity, through a
dimensional analysis and numerical simulations based on a reduced order modelling of
the problem.

In order to simplify the analysis and provide general conclusions, we restrict our
study to the simple model geometry of a cantilever slender beam, clamped perpen-
dicular to a unidirectional and steady flow. Our model accounts for most possible
non-uniformities in the flow or structural properties, but it neglects the additional ef-
fects of viscosity, unsteadiness in the wake or in the background flow, or other external
forces such as gravity. This configuration is the most commonly used in theoretical
studies on drag reduction by reconfiguration (see for instance Alben et al., 2004; Gos-
selin et al., 2010; Luhar and Nepf, 2011, 2016), which provides us with reference points
and validation cases. In accordance with what is classically done in the context of
static reconfiguration, we characterize the drag reduction through the use of the Vogel
exponent ν such that the total drag force scales with the flow velocity as F ∝ U2+ν . In
some aspects, the results presented in this chapter generalize the findings of Gosselin
et al. (2010), de Langre et al. (2012) and Luhar and Nepf (2011).

After providing an analytical expression for the asymptotic Vogel exponent (for large
deflections) of idealized systems with self-similar variations of their spatial properties,
we discuss the practical applicability of this expression for realistic systems. We also
analyse the weak sensitivity of the asymptotic Vogel exponent with respect to the spatial
variability of the system in realistic ranges, which provides an explanation to the rather
reduced scattering of the Vogel exponents measured on very diverse systems around the
value −1.



20 Chapter 2 Static reconfiguration of spatially variable flow-structure systems

The results presented in this chapter have been published in the Journal of Fluids
and Structures. The paper (Leclercq and de Langre, 2016) is attached at the end of
the thesis. Compared to the present chapter, the paper includes an additional
introduction and a comparison of the results for the asymptotic Vogel exponent in
shear flow with preliminary results obtained in Henriquez and Barrero-Gil (2014).
Apart from a few notations, the rest of the content is similar.

Contents
2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Drag reduction in a self-similar framework . . . . . . . . . 24

2.2.1 Asymptotic Vogel exponent . . . . . . . . . . . . . . . . . . . 24

2.2.2 Bending length . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 A uniform beam in a shear flow . . . . . . . . . . . . . . . . . 28

2.3.3 A uniform beam in a Blasius boundary layer . . . . . . . . . 29

2.3.4 A non-uniform beam in a uniform flow . . . . . . . . . . . . . 34

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Implications for the Vogel exponents of realistic systems . . . 38

2.4.2 On the robustness of the results . . . . . . . . . . . . . . . . 39

2.4.3 On the limits of the model . . . . . . . . . . . . . . . . . . . 41

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



2.1. Model 21

2.1 Model

The model used in this chapter is represented in Fig. 2.1, and a nomenclature of the
main variables used throughout this chapter is given in Appendix A. The elastic body
is a cantilever beam of length L bending in the xz-plane. The width W , thickness D
and material stiffness may all vary with the curvilinear coordinate s. The height z(s)
and curvature κ(s) are related to the local angle of the beam with the vertical axis θ(s)
by the kinematic relationships

z =

∫ s

0

cos θ(s′)ds′ , κ =
∂θ

∂s
. (2.1)

We assume a rather general form of the constitutive law relating the internal bending
moment M to the curvature κ

M(s, κ) = b(s)g(κ), (2.2)

where b(s) is a local coefficient that accounts for the local stiffness and geometry, while
g(κ) is characteristic of the material constitutive law, which we take to be uniform on
the beam. For instance, in the case of linear elasticity, g(κ) = κ and b(s) = EI(s) is
the local bending stiffness of the beam. Under the assumption that the local radius
of curvature 1/κ remains large compared to the thickness D (κD � 1), Kirchoff’s
equations for rods (see for instance Audoly and Pomeau, 2010) relates the internal
shear force Q to the internal bending moment M by

Q = −∂M
∂s

. (2.3)

x

z
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U(z)
θ(s)

Lq(s)

F
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W (s)
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(a) (b)

Figure 2.1: Description of the system. (a) Side view of the beam bending in the flow.
(b) Front view of the unbent structure.

We further assume that the structure is subject to a horizontal flow U(z) of a fluid
of density ρ(z). Both U and ρ may vary with the vertical coordinate z, Fig. 2.1(a) only
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displaying a velocity profile U(z) for clarity. We restrict our study to large Reynolds
numbers, so that viscosity effects are neglected. The local fluid force q is then purely
normal. In the case of uniform flow, it is usually considered that the normal fluid force
include one term due to the so-called “reactive force” (∼ ρU2W 2κ in the steady limit of
the model of Lighthill (1971) (see also Candelier et al., 2011)) and one other term due
to flow separation (“resistive force” ∼ ρU2W in the model of Taylor (1952)). Thus, the
resistive force is dominant in the slender body assumption κW � 1. We assume that
this is still the case for our vertically varying flow, and so we take q as purely resistive
and independent of the body curvature. We assume a somewhat general form

q(s, z, θ) = p(z)w(s)c(θ), (2.4)

where p(z) accounts for the local dynamic pressure due to the undisturbed background
flow at height z on the beam, w(s) is a shape coefficient that accounts for the interactions
of the normal flow with the local cross-section, and c(θ) is a projection term due to
the local angle of the cross-section with respect to the background flow. It is not
always obvious that the s- and θ-dependency can be decoupled, as the structure of
the boundary layer and of the recirculating flow downstream will be modified by the
angle of incidence. However, it is usually considered that to the first order, the resistive
normal force only depends on the interaction between the cross-section and the flow in
a plane normal to it, hence the expression chosen. The most classical example of such
model is the resistive pressure drag derived by Taylor (1952): q = 1/2ρCDWU2

n where
ρ is the fluid density, W the local width of the structure, Un = U cos θ the normal
projection of the local flow velocity, and CD a drag coefficient that accounts for the
shape of the local cross-section. Specifically, Taylor’s model is equivalent to considering

p(z) =
1

2
ρ(z)U2(z) , w(s) = CD(s)W (s) , c(θ) = cos2 θ . (2.5)

Note that the model chosen here only gives an approximation of the exact loading. In
particular, the modifications of the flow caused by the structure itself are neglected.
However, the close similarity of the results obtained, on the one hand by Gosselin et al.
(2010) with the present model, and on the other hand by Alben et al. (2002, 2004)
who computed the pressure force distribution on the actual structure using a much
more complex algorithm, indicates that the exact form of the force has little impact
on the asymptotic scaling of the drag. Unless otherwise stated, c(θ) = cos2 θ is used
everywhere in the remaining of this chapter. The framework of the present chapter
includes the study of the influence of the still unspecified form of p(z) ∝ U2(z), w(s),
b(s) and g(κ). Note that the dynamic pressure due to the background flow at a given
point in space does not depend on the position of the structure, so p(z) only depends
on the cartesian coordinate z (assuming the flow is invariant in the x-direction). On
the other hand, the elasticity factor b(s) and the cross-section shape coefficient w(s)
are structural properties that are specific to a given location along the beam span s,
even though the cartesian coordinates (x, z) of that physical point change as the beam
bends. The internal bending moment M(s) depends on the curvilinear coordinate s
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explicitly via the local stiffness factor b(s), but also implicitly via the the local value of
the curvature κ(s) in the material constitutive law g(κ).

Following Luhar and Nepf (2011), the local equilibrium at a given point s∗ between
the local internal shear force and the normal fluid loads yields the governing equation

∂M

∂s

∣∣∣∣
s∗

= −
∫ L

s∗
q(s) cos (θ(s)− θ(s∗)) ds (2.6)

where the force-free boundary condition Q = 0 at the free end s = L has been used.
Non-dimensionalizing this equation yields one governing parameter called the Cauchy
number

CY =
q0L

M0/L
∼ typical external fluid load

typical elastic restoring force
, (2.7)

considering that q0 and M0 are the orders of magnitude of the fluid load q and internal
moment M in equation (2.6). Besides, the total drag of the beam reads

F =

∫ L

0

q(s) cos (θ(s)) ds. (2.8)

The focus of this chapter is the scaling of the drag force, F , with the velocity of the flow.
In the case of a flow that may not be uniform, we have to choose a reference velocity
U0 that scales the velocity at any point in the flow field. We are then interested in
the variations of the Vogel exponent ν such that F scales as U2+ν

0 . At large Reynolds
number and in the limit of a rigid structure, the drag force is expected to grow as
U2
0 . Following Gosselin et al. (2010), to isolate the contribution of flexibility to the

velocity-drag law, we define the reconfiguration number

R =
F

Frigid
, (2.9)

so that R ∝ Uν
0 . The actual governing parameter being the Cauchy number, we will

prefer to work in the CY −R space rather than the U0−F space. The Cauchy number
being proportional to the typical fluid load q0 ∝ U2

0 , the local Vogel exponent can be
computed directly in the CY −R space as

ν = 2
∂ logR
∂ logCY

. (2.10)

In the remaining of this chapter, unless otherwise stated, the Cauchy number is
always defined based on the flow and structural properties at the tip of the upright
beam.
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2.2 Drag reduction in a self-similar framework

2.2.1 Asymptotic Vogel exponent

First, we further assume that the pressure, cross-section shape and stiffness parameters
p(z), w(s) and b(s) can be expressed as power functions of their respective arguments,
namely

p(z) = p0

( z
L

)µ
, w(s) = w0

( s
L

)γ
, b(s) = b0

( s
L

)β
. (2.11)

Note that, although these power-law formulations of the structural parameters w and b
may recall those of Lopez et al. (2011) for a slender cone, or those of Lopez et al. (2014)
for a tree-like structure, they actually describe quite different distributions because the
curvilinear coordinate s used in these studies was defined from the free tip towards the
floor instead of the other way around here. We also assume that the material constitu-
tive law may differ from linear elasticity by considering a more general dependency on
curvature, still in the form of a power law

g(κ) = κα. (2.12)

Substituting (2.11), (2.12) and the particular form c(θ) = cos2 θ into (2.6), the equilib-
rium equation reads

∂

∂s

(
sβκα

)∣∣∣∣
s∗

= −CY
∫ 1

s∗

(∫ s

0

cos θ(s′)ds′
)µ

sγ cos2(θ) cos (θ − θ∗) ds, (2.13)

where all the space variables have been made non-dimensional using the beam length
L, and the Cauchy number CY has been defined as

CY =
p0w0L

b0L−1−α
. (2.14)

From (2.8), the total drag force on the beam in this framework reads

F = p0w0L

∫ 1

0

(∫ s

0

cos θ(s′)ds′
)µ

sγ cos3 (θ) ds. (2.15)

We further assume that the drag is bounded by that on a rigid structure, namely

Frigid = p0w0L

∫ 1

0

sµ+γds =
p0w0L

1 + µ+ γ
. (2.16)

For this quantity to be finite, it is required that µ + γ > −1. Using (2.9), (2.15) and
(2.16), the reconfiguration number now reads

R =

(
1 + µ+ γ

)∫ 1

0

(∫ s

0

cos θ(s′)ds′
)µ

sγ cos3(θ)ds. (2.17)
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Within this framework, the asymptotic Vogel exponent for large Cauchy numbers,
noted ν∞, can now be inferred from a dimensional analysis that accounts for the par-
ticular power-like form of the flow and structural parameters. The flow pressure p, the
cross-section shape coefficient w and the bending stiffness b are characterized by their
respective invariants

Ip =
p(z)

zµ
=

p0
Lµ

[kg.m−1−µ.s−2],

Iw =
w(s)

sγ
=

w0

Lγ
[m1−γ],

Ib =
b(s)

sβ
=

b0
Lβ

[kg.m2+α−β.s−2].

(2.18)

The Vaschy-Buckingham theorem predicts three non-dimensional figures which we choose
to be the non-dimensional drag force, the Cauchy number and the aspect ratio

F̃ =
F

IpIwL1+µ+γ
, CY =

IpIwL
1+µ+γ

IbL−1−α+β
, Λ =

L

w0

. (2.19)

Following Gosselin et al. (2010), we disregard the effect of the aspect ratio Λ. This
assumption is actually valid for elongated structures Λ � 1, as will be discussed in
Chapter 3 and more specifically in Appendix D. The problem now reduces to finding
the relationship between F̃ and CY , or equivalently to determining the function G such
that

F = IpIwL
1+µ+γG

(
IpIw
Ib

L2+µ+γ+α−β
)
. (2.20)

For highly bent structures, Gosselin et al. (2010) demonstrated that the drag no longer
depends on the beam length L. Hence, function G must be taken as a power function
G(CY ) ∝ Cϕ

Y that cancels the overall exponent of L in (2.20), meaning

(
1 + µ+ γ

)
+ ϕ

(
2 + µ+ γ + α− β

)
= 0. (2.21)

Consequently, the asymptotic drag force scales as

F ∝ (IpIw)1+ϕ

Iϕb
with ϕ = − 1 + µ+ γ

2 + µ+ γ + α− β . (2.22)

We are interested in the scaling of the drag force with the velocity U0, which only
appears in the flow pressure invariant through Ip ∝ p0 ∝ U2

0 . Therefore, F scales as
U2+2ϕ
0 and the asymptotic Vogel exponent naturally appears as ν∞ = 2ϕ. Ultimately,

ν∞ = −2
1 + µ+ γ

2 + µ+ γ + α− β . (2.23)
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For a uniform, linearly elastic, rectangular plate bending in a uniform flow, (α, β, γ, µ) =
(1, 0, 0, 0), so that ν∞ = −2/3, which is consistent with Alben et al. (2002, 2004) and
Gosselin et al. (2010). In the case of a non-linear stress-strain relationship σ ∝ ε1/N

considered in de Langre et al. (2012), we get α = 1/N in our model, and so we recover
the asymptotic result ν∞ = −(2N)/(2N + 1).

2.2.2 Bending length

If it is well-known that the effects of flexibility are negligible below CY ∼ 1, no study
has ever predicted the threshold above which the Vogel exponent should finally reach
its asymptotic value. This threshold can however be estimated by looking at the global
balance of forces on the beam. Assuming that the beam length L loses its relevance
when the beam is highly bent implies that there must exist a smaller region of length `,
function of the level of loading only, on which all the significant interactions between the
beam and the flow concentrate. This inner region is thus responsible for the dominant
contribution to the drag, and show large curvature responsible for the balancing force.
Assuming that the contribution of the region s > ` to the drag is negligible, (2.15) gives
the dominant contribution to the drag as

F ∼ p0w0L`
1+µ+γ. (2.24)

On the other hand, using (2.3), (2.2), (2.11) and (2.12), the internal shear force at the
base can be roughly estimated as

Q(0) ∼ b0`
β (L`)−1−α = b0L

−1−α`−1−α+β. (2.25)

Balancing these two quantities yields

`−(2+µ+γ+α−β) ∼ p0w0L

b0L−1−α
, (2.26)

which is the Cauchy number defined in equation (2.14). We now choose the specific
value of ` as follows

` = C
− 1
2+µ+γ+α−β

Y . (2.27)

This analysis highlights the emergence of an intrinsic characteristic length ` that char-
acterizes the region of the beam on which the interactions governing its behaviour
concentrate. If ` is larger than 1 (or equivalently CY < 1), the flow interacts with
the beam on its whole length and the structural behaviour is close to that of a rigid
beam. On the other hand, if ` � 1, then the interactions in the region of length `
dominate the behaviour of the beam, and so the asymptotic regime is reached. This
regime, where the Vogel exponent given by (2.10) has become constant, should thus be
expected to be obtained above a threshold that is expressed in terms of some critical
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value of ` instead of CY . Depending on the exponent of the power law relating ` to
CY , the gap between the onset of significant bending (CY = 1) and the convergence of
the asymptotic regime (` � 1) might cover a wider or smaller range of loadings. This
analysis is consistent with the dimensional analysis above. Indeed, injecting (2.27) into
(2.24) and using the fact that the pressure of reference p0 and the Cauchy number CY
both scale as U2

0 easily yields

F ∼ U
2−2 1+µ+γ

2+µ+γ+α−β
0 , (2.28)

and so the asymptotic Vogel exponent given by equation (2.23) is obviously recovered.

Note that the choice of expression (2.27) to define ` is somewhat arbitrary, as no
actual “bending length” can be uniquely defined on the physical system. (2.27) essen-
tially represents a scaling of the Cauchy number that transforms a ratio of forces into
the ratio of some characteristic bending length over the length of the beam. As such, it
gives a different interpretation of the Cauchy number, but it does not correspond to a
physical quantity that can be easily measured or obtained as the output of a numerical
simulation.

2.3 Applications

2.3.1 Numerical method

To check the validity of our equation (2.23) for the asymptotic Vogel exponent as well
as the predicted threshold discussed above, we numerically compute the Vogel exponent
in different cases by solving (2.13). To solve the integrodifferential equation, we use a
first order centred finite difference scheme with the discrete boundary conditions θ1 = 0,
θN+1 − θN = 0 (Thomas, 1995). The integrals are computed by the trapezoidal rule.
The resulting non-linear system of equations is solved using a pseudo-Newton solver (so-
called method of Broyden, see Broyden 1965). The beam is discretized with N = 30
panels. For CY ≤ 1, the beam bends very little, so we use a uniform mesh. When the
beam reconfigures significantly, we have seen that its curvature tends to concentrate
in a small region of characteristic non-dimensional length ` near the clamped edge. In
order to model the curved region with accuracy when CY ≥ 1, we use a non-uniform
mesh sk = (k/(N + 1))χ with χ = log `/ log 2 so that s((N+1)/2) = `, meaning that half
of the points are in the curved region s ≤ `. This mesh scales with the characteristic
bending length in the curved region, and so it is not necessary to increase the number
of points to maintain a good accuracy when the beam is highly bent. Convergence
was checked on a few cases by measuring the relative error on the asymptotic Vogel
exponent. On all the cases tested, doubling the number of points changed the value of
the asymptotic Vogel exponent by less than 0.1%.
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2.3.2 A uniform beam in a shear flow

One first situation that is of particular interest is the case of reconfiguration in a sheared
flow. This situation is observed for instance for aquatic organisms in underwater bound-
ary layers or within canopies. We consider a plate of constant width W and cross-section
drag coefficient CD, made of a linearly elastic material of uniform bending stiffness EI,
deforming in a flow of uniform density ρ with a sheared velocity profile

U = U0

( z
L

)µ/2
. (2.29)

Assuming Taylor’s model for the local fluid load, the parameters of the model specifically
read

p(z) =
1

2
ρU2

0

( z
L

)µ
, w(s) = CDW , c(θ) = cos2 θ , b(s) = EI , g(κ) = κ ,

(2.30)
which corresponds to a constitutive law, stiffness and cross-section shape exponents
respectively (α, β, γ) = (1, 0, 0) with the shear exponent µ being the only varying pa-
rameter. Hence, from (2.23), the theoretical asymptotic Vogel exponent is predicted
as

ν∞ = −2
1 + µ

3 + µ
. (2.31)

In the case of a uniform flow µ = 0, we recover the classical ν∞ = −2/3 of Gosselin
et al. (2010). From (2.27), the characteristic bending length reads here

` = C
− 1
3+µ

Y (2.32)

To numerically confirm these predictions, we solve the non-dimensional governing
equation (2.13) that reads in this specific case,

∂2θ

∂s2

∣∣∣∣
s∗

= −CY
∫ 1

s∗

(∫ s

0

cos θ(s′)ds′
)µ

cos2 θ(s) cos (θ(s)− θ(s∗)) ds, (2.33)

with the Cauchy number

CY =
ρU2

0CDWL3

2EI
. (2.34)

Fig. 2.2 shows the results of the computational approach. On Fig. 2.2(a), the deflec-
tion of the beam for increasing loads is shown in the case of a linear flow µ/2 = 1. As
expected, significant bending is observed when CY > 1. The evolution of the reconfigu-
ration number and of the Vogel exponent on Fig.s 2.2b and 2.2c stresses the existence of
two asymptotic regimes. At low Cauchy numbers, the structure behaves as a rigid beam
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so the Vogel exponent is null no matter the flow profile. At very large Cauchy numbers
however, the Vogel exponent converges towards a constant that depends on the shear
exponent µ. We re-plot on Fig. 2.3 the evolution of the Vogel exponent as a function
of the characteristic bending length ` given by (2.32) instead of the Cauchy number
CY . In the three cases displayed, the Vogel exponent was within 2% of the asymptotic
value for ` < 0.2. This confirms that the threshold for the asymptotic regime is well
expressed, for any value of the parameter µ, in terms of the same critical value of `.

2.3.3 A uniform beam in a Blasius boundary layer

The particular power-like form of the pressure, cross-section shape and stiffness distri-
butions p(z), w(s), b(s), as well as the constitutive law g(κ), is a necessary assumption
for the theoretical derivation of the asymptotic expression (2.23) that may appear like
a strong limitation of the model above. It seems however that the actual scope of ap-
plicability of (2.23) encompasses a much wider range of practical situations. For highly
bent structure, the curvature tends to concentrate in a small “inner” region s < ` near
the clamped edge. As explained in Alben et al. (2002, 2004), the “outer” portion of the
system located above ` “sits” in the wake created by the deflection of the incident flow
heading to the inner region upstream, and so it only endures very little fluid loading.
Consequently, the outer domain only has negligible influence on the overall shape and
drag of the structure, and only the spatial dependency of the flow and structural param-
eters inside the inner domain is actually relevant to the modelling of the system. The
whole theory above should thus remain valid as long as power function approximations
can accurately model these parameters at the scale of ` only, and not necessarily at the
scale of the whole beam length.

To better understand the implications above, we consider the reconfiguration of a
non-tapered, elastic, homogeneous beam, in a Blasius boundary layer. In this case, all
the structural parameters are spatially invariant, but the flow exhibits a more intricate
shear profile than a simple power-law fit in z. For the sake of clarity, all the space
variables have been normalized by the length of the beam, or equivalently L = 1. In
the model of Blasius, the vertical velocity is negligible and the horizontal velocity is
expressed as

U(x, z) = U∞f
′ (η) . (2.35)

with the similarity variable η = z
√
RL
e /x, the Reynolds number based on the length of

the beam and outer flow velocity RL
e , and f the solution of the Blasius boundary layer

equations

2f ′′′ + ff ′′ = 0 , f(0) = f ′(0) = 0 , f(η) −→
η→∞

1. (2.36)

The resulting flow profile, shown on Fig. 2.4(a) for a fixed value of x, is characterized by
a smooth transition from a linear increase with slope U∞/LB(x) near the wall saturating
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Figure 2.2: A uniform beam in a shear flow. (a) Deformation of the beam in a linear
flow profile µ/2 = 1. (b) and (c) Reconfiguration number R and Vogel exponent ν as
functions of the Cauchy number CY : uniform flow profile µ/2 = 0 (——), linear flow
profile µ/2 = 1 (− ·−), quadratic flow profile µ/2 = 2 (− − −). Asymptotic Vogel
exponent predicted by equation (2.23), uniform flow profile µ/2 = 0 (◦), linear flow
profile µ/2 = 1 (�), quadratic flow profile µ/2 = 2 (4).
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Figure 2.3: A uniform beam in a shear flow. Variation of the Vogel exponent in the
`− ν space, uniform flow profile µ/2 = 0 (——), linear flow profile µ/2 = 1 (− ·−),
quadratic flow profile µ/2 = 2 (− − −). Asymptotic Vogel exponent predicted by
equation (2.23), uniform flow profile µ/2 = 0 (◦), linear flow profile µ/2 = 1 (�),
quadratic flow profile µ/2 = 2 (4).

to a uniform magnitude U∞ far from it. The two domains are roughly delimited, at
each location x, by the dimensionless characteristic length scale

LB(x) =
1

f ′′(0)

√
x

RL
e

, (2.37)

such that,

U(x, z) ∼ U∞ for z � LB(x) and U(x, z) ∼ U∞
LB(x)

z for z � LB(x). (2.38)

The approach presented in this chapter is based on the assumption that the flow is
invariant in the x-direction, and so the x-dependency of the Blasius flow inside the
boundary layer would a priori prevent (2.23) to be valid. However, the region of space
swept by the deforming beam extends at most one beam length downstream of its
anchorage point x0 (see Fig. 2.4(b)). If the structure is placed far enough from the
origin of the boundary layer (x0 � 1), then LB(x) ∼ LB(x0) anywhere in the vicinity
of the beam, and so the flow can be considered locally horizontally invariant. The
coexistence of the two flow regimes along the vertical axis makes room for two different
characteristic velocities according to (2.38): U0 = U∞ in the uniform domain, and
U0 = U∞/LB in the linear domain. Two Cauchy numbers can subsequently be defined
according to (2.14): CY,uni is based on the uniform outer flow velocity U0 = U∞, while
CY,lin = CY,uni/L

2
B is based on the inner characteristic velocity U0 = U∞/LB. Fig.

2.5(a) displays the evolution of the Vogel exponent as the loading increases, for several
fixed values of LB ≤ 1. The parameter chosen to describe the fluid loading is the
Cauchy number based on the uniform outer flow, CY,uni.
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Figure 2.4: Description of the reconfiguration in a Blasius boundary layer. (a) Blasius
profile U(x, z) at a fixed x. (b) Beam deforming in a Blasius boundary layer.

Evidently, if LB ≥ 1, then the beam lies entirely in a linearly sheared flow even
when it stands upright. This situation is strictly equivalent to the shear flow case
studied in Section 2.3.2 with pressure shear exponent µ = 2, if the Cauchy number CY
is identified with the linear flow Cauchy number CY,lin. For LB = 1, CY,lin = CY,uni and
the evolution of the Vogel exponent shown on Fig. 2.5(a), is very similar to the curve
obtained for a linear velocity profile in Fig. 2.2(c).

On the other hand, structures reconfiguring in boundary layers smaller than their
lengths (LB < 1) experience much more intricate behaviours. Fig. 2.5(b) shows a zoom
on the near-wall region of a beam reconfiguring in a Blasius boundary layer a hundred
times smaller than its size (LB = 10−2). This plot should be analysed jointly with the
corresponding curve in 2.5a. When the Cauchy number is small, the linear flow region
is much smaller than the portion of the beam that experiences significant bending. The
inner domain s < ` is mostly subjected to the uniform flow U = U∞, and the influence of
the linear flow on the very bottom of the beam is negligible. Consequently, the evolution
of the Vogel exponent for CY,uni < 102 is very similar to that obtained for a uniform
flow on Fig. 2.2(c). As the loading increases, the beam bends more and more and as a
result the linear flow covers an increasing portion of the inner region. It follows that the
Vogel exponent decreases for CY,uni > 102. Asymptotically, when the bending region
is fully confined inside the boundary layer, the Vogel exponent catches up with the
asymptotic value characteristic of linear shear, ν∞ = −6/5. The same analysis remains
valid for other boundary layers smaller than the beam LB < 1. If the loading increases
enough, the beam will always eventually dive entirely inside the boundary layer and
the Vogel exponent will asymptotically reach the theoretical value predicted for a linear
flow profile. But the threshold above which this asymptotic regime is reached depends
on the thickness of the boundary layer LB. The larger LB, the sooner the shear flow
will dominate. Precisely, the relative impacts of the uniform and linear flow regions
can be estimated by comparing the thickness of the boundary layer LB to the size of
the bending region `. However, the expression of ` depends on which of the uniform or
linear flow dominates. In the uniform outer flow, (2.27) yields `uni = C

−1/3
Y,uni, while in

the linear region it would predict `lin = C
−1/5
Y,lin = L

2/5
B C

−1/5
Y,uni = L

2/5
B `

3/5
uni. At the threshold
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between the two regimes, `uni = `lin = LB, which also yields CY,uni = L−3B . Note that
this threshold specifically sets the lower bound (in terms of the Cauchy number) to
the purely linear flow approximation, but the purely uniform flow approximation loses
its validity for much smaller loads. Indeed, for ` smaller but close to LB, the region
of the beam that concentrates the interaction with the flow is already confined inside
the boundary layer so that the influence of the uniform domain above totally vanishes.
Conversely, for ` > LB, the influence of the linear domain never strictly vanishes, and
its influence becomes negligible only for ` � LB. This result is consistent with the
thresholds for convergence towards the linear regime observed for the different cases
on Fig. 2.5(a). For LB equal to 10−1, 10−2 and 10−3, the Vogel exponent was within
2.5% of its expected asymptotic value ν∞ = −6/5 for CY,uni respectively superior to
102.9, 105.85 and 108.8. If the thickness of the boundary layer LB is small enough, the
influence of the linear region may remain negligible for loadings large enough to permit
convergence of the Vogel exponent in the uniform domain, before it reaches the linear
domain. This is observed for instance on Fig. 2.5(a), where the Vogel exponent for
LB = 10−3 displays a plateau around the asymptotic uniform flow Vogel exponent
ν = −2/3 for CY,uni ∼ 102 − 105, before switching to the asymptotic linear flow Vogel
exponent ν∞ = −6/5 above CY,uni ∼ L−3B = 109. On the other hand, for thicker
boundary layers (LB ≥ 10−2), the influence of the linear domain may not be neglected
for loadings large enough to reach convergence in the uniform domain. For LB = 10−1,
convergence to the asymptotic regime is approximately concomitant with the switch
from uniform to linear flow regime. The small hump around CY,uni = 102 illustrates the
successive dominance of the uniform flow that tends to bring the Vogel exponent closer
to ν = −2/3 as the asymptotic regime approaches, soon overcome by the linear flow
whose influence is to decrease it to ν = −6/5. When LB = 1, the linear flow region
dominates as soon as reconfiguration occurs, so the early effects of the uniform domain
are not even noticeable on Fig. 2.5(a).

This example shows that our approach based on self-similarity actually provides
understanding of the behaviour of much more complex configurations. Strictly speaking,
there will always be an asymptotic regime, should it be reached for extremely large
Cauchy numbers. Indeed, as the structure bends, curvature always concentrate in a
region of characteristic length ` that gets smaller and smaller, so that it eventually gets
small enough for all the parameters to be well-approximated by power laws at its scale.
Thus, the actual asymptotic Vogel exponent is given by (2.23) using the exponents of
the first order in the power law expansions of the structural and flow parameters at
the foot of the beam. Yet, the threshold above which these power law approximations
all hold may be too large to be ever reached in practice. In this case, intermediate
asymptotic regimes may arise on whole ranges of Cauchy numbers. We may conclude
that convergence of the Vogel exponent towards a constant independant of the loading
may occur if the bending length ` is either much larger or much smaller than any of
the other characteristic length scales involved.
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Figure 2.5: Reconfiguration in a Blasius boundary layer, anchorage point x0 = 107.
(a) Vogel exponent ν as a function of the Cauchy number CY,uni, LB = 10−3 (——),
LB = 10−2 ( · · · ), LB = 10−1 (− − −), LB = 1 (− ·−). Asymptotic Vogel exponent
predicted by equation (2.23), uniform flow profile (◦), linear flow profile (�). (b) Zoom
near the clamped edge of a beam bending in a Blasius boundary layer, LB = 10−2.

2.3.4 A non-uniform beam in a uniform flow

To further check the validity of the asymptotic expression (2.23), we compared it to
the numerically computed asymptotic Vogel exponent in some other cases involving
variations of the material constitutive law, material stiffness or structural cross-section
shape. To make sure that the asymptotic regime was reached in the numerical simula-
tions, a large enough value of the Cauchy number (CY = 105) was chosen so that the
characteristic bending length ` would be inferior to 0.1 in all cases. The results are
shown on Table 2.1, along with the corresponding `-value. Agreement is excellent in
all the cases considered.

A more intricate example is that of a linearly tapered beam of increasing width W ,
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System α β γ µ
theoretical ν∞ numerical ν `-value (2.27)

(2.23) at CY = 105 at CY = 105

benchmark case 1 0 0 0 -2/3 -0.6681 0.02

elastoplatic behaviour 0.5 0 0 0 -0.8 -0.8013 0.01

rigid base 1 -1 0 0 -0.5 -0.5006 0.06

linear width 1 0 1 0 -1 -1.0024 0.06

Table 2.1: Comparison of the theoretical and numerically computed Vogel exponents
for varying systems

namely

W (s) = W1 + (W0 −W1)s, (2.39)

as shown on Fig. 2.6. In most cases, we would then expect the bending stiffness to
also vary, but to highlight the effect of the cross-flow area alone, we assume here that
the variations of the cross-sectional shape and elastic modulus are chosen such that
the bending stiffness remains uniform. Consistently with (2.14), we define the Cauchy
number as in equation (2.34) using the width at the tip W0 as characteristic width.
Note that the case W0 −W1 = 0 corresponds to the constant width problem γ = 0,
while the case W1 = 0 corresponds to the linear width problem γ = 1. We define the
characteristic length δ as shown on Fig. 2.6, such that W (−δ) = 0:

δ =
W1

W0 −W1

. (2.40)

y

z

δ

W1

W0

Figure 2.6: Tapered beam

This quantity can be seen as the length on which the width must vary to significantly
deviate from W1 due to the given slope. Notably, the relative gap between W (s) and
W1 can be expressed as
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W (s)−W1

W1

=
s

δ
. (2.41)

In other words, the quantity δ is a measure of the length of validity of the uniform
width approximation, as LB was characteristic of the length of validity of the linear flow
approximation in the Blasius boundary layer. Hence, the evolution of the computed
Vogel exponents shown on Fig. 2.7 for several values of δ and for increasing Cauchy
numbers may be explained in a similar fashion. The Vogel exponent converges at large
Cauchy numbers towards the theoretical value ν∞ = −2/3, consistently with the first
order W1 in the power function expansion (2.39). For δ > 1, the Vogel exponent deviates
very little from that of a beam of uniform width (δ =∞). Conversely, for very small δ
such as 10−3, the structure behaves as a beam of linear width, long enough to exhibit an
intermediate asymptotic regime ν = −1 on a broad range of loadings. Structures with
intermediate δ-values show an earlier shift from linear-like to uniform-like behaviour
that do not allow intermediate convergence of the Vogel exponent. Finally, it should be
noted that the characteristic bending lengths reads here ` = C

−1/4
Y in the linear width

regime. Hence, the threshold between the two regimes, `/δ = 1, reads in this case
CY ∼ δ−4. Contrary to the case of reconfiguration in a boundary layer, this threshold
here must be thought of as a reference load around which both the uniform and linear
terms of the width (2.39) influence the behaviour of the beam equally. It is not a
critical load above or under which one of the two regimes loses all influence. This is
so because, while the two flow domains of the boundary layer were spatially separated
(above and below LB), the two terms of W (s) coexist everywhere, including at the
clamped edge. If each term can be neglected, respectively far above or far below the
threshold CY = δ−4, none of them can be ignored in the transition range around this
value. This is consistent with the evolutions displayed on Fig. 2.7. At CY = δ−4, the
Vogel exponent is equal to −0.79 for all three values δ = 10−1, 10−2 and 10−3.

One may wonder what would happen if the width was decreasing from base to tip
instead of increasing. In this case, δ < −1 means that the effects of the slope are only
noticeable near the tip, but never near the base where the finite value dominates in
any case. In other words, the effects of taper may slightly affect the Vogel exponent for
low Cauchy numbers, but the drag rapidly resembles that of a beam of constant width
W1 as soon as bending is significant. These expectations are confirmed by numerical
simulations, not shown.

These results shed light on the apparent contradiction between the two asymptotic
Vogel exponents for a disk cut along many radii derived respectively by numerical
computations (ν∞ = −2/3) and by dimensional analysis (ν∞ = −1) in Gosselin et al.
(2010). In the latter, it was assumed that because the inner radius Ri was 4 to 6 times
smaller than the exterior radius the small width at the base W1 ∝ Ri could be neglected.
However, because the bending stiffness EI, proportional to the width W , cannot vanish
at the base, it was assumed that the inner radius still influenced the drag through its
finite contribution to the characteristic bending stiffness at the base. Consequently,
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Figure 2.7: Vogel exponent ν of a tapered beam for increasing Cauchy numbers CY ,
δ = 10−3 (——), δ = 10−2 ( · · · ), δ = 10−1 (− − −), δ = 1 (− ·−), δ = +∞ (thick
——). Asymptotic Vogel exponent predicted by equation (2.23), constant width (◦),
linear width (∇).

their analysis corresponds to the case of a purely linear increase of the width from 0
at the base (γ = 1), on a beam with a non-vanishing bending stiffness (β = 0), hence
the predicted Vogel exponent ν∞ = −1. However Fig. 2.7 clearly shows that for δ as
small as 10−1, we do not see a plateau at ν = −1 before the effects of the actually
non-vanishing width are observed. The two taper ratios considered in Gosselin et al.
(2010), δ = 0.22 and 0.32 are even larger, and so the assumption of negligible base width
does not hold there. A Vogel exponent of −2/3 is in fact to be expected, and that was
indeed the result of their numerical computations. Note that the experimental results
in Gosselin et al. (2010) do not match either ν = −2/3 nor ν = −1, neither for the
cut-disk nor for the single rectanglular plate. The largest Cauchy number considered
in the experiments barely exceeded 102, so it is very likely that the asymptotic regime
was simply not reached. However, the close values of the Vogel exponents computed
in both cases (ν = −1.3 for the cut-disk and ν = −1.4 for the rectangular plate) may
indicate that the cut-disk behaves similarly to the rectangular plate, consistently with
our expectations.

It should also be noted that the influence of other types of tapering was also ad-
dressed by Lopez (2012), for slender cones and tree-like structures with rectangular
cross-sections (see also Lopez et al. (2014)). It was found in both cases that taper had
no influence on the scaling of drag, as numerical computations all yielded the same
asymptotic Vogel exponent ν∞ = −2/3. As a matter of fact, as the vertical axis used
in these studies was reversed with respect to ours, both the cross-flow width and the
thickness of the beam would reach finite values at the clamped edge for any of the
geometries considered. Consequently, according to the present study, the drag expe-
rienced by such structures in the limit of large loadings scales as that on a beam of
uniform properties (α, β, γ, µ) = (1, 0, 0, 0). According to equation (2.23), this indeed
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yields ν∞ = −2/3.

2.4 Discussion

2.4.1 Implications for the Vogel exponents of realistic systems

Equation (2.23) gives the Vogel exponent for large Cauchy numbers in the general case
as a function of the exponents α (constitutive law g(κ)), β (stiffness distribution b(s)),
γ (cross-section shape distribution w(s)), µ (pressure distribution p(z)). Interestingly,
(2.23) can also be written in a simpler form

ν∞ = − 2

1 + ψ/φ
(2.42)

that highlights the influence of only two parameters: on the one hand, a geometrical
parameter φ = 1 + µ + γ that accounts for the distribution of fluid loading on
the structure, and on the other hand, a material parameter ψ = 1 + α − β that
characterizes the restoring stresses.

In practice, the ranges accessible to the exponents α, β, γ and µ are bounded by
limitations of multiple kinds. First, considering the rigid-body force a limiting value,
the finiteness of the drag force mathematically requires that γ + µ > −1 (see Section
2.2). But in fact, neither the structural cross-section nor the flow profile of actual
systems can possibly diverge at s = 0, so γ and µ must actually be both positive or null
in practice. Moreover, to ensure that the structural stress vanishes for zero curvature,
the exponent α of the material constitutive law g(κ) has to be strictly positive. Finally,
the bending moment at the base cannot vanish when a loading exists. If the stiffness at
the base b(0) was null, the curvature there would need to be infinite and the resulting
discontinuity in the angle θ across the boundary s = 0 would make the problem ill-
posed. The minimum energy solution would obviously be the straight horizontal beam,
which experiences neither drag nor internal stress. To eliminate this case, b(0) must
be different from 0, so the exponent β of the self-similar stiffness function b(s) must be
negative or null. Note that a system with zero-stiffness at the base would essentially
revert to a pin joint free to rotate, with a Neumann boundary condition at s = 0. This
would define a different system that falls out of the scope of this study, and that would
experience zero drag no matter the magnitude of the fluid loading. Consequently, the
lower physically admissible boundaries for the geometrical and material parameters of
our system are ψ > 1 and φ ≥ 1.

Moreover, practical considerations further set upper boundaries to the typical values
expected for these parameters. First, the vast majority of actual structures have finite
width, and only quite exotic systems would exhibit cross-sections increasing more than
linearly. It also seems unlikely that an actual flow would show more than linear shear,
so we may reasonably expect the geometrical parameter φ to remain approximately
below 3 in most cases. Besides, the constitutive law of most elastic materials should
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not deviate much from linearity (α = 1). Even the extreme case of perfect plasticity
may be represented by taking α = 0, as noted by de Langre et al. (2012), and a larger
value α = 2 would already be a very strong exponent. Besides, continuous structures
generally show rather smooth variations of their stiffness, so that the magnitude of
the exponent of the stiffness distribution, |β|, should really not deviate much at all
from 0. Nonetheless, the use of the present model with β 6= 0 might constitute a valid
approach to handle the overall behaviour of compound or branched structures such as
trees. Indeed, the drag of such structure is the sum of the individual drag forces on
each of its constitutive elements: trunk, branches, leaves. The relative contribution
of each term is proportional to the projected area of each element. If we model the
structure as an equivalent beam with local stiffness based on the weighted mean of
the individual elements at a given height, we would expect the equivalent stiffness to
decrease by several orders of magnitude from bottom (trunk) to top (leaves). At this
point, the validity of this modelling is purely speculative and further investigations
should be carried on to analyse its relevance. In any case, the variations corresponding
to β = −1 seems already quite sharp, and we do not expect the material parameter ψ
to exceed 3 by much in general.

Considering all these limitations, we may now estimate the expected range of vari-
ation of the Vogel exponent. The isovalues of the asymptotic Vogel exponent ν∞ pre-
dicted by (2.42) are displayed on Fig. 2.8. They clearly indicate that, in these typical
ranges of the geometrical and material parameters φ ∈ [1, 3] and ψ ∈ [1, 3], ν∞ may
approximately vary between −1/2 and −4/3 at most. To illustrate the diversity of
situations included in this rather narrow parameter space domain, a few practical con-
figurations are marked with crosses on (2.42). Case A is the benchmark case of Alben
et al. (2002, 2004) and Gosselin et al. (2010), where all is homogeneous and the con-
stitutive law is linear: (α, β, γ, µ) = (1, 0, 0, 0). Case B is the linear flow case shown
on Fig. 2.2(a): (α, β, γ, µ) = (1, 0, 0, 2). Case C would correspond to a uniform, per-
fectly plastic beam, in a uniform flow: (α, β, γ, µ) = (0, 0, 0, 0). Finally, case D would
characterize a system with either (α, β, γ, µ) = (2, 0, 0, 0) (non-linear constitutive law
g(κ) = κ2) or (α, β, γ, µ) = (1,−1, 0, 0) (global model of a tree with infinite stiffness at
the base and flexible branches). Overall, we expect that in most situations of practical
interest, the Vogel exponent at large Cauchy numbers will not deviate much from −1.
This is consistent with observations on plants, as discussed in the Introduction. Case
E will be discussed in Section 2.4.3.

2.4.2 On the robustness of the results

The use of the equation (2.23) to predict the asymptotic Vogel exponent of a given sys-
tem relies on the ability to fit a power-law on the spatial distributions of the structural
and flow parameters, at least at the scale of the typical length on which significant
bending is observed. This requirement may appear as a very limiting factor, because
some parameters may exhibit complex variations, and because accurate assessment of
the exponents might be challenging. However these two apparent issues might not be
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Figure 2.8: Absolute value of the Vogel exponent in the reduced parameter space ψ −
φ. The domain shaded in grey corresponds to non-physical ranges. Practical cases:
A,B,C,D,E (see text for the details).

as problematic as one might expect.

First, it follows from Sections 2.3.3 and 2.3.4 that discrepancies between the actual
distributions of the parameters and their best power-law approximations affects very
little the validity of the analytical estimation of the Vogel exponent by (2.23). For
instance, it is striking that a beam with taper ratio as large as 10, or even close to 100,
still does not exhibit any intermediate plateau similar to the asymptotic regime of a
linearly tapered one. In fact, drag reduction on a beam with taper ratio of order 10 is
very similar to that of a beam of constant width equal to the base width. Similarly,
a structure in a Blasius boundary layer of thickness one order of magnitude smaller
than its size is well described, as far as the asymptotic scaling of drag is concerned,
by a beam entirely inside the boundary layer. In other words, the ability of (2.23) to
provide accurate estimation of the Vogel exponent of actual systems seems very robust
with respect to the accuracy of the self-similar fit of the system parameters. Crude
power-law fits at the scale of the bending length are likely to yield rather good results.

Second, the consequences of poor estimations of the exponents of the flow and
structural parameter distributions α, β, γ, µ also appear limited. It is noticeable on
Fig. 2.8 that the asymptotic Vogel exponent ν∞ does not vary much in the domain
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under consideration. The larger the geometrical and material parameters φ and/or ψ,
the less sensitive the Vogel exponent becomes to small variations of the parameters. As
already noted in de Langre et al. (2012), in the case of a uniform beam in a uniform
flow, a quadratic material constitutive law (case D on Fig. 2.8) is expected to lead to a
Vogel exponent of −0.5, which differs very little from the −2/3 exponent characteristic
of linear elasticity (case A). Similarly, changing a linearly elastic, uniform beam from
a linearly sheared flow (case B, µ = 2 so φ = 3) to an environment with half less shear
(µ = 1 so φ = 2) would only reduce the Vogel exponent from −6/5 to −1. Hence,
the estimation of the asymptotic Vogel exponent given by (2.23) is expected to be also
robust with respect to the possible errors made in estimating the fitting exponents.

To conclude, it may be said that the prediction of the Vogel exponent using equation
(2.23) is quite robust with regards to the parameters of the model.

2.4.3 On the limits of the model

The whole theory derived in this chapter is based on assumptions of three different
levels.

First, assumptions have been made regarding the way the action of the flow on the
deforming structure is handled. The choice of the simplified form for the local fluid
loading (2.4) has already been discussed in Section 2.1. As to the specific form of the
projection term in the fluid loading distribution c(θ) = cos2 θ used all along the present
study following Taylor (1952), alternative admissible forms c(θ) = cosn θ with n ≥ 1
were numerically tested, and did not lead to any significant alteration of the results.

Second, the study is limited to the influence of the steady background flow at large
Reynolds number, in an otherwise force-free environment. Namely, other effects such
as gravity, viscosity, vortex shedding or dynamic effects have been neglected here. De-
pending on the situation, these additional forces may impact the Vogel exponent of
natural systems and explain some of the scattering noted in the measurements per-
formed on actual biological or man-made systems. Yet, consistently with the results
of Luhar and Nepf (2011) and Zhu (2008), we do not expect that the present results
will be largely affected by the effects of gravity or viscosity. The field of dynamics
however still requires further investigations (see Kim and Gharib (2011) or Luhar and
Nepf (2016)).

Third, as to the type of system chosen, we have considered exclusively the reconfigu-
ration of flexible cantilever beams in cross-flow. Equation (2.23) might actually remain
valid for a broader range of systems, if the mechanism of reconfiguration is resemblant
enough to the axial bending considered here. Formula (2.42) directly embodies the
competition between the fluid loading, characterized by the geometrical parameter φ,
and the structural restoring force, characterized by the material parameter ψ. All along
this chapter, we have considered the restoring force to be the internal elastic bending
force, but it might very well be of a different nature. For instance, Barois and de Langre
(2013) showed that a ribbon with a weight at one end exhibits a constant drag. In that
case, the fluid loading is of the same nature as in the present study, but the restoring
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force is the constant axial tension due to the weight. For such system, the material
parameter is ψ = 0 because there is no length scale associated with the restoring force.
It lies out of the admissible range defined earlier, and equation (2.42) yields an asymp-
totic Vogel exponent ν∞ = −2 (case E on Fig. 2.8). This does indeed correspond to a
constant drag. Conversely, there does not seem to be any obvious analogy between the
present study and the rolling up of sheets cut along one radius treated by Schouveiler
and Boudaoud (2006) and Alben (2010). In their case, drag reduction is the result of a
more complex three dimensional bending process that does not resemble the mechanism
considered here.

Finally, it should be noted that the approach used here may easily be adapted to
assess the asymptotic effect of elastic reconfiguration on other physical quantities such
as the torque at the base of the structure. After some straightforward calculations, the
analytical expression found for the Vogel exponent is similar to (2.42) except that the
geometrical and material parameters φ and ψ must be respectively replaced by 1 + φ
and 1 + ψ.

2.5 Conclusions

To conclude, we may say that this work provides a framework for the understanding
of the typical values of Vogel exponents observed in nature. It was shown that the
scaling of drag with respect to the flow velocity, in the limits of large loadings, mostly
depends on the best power-law approximation of the flow and structural parameters
distributions at the scale of the length on which significant bending occurs. An analyti-
cal formula relating the asymptotic Vogel exponent to the fitting exponents was derived
in equation (2.23), and the sensitivity of this expression with respect to the accuracy
of the modelling was shown to be weak.

More importantly, the application of equation (2.23) to a variety of actual systems
highlighted the fact that scattering of the Vogel exponents due to non-uniformities
in the structural or flow distributions is expected to remain small. Consistently with
experimental observations, the predicted Vogel exponents for large loadings always lie
around −1. Consequently, the scaling of the drag on bending beams appears as a
characteristic of the mechanism of elastic reconfiguration that depends only to a very
limited extent on the actual features of the system.

For the sake of consistency with previous work on the subject, the results presented
in this chapter are relative to the total drag on the structure, not to the internal
stress generated inside it. However, the results of the next chapter incidentally prove
that the reconfiguration number used here also represents the ratio of the maximum
shear stress in the deformed and rigid structure, so that the results regarding the
reduction of the total drag force are equivalently valid for the maximum shear stress
in the structure. Besides, the results of the next chapter also prove that the scalings
of both the tensile and shear stress (compared to the rigid case) can be expressed in
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terms of the bending length, so that the results of this chapter regarding the scaling
of the bending length readily provides the scaling laws for the internal stresses. The
present study is however limited to quasi-static configurations. The dynamic effects
arising from possible couplings between the structure and the flow are investigated in
the following chapters.
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Chapter 3

Dynamic reconfiguration in
oscillatory flow

Preamble

In the preceding chapter, we have provided an extension of the theory of reconfiguration
to the case of spatially varying flow-structure systems. In the following chapter, we
present another extension, this time for the case of uniform flexible structures exposed
to a uniform, but oscillatory flow. As detailed in the general introduction of this
thesis, in spite of the diversity of studies that have tackled this problem, a systematic
characterization of the different regimes of flow-structure interaction is still missing.
We thus intend to elucidate the nature of the dynamical response of flexible structures,
depending in particular on the amplitude and frequency of the oscillatory flow, and to
provide the scaling laws for the maximum internal stress generated in the structure in
the different regimes, depending on the relevant parameters.

We consider in this chapter a model system very similar to that used in Chapter
2, a cantilever slender beam, clamped perpendicular to the flow. However, contrary to
Chapter 2, we further restrict this study to neutrally buoyant flat plates with infinitely
small thickness in the direction of the flow. We do so in order to neglect the structural
inertia in the balance of forces, so that the dynamics of the structures in our analysis
results exclusively from the forcing by the flow. This configuration is furthermore
realistic in regard to the features of the macroalgae that endure the oscillatory flow due
to the passing waves in the field. Compared to Chapter 2, the governing equation is
modified owing to the inclusion in the balance of forces of additional fluid forces due to
the unsteadiness of the interaction.

Contrary to the previous chapter, we do not make use of the Vogel exponent in
the following work to characterize the drag reduction. Indeed, because of the time-
variability of the flow, the (maximum) total hydrodynamic force on a rigid structure
does not necessarily scale with the flow velocity squared. The very concept of Vogel
exponent is consequently ill-defined in the context of an oscillatory flow. We may on
the other hand still define reconfiguration numbers to compare directly the maximum
forces generated respectively in a flexible and a rigid structure. In this chapter, we do
not define the reconfiguration number based on the total drag force on the structure as
in Chapter 2, but based on the spatio-temporal maximum of the internal stress in the
structure. Besides, we define two different such quantities, to evaluate respectively the
modulations of the tensile and shear stress compared to the rigid configuration.
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After introducing the theoretical model and the numerical method we chose to repro-
duce the dynamics of the system, we present an experimental setup used for visualizing
the actual deformation of blades in oscillatory forced motion and to validate the model.
We then identify four different kinematic regimes for varying ranges of the forcing am-
plitude and frequency, before discussing the resulting flexibility-induced scalings of the
structural stresses and the different mechanisms underpinning them. We notably prove
that flexibility always leads to a reduction of the internal stresses, as long as the resistive
drag dominates over the inertial forces.

The findings of this chapter have been published in the Journal of Fluid Mechanics.
The paper (Leclercq and de Langre, 2018a) is attached at the end of the thesis. Com-
pared to the present chapter, it includes an additional introduction, but the rest of the
content is similar.
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3.1 Model

3.1.1 Theory

In this chapter, we consider a neutrally buoyant, cantilever beam of length L, width W
and thickness D, placed perpendicular to a uniform oscillatory flow of velocity U(t) =
AΩ sin (Ωt) ex in a fluid of density ρ (see Figure 3.1). The amplitude A corresponds to
the maximal horizontal excursion of the fluid particles over one cycle, while Ω is the
angular frequency of the oscillations.
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Figure 3.1: (a) Side view of the bending structure. (b) Dimensions of the undeformed
blade.

We assume the thickness of the plate is small compared to its width (D � W )
so that deflection under the effect of the flow is confined in the xz-plane. We also
assume the structure is slender (L � W ) so we can model it as a two-dimensional
inextensible Euler-Bernoulli beam of bending stiffness EI and mass per unit length m
(see Audoly and Pomeau, 2010). The curvilinear coordinate s represents the distance
from the clamped edge along the span, and we use the prime symbol ( · )′ to denote
differentiation with respect to s. Hereafter, θ is the local angle of the tangent τ = r′

with the vertical axis ez, where r = x(s, t)ex+z(s, t)ez is the position vector. Following
Audoly and Pomeau (2010), the dynamic equilibrium reads

mr̈ = F ′ + q (3.1)

where q is the external load per unit length on the structure, F = Tτ + Qn is the
internal force vector, with T the tension and Q the shear force, and the overdot stands
for time derivation. The internal bending moment M is related to the local curvature
κ = θ′ by M = EIκ, and the shear force Q is given by Q = −M ′ = −EIκ′. Clamping
implies x = z = θ = 0 at s = 0, while the free tip condition reads T = M = Q = 0 at
s = L.
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Because the structure is neutrally buoyant, its density is also ρ and gravity and
buoyancy forces cancel each other. We assume large Reynolds number so that fric-
tion forces are negligible. Following Eloy et al. (2012); Singh et al. (2012b); Michelin
and Doaré (2013); Piñeirua et al. (2017) we model the effect of the relative flow as a
combination of two external loads distributed along the span. First, the resistive drag
(Taylor, 1952)

qd = −1/2ρCDW |Un|Unn (3.2)

due to the pressure in the wake is purely normal. It is proportional to the square of
the normal component Un of the relative velocity Urel = Uττ + Unn = ṙ − U . The
drag coefficient CD depends on the geometry of the cross-section and is typically of
order O(1). In pure sinusoidal flow, it slightly varies with the frequency through the
Keulegan-Carpenter number KC = U/Wf = 2πA/W (Keulegan and Carpenter, 1958).
But in the case of a deformable body, the relative flow varies along the span and is not
purely sinusoidal because of the motion of the structure itself. The exact value of CD is
however not critical here so we will simply use the value for steady flows. We will also
assume a rectangular cross-section so we will use CD = 2. The second force component
is the reactive (or added mass) force (Lighthill, 1971; Candelier et al., 2011)

qam = −ma

[
∂t(Unn)− ∂s(UnUτn) +

1

2
∂s(U

2
nτ )

]
(3.3)

where the added mass is given by ma = ρπW 2/4. This expression involves the normal
component but also the tangential component Uτ of the relative velocity. In the case
of an inextensible beam, this force becomes purely normal and its expression may be
simplified in

qam = −ma

[(
r̈ − U̇

)
·n− 2θ̇Uτ + κ

(
U2
τ −

1

2
U2
n

)]
n. (3.4)

as explained in Appendix B. Finally, because the fluid itself is accelerated, a third force
component has to be considered, called the virtual buoyancy force (Blevins, 1990)

qvb = mdU̇ . (3.5)

This term is due to the pressure gradient induced by the acceleration of the fluid. It
is equivalent to the Archimedes force, only the acceleration of gravity is replaced by
the acceleration of the fluid. It is proportional to the displaced mass per unit length
md = ρWD. We have assumed so far that the structure is fixed in an oscillating fluid.
If the clamped edge of the structure was set into a forced horizontal motion of velocity
Uf = Ufex, then the equilibrium equation in the frame of the structure Eq. (3.1) would
include an additional load due to the inertial pseudo-force qi = −mU̇ f . For a neutrally
buoyant structure the displaced mass is equal to the structural mass (md = m), so
this inertial force has the same expression as the virtual buoyancy term Eq. (3.5) if
Uf = −U . Thus, oscillating a plate in a still fluid is actually equivalent to having a



3.1. Model 49

fixed structure in an oscillating flow, providing that the structure has the same density
as the fluid.

In the following, we will only consider very thin blades D � W (equivalently m =
md � ma) so that we may neglect the structural inertia and the virtual buoyancy. The
dynamic equilibrium Eq. (3.1) then reads

[
T +

1

2
EIκ2

]′
τ +

[
κT − EIκ′′

]
n+ qd + qam = 0. (3.6)

After projection on the tangential and normal directions and elimination of the unknown
tension T , we finally obtain a single differential equation for the kinematic variables κ,
θ, r

EI

[
κ′′ +

1

2
κ3
]

+
1

2
ρCDW |Un|Un

+ma

[
r̈ ·n+ κ

(
U2
τ −

1

2
U2
n

)
− 2θ̇Uτ − Ω2A cos θ cos(Ωt)

]
= 0. (3.7)

We non-dimensionalize all the variables using the length of the structure L and the
scale of the natural period of the structure in small-amplitude oscillations in the fluid
Ts = L2

√
ma/EI. We finally obtain, in non-dimensional form

κ′′ +
1

2
κ3 + λ|Un|Un + r̈ ·n+ κ

(
U2
τ −

1

2
U2
n

)
− 2θ̇Uτ − ω2α cos θ cos(ωt) = 0 (3.8)

with boundary conditions r = 0 and θ = 0 at the clamped edge s = 0 and κ = κ′ = 0
at the free tip s = 1, and the tangential and normal relative velocities Uτ = ṙ · τ −
αω sin(ωt) sin θ and Un = ṙ ·n − αω sin(ωt) cos θ. This system is ruled by three non-
dimensional parameters that are

α =
A

L
, ω = ΩTs, λ =

ρCDWL

2ma

=

(
2

π
CD

)
L

W
. (3.9)

The first two parameters α and ω respectively scale the amplitude and frequency of
the background flow to the length and natural frequency of the structure, while λ =
O(L/W ) is mostly a slenderness parameter specific to the structure alone. Because our
model is only valid for slender structures, we are restricted to λ� 1. Note that, when
studying the influence of flexibility on the loads endured by a structure, the classical
non-dimensional parameter that describes the competition between the fluid loading
stemming from the resistive drag and the elastic restoring force is the Cauchy number
CY (Tickner and Sacks, 1969; Chakrabarti, 2002; de Langre, 2008). Following the
definition of Gosselin et al. (2010) in the case of the static reconfiguration of cantilever
beams, we may here define a Cauchy number based on the maximum velocity of the
flow (AΩ) as CY = ρCDWL3(AΩ)2/EI = λα2ω2. In the governing equation (3.8),
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given the scaling of the normal relative velocity component Un = O(αω), the resistive
drag term λ|Un|Un directly scales as λα2ω2 = CY owing to the choice of characteristic
length and time chosen for normalization.

3.1.2 Numerical resolution

We numerically solve Eq. (3.8) along with the boundary conditions using a time-
stepping scheme. The one-dimensional structure is discretized using the Gauss-Lobatto

distribution sk =
1

2

(
1− cos(

k − 1

N − 1
π)

)
with N = 100 points. The curvilinear deriva-

tives and integrals are computed respectively by Chebyshev collocation and the Clenshaw-
Curtis quadrature formulae. We evaluate the time-derivatives at time tn with implicit
second order accurate finite differences with 103 time steps per forcing cycle in most
cases. The time step is reduced further to maintain good accuracy when a smaller time
scale is involved in Sections 3.3.2 and 3.4.4. At each time step, we solve the boundary
value problem in κn(s) with a pseudo-Newton solver (method of Broyden (1965)). The
computations are carried on until a limit cycle is found.

3.2 Experiments and validation of the model

We conducted experiments to visualize the actual kinematics of slender blades in an
oscillatory flow and validate our model. The setup of the experiment is depicted on
Figure 3.2.

A
Ω

flexible blade

Figure 3.2: Schematic view of the experimental setup.

The flexible object is made of a rectangular piece of 20 cm × 2 cm (so that λ = 12.7)
and bending stiffness EI = 1.68 × 10−4 N.m2 that was cut out of a plastic document
cover of thickness 0.49 mm and density 895 kg.m-3. This plate has a mass per unit
length m = 8.72 × 10−3 kg.m-1 and added mass per unit length ma = 3.14 × 10−1

kg.m-1, so that m/ma = 2.8× 10−2. In order to get the desired relative flow, we forced
the clamped edge of the blade into an oscillatory translation of opposite velocity −U(t)
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and analysed the dynamic deformation of the structure in the oscillating frame. The
flexible structure is clamped at the bottom of a vertical rigid rod and fully immersed in
a rectangular water tank of horizontal dimensions 58 cm × 35 cm and 48 cm of water
depth. The rod crossing the free-surface is streamlined in the direction of the motion
in order to induce as little perturbation as possible in the fluid. The forcing motion is
obtained through a DC motor driving an arm of length A in rotation. The speed of
rotation Ω is tuned by changing the voltage at the terminals of the motor. The arm is
attached to a carriage freely translating on a vertical rail, which in turn is fixed on an
another carriage sliding on an horizontal rail. The mounting rod is linked to the latter
carriage so that it is driven into the desired sinusoidal translation of amplitude A and
angular frequency Ω as the arm rotates. The amplitude A could be varied continuously
between 5.4 cm (α = 0.27) and 13 cm (α = 0.65), and the frequency between 0.21 Hz
(ω = 2.3) and 1.08 Hz (ω = 12.0). The motion of the whole structure is filmed with a
fixed camera in front of the tank at 100 fps and the position and deformation of the blade
through time is extracted from each frame. The deformation in the oscillating frame is
then phase-averaged over a minimum of 10 cycles to get a unique cycle representative
of the whole run.

The results for three different amplitudes and frequencies spanning the experimental
domain are shown on Figure 3.3. In this range of forcing parameters, we notice a
diversity of behaviours. For a given frequency ratio ω, the maximum deflection of the
blade increases with the amplitude of the forcing α. However, the horizontal excursion
of the structure is obviously limited by its own length, so the amplitude of the motion
has to saturate when α is increased even more. Besides, the maximum deflection is
clearly increasing with the forcing frequency for the largest forcing amplitude α = 0.65,
but this is much less obvious for the smallest amplitude α = 0.27. On the other hand,
for any given forcing amplitude α, the dynamics of the deformation is greatly affected
when the forcing frequency is increased. For the smallest frequency ratio ω = 2.3,
the tip follows the same trajectory during both half-cycles and remains close to the
unit circle. The motion of the whole blade is therefore approximately in phase, and
curvature is concentrated near the clamped edge while the rest of the beam remains
straight. This deforming shape is similar to the static reconfiguration that occurs in
steady flow (Gosselin et al., 2010). Conversely, when the frequency is increased, the
tip follows a figure-of-eight trajectory and we notice curvature waves propagating along
the span in the course of the cycle indicating an increasing spanwise phase-shift. This
indicates a highly dynamic response that cannot be considered quasi-steady a priori.
Besides, the propagation of curvature waves may induce large loads anywhere along the
span and not restricted to the clamping point.

In order to validate the numerical model of Section 3.1, we also compared these
experimental observations to the output of the numerical simulations. As shown on
Figure 3.4(a), the numerical results for the amplitude of deflection at the tip Xtip

match very closely the experimental measurements. The snapshots displayed on Figure
3.4(b) for two cases at the boundaries of our experimental domain (indicated on Figure
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α = 0.65

α = 0.46

α = 0.27

ω = 2.3 ω = 6.4 ω = 12.0

Figure 3.3: Phase-averaged experimental oscillation cycle for varying amplitudes α and
frequencies ω. Snapshots of the structural shape (—) and tip trajectory (−−).

3.4(a)) also show very good agreement between the observations and the simulations.
Additional experimental validation of the model for smaller forcing amplitudes can be
found in Piñeirua et al. (2017).

These results confirm the validity of our model, and we will therefore use it in
the following to systematically explore the parameter space within and beyond the
experimentally accessible range.
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Figure 3.4: Comparison between experimental observations and numerical simulations.
(a) Amplitude of the deflection at the tip against the frequency ratio, for α = 0.27 (nu-
merical −−, experimental ◦), α = 0.65 (numerical —, experimental 4). (b) Deformed
shape found experimentally (left) and numerically (right), in case A (top, α = 0.27,
ω = 2.3) and case B (bottom, α = 0.65, ω = 12.0).

3.3 Kinematics

3.3.1 Small amplitude of flow oscillation

Let’s first consider the situation where the amplitude of forcing is small (α� 1). The
excursion of the fluid particles being small compared to the length of the blade, we may
also assume that the deflection remains small as well |x(s, t)| � 1. Neglecting all the
geometrical non-linearities in Eq. (3.8) thus yields the small-amplitude equation

x(4) + ẍ = αω2 cos(ωt)− λ |ẋ− αω sin(ωt)| (ẋ− αω sin(ωt)) (3.10)
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with boundary conditions x = x′ = 0 at s = 0 and x′′ = x′′′ = 0 at s = 1. Eq. (3.10) is
the standard cantilever beam linear oscillator, forced on the right-hand side by the fluid
inertia and the resistive drag. Note that only the non-linearities of geometrical nature
have been removed but the quadratic relative velocity term of the resistive drag has
been retained at this point. Indeed, the slenderness parameter λ that scales this term
is large and the order of magnitude of the whole resistive drag term depends as much
on the scaling of λ as it depends on that of α. Besides, no assumption has been made
regarding the characteristic time scale for the variations of x, and there is no reason to
presume that ẋ should be small compared to the free-stream velocity based on the sole
assumption that x is small.

If the period of the forcing is large compared to the characteristic response time of
the structure (ω < 1), we may assume that the structure is in static equilibrium with the
fluid forcing at all times. Consequently, we may neglect the velocity and acceleration
of the structure and Eq. (3.10) reduces to the small-amplitude static equation

x(4) = αω2

[
cos(ωt) + (λα) |sin(ωt)| sin(ωt)

]
(3.11)

The left-hand side of this equation now involves only the linearized stiffness force, while
the fluid forcing on the right-hand side is the same as that a perfectly rigid blade would
endure.

On the other hand, if the forcing varies with a period comparable to the characteris-
tic structural response time or faster (ω > 1), we may then assume that the amplitude
and the frequency of the response will scale as those of the forcing, as is usually the
case for linear oscillators (see for instance Blevins, 1990). We thus define the rescaled
deflection and time x̃ = x/α, t̃ = ωt, so that the small-amplitude equation (3.10) can
be written

1

ω2
x̃(4) + ¨̃x = cos(t̃)−KC

∣∣ ˙̃x− sin(t̃)
∣∣ ( ˙̃x− sin(t̃)

)
(3.12)

which now only depends on two parameters: the frequency parameter ω and a new
amplitude parameter KC = λα = (2CD/π)A/W that compares the fluid particles
excursion to the width instead of the length of the blade. This parameter is a problem-
specific formulation of the classical Keulegan-Carpenter number that compares the
respective magnitudes of the drag and the fluid inertial forces. When KC is small, the
fluid inertia dominates over drag and vice versa.

Let’s first look at the asymptotic limit of infinitely small amplitude of the forcing
KC → 0. The non-linear drag term can be neglected and Eq. (3.12) then simply
describes a linear oscillator with sinusoidal forcing due to the fluid inertial term. It can
be solved analytically and the solution is
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x̃(s, t̃) = 2
+∞∑

m=0

σm
km

ω2

k4m − ω2
Xm(s) cos t̃ (3.13)

with the wavenumbers km satisfying cos km cosh km + 1 = 0, the classical cantilever
beam modes Xm(s) = [cosh(kms)− cos(kms)] − σm [sinh(kms)− sin(kms)] and σm =
(sinh km − sin km) / (cosh km + cos km) (see Weaver et al., 1990).

Figure 3.5(a) compares the amplitude of the maximum deflection for different values
of KC , and for the asymptotic solution Eq. (3.13), as a function of ω. This analytical
solution is in good agreement with the model predictions for any KC ≤ 1, and it shows
that the system behaves as a high-pass filter in this range of the parameter space. As
the frequency increases, successive beam modes are excited and resonances occur when
the frequency of the forcing matches one of the natural modes of the structure ω = k2m.
For finite but small KC , drag acts as a damping term that saturates the amplitude
of the resonances but does not seem to affect significantly the modal shape of the
deforming structure. The deformation of the beam close to the first three resonances
(ω1 = 3.5, ω2 = 22.0, ω3 = 61.7) for KC = 10−2 on Figure 3.5(b) is indeed similar to the
corresponding beam modes X1, X2, X3 involved in the asymptotic solution Eq. (3.13).
Note that when KC is close to 1, the non-linear drag term is also responsible for a drift
of the resonance frequencies that has been studied in Arellano Castro et al. (2014).
This effect is not obvious on Figure 3.5(a) because of the very strong attenuation of
the resonance peak for KC = 1, but is more visible in the structural stress analysis of
Figure 3.9(a).

On the other hand, if we increase the fluid particles excursion beyond the width
of the structure (KC � 1), a change in physical behaviour occurs. Drag becomes
the dominant term in Eq. (3.12). The leading order solution now is x̃(s, t̃) = cos t̃,
which amounts to considering that the structure is convected exactly with the fluid
particles. Therefore, we may call this regime the convective regime. This solution is
however incompatible with the boundary condition at the clamped edge x̃(0, t̃) = 0, so
an elastic boundary layer develops close to the clamping point. The relative magnitude
of the terms in Eq. (3.12) suggests that the thickness of the boundary layer scales as
δ = (KC ω2)−1/4. Rescaling the curvilinear coordinate ŝ = s/δ in Eq. (3.12) provides
the leading order equation for the inner solution

∂4ŝ x̃ =
∣∣ ˙̃x− sin(t̃)

∣∣ ( ˙̃x− sin(t̃)
)

(3.14)

with boundary conditions x̃ = ∂ŝx̃ = 0 at ŝ = 0 and ∂2ŝ x̃ = ∂3ŝ x̃ = 0 at ŝ = 1/δ.
The dynamic deformation of the structure displayed on Figure 3.5(c) for KC = 102

for the same values of frequency ratios as on Figure 3.5(b) clearly shows the concen-
tration of the curvature close to the clamped edge and the passive convection of the
main part of the structure. The resonances previously observed in the modal regime on
Figure 3.5(a) are now completely damped out when KC = 102. Compared to the case
KC = 1, this curve is shifted one decade to the left as the proper scaling parameter is
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Figure 3.5: (a) Amplitude of the maximum scaled deflection obtained with Eq. (3.12)
against the frequency ratio. KC = 10−2 (—–), KC = 100 (− − −), KC = 102 (− ·−).
Analytical solution for KC → 0 ( · · · · ). (b) Snapshots of the beam over one cycle
obtained with Eq. (3.12) for KC = 10−2 (modal regime) and for ω = ω1 (resonance of
mode 1), ω = ω2 (resonance of mode 2), ω = ω3 (resonance of mode 3). (c) Same as
(b) but with KC = 102 (convective regime).

now
√
KC ω instead of ω, and

√
KC = 10 for KC = 102. The scaling of the boundary

layer thickness δ is similar to that of the effective length of Luhar and Nepf (2016),
as it is based on the equilibrium between the same forces. A similar problem had also
been considered in Mullarney and Henderson (2010). In the case of a wave-like flow,
the authors neglected the quadratic non-linearity in order to get an analytical solution.
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3.3.2 Large amplitude of flow oscillation

In the convective regime discussed above, the structure is purely convected with the fluid
particles on most of its span over the whole cycle. But when the amplitude becomes
larger than the length of the structure, geometric saturation of the deflection occurs
because the structure cannot extend further than its own length. The deflection is now
of order x = O(1) and so we cannot neglect the geometrical non-linearities of Eq. (3.8)
anymore. The slenderness λ becomes the relevant parameter to compare drag to the
fluid inertial forces in lieu of the Keulegan-Carpenter number KC . Because we only
consider elongated structures λ � 1 in this study, drag will always be the dominant
term in the large-amplitude regime.

The dynamic deformations obtained with Eq. (3.8) in two cases with similar ampli-
tude α = 102 and slenderness λ = 12.7 but different frequencies are compared on Figure
3.6 with 100 snapshots per cycle with constant time interval. In the small frequency
case (a), the deformation looks quasi-static. Transition from one side to the other is
slow (many snapshots distributed from left to right) and the curvature is essentially
concentrated near the clamped edge during the whole cycle. On the other hand, in the
larger frequency case (b), the structure switches sides very fast (few snapshots visible in
the center while many are superimposed on the sides) and curvature waves propagate
very quickly along the span during reversal. Therefore, the cycle may be decomposed
into two steps: first, a fast reversal period during which the structure switches from one
side to the other immediately after flow reversal, followed by a longer period of quasi-
static adaptation to the increasing magnitude of the drag. Because the dominant drag
force λ|Un|Un ∝ λα2ω2 is proportional to ω2, the maximum drag is larger in the large
frequency case on Figure 3.6, which explains why the maximum deflection is enhanced.
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Figure 3.6: Snapshots of the deforming structure over one cycle (—–) and tip trajectory
(−−−) obtained with Eq. (3.8) for λ = 12.7, α = 102. (a) ω = 10−2, (b) ω = 1.

To estimate the time scale of reversal Tr, let’s assume that shortly before flow
reversal, the structure is fully reconfigured on one side x(s = 1, t = 0) = −1. At flow
reversal t = 0, drag starts pushing the structure to the other side. Let’s assume that
the blade is purely convected until it is fully reconfigured on the other side at the end
of the reversal time x(s = 1, t = Tr) = 1. In that case, we may write
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2 = xtip(Tr)− xtip(0) =

∫ Tr

0

αω sin(ωt)dt '
∫ Tr

0

αω2tdt =
1

2
α(ωTr)

2 (3.15)

where the linearization holds owing to the fact that reversal occurs on a time scale much
smaller than the period of the cycle (ωTr � 2π). We finally obtain Tr = 2/(ω

√
α).

This expression of the reversal time is normalized by the scale of the natural period
of the structure. It is more relevant than ω to assess the quasi-steady nature of the
deformation in the large-amplitude regime because it compares only the time scale
on which structural motion is significant (instead of the whole cycle period) to the
characteristic structural response time. Indeed, on Figure 3.6(a), the large reversal time
Tr = 20 allows the structure to be in quasi-static equilibrium with the fluid loading at
all times. Conversely, on Figure 3.6(b) the small reversal time Tr = 0.2 is responsible
for the propagation of curvature waves during reversal. Hence, when Tr � 1, the
structure is in static equilibrium with the fluid forces during the whole cycle, while the
quasi-static character of the deformation is lost during the fast reversal when Tr � 1.

A zoom on the trajectory of the tip around flow reversal in the case of Figure 3.6(b)
shown on Figure 3.7 (solid line) confirms that reversal occurs approximately between
t/Tr = 0 and t/Tr = 1. When the slenderness parameter is increased (broken lines,
λ = 127), the time scale of the dynamics remains unchanged. The same graphs for the
same Tr but for a smaller or a larger amplitude (α = 10 and α = 103 respectively),
not shown here, are practically indistinguishable from that on Figure 3.7. This result
confirms that the amplitude and frequency parameters influence the kinematics of the
reversal exclusively through the combined parameter Tr. Besides, because the structural
mass was neglected, no dynamic excitation possibly resulting from the violent reversal
is allowed to persist after Tr.
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Figure 3.7: Horizontal displacement of the tip during flow reversal against the rescaled
time t/Tr, for α = 102, Tr = 0.2 (ω = 1) and λ = 12.7 (—–), λ = 127 (−−−).
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3.3.3 Summary of the kinematic regimes

So far we have found that depending on the amplitude and frequency of the oscillating
flow with respect to the dimensions and natural frequencies of the blade, four different
kinematic regimes may exist. Their respective locations in the parameter space are
summarized on Figure 3.8.

First, if the amplitude is much smaller than the length of the blade (α � 1 or
equivalently A � L) and the frequency of the flow smaller than that of the structure
(ω < 1 or equivalently Ω < 1/Ts), the structure is in static equilibrium with the fluid
forces at all times. On the other hand, if the frequency is now comparable or larger
than the characteristic structural frequency (ω > 1 or equivalently Ω > 1/Ts), the
kinematics further depends on the ratio of the amplitude of the flow to the width of
the structure. If the amplitude is much smaller than the width of the blade (A � W ,
or equivalently KC = λα � 1), the structure behaves as a linear oscillator and we
are in the modal regime. If the amplitude is large compared to the width, but small
compared to the length (W � A � L, or equivalently KC = λα � 1 and α � 1), an
elastic boundary layer develops close to the clamped edge in which all the curvature is
confined, while the rest of the structure is passively convected with the fluid particles.
This convective regime occurs because of the saturation of the drag term in the small-
amplitude equation (3.10).

Now, if the amplitude is increased further and becomes larger than the length of the
blade (A� L or equivalently α� 1), the convection of the blade by the fluid is limited
to its own length and the blade deformation is subject to geometric saturation. The
convection process is therefore limited in time to a short reversal period, right after flow
reversal, and during which the blade switches side at the speed of the fluid particles,
followed by a longer period of quasi-static adaptation to the increasing magnitude
of the drag force. If reversal occurs on a longer time scale than the characteristic
structural response time (Tr ∼ 1/(ω

√
α) � 1), the structure has time to reach the

static equilibrium with the fluid forces at all time. Conversely, if reversal is faster than
the characteristic time of the structure (Tr ∼ 1/(ω

√
α)� 1), the quasi-static nature of

the large-amplitude structural response is lost during the short time needed for reversal.
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Figure 3.8: Schematic view of the kinematic regimes in the amplitude-frequency space.

3.4 Structural stress analysis

3.4.1 Stress reduction due to flexibility

Depending on the kinematic regime, we expect that the consequences of flexibility in
terms of magnitude and repartition of the internal stresses will vary. Our main interest
is to assess whether flexibility makes a blade more or less likely to break in a given
flow. Structural failure may occur when, at a given time t, the stress due to the loads
exceeds a given threshold called the breaking strength, at some location within the
structure. For an Euler-Bernoulli beam in two dimensional bending, the stress tensor
may essentially be reduced to two components, the tensile (or compressive) stress στ
and the shear stress σn. Both quantities vary along the span but also within the cross-
section. The maximum tensile stress is reached at the edges of the cross-section and
depends linearly on the internal bending moment στ ∝MD/I ∝M/WD2. Conversely,
the shear stress reaches its maximum on the neutral axis and it is proportional to
the internal shear force σn ∝ Q/WD. Thus, following the dedicated terminology of
Gosselin et al. (2010), we may define two reconfiguration numbers

Rτ =
max |M(s, t)|

max |Mrigid(s, t)|
, Rn =

max |Q(s, t)|
max |Qrigid(s, t)|

(3.16)

that compare the maximum stresses endured over a cycle at any point along the struc-
ture to the maximum value the same structure would have to endure if it were rigid.
The reconfiguration numbers are smaller than one if the flexibility is beneficial in terms
of internal stresses, and larger than unity if it is detrimental.

Our shear reconfiguration number Rn is equivalent to the reconfiguration number
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defined in Gosselin et al. (2010) and used in Chapter 2, in the static case. Their
definition is based on the total drag Q(s = 0) instead of the maximum of the shear
force max |Q|, but the shear force is in fact maximum at the clamped edge in their case
so it is equal to the total drag. Our Rn is also quite similar to the effective length
defined by Luhar and Nepf (2016), only the latter was based on the RMS value of the
total drag Q(s = 0) instead of the spatio-temporal maximum of Q. This is so because
the goal of Luhar and Nepf (2016) was to provide insight about how flexibility affects
energy dissipation in the background flow, while our focus is the ability of the structure
to withstand the fluid loads. For the sake of simplicity, in the rest of this chapter we
will only present results about the shear stress σn and shear reconfiguration number
Rn. The results about the tensile stress are actually quite similar and will be provided
in Appendix C.

3.4.2 Rigid case

In the case of a perfectly rigid structure, the combination of the external fluid forces
Eqs. (3.2) and (3.4) results in a span-invariant, purely horizontal load

qrigid(t) = αω2

[
cos(ωt) + (λα) |sin(ωt)| sin(ωt)

]
(3.17)

that also reads, in terms of the Cauchy number (CY = λα2ω2) and Keulegan-Carpenter
number (KC = λα)

qrigid(t) =
CY
KC

[
cos(ωt) +KC |sin(ωt)| sin(ωt)

]
. (3.18)

The first term is an inertia term, proportional to the flow acceleration, while the second
term is the resistive drag force proportional to the velocity squared. Integration from
the free tip provides the internal bending moment and shear force

Mrigid(s, t) = −1

2
qrigid(t) (1− s)2 , Qrigid(s, t) = −qrigid(t) (1− s) (3.19)

that are maximum at the clamped edge and max |Mrigid(s, t)| =
1

2
max |Qrigid(s, t)| =

1

2
max |qrigid(t)| with

max |qrigid(t)| =
CY
KC

if KC ≤
1

2
; CY

(
1 +

1

4K2
C

)
if KC ≥

1

2
. (3.20)

3.4.3 Small amplitude of flow oscillation

As for the kinematics, let’s first consider the case where the amplitude of forcing is
small compared to the length of the structure (α� 1). Depending on the value of the
Keulegan-Carpenter number KC , the system will be in the modal or convective regime.
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The variations of the shear reconfiguration number with the frequency ratio are
shown on Figure 3.9(a) for different values of KC in the modal regime. Because the
system behaves as a high-pass filter, the blade remains rigid in the quasi-static limit ω <
1 and so there is no drag reduction in this regime Rn ∼ 1. For larger frequencies, the
reconfiguration number decreases overall but peaks at the successive resonances. The
magnitude of the peaks is mitigated when the Keulegan-Carpenter number is increased
due to damping by the drag term. The resonance frequencies are decreased as well owing
to the non-linearity of the drag term, as explained in Arellano Castro et al. (2014). But
when KC is small enough, the reconfiguration number may even exceed unity close to
the first resonances. In these particular cases, flexibility may therefore be responsible
for a magnification of the shear stress. Apart from the resonances, the slope of the
overall decay may be estimated by a scaling argument. Far from the resonances, the
amplitude of the deflection is of the order of the fluid particles excursion x = O(α). The
non-dimensional shear force Q = κ′, is thus of order O(α× k3) with the wavenumber of
the dominant mode k ∼ √ω, while the rigid shear force is of order O(CY /KC) = O(αω2)
according to Eq. (3.20). Thus, the shear reconfiguration number is Rn ∼ k−1 ∼ ω−1/2,
which is consistent with the slope observed on Figure 3.9(a).

Rn

ω

10−1

100

101

10−1 100 101 102

−1/2

sn

ω

0

0.2

0.4

0.6

0.8

1

10−1 100 101 102

ω1 ω2 ω3 ω1 ω2 ω3(a) (b)

Figure 3.9: Shear reconfiguration number (a) and location of maximum shear stress
along the span (b), in the modal regime, against the frequency ratio, for KC = 10−2

(—–), KC = 10−1 (− ·−), KC = 100 (− − −), and analytical solution for KC → 0
( · · · · ).

As shown on Figure 3.9(b), the location sn along the span of the blade where the
maximum shear stress max(σn) is reached varies with the frequency. In the rigid domain
ω < 1 the maximum stress remains at the clamped edge, until the first resonance is
reached. After ω1, the maximum stress starts moving from the clamped edge towards
the free tip as Rn decreases, before suddenly going back to the clamping point as Rn

starts increasing again, until the second resonance is attained. Similarly, after ω2, the
locus moves again as Rn decreases and then comes back as Rn starts increasing towards
the next resonance, and so on. This trajectory of the most solicited spot is independent
of KC , except close to the transition towards the convective regime. Indeed, for KC = 1,
the maximum shear stress remains at the clamping point for any value of the frequency



3.4. Structural stress analysis 63

ratio.

In the convective regime KC > 1, we have shown that all the curvature concen-
trates within an elastic boundary layer of typical size δ = (KC ω2)−1/4 close to the
attachment point. Consequently, the location of the maximum stress is always located
at the clamping point in the convective regime. Besides, the variations of the shear
reconfiguration number Rn, displayed as a function of the frequency ratio on Figure
3.10(a), all collapse on the same curve when replotted as a function of KC ω

2 on Figure
3.10(b). Even the transition case KC = 1 also follows the same trend on average, but
still exhibits some variations and small resonances due to the persistent modal nature
of the response. When KC ω2 < 1, the scale of the boundary layer exceeds the length
of the structure so the blade behaves rigidly and Rn ∼ 1. Conversely when KC ω

2 > 1,
the motion allowed by the flexibility is responsible for an alleviation of the internal
shear stress. We may estimate the slope of the asymptotic decay by a similar argu-
ment as in the modal regime. Assuming that the characteristic bending length scales
as the boundary layer thickness δ, we now have Q ∼ O(α × δ−3) and the rigid shear
force of order O(CY ) = O(αδ−4). We thus obtain Rn ∼ δ ∼ (KC ω2)−1/4, in agree-
ment with Figure 3.10(b). Note that, as illustrated on Fig. 3.10(a), reconfiguration
in the elastic boundary layer occurs even in the quasi-static regime ω < 1 provided
that KC ω2 > 1. Indeed, in this particular case, the rigid force qrigid that appears on
the right-hand side of the small-amplitude static equation (3.11) would actually lead to
static deformations exceeding the excursion of the fluid particles. This is not possible
in this drag-dominated regime as only strong inertial forces can cause the structure to
overshoot the fluid particles. The drag term of Eq. (3.12) thus ensures the limitation
of the structural excursion to that of the fluid particles, while only the elastic boundary
layer that develops close to the clamped edge actually satisfies the quasi-static equi-
librium between the elasticity forces and the drag (which amounts to neglecting the ˙̃x
terms in the boundary layer equation (3.14)). Consequently, the scaling of the drag as-
sociated with reconfiguration in the elastic boundary layer remains valid in this domain
as well.

3.4.4 Large amplitude of flow oscillation

In the large-amplitude regime (α > 1), we have proven that significant structural motion
may only occur during a short period of time Tr following flow reversal (ωt = 0). During
that time, the flow magnitude is close to zero and the drag force is at its minimum. Drag
being the dominant term of the equation, we expect the largest stress to be experienced
when it is at its maximum around ωt = ±π/2, at a time where the structure is in quasi-
static equilibrium with the flow forces. Besides, the flow acceleration cancels out when
the flow magnitude is maximum so that, at the time where the stress peaks, Eq. (3.8)
reduces to the static equation
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Figure 3.10: Shear reconfiguration number in the convective regime against (a) the
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κ′′ +
1

2
κ3 − CY

[
| cos θ| cos θ − 1

λ
κ

(
sin2 θ − 1

2
cos2 θ

)]
= 0. (3.21)

In the quasi-static part of the cycle, the amplitude and frequency parameter influence
the shape of the structure and the internal stress only through the Cauchy number
CY = λα2ω2. Consequently, the evolution of the shear reconfiguration number shown
on Figure 3.11(a) as a function of the frequency ratio ω (for λ = 12.7) collapse very well
on the static curve obtained with Eq. (3.21) when replotted as a function of the Cauchy
number on Figure 3.11(b). The curves are perfectly superimposed for α = 10, but even
for α as small as 1, agreement is already very good. When the Cauchy number is inferior
to 1, deflection is negligible so Eq. (3.21) actually reduces to the small-amplitude static
equation (3.11). In this limit, even though the amplitude of the forcing is large α > 1,
we actually recover the small-amplitude static regime in which the structure experiences
the same amount of stress as if it were rigid Rn ∼ 1.

On the other hand, when the Cauchy number is large CY > 1, the stress is much
reduced. In the limit where drag dominates over the added mass corrective term (limit
of infinite slenderness λ → ∞), the static equation (3.21) has a self-similar structure.
The scaling of the terms of the equation provides the length of the self-similar boundary
layer `s = C

−1/3
Y within which all the curvature concentrates. Consequently we may

here again estimate the asymptotic behaviour of the shear reconfiguration number by
a scaling argument. In this case, the saturated angle θ is of order O(1) so the shear
force Q = κ′ ∼ O(1 × `−2s ). The rigid shear force is of order O(CY ) = O(`−3s ) so we

get Rn ∼ `s ∼ C
−1/3
Y . The slope on Figure 3.11(b) is close but differ slightly from

that estimation. The analysis of Appendix D shows that this discrepancy is due to
the rather small value of λ = 12.7. For any larger slenderness, the asymptotic scaling
provided here matches very well the numerical results. Note that this bending length is
similar to that previously found by Gosselin et al. (2010) who neglected the cubic term
in curvature in their governing equation, as well as that found by Alben et al. (2004)
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for the case of a 2D plate (opposite limit of infinite width). The extended validity of
this static bending length to the case of large-amplitude unsteady flows was moreover
suggested in Luhar and Nepf (2016).

Note finally that this analysis is independent of the magnitude of the reversal time
Tr. The key point of this analysis lies in the fact that even if significant dynamics may
be involved during reversal when Tr � 1, the maximum stress is endured at a time
when the structure is in static equilibrium with the fluid forces. This remains obviously
true when Tr � 1 and static equilibrium is enforced at all times.
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Figure 3.11: Shear reconfiguration number in the large-amplitude regime for λ = 12.7,
against (a) the frequency ratio ω, (b) the Cauchy number CY , for α = 100 (− − −),
α = 101 (—–). Static solution obtained with Eq. (3.21) (· · · · , on (b) only).

3.5 Discussion

3.5.1 Stress alleviation due to flexibility and bending length

Depending on the values of the amplitude and frequency of the oscillating flow, we have
identified four distinct kinematic regimes summarized on Figure 3.8. In each regime, the
consequences of the flexibility on the magnitude of the internal stress are different. The
varying scalings of the shear reconfiguration number Rn depending on the amplitude
and frequency of the flow are schematically displayed on Figure 3.12.

As long as the forcing is dominated by the inertial forces (in the modal regime
A � W ), there exists a risk of resonance if the frequency of the flow matches one of
the natural frequencies of the structure. This is a case where the dynamical motion
allowed by the flexibility may be responsible for a magnification of the internal stress.
However, this is also the region in the parameter space where the loading is the lowest
and so this is unlikely to cause any severe damage. Far from the resonances and in all
other cases, flexibility always alleviates the magnitude of the internal stress.

The general scaling of the reconfiguration numbers is related to some characteristic
bending length `b such that Rn ∼ `b and Rτ ∼ `2b (see Appendix C), but the scaling
of that very bending length depends on the reconfiguration regime. In the modal
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Figure 3.12: Schematic view of the reconfiguration regimes in the amplitude-frequency
space.

regime (A� W ), the bending length is proportional to the wavelength of the dominant
mode that varies as `b = k−1 = ω−1/2. In the convective regime (W � A � L),
curvature is confined in the elastic boundary layer so naturally `b = δ = (λα)−1/4ω−1/2.
The characteristic bending length varies continuously between the two small-amplitude
regimes as their expressions are similar at the transition when KC = λα = 1. On the
other hand, in the large-amplitude regime (A � L) the bending length transitions to

`b = `s = C
−1/3
Y = (λα2ω2)−1/3. The boundary of the rigid domain with the three

different reconfiguration regimes is nonetheless continuous as illustrated on Fig. 3.12.

3.5.2 Consequences in terms of growth pattern of aquatic flex-
ible plants

In any of the three reconfiguration regimes, the reconfiguration numbers scale in di-
mensional form with the length of the blade as Rn ∼ L−1 and Rτ ∼ L−2. Given the
scalings of the rigid loads and of the internal stresses in Section 3.4.1, we thus obtain
the cancellation of the dependency of the dimensional forces and internal stresses on
the actual length of the blade σn ∝ Q ∼ L0 and στ ∝ M ∼ L0. This loss of relevance
of the true length of the structure in aid of a smaller characteristic bending length was
already pointed out in the steady case (see de Langre et al., 2012) and remains valid
in the oscillatory case. Consequently, it does not seem as if there is any mechanical
limit to size in wave-swept flexible kelps, as long as growth is concentrated in the axial
direction.

But real plants grow according to more complex allometric patterns (Gaylord and
Denny, 1997; Denny and Cowen, 1997). Following the growth of a plant in the vari-
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ables of Figure 3.12 amounts to decreasing α from the top. In the static reconfiguration
regime, the internal stresses σn and στ are both independent of any of the three dimen-
sions D, W , L and so growth does not affect the magnitude of the stresses in a given
environment, no matter the allometry of the plant. When the structure reaches the
convective regime (L ≥ A), the stresses become decreasing functions of the thickness D
but remain independent of W and L. One might think that a growth pattern favouring
thickness would be advantageous, but this is only so for thin plates D < W for which
the elastic effects are confined in the plane of the flow. A thicker structure might expe-
rience 3D deformations that would considerably complexify the dynamics. Finally, in
the modal regime (W ≥ A), the stresses now start increasing with the width W , and
the risk of resonances may enhance the stresses even more depending on the frequency
of the flow. It thus appears detrimental for a flexible plant to grow in width in excess
of the fluid particle excursion.

These remarks come as complementary answers to the work of Koehl (1984) and
especially Denny et al. (1985), Gaylord et al. (1994) and Denny (1999). Koehl (1984)
first noted that “flexibility in combination with great length provides a mechanism of
avoiding bearing large forces in habitats subjected to oscillating flow”, in comparison
to rigid organisms that need to remain small. However the question of whether there
might be size limits imposed on wave-swept flexible organisms due to the oscillatory
fluid loading has never received a definitive answer. Our results indicate that for slen-
der, neutrally buoyant blades, the hydrodynamic loads do limit the width, but put no
constraints on the axial growth.

3.5.3 Remarks on previous work about the convective regime

Most aquatic plants are close to neutrally buoyant and the horizontal amplitude of the
passing waves is typically much larger than the width if not the length of these plants
(see Gaylord et al., 1994; Gaylord and Denny, 1997; Denny and Cowen, 1997). Thus it
seems that plants growing larger than the fluid particles excursion are likely to remain
in the convective regime in order to avoid large flow-induced stresses. The work of
Mullarney and Henderson (2010) and Luhar and Nepf (2016) has focused mainly on
this convective regime. The latter show on their Figure 11 that their effective length
(analogous to our normal reconfiguration number Rn) seems to scale as (CY /α)−1/4 =
(λαω2)−1/4 = δ. This result is consistent with the scaling of the elastic boundary
layer that develops in the convective regime, and indeed almost all the experimental
cases of Luhar and Nepf (2016) were obtained within the appropriate range α ≤ 1 and
KC ≥ 1 (more precisely 0.06 ≤ α ≤ 1.32 and 0.76 ≤ KC ≤ 4.2). However, because the
slenderness parameter of their blades is rather low (between λ = 3.2 and λ = 12.7), α
and KC are quite close to each other and consequently most of their points are very
close to either one of the boundaries of that regime. Some particular points in that
study show an increase of the load compared to the rigid case. The authors suggested
that this might result from an interaction between the blade and the vortex shed at
the tip. But these points are characterized by a rather small amplitude α = O(10−1)
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and Keulegan-Carpenter number KC ∼ 0.7 − 1.2, and forcing frequencies close to the
resonance frequency ω ∼ 1−5. For instance, the largest load was obtained for (α = 0.12,
KC = 0.76 and ω = 2.30). It is thus a possibility that the load enhancement is simply
the consequence of a resonance of the impinging wave with the first natural mode of
the structure, due to the persistent modal nature of the dynamic response for such
values of the parameters. Conversely, other points obtained for α = O(1) seem to
collapse quite well with the others. We have shown that for such high values of the
amplitude parameter, at least when λ = 12.7, the reconfiguration number should be
close to its static equivalent. But if very slender structures exhibit a clear asymptotic
regime Rn ∼ C

−1/3
Y , decreasing the slenderness below O(10) mitigates the efficiency

of the reconfiguration and increases the slope so that it may be difficult to know the
difference with the scaling of the convective regime.

3.5.4 Limits and extensions of the model

In all this study we have focused exclusively on the case of an infinitely thin, neutrally
buoyant blade. These two assumptions have allowed us to neglect both the displaced
mass and the structural mass. In practice however, aquatic plants are not strictly
speaking of the same density as the water and their thickness might not be negligible.

First, if the thickness of the neutrally buoyant blade is not negligible anymore, we
need to consider the inertial and virtual buoyancy forces. These forces might be re-
sponsible for additional inertial effects in the large-amplitude regime, such as persistent
oscillations following the quick reversal with Tr < 1, or a flutter instability similar to
that observed on axial flags. The effects of such flapping motion is discussed in detail
in the next chapter. The dynamics induced would then be responsible for additional
loads that may challenge the findings of that study. However, we expect the conse-
quences to remain marginal, as damping by the drag term would still dominate. This
is even more so as the slenderness is increased and for infinite slenderness, we do not
expect any significant discrepancy with the present work. Besides, the small-amplitude
regimes would not be affected in any way as equation (3.10) would remain the same,
providing that the characteristic time of the structure used for non-dimensionalization
is redefined to account for the structural mass Ts = L2

√
(ma +m)/EI.

If the structure is now lighter than the fluid, then its inertia is even more negligible.
Buoyancy may still modify our results, but this effect should become negligible as soon
as the fluid loading is dominant as explained in Luhar and Nepf (2011) and Luhar and
Nepf (2016).

On the other hand, if the structure is much denser than the fluid, some more compli-
cated dynamical effects might come into play due to the large structural inertia possibly
overcoming even drag. We do not expect the conclusions of the present work to hold
in that case.
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3.6 Conclusion

The work presented in this chapter provides a dynamical extension of the theory of
reconfiguration to the case of oscillatory flow. Focusing on neutrally buoyant cantilever
slender blades, we proved that flexibility is always favourable to reducing the internal
stresses as long as drag dominates the fluid inertial forces. In fact, drag appears as
the motor of reconfiguration. In large-amplitude oscillations (or equivalently in steady
flow), drag is responsible for the static deflection that reduces the stress. In small-
amplitude oscillations, it is also the saturation of the drag term that forces the passive
convection of the structure with the fluid particles if the Keulegan-Carpenter number
is large. Even in the less favourable case of small Keulegan-Carpenter numbers, it is
the small drag term that saturates the resonances that occur due to the fluid inertia,
even when the structural inertia is negligible. We also expect that drag would saturate
flutter-like oscillations that might occur if the structural mass were not negligible, thus
limiting the enhancement of the internal stresses to a bearable extent (see Chapter 4
for more details).

As in the static case, we have shown that dynamic reconfiguration results in the
concentration of the stresses on a short bending length near the clamped edge, only the
scaling of that bending length varies depending on the dynamic regime. Besides, the
scaling of the bending length in the static regime also depends on the spatial variability
of the system, and the scaling of the bending length depending on the intensity of the
non-uniformities was provided earlier in Chapter 2.

Note that the dependency of the internal stresses on the actual length of the struc-
ture disappears in the reconfiguration regimes, so there does not seem to be any me-
chanical limitation to the axial growth of plants living in wave-swept environment due
to the hydrodynamic loads. However, in order to avoid deleterious inertial effects, it
seems preferable to keep a width much smaller than the excursion of the fluid particles.
In other words, if there is no limitations to growth in itself, there is an incentive to
grow slender based on mechanical considerations. Of course, the actual growth pattern
of aquatic plants also involves other aspects such as the optimization of its biological
functions that we do not take into account here.

Finally, only the inertia of the fluid has been accounted for in this work. We expect
the inclusion of significant structural inertia should considerably modify the results of
the present work. Even in the case of a uniform and steady flow, we anticipate that
the inclusion of the structural inertia in the balance of forces may result in a dynamic
instability. This effect is investigated in the next chapter.
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Chapter 4

Flutter of reconfiguring structures

Preamble

In Chapter 3, the inertia of the structure was neglected based on the assumption that
it was flat and neutrally buoyant. The dynamics of the structure was consequently
entirely due to the unsteadiness of the free-stream itself. In this chapter, we relax
this assumption in order to investigate the possible dynamic coupling that may arise
between the flow and the structure, and the consequences it may have on the drag of
the structure.

As explained in the introductory chapter, most existing studies on reconfiguration
in steady flows assume a static structural deflection, but the flow-structure coupling
may be the source of a dynamic motion similar to that observed on flags flapping in
the wind, in a time-varying or even in a steady free-stream. The very occurrence of
dynamics induces inertial loads on the structure, and one may wonder whether flexibility
is associated with lower or larger drag in that case, compared to a rigid structure that
does not reconfigure but does not flap either.

As in the whole thesis, we still consider in this chapter the model system of a can-
tilever slender beam clamped transverse to the flow, and perform numerical simulations
based on reduced order models. In order to relax the assumption on the structural mass,
we do not make additional assumptions regarding the geometry of the cross-section or
the density of the structure anymore. For the sake of simplicity, we limit this study to
the self-induced, two-dimensional dynamics of structures that reconfigure in a uniform
and steady background flow.

As in Chapter 2, the results are presented in terms of the modulation of the total
drag force to remain consistent with previous work on reconfiguration in steady free-
streams. Note however that here again, the maximum shear stress in the structure is
located at the clamped edge and balances the total drag force, so that the results for
the drag displayed in this chapter are equivalently valid for the internal shear stress.
Besides, due to the absence of asymptotic regime for the drag in the limit of large
deflections when flutter occurs, the concept of Vogel exponent does not seem relevant
in this context so we directly discuss the variations of the reconfiguration number.

After a short introduction to provide some specific background elements regarding
the problem of flutter, we present the model and important parameters used throughout
the study. We then discuss the domain of stability of the static reconfiguration, the
post-critical flapping behaviour of the deflected structure, and finally the consequences
of flexibility in terms of total drag modulation when reconfiguration and flutter are both
considered. We finally conclude that the additional drag due to the flapping motion
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does mitigate the benefits of reconfiguration, but only rarely offsets the drag reduction
it provides. Isolated and brief snapping events may transiently raise the drag above
that of a rigid structure in the particular case of heavy, moderately slender beams.
But apart from these short peak events, the drag force remains otherwise significantly
reduced in comparison with a rigid structure.

The results presented in this chapter have been published in the Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences.
The paper (Leclercq et al., 2018) is attached at the end of the thesis. Compared to
the present chapter, the paper includes a slightly more furnished introduction, and
more details about the model that have already been provided in the previous
chapter. The rest of the content is similar.
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4.1 Specific background elements about flutter

The flapping of flags in the wind illustrates that structures parallel to the flow are
prone to self-induced dynamic oscillations (Kornecki et al., 1976; Huang, 1995; Watan-
abe et al., 2002; Connell and Yue, 2007; Michelin et al., 2008; Shelley and Zhang, 2011).
This flag flutter instability results from the competition between the destabilizing aero-
dynamic pressure forces and the stabilizing rigidity of the structure, so slender struc-
tures in axial flow are liable to it as well (Datta and Gottenberg, 1975; Yadykin et al.,
2001; Päıdoussis et al., 2002; Semler et al., 2002; Lemaitre et al., 2005; de Langre et al.,
2007). A few authors have tried and assessed the drag of such structures theoretically
(Moretti, 2003), numerically (Yadykin et al., 2001), and experimentally (Fairthorne,
1930; Hoerner, 1965; Taneda, 1968; Carruthers and Filippone, 2005; Morris-Thomas
and Steen, 2009; Wilk and Skuta, 2009; Virot et al., 2013). All these studies prove that
the onset of flutter is associated with a large increase of the drag force, whose magnitude
is strongly correlated to the periodicity and the envelope of the flutter mode.

Cantilever structures that bend in a transverse flow become more and more aligned
with it, so that the flow about sufficiently deflected beams becomes mostly axial. If
reconfiguration is known to have a drag-lowering effect that protects the structural
integrity, the possible fluttering of highly reconfigured beams may on the other hand
be responsible for a magnification of the drag possibly leading to damage or breakage.
In the literature, the small-amplitude vibrations of a naturally curved rod in a flow has
been considered in Ni et al. (2014), as well as the flapping dynamics of plates clamped
in axial flow at their trailing edge instead of their leading edge (the so-called inverted
flag problem (Gurugubelli and Jaiman, 2015; Tang et al., 2015; Sader et al., 2016)), and
the flow-induced instability of filaments clamped at their trailing edge but deflected by
gravity (Schouveiler et al., 2005). However, very little is known about the self-induced
dynamics of structures passively bending under the effect of the flow, and even less
about whether the resulting drag force is overall enhanced or reduced. The goal of this
work is thus to determine if, and to what extent, the occurrence of flutter may impair
the drag reduction abilities of flexible structures in transverse flow compared to rigid
ones. We will focus on the case of cantilever, elongated beams of arbitrary but uniform
cross-section.

4.2 Model

We consider the problem depicted on Figure 4.1. A structure of length L, width W ,
thickness D and mass per unit length m is clamped perpendicular to a uniform and
steady flow of velocity U of a fluid of density ρ. As in the previous chapters, we
still assume the structure may only bend in the xz-plane, and we model it as a two
dimensional Euler-Bernoulli beam (Audoly and Pomeau, 2010).

To model the dynamic behaviour of the structure in the flow, we use the same
reduced order models for the structure and for the fluid forces as in Chapter 3. We
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Figure 4.1: (a) Side view of the deforming structure. (b) Examples of geometries of
two undeformed structures with different cross-section shapes.

disregard the influence of gravity and buoyancy forces in this problem, and we restrict
our study to large Reynolds numbers so that friction drag is neglected (see de Langre
et al., 2007, for more details about the effect of friction on the flutter instability).
Besides, because the flow in this chapter is steady, the virtual buoyancy force (3.5)
does not contribute to the balance of forces. Thus, the external forcing by the fluid
reduces, as in Chapter 3, to the combination of the resistive drag qd given in equation
(3.2) and reactive force qam given in equation (3.4). However, we do not make any
assumption regarding the mass of the structure, so we cannot neglect the inertia of the
structure on the left hand-side of the dynamic equilibrium equation (3.1) anymore. The
governing equation (3.6) supplemented with the inertial term now reads

mr̈ =

[
T +

1

2
EIκ2

]′
τ +

[
κT − EIκ′′

]
n+ qam + qd. (4.1)

This model is consistent with previous work on flutter of slender beams in axial
flow. The expression (3.4) (from Lighthill, 1971; Candelier et al., 2011) for the reactive
term qam has been extensively used in the literature for the linear stability analysis of
straight beams in axial flow (Päıdoussis, 1998; Lemaitre et al., 2005; de Langre et al.,
2007). Indeed, as emphasized in Eloy et al. (2007) and Singh et al. (2012a), it is the
potential component of the flow that is driving the instability. Moreover, when studying
the large-amplitude post-critical oscillations, an additional resistive contribution qd
associated with flow separation in the plane of the cross-sections has proved necessary to
avoid unrealistically large flapping amplitude (Singh et al., 2012a). The semi-empirical
formulation (3.2) of Taylor (1952) is unambiguously used in the literature as flapping
amplitude-limiting term in flutter studies such as Eloy et al. (2012), Singh et al. (2012a),
Singh et al. (2012b) or Michelin and Doaré (2013). Besides, in our case, the beam is
statically deflected by the effect of the cross-flow before it starts fluttering. The reactive
term qam vanishes on a straight and motionless beam, so the resistive contribution qd
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is essential to bend the beam into a configuration prone to flutter.

After projection on the tangential and normal directions and elimination of the
unknown tension T , Eq. (4.1) finally yields a single integro-differential equation on the
kinematic variables κ, θ, r

(m+ma)r̈ ·n−mκ
∫ s

L

r̈ · τ + EI

[
κ′′ +

1

2
κ3
]

+ma

[
κ

(
U2
τ −

1

2
U2
n

)
− 2θ̇Uτ

]
+

1

2
ρCDW |Un|Un = 0. (4.2)

As in Chapter 3 and following Päıdoussis (1998) and de Langre et al. (2007), we non-
dimensionalize all the variables using the length of the structure L and the scale of
the natural period of the structure in small-amplitude oscillations in the fluid Ts =
L2
√

(m+ma)/EI. We finally obtain, in non-dimensional form

r̈ ·n− (1−β)κ

∫ s

1

r̈ · τ +κ′′+
1

2
κ3 +β

[
κ

(
U2
τ −

1

2
U2
n

)
− 2θ̇Uτ

]
+βλ|Un|Un = 0 (4.3)

with the inextensibility condition r′ = τ , the boundary conditions r = 0, θ = 0 at
the clamped edge s = 0 and κ = κ′ = 0 at the free tip s = 1. The non-dimensional
relative velocity is given by Uττ + Unn = ṙ − u/

√
βex. This system is ruled by three

non-dimensional parameters that are

β =
ma

ma +m
, u = UL

√
ma

EI
, λ =

ρCDWL

2ma

=

(
2

π
CD

)
L

W
. (4.4)

The mass ratio β represents the amount of fluid inertia within the total inertia of the
system. It take values between 0 and 1. For instance, β → 0 for a very dense structure,
β = 0.5 for a neutrally buoyant cylinder with circular cross-section, and β → 1 for very
thin plates (D � W ). Note for instance that the assumption of small structural mass
m � ma made in Chapter 3 is equivalent to taking β = 1. The reduced velocity u
compares the relative magnitude of the fluid inertial (or reactive) load to the internal
elasticity forces. Both are classically used in studies about the flutter of slender beams in
axial flow, as in Päıdoussis (1998) or de Langre et al. (2007), while the third parameter
λ = O(L/W ) is the same slenderness parameter as in Chapter 3. It can be seen as
the ratio of the resistive drag to the reactive force. Because our model is only valid for
elongated structures, we are restricted to λ� 1.

As already mentioned, the flutter instability results from the competition between
the destabilizing effect of the reactive force and the stabilizing effect of the rigidity of the
structure. The reduced velocity u is therefore the natural parameter that governs this



76 Chapter 4 Flutter of reconfiguring structures

phenomenon. On the other hand, the static reconfiguration of the beam is primarily
due to the resistive drag overcoming the bending stiffness of the structure. The classical
non-dimensional parameter that compares these two forces is the Cauchy number CY
(Tickner and Sacks, 1969; Chakrabarti, 2002; de Langre, 2008). In the case of a slender
structure bending in transverse flow, we define the Cauchy number following Gosselin
et al. (2010) as CY = ρCDWL3U2/2EI. These two non-dimensional parameters are
redundant as they both provide scaling of the flow velocity with respect to the structural
stiffness. They are related via the slenderness parameter by CY = λu2. However, the
Cauchy number is more relevant to describe reconfiguration while the reduced velocity
is more relevant to discuss features of the flutter instability.

4.3 Stability of the static reconfiguration

In order to discuss the joint effect of flutter and reconfiguration, we first need to identify
the domain in which flutter may happen, and that in which the structure will reconfigure
without flapping. To do so, let’s first look for the stationary equilibrium solutions of the
governing equation (4.3). Removing all unsteady terms in Eq. (4.3) yields the static
equation

κ′′ +
1

2
κ3 +

CY
λ

(
sin2 θ − 1

2
cos2 θ

)
κ− CY cos2 θ = 0 (4.5)

with boundary conditions θ = 0 at s = 0 and κ = κ′ = 0 at s = 1. This equation is
independent of the mass ratio β, and depends exclusively on the Cauchy number CY
and the slenderness parameter λ. It is similar to the large-amplitude static equation
(3.21) found in Chapter 3. In the limit of infinite slenderness λ→ +∞, we recover the
model of (Gosselin et al., 2010), used in Chapter 2, based on the equilibrium between
the elastic forces and the resistive drag to describe static reconfiguration. In Chapter
3 and particularly in Appendix D, we have proved that the static contribution of the
reactive force O(CY /λ) is negligible as soon as the slenderness λ & 10 so that the
known results for the reconfiguration in steady flow remain valid for slender structures,
regardless of their actual aspect ratio, as long as the deflection remains static. However,
by analogy with beams in axial flow, we expect the static shape solution of Eq. (4.5) to
become unstable to some flutter instability as the flow velocity exceeds some threshold
and the structure aligns with the flow.

To determine the stability threshold, we make use of Lyapunov’s indirect method
as advocated in Dupuis and Rousselet (1992) and applied in Lundgren et al. (1979)
regarding the stability of cantilever fluid-conveying pipes with an inclined terminal
nozzle. Namely, for each value of the parameters, we perform a global linear stability
analysis of the dynamic governing equation (4.3) with the corresponding boundary
conditions, about the stationary equilibrium solution of Eq. (4.5) for that particular
set of parameters. Thus, we expand the instantaneous position vector and angle θ as
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r(s, t) = r0(s) + ξ(s, t) τ0(s) + η(s, t) n0(s) , θ(s, t) = θ0(s) + δθ(s, t) (4.6)

where the subscript 0 refers to quantities related to the stationary solution, and ξ, η
and δθ are small-amplitude time-dependent perturbations of the same order. At the
linear order, the tangential and normal vectors read

τ (s, t) = τ0(s) + δθ(s, t) n0(s) , n(s, t) = n0(s)− δθ(s, t) τ0(s). (4.7)

Linearisation of the inextensibility condition r′ = τ provides two relations between the
small variables

ξ′ − κ0η = 0 , δθ = η′ + κ0ξ. (4.8)

Making use of the boundary condition ξ = 0 at s = 0, we may rewrite the tangential
perturbation as

ξ =

∫ s

0

κ0η. (4.9)

Finally, injecting the expansion (4.6) in Eq. (4.3) and making use of (4.7), (4.8), (4.9),
we obtain the governing equation for the small-amplitude normal perturbation

η̈ − (1− β)κ0

∫ s

1

∫ s

0

κ0η̈

+ 2u
√
β

[
S0η̇

′ +

(
1

2
κ0 + λ

)
C0η̇

]

+

( [
u2
(
S2
0 −

1

2
C2

0

)
+

5

2
κ20

]
η′
)′

+ η(4) +

[
3

2
(κ20)

′′ + κ40

]
η

+ 2λu2C0

[
S0η

′ +
1

2
C0κ0η

]
= 0

(4.10)

where the notations C0 = cos θ0 and S0 = sin θ0 have been used for brevity, and with
the boundary conditions η = η′ = 0 at s = 0 and η′′ = η′′′ = 0 at s = 1. This equation
is consistent with previous work on slender beams in axial flow. Indeed, for θ0(s) = π/2
and κ0(s) = 0 (structure parallel to the flow in the static equilibrium configuration),
Eq. (4.10) reduces to

η̈ + 2u
√
βη̇′ + u2η′′ + η(4) = 0 (4.11)

which is the classical small-amplitude flutter equation for an undamped beam in axial
flow with no friction or gravity, used for instance in Päıdoussis (1998), Lemaitre et al.
(2005), or Päıdoussis et al. (2002).
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Following de Langre et al. (2007), we then assume a perturbation of the form
η(s, t) = φ(s)eiωt so that Eq. (4.10) turns into the quadratic eigenvalue problem

−ω2

[
φ− (1− β)κ0

∫ s

1

∫ s

0

κ0φ

]
+ 2iu

√
βω

[
S0φ

′ +

(
1

2
κ0 + λ

)
C0φ

]

+ φ(4) +

([
u2(S2

0 −
1

2
C2

0) +
5

2
κ20

]
φ′
)′

+ 2λu2C0S0φ
′ +

[
3

2
(κ20)

′′ + κ40 + λu2C2
0κ0

]
φ = 0

(4.12)
with the boundary conditions φ = φ′ = 0 at s = 0 and φ′′ = φ′′′ = 0 at s = 1.

To solve this numerically, the beam is discretized using N = 100 Gauss-Lobatto
points sk = 1

2
(1− cos((k − 1)/(N − 1)π)), and the derivatives and integrals are com-

puted respectively by Chebyshev collocation and using the Clenshaw-Curtis quadrature
formulae. For a given slenderness λ and mass ratio β, we first compute the static so-
lution of Eq. (4.5) iteratively by increasing the Cauchy number from the upright case
CY = 0. After each increment, we solve Eq. (4.5) with a pseudo-Newton solver (method
of citepbroyden1965) using the solution at the previous step as initial guess. Then, for
each value of CY (equivalently of u), we compute the eigenmodes φ(s) and eigenfrequen-
cies ω by solving Eq. (4.12) with the MatLab function quadeig (Hammarling et al.,
2013). To check convergence of the results with respect to the mesh, computations
with twice the number of points N = 200 were conducted and led to no significant
modification of the results. For instance, the static angle at the tip of the structure
θ0(s = 1) (solution of Eq. (4.5)) varied by less than 10−10 for any Cauchy number CY
between 10−1 and 105 and for the three values of λ considered (10, 102 or 103).

The stability thresholds are shown on Figure 4.2 in the β−u plane for different values
of the slenderness λ. Similarly to the axial case, the critical velocity increases with the
mass ratio so making the structure heavier or the fluid lighter has a destabilizing effect.
For instance, a given structure is much more likely to flap in air than in water, and
neutrally buoyant structures are always stable if they are close to flat (β → 1, situation
of Chapter 3) while they lose stability between around u ∼ 16 and 21 if they have a
circular cross-section (β = 0.5). For a given mass ratio, the critical velocity depends
very little on the slenderness. Therefore, it is indeed the relative magnitude of the
reactive fluid force and the structural stiffness that sets the onset of flutter regardless
of the magnitude of the resistive drag.

On the other hand, the same stability thresholds re-drawn in terms of the Cauchy
number on Figure 4.3 are obviously shifted with respect to one another as CY ∝ λ
for a given u. Consequently, the static equilibrium shapes at the critical velocity (also
shown on Figure 4.3) are more and more deflected as slenderness is increased. Thus,
we may deduce that the critical velocity does not depend on the preexisting curvature
distribution in the static equilibrium shape. More importantly, we may conclude that
elongation stabilizes reconfiguration. Indeed, the more slender a structure is, the larger
its critical Cauchy number CY,c, and so the more it may reconfigure statically before
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Figure 4.2: Critical velocity uc as a function of the mass ratio β, for λ = 10 (——),
λ = 102 (−−−), λ = 103 ( · · · ).

it loses stability and starts fluttering. Note finally that the critical Cauchy number is
always much larger than 1. Consequently, flutter may only occur on highly reconfigured
structures.
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Figure 4.3: Critical Cauchy number CY,c as a function of the mass ratio β and static
equilibrium shape at the stability threshold for two specific values of the mass ratio, for
λ = 10 (——), λ = 102 (−−−), λ = 103 ( · · · ).

Note that even for the most deflected cases (corresponding to λ → +∞) that are
almost parallel to the flow, the critical velocity does not converge to that of slender
beams in axial flow. This point is discussed in Appendix E.
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4.4 Post-critical kinematics

When the stability threshold is exceeded, the static solution of Eq. (4.5) cannot phys-
ically exist anymore. The static reconfiguration models are not valid in the unstable
domain and we ought to account for the self-triggered dynamics to properly assess the
drag. In this Section, we start by analysing the kinematics that takes place in the
post-critical regime in order to discuss its consequences in terms of drag in Section 4.5.

Hence, we now solve the full time-dependent non-linear equation (4.3) using a time-
stepping method. The time derivatives are computed using implicit second order accu-
rate finite differences. The time step is tuned for each case using the period Tlin and
growth rate σlin of the most unstable eigenmode found in the linear stability analysis.
It is chosen so that 100 iterations are performed over Tlin or 1/σlin, whichever is the
shortest. At t = 0, we combine a small contribution of the most unstable eigenmode
to the static solution to initialize the system. Then, at each time step, the boundary
value problem is solved with the pseudo-Newton solver used in the static case (Broyden,
1965). Computations are carried on a horizon such that 120 Tlin has passed, and the
amplitude of the most unstable eigenmode would have had time to grow by a factor of
1010 in the linear framework, whichever lasts the longest.

4.4.1 Kinematic regimes

For the sake of clarity, let’s first focus on the reference case of a neutrally buoyant cir-
cular cylinder (β = 0.5) with moderately large aspect ratio (λ = 10), before discussing
the influence of varying slenderness or mass ratio in Sections 4.4.2. We analyse both the
average and the extreme features of the dynamics, respectively through the standard
deviation and the amplitude (defined as half of the peak-to-peak amplitude measured
over the simulation horizon) of the tip vertical displacement on Figure 4.4. As is classi-
cal in flag flutter studies, three distinct regimes are identified depending on the value of
u (Connell and Yue, 2007; Alben and Shelley, 2008; Alben, 2008; Michelin et al., 2008).
Each regime is illustrated on Figure 4.4 for particular values of u in the thumbnails.
Below the critical velocity uc = 16.5, the structure is statically stable so the amplitude
of flapping is null. Right above the stability threshold, periodic flapping takes place.
The amplitude and standard deviation both sharply increase from zero, then decrease
very slowly for increasing u. The bumpy shape of these curves is most likely associated
with flapping mode switches (Alben, 2008; Michelin et al., 2008). The amplitude is con-
tinuous at the onset of the flutter, thus indicating that the instability is supercritical.
Periodic flapping is observed until u ∼ 62.7. Above that threshold, no limit cycle can be
identified in most cases and the motion is generally either quasi-periodic or chaotic. In
this non-periodic regime, the standard deviation of the tip displacement remains rather
continuous and of the same order of magnitude as in the periodic regime. On the
other hand, the amplitude of flapping measured over the simulation horizon is rather
erratic, due to the random nature of the dynamics. Overall, our results indicate that
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the amplitude jumps from being of the order of 0.12 to approximately 0.2. In fact, if
the loss of periodicity preserves the flapping amplitude on average, it is also associated
with the random occurrence of isolated, short, extreme events characterised by violent
accelerations. These so-called “snapping events” have also been reported in the axial
configuration (Connell and Yue, 2007; Alben and Shelley, 2008) and are known to be
responsible for drag peaks probably at the origin of the tearing of flags (Virot et al.,
2013). Note that, owing to the random occurrence of these peaks, their magnitude
may actually depend on the horizon of the simulation. Longer simulations would allow
more of the most extreme events to occur and would consequently lead most likely to
a larger, and smoother amplitude. The precise features of the non-periodic dynamics
such as its frequency spectrum or the probability distribution of the magnitude of the
snapping events are however out of the scope of this article. Note also that regular flap-
ping is still observed for some values of reduced velocity between u ∼ 72 and u ∼ 93,
corresponding to the lower flapping amplitudes on Figure 4.4. These occurrences are
disseminated among irregular flapping cases without a clear separation, so the bound-
ary of the periodic regime drawn on Figure 4.4 is actually more of a threshold above
which non-periodic motion is observed, but not exclusively.
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Figure 4.4: Vertical amplitude of flapping at the tip (blue) and standard deviation
(orange) versus the reduced velocity u, for β = 0.5, λ = 10. Static regime (S), periodic
regime (P) and non-periodic regime (NP). Examples of deformation modes are shown in
the thumbnails for u = 16.4 (�, static regime), u = 22.7 (◦, periodic regime), u = 67.3
(4, non-periodic regime). Static equilibrium shape superimposed (−−−).
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4.4.2 Influence of the slenderness and mass ratio

The kinematic regimes described above are affected if the slenderness or mass ratio are
varied.

For instance, the same data as in Figure 4.4 is displayed on Figure 4.5 for a structure
100 times more elongated λ = 103. First, the order of magnitude of the non-dimensional
amplitude of flapping is drastically decreased. Actually, it even seems that λ∆ztip =
O(1) so that the dimensional amplitude of flapping would scale with the width of
the structure, independently of its length. Similarly to the previous case, limit cycle
flapping takes place above the critical velocity uc = 20.8. But contrary to the previous
case, the motion remains periodic for the whole range of reduced velocity tested. As
u is increased, period multiplications and divisions successively take place, leading to
more complex flapping dynamics illustrated in the thumbnail for u = 78.0 on Figure
4.5. The trajectory of the tip makes several loops within a single period of the system
while it simply follows an eight-shaped trajectory in the simpler case u = 59.0. These
flapping modes are elaborate but remain nonetheless regular and no snapping event
is observed. Slenderness thus has a stabilizing effect on the non-linear dynamics as it
saturates the flapping amplitude and prevents irregular motion to take place at large
flow velocities.
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Figure 4.5: Vertical amplitude of flapping at the tip (blue) and standard deviation
(orange) versus the reduced velocity u, for β = 0.5, λ = 103. Static regime (S) and
periodic regime (P). Examples of deformation modes are shown in the thumbnails for
u = 20.0 (�, static regime), u = 59.0 (◦, periodic regime), u = 78.0 (4, periodic
regime as well). Static equilibrium shape superimposed (−−−).

The mass ratio also has an influence on the post-critical dynamics. We show on
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Figure 4.6 the case of a flat plate with smaller mass ratio β = 0.1, and moderate
slenderness similar to the first situation λ = 10. Similarly to the reference case, periodic
flapping is triggered right above the critical velocity uc = 5.24 until periodicity is lost
above some other threshold u ∼ 18.5. The amplitude of flapping is however larger,
and the domain of regular flapping is reduced. Thus, reducing the mass ratio has a
destabilizing effect on the non-linear dynamics, as it enhances the flapping amplitude
and favours the early transition towards irregular motion.
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Figure 4.6: Vertical amplitude of flapping at the tip (blue) and standard deviation
(orange) versus the reduced velocity u, for β = 0.1, λ = 10. Static regime (S), periodic
regime (P) and non-periodic regime (NP). Examples of deformation modes are shown
in the thumbnails for u = 5.2 (�, static regime), u = 13.2 (◦, periodic regime), u = 36.7
(4, non-periodic regime). Static equilibrium shape superimposed (−−−).

4.5 Drag reduction in the post-critical regime

The very occurrence of flutter, be it periodic or not, is known to be responsible for
a significant additional drag force. Besides, its magnitude is strongly related to the
amplitude of the flapping motion, but also to its regularity as the violent accelerations
associated with snapping events are responsible for enhanced drag peaks (Virot et al.,
2013). We thus expect the drag reduction abilities of the three structures introduced
in Section 4.4 to be at least mitigated above the stability threshold. In this Section, we
discuss the modulation of drag due to flexibility for the same three structures, based on
the computational results of the previous Section, and in the light of the observations
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regarding the post-critical kinematics.

In order to quantify drag reduction by reconfiguration, the reconfiguration number is
defined in Gosselin et al. (2010) as the ratio of the drag force on the deflected structure
to that on the similar but upright beam R = F/Frigid. The total drag force F is
equal to the internal shear force at the base Q(s = 0) = −EIκ′(s = 0), while the
rigid drag is the integral of the resistive drag on the vertical structure of length L,
Frigid = 1/2ρCDWLU2, so that the reconfiguration number reads in terms of the non-
dimensional quantities R = −κ′(s = 0)/CY . When R < 1, flexibility is responsible for
lowering the drag, while it enhances it when R > 1. Because the drag force F on the
deflected structure is time-dependent when flutter occurs, we will focus in the following
on the time-averaged and maximum values of R. The variations of the maximum and
average reconfiguration numbers are related respectively to that of the amplitude and
standard deviation of flapping.

First, Figure 4.7 displays the variations of these two quantities with the Cauchy
number CY in the reference case (β = 0.5, λ = 10), along with the corresponding static
reconfiguration curve. The maximum and average reconfiguration numbers diverge
from the static curve at the critical Cauchy number CY,c = λu2c = 2.71 × 103, because
of the triggering of flutter. Further increasing CY , the average reconfiguration number
remains always larger than the static one. The self-induced dynamics is therefore
responsible for an additional drag that significantly contributes to the total drag on
average. However, the average reconfiguration number is decreasing with increasing CY
so that a larger flexibility is still associated with an enhanced drag reduction above
the stability threshold, on average. This trend carries on in the non-periodic regime as
well as in the periodic regime. On the other hand, similarly to the flapping amplitude,
the maximum drag sharply increases when periodicity is lost due to the occurrence
of snapping events, as will be discussed in further details later in the low mass ratio
case. But most importantly, the maximum reconfiguration number remains inferior to
1 for all values of CY . Therefore, no matter how large the flow velocity, the drag force
remains at all times inferior to what it would be if the structure were rigid and standing
upright. In other words, the additional drag due to flapping is not large enough in this
case so as to completely offset the drag reduction due to reconfiguration.

This conclusion holds for more stable structures as well, such as the more slender
structure (β = 0.5, λ = 103) of Section 4.4.2. In fact, we have shown in Section 4.4.2
that the amplitude of regular flapping is reduced compared to the reference case, so
that the associated flutter-induced drag contribution is smaller. Besides, the results of
Section 4.3 indicate that the instability is restricted to more deflected structures (the
critical Cauchy number CY,c = 4.33× 105 is higher), associated with larger static drag.
Consequently, the relative contribution of flutter-induced drag to the total drag is now
almost negligible, and the reconfiguration numbers displayed on Figure 4.8 are almost
superimposed on the static curve.

The situation of a less stable structure such as the low mass ratio plate (β = 0.1,
λ = 10) of Section 4.4.2 is actually more intricate. As for the two previous cases, the
average R displayed on Figure 4.9 keeps decreasing slowly (or remains almost constant)
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Figure 4.7: Reconfiguration number R versus the Cauchy number CY , time average
(orange) and maximum (blue), for β = 0.5, λ = 10. Static reconfiguration number
(black). The same examples of deformation modes as in Figure 4.4 are shown in the
thumbnails, corresponding respectively to CY = 2.69 × 103 (�, static regime), CY =
5.15 × 103 (◦, periodic regime), CY = 4.53 × 104 (4, non-periodic regime). Static
equilibrium shape superimposed (− − −). (b) is simply a zoom on the lower right
corner of (a).
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Figure 4.8: Reconfiguration number R versus the Cauchy number CY , time average
(orange) and maximum (blue), for β = 0.5, λ = 103. Static reconfiguration number
(black). The same examples of deformation modes as in Figure 4.5 are shown in the
thumbnails, corresponding respectively to CY = 4.00 × 105 (�, static regime), CY =
3.48 × 106 (◦, periodic regime), CY = 6.08 × 106 (4, periodic regime as well). Static
equilibrium shape superimposed (−−−). (b) is simply a zoom on the lower right corner
of (a).
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above the stability threshold, regardless of the regularity of the flapping motion. Thus,
a larger flexibility is still responsible for an alleviation (or at least no enhancement) of
the drag on average even when flutter is triggered at an early stage of reconfiguration,
when the amplitude of flapping is large, and in spite of the early loss of periodicity. On
the other hand, the sharp increase of the flapping amplitude in the non-periodic regime
may induce large enough flutter-induced drag forces so as to increase the total drag in
excess of its static value. The maximum reconfiguration number raises above 1 in these
cases, as for instance in the case CY = 1.35 × 104 on Figure 4.9. The variations of R
through time for this case on Figure 4.10 confirm that this peak of drag is related to
a very brief, rare, snapping event. If the peak value of the drag during one of those
snapping events exceeds the largest load the structure may endure, flexibility may in
this particular case and at this particular moment be responsible for structural failure.
Nonetheless, the rareness and brevity of these events make their contribution negligible
on average, and flexibility remains responsible for a large overall reduction of drag, at
almost any moment, in spite of flapping.
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Figure 4.9: Reconfiguration number R versus the Cauchy number CY , time average
(orange) and maximum (blue), for β = 0.1, λ = 10. Static reconfiguration number
(black). The same examples of deformation modes as in Figure 4.6 are shown in the
thumbnails, corresponding respectively to CY = 2.70 × 102 (�, static regime), CY =
1.74 × 103 (◦, periodic regime), CY = 1.35 × 104 (4, non-periodic regime). Static
equilibrium shape superimposed (−−−).
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Figure 4.10: Time-series of the reconfiguration number in the non-periodic regime of
case β = 0.1, λ = 10, CY = 1.35 × 104 (equivalently u = 36.7) corresponding to the
thumbnail shown on Figures 4.6 and 4.9. Level of the static reconfiguration number
drawn for comparison (− − −). The time interval displayed corresponds to the whole
simulation, apart from the transient regime. Largest snapping event at tsnap = 1.019
(4). The shape of the structure at tsnap is shown in the thumbnail (—-), along with
the static shape (−−−) and the average shape ( · · · ).

4.6 Conclusion

We have addressed the question of how flexibility may affect the drag of structures ex-
posed to transverse flows, when the competing influences of reconfiguration and flutter
are simultaneously considered. First, we performed a linear stability analysis to deter-
mine the domain in which dynamics comes into play. Then we performed non-linear
simulations in the time domain to analyse how the occurrence of dynamics alters the
total drag force in the post-critical domain.

We may finally draw the following conclusions. First, it appears that in spite of an
additional flutter-induced drag contribution, the total drag of flexible structures is still
reduced overall in comparison with rigid structures. Flutter may only occur when the
structure reaches an advanced level of reconfiguration, so that the drag associated with
the flapping motion is never large enough to fully offset the already significant reduction
due to bending. Thus, flutter does not prevent drag reduction by reconfiguration.

However, the triggering of dynamics does lower the extent to which the drag of
flexible structures is reduced, depending on the slenderness λ and mass ratio β of the
structure. Increasing either of these parameters have a threefold stabilizing effect that
tends to abate the flutter-induced contribution to drag. Firstly, both parameters are
positively correlated with the stability threshold in terms of the Cauchy number CY,c,
so the level of reconfiguration reachable before losing stability is enhanced when any
of the two parameters is increased. Secondly, the amplitude of flapping is negatively
correlated with β and λ, and so is the magnitude of the additional drag force. Thirdly,
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both parameters have a regularizing effect on the post-critical dynamics in the sense
that the larger β and λ, the larger the flow velocity may get before periodicity of the
dynamics is lost. This last point is particularly important because when flapping is
irregular, very large inertial forces may transiently raise the total drag in excess of
the rigid value during short snapping events. In that case, flexibility may possibly be
the cause of structural damage if the failure threshold is reached. But this situation
may only happen for moderately slender, rather heavy structures, and only during rare
and very brief occurrences. The order of magnitude of the drag remains otherwise
comparable to its mean value, which is much reduced compared to the rigid case in
any situation. Therefore, we may finally conclude that the ability of flexible structures
to alleviate drag by reconfiguration, albeit lessened by the flapping motion, generally
prevails nonetheless in spite of flutter.
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Chapter 5

Reduction of the vortex-induced
vibrations by reconfiguration

Preamble

So far in this thesis, we have successively considered the respective influences of the
spatial variability of the system, the flow dynamics, and the self-induced dynamics
on the magnitude of the flow-induced loads on flexible structures. As explained in
the introductory chapter, structural dynamics may also arise due to the coupling of
the structure with the vortices shed in its wake. In the case of the slender structures
considered in this thesis, the interactions of the structure with the surrounding fluid are
essentially local along the span, so that the effects of the wake are essentially caused by
the vorticity shed in the plane of each cross-section. The vortices shed alternatively in
this plane are responsible for an oscillating lift that forces the structure into transverse
vibrations in the direction perpendicular to the direction of the static deflection. As
mentionned in the introduction, the amplitude of the vortex-induced vibrations (VIVs)
are known to scale with the diameter of the cylinder, while the large static deflection
is typically of the order of its length. In the case of slender structures, the additional
stress due to the VIVs is consequently likely to be small. The VIVs may nonetheless
still have important consequences, because of the cyclic nature of the load that may
lead to fatigue damage, but also through the magnification of the drag coefficient due
to the transverse vibrations that may result in a significant increase of the drag. The
point of view in this chapter is therefore slightly different from the other chapters. In
the preceding chapters, the focus was on how the mechanism of reconfiguration might
be affected when some additional effect (spatial variability of the system, flow-induced
or self-induced dynamics) was accounted for. The aim of this chapter is conversely
to assess the influence of the reconfiguration on the features of the VIVs, in order to
determine whether and why the ability to reconfigure may alleviate or amplify the
vibrations.

In this chapter, we still consider the same model geometry of a cantilever slender
structure clamped perpendicular to the flow. However, we restrict this study to the case
of a circular cross-section, and we relax the assumption of two-dimensional deformation
to authorise the transverse vibrations due to the forcing by the wake.

First, we present some background elements about the specificities of the problem of
the VIVs on a structure deformed by the flow, as well as a review of some existing work
on the topic. We then explain how the model used throughout this thesis is adapted
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to handle transverse VIVs as well. We finally discuss the consequences of the flow-
induced deflection on the VIVs and identify the mechanisms at play, from the results
of numerical simulations based on our reduced order modelling of the problem. We
finally conclude that the primary effect of the flow-induced deflection is the inhibition
of lock-in and the reduction of the vibration amplitude, as a result of the broadening of
the wake excitation spectrum and of the localization of the energy transfer due to the
variations induced in the normal flow profile. We also find that the curvature-induced
tension is of negligible influence, but that the axial flow component may on the other
hand significantly alter the dynamics owing to the destabilizing effect of the reactive
force on the structural modes.

The findings of this chapter are currently being considered for publication in the
Journal of Fluids and Structures. The paper (Leclercq and de Langre, 2018b), sub-
mitted to the journal and currently under review, is attached at the end of the thesis.
Apart from a few wording differences, the paper is identical to the following chapter.
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5.1 Specific background elements about vortex-in-

duced vibrations

The vortex-induced vibrations (VIVs) of slender cylindrical structures has been a promi-
nent subject of research for many years. Originally, a better understanding of this phe-
nomenon was sought in the civil and marine engineering community mostly because
of the damage it may cause on a number of flow-exposed structures such as buildings,
power transmission lines, marine risers, towing cables, or mooring lines. For extensive
reviews regarding VIVs, the reader is referred to Williamson and Govardhan (2004);
Sarpkaya (2004); Williamson and Govardhan (2008); Bearman (2011); Wu et al. (2012).
More recently, a renewed interest for the VIVs has arisen from the potential they bear
as an alternative source of energy (Bernitsas et al., 2008).

The large majority of existing studies focus on the VIVs of straight cylinders in a
variety of configurations: rigid or flexible, perpendicular to the flow or slanted, exposed
to a uniform or a sheared flow. However, most of the off-shore flexible structures such
as those cited above are actually greatly deformed in the direction of the flow under the
effect of the free-stream. This configuration differs from the case of a straight cylinder
on several aspects. First, the deflection in the plane of the free-stream of a cylinder
is responsible for a curvature-induced tension inside the structure. The tensioning of
the cylinder may affect its natural frequencies, and consequently its dynamic response
to the wake excitation. Secondly, deflected structures are not locally perpendicular to
the flow, which modifies the features of vortex shedding in the wake and the associated
forces on the structure. Besides, a curved structure experiences a spanwise variation of
its angle with the free-stream. Finally, the reconfiguration of the structure leads to a
large axial component of the flow on the most inclined portion of the structure that may
even become dominant when the deflection is significant. The consequences of some of
these specificities have been individually studied, see for instance Srinil et al. (2009);
Srinil (2010) for the structural effect of the curvature, Lucor and Karniadakis (2003);
Facchinetti et al. (2004b); Franzini et al. (2009); Jain and Modarres-Sadeghi (2013);
Bourguet et al. (2015) for the effect of the inclination, or Vandiver (1993); Chaplin et al.
(2005); Trim et al. (2005); Lucor et al. (2006); Violette et al. (2010); Bourguet et al.
(2013) for the effect of non-uniform normal flow profiles, but their combined effects may
lead to a significant alteration of the wake-structure interaction that has not yet been
fully investigated.

As a first step towards the understanding of VIVs of bent cylinders, Miliou et al.
(2007) and de Vecchi et al. (2008) numerically explored the vortex shedding process
in the wake of a rigid cylinder in the shape of a convex or concave quarter of a ring,
when the structure is respectively fixed or forced into an oscillatory motion. Building
on these results, Assi et al. (2014) and Seyed-Aghazadeh et al. (2015) experimentally
investigated the free vibrations of similar structures and found that the amplitude of
the oscillations is much reduced compared to the straight configuration. Two studies
provided experimental observations regarding the VIVs of flexible structures about a
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curvy shape: the experimental work of Zhu et al. (2016) considered the vibrations of
a naturally concave-shaped cylinder subjected to a shear flow, while that of Morooka
and Tsukada (2013) tested a model riser deformed in the shape of a concave catenary
under the effect of a uniform free-stream. Finally, Bourguet et al. (2012) and Bourguet
et al. (2015) numerically investigated the VIVs of tensioned flexible beams respectively
exposed to a normal sheared flow and an inclined uniform flow. Both studies considered
the influence of a small average in-line deformation and noted the transition from a
mono-frequency to a multi-frequency response associated with a modification of the
normal flow profile due to the bending. A reduction of the amplitude of the VIVs was
also reported in Bourguet et al. (2015). At this point however, a theoretical study is
still missing to clarify the consequences of flow-induced bending on the VIVs of slender
cylinders in large deformations and identify the physical mechanisms at play. One may
for instance wonder how the bending-induced shear in the normal flow might impact
the vibration spectrum, whether lock-in may or may not still occur, or furthermore how
the amplitude of vibration might be affected?

But the flow-induced bending of the structure may have even more dramatic conse-
quences. Indeed, slender structures in axial flows are liable to a flutter instability (Datta
and Gottenberg, 1975; Yadykin et al., 2001; Päıdoussis et al., 2002; Semler et al., 2002).
This self-induced dynamics results from the destabilizing effect of the inviscid pressure
forces associated with the deformation of the structure in a free-stream with a signifi-
cant axial component (Eloy et al., 2007; Singh et al., 2012a). When a cylinder deflects
in a transverse flow, the increasing spanwise component of the free-stream may thus
be the cause of such instability. More generally, the influence of the inviscid pressure
forces on the structural modes may have consequences on the vortex-induced dynamics
even in a domain of the parameter space where the system does not flutter.

The purpose of the present chapter is to provide an analysis of the small-amplitude
vibrations of slender cylinders bent by the flow by means of reduced order models to
identify the physical mechanisms at play. In particular, a formulation of the inviscid
pressure forces based on Lighthill’s large-amplitude elongated body theory (Lighthill,
1971) will be used to account for the destabilizing effect of the axial component of the
free-stream. We will also make use of a wake oscillator to describe the lift resulting from
vortex shedding. This class of models was originally derived to represent the dynamics
of the free wake behind a fixed structure (Birkhoff and Zarantonello, 1957; Bishop and
Hassan, 1964), and they have been proved able to capture some characteristic features
of the vortex shedding mechanism, such as the formation of cells in shear flow (Noack
et al., 1991; Mathelin and de Langre, 2005). Such models have also been proved useful
in qualitatively describing the physics of VIVs when coupled with a structural oscillator
(Hartlen and Currie, 1970; Skop and Balasubramanian, 1997; Balasubramanian et al.,
2000; Mukundan et al., 2009; Srinil and Zanganeh, 2012), and they have been validated
against experimental and numerical results (Violette et al., 2007). In this regard, the
work of Facchinetti et al. (2004a) demonstrated that features such as the boundaries of
the lock-in range, the amplitude of the vibrations or the phase between the structure and
the wake are correctly predicted when a coupling term proportional to the structural
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acceleration is used. The subsequent work of de Langre (2006) and Violette et al. (2010)
further demonstrated that many features of the nonlinear limit-cycle dynamics can be
interpreted through the linear analysis of the coupled wake-structure oscillators.

In Section 2, the model for the flow-structure interactions and its specific adapta-
tions to the problem in question are detailed. The consequences of the flow-induced
bending on the VIVs are then discussed in Section 3 based on the results of numerical
simulations.

5.2 Model

5.2.1 Theoretical modeling

We consider the model system represented on Fig. 5.1. A circular cylinder of length
L, diameter D and mass per unit length m is clamped perpendicular to a uniform and
steady flow of velocity Uex of a fluid of density ρ. As in the preceding chapters, we
assume the cylinder is slender (D � L) and we model it as an inextensible Euler-
Bernoulli beam of bending stiffness EI (see more details about the structural model in
Appendix F.1.1). In this chapter we focus on the small-amplitude transverse oscillations
so we consider that the structure is primarily deflected in the xz−plane under the effect
of the flow into a leading order configuration r0(s) (broken black line on Fig. 5.1,
specifically shown on Fig. 5.1(c)). Vortex shedding in the wake of the bent structure
is then responsible for an oscillatory lift force in the y−direction that induces small-
amplitude transverse vibrations (solid grey line on Fig. 5.1, specifically shown on Fig.
5.1(d)) such that r(s, t) = r0(s) + Y (s, t)ey.

Here again, we disregard the influence of gravity and buoyancy, and we restrict our
study to large Reynolds number flows so that friction forces are neglected. Following
Mukundan et al. (2009) and Violette et al. (2010), we model the effect of the fluid as the
combination of three load distributions along the span p = pam +pd +pw, where pam
and pd are respectively the reactive and resistive terms used in the preceding chapters,
and pw is the additional oscillating lift force due to the vorticity wake. The expressions
of these forces involve the projections (Uτ , UN) on the direction tangent to the structure
and on the plane normal to it, of the relative velocity between the cylinder and the fluid
Urel = Ẏ ey−Uex = Uττ+UNN , where the overdot still stands for time differentiation.
Note that, contrary to the previous chapters, the direction of the normal component
of the flow is noted with an upper case N . This is so to emphasize the difference
with the lower case vector n used in Appendix F.1, which is materially attached to
the structure. The upper case vector N is not materially attached to the structure,
but is defined as the direction of the projection of the relative velocity Urel on the
plane orthogonal to the axis of the structure τ . In the previous chapters where the
deformation was contained in a plane, the two definitions were strictly equivalent, but
the three dimensionality of the deformation in this chapter now creates a distinction
between the two directions (see Appendix F.1).
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Figure 5.1: (a) Dimensions of the undeformed cylinder and centerline (broken line).
(b) 3D view of the centerline of the vibrating cylinder, static deflection r0(s) (broken
black line), fully deformed shape r(s, t) (solid grey line). The π−plane in grey indicates
the surface upon which the vibration occurs. (c) Projection of the deformation on the
plane of static deflection (xz−plane). (d) Projection of the deformation on the surface
of vibration (π−surface or sy−surface).

Firstly, in the case of an elongated body such as those considered in this study, the
expression of the added mass force for large-amplitude 3D motions reads (Candelier
et al., 2011)

pam = −ma

[
∂t(UNN )− ∂s(UτUNN ) +

1

2
∂s(U

2
Nτ )

]
(5.1)

with the added mass ma = 1/4ρπD2. This expression differs from the usual added
mass force used in VIV studies because it is designed to account for the effects of the
curvature as well as a large axial flow component. The additional terms thus introduced
cancel in the specific case of a straight structure so this choice is nonetheless consistent
with the usual expression used in previous works on the topic.

Secondly, in this three dimensional case, we express the resistive drag force following
Taylor (1952) as
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pd = −1

2
ρCDD|UN |UNN (5.2)

with CD the cross-section drag coefficient. Due to the transverse vibrations, this coef-
ficient may be dynamically enhanced by an amplitude-dependent factor classically of
the order of 2 (Vandiver, 1983; Blevins, 1990; Chaplin et al., 2005). The exact value
of the drag coefficient should however have only a limited impact on the qualitative
features of the VIVs. For the sake of simplicity, we hereafter take CD = 2 for a vibrat-
ing cylinder (Blevins, 1990; Chaplin et al., 2005; Mathelin and de Langre, 2005). This
term is responsible for the leading order static deflection of the beam in the xz−plane
(see Gosselin et al. 2010 and previous chapters) and acts here also as hydrodynamic
damping for the transverse vibrations.

Finally, following Antoine et al. (2016) the local effect of vortex shedding is modeled
as an oscillating lift force orthogonal to the cylinder axis and to the component of the
free-stream normal to the still cylinder

pw =
1

4
ρC0

LDU
2 cos2 θ0 q ey (5.3)

where the fixed cylinder lift coefficient C0
L is multiplied by a local magnification factor

q(s, t) that satisfies a nonlinear Van der Pol equation forced by the transverse acceler-
ation of the structure

q̈ + ε

(
2π
StU

D
cos θ0

)(
q2 − 1

)
q̇ +

(
2π
StU

D
cos θ0

)2

q = A
Ÿ

D
. (5.4)

We assume in this study the classical values St = 0.2, C0
L = 0.3 in the sub-critical range

300 < Re < 1.5 × 105 (Blevins, 1990; Facchinetti et al., 2004a). Following Facchinetti
et al. (2004a), we further assume A = 12, ε = 0.3. Even though these parameters
were derived from experiments on rigid cylinders, this approach was validated in the
case of flexible structures in Facchinetti et al. (2004b) and Violette et al. (2007). It
was then successfully used in subsequent theoretical studies (Mathelin and de Langre,
2005; Violette et al., 2010; Meng and Chen, 2012; Dai et al., 2013, 2014). No direct
spanwise coupling between the wake oscillators is considered in Eq. (5.4) as the work of
Mathelin and de Langre (2005) has demonstrated that the coupling with the structural
oscillator is the main source of synchronisation in the wake. Similar observations have
been reported by de Vecchi et al. (2008) from direct numerical simulations that showed
parallel vortex shedding in the wake of a curved cylinder in forced oscillations, in con-
trast with the spanwise phase shift reported by Miliou et al. (2007) in the wake behind
a fixed cylinder. Moreover, this local modeling is based on the so-called independence
principle that states that the physics of vortex shedding is primarily governed by the
component of the free-stream normal to the structure only (see Lucor and Karniadakis,
2003; Franzini et al., 2009; Jain and Modarres-Sadeghi, 2013). The work of Bourguet
et al. (2015) has demonstrated the validity of that principle when applied locally at
each location along the span in the case of the VIVs of flexible cylinders inclined at
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60◦ of incidence. In this case, due to the in-line deformation of the structure, the local
incidence of the cylinder could reach values as large as 75◦. The local lift force (5.3) is
thus taken quadratic in the locally normal projection of the free-stream velocity U cos θ0
and the local natural shedding frequency that appears in (5.4) satisfies the Strouhal law
expressed in terms of that normal component as well fw = StU cos θ0/D (Williamson,
1996; Facchinetti et al., 2004b).

Note that vortex shedding in the wake is also responsible for an oscillating drag
term that creates slight temporal variations of the in-line deflection. Besides, recent
studies have shown that the coupling between the in-line and transverse vibrations
may considerably affect the transverse dynamics (Jauvtis and Williamson, 2003, 2004;
Marcollo and Hinwood, 2006; Srinil and Zanganeh, 2012; Srinil et al., 2013). However,
for the sake of simplicity and given the leading-order nature of the resistive drag term
considered here, we choose to disregard the influence of the in-line fluctuations in this
study.

5.2.2 Governing equations

We non-dimensionalize all variables but the transverse displacement using the length L
of the cylinder as characteristic length, and the inverse of the natural shedding frequency
on the undeformed straight cylinder f 0

w = StU/D as characteristic time scale. Because
the amplitude of the VIVs classically scales with the diameter of the structure, we non-
dimensionalize the transverse displacement Y using D instead of L. We also define the
following non-dimensional parameters: the Cauchy number CY , the reduced velocity v,
the aspect ratio Λ, the mass ratio β

CY =
ρCDDU

2L3

2EI
, v =

StU

D
L2

√
m+ma

EI
, Λ =

L

D
, β =

ma

m+ma

(5.5)

and rescaled drag and lift coefficients cd = 2CD/π and cl = C0
L/π. This definition of

the Cauchy number is classical in studies of the static deflection of slender structures
(Gosselin et al., 2010; Hassani et al., 2016) and consistent with the previous chapters.
Note that the reduced velocity used here is different from that used in Chapter 4. The
present formulation is consistent with the classical definition used in VIV studies of
systems with only one degree of freedom (see for instance Khalak and Williamson,
1999; Päıdoussis et al., 2010), in the sense that it compares the characteristic scale

of the natural period of the structure Ts = L2
√

(m+ma)/EI to the reference vortex
shedding period 1/f 0

w = D/StU . The mass ratio β is on the other hand similar to that
used in Chapter 4, while the aspect ratio Λ is related to the slenderness parameter λ
used in Chapters 3 and 4 by λ = cdΛ. The proper linearization of the model presented
in Section 5.2.1 is detailed in Appendix F.1, and its appropriateness for the modelling
of VIVs is discussed in Appendix F.2. In terms of the non-dimensional variables, the
governing equation for the leading order static deflection in the xz−plane then reads
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κ′′0 +
1

2
κ30 +

CY
cdΛ

(
S2
0 −

1

2
C2

0

)
κ0 − CYC2

0 = 0 (5.6)

where the prime notation stands for curvilinear differentiation, the notations S0 = sin θ0
and C0 = cos θ0 have been used for brevity, and with the curvature κ0 = θ′0. The
corresponding boundary conditions are θ0 = 0 at the clamped edge s = 0 and κ0 =
κ′0 = 0 at the free tip s = 1. This equation is the same as the large-amplitude equation
(3.21) of Chapter 3 in the regime of static reconfiguration, and the static equilibrium
equation (4.5) of Chapter 4. At the linear order, the equation for the non-dimensional
transverse vibration Y (s, t) is

v2Ÿ +
βv2

StΛ

[
2S0Ẏ

′ + C0 (κ0 + cdΛ) Ẏ
]

+

([
βv2

S2
t Λ

2

(
S2
0 +

1

2
C2

0

)
+

3

2
κ20

]
Y ′
)′

+ cd
βv2

S2
t Λ
C0S0Y

′ + Y (4) = cl
βv2

S2
t

C2
0q (5.7)

with Y = Y ′ = 0 at the clamped edge s = 0 and Y ′′ = Y ′′′ = 0 at the free tip s = 1.
The lift magnification factor q(s, t) then satisfies the Van der Pol equation

q̈ + ε (2πC0)
(
q2 − 1

)
q̇ + (2πC0)

2 q = AŸ . (5.8)

5.2.3 On the governing parameters

Within the four non-dimensional parameters defined above (CY , v, Λ, β), only three are
necessary to fully characterize the problem. In fact, for a given structure with a fixed
mass and aspect ratios, the Cauchy number and the reduced velocity are redundant
parameters that are related by CY = (cdβ/S

2
t Λ)v2. Both quantities scale the influence

of the flow to the rigidity of the structure, but from different perspectives. The Cauchy
number expresses the ratio between the leading order drag force and the restoring
structural stiffness (Tickner and Sacks, 1969; Chakrabarti, 2002; de Langre, 2008).
Consequently, it controls the level of static deflection in the xz−plane. For small CY <
1, deflection is negligible and the structure stands upright in the flow, while for CY � 1
the cylinder is highly deformed in the direction of the free-stream (Gosselin et al., 2010).
On the other hand, the reduced velocity compares the natural shedding frequency f 0

w

(on the straight structure) to the scale of the natural period of the structure Ts, so it
controls the dynamic behaviour of the coupled wake-structure system.

The mass ratio β represents the amount of fluid inertia within the total inertia of
the system. We do not expect the precise value of β should significantly influence the
qualitative features of the VIVs presented in this chapter. We also expect the influence
of the gravity and buoyancy forces on the static deflection due to the flow to remain
small (Luhar and Nepf, 2011). Thus, for the sake of simplicity, we restrict this study
to the case of a neutrally buoyant cylinder β = 0.5. Finally, as was shown in Chapter
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3 and 4, the aspect ratio Λ = L/D scales the relative contributions of the resistive
and reactive terms. In the case of slender structures Λ� 1 as those considered in this
thesis, the contribution of the reactive force O(CY /Λ) to the static equilibrium shape
in Eq. (5.6) has been proved negligible (see Chapter 3 and Appendix D). On the other
hand, Chapter 4 has proved that the reactive force may be responsible for triggering a
large-amplitude flutter instability in the xz−plane. As will be shown in Section 5.3.3,
the same flutter instability may also be initiated in the transverse y−direction, and its
influence on the vortex-induced dynamics may be significant near the critical threshold
when the deflection is large. Thus we may not neglect a priori the terms originating
from the reactive force in Eq. (5.7).

Our main interest in this study is the effect of the flow-induced bending on the
properties of the vortex-induced vibrations. In other words, we wish to compare the
dynamics of structures with varying levels of deflection in the direction of the free-
stream (varying Cauchy numbers CY ), at a given reduced velocity v. However, as
explained above, for a given fluid-structure system of fixed mass and aspect ratios
(β,Λ), the Cauchy number and the reduced velocity vary together as CY ∝ βv2/Λ.
Therefore, increasing the Cauchy number with a fixed reduced velocity requires to change
the structure to lower the aspect ratio Λ. This may seem counter-intuitive, as a lower
aspect ratio is classically associated with lower deflections. Indeed, the Cauchy number
is an increasing function of the aspect ratio CY ∝ Λ3 when the dimensional flow velocity,
fluid density, and Young’s modulus of the solid material are kept constant. In our case
however, we allow these dimensional quantities to vary in order to keep the reduced
velocity v constant instead, and consequently the Cauchy number becomes a decreasing
function of the aspect ratio. In the limit of an infinitely slender structure Λ → +∞,
the Cauchy number remains much smaller than 1 even for arbitrarily large reduced
velocities. This asymptotic case is therefore equivalent to considering a structure that
remains straight in the free-stream. For this benchmark case, the dynamic system
(5.7)-(5.8) reduces to

v2Ÿ + cd
βv2

St
Ẏ + Y (4) = cl

βv2

S2
t

q (5.9)

q̈ + ε (2π)
(
q2 − 1

)
q̇ + (2π)2 q = AŸ (5.10)

which is the standard system of equations for the modeling of VIVs by means of a
wake oscillator, in the case of a straight slender cylinder with flexural stiffness and
hydrodynamic damping (Mukundan et al., 2009).

5.3 Numerical results

In order to analyse the vibration behaviour, we solve the problem defined by equations
(5.6),(5.7),(5.8) numerically. The beam is discretized using N = 100 Gauss-Lobatto
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points sk = 1
2
(1− cos((k− 1)/(N − 1)π)), and the curvilinear derivatives are computed

by Chebyshev collocation. For a given aspect ratio Λ, we first compute the static
solution of Eq. (5.6) iteratively by increasing the Cauchy number from the upright case
CY = 0. After each increment, we solve Eq. (5.6) with a pseudo-Newton solver (method
of Broyden, 1965) using the solution at the previous step as initial guess. Then, for
each value of CY (corresponding to a given v), we solve the nonlinear system (5.7)-(5.8)
using a time-stepping method, with time step dt = 10−2. The time derivatives are
computed using implicit second order accurate finite differences. At each time step, the
nonlinear boundary value problem involving the unknown spanwise distributions (Y, q)
is solved thanks to the pseudo-Newton solver. The simulations are run for 200 periods
and the last 100 periods are considered for the analysis in order to cut the transient.

5.3.1 Wake excitation bandwidth and inhibition of single mode
lock-in

First, we discuss the influence of the deflection on the modal content of the dynamics. To
do so, we compare the vibrations of a structure that bends (finite aspect ratio Λ = 103)
to that of a structure that remains straight (Λ→ +∞), on the same range of reduced
velocities. For the structure with finite aspect ratio Λ = 103, the variations of v within
the range considered will be associated with variations in the Cauchy number CY ∝
v2/Λ leading to varying levels of deflections. On the other hand, the infinitely slender
cylinder will remain straight because the Cauchy number will remain asymptotically
small in the same finite range of v. We recall here that the cylinder with the finite
aspect ratio is the one that deflects while the infinitely slender one remains unbent
because we compare the dynamics of the two structures on the same range of reduced
velocities (see Section 5.2.3 for more details).

As explained in Section 5.2.1, the independence principle states that the natural
frequency of vortex shedding fw(s) decreases along the span when the structure is de-
formed because of the projection of the free-stream on the normal direction fw(s)/f 0

w =
Un0/U = cos θ0(s). The deforming structure is therefore subjected to a forcing by the
wake on a continuum of frequencies that broadens when the deflection is enhanced with
increasing Cauchy numbers, as shown on Fig. 5.2.

The enrichment of the excitation spectrum significantly alters the modal content
of the response. This is illustrated on Fig. 5.3 for the vibration spectrum and Fig.
5.4 for the spanwise localization of the vibration. In the straight case, the structure
is subject to a forcing by the wake at a single frequency along the whole span. The
frequency of the vibration remains close to the Strouhal law (f ' 1 on Fig. 5.3(a)), but
slightly deviates to follow an evolution closer to that of the nearest structural mode.
As v varies, lock-in with the successive structural modes occurs in turn and frequency
discontinuities mark the transitions between consecutive lock-ins. This phenomenon is
a well-known feature of the VIVs of flexible structures perpendicular to the flow (King,
1995; Chaplin et al., 2005; Violette et al., 2010). As expected, this behaviour remains
unchanged for as long as the deflection is negligible (CY < 1 on Fig. 5.3(b)) in the case
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Figure 5.2: (a) Deflection in the xz−plane and (b) normal velocity profile normalized by
the horizontal velocity, in the straight case (grey —–), and in deflected cases CY = 100

( · · · ), CY = 101 (−−−), and CY = 102 (black —–) for Λ = 103.

Λ = 103. However, at the early stages of reconfiguration (CY . 101 on Fig. 5.3(b)), the
ranges of reduced velocities within which lock-in with a given mode occurs are slightly
widened and increasingly shifted towards larger reduced velocities (see Table 5.1). For
instance, lock-in with mode 4 persists on a slightly larger range v ∈ [16.3, 29.9] when the
structure is bent compared to v ∈ [15.2, 27.0] when it is not. The modal shapes in both
configurations remain on the other hand almost identical, as illustrated for v = 19.8 in
Fig. 5.4(c), which proves that the curvature of the structure in the xz−plane only has
a very limited impact on the eigenmodes.

Following the method of Violette et al. (2010), we may interpret these results by
comparing the spectrum of the nonlinear dynamics to the frequencies of the eigenmodes
found by a linear stability analysis (see Fig. 5.5). The details of the linear stability
analysis can be found in Appendix G.1. The eigenmodes thus found can be classified
in 3 distinct types. Firstly, a series of N unstable modes (where N is the number of
discretization points sk) with eigenvalues matching almost exactly the eigenvalues of the

linearized wake oscillator without structural coupling ωk ' cos θ0(sk)(2π
√

1− (ε/2)2−
iπε) are observed. They have no significant structural component (φk(s) ' 0), and
their wake components are localized respectively at each discretization point (|ψk(s)| '
δ(s − sk) with δ the Dirac function). These modes thus correspond to the naturally
unstable free wake modes. For the sake of clarity, the continuous spectrum of the free
wake oscillator itself is represented in grey on Fig. 5.5(b) instead of the N individual
eigenmodes spanning the area. Secondly, the modes in blue correspond closely to the
eigenmodes of the structural equation (5.7) without coupling with the wake. These
modes may thus be designated as the free structural modes. Finally, the four modes in
black are coupled modes that each arise from lock-in with one of the structural modes.
They are all unconditionally unstable and will be referred to as the lock-in modes.
Following Violette et al. (2010), we expect lock-in with a given mode to persist in
the nonlinear limit-cycle if the corresponding linear lock-in mode is the most unstable.
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The comparison of the linear and nonlinear lock-in ranges in Table 5.1 confirms these
findings and we may thus lean on the linear analysis to interpret the dynamics observed
in the limit-cycle. In particular, as deflection increases, we notice on Fig. 5.5 that the
broadening of the free wake spectrum allows the structural frequencies to remain within
the excitation bandwidth on a larger range of reduced velocities. Lock-in with these
modes may consequently occur on these larger ranges as well. Hence, it appears that the
primary consequence of the deflection is the broadening of the free wake spectrum due
to the increased shear in the normal component of the free-stream. At leading order, a
bending structure in a uniform flow is therefore equivalent to a straight structure in a
sheared flow whose profile varies, depending on the Cauchy number, according to that
of the normal flow shown on Fig. 5.2(b).

straight case bent case Λ = 103 bent case Λ = 103

(nonlinear) (nonlinear) (linear)
mode 1 0− 2.3 0− 2.3 0− 2.16
mode 2 2.4− 6.8 2.4− 6.9 2.16− 6.80
mode 3 6.9− 15.1 7− 16.2 6.80− 15.86
mode 4 15.2− 27.0 16.3− 29.9 15.86− 28.70

Table 5.1: Reduced velocity ranges for lock-in in the straight and bent cases (nonlinear
and linear ranges).

When bending is more pronounced (CY > 101), not only one but several frequencies
are involved in the spectrum of the nonlinear limit-cycle Fig. 5.3(b), and the localiza-
tion of the transverse vibration significantly deviates from the single-mode shape on
Fig. 5.4. Indeed, when the wake spectrum becomes large enough, several structural
modes are excited simultaneously at different locations along the span (several struc-
tural modes appear within the wake excitation bandwidth on Fig. 5.5). Consequently,
single mode lock-in is replaced by a multi-frequency response of the whole structure
associated with the spatial fragmentation of the wake into multiple cells of locally uni-
form frequency. As illustrated on Fig. 5.6, the frequency within each wake cell matches
that of the structural mode that is closest (in the frequency space) from the Strouhal
law, so that it might be said that single mode lock-in is actually replaced by multiple
occurrences of lock-in along the span. It is however noteworthy that the local wake
dynamics is essentially monochromatic, while the structural dynamics involves compa-
rable contributions from all the excited modes at any location along the span. Besides,
the linear analysis shows that, past v > 28.7, the most unstable mode is not one of the
coupled lock-in modes anymore, but is found instead within one of the free wake modes.
No fifth coupled mode that would appear because of lock-in with the fifth structural
mode is observed. It thus appears that the large shear in the normal flow hinders single
mode lock-in, but leads to the simultaneous excitation of multiple structural modes
that all participate in the dynamics.

We may finally conclude that bending primarily affects the dynamics through its
influence on the component of the free-stream normal to the cylinder. More specifically,
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Figure 5.3: Comparison between the power spectral densities of the motion at the tip
Y (s = 1, t) in (a) the straight case and (b) the deflected case Λ = 103, for varying
reduced velocities v. The natural wake excitation bandwidth (WEB) is superimposed.
The particular values of the reduced velocity v corresponding to Fig. 5.2 are indicated
as well.

the growing shear in the normal flow is responsible for broadening the wake spectrum.
When the deflection remains moderate, the wake excitation bandwidth remains narrow
enough so that single-mode lock-in still prevails, but on a slightly larger range of reduced
frequencies. On the other hand, when the deflection is large, several structural modes
may be simultaneously excited, leading to the inhibition of single mode lock-in replaced
by a multi-frequency response to the broadband excitation. These conclusions are
consistent with the observations of Bourguet et al. (2012), Bourguet et al. (2015) for
a pinned-pinned cylinder experiencing small in-line deformations, as well as those of
Vandiver (1993); Ge et al. (2011); Srinil (2011) for straight pinned-pinned cylinders in
shear flow.

5.3.2 Localization of the excitation and VIV mitigation

As emphasized in the introduction, the experimental work of Assi et al. (2014) and
Seyed-Aghazadeh et al. (2015) has shown that the amplitude of the vibrations of rigid
cylinders is much reduced under the effect of the curvature. The same observation was
made by Bourguet et al. (2015) regarding the VIVs of pinned-pinned flexible cylinders.
Similarly, the works of Trim et al. (2005); Ge et al. (2011); Srinil (2011) have also
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Figure 5.4: Comparison between the spanwise localizations of the transverse deforma-
tion in (a) the straight case and (b) the deflected case Λ = 103, for varying reduced
velocities v. The colorplots show the temporal RMS of Y (s, t), normalized to 1 along
the span. The particular values of the reduced velocity v corresponding to Fig. 5.2
are indicated as well. (c) Comparison of the envelopes of the transverse deformation in
the straight case (− − −) and deflected case Λ = 103 (—–), for particular values of v
corresponding to successive structural modes in the straight case.

shown that sheared incoming flows entailed lower structural responses than uniform
flows. Our numerical simulations indicate that this observation holds true as well for
flexible cantilever cylinders curved by the flow. Indeed, the amplitude of the VIVs of
the deflecting cylinder (Λ = 103) reduces progressively on Fig. 5.7(a) compared to the
straight case above the bending threshold CY > 1. For large deflections CY > 10, the
amplitude settles around approximately 1/3 of the amplitude of the straight case.

We may explain this reduction of amplitude by considering the energy transferred
to the structure from the wake oscillator. In non-dimensional form, the work of the
oscillating lift force at a given location along the span reads e = Ẏ · q cos2 θ0, so that the
total energy E transferred to the structure over one cycle of oscillations is the temporal



106 Chapter 5 Reduction of the vortex-induced vibrations by reconfiguration

v

flin

0

0.5

1

1.5

0 10 20 30 40

v

flin

0

0.5

1

1.5

0 10 20 30 40

(a)

(b)

Figure 5.5: Evolution of the linear frequencies of the coupled wake-structure system
with the reduced velocity v, for (a) the straight case and (b) the deflected case Λ = 103.
The unconditionally unstable free wake spectrum is represented by the grey area. The
structural modes in blue are always stable. The coupled modes, displayed in black, are
always unstable. The most unstable mode for a given range of v is emphasized in bold.

mean of e, integrated over the whole span. The evolution of E with the reduced
velocity on Fig. 5.7(b) proves that deflection drastically mitigates the transfer. A more
detailed look at the spanwise distribution of the mean energy transfer on Fig. 5.8
indicates that the excitation by the wake, which is equally distributed in the straight
case, concentrates around s ∼ 0.2 as the deflection increases. This is actually quite
intuitive, because the lift force varies with the square of the normal component of the
free-stream ∝ cos2 θ0. When deflection is important, only the small region close to the
clamping point remains close enough to the vertical so as to significantly contribute to
the excitation. As the Cauchy number increases and the cylinder bends more and more,
the size of that region reduces progressively. The amount of energy transferred overall
is consequently reduced, and the amplitude of the vibrations accordingly mitigated.

Note that the discontinuities observed in the straight and low-deflection cases on
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Figure 5.6: Spanwise distribution of power spectral density of (a) the structural motion
Y and (b) the wake oscillator q, for Λ = 103 and v = 49.0. The natural shedding
frequency f 0

w(s) given by the Strouhal law is superimposed in (b) (—–).

Fig. 5.7 correspond to mode switches. The disappearance of these jumps above v > 30
in the deflected case is consistent with the continuous evolution of the spectrum and
vibration shape reported in Figs. 5.3(b) and 5.4(b) due to the inhibition of lock-in.

5.3.3 Influence of the reactive force

Finally, we discuss the influence of the large axial component of the free-stream when the
structure is highly reconfigured. Indeed, as the flow velocity increases, the inclination of
the structure switches from perpendicular to mostly parallel to the flow. As explained
in Section 5.2.3, the level of deflection is controlled by the Cauchy number CY ∝ v2/Λ.
We focus here on a case where the deflection increases more rapidly with the reduced
velocity than before, that is to say a structure with a smaller aspect ratio Λ = 10.

At first, the amplitude of vibrations on Fig. 5.9(a) follows the same trend as in
the previous case: below CY < 1, the effect of bending is unnoticeable, while it results
in a constant amplitude much reduced compared to the straight case when bending
is significant. The amplitude is even reduced as low as 1/10−th of the straight case.
But conversely to the previous case, the vibrations start growing again slowly past
v ∼ 20 and they even exceed the amplitude of the straight case for v & 33.5. Above
some critical threshold v ∼ 35, the amplitude finally grows continuously during the
whole time of the simulation. The VIVs are by nature a self-initiated and self-limited
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Figure 5.7: Comparison of (a) the RMS amplitude of vibration Yrms and (b) the total
energy transfer E from the wake to the structure, between the straight case (blue ◦) and
the deflected case Λ = 103 (orange O) for varying reduced velocities v. The particular
values of the reduced velocity v corresponding to Fig. 5.2 are indicated as well.

phenomenon. In the model, the onset of the VIVs is ensured by the negative damping of
the Van der Pol wake oscillator when the amplitude of q is small, while the limitation of
the amplitude is ensured by the nonlinear saturation of that same term. This unbounded
growth is therefore not related to the VIVs, but is instead the consequence of the onset
of a flutter instability caused by the destabilizing influence of the hydrodynamic reactive
force on the large portion of the cylinder that is aligned with the free-stream (Eloy et al.,
2007; Singh et al., 2012a).

This is confirmed by the results of the linear stability analysis presented on Fig.
5.9(b) and (c). Lock-in with structural mode 1 occurs for the smallest reduced velocities
(the coupled linear mode is the most unstable as long as v < 2.30), when flow-induced
bending is still small. When deflection becomes significant (CY � 1), several structural
modes are simultaneously excited by the wake on Fig. 5.9(b) and lock-in is consequently
hindered (no discontinuities on Fig. 5.9(a)). But in this case, one of the structural
modes (mode 3) is progressively destabilized as v increases. Above v & 20, the growth
rate of this mode starts increasing on Fig. 5.9(c) until it finally becomes unstable at the
critical threshold vc = 34.9 (marked by the orange cross on Fig. 5.9(b) and (c)). If the
effect of the curvature on the structural modes has been proved negligible in Section
5.3.1, these observations prove on the other hand that the influence of the reactive
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Figure 5.8: Comparison of the spanwise distributions of energy transfer from the wake
to the structure between (a) the straight case and (b) the deflected case Λ = 103, for
varying reduced velocities v. The colorplots show the mean work of the oscillating lift
force < e > normalized by the total energy transfer E. The particular values of the
reduced velocity v corresponding to Fig. 5.2 are indicated as well.

force may be very significant in the vicinity of the critical threshold. The progressive
increase of the vibration amplitude from v ∼ 20 until the actual onset of the instability
vc = 34.9 is indeed concomitant with the destabilization of structural mode 3. Hence,
the larger vibration amplitudes observed in this range of reduced velocities are most
likely attributable to the growing influence of the gradually destabilizing structural
mode 3.

The flow-induced bending thus has competing consequences on the amplitude of the
vibrations. On the one hand, we have shown in Section 5.3.2 that the shrinkage of the
wake excitation zone considerably mitigates the VIVs. We demonstrate here that on
the other hand, the reorientation of the structure in the direction of the free-stream may
amplify the vibrations because of the destabilizing effect of the reactive force on the
structural modes. This last effect becomes significant in the vicinity of the structural
stability threshold. As explained in Appendix G.2, the structural stability threshold in
terms of either the reduced velocity v or the Cauchy number CY is close to proportional
to the aspect ratio Λ. More slender structures may consequently reach much higher
modes and larger deflections before feeling the destabilizing influence of the reactive
force.
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Figure 5.9: (a) Comparison of the RMS amplitude of vibration between the straight case
(blue ◦) and the deflected case Λ = 10 (yellow�). (b) and (c) Linear frequencies flin and
growth rates σ of the coupled wake-structure system, for Λ = 10. The unconditionally
unstable free wake spectrum is represented by the grey area. The structural modes
are in blue when stable, and in bold orange when unstable. The orange cross marks
the stability threshold for structural mode 3. The coupled mode, displayed in black, is
always unstable. It is emphasized when it is the most unstable mode.
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5.4 Discussion and conclusion

In this chapter, we have provided a qualitative analysis of the consequences of flow-
induced bending on the vortex-induced dynamics of slender flexible cylinders based on
reduced order models. Overall, the effects of the deflection may impact the features of
the vibrations on two levels.

Firstly, the deformation of the cylinder changes the spanwise profile of the compo-
nent of the free-stream normal to the structure. We have shown that the increasing
non-uniformity of the normal flow leads to the spreading of the wake excitation spec-
trum and the localization of the energy transfer from the wake to the structure, owing to
the independence principle. These two effects result in a strong mitigation of the ampli-
tude of the vibrations coupled with the inhibition of single mode lock-in replaced by the
simultaneous excitation of multiple structural modes. These mechanisms were indeed
evidenced in several experimental and numerical studies about the VIVs of straight
cylinders in shear incoming flow, such as Vandiver (1993); Trim et al. (2005); Srinil
(2011); Ge et al. (2011); Bourguet et al. (2013) for instance. As any deformation of a
straight cylinder in the direction of the free-stream would induce shear in the normal
flow, we expect that these conclusions are independent of the initial structural configu-
ration, boundary conditions, or the features of the in-plane deformation. For instance,
similar observations have been reported by Bourguet et al. (2015) for a pinned-pinned
cylinder initially inclined and slightly deformed by the flow. Similarly, the smaller am-
plitudes of vibrations reported in Assi et al. (2014) and Seyed-Aghazadeh et al. (2015)
for rigid curved cylinders compared to straight ones is likely also the consequence of
the difference in the normal flow profiles between the two configurations. The loss of
harvesting efficiency reported in Antoine et al. (2016) when increasing the sag (and
consequently the deformation) in the in-flow catenary configuration also results from
the induced shear in the normal flow.

Secondly, the deformation of the structure is responsible for a modification of the
structural modes resulting from both the flow-induced tension and the axial component
of the flow through the reactive forcing term.

The effect of the tension is negligible in our case, but it should be noted that it
may be of significant importance in other situations. Indeed, the structural frequencies
depend on the total stiffness of the system, which can be decomposed in the natu-
ral bending stiffness EI specific to the structure, and an additional tension-induced
stiffness. In our case, the structural tension T = −1/2EIκ20 itself is the physical con-
sequence of the structural stiffness EI, and so it is understandable that the influence
of the tension-induced stiffness on the natural frequencies of the structure be small
compared to that of the natural stiffness that originated it. However, in the rather
common case of tensioned cables, the structural tension is either externally controlled
or flow-induced but it is in any case independent of the usually small bending stiffness.
Its influence on the structural frequencies and thus on the vortex-induced dynamics
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may then be totally dominant (see for instance the study of Antoine et al., 2016), but
this effect is out of the scope of the present work as the tension in this case is not
related to the flow-induced deformation of the structure.

The effect of the axial flow component may on the other hand be dramatic in the
configuration chosen in this chapter. When the deflection is very large, the axial flow
may become the dominant component, and the added damping and stiffness stemming
from the reactive forcing on the inclined portion of the cylinder may significantly alter
the structural modes. Above some critical velocity threshold, the cylinder might un-
dergo some large-amplitude oscillations originating from a flutter instability. It should
be noted that only the transverse stability along the y−direction has been considered in
this chapter, but flutter may also be initiated in the xz−plane, as was shown in Chap-
ter 4. However, we do not expect the in-plane destabilization to have consequences on
the vortex-induced dynamics below the stability threshold. Indeed, the geometrical lin-
earization performed in Appendix F.1.2 results in the decoupling of the small-amplitude
dynamics in the two directions. There should consequently be no interactions between
the in-plane structural modes and the transverse vibrations as long as the amplitude of
vibration remains small. On the other hand, we have shown that the progressive desta-
bilization of the transverse structural modes may enhance the amplitude of the VIVs
even in the stable domain. These conclusions may not easily be generalized to other
structural configurations as the stability of the structural modes is highly dependent
on the boundary conditions of the structure. The choice of the cantilever configura-
tion in our work merely demonstrates the potentially large consequences the axial flow
may bear through the reactive force, and neglecting the terms originating from it must
only be done with great care. Nonetheless, we also found that the magnification of the
vibrations due to the reactive force becomes significant for higher modes of vibrations
and larger levels of deflection as the structure is made more slender. In this regard, it
may thus be considered as a secondary effect that sets a limit to the strong abatement
of the vortex-induced vibrations more commonly observed.

We may thus conclude that the primary consequence of flow-induced deformations
on the vortex-induced dynamics of flexible cylinders is the hindrance of lock-in, replaced
by a multi-frequency response of the structure, and the strong mitigation of the vibra-
tions that rest on the modification of the spanwise profile of the normal component
of the free-stream. Neglecting the in-line deformation when assessing the features of
the VIVs should therefore generally result in an overestimation of the severity of the
vibrations.



Chapter 6

Conclusion

6.1 Contributions

To conclude, we have shown in this thesis that the ability of flexible structures to reduce
the magnitude of the flow-induced loads is preserved in many situations involving some
spatial or temporal variability of the flow-structure system, provided that the design of
the structure is such that drag dominates over the structural and fluid inertial forces.

In the case of a non-uniform system, we found that the scaling of the total drag
with the flow velocity could be related to the spatial variability of the flow-structure
system at the scale of a bending length located in the vicinity of the clamped edge.
This indicates that, apart from the well-known mechanisms of frontal area reduction
and streamlining, drag reduction by elastic reconfiguration may also rely on a third
mechanism of localization of the flow-structure interaction in a small region at the scale
of which the average properties of the system are more favourable. For instance, this
may occur when a structure in a boundary layer flow dives into the region of lower flow
velocity as it reconfigures.

Besides, we have derived an analytical expression relating the Vogel exponent in
the limit of large deflections to the parameters that provide the best fit of the system
properties as power functions of the spatial coordinates. Given the weak sensitivity of
the Vogel exponent to all these parameters in the ranges accessible to realistic systems,
we have concluded that the Vogel exponents of plants and model systems should never
deviate much from −1 regardless of the precise features of the system. This conclusion is
consistent with most experimental measurements performed either in the field or in the
laboratory, and suggests that the mechanism of drag reduction by elastic reconfiguration
is weakly sensitive to the spatial distribution of the system properties.

In the case where the background flow is oscillatory, we have shown that differ-
ent regimes exist for the response of the structure, depending on the amplitude and
frequency of the flow. Overall, the dynamic reconfiguration of flexible structures in
oscillatory flow always results in the alleviation of the internal stresses, as long as the
resistive drag is the dominant source of fluid loading. When the amplitude of the flow
is smaller than the width of the structure, the fluid inertia dominates over the drag.
In this regime, the structure essentially behaves as a linear oscillator and exhibit reso-
nances responsible for a large magnification of the internal stress, when the frequency
of the flow matches the natural frequencies of the structure. Apart from these reso-
nances, the internal stress is reduced due to the shortening of the characteristic scale
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of deformation from the whole length of the structure to the typical wavelength of the
modal shape. On the other hand, when the amplitude of the flow is larger than the
structural width, the resistive drag is the dominant source of fluid loading. As long
as the amplitude remains smaller than the structural length, the internal stress in the
structure is reduced by the concentration of the deformation in an elastic boundary
layer close to the clamping point. The rest of the structure is passively convected with
the flow particles thanks to the saturation of the drag term, which corresponds to the
mechanism of “going with the flow” foreseen by Koehl (1984). When the amplitude of
the flow is now larger than the length of the structure, drag still dominates over inertial
forces on slender structures, but the passive convection of the structure is limited to
its finite length. The deformation of the structure becomes quasi-static, apart from a
swift reversal period, and the known results about static reconfiguration apply.

It appears from this systematic study that whatever the regime of reconfiguration,
the reduction of the structural stress always results from the concentration of the de-
formation on a characteristic bending length smaller than the actual length of the
structure. This loss of relevance of the actual size of the structure in aid of a smaller
bending length had already been noted in the static regime in Gosselin et al. (2010)
and used as the key assumption leading to different scaling laws for the drag on flexible
structures in different situations in de Langre et al. (2012). Our work indicate that
this mechanism appears to be the common feature to all (static or dynamic) regimes of
reconfiguration, and the source of the alleviation of the load.

The dynamic flow-structure couplings that may occur when the structure has a
significant inertia may however set some limitations to the benefits of reconfiguration.
The spontaneous flapping dynamics that arises in steady flows is indeed responsible
for additional loads on the structure that mitigate the efficiency of the drag reduction
process. However, apart from some rare and brief snapping events during which very
large peak forces may be recorded, the additional contribution due to the dynamics
never offsets the significant drag reduction stemming from the static deflection.

Furthermore, the destabilization of the structure leading, first, to the triggering of
flutter, and eventually, to the loss of regularity of the flapping dynamics, is dependent on
the density and geometry of the structure. Heavier structures are naturally more prone
to inertial forces, while slender structures are efficiently damped due to the dominance
of drag over the added mass force. The mass and aspect ratio are consequently critical
parameters in the evaluation of the disturbance brought about by inertial effects to the
reconfiguration process. Our work indicates that a good design strategy in order to
make flow-resistant flexible structures is to build light and slender structures. For that
matter, these design instructions should seem reasonable from a biologist’s point of
view, as they are consistent with the morphology of the macroalgae that have managed
to grow to large sizes in flow-dominated habitats.

Finally, we have also demonstrated that the ability to statically deform under the ef-
fect of the flow has the added benefit of reducing the magnitude of the vortex-induced
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vibrations. These vibrations are usually undesirable in engineering applications, be-
cause of the risks of fatigue damage associated with the cyclic nature of the load, and
the magnification of the static drag that they bring about. Our study shows that the
modification of the normal flow profile due to the reorientation of the structure broadens
the wake excitation spectrum and localizes the energy transfer, thus inhibiting single
mode lock-in and mitigating the amplitude of vibration. The abatement of the VIVs
due to the deflection may however be thwarted by the destabilizing influence of the re-
active added mass force on the transverse structural modes. This last effect is likely to
depend on the boundary conditions imposed to the structure, and other configurations
should be considered in order to draw general conclusions regarding the impact of the
reactive force on the VIVs of deforming structures.

6.2 Perspectives

In this thesis, we have provided some extensions of the theory of reconfiguration to more
realistic situations in contrast to the overly idealized cases considered thus far in the
literature. But the configurations considered in this work are still simplified to a large
extent. In particular, the choice of a cantilever beam clamped transverse to the flow
limits the validity of the conclusions drawn here to structures that deform assuming a
two dimensional flexion mode. For instance, some findings of Chapter 2 do not seem
to be readily applicable to the rolling-up of plastic sheets of Schouveiler and Boudaoud
(2006), probably because of the more complex three dimensional reconfiguration mech-
anism. Besides, we did not observe in Chapter 3 the “jerking” effect predicted by Koehl
(1984), Denny and Cowen (1997), Denny et al. (1998), that would create large inertial
forces when the structure reaches the end of its tether after the short reversal period.
This, of course, is partly due to the fact that the structural inertia was neglected in
the model. But the effect of the added mass that is virtually affected to the structure
could still cause such inertial effects. We believe likely that we did not observe any
jerking effect because of the reversal mechanism of bending structures, characterized
by the propagation of a single curvature wave from the clamped edge to the free tip
over the reversal time. The progressive reversal of the structure thus prevents any bru-
tal deceleration at the end of the reversal. In the case of tensile structures, such as
those considered in the aforementioned studies, the mass at the end of the chain-spring
system is convected freely during the reversal, but the momentum acquired during this
time may induce large tensioning effects in its tether when the mass brutally reaches
the end of its course. When subjected to flows, the behaviour of systems with more
complex deformation mechanisms remains to this day largely unexplored.

Besides, when considering the influence of the time-variability of the free-stream in
Chapter 3, we have restricted our study to the particular case of a sinusoidally oscillating
flow. But flexible benthic organisms are also subjected to brief, potentially larger loads,
due for instance to the impingement of breaking waves (Gaylord et al., 2008; Jensen
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and Denny, 2016). The response of flexible structures to such impulsive loads has been
considered in a few situations (see for instance Gaylord et al., 2001; Kim and Gharib,
2011), but relatively few studies have analysed the potential that flexible structures
bear in alleviating the large loads due to transient flow forces. Moreover, the actual
variations of the flow in the field are likely to be more complex, involving non-linear
random waves possibly combined with a steady current such as the Stoke’s drift. A
few studies have recently considered more complex and realistic time-variations of the
flow (see for instance Gaylord et al., 2003; Henry et al., 2015). We believe the present
thesis provides some insight regarding the behaviour of flexible structures in time-
varying flows, but more work is undoubtedly necessary to understand the mechanisms
of deformation and predict the magnitude of the loads imposed on such structures in
transient or irregular flows. Besides, some interesting phenomena remain to be explored
even in the simple case of a sinusoidally oscillating flow. Some results (not included in
this thesis) of the experiments presented in Chapter 3 have for instance shown that the
deformation of the structure is not necessarily symmetric. For some particular values
of the forcing parameters, the structure has sometimes been seen oscillating about an
average position that slowly drifted to one side. The impact on the internal stress of
such large average deflection might be significant and certainly needs to be investigated.

Finally, we have demonstrated that flexibility was responsible for an alleviation
of the loads, at the condition that the resistive drag was dominant over the inertial
effects. Incidentally, we have also shown that inertial effects are generally responsible
for destabilizing the structure and enhancing the loads it has to bear. In the perspective
of harvesting energy from flows, it might be of use to investigate ways not to mitigate
but to increase and control the flow-induced oscillations. We have already proven that
resonances of a virtually massless structure may occur in an oscillatory flow, when the
amplitude of the forcing is small compared to the width of the structure. The results
of numerical simulations, not shown in this thesis, suggest that increasing the mass of
the structure enhances the amplitude of its response. However, when the amplitude of
the flow increases further than the structural length, the structure may exhibit erratic
oscillations. Further investigations regarding the influence of the structural mass on
the response of elastic structures in different types of flows may be useful in assessing
the potential and the limits of using such structures as flow-energy harvesters. Besides,
even in the bioinspired perspective of designing structures that best accommodate the
flow-induced loads, it might not always be possible to lower the structural mass to the
level required to avoid the inertial risks. A more detailed analysis of the consequences
of inertial loads would therefore be of use in that regard as well.



Appendix A

Nomenclature for Chapter 2

L, W (s), D(s) length, width and thickness of the beam
EI(s) bending stiffness in the case of linear elasticity
CD(s) cross-section drag coefficient
ρ(z) fluid density distribution
U(z), U0 flow profile and reference velocity
θ(s), κ(s) inclination angle of the beam from the vertical axis and curvature
M(s), M0 internal bending moment and reference value
Q(s) internal shear force
q(s), q0 local normal fluid load and reference value
c(θ) angular dependence of the normal fluid load
g(κ), α function and exponent associated with the material constitutive law
b(s), b0, β distribution, reference and exponent associated with the stiffness

factor
w(s), w0, γ distribution, reference and exponent associated with the cross-

section shape factor
p(z), p0, µ distribution, reference and exponent associated with the pressure
φ, ψ geometrical and material parameter
F , Frigid drag force on the flexible/rigid beam
R reconfiguration number
CY Cauchy number
ν, ν∞ local and asymptotic Vogel exponents
` characteristic non-dimensional bending length
LB characteristic non-dimensional boundary layer thickness
δ characteristic non-dimensional tapering length
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Appendix B

Simplification of the reactive force
for inextensible structures

In the particular case of an inextensible structure, the reactive force (3.3) is purely
normal and may be simplified in (3.4). Indeed, developing and sorting the terms in Eq.
(3.3) yields

qam = −ma

[(
U̇n − U ′nUτ − UnU ′τ +

1

2
κU2

n

)
n+

(
U ′n + κUτ − θ̇

)
τ

]
. (B.1)

Differentiating the relative velocity equation Uττ +Unn = ṙ−U with respect to s and
using the inextensibility condition r′ = τ provides

(U ′τ − κUn) τ + (U ′n + κUτ )n = ṙ′ = τ̇ = θ̇n. (B.2)

so that the tangential component of Eq. (B.1) vanishes and U ′τ = κUn and U ′n = θ̇−κUτ .
Using these expressions, Eq. (B.1) further simplifies in

qam = −ma

[
U̇n − θ̇Uτ + κ

(
U2
τ −

1

2
U2
n

)]
n. (B.3)

Differentiating the relative velocity with respect to time now provides

(
U̇τ − θ̇Un

)
τ +

(
U̇n + θ̇Uτ

)
n = r̈ − U̇ (B.4)

so that projection on the normal vector gives U̇n =
(
r̈ − U̇

)
·n− θ̇Uτ . Making use of

that expression in Eq. (B.3) finally yields Eq. (3.4).
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Appendix C

Scaling laws for the tensile stress

Similarly to the shear reconfiguration number considered in Chapter 3, the variations of
the tensile reconfiguration number are displayed on Figure C.1(a) for the modal regime,
along with the location of the maximum stress on Figure C.1(b). Figures C.1(c) and
C.1(d) respectively show the results in the convective and large-amplitude (or static)
regime. All the conclusions drawn about the shear reconfiguration number are still
valid for the tensile number. The only noticeable difference is the asymptotic scaling
for large loadings. Indeed, the non-dimensional bending moment M = κ involves one
less derivative in space than the shear force Q = −κ′ so that M ∼ Q × `b, while the
non-dimensional rigid load is unchanged. Therefore, Rτ ∼ Rn × `b ∼ `2b . Finally, this
provides Rτ ∼ ω−1 in the modal regime, Rτ ∼ (KC ω2)−1/2 in the convective regime

and Rτ ∼ C
−2/3
Y in the large-amplitude (or static) regime, in agreement with the results

shown on Figure C.1.
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Figure C.1: (a) Tensile reconfiguration number and (b) location of maximum tensile
stress along the span, in the modal regime, against the frequency ratio, for KC = 10−2

(—–), KC = 10−1 (− ·−), KC = 100 (− − −), and analytical solution for KC → 0
( · · · · ). (c) Tensile reconfiguration number against KC ω2 in the convective regime
KC = 100 (− − −), KC = 101 (− ·−), KC = 102 (—–). (d) Tensile reconfiguration
number in the large-amplitude regime for λ = 12.7, against the Cauchy number CY for
α = 100 (−−−), α = 101 (—–), and static solution obtained with Eq. (3.21) (· · · · ).
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Appendix D

Influence of the slenderness on the
static reconfiguration

In the large-amplitude regime, most of the cycle is quasi-static and the system is well
modeled by equation 3.21. The different static reconfiguration curves for varying slen-
derness parameters shown on Figure D.1 prove that the reconfiguration numbers con-
verge on an asymptotic trend as the slenderness is increased. For any finite λ, the
discrepancy with the asymptotic curve remains quite small for the shear stress, and
almost completely imperceptible for the tensile stress. The asymptotic scaling provided
in Section 3.4 can therefore be used even for moderately large slenderness.
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Figure D.1: Variations of the static reconfiguration numbers obtained with Eq. 3.21
((a) shear, (b) tensile) as a function of the Cauchy number CY , for λ = 12.7 (—–),
λ = 127 (−−−), λ = 1270 (· · · · ).
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Appendix E

Comparison of the stability
thresholds of Chapter 4 with the

axial configuration

For asymptotically large slenderness λ → +∞, the structure aligns with the flow and
one might expect it to behave similarly to the classical axial configuration. However,
Figure E.1 shows that the critical velocity for large slenderness does not converge to the
threshold expected for an elongated beam in axial flow. In fact, even though θ0 → π/2
almost everywhere, the product λC0 remains of order O(1) so that the contribution of
the resistive drag remains significant even on the part of the structure that is nearly
parallel to the flow. Consequently, in the limit of infinite slenderness, Eq. (4.10) actually
reduces to the classical elongated small-amplitude equation in axial flow Eq. (4.11),
but supplemented by the non-vanishing resistive drag contribution

η̈ + 2u
√
βη̇′ + u2η′′ + η(4) + 2λC0

(
u
√
βη̇ + u2η′

)
= 0. (E.1)

The stability curve found for λ = 103 with this asymptotic equation on Figure E.1 is
indistinguishable from that obtained with the full equation (4.10). Quite understand-
ably, this persistent drag term introduces some additional damping that stabilizes the
system compared to the axial configuration, as soon as β & 0.024.

β

u

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

Figure E.1: Linear stability thresholds obtained with the full equation (4.10) for λ = 103

( · · · ), with the equation relative to the axial configuration (4.11) (− ·−), and with the
asymptotic equation (E.1) for λ = 103 (——).
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Appendix F

Details on the model of Chapter 5

F.1 Derivation of the governing equations

F.1.1 Details about the structural model

Following Audoly and Pomeau (2010), we define a local direct orthonormal frame
ei=1,2,3 = (n,w, τ ), materially attached to the structure and such that (n,w, τ )|s=0 =
(ex, ey, ez). We also define the Darboux vector Ω = κnn + κww + γτ where κn and
κw are the material curvatures and γ is the twist of the cylinder. By definition, the
Darboux vector is such that ei

′ = Ω × ei. For an Euler-Bernoulli beam of bending
stiffness EI in both (n,w)−directions, torsional stiffness GJ , and subjected to an ex-
ternal force q and no external torque, the Kirchhoff equations governing the dynamics
of the structure read

mr̈ = F ′ + q , 0 = M ′ + τ × F (F.1)

with the internal force vector F = Tτ + Qn + Pw and the constitutive law for the
internal bending momentM = GJγτ+EIκnn+EIκww. The inextensibility condition
reads r = τ , and for a cantilever beam, the boundary conditions read r = 0 and r′ = ez
at the clamped edge s = 0, and F = M = 0 at the free end s = L. Using the second
Kirchhoff law (F.1) and the boundary conditions for the twist, we find that

γ = 0 , Q = −EIκ′w , P = EIκ′n (F.2)

so that finally the curvilinear derivatives of the material frame simplify in

τ ′ = κwn− κnw , n′ = −κwτ , w′ = κnτ (F.3)

and the curvilinear derivative of the internal force vector that appears on the right hand
side of the first Kirchhoff equation (F.1) reads

F ′ =

(
T +

1

2
EI
(
κ2n + κ2w

))′
τ +

(
κwT − EIκ′′w

)
n−

(
κnT − EIκ′′n

)
w. (F.4)

The boundary conditions read r = τ = 0 at s = 0 and T = κn = κ′n = κw = κ′w = 0 at
s = 1.
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F.1.2 Linearization of the structural model

As explained in Section 5.2, we expand r(s, t) = r0(s) +Y (s, t)ey where the transverse
displacement Y is taken as a first order perturbation to the static shape r0. At the
leading order the deformation is contained exclusively in the xz−plane so κn is a first
order perturbation as well and we also expand κw = κ0 + δκ and the frame vectors

τ = τ0 + δτ , n = n0 + δn , w = ey + δw. (F.5)

Using (F.3), the inextensibility condition and all the expansions above mentioned, we
obtain after some calculations the expansions of the material frame

τ = τ0 + Y ′ey , n = n0 + αey , w = ey − Y ′τ0 − αn0 (F.6)

where the small angle α and the small curvature κn satisfy

α′ = −κ0Y ′ , κn = κ0α− Y ′′ (F.7)

and δκw = 0. Besides, expanding all the terms in (F.4), we obtain up to the linear
order

F ′ =

(
T +

1

2
EIκ20

)′
τ0+

(
κ0T − EIκ′′0

)
n0+

((
T − EIκ20

)
Y ′′ − 3

2
EI
(
κ20
)′
Y ′ − EIY (4)

)
ey.

(F.8)

F.1.3 Linearization of the fluid forces

The oscillating lift force pw defined in (5.3) is a linear order term by assumption. On
the other hand, the resistive and reactive forces (5.1),(5.2) both include a leading order
and a linear order term. First, the expansion of the relative velocity up to the linear
order in Y gives Urel = Ẏ ey−Uex = Ẏ ey−US0τ0−UC0n0 so that projection on the
tangent direction and its orthogonal plane using (F.6) yields

Uττ = −US0τ0 − US0Y
′ey , UNN = −UC0n0 +

(
Ẏ + US0Y

′
)
ey. (F.9)

Making use of that decomposition in (5.1) and (5.2), we obtain the linearized fluid loads

pam = −maU
2

(
S2
0 −

1

2
C2

0

)
κ0n0−ma

(
Ÿ + 2US0Ẏ

′ + UC0κ0Y
′ + U2

([
S2
0 +

1

2
C2

0

]
Y ′
)′)

ey

(F.10)

pd =
1

2
ρCDDU

2|C0|C0n0 −
1

2
ρCDDU |C0|

(
Ẏ + US0Y

′
)
ey. (F.11)
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F.1.4 Governing equations

Finally, the linearized structural acceleration reads r̈ = Ÿ ey so that substitution of
(F.8),(F.10),(F.11) and (5.3) in the first Kirchhoff equation (F.1) provides, after pro-
jection along τ0 and n0, the leading order system of equation

(
T +

1

2
EIκ20

)′
= 0 ,

(
κ0T − EIκ′′0

)
+

1

2
ρCDDU

2|C0|C0−maU
2

(
S2
0 −

1

2
C2

0

)
κ0 = 0

(F.12)
with leading order boundary conditions θ0 = 0 at s = 0 and T = κ0 = κ′0 = 0 at
s = L. The first equation provides the expression of the tension T = −1/2EIκ20.
Replacing T in the second equation yields the static equilibrium equation (5.6) after
non-dimensionalization. Similarly, projection of (F.1) on ey yields

mŸ =

((
T − EIκ20

)
Y ′′ − 3

2
EI
(
κ20
)′
Y ′ − EIY (4)

)

−ma

(
Ÿ + 2US0Ẏ

′ + UC0κ0Y
′ + U2

([
S2
0 +

1

2
C2

0

]
Y ′
)′)

− 1

2
ρCDDU |C0|

(
Ẏ + US0Y

′
)

+
1

4
ρC0

LDU
2C2

0q (F.13)

which gives the VIV equation (5.7) after replacement of the tension and non-dimensionalization.

F.2 Validity of the linearization

The model derived above and used throughout Chapter 5 is based on the assumption
that the only relevant source of nonlinearity in the dynamics comes from the damping
term in the Van der Pol wake oscillator. This term is indeed sufficient to ensure the
saturation of the vibration amplitude in the limit-cycle to a magnitude consistent with
physical observations. However, the linearization leading to the governing equation for
the structure (5.7) relies on the assumption that the transverse displacement Y is a
small perturbation to the leading order deformation r0(s), while the amplitude of the
limit-cycle oscillations due to VIVs is not infinitesimal. Thus, the adequacy of the
linearization detailed in Appendix F.1 for modeling VIVs requires verification.

The linearization of the structural model performed in Appendix F.1.2 is purely
geometrical and holds as long as Y � L. The numerical results displayed on Fig.
5.7(a) and 5.9(a) indicate that the amplitude of the transverse perturbation does not
exceed Y . 0.5D in the case of VIVs. The geometrical linearization thus still holds in
the limit-cycle for the slender structures considered in this work Λ = L/D � 1.

On the other hand, the linearization of the fluid forces performed in Appendix F.1.3
relies on the additional assumption that the transverse velocity is small compared to the
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free-stream Ẏ � U . The frequency of the VIVs is approximately equal to f 0
w = StU/D

as shown on Fig. 5.3. Assuming an amplitude Y ∼ 0.5D and with St = 0.2, the order
of magnitude of the transverse velocity scales as Ẏ ∼ 2πf 0

wY ∼ 0.6U , which is at the
mathematical limit of validity of the linearization. Nonetheless, considering only the
linear contribution of the fluid forces in the dynamic equation is consistent with the
leading-order nature of the models generally used in VIV studies involving wake oscil-
lator models (Skop and Luo, 2001; Facchinetti et al., 2004b; Mathelin and de Langre,
2005; Mukundan et al., 2009). A more detailed discussion about the appropriateness of
such an approximation can be found in Skop and Balasubramanian (1997). If the non-
linearity in the Van der Pol wake oscillator is critical in the limitation of the amplitude
of the vibrations in the limit-cycle, we expect that the influence of other nonlineari-
ties should be less significant on a qualitative point of view. More details about the
influence of nonlinearities arising from the structure, the fluid forces, or the coupling
between them can be found in Srinil and Zanganeh (2012).

Finally, when the system becomes unstable to flutter, the amplitude of the oscilla-
tions becomes too large for the geometrical linearization of Appendix F.1.2 to remain
valid. In this case, nonlinear coupling between the transverse and in-plane directions in
the structural equation would eventually lead to a complex large-amplitude 3D motion.



Appendix G

Linear analysis for the transverse
vibrations

G.1 Linear stability analysis for the coupled wake-

structure system

To perform the linear stability analysis of the coupled system (5.7)-(5.8), we neglect
the nonlinear term in Eq. (5.8) and assume a perturbation of the form (Y, q) (s, t) =
(φ(s), ψ(s)) eiωt. The coupled system (5.7)-(5.8) then yields

− v2ω2φ+ iω
βv2

StΛ
[2S0φ

′ + C0 (κ0 + cdΛ)φ]

+

([
βv2

S2
t Λ

2

(
S2
0 +

1

2
C2

0

)
+

3

2
κ20

]
φ′
)′

+ cd
βv2

S2
t Λ
C0S0φ

′ + φ(4) − cl
βv2

S2
t

C2
0ψ = 0 (G.1)

−ω2 (ψ − Aφ)− iωε (2πC0)ψ + (2πC0)
2 ψ = 0 (G.2)

with boundary conditions φ = φ′ = 0 at s = 0 and φ′′ = φ′′′ = 0 at s = 1. We then solve
the coupled quadratic eigenvalue problem (G.1)-(G.2) at the discretization points with
the MatLab function quadeig of Hammarling et al. (2013). The linear frequency flin
and growth rate σ of the linear modes are then related to the eigenvalues thus found
by ω = 2πflin − iσ.

G.2 Thresholds for the transverse flutter instability

The destabilization of the structural modes is due to the influence of the reactive force
in the structural equation (5.7), and the effect of the oscillatory lift force due to the
wake is most likely negligible in this regard. To compute the stability threshold for the
structural modes only, we may thus neglect the coupling between equations (5.7)-(5.8)
and consider exclusively the left-hand side of (5.7). Besides, the frequency of shedding
f 0
w is irrelevant in this case and we rescale the dimensional time with respect to the

characteristic structural time Ts = L2
√

(m+ma)/EI (as in Chapter 4) instead of f 0
w.

The governing equation then reduces to
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Ÿ + u
√
β
[
2S0Ẏ

′ + C0 (κ0 + cdΛ) Ẏ
]

+

([
u2
(
S2
0 +

1

2
C2

0

)
+

3

2
κ20

]
Y ′
)′

+ cdΛu
2C0S0Y

′ + Y (4) = 0 (G.3)

where the flutter-specific reduced velocity u = UL
√
ma/EI (similar to that used in

Chapter 4) is related to the VIV-specific reduced velocity used throughout Chapter

5 through v = (St/
√
β)Λu, and to the Cauchy number through CY = cdΛu

2. The
stability thresholds found by linear stability analysis of Eq. (G.3) for β = 0.5 and three
different aspect ratios are provided in Table G.1 in terms of the three parameters u, v
and CY .

The threshold for Λ = 10 in terms of the VIV-specific reduced velocity vc = 35.8 is
very close to that found in Section 5.3.3 for the coupled system (5.7)-(5.8), vc = 34.9.
This confirms the very limited influence of the wake coupling on the structural stability.
Besides, the thresholds expressed in term of the flutter-specific reduced velocity u seems
almost insensitive to the aspect ratio Λ. Consequently, according to the scalings of the
VIV-specific reduced velocity v ∝ Λu and Cauchy number CY ∝ Λu2 provided here,
the stability thresholds in terms of both these parameters is close to proportional to
the aspect ratio Λ.

critical velocity uc critical velocity vc critical Cauchy number CY,c
Λ = 10 12.7 3.58× 101 2.04× 103

Λ = 102 16.1 4.55× 102 3.30× 104

Λ = 103 17.1 4.85× 103 3.74× 105

Table G.1: Structural stability thresholds in terms of the flutter-specific reduced veloc-
ity u, VIV-specific reduced velocity v, and Cauchy number CY .
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a b s t r a c t

Flexible systems bending in steady flows are known to experience a lesser drag compared
to their rigid counterpart. Through a careful dimensional analysis, an analytical expression
of the Vogel exponent quantifying this reduction of drag is derived for cantilever beams,
within a framework based on spatial self-similar modelling of the flow and structural
properties at the clamped edge of the structure. Numerical computations are performed
on various situations, including systems involving more complex distributions of the flow
or structural parameters. The scaling of drag versus flow velocity for large loadings is
shown to be well predicted by fitting the system properties by simple power laws at the
scale of the length on which significant bending occurs. Ultimately, the weak sensitivity of
the Vogel exponent to the parameters of the system provides an explanation to the rather
reduced scattering of the Vogel exponents around �1 observed on most natural systems
in aquatic or aerial vegetation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It has beenwell known, since the seminal work of Vogel (1984), that flexible structures subjected to fast flows experience
a drag F that grows slower with the velocity than if they were rigid. When the velocity U of the flow exceeds a given
threshold, the classical quadratic velocity–drag law that holds for rigid bodies at large Reynolds number changes to a
smaller power law FpU2þ ν characterized by the so-called Vogel exponent ν, which is negative. This phenomenon is for
instance broadly observed in nature. Indeed, plants growing in fast flow environments are very often made of flexible
tissues that bend to comply with the flow, hence lowering the risk of failure by fracture or uprooting.

To get a better understanding of the underlying mechanisms, Alben et al. (2002, 2004) first studied the model problem of
an elastic one dimensional fibre in an inviscid two dimensional flow, both experimentally and numerically. Their study
revealed the importance of a single control parameter, which they call the elastohydrodynamical number, related to the
more commonly used Cauchy number CY (Tickner and Sacks, 1969; Chakrabarti, 2002; de Langre, 2008), that scales the
competing effects of fluid loading to the elastic restoring force. The model of Alben et al. (2002, 2004) exhibits the expected
transition from the classical rigid-body U2 drag scaling law to a new U4=3 drag law concomitant with the convergence
towards a self-similar shape at large Cauchy numbers. Gosselin et al. (2010) obtained similar results for a finite width plate
with a simplified model of fluid loading. They also managed to predict the same asymptotic drag scaling law from a very
simple dimensional analysis. In order to explain the drag reduction due to the rolling up of daffodil leaves originally
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observed by Vogel (1984), Schouveiler and Boudaoud (2006) obtained theoretical and experimental estimates of the Vogel
exponent for circular plastic sheets cut along a radius. They found a drag scaling as U2=3, while a theoretical and numerical
study by Alben (2010) on the same system concludes that the drag increases as U1. Recent studies have proposed models
that account for additional effects such as gravity (Luhar and Nepf, 2011), viscosity (Zhu and Peskin, 2007; Zhu, 2008), shear
background flow (Henriquez and Barrero-Gil, 2014) or unsteady wake effects due to vortex shedding at the edges (Yang et
al., 2014).

Many experimental measurements made either in the field or in the laboratory have also been able to provide estimates
of the Vogel exponents for systems as diverse as full trees, grasses, flowers, leaves, near-shore marine macrophytes or
freshwater algae. Some quite comprehensive reviews such as Harder et al. (2004) or de Langre et al. (2012) list Vogel
exponents varying in a range around �0.7, between 0 and �1.3 at most for such systems. What is especially striking is not
the scattering of Vogel exponents found for different systems, but much more the robustness of the drag reduction phe-
nomenon with respect to the great variability of structural and flow configurations, and the rather narrow range in which
the Vogel exponents usually lie. From the assumption that the scaling of drag reduction results from the loss of one typical
length scale, de Langre et al. (2012) showed that the Vogel exponent of any structure made of beams and plates (such as
most plants) should exhibit approximately the same behaviour. By a simple dimensional analysis, they recovered the
classical �2/3 Vogel exponent found by Alben et al. (2002, 2004) and Gosselin et al. (2010). They further claimed that non-
linearity in the material constitutive law should have little impact on the scaling of drag. Any possible effect of flow or
structural non-uniformities was however not addressed in this study, and nor was it, to the authors' knowledge, in any other
one, with the only exception of Henriquez and Barrero-Gil (2014) in the specific case of shear flow. A range of models is
clearly missing to fill the gap between the idealized cases above and the more complex natural configurations.

The goal of the present work is to provide a general framework for the derivation of the Vogel exponent of a flexible
beam in the limit of large velocity flows. It includes most possible non-uniformities in the flow or structural parameters, but
it excludes the additional effects of viscosity, unsteadiness in the wake or in the background flow, or other external forces
such as gravity. In some aspects, it is a generalization of the works of Gosselin et al. (2010), de Langre et al. (2012) and Luhar
and Nepf (2011).

In Section 2, the general framework of this study is described. In Section 3, a theoretical analysis of drag reduction of a
system described by self-similar fluid and structural parameters is presented. In Section 4, the results of numerical simu-
lations performed on several practical cases are given. Finally, Section 5 discusses the implications of the present results
regarding the understanding and the predictability of the typical values of the Vogel exponents of actual systems. A
nomenclature of the main variables used throughout this paper is given in Table 1.

2. Model

The model used in this paper is represented in Fig. 1. The elastic body is a cantilever beam of length L bending in the xz-
plane. The width W, thickness D and material stiffness may all vary with the curvilinear coordinate s. The height z(s) and

Table 1
Nomenclature.

L, W(s), D(s) Length, width and thickness of the beam
EI(s) Bending stiffness in the case of linear elasticity
CD(s) Cross-section drag coefficient
ρðzÞ Fluid density distribution
U(z), U0 Flow profile and reference velocity
θðsÞ, κðsÞ Inclination angle of the beam from the vertical axis and curvature
m(s), m0 Internal bending moment and reference value
fn(s) Internal shear force
q(s), q0 Local normal fluid load and reference value
cðθÞ Angular dependence of the normal fluid load
gðκÞ, α Function and exponent associated with the material constitutive law
b(s), b0, β Distribution, reference and exponent associated with the stiffness factor
w(s), w0, γ Distribution, reference and exponent associated with the cross-section shape factor
p(z), p0, μ Distribution, reference and exponent associated with the pressure
ϕ, ψ Geometrical and material parameter
F, Frigid Drag force on the flexible/rigid beam
R Reconfiguration number
CY Cauchy number
ν, ν1 Local and asymptotic Vogel exponents
ℓ Characteristic non-dimensional bending length
LB Characteristic non-dimensional boundary layer thickness
δ Characteristic non-dimensional tapering length
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curvature κðsÞ are related to the local angle of the beam with the vertical axis θðsÞ by the kinematic relationships:

z¼
Z s

0
cos θ s0ð Þ ds0; κ¼ ∂θ

∂s
: ð1Þ

We assume a rather general form of the constitutive law relating the internal bending moment m to the curvature κ:

mðs; κÞ ¼ bðsÞgðκÞ; ð2Þ
where b(s) is a local coefficient that accounts for the local stiffness and geometry, while gðκÞ is characteristic of the material
constitutive law, which we take to be uniform on the beam. For instance, in the case of linear elasticity, gðκÞ ¼ κ and
bðsÞ ¼ EIðsÞ is the local bending stiffness of the beam. Under the assumption that the local radius of curvature 1=κ remains
large compared to the thickness D (κD⪡1), Kirchoff's equations for rods (see for instance Audoly and Pomeau, 2010) relates
the internal shear force fn to the internal bending moment m by

f n ¼ �∂m
∂s

: ð3Þ

We further assume that the structure is placed in a horizontal flow U(z) of a fluid of density ρðzÞ. Both U and ρ may vary
with the vertical coordinate z, Fig. 1a only displaying a velocity profile U(z) for clarity. We restrict our study to large Reynolds
numbers, so that viscosity effects are neglected. The local fluid load q is then purely normal. In the case of uniform flow, it is
usually considered that the normal fluid load includes one term due to the so-called “reactive force” (� ρU2WDκ in the
steady limit of the model of Lighthill, 1971, see also Candelier et al., 2011) and one other term due to flow separation
(“resistive force” � ρU2W in the model of Taylor, 1952). Thus, in the slender body assumption κD⪡1, the resistive force is
dominant. We assume that this is still the case for our vertically varying flow, and so we take q as purely resistive and
independent of the body curvature. We assume a somewhat general form

qðs; z; θÞ ¼ pðzÞwðsÞcðθÞ; ð4Þ
where p(z) accounts for the local dynamic pressure due to the undisturbed background flow at height z on the beam, w(s) is
a shape coefficient that accounts for the interactions of the normal flow with the local cross-section, and cðθÞ is a projection
term due to the local angle of the cross-section with respect to the background flow. It is not always obvious that the s- and
θ-dependency can be decoupled, as the structure of the boundary layer and of the recirculating flow downstream will be
modified by the angle of incidence. However, it is usually considered that to the first order, the resistive normal force only
depends on the interaction between the cross-section and the flow in a plane normal to it, hence the expression chosen. The
most classical example of such model is the resistive pressure drag derived by Taylor (1952): q¼ 1=2ρCDWU2

n where ρ is the
fluid density, W the local width of the structure, Un ¼U cos θ the normal projection of the local flow velocity, and CD a drag
coefficient that accounts for the shape of the local cross-section. Specifically, Taylor's model is equivalent to considering

p zð Þ ¼ 1
2 ρ zð ÞU2 zð Þ; w sð Þ ¼ CD sð ÞW sð Þ; c θð Þ ¼ cos 2 θ: ð5Þ

Note that the model chosen here only gives an approximation of the exact loading. In particular, the modifications of the
flow caused by the structure itself are neglected. However, the close similarity of the results obtained, on the one hand by
Gosselin et al. (2010) with the present model, and on the other hand by Alben et al. (2002, 2004) who computed the
pressure force distribution on the actual structure using a much more complex algorithm, indicates that the exact form of
the force has little impact on the asymptotic scaling of the drag. Unless otherwise stated, cðθÞ ¼ cos 2 θ is used everywhere in
the rest of this paper. The framework of the present paper includes the study of the influence of the still unspecified form of
gðκÞ, b(s), w(s), and pðzÞpU2ðzÞ. Note that the dynamic pressure due to the background flow at a given point in space does
not depend on the position of the structure, so p(z) only depends on the Cartesian coordinate z (assuming the flow is
invariant in the x-direction). On the other hand, the elasticity factor b(s) and the cross-section shape coefficient w(s) are
structural properties that are specific to a given location along the beam span s, even though the Cartesian coordinates (x,z)

Fig. 1. Description of the system. (a) Side view of the beam bending in the flow. (b) Front view of the unbent structure.
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of that physical point change as the beam bends. The internal bending momentm(s) depends on the curvilinear coordinate s
explicitly via the local stiffness factor b(s), but also implicitly via the local value of the curvature κðsÞ in the material con-
stitutive law gðκÞ.

Following Luhar and Nepf (2011), the local equilibrium at a given point sn between the local internal shear force and the
normal fluid load yields the governing equation

∂m
∂s

����
s�
¼ �

Z L

s�
q sð Þ cos θðsÞ�θðs�Þð Þ ds; ð6Þ

where the force-free boundary condition fn¼0 at the free end s¼L has been used. Non-dimensionalizing this equation yields
one governing parameter called the Cauchy number

CY ¼
q0L
m0=L

� typical external fluid load
typical elastic restoring force

; ð7Þ

considering that q0 and m0 are the orders of magnitude of the fluid load q and internal moment m in Eq. (6). Besides, the
total drag of the beam reads

F ¼
Z L

0
qðsÞ cos θðsÞð Þ ds: ð8Þ

The focus of this paper is the scaling of the drag force, F, with the velocity of the flow. In the case of a flow that may not be
uniform, we have to choose a reference velocity U0 that scales the velocity at any point in the flow field. We are then
interested in the variations of the Vogel exponent ν such that F scales as U2þ ν

0 , noted FpU2þν
0 . At large Reynolds number

and in the limit of a rigid structure, the drag force is expected to grow as U2
0. Following Gosselin et al. (2010), to isolate the

contribution of flexibility to the velocity–drag law, we define the reconfiguration number

R¼ F
Frigid

; ð9Þ

so that RpUν
0. The actual governing parameter being the Cauchy number, we will prefer to work in the CY–R space rather

than the U0–F space. The Cauchy number being proportional to the typical fluid load q0pU2
0, the local Vogel exponent can

be computed directly in the CY–R space as

ν¼ 2
∂ logR
∂ log CY

: ð10Þ

A schematic view of the correspondence between the three different representations of a velocity–drag relationship is
displayed in Fig. 2 in arbitrary units. The Vogel exponent displayed in Fig. 2c corresponds to twice the slope of the loglog
plotRðCY Þ shown in Fig. 2b. In this particular case, the Vogel exponent asymptotically goes to �1 for large Cauchy numbers,
so that the velocity–drag law goes from quadratic to linear.

In the remaining of this paper, unless otherwise stated, the Cauchy number is always defined based on the flow and
structural properties at the tip of the upright beam.

3. Drag reduction in a self-similar framework

First, we further assume that the pressure, cross-section shape and stiffness parameters p(z), w(s) and b(s) can be
expressed as power functions of their respective arguments, namely

p zð Þ ¼ p0
z
L

� �μ

; w sð Þ ¼w0
s
L

� �γ

; b sð Þ ¼ b0
s
L

� �β

: ð11Þ

Note that, although these power-law formulations of the structural parameters w and b may recall those of Lopez et al.

Fig. 2. Schematic view of the loading–drag relationship in the different parameter spaces (arbitrary units). U0: reference flow velocity, F: drag force, CY:
Cauchy number, R: Reconfiguration number, and ν: Vogel exponent.
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(2011) for a slender cone, or those of Lopez et al. (2014) for a tree-like structure, they actually describe quite different
distributions because the curvilinear coordinate s used in these papers was defined from the free tip towards the floor
instead of the other way around here. We also assume that the material constitutive law may differ from linear elasticity by
considering a more general dependency on curvature, still in the form of a power law

gðκÞ ¼ κα: ð12Þ
Substituting (11) and (12) and the particular form cðθÞ ¼ cos 2θ into (6), the equilibrium equation reads

∂
∂s

sβκα
� �����

s�
¼ �CY

Z 1

s�

Z s

0
cos θðs0Þ ds0

� �μ

sγ cos 2 θð Þ cos θ�θ�ð Þ ds; ð13Þ

where all the space variables have been made non-dimensional using the beam length L, and the Cauchy number CY has
been defined as

CY ¼
p0w0L

b0L
�1�α

: ð14Þ

From (8), the total drag force on the beam in this framework reads

F ¼ p0w0L
Z 1

0

Z s

0
cos θðs0Þ ds0

� �μ

sγ cos 3 θð Þ ds: ð15Þ

We further assume that the drag is bounded by that on a rigid structure, namely

Frigid ¼ p0w0L
Z 1

0
sμþ γ ds¼ p0w0L

1þμþγ
: ð16Þ

For this quantity to be finite, it is required that μþγ4�1. Using (9), (15) and (16), the reconfiguration number now reads

R¼ 1þμþγð Þ
Z 1

0

Z s

0
cos θðs0Þ ds0

� �μ

sγ cos 3ðθÞ ds: ð17Þ

Within this framework, the asymptotic Vogel exponent for large Cauchy numbers, noted ν1, can now be inferred from a
dimensional analysis that accounts for the particular power-like form of the flow and structural parameters. The flow
pressure p, the cross-section shape coefficient w and the bending stiffness b are characterized by their respective invariants:

Ip ¼
pðzÞ
zμ

¼ p0
Lμ

kg m�1�μ s�2	 

;

Iw ¼wðsÞ
sγ

¼w0

Lγ
m1� γ
	 


;

Ib ¼
bðsÞ
sβ

¼ b0
Lβ

kg m2þα�β s�2	 

: ð18Þ

The Vaschy–Buckingham theorem predicts three non-dimensional figures which we choose to be the non-dimensional drag
force, the Cauchy number and the aspect ratio:

~F ¼ F

IpIwL
1þμþ γ

; CY ¼
IpIwL

1þμþ γ

IbL
�1�αþβ

; Λ¼w0

L
: ð19Þ

Following Gosselin et al. (2010), we disregard the effect of the aspect ratio Λ so that the problem reduces to finding the
relationship between ~F and CY, or equivalently to determining the function G such that

F ¼ IpIwL
1þμþ γG IpIw

Ib
L2þμþ γþα�β

� �
: ð20Þ

For highly bent structures, Gosselin et al. (2010) demonstrated that the drag no longer depends on the beam length L. Hence,
function G must be taken as a power function GðCY ÞpCφ

Y that cancels the overall exponent of L in (20), meaning

1þμþγð Þþφ 2þμþγþα�βð Þ ¼ 0: ð21Þ
Consequently, the asymptotic drag force scales as

Fp
ðIpIwÞ1þφ

Iφb
with φ¼ � 1þμþγ

2þμþγþα�β
: ð22Þ

We are interested in the scaling of the drag force with the velocity U0, which only appears in the flow pressure invariant
through Ippp0pU2

0. Therefore, F scales as U2þ2φ
0 and the asymptotic Vogel exponent naturally appears as ν1 ¼ 2φ. Ulti-

mately,

ν1 ¼ �2
1þμþγ

2þμþγþα�β
: ð23Þ

For a uniform, linearly elastic, rectangular plate bending in a uniform flow, ðα; β; γ; μÞ ¼ ð1;0;0;0Þ, so that ν1 ¼ �2=3, which is
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consistent with Alben et al. (2002, 2004) and Gosselin et al. (2010). In the case of a non-linear stress–strain relationship
σpε1=N considered in de Langre et al. (2012), we get α¼ 1=N in our model, and so we recover the asymptotic result
ν1 ¼ �ð2NÞ=ð2Nþ1Þ.

If it is well known that the effects of flexibility are negligible below CY � 1, no study has ever predicted, to the authors'
knowledge, the threshold above which the Vogel exponent should finally reach its asymptotic value. This threshold can
however be estimated by looking at the global balance of forces on the beam. Assuming that the beam length L loses its
relevance when the beam is highly bent implies that there must exist a smaller region of length ℓ, function of the level of
loading only, on which all the significant interactions between the beam and the flow concentrate. This inner region is thus
responsible for the dominant contribution to the drag, and show a large curvature responsible for the balancing force.
Assuming that the contribution of the region s4ℓ to the drag is negligible, (15) gives the dominant contribution to the drag
as

F � p0w0Lℓ1þμþ γ : ð24Þ
On the other hand, using (3), (2), (11) and (12), the internal shear force at the base can be roughly estimated as

f nð0Þ � b0ℓβ Lℓð Þ�1�α ¼ b0L
�1�αℓ�1�αþβ: ð25Þ

Balancing these two quantities yields

ℓ�ð2þμþ γþα�βÞ � p0w0L

b0L
�1�α

; ð26Þ

which is the Cauchy number defined in Eq. (14). We now choose the specific value of ℓ as follows:

ℓ¼ C�ð1=ð2þμþ γþα�βÞÞ
Y : ð27Þ

This analysis highlights the emergence of an intrinsic characteristic length ℓ that characterizes the region of the beam on
which the interactions governing its behaviour concentrate. Note that this length differs from the effective length used in
Luhar (2012). If ℓ is larger than 1 (or equivalently CY o1), the flow interacts with the beam on its whole length and the
structural behaviour is close to that of a rigid beam. On the other hand, if ℓ⪡1, then the interactions in the region of length ℓ
dominate the behaviour of the beam, and so the asymptotic regime is reached. This regime, where the Vogel exponent given
by (10) has become constant, should thus be expected to be obtained above a threshold that is expressed in terms of some
critical value of ℓ instead of CY. Depending on the exponent of the power law relating ℓ to CY, the gap between the onset of
significant bending (CY¼1) and the convergence of the asymptotic regime (ℓ⪡1) might cover a wider or smaller range of
loadings. This analysis is consistent with the dimensional analysis above. Indeed, injecting (27) into (24) and using the fact
that the pressure of reference p0 and the Cauchy number CY both scale as U2

0 easily yields

F �U2�2ðð1þμþ γÞ=ð2þμþ γþα�βÞÞ
0 ; ð28Þ

and so the asymptotic Vogel exponent given by Eq. (23) is obviously recovered.
Note that the choice of expression (27) to define ℓ is somewhat arbitrary, as no actual “bending length” can be uniquely

defined on the physical system. Eq. (27) essentially represents a scaling of the Cauchy number that transforms a ratio of
forces into the ratio of some characteristic bending length over the length of the beam. As such, it gives a different inter-
pretation of the Cauchy number, but it does not correspond to a physical quantity that can be easily measured or obtained as
the output of a numerical simulation.

4. Applications

4.1. Numerical method

To check the validity of our Eq. (23) for the asymptotic Vogel exponent as well as the predicted threshold discussed
above, we numerically compute the Vogel exponent in different cases by solving (13). To solve the integrodifferential
equation, we use a first order centred finite difference scheme with the discrete boundary conditions θ1 ¼ 0, θNþ1�θN ¼ 0
(Thomas, 1995). The integrals are computed by the trapezoidal rule. The resulting non-linear system of equations is solved
using a pseudo-Newton solver (so-called method of Broyden, see Broyden, 1965). The beam is discretized with N¼30 panels.
For CY r1, the beam bends very little, so we use a uniform mesh. When the beam reconfigures significantly, we have seen
that its curvature tends to concentrate in a small region of characteristic non-dimensional length ℓ near the clamped edge.
In order to model the curved region with accuracy when CY Z1, we use a non-uniform mesh sk ¼ k=ðNþ1Þ� �χ with
χ ¼ log ℓ=log 2 so that sððNþ1Þ=2Þ ¼ ℓ, meaning that half of the points are in the curved region srℓ. This mesh scales with the
characteristic bending length in the curved region, and so it is not necessary to increase the number of points to maintain a
good accuracy when the beam is highly bent. Convergence was checked on a few cases by measuring the relative error on
the asymptotic Vogel exponent. On all the cases tested, doubling the number of points changed the value of the asymptotic
Vogel exponent by less than 0.1%.
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4.2. A uniform beam in a shear flow

One first situation that is of particular interest is the case of reconfiguration in a sheared flow. This situation is observed
for instance for aquatic organisms in underwater boundary layers or within canopies (see Luhar, 2012). We consider a plate
of constant width W and cross-section drag coefficient CD, made of a linearly elastic material of uniform bending stiffness EI,
deforming in a flow of uniform density ρ with a sheared velocity profile:

U ¼U0
z
L

� �μ=2
: ð29Þ

Assuming Taylor's model for the local fluid load, the parameters of the model specifically read

p zð Þ ¼ 1
2
ρU2

0
z
L

� �μ

; w sð Þ ¼ CDW ; c θð Þ ¼ cos 2θ; b sð Þ ¼ EI; g κð Þ ¼ κ; ð30Þ

which corresponds to a constitutive law, stiffness and cross-section shape exponents respectively ðα; β; γÞ ¼ ð1;0;0Þ with the
shear exponent μ being the only varying parameter. Hence, from (23), the theoretical asymptotic Vogel exponent is pre-
dicted as

ν1 ¼ �2
1þμ

3þμ
: ð31Þ

In the case of a uniform flow μ¼0, we recover the classical ν1 ¼ �2=3 of Gosselin et al. (2010). From (27), the characteristic
bending length reads here

ℓ¼ C�ð1=ð3þμÞÞ
Y : ð32Þ

To numerically confirm these predictions, we solve the non-dimensional governing equation Eq. (13) that reads in this
specific case:

∂2θ
∂s2

����
s�
¼ �CY

Z 1

s�

Z s

0
cos θðs0Þ ds0

� �μ

cos 2 θ sð Þ cos θðsÞ�θðs�Þð Þ ds; ð33Þ

with the Cauchy number

CY ¼
ρU2

0CDWL3

2EI
: ð34Þ

Fig. 3 shows the results of the computational approach. In Fig. 3a, the deflection of the beam for increasing loads is shown in
the case of a linear flow μ=2¼ 1. As expected, significant bending is observed when CY 41. The evolution of the reconfi-
guration number and of the Vogel exponent in Fig. 3b and c stresses the existence of two asymptotic regimes. At low Cauchy
numbers, the structure behaves as a rigid beam so the Vogel exponent is null no matter the flow profile. At very large
Cauchy numbers however, the Vogel exponent converges towards a constant that depends on the shear exponent μ. The
asymptotic Vogel exponent numerically obtained for varying flow profiles is plotted in Fig. 10 in the Appendix, for CY ¼ 105

(which implies ℓ¼0.02 for μ/2¼0 and ℓ¼0.2 for μ/2¼2). It shows excellent agreement with the theoretical value given by
(23). We re-plot in Fig. 4 the evolution of the Vogel exponent as a function of the characteristic bending length ℓ given by
(32) instead of the Cauchy number CY. In the three cases displayed, the Vogel exponent was within 2% of the asymptotic
value for ℓo0:2. This confirms that the threshold for the asymptotic regime is well expressed, for any value of the para-
meter μ, in terms of the same critical value of ℓ.

The asymptotic results shown in Fig. 10 contradict the preliminary results of Henriquez and Barrero-Gil (2014). The
origins of these discrepancies are discussed in the Appendix.

4.3. A uniform beam in a Blasius boundary layer

The particular power-like form of the pressure, cross-section shape and stiffness distributions p(z), w(s), b(s), as well as
the constitutive law gðκÞ, is a necessary assumption for the theoretical derivation of the asymptotic expression (23) that may
appear like a strong limitation of the model above. It seems however that the actual scope of applicability of (23)
encompasses a much wider range of practical situations. For highly bent structures, the curvature tends to concentrate in a
small “inner” region soℓ near the clamped edge. As explained in Alben et al. (2002, 2004), the “outer” portion of the system
located above ℓ “sits” in the wake created by the deflection of the incident flow heading to the inner region upstream, and
so it only endures very little fluid loading. Consequently, the outer domain only has negligible influence on the overall shape
and drag of the structure, and only the spatial dependency of the flow and structural parameters inside the inner domain is
actually relevant to the modelling of the system. The whole theory above should thus remain valid as long as power function
approximations can accurately model these parameters at the scale of ℓ only, and not necessarily at the scale of the whole
beam length.

To better understand the implications above, we consider the reconfiguration of a non-tapered, elastic, homogeneous
beam, in a Blasius boundary layer. In this case, all the structural parameters are spatially invariant, but the flow exhibits a
more intricate shear profile than a simple power-law fit in z. For the sake of clarity, all the space variables have been
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normalized by the length of the beam, or equivalently L¼1. In the model of Blasius, the vertical velocity is negligible and the
horizontal velocity is expressed as

Uðx; zÞ ¼ U1f 0 ηð Þ; ð35Þ

with the similarity variable η¼ z
ffiffiffiffiffiffiffiffiffiffi
RL
e=x

q
, the Reynolds number based on the length of the beam and outer flow velocity RL

e,
and f the solution of the Blasius boundary layer equations:

2f ‴þ ff ″ ¼ 0; f ð0Þ ¼ f 0ð0Þ ¼ 0; f ðηÞ⟶
η-1

1: ð36Þ

The resulting flow profile, shown in Fig. 5a for a fixed value of x, is characterized by a smooth transition from a linear
increase with slope U1=LBðxÞ near the wall saturating to a uniform magnitude U1 far from it. The two domains are roughly
delimited, at each location x, by the dimensionless characteristic length scale

LB xð Þ ¼ 1

f ″ð0Þ

ffiffiffiffiffi
x

RL
e

s
; ð37Þ

Fig. 3. A uniform beam in a shear flow. (a) Deformation of the beam in a linear flow profile μ=2¼ 1. (b) and (c) Reconfiguration number R and Vogel
exponent ν as functions of the Cauchy number CY: uniform flow profile μ=2¼ 0 (——), linear flow profile μ=2¼ 1 (� � �), and quadratic flow profile μ=2¼ 2
(���). Asymptotic Vogel exponent predicted by Eq. (23), uniform flow profile μ=2¼ 0 (○), linear flow profile μ=2¼ 1 (□), and quadratic flow profile
μ=2¼ 2 (▵).
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such that

U x; zð Þ �U1 for z⪢LB xð Þ and U x; zð Þ � U1
LBðxÞ

z for z⪡LB xð Þ: ð38Þ

The approach presented in this paper is based on the assumption that the flow is invariant in the x-direction, and so the x-
dependency of the Blasius flow inside the boundary layer would a priori prevent (23) to be valid. However, the region of
space swept by the deforming beam extends at most one beam length downstream of its anchorage point x0 (see Fig. 5b). If
the structure is placed far enough from the origin of the boundary layer (x0⪢1), then LBðxÞ � LBðx0Þ anywhere in the vicinity
of the beam, and so the flow can be considered locally horizontally invariant. The coexistence of the two flow regimes along
the vertical axis makes room for two different characteristic velocities according to (38): U0 ¼ U1 in the uniform domain,
and U0 ¼U1=LB in the linear domain. Two Cauchy numbers can subsequently be defined according to (14): CY ;uni is based on
the uniform outer flow velocity U0 ¼U1, while CY ;lin ¼ CY ;uni=L

2
B is based on the inner characteristic velocity U0 ¼ U1=LB.

Fig. 6a displays the evolution of the Vogel exponent as the loading increases, for several fixed values of LBr1. The parameter
chosen to describe the fluid loading is the Cauchy number based on the uniform outer flow, CY ;uni.

Evidently, if LBZ1, then the beam lies entirely in a linearly sheared flow even when it stands upright. This situation is
strictly equivalent to the shear flow case studied in Section 4.2 with pressure shear exponent μ¼ 2, if the Cauchy number CY
is identified with the linear flow Cauchy number CY ;lin. For LB ¼ 1, CY;lin ¼ CY;uni and the evolution of the Vogel exponent
shown in Fig. 6a, is very similar to the curve obtained for a linear velocity profile in Fig. 3c.

On the other hand, structures reconfiguring in boundary layers smaller than their length (LBo1) experience much more
intricate behaviours. Fig. 6b shows a zoom on the near-wall region of a beam reconfiguring in a Blasius boundary layer a
hundred times smaller than its size (LB ¼ 10�2). This plot should be analysed jointly with the corresponding curve in 6a.
When the Cauchy number is small, the linear flow region is much smaller than the portion of the beam that experiences
significant bending. The inner domain soℓ is mostly subjected to the uniform flow U ¼U1, and the influence of the linear
flow on the very bottom of the beam is negligible. Consequently, the evolution of the Vogel exponent for CY ;unio102 is very
similar to that obtained for a uniform flow in Fig. 3c. As the loading increases, the beam bends more and more and as a
result the linear flow covers an increasing portion of the inner region. It follows that the Vogel exponent decreases for
CY;uni4102. Asymptotically, when the bending region is fully confined inside the boundary layer, the Vogel exponent cat-
ches up with the asymptotic value characteristic of linear shear, ν1 ¼ �6=5. The same analysis remains valid for other
boundary layers smaller than the beam LBo1. If the loading increases enough, the beamwill always eventually dive entirely

Fig. 5. Description of the reconfiguration in a Blasius boundary layer. (a) Blasius profile Uðx; zÞ at a fixed x. (b) Beam deforming in a Blasius boundary layer.

Fig. 4. A uniform beam in a shear flow. Variation of the Vogel exponent in the ℓ–ν space, uniform flow profile μ=2¼ 0 ( ), linear flow profile μ=2¼ 1
(� � �), and quadratic flow profile μ=2¼ 2 (���). Asymptotic Vogel exponent predicted by Eq. (23), uniform flow profile μ=2¼ 0 (○), linear flow profile
μ=2¼ 1 (□), and quadratic flow profile μ=2¼ 2 (▵).
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inside the boundary layer and the Vogel exponent will asymptotically reach the theoretical value predicted for a linear flow
profile. But the threshold above which this asymptotic regime is reached depends on the thickness of the boundary layer LB.
The larger LB, the sooner the shear flow will dominate. Precisely, the relative impacts of the uniform and linear flow regions
can be estimated by comparing the thickness of the boundary layer LB to the size of the bending region ℓ. However, the
expression of ℓ depends on which of the uniform or linear flow dominates. In the uniform outer flow, (27) yields
ℓuni ¼ C�1=3

Y ;uni , while in the linear region it would predict ℓlin ¼ C�1=5
Y ;lin ¼ L2=5B C�1=5

Y ;uni ¼ L2=5B ℓ3=5
uni . At the threshold between the two

regimes, ℓuni ¼ ℓlin ¼ LB, which also yields CY;uni ¼ L�3
B . Note that this threshold specifically sets the lower bound (in terms of

the Cauchy number) to the purely linear flow approximation, but the purely uniform flow approximation loses its validity
for much smaller loads. Indeed, for ℓ smaller but close to LB, the region of the beam that concentrates the interaction with
the flow is already confined inside the boundary layer so that the influence of the uniform domain above totally vanishes.
Conversely, for ℓ4LB, the influence of the linear domain never strictly vanishes, and its influence becomes negligible only
for ℓ⪢LB. This result is consistent with the thresholds for convergence towards the linear regime observed for the different
cases in Fig. 6a. For LB equal to 10�1;10�2 and 10�3, the Vogel exponent was within 2.5% of its expected asymptotic value
ν1 ¼ �6=5 for CY ;uni respectively superior to 102:9, 105:85 and 108:8. If the thickness of the boundary layer LB is small enough,
the influence of the linear region may remain negligible for loadings large enough to permit convergence of the Vogel
exponent in the uniform domain, before it reaches the linear domain. This is observed for instance in Fig. 6a, where the
Vogel exponent for LB ¼ 10�3 displays a plateau around the asymptotic uniform flow Vogel exponent ν¼ �2=3 for
CY ;uni � 102�105, before switching to the asymptotic linear flow Vogel exponent ν1 ¼ �6=5 above CY ;uni � L�3

B ¼ 109. On the
other hand, for thicker boundary layers (LBZ10�2), the influence of the linear domain may not be neglected for loadings
large enough to reach convergence in the uniform domain. For LB ¼ 10�1, convergence to the asymptotic regime is
approximately concomitant with the switch from uniform to linear flow regime. The small hump around CY ;uni ¼ 102

illustrates the successive dominance of the uniform flow that tends to bring the Vogel exponent closer to ν¼ �2=3 as the
asymptotic regime approaches, soon overcome by the linear flow whose influence is to decrease it to ν¼ �6=5. When

Fig. 6. Reconfiguration in a Blasius boundary layer, anchorage point x0 ¼ 107. (a) Vogel exponent ν as a function of the Cauchy number CY ;uni , LB ¼ 10�3

(——), LB ¼ 10�2 (� � �), LB ¼ 10�1 (���), and LB ¼ 1 (� � �). Asymptotic Vogel exponent predicted by Eq. (23), uniform flow profile (○), and linear flow
profile (□). (b) Zoom near the clamped edge of a beam bending in a Blasius boundary layer, LB ¼ 10�2.
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LB ¼ 1, the linear flow region dominates as soon as reconfiguration occurs, so the early effects of the uniform domain are not
even noticeable in Fig. 6a.

This example shows that our approach based on self-similarity actually provides understanding of the behaviour of much
more complex configurations. Strictly speaking, there will always be an asymptotic regime, should it be reached for
extremely large Cauchy numbers. Indeed, as the structure bends, curvature always concentrate in a region of characteristic
length ℓ that gets smaller and smaller, so that it eventually gets small enough for all the parameters to be well approximated
by power laws at its scale. Thus, the actual asymptotic Vogel exponent is given by (23) using the exponents of the first order
in the power law expansions of the structural and flow parameters at the foot of the beam. Yet, the threshold above which
these power law approximations all hold may be too large to be ever reached in practice. In this case, intermediate
asymptotic regimes may arise on whole ranges of Cauchy numbers. We may conclude that convergence of the Vogel
exponent towards a constant independent of the loading may occur if the bending length ℓ is either much larger or much
smaller than any of the other characteristic length scales involved.

4.4. A non-uniform beam in a uniform flow

To further check the validity of the asymptotic expression (23), we compared it to the numerically computed asymptotic
Vogel exponent in some other cases involving variations of the material constitutive law, material stiffness or structural cross-
section shape. To make sure that the asymptotic regime was reached in the numerical simulations, a large enough value of the
Cauchy number (CY ¼ 105) was chosen so that the characteristic bending length ℓwould be inferior to 0.1 in all cases. The results
are shown in Table 2, along with the corresponding ℓ-value. Agreement is excellent in all the cases considered.

A more intricate example is that of a linearly tapered beam of increasing width W, namely

WðsÞ ¼W1þðW0�W1Þs; ð39Þ

as shown in Fig. 7. In most cases, we would then expect the bending stiffness to also vary, but to highlight the effect of the
cross-flow area alone, we assume here that the variations of the cross-sectional shape and elastic modulus are chosen such
that the bending stiffness remains uniform. Consistently with (14), we define the Cauchy number as in Eq. (34) using the
width at the tip W0 as characteristic width. Note that the case W0�W1 ¼ 0 corresponds to the constant width problem γ¼0,
while the caseW1 ¼ 0 corresponds to the linear width problem γ¼1. We define the characteristic length δ as shown in Fig. 7,

Table 2
Comparison of the theoretical and numerically computed Vogel exponents for varying systems.

System α β γ μ Theoretical ν1 (23) Numerical ν at CY ¼ 105 ℓ-Value (27) at CY ¼ 105

Benchmark case 1 0 0 0 �2/3 �0.6681 0.02
Elastoplatic behaviour 0.5 0 0 0 �0.8 �0.8013 0.01
Rigid base 1 �1 0 0 �0.5 �0.5006 0.06
Linear width 1 0 1 0 �1 �1.0024 0.06

Fig. 7. Tapered beam.
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such that Wð�δÞ ¼ 0:

δ¼ W1

W0�W1
: ð40Þ

This quantity can be seen as the length on which the width must vary to significantly deviate from W1 due to the given
slope. Notably, the relative gap between W(s) and W1 can be expressed as

WðsÞ�W1

W1
¼ s
δ
: ð41Þ

In other words, the quantity δ is a measure of the length of validity of the uniform width approximation, as LB was char-
acteristic of the length of validity of the linear flow approximation in the Blasius boundary layer. Hence, the evolution of the
computed Vogel exponents shown in Fig. 8 for several values of δ and for increasing Cauchy numbers may be explained in a
similar fashion. The Vogel exponent converges at large Cauchy numbers towards the theoretical value ν1 ¼ �2=3, con-
sistently with the first orderW1 in the power function expansion (39). For δ41, the Vogel exponent deviates very little from
that of a beam of uniform width (δ¼1). Conversely, for very small δ such as 10�3, the structure behaves as a beam of linear
width, long enough to exhibit an intermediate asymptotic regime ν¼ �1 on a broad range of loadings. Structures with
intermediate δ-values show an earlier shift from linear-like to uniform-like behaviour that do not allow intermediate
convergence of the Vogel exponent. Finally, it should be noted that the characteristic bending lengths reads here ℓ¼ C�1=4

Y
in the linear width regime. Hence, the threshold between the two regimes, ℓ=δ¼ 1, reads in this case CY � δ�4. Contrary to
the case of reconfiguration in a boundary layer, this threshold here must be thought of as a reference load around which
both the uniform and linear terms of the width (39) influence the behaviour of the beam equally. It is not a critical load
above or under which one of the two regimes loses all influence. This is so because, while the two flow domains of the
boundary layer were spatially separated (above and below LB), the two terms of W(s) coexist everywhere, including at the
clamped edge. If each term can be neglected, respectively far above or far below the threshold CY ¼ δ�4, none of them can be
ignored in the transition range around this value. This is consistent with the evolutions displayed in Fig. 8. At CY ¼ δ�4, the
Vogel exponent is equal to �0:79 for all three values δ¼ 10�1, 10�2 and 10�3.

One may wonder what would happen if the width was decreasing from base to tip instead of increasing. In this case,
δo�1 means that the effects of the slope are only noticeable near the tip, but never near the base where the finite value
dominates in any case. In other words, the effects of taper may slightly affect the Vogel exponent for low Cauchy numbers,
but the drag rapidly resembles that of a beam of constant width W1 as soon as bending is significant. These expectations are
confirmed by numerical simulations, not shown.

These results shed light on the apparent contradiction between the two asymptotic Vogel exponents for a disk cut along
many radii derived respectively by numerical computations (ν1 ¼ �2=3) and by dimensional analysis (ν1 ¼ �1) in Gosselin
et al. (2010). In the latter, it was assumed that because the inner radius Ri was 4–6 times smaller than the exterior radius the
small width at the base W1pRi could be neglected. However, because the bending stiffness EI, proportional to the width W,
cannot vanish at the base, it was assumed that the inner radius still influenced the drag through its finite contribution to the
characteristic bending stiffness at the base. Consequently, their analysis corresponds to the case of a purely linear increase of
the width from 0 at the base (γ¼1), on a beam with a non-vanishing bending stiffness (β¼0), hence the predicted Vogel
exponent ν1 ¼ �1. However Fig. 8 clearly shows that for δ as small as 10�1, we do not see a plateau at ν¼ �1 before the
effects of the actually non-vanishing width are observed. The two taper ratios considered in Gosselin et al. (2010), δ¼0.22
and 0.32 are even larger, and so the assumption of negligible base width does not hold there. A Vogel exponent of �2=3 is in
fact to be expected, and that was indeed the result of their numerical computations. Note that the experimental results in

Fig. 8. Vogel exponent ν of a tapered beam for increasing Cauchy numbers CY, δ¼ 10�3 (——), δ¼ 10�2 (� � �), δ¼ 10�1 (���), δ¼1 (� � �), and δ¼ þ1
(thick ). Asymptotic Vogel exponent predicted by Eq. (23), constant width (○) and linear width (∇).
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Gosselin et al. (2010) do not match either ν¼ �2=3 nor ν¼ �1, neither for the cut-disk nor for the single rectangular plate.
The largest Cauchy number considered in the experiments barely exceeded 102, so it is very likely that the asymptotic
regime was simply not reached. However, the close values of the Vogel exponents computed in both cases (ν¼ �1:3 for the
cut-disk and ν¼ �1:4 for the rectangular plate) may indicate that the cut-disk behaves similarly to the rectangular plate,
consistently with our expectations.

It should also be noted that the influence of other types of tapering was also addressed by Lopez (2012), for slender cones
and tree-like structures with rectangular cross-sections (see also Lopez et al., 2014). It was found in both cases that taper
had no influence on the scaling of drag, as numerical computations all yielded the same asymptotic Vogel exponent
ν1 ¼ �2=3. As a matter of fact, as the vertical axis used in these studies was reversed with respect to ours, both the cross-
flow width and the thickness of the beam would reach finite values at the clamped edge for any of the geometries con-
sidered. Consequently, according to the present study, the drag experienced by such structures in the limit of large loadings
scales as that on a beam of uniform properties ðα; β; γ; μÞ ¼ ð1;0;0;0Þ. According to Eq. (23), this indeed yields ν1 ¼ �2=3.

5. Discussion

5.1. On the use of Eq. (23) for actual systems

Eq. (23) gives the Vogel exponent for large Cauchy numbers in the general case as a function of the exponents α
(constitutive law gðκÞ), β (stiffness distribution b(s)), γ (cross-section shape distribution w(s)), and μ (pressure distribution p
(z)). Interestingly, (23) can also be written in a simpler form

ν1 ¼ � 2
1þψ=ϕ

ð42Þ

that highlights the influence of only two parameters: on the one hand, a geometrical parameter ϕ¼ 1þμþγ that accounts for
the distribution of fluid loading on the structure, and on the other hand, amaterial parameter ψ ¼ 1þα�β that characterizes
the restoring stresses.

In practice, the ranges accessible to the exponents α, β, γ and μ are bounded by limitations of multiple kinds. First,
considering the rigid-body force a limiting value, the finiteness of the drag force mathematically requires that γþμ4�1
(see Section 3). But in fact, neither the structural cross-section nor the flow profile of actual systems can possibly diverge at
s¼0, so γ and μ must actually be both positive or null in practice. Moreover, to ensure that the structural stress vanishes for
zero curvature, the exponent α of the material constitutive law gðκÞ has to be strictly positive. Finally, the bending moment at
the base cannot vanish when a loading exists. If the stiffness at the base bð0Þ was null, the curvature there would need to be
infinite and the resulting discontinuity in the angle θ across the boundary s¼0 would make the problem ill-posed. The
minimum energy solution would obviously be the straight horizontal beam, which experiences neither drag nor internal
stress. To eliminate this case, bð0Þ must be different from 0, so the exponent β of the self-similar stiffness function b(s) must
be negative or null. Note that a system with zero-stiffness at the base would essentially revert to a pin joint free to rotate,
with a Neumann boundary condition at s¼0. This would define a different system that falls out of the scope of this study,
and that would experience zero drag no matter the magnitude of the fluid loading. Consequently, the lower physically
admissible boundaries for the geometrical and material parameters of our system are ψ41 and ϕZ1.

Moreover, practical considerations further set upper boundaries to the typical values expected for these parameters. First, the
vast majority of actual structures have finite width, and only quite exotic systems would exhibit cross-sections increasing more
than linearly. It also seems unlikely that an actual flow would show more than linear shear, so we may reasonably expect the
geometrical parameter ϕ to remain approximately below 3 in most cases. Besides, the constitutive law of most elastic materials
should not deviate much from linearity (α¼1). Even the extreme case of perfect plasticity may be represented by taking α¼0, as
noted by de Langre et al. (2012), and a larger value α¼2 would already be a very strong exponent. Besides, continuous structures
generally show rather smooth variations of their stiffness, so that the magnitude of the exponent of the stiffness distribution, jβj,
should really not deviate much at all from 0. Nonetheless, the use of the present model with βa0 might constitute a valid
approach to handle the overall behaviour of compound or branched structures such as trees. Indeed, the drag of such structure is
the sum of the individual drag forces on each of its constitutive elements: trunk, branches, and leaves. The relative contribution
of each term is proportional to the projected area of each element. If we model the structure as an equivalent beam with local
stiffness based on the weighted mean of the individual elements at a given height, we would expect the equivalent stiffness to
decrease by several orders of magnitude from bottom (trunk) to top (leaves). At this point, the validity of this modelling is purely
speculative and further investigations should be carried on to analyse its relevance. But in any case, β as low as –1 leads to
variations of the stiffness factor that seem already quite sharp for an actual structure, and so we do not expect the material
parameter ψ to exceed 3 by much in general.

Considering all these limitations, we may now estimate the expected range of variation of the Vogel exponent. The isovalues
of the asymptotic Vogel exponent ν1 predicted by (42) are displayed in Fig. 9. They clearly indicate that, in these typical ranges of
the geometrical and material parameters ϕA ½1;3� and ψA ½1;3�, ν1 may approximately vary between �1=2 and �4=3 at most.
To illustrate the diversity of situations included in this rather narrow parameter space domain, a few practical configurations are
marked with crosses on (42). Case A is the benchmark case of Alben et al. (2002, 2004) and Gosselin et al. (2010), where all is
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homogeneous and the constitutive law is linear: ðα; β; γ; μÞ ¼ ð1;0;0;0Þ. Case B is the linear flow case shown in Fig. 3a:
ðα; β; γ; μÞ ¼ ð1;0;0;2Þ. Case C would correspond to a uniform, perfectly plastic beam, in a uniform flow: ðα; β; γ; μÞ ¼ ð0;0;0;0Þ.
Finally, case D would characterize a system with either ðα; β; γ; μÞ ¼ ð2;0;0;0Þ (non-linear constitutive law gðκÞ ¼ κ2) or
ðα; β; γ; μÞ ¼ ð1; �1;0;0Þ (global model of a tree with infinite stiffness at the base and flexible branches). Overall, we expect that in
most situations of practical interest, the Vogel exponent at large Cauchy numbers will not deviate much from �1. This is
consistent with observations on plants, as discussed in the Introduction. Case E will be discussed in Section 5.3.

5.2. On the robustness of the results

The use of Eq. (23) to predict the asymptotic Vogel exponent of a given system relies on the ability to fit a power-law on
the spatial distributions of the structural and flow parameters, at least at the scale of the typical length on which significant
bending is observed. This requirement may appear as a very limiting factor, because some parameters may exhibit complex
variations, and because accurate assessment of the exponents might be challenging. However these two apparent issues
might not be as problematic as one might expect.

First, it follows from Sections 4.3 and 4.4 that discrepancies between the actual distributions of the parameters and their
best power-law approximations affect very little the validity of the analytical estimation of the Vogel exponent by (23). For
instance, it is striking that a beamwith taper ratio as large as 10, or even close to 100, still does not exhibit any intermediate
plateau similar to the asymptotic regime of a linearly tapered one. In fact, drag reduction on a beamwith taper ratio of order
10 is very similar to that of a beam of constant width equal to the base width. Similarly, a structure in a Blasius boundary
layer of thickness one order of magnitude smaller than its size is well described, as far as the asymptotic scaling of drag is
concerned, by a beam entirely inside the boundary layer. In other words, the ability of (23) to provide accurate estimation of
the Vogel exponent of actual systems seems very robust with respect to the accuracy of the self-similar fit of the system
parameters. Crude power-law fits at the scale of the bending length are likely to yield rather good results.

Second, the consequences of poor estimations of the exponents of the flow and structural parameter distributions α, β, γ,
μ also appear limited. It is noticeable in Fig. 9 that the asymptotic Vogel exponent ν1 does not vary much in the domain
under consideration. The larger the geometrical and material parameters ϕ and/or ψ, the less sensitive the Vogel exponent
becomes to small variations of the parameters. As already noted in de Langre et al. (2012), in the case of a uniform beam in a
uniform flow, a quadratic material constitutive law (case D in Fig. 9) is expected to lead to a Vogel exponent of �0:5, which
differs very little from the �2=3 exponent characteristic of linear elasticity (case A). Similarly, changing a linearly elastic,
uniform beam from a linearly sheared flow (case B, μ¼2 so ϕ¼3) to an environment with half less shear (μ¼1 so ϕ¼2)
would only reduce the Vogel exponent from �6=5 to �1. Hence, the estimation of the asymptotic Vogel exponent given by
(23) is expected to be also robust with respect to the possible errors made in estimating the fitting exponents.

To conclude, it may be said that the prediction of the Vogel exponent using Eq. (23) is quite robust with regard to the
parameters of the model.

5.3. On the limits of the model

The whole theory derived in this paper is based on assumptions of three different natures.
First, assumptions have been made regarding the way the action of the flow on the deforming structure is handled. The choice

of the simplified form for the local fluid loading (4) has already been discussed in Section 2. As to the specific form of the

Fig. 9. Absolute value of the Vogel exponent in the reduced parameter space ψ–ϕ. The domain shaded in grey corresponds to non-physical ranges. Practical
cases: A–E (see text for the details).
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projection term in the fluid loading distribution cðθÞ ¼ cos 2 θ used all along the present study following Taylor (1952), alternative
admissible forms cðθÞ ¼ cos nθ with nZ1 were numerically tested, and did not lead to any significant alteration of the results.

Second, the study is limited to the influence of the steady background flow at large Reynolds number, in an otherwise
force-free environment. Namely, other effects such as gravity, viscosity, vortex shedding or dynamic effects have been
neglected here. Depending on the situation, these additional forces may impact the Vogel exponent of natural systems and
explain some of the scattering noted in the measurements performed on actual biological or man-made systems. Yet,
consistently with the results of Luhar and Nepf (2011) and Zhu (2008), we do not expect that the present results will be
largely affected by the effects of gravity or viscosity. The field of dynamics however still requires further investigations (see
Kim and Gharib, 2011 or Luhar, 2012).

Third, as to the type of system chosen, we have considered exclusively the reconfiguration of flexible cantilever beams in
cross-flow. Eq. (23) might actually remain valid for a broader range of systems, if the mechanism of reconfiguration is
resemblant enough to the axial bending considered here. Formula (42) directly embodies the competition between the fluid
loading, characterized by the geometrical parameter ϕ, and the structural restoring force, characterized by the material
parameter ψ. All along this paper, we have considered the restoring force to be the internal elastic bending force, but it might
very well be of a different nature. For instance, Barois and de Langre (2013) showed that a ribbon with a weight at one end
exhibits a constant drag. In that case, the fluid loading is of the same nature as in the present study, but the restoring force is
the constant axial tension due to the weight. For such system, the material parameter is ψ¼0 because there is no length
scale associated with the restoring force. It lies out of the admissible range defined earlier, and Eq. (42) yields an asymptotic
Vogel exponent ν1 ¼ �2 (case E in Fig. 9). This does indeed correspond to a constant drag. Conversely, there does not seem
to be any obvious analogy between the present study and the rolling up of sheets cut along one radius treated by Schou-
veiler and Boudaoud (2006) and Alben (2010). In their case, drag reduction is the result of a more complex three dimen-
sional bending process that does not resemble the mechanism considered here.

Finally, it should be noted that the approach used here may easily be adapted to assess the asymptotic effect of elastic
reconfiguration on other physical quantities such as the torque at the base of the structure. After some straightforward
calculations, the analytical expression found for the Vogel exponent is similar to (42) except that the geometrical and
material parameters ϕ and ψ must be respectively replaced by 1þϕ and 1þψ .

6. Conclusions

To conclude, we may say that this work provides a framework for the understanding of the typical values of Vogel
exponents observed in nature. It was shown that the scaling of drag with respect to the flow velocity, in the limits of large
loadings, mostly depends on the best power-law approximation of the flow and structural parameter distributions at the
scale of the length on which significant bending occurs. An analytical formula relating the asymptotic Vogel exponent to the
fitting exponents was derived in Eq. (23), and the sensitivity of this expression with respect to the accuracy of the modelling
was shown to be weak.

More importantly, the application of Eq. (23) to a variety of actual systems highlighted the fact that scattering of the
Vogel exponents due to non-uniformities in the structural or flow distributions is expected to remain small. Consistently
with experimental observations, the predicted Vogel exponents for large loadings always lie around �1. Consequently, the
scaling of the drag on bending beams appears as a characteristic of the mechanism of elastic reconfiguration that depends
only on a very limited extent on the actual features of the system. The present study is however limited to quasi-static

Fig. 10. Asymptotic Vogel exponent ν1 for large Cauchy numbers as a function of the flow profile exponent μ=2. Henriquez and Barrero-Gil, 2014 (���),
present results given by Eq. (23) ( ), and numerical simulations at CY ¼ 105 (o).
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configurations. The effects of possible coupling between the structural inertia and the flow dynamics, should it be originated
by a time-varying background flow or the consequence of unsteady vorticity shedding in the wake of the structure, still
remains to be further investigated.
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Appendix A. Comparison with the results of Henriquez and Barrero-Gil (2014)

The problem of reconfiguration in a sheared flow addressed in Section 4.2 is identical to that treated by Henriquez and
Barrero-Gil (2014). However, our results strongly differ from theirs, as illustrated in Fig. 10 and discussed below.

There seem to be several possible causes for these discrepancies. First, the choice of the reconfiguration factor R in Eq.
(9) of Henriquez and Barrero-Gil (2014) is non-classical. The numerator does indeed correspond to the total drag on the
elastic structure as in the present paper. Yet, the denominator used in Henriquez and Barrero-Gil (2014) does not represent
exactly the force on the rigid body. Second, the Vogel exponent is defined as ν¼ 1=2� ∂ log R=∂ log CY instead of ν¼ 2�
∂ logR=∂ log CY given in Eq. (10) of the present paper to be consistent with FpU2þv. Besides, we believe their numerical
solution technique might not be as accurate as ours. As explained in Section 4.1, the inhomogeneous bending along the
beam axis makes their choice of uniform mesh with 20 discretization points ill-suited to the large deformation cases
investigated here. Finally, the largest Cauchy numbers investigated in Henriquez and Barrero-Gil (2014) do not exceed 104,
and their definition of the Cauchy number does not include the contribution of the drag coefficient CD which they choose as
0.4. Hence, the asymptotic results they show correspond to a value of CY C103:6 in our simulations. This does not reach the
asymptotic regime for the largest shear exponents.

The very good fit shown in Fig. 10 between our numerical simulations and our Eq. (23) strengthens our confidence in the
results of the present study.
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Reconfiguration of elastic blades in
oscillatory flow
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When subjected to a steady cross-flow, the deformation of flexible blades is known to
result in the alleviation of the internal stresses in comparison to rigid structures. In the
field of biomechanics, the flow-induced deformations of flexible structures leading to
stress reduction have been often referred to as ‘reconfiguration’ in order to highlight
the alleged benefits of such an adaptive process. In this paper, we investigate the
reconfiguration of thin elastic blades and the resulting internal stresses when the flow
about the blade is oscillatory. Our approach, based on numerical simulations using
reduced order fluid force models, is validated by experimental observations. Through
a systematic investigation of the response of the structure, we identify four kinematic
regimes depending on the excursion of the fluid particles relative to the dimensions
of the blade and on the frequency of the flow oscillations relative to the characteristic
frequency of the blade. When the flow amplitude is smaller than the structural width,
fluid inertia dominates over drag and the fluid–structure coupling triggers resonances
that may cause a magnification of the internal stresses. But the small magnitude of the
fluid load in this regime is unlikely to cause any severe damage in practice. Otherwise,
when drag is the dominant load, flexibility always permits a reduction of the internal
stresses. As in the static case, dynamic reconfiguration results in the concentration of
the stresses within a small bending length whose scaling depends on the kinematic
regime. The magnitude of the stresses does not depend on the actual length of the
structure anymore, which suggests the absence of mechanical limitations to the axial
growth of wave-swept plants. However, the risk of resonances originating from the
inertial load when the blade width compares with the flow excursion favours elongated
shapes that best accommodate the oscillatory fluid loadings.

Key words: aerodynamics, flow–structure interactions

1. Introduction

The deformation of flexible bodies subject to a transverse oscillatory flow has
raised the attention of the scientific community for some time and with different
motivations. The propulsive performances of deformable bodies depend on the
flexibility of the structure (Lighthill 1960, 1971; Katz & Weihs 1978, 1979). More
specifically, the dynamic coupling with the deformation resulting from the oscillatory

† Email address for correspondence: tristan.leclercq@polytechnique.edu
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Reconfiguration of elastic blades in oscillatory flow 607

forcing may trigger resonances or involve nonlinear effects of paramount importance
(Alben 2008; Michelin & Llewellyn Smith 2009; Ramananarivo, Godoy-Diana &
Thiria 2011; Paraz, Eloy & Schouveiler 2014; Paraz, Schouveiler & Eloy 2016;
Piñeirua, Thiria & Godoy-Diana 2017). Similarly, flexible structures forced into a
transverse motion within an axial flow may harvest energy from the fluid, and the
nature of the deformation depending on the features of the forcing influences the
efficiency of the process (Liu, Xiao & Cheng 2013).

The transverse fluid loads are also responsible for internal stresses that may
endanger the structural integrity. As a strategy for survival, large plants living in
flow-dominated habitats are usually very flexible (Harder et al. 2004). Thanks to
their ability to deform under the influence of the current, flexible structures are able
to reduce their frontal area, reshape themselves in a more streamlined fashion, or
even shelter in regions where the flow is slower. The work of Vogel (1984) and Vogel
(1989) has highlighted that this instantaneous, passive and reversible change of shape
leads to a significant reduction of the internal stresses in the flexible plants subjected
to high velocity flows. Because of the alleged adaptive nature of these flow-induced
deformations, Vogel (1984) has suggested the use of the word ‘reconfiguration’
owing to the more positive overtone associated with this term. Thereafter, several
authors have contributed to quantitatively evaluate the drag reduction due to elastic
reconfiguration in steady currents on model systems (Alben, Shelley & Zhang 2002,
2004; Gosselin, de Langre & Machado-Almeida 2010; Luhar & Nepf 2011; Hassani,
Mureithi & Gosselin 2016; Leclercq & de Langre 2016).

But the question arises of whether the benefits of flexibility would still prevail
in an oscillatory flow such as that encountered by salt marsh vegetation, seagrasses,
or macroalgae in the near-shore waves. Koehl (1984) pointed out that the fluid
acceleration forces in an oscillatory flow, proportional to the volume of the plant
when the drag is only proportional to its frontal area, may be the dominant load that
bulk organisms have to withstand (see also Denny, Daniel & Koehl 1985). On the
other hand, flexible organisms long enough to move significantly with the flow may
endure less severe relative flow and possibly benefit from a reduction of the associated
loads. But the displacement of the structure is also responsible for additional inertial
loads, so the actual consequences of flexibility in an oscillatory flow may be strongly
dependent on the nature of the dynamic response of the deformable structure. Different
mechanical models have been proposed to replicate the motion of macroalgae under
the action of waves. For instance, see Friedland & Denny (1995) for fully submerged
flexible plants, Utter & Denny (1996), Denny & Cowen (1997) for algae larger than
the water depth and Gaylord & Denny (1997) for stipitate kelps. But the question of
how the dynamical response and the associated loads may change when the rigidity
of the structure is varied was first addressed by Luhar & Nepf (2016). Their study
suggests, based on experimental results, that the drag on deformable structures may
be expressed as that on a rigid structure with an effective length corresponding to
the part of the actual structure over which significant relative fluid motion occurs.
A scaling of this effective length with the flexibility was provided, with the aim to
provide a tool to account for the deformability of near-bed organisms in the models
of wave-energy dissipation (see also Luhar, Infantes & Nepf 2017). But the work of
Luhar & Nepf (2016) focuses on the specific case where the amplitude of the flow
is at most of the order of the length of the structure. They do not investigate either
the dynamic interactions (such as possible resonance effects) due to high frequency
loading. Besides, for particular values of the parameters, Luhar & Nepf (2016) notice
an increase of the drag compared to the rigid case that is still not fully understood.
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FIGURE 1. (a) Side view of the bending structure. (b) Dimensions of the undeformed
blade.

In order to identify and understand the different mechanisms involved, a systematic
analysis exploring the space of forcing parameters is therefore still required. In this
paper, we intend to elucidate the nature of the dynamical response of such a cantilever
structure depending on the amplitude and frequency of the oscillating cross-flow,
in the ideal case of a uniform flow. Our approach is mostly based on numerical
simulations using reduced-order force models, with experimental validation. Our
goal is then to assess how the structural stresses vary compared to the rigid case,
depending on the different dynamical regimes.

In § 2 we introduce the theoretical model and the numerical method we chose to
reproduce the dynamics of the system. In § 3 we present an experimental set-up used
for visualizing the actual deformation of blades in oscillatory forced motion and to
validate the model. We then identify four different kinematic regimes for varying
ranges of the forcing amplitude and frequency in § 4, before discussing the resulting
flexibility-induced variations of the structural stress in § 5. Finally, § 6 extends the
discussion to provide general findings and to comment on previous work.

2. Model
2.1. Theory

We consider a neutrally buoyant, cantilever beam of length L, width W and thickness
D, placed perpendicular to a uniform oscillatory flow of velocity U(t)=AΩ sin(Ωt)ex
in a fluid of density ρ (see figure 1). The amplitude A corresponds to the maximal
horizontal excursion of the fluid particles over one cycle, while Ω is the angular
frequency of the oscillations.

We assume the thickness of the plate is small compared to its width (D � W)
so that deflection under the effect of the flow is confined in the xz-plane. We also
assume the structure is slender (L� W) so we can model it as a two-dimensional
inextensible Euler–Bernoulli beam of bending stiffness EI and mass per unit length
m (see Audoly & Pomeau 2010). The curvilinear coordinate s represents the distance
from the clamped edge along the span, and we use the prime symbol (·)′ to denote
differentiation with respect to s. Hereafter, θ is the local angle of the tangent τ = r′
with the vertical axis ez, where r= x(s, t)ex+ z(s, t)ez is the position vector. Following
Audoly & Pomeau (2010), the dynamic equilibrium reads

mr̈=F′+ q, (2.1)
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Reconfiguration of elastic blades in oscillatory flow 609

where q is the external load per unit length on the structure, F = Tτ + Qn is the
internal force vector, with T the tension and Q the shear force and the overdot stands
for time derivation. The internal bending moment M is related to the local curvature
κ = θ ′ by M = EIκ , and the shear force Q is given by Q=−M′ =−EIκ ′. Clamping
implies x = z= θ = 0 at s= 0, while the free tip condition reads T =M = Q= 0 at
s= L.

Because the structure is neutrally buoyant, its density is also ρ and gravity and
buoyancy forces cancel each other. We assume large Reynolds number so that friction
forces are negligible. Following Eloy, Kofman & Schouveiler (2012), Singh, Michelin
& de Langre (2012), Michelin & Doaré (2013), Piñeirua et al. (2017) we model the
effect of the relative flow as a combination of two external loads distributed along the
span. First, the resistive drag (Taylor 1952)

qd =−1/2ρCDW|Un|Unn (2.2)

due to the pressure in the wake is purely normal. It is proportional to the square
of the normal component Un of the relative velocity Ur = Uττ + Unn = ṙ − U. The
drag coefficient CD depends on the geometry of the cross-section and is typically of
order O(1). In pure sinusoidal flow, it slightly varies with the frequency through the
Keulegan–Carpenter number KC=U/Wf = 2πA/W (Keulegan & Carpenter 1958). But
in the case of a deformable body, the relative flow varies along the span and is not
purely sinusoidal because of the motion of the structure itself. The exact value of CD
is however not critical here so we will simply use the value for steady flows. We
will also assume a rectangular cross-section so we will use CD= 2. The second force
component is the reactive (or added mass) force (Lighthill 1971; Candelier, Boyer &
Leroyer 2011)

qam =−ma
[
∂t(Unn)− ∂s(UnUτn)+ 1

2∂s(U2
nτ )
]
, (2.3)

where the added mass is given by ma= ρπW2/4. This expression involves the normal
component but also the tangential component Uτ of the relative velocity. In the case
of an inextensible beam, this force becomes purely normal and its expression may be
simplified in

qam =−ma
[
(r̈− U̇) · n− 2θ̇Uτ + κ

(
U2
τ −

1
2 U2

n

)]
n. (2.4)

Finally, because the fluid itself is accelerated, a third force component has to be
considered, called the virtual buoyancy force (Blevins 1990)

qvb =mdU̇. (2.5)

This term is due to the pressure gradient induced by the acceleration of the fluid. It
is equivalent to the Archimedes force, only the acceleration of gravity is replaced by
the acceleration of the fluid. It is proportional to the displaced mass per unit length
md=ρWD. We have assumed so far that the structure is fixed in an oscillating fluid. If
the clamped edge of the structure was set into a forced horizontal motion of velocity
Uf = Uf ex, then the equilibrium equation in the frame of the structure (2.1) would
include an additional load due to the inertial pseudo-force qi=−mU̇f . For a neutrally
buoyant structure the displaced mass is equal to the structural mass (md =m), so this
inertial force has the same expression as the virtual buoyancy term (2.5) if Uf =−U.
Thus, oscillating a plate in a still fluid is actually equivalent to having a fixed structure
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610 T. Leclercq and E. de Langre

in an oscillating flow, providing that the structure has the same density as the fluid.
For practical reasons, in the experiments of § 3, we set the structure into motion rather
than the fluid.

In the following, we will only consider very thin blades D�W (equivalently m=
md�ma) so that we may neglect the structural inertia and the virtual buoyancy. The
dynamic equilibrium (2.1) then reads

[
T + 1

2 EIκ2
]′

τ + [κT − EIκ ′′]n+ qd + qam = 0. (2.6)

After projection on the tangential and normal directions and elimination of the
unknown tension T , we finally obtain a single differential equation for the kinematic
variables κ , θ , r

EI
[
κ ′′ + 1

2κ
3
]
+

1
2ρCDW|Un|Un

+ma
[
r̈ · n+ κ

(
U2
τ −

1
2 U2

n

)
− 2θ̇Uτ −Ω

2A cos θ cos(Ωt)
]
= 0. (2.7)

We non-dimensionalize all the variables using the length of the structure L and the
scale of the natural period of the structure in small-amplitude oscillations in the fluid
Ts = L2√ma/EI. We finally obtain, in non-dimensional form

κ ′′ + 1
2κ

3
+ λ|Un|Un + r̈ · n+ κ

(
U2
τ −

1
2 U2

n

)
− 2θ̇Uτ −ω

2α cos θ cos(ωt)= 0, (2.8)

with boundary conditions r= 0 and θ = 0 at the clamped edge s= 0 and κ = κ ′ = 0
at the free tip s = 1, and the tangential and normal relative velocities Uτ = ṙ · τ −
αω sin(ωt) sin θ and Un = ṙ · n− αω sin(ωt) cos θ . This system is ruled by three non-
dimensional parameters that are

α =
A
L
, ω=ΩTs, λ=

ρCDWL
2ma

=

(
2
π

CD

)
L
W
. (2.9a−c)

The first two parameters α and ω respectively scale the amplitude and frequency
of the background flow to the length and natural frequency of the structure, while
λ=O(L/W) is mostly a slenderness parameter specific to the structure alone. Because
our model is only valid for slender structures, we are restricted to λ� 1. Note that,
when studying the influence of flexibility on the loads endured by a structure,
the classical non-dimensional parameter that describes the competition between
the fluid loading stemming from the resistive drag and the elastic restoring force
is the Cauchy number CY (Tickner & Sacks 1969; Chakrabarti 2002; de Langre
2008). Following the definition of Gosselin et al. (2010) in the case of the static
reconfiguration of cantilever beams, we may here define a Cauchy number based on
the maximum velocity of the flow (AΩ) as CY = ρCDWL3(AΩ)2/EI = λα2ω2. In the
governing equation (2.8), given the scaling of the normal relative velocity component
Un =O(αω), the resistive drag term λ|Un|Un directly scales as λα2ω2

= CY owing to
the choice of characteristic length and time chosen for normalization.

2.2. Numerical resolution
We numerically solve (2.8) along with the boundary conditions using a time stepping
scheme. The one-dimensional structure is discretized using the Gauss–Lobatto
distribution sk = 1/2(1− cos((k− 1)/(N − 1)π)) with N = 100 points. The curvilinear
derivatives and integrals are computed respectively by Chebyshev collocation and the
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Reconfiguration of elastic blades in oscillatory flow 611

A

Flexible blade

FIGURE 2. Schematic view of the experimental set-up.

Clenshaw–Curtis quadrature formulae. We evaluate the time derivatives at time tn

with implicit second-order accurate finite differences with 103 time steps per forcing
cycle in most cases. The time step is reduced further to maintain good accuracy when
a smaller time scale is involved in §§ 4.2 and 5.4. At each time step, we solve the
boundary value problem in κn(s) with a pseudo-Newton solver (method of Broyden
1965). The computations are carried on until a limit cycle is found.

3. Experiments and validation of the model

We conducted experiments to visualize the actual kinematics of slender blades in
an oscillatory flow and validate our model. The set-up of the experiment is depicted
in figure 2.

The flexible object is a rectangular piece of 20 × 2 cm (so that λ = 12.7) and
bending stiffness EI= 1.68× 10−4 N m2 that was cut out of a plastic document cover
of thickness 0.49 mm and density 895 kg m−3. This plate has a mass per unit length
m = 8.72 × 10−3 kg m−1, displaced mass per unit length md = 9.74 × 10−3 kg m−1

and added mass per unit length ma = 3.14× 10−1 kg m−1. Thus, m/ma = 2.8× 10−2

and md/ma = 3.1 × 10−2 so that the structural inertia and the virtual buoyancy are
indeed negligible. In order to get the desired relative flow, we forced the clamped
edge of the blade into an oscillatory translation of opposite velocity −U(t) and
analysed the dynamic deformation of the structure in the oscillating frame. The
flexible structure is clamped at the bottom of a vertical rigid rod and fully immersed
in a rectangular water tank of horizontal dimensions 58 × 35 cm and 48 cm of water
depth. The rod crossing the free surface is streamlined in the direction of the motion
in order to induce as little perturbation as possible in the fluid. The forcing motion
is obtained through a DC motor driving an arm of length A in rotation. The speed
of rotation Ω is tuned by changing the voltage at the terminals of the motor. The
arm is attached to a carriage freely translating on a vertical rail, which in turn is
fixed on an another carriage sliding on an horizontal rail. The mounting rod is linked
to the latter carriage so that it is driven into the desired sinusoidal translation of
amplitude A and angular frequency Ω as the arm rotates. The amplitude A could be
varied continuously between 5.4 (α= 0.27) and 13 cm (α= 0.65), and the frequency
between 0.21 (ω = 2.3) and 1.08 Hz (ω = 12.0). The motion of the whole structure
is filmed with a fixed camera in front of the tank at 100 fps and the position and
deformation of the blade through time is extracted from each frame. The deformation
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612 T. Leclercq and E. de Langre

FIGURE 3. Phase-averaged experimental oscillation cycle for varying amplitudes α and
frequencies ω. Snapshots of the structural shape (——) and tip trajectory (– –).

in the oscillating frame is then phase averaged over a minimum of 10 cycles to get
a unique cycle representative of the whole run.

The results for three different amplitudes and frequencies spanning the experimental
domain are shown in figure 3. In this range of forcing parameters, we notice a
diversity of behaviours. For a given frequency ratio ω, the maximum deflection of
the blade increases with the amplitude of the forcing α. However, the horizontal
excursion of the structure is obviously limited by its own length, so the amplitude
of the motion has to saturate when α is increased even more. Besides, the maximum
deflection is clearly increasing with the forcing frequency for the largest forcing
amplitude α = 0.65, but this is much less obvious for the smallest amplitude
α = 0.27. On the other hand, for any given forcing amplitude α, the dynamics
of the deformation is greatly affected when the forcing frequency is increased. For
the smallest frequency ratio ω = 2.3, the tip follows the same trajectory during both
half-cycles and remains close to the unit circle. The motion of the whole blade is
therefore approximately in phase, and curvature is concentrated near the clamped
edge while the rest of the beam remains straight. This deforming shape is similar to
the static reconfiguration that occurs in steady flow (Gosselin et al. 2010). Conversely,
when the frequency is increased, the tip follows a figure-of-eight trajectory and we
notice curvature waves propagating along the span in the course of the cycle indicating
an increasing spanwise phase shift. This indicates a highly dynamic response that
cannot be considered quasi-steady a priori. Besides, the propagation of curvature
waves may induce large loads anywhere along the span and not restricted to the
clamping point.

In order to validate the numerical model of § 2, we also compared these
experimental observations to the output of the numerical simulations. As shown
in figure 4(a), the numerical results for the amplitude of deflection at the tip Xtip
match very closely the experimental measurements. The snapshots displayed in
figure 4(b) for two cases at the boundaries of our experimental domain (indicated
in figure 4a) also show very good agreement between the observations and the
simulations. Additional experimental validation of the model for smaller forcing
amplitudes can be found in Piñeirua et al. (2017).
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FIGURE 4. Comparison between experimental observations and numerical simulations.
(a) Amplitude of the deflection at the tip against the frequency ratio, for α = 0.27
(numerical – –, experimentalE), α= 0.65 (numerical ——, experimentalA). (b) Deformed
shape found experimentally (left) and numerically (right), in case A (top, α = 0.27, ω=
2.3) and case B (bottom, α = 0.65, ω= 12.0).

These results confirm the validity of our model, and we will therefore use it in
the following to systematically explore the parameter space within and beyond the
experimentally accessible range.

4. Kinematics
4.1. Small amplitude of flow oscillation α = A/L� 1

Let us first consider the situation where the amplitude of forcing is small (α � 1).
The excursion of the fluid particles being small compared to the length of the blade,
we may also assume that the deflection remains small as well |x(s, t)|� 1. Neglecting
all the geometrical nonlinearities in (2.8) thus yields the small-amplitude equation

x(4) + ẍ= αω2 cos(ωt)− λ|ẋ− αω sin(ωt)|(ẋ− αω sin(ωt)), (4.1)
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614 T. Leclercq and E. de Langre

with boundary conditions x= x′= 0 at s= 0 and x′′= x′′′= 0 at s= 1. Equation (4.1) is
the standard cantilever beam linear oscillator, forced on the right-hand side by the fluid
inertia and the resistive drag. Note that only the nonlinearities of geometrical nature
have been removed but the quadratic relative velocity term of the resistive drag has
been retained at this point. Indeed, the slenderness parameter λ that scales this term
is large and the order of magnitude of the whole resistive drag term depends as much
on the scaling of λ as it depends on that of α. Besides, no assumption has been made
regarding the characteristic time scale for the variations of x, and there is no reason
to presume that ẋ should be small compared to the free-stream velocity based on the
sole assumption that x is small.

If the period of the forcing is large compared to the characteristic response time of
the structure (ω<1), we may assume that the structure is in static equilibrium with the
fluid forcing at all times. Consequently, we may neglect the velocity and acceleration
of the structure and (4.1) reduces to the small-amplitude static equation

x(4) = αω2
[cos(ωt)+ (λα)|sin(ωt)| sin(ωt)]. (4.2)

The left-hand side of this equation now involves only the linearized stiffness force,
while the fluid forcing on the right-hand side is the same as that a perfectly rigid
blade would endure.

On the other hand, if the forcing varies with a period comparable to the
characteristic structural response time or faster (ω > 1), we may then assume that
the amplitude and the frequency of the response will scale as those of the forcing,
as is usually the case for linear oscillators (see for instance Blevins 1990). We thus
define the rescaled deflection and time x̃ = x/α, t̃ = ωt, so that the small-amplitude
equation (4.1) can be written

1
ω2

x̃(4) + ¨̃x= cos(t̃)−KC|
˙̃x− sin(t̃)|( ˙̃x− sin(t̃)), (4.3)

which now only depends on two parameters: the frequency parameter ω and a new
amplitude parameter KC = λα = (2CD/π)A/W that compares the fluid particles
excursion to the width instead of the length of the blade. This parameter is
a problem-specific formulation of the classical Keulegan–Carpenter number that
compares the respective magnitudes of the drag and the fluid inertial forces. When
KC is small, the fluid inertia dominates over drag and vice versa.

Let us first look at the asymptotic limit of infinitely small amplitude of the forcing
KC→ 0. The nonlinear drag term can be neglected and (4.3) then simply describes a
linear oscillator with sinusoidal forcing due to the fluid inertial term. It can be solved
analytically and the solution is

x̃(s, t̃)= 2
+∞∑

m=0

σm

km

ω2

k4
m −ω

2
Xm(s) cos t̃, (4.4)

with the wavenumbers km satisfying cos km cosh km + 1 = 0, the classical cantilever
beam modes Xm(s) = [cosh(kms) − cos(kms)] − σm[sinh(kms) − sin(kms)] and σm =

(sinh km − sin km)/(cosh km + cos km) (see Weaver, Timoshenko & Young 1990).
Figure 5(a) compares the amplitude of the maximum deflection for different values

of KC, and for the asymptotic solution (4.4), as a function of ω. This analytical
solution is in good agreement with the model predictions for any KC 6 1, and it
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Reconfiguration of elastic blades in oscillatory flow 615

shows that the system behaves as a high-pass filter in this range of the parameter
space. As the frequency increases, successive beam modes are excited and resonances
occur when the frequency of the forcing matches one of the natural modes of the
structure ω= k2

m. For finite but small KC, drag acts as a damping term that saturates
the amplitude of the resonances but does not seem to affect significantly the modal
shape of the deforming structure. The deformation of the beam close to the first three
resonances (ω1 = 3.5, ω2 = 22.0, ω3 = 61.7) for KC = 10−2 in figure 5(b) is indeed
similar to the corresponding beam modes X1, X2, X3 involved in the asymptotic
solution (4.4). Note that when KC is close to 1, the nonlinear drag term is also
responsible for a drift of the resonance frequencies that has been studied in Arellano
Castro et al. (2014). This effect is not obvious in figure 5(a) because of the very
strong attenuation of the resonance peak for KC = 1, but is more visible in the
structural stress analysis of figure 9(a).

On the other hand, if we increase the fluid particles excursion beyond the width
of the structure (KC � 1), a change in physical behaviour occurs. Drag becomes
the dominant term in (4.3). The leading-order solution now is x̃(s, t̃) = cos t̃, which
amounts to considering that the structure is convected exactly with the fluid particles.
Therefore, we may call this regime the convective regime. This solution is however
incompatible with the boundary condition at the clamped edge x̃(0, t̃) = 0, so an
elastic boundary layer develops close to the clamping point. The relative magnitude
of the terms in (4.3) suggests that the thickness of the boundary layer scales as
δ = (KC ω

2)−1/4. Rescaling the curvilinear coordinate ŝ = s/δ in (4.3) provides the
leading-order equation for the inner solution

∂4
ŝ x̃= |˙̃x− sin(t̃)|( ˙̃x− sin(t̃)), (4.5)

with boundary conditions x̃= ∂ŝx̃= 0 at ŝ= 0 and ∂2
ŝ x̃= ∂3

ŝ x̃= 0 at ŝ= 1/δ.
The dynamic deformation of the structure displayed in figure 5(c) for KC = 102 for

the same values of frequency ratios as in figure 5(b) clearly shows the concentration
of the curvature close to the clamped edge and the passive convection of the main
part of the structure. The resonances previously observed in the modal regime in
figure 5(a) are now completely damped out when KC = 102. Compared to the case
KC = 1, this curve is shifted one decade to the left as the proper scaling parameter is
now
√

KC ω instead of ω, and
√

KC = 10 for KC = 102. The scaling of the boundary
layer thickness δ is similar to that of the effective length of Luhar & Nepf (2016), as
it is based on the equilibrium between the same forces. A similar problem had also
been considered in Mullarney & Henderson (2010). In the case of a wave-like flow,
the authors neglected the quadratic nonlinearity in order to get an analytical solution.

4.2. Large amplitude of flow oscillation α = A/L� 1
In the convective regime discussed above, the structure is purely convected with the
fluid particles on most of its span over the whole cycle. But when the amplitude
becomes larger than the length of the structure, geometric saturation of the deflection
occurs because the structure cannot extend further than its own length. The deflection
is now of order x=O(1) and so we cannot neglect the geometrical nonlinearities of
(2.8) anymore. The slenderness λ becomes the relevant parameter to compare drag
to the fluid inertial forces in lieu of the Keulegan–Carpenter number KC. Because
we only consider elongated structures λ� 1 in this study, drag will always be the
dominant term in the large-amplitude regime.
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FIGURE 5. (a) Amplitude of the maximum scaled deflection obtained with (4.3) against
the frequency ratio. KC = 10−2 (——), KC = 100 (– – –), KC = 102 (— · —). Analytical
solution for KC→0 (· · · · · ·). (b) Snapshots of the beam over one cycle obtained with (4.3)
for KC = 10−2 (modal regime) and for ω=ω1 (resonance of mode 1), ω=ω2 (resonance
of mode 2), ω=ω3 (resonance of mode 3). (c) Same as (b) but with KC= 102 (convective
regime).

The dynamic deformations obtained with (2.8) in two cases with similar amplitude
α = 102 and slenderness λ= 12.7 but different frequencies are compared in figure 6
with 100 snapshots per cycle with constant time interval. In the small frequency
case (a), the deformation looks quasi-static. Transition from one side to the other is
slow (many snapshots distributed from left to right) and the curvature is essentially
concentrated near the clamped edge during the whole cycle. On the other hand, in
the larger frequency case (b), the structure switches sides very fast (few snapshots
visible in the centre while many are superimposed on the sides) and curvature waves
propagate very quickly along the span during reversal. Therefore, the cycle may be
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FIGURE 6. Snapshots of the deforming structure over one cycle (——) and tip trajectory
(– – –) obtained with (2.8) for λ= 12.7, α = 102. (a) ω= 10−2, (b) ω= 1.

decomposed into two steps: first, a fast reversal period during which the structure
switches from one side to the other immediately after flow reversal, followed by
a longer period of quasi-static adaptation to the increasing magnitude of the drag.
Because the dominant drag force λ|Un|Un∝λα

2ω2 is proportional to ω2, the maximum
drag is larger in the large frequency case in figure 6, which explains why the
maximum deflection is enhanced.

To estimate the time scale of reversal Tr, let us assume that shortly before flow
reversal, the structure is fully reconfigured on one side x(s= 1, t= 0)=−1. At flow
reversal t= 0, drag starts pushing the structure to the other side. Let us assume that
the blade is purely convected until it is fully reconfigured on the other side at the end
of the reversal time x(s= 1, t= Tr)= 1. In that case, we may write

2= xtip(Tr)− xtip(0)=
∫ Tr

0
αω sin(ωt) dt'

∫ Tr

0
αω2t dt=

1
2
α(ωTr)

2, (4.6)

where the linearization holds owing to the fact that reversal occurs on a time
scale much smaller than the period of the cycle (ωTr � 2π). We finally obtain
Tr = 2/(ω

√
α). This expression of the reversal time is normalized by the scale of the

natural period of the structure. It is more relevant than ω to assess the quasi-steady
nature of the deformation in the large-amplitude regime because it compares only
the time scale on which structural motion is significant (instead of the whole cycle
period) to the characteristic structural response time. Indeed, in figure 6(a), the large
reversal time Tr = 20 allows the structure to be in quasi-static equilibrium with the
fluid loading at all times. Conversely, in figure 6(b) the small reversal time Tr = 0.2
is responsible for the propagation of curvature waves during reversal. Hence, when
Tr � 1, the structure is in static equilibrium with the fluid forces during the whole
cycle, while the quasi-static character of the deformation is lost during the fast
reversal when Tr� 1.

A zoom on the trajectory of the tip around flow reversal in the case of figure 6(b)
shown in figure 7 (solid line) confirms that reversal occurs approximately between
t/Tr= 0 and t/Tr= 1. When the slenderness parameter is increased (broken lines, λ=
127), the time scale of the dynamics remains unchanged. The same graphs for the
same Tr but for a smaller or a larger amplitude (α= 10 and α= 103 respectively), not
shown here, are practically indistinguishable from that in figure 7. This result confirms
that the amplitude and frequency parameters influence the kinematics of the reversal
exclusively through the combined parameter Tr. Besides, because the structural mass
was neglected, no dynamic excitation possibly resulting from the violent reversal is
allowed to persist after Tr.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 P
ol

yt
ec

hn
iq

ue
, o

n 
25

 Ja
n 

20
18

 a
t 1

6:
58

:3
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
91

0
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FIGURE 7. Horizontal displacement of the tip during flow reversal against the rescaled
time t/Tr, for α = 102, Tr = 0.2 (ω= 1) and λ= 12.7 (——), λ= 127 (– – –).

Modal regime

Convective regime

Large-amplitude regime
static reconfiguration with fast reversal

Fully static
regime

FIGURE 8. Schematic view of the kinematic regimes in the amplitude–frequency space.

4.3. Summary of the kinematic regimes
So far we have found that depending on the amplitude and frequency of the oscillating
flow with respect to the dimensions and natural frequencies of the blade, four different
kinematic regimes may exist. Their respective locations in the parameter space are
summarized in figure 8.

First, if the amplitude is much smaller than the length of the blade (α � 1 or
equivalently A� L) and the frequency of the flow smaller than that of the structure
(ω < 1 or equivalently Ω < 1/Ts), the structure is in static equilibrium with the fluid
forces at all times. On the other hand, if the frequency is now comparable or larger
than the characteristic structural frequency (ω > 1 or equivalently Ω > 1/Ts), the
kinematics further depends on the ratio of the amplitude of the flow to the width of
the structure. If the amplitude is much smaller than the width of the blade (A�W,
or equivalently KC = λα � 1), the structure behaves as a linear oscillator and we
are in the modal regime. If the amplitude is large compared to the width, but small
compared to the length (W � A � L, or equivalently KC = λα � 1 and α � 1),
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Reconfiguration of elastic blades in oscillatory flow 619

an elastic boundary layer develops close to the clamped edge in which all the
curvature is confined, while the rest of the structure is passively convected with the
fluid particles. This convective regime occurs because of the saturation of the drag
term in the small-amplitude equation (4.1).

Now, if the amplitude is increased further and becomes larger than the length
of the blade (A � L or equivalently α � 1), the convection of the blade by the
fluid is limited to its own length and the blade deformation is subject to geometric
saturation. The convection process is therefore limited in time to a short reversal
period, right after flow reversal, and during which the blade switches side at the
speed of the fluid particles, followed by a longer period of quasi-static adaptation to
the increasing magnitude of the drag force. If reversal occurs on a longer time scale
than the characteristic structural response time (Tr ∼ 1/(ω

√
α)� 1), the structure has

time to reach the static equilibrium with the fluid forces at all time. Conversely, if
reversal is faster than the characteristic time of the structure (Tr ∼ 1/(ω

√
α)� 1), the

quasi-static nature of the large-amplitude structural response is lost during the short
time needed for reversal.

5. Structural stress analysis
5.1. Stress reduction due to flexibility

Depending on the kinematic regime, we expect that the consequences of flexibility in
terms of magnitude and repartition of the internal stresses will vary. Our main interest
is to assess whether flexibility makes a blade more or less likely to break in a given
flow. Structural failure may occur when, at a given time t, the stress due to the loads
exceeds a given threshold called the breaking strength, at some location within the
structure. For an Euler–Bernoulli beam in two-dimensional bending, the stress tensor
may essentially be reduced to two components, the tensile (or compressive) stress στ
and the shear stress σn. Both quantities vary along the span but also within the cross-
section. The maximum tensile stress is reached at the edges of the cross-section and
depends linearly on the internal bending moment στ ∝MD/I ∝M/WD2. Conversely,
the shear stress reaches its maximum on the neutral axis and it is proportional to
the internal shear force σn ∝ Q/WD. Thus, following the dedicated terminology of
Gosselin et al. (2010), we may define two reconfiguration numbers

Rτ =
max |M(s, t)|

max |Mrigid(s, t)|
, Rn =

max |Q(s, t)|
max |Qrigid(s, t)|

(5.1a,b)

that compare the maximum stresses endured over a cycle at any point along the
structure to the maximum value the same structure would have to endure if it
were rigid. The reconfiguration numbers are smaller than one if the flexibility is
beneficial in terms of internal stresses, and larger than unity if it is detrimental.

Our shear reconfiguration number Rn is equivalent to the reconfiguration number
defined in Gosselin et al. (2010) and Leclercq & de Langre (2016) in the static case.
Their definition is based on the total drag Q(s = 0) instead of the maximum of the
shear force max |Q|, but the shear force is in fact maximum at the clamped edge in
their case so it is equal to the total drag. Our Rn is also quite similar to the effective
length defined by Luhar & Nepf (2016), only the latter was based on the root-mean-
square value of the total drag Q(s = 0) instead of the spatio-temporal maximum of
Q. This is so because the goal of Luhar & Nepf (2016) was to provide insight about
how flexibility affects energy dissipation in the background flow, while our focus is
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FIGURE 9. Shear reconfiguration number (a) and location of maximum shear stress along
the span (b), in the modal regime, against the frequency ratio, for KC= 10−2 (——), KC=

10−1 (— · —), KC = 100 (– – –) and analytical solution for KC→ 0 (· · · · · ·).

the ability of the structure to withstand the fluid loads. For the sake of simplicity,
in the rest of this article we will only present results about the shear stress σn and
shear reconfiguration number Rn. The results about the tensile stress are actually quite
similar and will be provided in appendix A.

5.2. Rigid case
In the case of a perfectly rigid structure, the combination of the external fluid forces
(2.2) and (2.4) results in a span-invariant, purely horizontal load

qrigid(t)= αω2
[cos(ωt)+ (λα)|sin(ωt)| sin(ωt)] (5.2)

that also reads, in terms of the Cauchy number (CY = λα
2ω2) and Keulegan–Carpenter

number (KC = λα)

qrigid(t)=
CY

KC
[cos(ωt)+KC|sin(ωt)| sin(ωt)]. (5.3)

The first term is an inertia term, proportional to the flow acceleration, while the second
term is the resistive drag force proportional to the velocity squared. Integration from
the free tip provides the internal bending moment and shear force

Mrigid(s, t)=− 1
2 qrigid(t)(1− s)2, Qrigid(s, t)=−qrigid(t)(1− s) (5.4a,b)

that are maximum at the clamped edge and max |Mrigid(s, t)| = 1/2 max |Qrigid(s, t)| =
1/2 max |qrigid(t)| with

max |qrigid(t)| =
CY

KC
if KC 6 1

2
; CY

(
1+

1
4K2

C

)
if KC > 1

2
. (5.5a,b)

5.3. Small amplitude of flow oscillation α = A/L� 1
As for the kinematics, let us first consider the case where the amplitude of forcing
is small compared to the length of the structure (α� 1). Depending on the value of
the Keulegan–Carpenter number KC, the system will be in the modal or convective
regime.

The variations of the shear reconfiguration number with the frequency ratio are
shown in figure 9(a) for different values of KC in the modal regime. Because the
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Reconfiguration of elastic blades in oscillatory flow 621

system behaves as a high-pass filter, the blade remains rigid in the quasi-static
limit ω < 1 and so there is no drag reduction in this regime Rn ∼ 1. For larger
frequencies, the reconfiguration number decreases overall but peaks at the successive
resonances. The magnitude of the peaks is mitigated when the Keulegan–Carpenter
number is increased due to damping by the drag term. The resonance frequencies
are decreased as well owing to the nonlinearity of the drag term, as explained in
Arellano Castro et al. (2014). But when KC is small enough, the reconfiguration
number may even exceed unity close to the first resonances. In these particular cases,
flexibility may therefore be responsible for a magnification of the shear stress. Apart
from the resonances, the slope of the overall decay may be estimated by a scaling
argument. Far from the resonances, the amplitude of the deflection is of the order
of the fluid particles excursion x=O(α). The non-dimensional shear force Q= κ ′, is
thus of order O(α × k3) with the wavenumber of the dominant mode k∼

√
ω, while

the rigid shear force is of order O(CY/KC) = O(αω2) according to (5.5). Thus, the
shear reconfiguration number is Rn ∼ k−1

∼ ω−1/2, which is consistent with the slope
observed in figure 9(a).

As shown in figure 9(b), the location sn along the span of the blade where the
maximum shear stress max(σn) is reached varies with the frequency. In the rigid
domain ω < 1 the maximum stress remains at the clamped edge, until the first
resonance is reached. After ω1, the maximum stress starts moving from the clamped
edge towards the free tip as Rn decreases, before suddenly going back to the
clamping point as Rn starts increasing again, until the second resonance is attained.
Similarly, after ω2, the locus moves again as Rn decreases and then comes back
as Rn starts increasing towards the next resonance, and so on. This trajectory of
the most solicited spot is independent of KC, except close to the transition towards
the convective regime. Indeed, for KC = 1, the maximum shear stress remains at the
clamping point for any value of the frequency ratio.

In the convective regime KC > 1, we have shown that all the curvature concentrates
within an elastic boundary layer of typical size δ= (KC ω

2)−1/4 close to the attachment
point. Consequently, the location of the maximum stress is always located at
the clamping point in the convective regime. Besides, the variations of the shear
reconfiguration number Rn, displayed as a function of the frequency ratio in
figure 10(a), all collapse on the same curve when replotted as a function of KC ω

2 in
figure 10(b). Even the transition case KC = 1 also follows the same trend on average,
but still exhibits some variations and small resonances due to the persistent modal
nature of the response. When KC ω

2 < 1, the scale of the boundary layer exceeds the
length of the structure so the blade behaves rigidly and Rn ∼ 1. Conversely when
KC ω

2 > 1, the motion allowed by the flexibility is responsible for an alleviation of
the internal shear stress. We may estimate the slope of the asymptotic decay by a
similar argument as in the modal regime. Assuming that the characteristic bending
length scales as the boundary layer thickness δ, we now have Q∼O(α× δ−3) and the
rigid shear force of order O(CY)=O(αδ−4). We thus obtain Rn ∼ δ∼ (KC ω

2)−1/4, in
agreement with figure 10(b). Note that, as illustrated in figure 10(a), reconfiguration
in the elastic boundary layer occurs even in the quasi-static regime ω < 1 provided
that KC ω

2 > 1. Indeed, in this particular case, the rigid force qrigid that appears on
the right-hand side of the small-amplitude static equation (4.2) would actually lead to
static deformations exceeding the excursion of the fluid particles. This is not possible
in this drag-dominated regime as only strong inertial forces can cause the structure to
overshoot the fluid particles. The drag term of (4.3) thus ensures the limitation of the
structural excursion to that of the fluid particles, while only the elastic boundary layer
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622 T. Leclercq and E. de Langre

10–1

100

(a) (b)

10–1

100

10–2 10–1 100 101 102 10–2 100 102 104

FIGURE 10. Shear reconfiguration number in the convective regime against (a) the
frequency ratio ω, (b) the rescaled parameter KC ω

2, for KC = 100 (– – –), KC = 101

(— · —), KC = 102 (——).

that develops close to the clamped edge actually satisfies the quasi-static equilibrium
between the elasticity forces and the drag (which amounts to neglecting the ˙̃x terms
in the boundary layer equation (4.5)). Consequently, the scaling of the drag associated
with reconfiguration in the elastic boundary layer remains valid in this domain as
well.

5.4. Large amplitude of flow oscillation α = A/L� 1
In the large-amplitude regime (α > 1), we have proven that significant structural
motion may only occur during a short period of time Tr following flow reversal
(ωt= 0). During that time, the flow magnitude is close to zero and the drag force is
at its minimum. Drag being the dominant term of the equation, we expect the largest
stress to be experienced when it is at its maximum around ωt = ±π/2, at a time
where the structure is in quasi-static equilibrium with the flow forces. Besides, the
flow acceleration cancels out when the flow magnitude is maximum so that, at the
time where the stress peaks, equation (2.8) reduces to the static equation

κ ′′ +
1
2
κ3
−CY

[
|cos θ | cos θ −

1
λ
κ

(
sin2 θ −

1
2

cos2 θ

)]
= 0. (5.6)

In the quasi-static part of the cycle, the amplitude and frequency parameter influence
the shape of the structure and the internal stress only through the Cauchy number
CY = λα

2ω2. Consequently, the evolution of the shear reconfiguration number shown
in figure 11(a) as a function of the frequency ratio ω (for λ= 12.7) collapse very well
on the static curve obtained with (5.6) when replotted as a function of the Cauchy
number in figure 11(b). The curves are perfectly superimposed for α = 10, but even
for α as small as 1, agreement is already very good. When the Cauchy number is
less than 1, deflection is negligible so (5.6) actually reduces to the small-amplitude
static equation (4.2). In this limit, even though the amplitude of the forcing is large
α > 1, we actually recover the small-amplitude static regime in which the structure
experiences the same amount of stress as if it were rigid Rn ∼ 1.

On the other hand, when the Cauchy number is large CY > 1, the stress is much
reduced. In the limit where drag dominates over the added mass corrective term (limit
of infinite slenderness λ→∞), the static equation (5.6) has a self-similar structure.
The scaling of the terms of the equation provides the length of the self-similar
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Reconfiguration of elastic blades in oscillatory flow 623

10–1

100
(a)

10–1

100
(b)

10–1 100 101 10–1 100 101 102 103 104 105

FIGURE 11. Shear reconfiguration number in the large-amplitude regime for λ = 12.7,
against (a) the frequency ratio ω, (b) the Cauchy number CY , for α= 100 (– – –), α= 101

(——). Static solution obtained with (5.6) (· · · · · ·, on (b) only).

boundary layer `s = C−1/3
Y within which all the curvature concentrates. Consequently

we may here again estimate the asymptotic behaviour of the shear reconfiguration
number by a scaling argument. In this case, the saturated angle θ is of order O(1) so
the shear force Q= κ ′∼O(1× `−2

s ). The rigid shear force is of order O(CY)=O(`−3
s )

so we get Rn∼ `s∼C−1/3
Y . The slope in figure 11(b) is close but differs slightly from

that estimation. The analysis of appendix B shows that this discrepancy is due to
the rather small value of λ= 12.7. For any larger slenderness, the asymptotic scaling
provided here matches very well the numerical results. Note that this bending length
is similar to that previously found by Gosselin et al. (2010) who neglected the cubic
term in curvature in their governing equation, as well as that found by Alben et al.
(2004) for the case of a two-dimensional plate (opposite limit of infinite width). The
extended validity of this static bending length to the case of large-amplitude unsteady
flows was moreover suggested in Luhar & Nepf (2016).

Note finally that this analysis is independent of the magnitude of the reversal time
Tr. The key point of this analysis lies in the fact that even if significant dynamics
may be involved during reversal when Tr � 1, the maximum stress is endured at a
time when the structure is in static equilibrium with the fluid forces. This remains
obviously true when Tr� 1 and static equilibrium is enforced at all times.

6. Discussion
6.1. Stress alleviation due to flexibility and bending length

Depending on the values of the amplitude and frequency of the oscillating flow,
we have identified four distinct kinematic regimes summarized in figure 8. In each
regime, the consequences of the flexibility on the magnitude of the internal stress are
different. The varying scalings of the shear reconfiguration number Rn depending on
the amplitude and frequency of the flow are schematically displayed in figure 12.

As long as the forcing is dominated by the inertial forces (in the modal regime
A� W), there exists a risk of resonance if the frequency of the flow matches one
of the natural frequencies of the structure. This is a case where the dynamical motion
allowed by the flexibility may be responsible for a magnification of the internal stress.
However, this is also the region in the parameter space where the loading is the lowest
and so this is unlikely to cause any severe damage. Far from the resonances and in
all other cases, flexibility always alleviates the magnitude of the internal stress.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 P
ol

yt
ec

hn
iq

ue
, o

n 
25

 Ja
n 

20
18

 a
t 1

6:
58

:3
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
91

0



624 T. Leclercq and E. de Langre

Modal reconfiguration

Reconfiguration in the elastic boundary layer

Static reconfiguration

Rigid behaviour

FIGURE 12. Schematic view of the reconfiguration regimes in the amplitude–frequency
space.

The general scaling of the reconfiguration numbers is related to some characteristic
bending length `b such that Rn∼ `b and Rτ ∼ `

2
b (see appendix A), but the scaling of

that very bending length depends on the reconfiguration regime. In the modal regime
(A�W), the bending length is proportional to the wavelength of the dominant mode
that varies as `b = k−1

= ω−1/2. In the convective regime (W � A � L), curvature
is confined in the elastic boundary layer so naturally `b = δ = (λα)

−1/4ω−1/2. The
characteristic bending length varies continuously between the two small-amplitude
regimes as their expressions are similar at the transition when KC = λα = 1. On the
other hand, in the large-amplitude regime (A � L) the bending length transitions
to `b = `s = C−1/3

Y = (λα2ω2)−1/3. The boundary of the rigid domain with the three
different reconfiguration regimes is nonetheless continuous as illustrated in figure 12.

6.2. Consequences in terms of growth pattern of aquatic flexible plants
In any of the three reconfiguration regimes, the reconfiguration numbers scale in
dimensional form with the length of the blade as Rn ∼ L−1 and Rτ ∼ L−2. Given
the scalings of the rigid loads and of the internal stresses in § 5.1, we thus obtain
the cancellation of the dependency of the dimensional forces and internal stresses on
the actual length of the blade σn ∝ Q ∼ L0 and στ ∝M ∼ L0. This loss of relevance
of the true length of the structure in aid of a smaller characteristic bending length
was already pointed out in the steady case (see de Langre, Gutierrez & Cossé 2012)
and remains valid in the oscillatory case. Consequently, it does not seem as if there
is any mechanical limit to size in wave-swept flexible kelps, as long as growth is
concentrated in the axial direction.

But real plants grow according to more complex allometric patterns (Denny
& Cowen 1997; Gaylord & Denny 1997). Following the growth of a plant in
the variables of figure 12 amounts to decreasing α from the top. In the static
reconfiguration regime, the internal stresses σn and στ are both independent of any
of the three dimensions D, W, L and so growth does not affect the magnitude of
the stresses in a given environment, no matter the allometry of the plant. When
the structure reaches the convective regime (L > A), the stresses become decreasing
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Reconfiguration of elastic blades in oscillatory flow 625

functions of the thickness D but remain independent of W and L. One might think
that a growth pattern favouring thickness would be advantageous, but this is only
so for thin plates D < W for which the elastic effects are confined in the plane
of the flow. A thicker structure might experience three-dimensional deformations
that would make the dynamics considerably more complex. Finally, in the modal
regime (W > A), the stresses now start increasing with the width W, and the risk of
resonances may enhance the stresses even more depending on the frequency of the
flow. It thus appears detrimental for a flexible plant to grow in width in excess of
the fluid particle excursion.

These remarks come as complementary answers to the work of Koehl (1984) and
especially Denny et al. (1985), Gaylord, Blanchette & Denny (1994) and Denny
(1999). Koehl (1984) first noted that ‘flexibility in combination with great length
provides a mechanism of avoiding bearing large forces in habitats subjected to
oscillating flow’, in comparison to rigid organisms that need to remain small. However
the question of whether there might be size limits imposed on wave-swept flexible
organisms due to the oscillatory fluid loading has never received a definitive answer.
Our results indicate that for slender, neutrally buoyant blades, the hydrodynamic loads
do limit the width, but put no constraints on the axial growth.

6.3. Remarks on previous work about the convective regime
Most aquatic plants are close to neutrally buoyant and the horizontal amplitude
of the passing waves is typically much larger than the width if not the length of
these plants (see Gaylord et al. 1994; Denny & Cowen 1997; Gaylord & Denny
1997). Thus it seems that plants growing larger than the fluid particles excursion
are likely to remain in the convective regime in order to avoid large flow-induced
stresses. The work of Mullarney & Henderson (2010) and Luhar & Nepf (2016) has
focused mainly on this convective regime. The latter show on their figure 11 that
their effective length (analogous to our normal reconfiguration number Rn) seems to
scale as (CY/α)

−1/4
= (λαω2)−1/4

= δ. This result is consistent with the scaling of the
elastic boundary layer that develops in the convective regime, and indeed almost all
the experimental cases of Luhar & Nepf (2016) were obtained within the appropriate
range α 6 1 and KC > 1 (more precisely 0.06 6 α 6 1.32 and 0.76 6 KC 6 4.2).
However, because the slenderness parameter of their blades is rather low (between
λ= 3.2 and λ= 12.7), α and KC are quite close to each other and consequently most
of their points are very close to either one of the boundaries of that regime. Some
particular points in that study show an increase of the load compared to the rigid case.
The authors suggested that this might result from an interaction between the blade
and the vortex shed at the tip. But these points are characterized by a rather small
amplitude α = O(10−1) and Keulegan–Carpenter number KC ∼ 0.7− 1.2, and forcing
frequencies close to the resonance frequency ω∼ 1− 5. For instance, the largest load
was obtained for (α = 0.12, KC = 0.76 and ω = 2.30). It is thus a possibility that
the load enhancement is simply the consequence of a resonance of the impinging
wave with the first natural mode of the structure, due to the persistent modal nature
of the dynamic response for such values of the parameters. Conversely, other points
obtained for α = O(1) seem to collapse quite well with the others. We have shown
that for such high values of the amplitude parameter, at least when λ = 12.7, the
reconfiguration number should be close to its static equivalent. But if very slender
structures exhibit a clear asymptotic regime Rn ∼ C−1/3

Y , decreasing the slenderness
below O(10) mitigates the efficiency of the reconfiguration and increases the slope
so that it may be difficult to know the difference with the scaling of the convective
regime.
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626 T. Leclercq and E. de Langre

6.4. Limits and extensions of the model
In all this study we have focused exclusively on the case of an infinitely thin,
neutrally buoyant blade. These two assumptions have allowed us to neglect both the
displaced mass and the structural mass. In practice however, aquatic plants are not
strictly speaking of the same density as the water and their thicknesses might not be
negligible.

First, if the thickness of the neutrally buoyant blade is not negligible anymore,
we need to consider the inertial and virtual buoyancy forces. These forces might
be responsible for additional inertial effects in the large-amplitude regime, such
as persistent oscillations following the quick reversal with Tr < 1, or a flutter
instability similar to that observed on axial flags. The dynamics induced would
then be responsible for additional loads that may challenge the findings of that study.
However, we expect the consequences to remain marginal, as damping by the drag
term would still dominate. This is even more so as the slenderness is increased
and for infinite slenderness, we do not expect any significant discrepancy with the
present work. Besides, the small-amplitude regimes would not be affected in any
way as (4.1) would remain the same, providing that the characteristic time of the
structure used for non-dimensionalization is redefined to account for the structural
mass Ts = L2√(ma +m)/EI.

If the structure is now lighter than the fluid, then its inertia is even more negligible.
Buoyancy may still modify our results, but this effect should become negligible as
soon as the fluid loading is dominant as explained in Luhar & Nepf (2011) and Luhar
& Nepf (2016).

On the other hand, if the structure is much denser than the fluid, some more
complicated dynamical effects might come into play due to the large structural inertia
possibly overcoming even drag. We do not expect the conclusions of the present
work to hold in that case.

7. Conclusion
This work provides a dynamical extension of the theory of reconfiguration to the

case of oscillatory flow. Focusing on neutrally buoyant cantilever slender blades,
we proved that flexibility is always favourable to reducing the internal stresses as
long as drag dominates the fluid inertial forces. In fact, drag appears as the motor
of reconfiguration. In large-amplitude oscillations (or equivalently in steady flow),
drag is responsible for the static deflection that reduces the stress. In small-amplitude
oscillations, it is also the saturation of the drag term that forces the passive convection
of the structure with the fluid particles if the Keulegan–Carpenter number is large.
Even in the less favourable case of small Keulegan–Carpenter numbers, it is the small
drag term that saturates the resonances that occur due to the fluid inertia, even when
the structural inertia is negligible. We also expect that drag would saturate flutter-like
oscillations that might occur if the structural mass were not negligible, thus limiting
the enhancement of the internal stresses to a bearable extent.

As in the static case, we have shown that dynamic reconfiguration results in the
concentration of the stresses on a short bending length near the clamped edge, only the
scaling of that bending length varies depending on the dynamic regime. Consequently,
the dependency of the internal stresses on the actual length of the structure disappears,
and there does not seem to be any mechanical limitation to the axial growth of plants
living in wave-swept environment due to the hydrodynamic loads. However, in order
to avoid deleterious inertial effects, it seems better to keep a much smaller width than
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FIGURE 13. (a) Tensile reconfiguration number and (b) location of maximum tensile stress
along the span in the modal regime, against the frequency ratio, for KC = 10−2 (——),
KC = 10−1 (— · —), KC = 100 (– – –) and analytical solution for KC → 0 (· · · · · ·). (c)
Tensile reconfiguration number against KC ω

2 in the convective regime KC = 100 (– – –),
KC = 101 (— · —), KC = 102 (——). (d) Tensile reconfiguration number in the large-
amplitude regime for λ= 12.7, against the Cauchy number CY for α= 100 (– – –), α= 101

(——) and static solution obtained with (5.6) (· · · · · ·).

the excursion of the fluid particles. In other words, if there is no limitations to growth
in itself, there is an incentive to grow slender based on mechanical considerations. Of
course, the actual growth pattern of aquatic plants also involves other aspects such as
the optimization of its biological functions that we do not take into account here.

Up to here, only the inertia of the fluid has been accounted for. We expect the
inclusion of significant structural inertia should considerably modify the results of the
present work.
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Appendix A. Tensile stress
Similarly to the shear reconfiguration number, the variations of the tensile

reconfiguration number are displayed in figure 13(a) for the modal regime, along
with the location of the maximum stress in figure 13(b). Figures 13(c) and 13(d)
respectively show the results in the convective and large-amplitude regime. All the
conclusions drawn about the shear reconfiguration number are still valid for the tensile
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FIGURE 14. Variations of the static reconfiguration numbers obtained with (5.6) ((a) shear,
(b) tensile) as a function of the Cauchy number CY , for λ= 12.7 (——), λ= 127 (– – –),
λ= 1270 (· · · · · ·).

number. The only noticeable difference is the asymptotic scaling for large loadings.
Indeed, the non-dimensional bending moment M = κ involves one less derivative in
space than the shear force Q so that M ∼ Q × `b, while the non-dimensional rigid
load is unchanged. Therefore, Rτ ∼Rn × `b ∼ `

2
b. Finally, this provides Rτ ∼ ω

−1 in
the modal regime, Rτ ∼ (KC ω

2)−1/2 in the convective regime and Rτ ∼ C−2/3
Y in the

large-amplitude regime, in agreement with the results shown.

Appendix B. Influence of the slenderness on the static reconfiguration
In the large-amplitude regime, most of the cycle is quasi-static and the system

is well modelled by (5.6). The different static reconfiguration curves for varying
slenderness parameters shown in figure 14 prove that the reconfiguration numbers
converge on an asymptotic trend as the slenderness is increased. For any finite λ,
the discrepancy with the asymptotic curve remains quite small for the shear stress,
and almost completely imperceptible for the tensile stress. The asymptotic scaling
provided in § 5 can therefore be used even for moderately large slenderness.
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The static reconfiguration of flexible beams exposed
to transverse flows is classically known to reduce the
drag these structures have to withstand. But the more
a structure bends, the more parallel to the flow it
becomes, and flexible beams in axial flows are prone
to a flutter instability that is responsible for large
inertial forces that drastically increase their drag.
It is, therefore, unclear whether flexibility would
still alleviate, or on the contrary enhance, the drag
when flapping occurs on a reconfiguring structure. In
this article, we perform numerical simulations based
on reduced-order models to demonstrate that the
additional drag induced by the flapping motion is
almost never significant enough to offset the drag
reduction due to reconfiguration. Isolated and brief
snapping events may transiently raise the drag above
that of a rigid structure in the particular case of heavy,
moderately slender beams. But apart from these short
peak events, the drag force remains otherwise always
significantly reduced in comparison with a rigid
structure.

1. Introduction
When flexible structures are placed in a fluid flow,
the drag they experience is strongly modified by the
deformation caused by that flow. In particular, the
work of [1] has shown that plants in nature benefit
from their flexibility and experience a lower drag force
than if they were rigid. This ability to reduce flow-
induced forces by passively adapting their shape is
now thought to be a key factor in allowing aquatic
organisms to survive in flow-dominated environments
[2]. To better understand this phenomenon, the studies
of [3,4] have analysed the mechanism of elastic
reconfiguration and the resulting drag reduction of flat

2018 The Author(s) Published by the Royal Society. All rights reserved.

 on January 8, 2018http://rspa.royalsocietypublishing.org/Downloaded from 



2
rspa.royalsocietypublishing.org

Proc.R.Soc.A474:20170678
...................................................

plates in uniform, steady, large-Reynolds-number flow. More recent papers have additionally
accounted for gravity and buoyancy [5], non-uniformities [6], non-planar deformations [7] or
viscous effects [8–10].

All these studies assume static structural deflection in a steady background flow. However, the
low-Reynolds-number study in [11] has shown that the vortices shed from the free tip may force
a flexible fibre into a flapping motion. The efficiency of drag reduction when flapping occurs is
then mitigated and depends on the mode of deformation [12]. Such self-induced dynamics has
also been witnessed for large-Reynolds-number systems, for instance on tree leaves that flap in
the wind [13–15]. The very occurrence of dynamics induces inertial loads that may enhance the
drag, and one may wonder whether flexibility is associated with lower or larger drag in that case,
compared with a rigid structure that does not reconfigure but does not flap either.

The cause and the nature of the flapping dynamics depend on the geometry of the structure
and its orientation to the flow. When the structure is perpendicular to the flow, the vortices
shed from the tip are obviously responsible for flow-induced vibrations [16]. Flexible structures
exposed to a transverse flow become more and more aligned with it as they reconfigure,
but the flapping of flags in the wind illustrates that structures parallel to the flow are also
prone to self-induced dynamic oscillations [17–22]. This flag flutter instability results from the
competition between the destabilizing aerodynamic pressure forces and the stabilizing rigidity of
the structure, so slender structures in axial flow are also liable to it [23–28]. A few authors have
tried to assess the drag of such structures theoretically [29], numerically [24] and experimentally
[30–36]. All these works prove that the onset of flutter is associated with a large increase in the
drag force, whose magnitude is strongly correlated to the periodicity and the envelope of the
flutter mode.

As stated above, cantilever structures that bend in a transverse flow become more and more
aligned with it, so that the flow about sufficiently deflected beams becomes mostly axial. If
reconfiguration is known to have a drag-lowering effect that protects the structural integrity, the
possible fluttering of highly reconfigured beams may, on the other hand, be responsible for a
magnification of the drag, possibly leading to damage or breakage. In the literature, the small-
amplitude vibrations of a naturally curved rod in a flow have been considered in [37], as well as
the flapping dynamics of plates clamped in axial flow at their trailing edge instead of their leading
edge (the so-called inverted flag problem [38–40]), and the flow-induced instability of filaments
clamped at their trailing edge but deflected by gravity [41]. However, very little is known about
the self-induced dynamics of structures passively bending under the effect of the flow, and even
less about whether the resulting drag force is overall enhanced or reduced. The goal of this work
is thus to determine if, and to what extent, the occurrence of flutter may impair the drag reduction
abilities of flexible structures in transverse flow compared with rigid ones. We will focus on the
case of cantilevered, elongated beams of arbitrary but uniform cross section.

The model used throughout the study is presented in §2. In §3, we discuss the domain of
stability of the static reconfiguration. In §4, the post-critical flapping behaviour of the deflected
structure is analysed. Finally, the consequences of flexibility in terms of total drag modulation
when reconfiguration and flutter are both considered are discussed in §5.

2. Model
We consider the problem depicted in figure 1. A structure of length L, width W, thickness D and
mass per unit length m is clamped perpendicular to a uniform and steady flow of velocity U of
a fluid of density ρ.

We assume that the structure may only bend in the xz-plane and we neglect torsion or any out-
of-plane deformation. The structure is elongated in the plane of bending (L � D), and we model
it as a two-dimensional inextensible Euler–Bernoulli beam of bending stiffness EI [42]. The local
angle θ of the tangent vector τ = r′ is defined with respect to the vertical axis ez, where r = x(s, t)ex
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Figure 1. (a) Side view of the deforming structure. (b) Examples of geometries of two undeformed structures with different
cross-section shapes.

+z(s, t)ez is the position vector and the prime symbol (·)′ denotes differentiation with respect to
the curvilinear coordinate s. Following [42], the dynamic equilibrium reads

mr̈ = F′ + q, (2.1)

where q is the external load per unit length on the structure, F = Tτ + Qn is the internal
force vector and the overdot stands for time derivation. The internal bending moment M is
related to the local curvature κ = θ ′ by M = EIκ , and the shear force Q is given by Q = −M′ =
−EIκ ′. Clamping implies x = z = θ = 0 at s = 0, while the free tip condition reads T = M = Q = 0
at s = L.

We disregard the influence of gravity and buoyancy forces, and we restrict our study to large
Reynolds number so that friction drag is neglected. More details about the influence of friction
can be found in [28]. We also assume that the structure is slender (L � W) so that the flow at a
given location s along the span is dominated by its local two-dimensional component in the plane
of the cross section. This assumption implies that we neglect the end-wall effects so that this
problem physically amounts to considering that the structure is clamped in the middle region of
the flow and there is no wall. Following Eloy et al. [43], Singh et al. [44,45] or Michelin & Doaré
[46], we model the effect of the flow as a combination of two external loads distributed along
the span. First, the reactive (or added mass) force is related to the potential component of the
flow [47,48],

qam = −ma[∂t(Unn) − ∂s(UnUτ n) + 1
2 ∂s(U2

nτ )], (2.2)

where the added mass is given by ma = ρπW2/4. This expression involves the normal and
tangential components of the relative velocity Ur = Uτ τ + Unn = ṙ − U. In the case of an
inextensible beam, this force becomes purely normal and its expression may be simplified in

qam = −ma[r̈ · n − 2θ̇Uτ + κ(U2
τ − 1

2 U2
n)]n, (2.3)

as explained in appendix A. This reactive model has been extensively used in the literature for
the linear stability analysis of straight beams in axial flow [27,28,49]. Indeed, as emphasized in
[44,50], it is the potential component of the flow that is driving the instability. However, when
studying the large-amplitude post-critical oscillations, an additional resistive contribution qd
associated with flow separation in the plane of the cross sections has proved necessary to avoid
unrealistically large flapping amplitude [44]. Besides, in our case, the beam is statically deflected
by the effect of the cross-flow before it starts fluttering. The reactive term qam vanishes on a
straight and motionless beam, so the resistive contribution qd is essential to bend the beam into a
configuration prone to flutter. The semi-empirical formulation of [51] is unambiguously used in
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the literature as a flapping amplitude-limiting term in flutter studies such as [43–45] or [46], as
well as the driving force in the static reconfiguration studies of [4,6]. It reads

qd = −1
2
ρCDW|Un|Unn, (2.4)

where CD is a drag coefficient that depends on the geometry of the cross section and that is
typically of order O(1). For instance, we classically have CD = 1 for a circular cross section, and
CD = 1.8 for a flat plate with rectangular cross section.

Combining (2.3) and (2.4) in the right-hand side of equation (2.1) yields the governing equation

mr̈ = [T + 1
2 EIκ2]′τ + [κT − EIκ ′′]n + qam + qd. (2.5)

After projection on the tangential and normal directions and elimination of the unknown tension
T, we finally obtain a single integro-differential equation on the kinematic variables κ , θ , r :

(m + ma)r̈ · n − mκ

∫ s

L
r̈ · τ ds + EI

[
κ ′′ + 1

2
κ3

]

+ ma

[
κ

(
U2

τ − 1
2

U2
n

)
− 2θ̇Uτ

]
+ 1

2
ρCDW|Un|Un = 0. (2.6)

Following de Langre et al. [28] and Païdoussis [49], we non-dimensionalize all the variables using
the length of the structure L and the scale of the natural period of the structure in small-amplitude
oscillations in the fluid Ts = L2

√
(m + ma)/EI. We finally obtain, in non-dimensional form,

r̈ · n − (1 − β)κ
∫ s

1
r̈ · τ ds + κ ′′ + 1

2
κ3 + β

[
κ

(
U2

τ − 1
2

U2
n

)
− 2θ̇Uτ

]
+ βλ|Un|Un = 0, (2.7)

with the inextensibility condition r′ = τ , the boundary conditions r = 0, θ = 0 at the clamped edge
s = 0 and κ = κ ′ = 0 at the free tip s = 1. The non-dimensional relative velocity is given by Uτ τ +
Unn = ṙ − u/

√
βex. This system is ruled by three non-dimensional parameters that are

β = ma

ma + m
, u = UL

√
ma

EI
and λ = ρCDWL

2ma
=

(
2
π

CD

)
L
W

. (2.8)

The mass ratio β represents the amount of fluid inertia within the total inertia of the system. It
take values between 0 and 1. For instance, β → 0 for a very dense structure, β = 0.5 for a neutrally
buoyant cylinder with circular cross section and β → 1 for very thin plates (D � W). The reduced
velocity u compares the relative magnitude of the fluid inertial (or reactive) load with the internal
elasticity forces. Both are classically used in studies about the flutter of slender beams in axial
flow, as in [49] or [28], while the third parameter λ = O(L/W) is mostly a slenderness parameter
specific to the geometry of the structure. It can also be seen as the ratio of the resistive drag to the
reactive force. Because our model is only valid for elongated structures, we are restricted to λ � 1.

As already mentioned, the flutter instability results from the competition between the
destabilizing effect of the reactive force and the stabilizing effect of the rigidity of the structure.
The reduced velocity u is therefore the natural parameter that governs this phenomenon. On
the other hand, the static reconfiguration of the beam is primarily due to the resistive drag
overcoming the bending stiffness of the structure. The classical non-dimensional parameter that
compares these two forces is the Cauchy number CY [52–54]. In the case of a slender structure
bending in transverse flow, we define the Cauchy number following [4] as CY = ρCDWL3U2/2EI.
These two non-dimensional parameters are redundant as they both provide scaling of the flow
velocity with respect to the structural stiffness. They are related via the slenderness parameter by
CY = λu2. However, the Cauchy number is more relevant to describe reconfiguration, while the
reduced velocity is more relevant to discuss features of the flutter instability.
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3. Stability of the static reconfiguration
To discuss the joint effect of flutter and reconfiguration, we first need to identify the domain in
which flutter may happen, and that in which the structure will reconfigure without flapping. To
do so, let us first look for the stationary equilibrium solutions of the governing equation (2.7).
Removing all unsteady terms in equation (2.7) yields the static equation

κ ′′ + 1
2
κ3 + CY

λ

(
sin2 θ − 1

2
cos2 θ

)
κ − CY cos2 θ = 0, (3.1)

with boundary conditions θ = 0 at s = 0 and κ = κ ′ = 0 at s = 1. This equation is independent
of the mass ratio β, and depends exclusively on the Cauchy number CY and the slenderness
parameter λ. In the limit of infinite slenderness λ → +∞, we recover the model in [4,6] based on
the equilibrium between the elastic forces and the resistive drag to describe static reconfiguration.
The numerical results in [55] have proved that the static contribution of the reactive force O(CY/λ)
is negligible as soon as the slenderness λ� 10 so that the results of [4,6] remain valid for slender
structures, regardless of their actual aspect ratio. However, by analogy with beams in axial flow,
we expect the static shape solution of equation (3.1) to become unstable to some flutter instability
as the flow velocity exceeds some threshold and the structure aligns with the flow.

To determine the stability threshold, we make use of Lyapunov’s indirect method as advocated
in [56] and applied in [57] regarding the stability of cantilever fluid-conveying pipes with an
inclined terminal nozzle. Namely, for each value of the parameters, we perform a global linear
stability analysis of the dynamic governing equation (2.7) with the corresponding boundary
conditions, about the stationary equilibrium solution of equation (3.1) for that particular set of
parameters. Thus, we expand the instantaneous position vector and angle θ as

r(s, t) = r0(s) + ξ (s, t)τ 0(s) + η(s, t) n0(s) and θ (s, t) = θ0(s) + δθ (s, t), (3.2)

where the subscript ‘0’ refers to quantities related to the stationary solution, and ξ , η and δθ

are small-amplitude time-dependent perturbations of the same order. At the linear order, the
tangential and normal vectors read

τ (s, t) = τ0(s) + δθ (s, t) n0(s) and n(s, t) = n0(s) − δθ (s, t) τ 0(s). (3.3)

Linearization of the inextensibility condition r′ = τ provides two relations between the small
variables

ξ ′ − κ0η = 0 and δθ = η′ + κ0ξ . (3.4)

Making use of the boundary condition ξ = 0 at s = 0, we may rewrite the tangential
perturbation as

ξ =
∫ s

0
κ0η ds. (3.5)

Finally, injecting the expansion (3.2) in equation (2.7) and making use of (3.3)–(3.5), we obtain the
governing equation for the small-amplitude normal perturbation

η̈ − (1 − β)κ0

∫ s

1
ds

∫ s

0
κ0η̈ ds + 2u

√
β

[
S0η̇

′ +
(

1
2
κ0 + λ

)
C0η̇

]

+
( [

u2
(

S2
0 − 1

2
C2

0

)
+ 5

2
κ2

0

]
η′

)′
+ η(4) +

[
3
2

(κ2
0 )′′ + κ4

0

]
η

+ 2λu2C0

[
S0η

′ + 1
2

C0κ0η

]
= 0, (3.6)

where the notations C0 = cos θ0 and S0 = sin θ0 have been used for brevity, and with the boundary
conditions η = η′ = 0 at s = 0 and η′′ = η′′′ = 0 at s = 1. This equation is consistent with previous
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Figure 2. Critical velocity uc as a function of the mass ratio β , for λ = 10 (solid line), λ = 102 (dashed line) and λ = 103

(dotted line).

work on slender beams in axial flow. Indeed, for θ0(s) = π/2 and κ0(s) = 0 (structure parallel to the
flow in the static equilibrium configuration), equation (3.6) reduces to

η̈ + 2u
√

βη̇′ + u2η′′ + η(4) = 0, (3.7)

which is the classical small-amplitude flutter equation for an undamped beam in axial flow with
no friction or gravity that is used, for instance, in [27,49] or [25].

Following [28], we then assume a perturbation of the form η(s, t) = φ(s)eiωt so that equation
(3.6) turns into the quadratic eigenvalue problem

− ω2
[
φ − (1 − β)κ0

∫ s

1
ds

∫ s

0
κ0φ ds

]
+ 2iu

√
βω

[
S0φ

′ +
(

1
2
κ0 + λ

)
C0φ

]

+ φ(4) +
([

u2(S2
0 − 1

2
C2

0) + 5
2
κ2

0

]
φ′

)′
+ 2λu2C0S0φ

′ +
[

3
2

(κ2
0 )′′ + κ4

0 + λu2C2
0κ0

]
φ = 0, (3.8)

with the boundary conditions φ = φ′ = 0 at s = 0 and φ′′ = φ′′′ = 0 at s = 1.
To solve this numerically, the beam is discretized using N = 100 Gauss–Lobatto points

sk = 1
2 (1 − cos((k − 1)/(N − 1)π )), and the derivatives and integrals are computed, respectively,

by Chebyshev collocation and using the Clenshaw–Curtis quadrature formulae. For a given
slenderness λ and mass ratio β, we first compute the static solution of equation (3.1) iteratively
by increasing the Cauchy number from the upright case CY = 0. After each increment, we solve
equation (3.1) with a pseudo-Newton solver (method of Broyden [58]) using the solution at the
previous step as an initial guess. Then, for each value of CY (equivalently of u), we compute
the eigenmodes φ(s) and eigenfrequencies ω by solving equation (3.8) with the Matlab function
quadeig [59]. To check convergence of the results with respect to the mesh, computations with
twice the number of points N = 200 were conducted and led to no significant modification of the
results. For instance, the static angle at the tip of the structure θ0(s = 1) (solution of equation (3.1))
varied by less than 10−10 for any Cauchy number CY between 10−1 and 105 and for the three
values of λ considered (10, 102 or 103).

The stability thresholds are shown in figure 2 in the β − u plane for different values of the
slenderness λ. Similar to the axial case, the critical velocity increases with the mass ratio, hence
making the structure heavier or the fluid lighter has a destabilizing effect. For instance, a given
structure is much more likely to flap in air than in water, and neutrally buoyant structures are
always stable if they are close to flat (β → 1), while they lose stability between around u ∼ 16
and 21 if they have a circular cross section (β = 0.5). For a given mass ratio, the critical velocity
depends very little on the slenderness. Therefore, it is indeed the relative magnitude of the
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Figure 3. Critical Cauchy number CY ,c as a function of the mass ratio β and static equilibrium shape at the stability threshold
for two specific values of the mass ratio, forλ = 10 (solid line),λ = 102 (dashed line) andλ = 103 (dotted line).

reactive fluid force and the structural stiffness that determines the onset of flutter regardless of
the magnitude of the resistive drag.

On the other hand, the same stability thresholds redrawn in terms of the Cauchy number in
figure 3 are obviously shifted with respect to one another as CY ∝ λ for a given u. Consequently,
the static equilibrium shapes at the critical velocity (also shown on figure 3) are more and
more deflected as slenderness is increased. Thus, we may deduce that the critical velocity does
not depend on the pre-existing curvature distribution in the static equilibrium shape. More
importantly, we may conclude that elongation stabilizes reconfiguration. Indeed, the more slender
a structure is, the larger its critical Cauchy number CY,c, and so the more it may reconfigure
statically before it loses stability and starts fluttering. Note finally that the critical Cauchy number
is always much larger than 1. Consequently, flutter may only occur on highly reconfigured
structures.

Note that, even for the most deflected cases (corresponding to λ → +∞) that are almost parallel
to the flow, the critical velocity does not converge to that of slender beams in axial flow. This point
is discussed in appendix B.

4. Post-critical kinematics
When the stability threshold is exceeded, the static solution of equation (3.1) cannot physically
exist anymore. The static reconfiguration models are not valid in the unstable domain and we
ought to account for the self-triggered dynamics to properly assess the drag. In this section, we
start by analysing the kinematics that takes place in the post-critical regime in order to discuss its
consequences in terms of drag in §5.

Hence, we now solve the full time-dependent nonlinear equation (2.7) using a time-
stepping method. The time derivatives are computed using implicit second-order accurate finite
differences. The time step is tuned for each case using the period Tlin and growth rate σlin
of the most unstable eigenmode found in the linear stability analysis. It is chosen so that 100
iterations are performed over Tlin or 1/σlin, whichever is the shortest. At t = 0, we combine a small
contribution of the most unstable eigenmode with the static solution to initialize the system. Then,
at each time step, the boundary value problem is solved with the pseudo-Newton solver used in
the static case [58]. Computations are carried on a horizon such that 120 Tlin has passed, and the
amplitude of the most unstable eigenmode would have had time to grow by a factor of 1010 in
the linear framework, whichever lasts the longest.
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Figure4. Vertical amplitudeof flappingat the tip (blue) and standarddeviation (orange) versus the reduced velocityu, forβ =
0.5, λ = 10. Examples of deformation modes are shown in the thumbnails for u= 16.4 (square, static regime (S)), u= 22.7
(circle, periodic regime (P)) and u= 67.3 (triangle, non-periodic regime (NP)). Static equilibrium shape superimposed (dashed
lines).

(a) Kinematic regimes
For the sake of clarity, let us first focus on the reference case of a neutrally buoyant circular
cylinder (β = 0.5) with moderately large aspect ratio (λ = 10), before discussing the influence of
varying slenderness or mass ratio in §4b. We analyse both the average and the extreme features
of the dynamics, respectively, through the standard deviation and the amplitude (defined as
half of the peak-to-peak amplitude measured over the simulation horizon) of the tip vertical
displacement on figure 4. As is classical in flag flutter studies, three distinct regimes are identified
depending on the value of u [20,21,60,61]. Each regime is illustrated in figure 4 for particular
values of u in the thumbnails. Below the critical velocity uc = 16.5, the structure is statically stable,
so the amplitude of flapping is null. Right above the stability threshold, periodic flapping takes
place. The amplitude and standard deviation both sharply increase from zero, then decrease
very slowly for increasing u. The bumpy shape of these curves is most probably associated
with flapping mode switches [21,61]. The amplitude is continuous at the onset of the flutter,
thus indicating that the instability is supercritical. Periodic flapping is observed until u ∼ 62.7.
Above that threshold, no limit cycle can be identified in most cases and the motion is generally
either quasi-periodic or chaotic. In this non-periodic regime, the standard deviation of the tip
displacement remains rather continuous and of the same order of magnitude as in the periodic
regime. On the other hand, the amplitude of flapping measured over the simulation horizon
is rather erratic, due to the random nature of the dynamics. Overall, our results indicate that
the amplitude jumps from being of the order of 0.12 to approximately 0.2. In fact, if the loss of
periodicity preserves the flapping amplitude on average, it is also associated with the random
occurrence of isolated, short, extreme events characterized by violent accelerations. These so-
called ‘snapping events’ have also been reported in the axial configuration [20,60] and are known
to be responsible for drag peaks probably at the origin of the tearing of flags [36]. Note that, owing
to the random occurrence of these peaks, their magnitude may actually depend on the horizon
of the simulation. Longer simulations would allow more of the most extreme events to occur and
would consequently lead most probably to a larger, and smoother, amplitude. The precise features
of the non-periodic dynamics such as its frequency spectrum or the probability distribution of the
magnitude of the snapping events are, however, outside the scope of this article. Note also that
regular flapping is still observed for some values of reduced velocity between u ∼ 72 and u ∼ 93,
corresponding to the lower flapping amplitudes in figure 4. These occurrences are disseminated
among irregular flapping cases without a clear separation, so the boundary of the periodic regime
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Figure 5. Vertical amplitude of flapping at the tip (blue) and standard deviation (orange) versus the reduced velocity u, for
β = 0.5,λ = 103. Examples of deformationmodes are shown in the thumbnails for u= 20.0 (square, static regime (S)), u=
59.0 (circle, periodic regime (P)) and u= 78.0 (triangle, periodic regime also). Static equilibrium shape superimposed (dashed
lines).
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Figure 6. Vertical amplitude of flapping at the tip (blue) and standard deviation (orange) versus the reduced velocity u, for
β = 0.1, λ = 10. Examples of deformation modes are shown in the thumbnails for
u= 5.2 (square, static regime (S)), u= 13.2 (circle, periodic regime (P)) and u= 36.7 (triangle, non-periodic regime
(NP)). Static equilibrium shape superimposed (dashed lines).

drawn on figure 4 is actually more of a threshold above which non-periodic motion is observed,
but not exclusively.

(b) Influence of the slenderness and mass ratio
The kinematic regimes described above are affected if the slenderness or mass ratio is varied.

For instance, the same data as in figure 4 are displayed in figure 5 for a structure 100 times more
elongated λ = 103. First, the order of magnitude of the non-dimensional amplitude of flapping
is drastically decreased. Actually, it even seems that λ�ztip = O(1) so that the dimensional
amplitude of flapping would scale with the width of the structure, independently of its length.
Similarly to the previous case, limit-cycle flapping takes place above the critical velocity uc = 20.8.
But, contrary to the previous case, the motion remains periodic for the whole range of reduced
velocities tested. As u is increased, period multiplications and divisions successively take place,
leading to more complex flapping dynamics illustrated in the thumbnail for u = 78.0 in figure 5.
The trajectory of the tip makes several loops within a single period of the system while it simply
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follows an eight-shaped trajectory in the simpler case u = 59.0. These flapping modes are elaborate
but remain nonetheless regular and no snapping event is observed. Slenderness thus has a
stabilizing effect on the nonlinear dynamics as it saturates the flapping amplitude and prevents
irregular motion from taking place at large flow velocities.

The mass ratio also has an influence on the post-critical dynamics. We show in figure 6 the
case of a flat plate with smaller mass ratio β = 0.1, and moderate slenderness similar to the first
situation λ = 10. Similar to the reference case, periodic flapping is triggered right above the critical
velocity uc = 5.24 until periodicity is lost above some other threshold u ∼ 18.5. The amplitude
of flapping is, however, larger and the domain of regular flapping is reduced. Thus, reducing
the mass ratio has a destabilizing effect on the nonlinear dynamics, as it enhances the flapping
amplitude and favours the early transition towards irregular motion.

5. Drag reduction in the post-critical regime
The very occurrence of flutter, be it periodic or not, is known to be responsible for a significant
additional drag force. Besides, its magnitude is strongly related not only to the amplitude of the
flapping motion but also to its regularity as the violent accelerations associated with snapping
events are responsible for enhanced drag peaks [36]. We thus expect the drag reduction abilities
of the three structures introduced in §4 to be at least mitigated above the stability threshold. In
this section, we discuss the modulation of drag due to flexibility for the same three structures,
based on the computational results of the previous section, and in the light of the observations
regarding the post-critical kinematics.

To quantify drag reduction by reconfiguration, the reconfiguration number is defined in [4]
as the ratio of the drag force on the deflected structure to that on the similar but upright beam
R= F/Frigid. The total drag force F is equal to the internal shear force at the base Q(s = 0) = −EIκ ′
(s = 0), while the rigid drag is the integral of the resistive drag on the vertical structure of length L,
Frigid = 1/2ρCDWLU2, so that the reconfiguration number reads in terms of the non-dimensional
quantities R= −κ ′(s = 0)/CY. When R< 1, flexibility is responsible for lowering the drag, while
it enhances it when R> 1. Because the drag force F on the deflected structure is time dependent
when flutter occurs, we will focus in the following on the time-averaged and maximum values of
R. The variations in the maximum and average reconfiguration numbers are related, respectively,
to those of the amplitude and standard deviation of flapping.

First, figure 7 displays the variations of these two quantities with the Cauchy number CY in
the reference case (β = 0.5, λ = 10), along with the corresponding static reconfiguration curve.
The maximum and average reconfiguration numbers diverge from the static curve at the critical
Cauchy number CY,c = λu2

c = 2.71 × 103, because of the triggering of flutter. Further increasing
CY, the average reconfiguration number remains always larger than the static one. The self-
induced dynamics is therefore responsible for an additional drag that significantly contributes
to the total drag on average. However, the average reconfiguration number is decreasing with
increasing CY so that a larger flexibility is still associated with an enhanced drag reduction above
the stability threshold, on average. This trend carries on in the non-periodic as well as in the
periodic regime. On the other hand, similarly to the flapping amplitude, the maximum drag
sharply increases when periodicity is lost due to the occurrence of snapping events, as will be
discussed in further detail later in the low mass ratio case. But, most importantly, the maximum
reconfiguration number remains inferior to 1 for all values of CY. Therefore, no matter how large
the flow velocity, the drag force remains at all times inferior to what it would be if the structure
were rigid and standing upright. In other words, the additional drag due to flapping is not large
enough in this case so as to completely offset the drag reduction due to reconfiguration.

This conclusion holds also for more stable structures, such as the more slender structure
(β = 0.5, λ = 103) in §4b. In fact, we have shown in §4b that the amplitude of regular flapping
is reduced compared with the reference case, so that the associated flutter-induced drag
contribution is smaller. Besides, the results of §3 indicate that the instability is restricted to
more deflected structures (the critical Cauchy number CY,c = 4.33 × 105 is higher), associated
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Figure 7. Reconfiguration number R versus the Cauchy number CY , time average (orange) and maximum (blue), for
β = 0.5,λ = 10. Static reconfiguration number (black). The same examples of deformationmodes as in figure 4 are shown in
the thumbnails, corresponding, respectively, to CY = 2.69 × 103 (square, static regime (S)), CY = 5.15 × 103 (circle, periodic
regime (P)) and CY = 4.53 × 104 (triangle, non-periodic regime (NP)). Static equilibrium shape superimposed (dashed line).
(b) Simply a zoom of the lower right corner of (a).

with larger static drag. Consequently, the relative contribution of flutter-induced drag to the total
drag is now almost negligible, and the reconfiguration numbers displayed in figure 8 are almost
superimposed on the static curve.

The situation of a less stable structure such as the low mass ratio plate (β = 0.1, λ = 10) of §4b is
actually more intricate. As for the two previous cases, the average R displayed in figure 9 keeps
decreasing slowly (or remains almost constant) above the stability threshold, regardless of the
regularity of the flapping motion. Thus, a larger flexibility is still responsible for an alleviation
(or at least no enhancement) of the drag on average even when flutter is triggered at an early
stage of reconfiguration, when the amplitude of flapping is large, and in spite of the early loss of
periodicity. On the other hand, the sharp increase in the flapping amplitude in the non-periodic
regime may induce large enough flutter-induced drag forces so as to increase the total drag in
excess of its static value. The maximum reconfiguration number increases above 1 in these cases,
as, for instance, in the case CY = 1.35 × 104 in figure 9. The variations of R through time for this
case in figure 10 confirm that this peak of drag is related to a very brief, rare, snapping event. If the
peak value of the drag during one of those snapping events exceeds the largest load, the structure
may endure; flexibility may in this particular case and at this particular moment be responsible for
structural failure. Nonetheless, the rareness and brevity of these events make their contribution
negligible on average, and flexibility remains responsible for a large overall reduction in drag, at
almost any moment, in spite of flapping.
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Figure 8. Reconfiguration number R versus the Cauchy number CY , time average (orange) and maximum (blue), for
β = 0.5,λ = 103. Static reconfiguration number (black). The same examples of deformationmodes as in figure 5 are shown in
the thumbnails, corresponding, respectively, to CY = 4.00 × 105 (square, static regime (S)), CY = 3.48 × 106 (circle, periodic
regime (P)) and CY = 6.08 × 106 (triangle, periodic regime also). Static equilibrium shape superimposed (dashed line). (b)
Simply a zoom of the lower right corner of (a).
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Figure 9. Reconfiguration number R versus the Cauchy number CY , time average (orange) and maximum (blue), for
β = 0.1,λ = 10. Static reconfiguration number (black). The same examples of deformationmodes as in figure 6 are shown in
the thumbnails, corresponding, respectively, to CY = 2.70 × 102 (square, static regime (S)), CY = 1.74 × 103 (circle, periodic
regime (P)) and CY = 1.35 × 104 (triangle, non-periodic regime (NP)). Static equilibrium shape superimposed (dashed line).
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Figure 10. Time series of the reconfiguration number in the non-periodic regime of case β = 0.1, λ = 10, CY = 1.35 × 104

(equivalently u= 36.7) corresponding to the thumbnail shown in figures 6 and 9. Level of the static reconfiguration number
drawn for comparison (dashed line). The time interval displayed corresponds to the whole simulation, apart from the transient
regime. Largest snapping event at tsnap = 1.019 (triangle). The shape of the structure at tsnap is shown in the thumbnail (solid
line), along with the static shape (dashed line) and the average shape (dotted line).

6. Discussion
In this study, we have addressed the question of how flexibility may affect the drag of structures
exposed to transverse flows, when the competing influences of reconfiguration and flutter are
simultaneously considered. First, we performed a linear stability analysis to determine the
domain in which dynamics comes into play. Then we performed nonlinear simulations in the time
domain to analyse how the occurrence of dynamics alters the total drag force in the post-critical
domain.

We may finally draw the following conclusions. First, it appears that, in spite of an additional
flutter-induced drag contribution, the total drag of flexible structures is still reduced overall in
comparison with rigid structures. Flutter may only occur when the structure reaches an advanced
level of reconfiguration, so that the drag associated with the flapping motion is never large
enough to fully offset the already significant reduction due to bending. Thus, flutter does not
prevent drag reduction by reconfiguration.

However, the triggering of dynamics does lower the extent to which the drag of flexible
structures is reduced, depending on the slenderness λ and mass ratio β of the structure. Increasing
either of these parameters has a threefold stabilizing effect that tends to abate the flutter-induced
contribution to drag. Firstly, both parameters are positively correlated with the stability threshold
in terms of the Cauchy number CY,c, so the level of reconfiguration reachable before losing
stability is enhanced when any of the two parameters is increased. Secondly, the amplitude of
flapping is negatively correlated with β and λ, and so is the magnitude of the additional drag
force. Thirdly, both parameters have a regularizing effect on the post-critical dynamics in the
sense that the larger β and λ are, the larger the flow velocity may get before periodicity of the
dynamics is lost. This last point is particularly important because, when flapping is irregular,
very large inertial forces may transiently raise the total drag in excess of the rigid value during
short snapping events. In that case, flexibility may possibly be the cause of structural damage
if the failure threshold is reached. But this situation may only happen for heavy structures with
moderate slenderness, and only during rare and very brief occurrences. The order of magnitude
of the drag remains otherwise comparable to its mean value, which is much reduced compared
with the rigid case in any situation. Therefore, we may finally conclude that the ability of flexible
structures to alleviate drag by reconfiguration, albeit lessened by the flapping motion, generally
prevails nonetheless in spite of flutter.

 on January 8, 2018http://rspa.royalsocietypublishing.org/Downloaded from 



14
rspa.royalsocietypublishing.org

Proc.R.Soc.A474:20170678
...................................................
Data accessibility. This work has no additional data.
Authors’ contributions. T.L., N.P. and E.d.L. conceived the project. T.L. performed the computations. All the
authors contributed to the paper.
Competing interests. We declare we have no competing interests.
Funding. The authors acknowledge financial support from the DGA/DSTL grant no. 2014.60.0005.

Appendix A. Simplification of the reactive force
In the particular case of an inextensible structure, the reactive force (2.2) is purely normal and
may be simplified in (2.3). Indeed, developing and sorting the terms in equation (2.2) yields

qam = −ma[(U̇n − U′
nUτ − UnU′

τ + 1
2 κU2

n)n + (U′
n + κUτ − θ̇ )τ ]. (A 1)

Differentiating the relative velocity equation Uτ τ + Unn = ṙ − U with respect to s and using the
inextensibility condition r′ = τ provides

(U′
τ − κUn)τ + (U′

n + κUτ )n = ṙ′ = τ̇ = θ̇n, (A 2)

so that the tangential component of equation (A 1) vanishes and U′
τ = κUn and U′

n = θ̇ − κUτ .
Using these expressions, equation (A 1) further simplifies in

qam = −ma[U̇n − θ̇Uτ + κ(U2
τ − 1

2 U2
n)]n. (A 3)

Differentiating the relative velocity with respect to time now provides

(U̇τ − θ̇Un)τ + (U̇n + θ̇Uτ )n = r̈, (A 4)

so that projection on the normal vector gives U̇n = r̈ · n − θ̇Uτ . Making use of that expression in
equation (A 3) finally yields equation (2.3).

Appendix B. Comparison with the stability of the axial configuration
For asymptotically large slenderness λ → +∞, the structure aligns with the flow, and one might
expect it to behave similarly to the classical axial configuration. However, figure 11 shows that the
critical velocity for large slenderness does not converge to the threshold expected for an elongated
beam in axial flow. In fact, even though θ0 → π/2 almost everywhere, the product λC0 remains
of order O(1) so that the contribution of the resistive drag remains significant even on the part of
the structure that is nearly parallel to the flow. Consequently, in the limit of infinite slenderness,
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Figure 11. Linear stability thresholds obtainedwith the full equation (3.6) forλ = 103 (dotted line), with the equation relative
to the axial configuration (3.7) (dashed dotted line) and with the asymptotic equation (B 1) forλ = 103 (solid line).
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equation (3.6) actually reduces to the classical elongated small-amplitude equation in axial flow
equation (3.7), but supplemented by the non-vanishing resistive drag contribution

η̈ + 2u
√

βη̇′ + u2η′′ + η(4) + 2λC0

(
u
√

βη̇ + u2η′
)

= 0. (B 1)

The stability curve found for λ = 103 with this asymptotic equation on figure 11 is
indistinguishable from that obtained with the full equation (3.6). Quite understandably, this
persistent drag term introduces some additional damping that stabilizes the system compared
with the axial configuration, as soon as β � 0.024.
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Abstract

Flexible cylinders exposed to transverse flows may undergo transverse vortex-induced vibrations due

to the oscillating lift force imposed by their wake. But the drag on such structures often leads to

large in-line deflections that may significantly affect the dynamics through the combined effects of the

curvature-induced tension, the local inclination of the cylinder, the non-uniformity of the normal flow

profile, and the large axial flow component. In this paper, we investigate the consequences of flow-

induced bending on the vortex-induced dynamics of slender cantilever cylinders, by means of numerical

simulations. We combine a distributed wake oscillator approach to model the dynamics of the wake

with Lighthill’s large-amplitude elongated body theory to account for the effect of the axial flow in

the reactive (added mass) force. The use of such reduced order models facilitates the identification of

the physical mechanisms at play, including through the linear analysis of the coupled fluid-structure

system. We find that the primary consequence of flow-induced bending is the inhibition of single mode

lock-in, replaced by a multi-frequency response of the structure, and the reduction of the vibration

amplitude, as a result of the broadening of the wake excitation spectrum and of the localization of

the energy transfer due to the variations induced in the normal flow profile. We also find that the

curvature-induced tension is of negligible influence, but that the axial flow component may on the

other hand significantly alter the dynamics owing to the destabilizing effect of the reactive force on

the structural modes.

Keywords: vortex-induced vibrations, wake oscillator, curved cylinder, linear stability analysis

1. Introduction

The vortex-induced vibrations (VIVs) of slender cylindrical structures has been a prominent subject

of research for many years. Originally, a better understanding of this phenomenon was sought in the

civil and marine engineering community mostly because of the damage it may cause on a number

of flow-exposed structures such as buildings, power transmission lines, marine risers, towing cables,

or mooring lines. For extensive reviews regarding VIVs, the reader is referred to Williamson and
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Govardhan (2004); Sarpkaya (2004); Williamson and Govardhan (2008); Bearman (2011); Wu et al.

(2012). More recently, a renewed interest for the VIVs has arisen from the potential they bear as an

alternative source of energy (Bernitsas et al., 2008).

The large majority of existing studies focus on the VIVs of straight cylinders in a variety of

configurations: rigid or flexible, perpendicular to the flow or slanted, exposed to a uniform or a sheared

flow. However, most of the off-shore flexible structures such as those cited above are actually greatly

deformed in the direction of the flow under the effect of the free-stream. This configuration differs from

the case of a straight cylinder on several aspects. First, the deflection in the plane of the free-stream

of a cylinder is responsible for a curvature-induced tension inside the structure. The tensioning of

the cylinder may affect its natural frequencies, and consequently its dynamic response to the wake

excitation. Secondly, deflected structures are not locally perpendicular to the flow, which modifies the

features of vortex shedding in the wake and the associated forces on the structure. Besides, a curved

structure experiences a spanwise variation of its angle with the free-stream. Finally, the reconfiguration

of the structure leads to a large axial component of the flow on the most inclined portion of the structure

that may even become dominant when the deflection is significant. The consequences of some of these

specificities have been individually studied, see for instance Srinil et al. (2009); Srinil (2010) for the

structural effect of the curvature, Lucor and Karniadakis (2003); Facchinetti et al. (2004b); Franzini

et al. (2009); Jain and Modarres-Sadeghi (2013); Bourguet et al. (2015) for the effect of the inclination,

or Vandiver (1993); Chaplin et al. (2005); Trim et al. (2005); Lucor et al. (2006); Violette et al. (2010);

Bourguet et al. (2013) for the effect of non-uniform normal flow profiles, but their combined effects may

lead to a significant alteration of the wake-structure interaction that has not yet been fully investigated.

As a first step towards the understanding of VIVs of bent cylinders, Miliou et al. (2007) and

de Vecchi et al. (2008) numerically explored the vortex shedding process in the wake of a rigid cylinder

in the shape of a convex or concave quarter of a ring, when the structure is respectively fixed or

forced into an oscillatory motion. Building on these results, Assi et al. (2014) and Seyed-Aghazadeh

et al. (2015) experimentally investigated the free vibrations of similar structures and found that the

amplitude of the oscillations is much reduced compared to the straight configuration. Two studies

provided experimental observations regarding the VIVs of flexible structures about a curvy shape: the

experimental work of Zhu et al. (2016) considered the vibrations of a naturally concave-shaped cylinder

subjected to a shear flow, while that of Morooka and Tsukada (2013) tested a model riser deformed

in the shape of a concave catenary under the effect of a uniform free-stream. Finally, Bourguet

et al. (2012) and Bourguet et al. (2015) numerically investigated the VIVs of tensioned flexible beams

respectively exposed to a normal sheared flow and an inclined uniform flow. Both studies considered

the influence of a small average in-line deformation and noted the transition from a mono-frequency to

a multi-frequency response associated with a modification of the normal flow profile due to the bending.
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A reduction of the amplitude of the VIVs was also reported in Bourguet et al. (2015). At this point

however, a theoretical study is still missing to clarify the consequences of flow-induced bending on the

VIVs of slender cylinders in large deformations and identify the physical mechanisms at play. One

may for instance wonder how the bending-induced shear in the normal flow might impact the vibration

spectrum, whether lock-in may or may not still occur, or furthermore how the amplitude of vibration

might be affected?

But the flow-induced bending of the structure may have even more dramatic consequences. Indeed,

slender structures in axial flows are liable to a flutter instability (Datta and Gottenberg, 1975; Yadykin

et al., 2001; Päıdoussis et al., 2002; Semler et al., 2002). This self-induced dynamics results from the

destabilizing effect of the inviscid pressure forces associated with the deformation of the structure in a

free-stream with a significant axial component (Eloy et al., 2007; Singh et al., 2012a). When a cylinder

deflects in a transverse flow, the increasing spanwise component of the free-stream may thus be the

cause of such instability. More generally, the influence of the inviscid pressure forces on the structural

modes may have consequences on the vortex-induced dynamics even in a domain of the parameter

space where the system does not flutter.

The purpose of the present paper is to provide an analysis of the small-amplitude vibrations of

slender cylinders bent by the flow by means of reduced order models to identify the physical mechanisms

at play. In particular, a formulation of the inviscid pressure forces based on Lighthill’s large-amplitude

elongated body theory (Lighthill, 1971) will be used to account for the destabilizing effect of the axial

component of the free-stream. We will also make use of a wake oscillator to describe the lift resulting

from vortex shedding. This class of models was originally derived to represent the dynamics of the

free wake behind a fixed structure (Birkhoff and Zarantonello, 1957; Bishop and Hassan, 1964), and

they have been proved able to capture some characteristic features of the vortex shedding mechanism,

such as the formation of cells in shear flow (Noack et al., 1991; Mathelin and de Langre, 2005). Such

models have also been proved useful in qualitatively describing the physics of VIVs when coupled with

a structural oscillator (Hartlen and Currie, 1970; Skop and Balasubramanian, 1997; Balasubramanian

et al., 2000; Mukundan et al., 2009; Srinil and Zanganeh, 2012), and they have been validated against

experimental and numerical results (Violette et al., 2007). In this regard, the work of Facchinetti et al.

(2004a) demonstrated that features such as the boundaries of the lock-in range, the amplitude of the

vibrations or the phase between the structure and the wake are correctly predicted when a coupling

term proportional to the structural acceleration is used. The subsequent work of de Langre (2006) and

Violette et al. (2010) further demonstrated that many features of the nonlinear limit-cycle dynamics

can be interpreted through the linear analysis of the coupled wake-structure oscillators.

In Section 2, the model for the flow-structure interactions and its specific adaptations to the problem

in question are detailed. The consequences of the flow-induced bending on the VIVs are then discussed
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in Section 3 based on the results of numerical simulations.

2. Model

2.1. Theoretical modeling

We consider the model system represented on Fig. 1. A circular cylinder of length L, diameter D

and mass per unit length m is clamped perpendicular to a uniform and steady flow of velocity Uex of a

fluid of density ρ. We assume the cylinder is slender (D � L) and we model it as an inextensible Euler-

Bernoulli beam of bending stiffness EI (see more details about the structural model in Appendix A.1).

We note s the curvilinear coordinate along the span from the clamped end to the free end, and r(s, t)

the location of the centerline. In this paper we focus on the small-amplitude transverse oscillations

so we consider that the structure is primarily deflected in the xz−plane under the effect of the flow

into a leading order configuration r0(s) (broken black line on Fig. 1, specifically shown on Fig. 1(c)).

Vortex shedding in the wake of the bent structure is then responsible for an oscillatory lift force in the

y−direction that induces small-amplitude transverse vibrations (solid grey line on Fig. 1, specifically

shown on Fig. 1(d)) such that r(s, t) = r0(s) + Y (s, t)ey.

(a) (b)

(c) (d)
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Figure 1: (a) Dimensions of the undeformed cylinder and centerline (broken line). (b) 3D view of the centerline of the
vibrating cylinder, static deflection r0(s) (broken black line), fully deformed shape r(s, t) (solid grey line). The π−plane
in grey indicates the surface upon which the vibration occurs. (c) Projection of the deformation on the plane of static
deflection (xz−plane). (d) Projection of the deformation on the surface of vibration (π−surface or sy−surface).
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We disregard the influence of gravity and buoyancy, and we restrict our study to large Reynolds

number flows so that friction forces are neglected. Following Mukundan et al. (2009) and Violette et al.

(2010), we model the effect of the fluid as the combination of three load distributions along the span

p = pam + pd + pw, where pam is the reactive or added mass force, pd is the resistive drag due to

flow separation in the plane of the cross-section, and pw is the oscillating lift force due to the vorticity

wake. The expressions of these forces involve the projections (Uτ , UN ) on the direction tangent to the

structure and on the plane normal to it, of the relative velocity between the cylinder and the fluid

Urel = Ẏ ey − Uex = Uττ + UNN , where the overdot stands for time differentiation.

Firstly, in the case of an elongated body such as those considered in this study, the expression of

the added mass force stemming from the pressure field associated with the potential component of the

flow has originally been derived by Lighthill (1971) for large-amplitude planar motions. Its extension

to 3D deformations has been derived by Candelier et al. (2011) and reads

pam = −ma

[
∂t(UNN)− ∂s(UτUNN) +

1

2
∂s(U

2
Nτ )

]
(1)

with the added mass ma = 1/4ρπD2. This expression differs from the usual added mass force used

in VIV studies because it is designed to account for the effects of the curvature as well as a large

axial flow component. The additional terms thus introduced cancel in the specific case of a straight

structure so this choice is nonetheless consistent with the usual expression used in previous works on

the topic. On the other hand, this expression has been widely used in studies of the flutter instability

of slender beams in axial flow (Päıdoussis, 1998; de Langre et al., 2007; Eloy et al., 2012; Singh et al.,

2012b; Michelin and Doaré, 2013).

Secondly, following Taylor (1952), we express the resistive drag force as

pd = −1

2
ρCDD|UN |UNN (2)

with CD the cross-section drag coefficient. Due to the transverse vibrations, this coefficient may be

dynamically enhanced by an amplitude-dependent factor classically of the order of 2 (Vandiver, 1983;

Blevins, 1990; Chaplin et al., 2005). The exact value of the drag coefficient should however have only

a limited impact on the qualitative features of the VIVs. For the sake of simplicity, we hereafter

take CD = 2 for a vibrating cylinder (Blevins, 1990; Chaplin et al., 2005; Mathelin and de Langre,

2005). The resistive drag term is responsible for the leading order static deflection of the beam in the

xz−plane (see Gosselin et al., 2010; Leclercq and de Langre, 2016) and acts as hydrodynamic damping

for the transverse vibrations.

Finally, following Antoine et al. (2016) the local effect of vortex shedding is modeled as an oscillating

lift force orthogonal to the cylinder axis and to the component of the free-stream normal to the still
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cylinder

pw =
1

4
ρC0

LDU
2 cos2 θ0 q ey (3)

where the fixed cylinder lift coefficient C0
L is multiplied by a local magnification factor q(s, t) that

satisfies a nonlinear Van der Pol equation forced by the transverse acceleration of the structure

q̈ + ε

(
2π
StU

D
cos θ0

)(
q2 − 1

)
q̇ +

(
2π
StU

D
cos θ0

)2

q = A
Ÿ

D
. (4)

We assume in this study the classical values St = 0.2, C0
L = 0.3 in the sub-critical range 300 < Re <

1.5 × 105 (Blevins, 1990; Facchinetti et al., 2004a). Following Facchinetti et al. (2004a), we further

assume A = 12, ε = 0.3. Even though these parameters were derived from experiments on rigid

cylinders, this approach was validated in the case of flexible structures in Facchinetti et al. (2004b)

and Violette et al. (2007). It was then successfully used in subsequent theoretical studies (Mathelin

and de Langre, 2005; Violette et al., 2010; Meng and Chen, 2012; Dai et al., 2013, 2014). No direct

spanwise coupling between the wake oscillators is considered in Eq. (4) as the work of Mathelin and

de Langre (2005) has demonstrated that the coupling with the structural oscillator is the main source

of synchronisation in the wake. Similar observations have been reported by de Vecchi et al. (2008) from

direct numerical simulations that showed parallel vortex shedding in the wake of a curved cylinder in

forced oscillations, in contrast with the spanwise phase shift reported by Miliou et al. (2007) in the

wake behind a fixed cylinder. Moreover, this local modeling is based on the so-called independence

principle that states that the physics of vortex shedding is primarily governed by the component of

the free-stream normal to the structure only (see Lucor and Karniadakis, 2003; Franzini et al., 2009;

Jain and Modarres-Sadeghi, 2013). The work of Bourguet et al. (2015) has demonstrated the validity

of that principle when applied locally at each location along the span in the case of the VIVs of flexible

cylinders inclined at 60◦ of incidence. In this case, due to the in-line deformation of the structure, the

local incidence of the cylinder could reach values as large as 75◦. The local lift force (3) is thus taken

quadratic in the locally normal projection of the free-stream velocity U cos θ0 and the local natural

shedding frequency that appears in (4) satisfies the Strouhal law expressed in terms of that normal

component as well fw = StU cos θ0/D (Williamson, 1996; Facchinetti et al., 2004b).

Note that vortex shedding in the wake is also responsible for an oscillating drag term that creates

slight temporal variations of the in-line deflection. Besides, recent studies have shown that the coupling

between the in-line and transverse vibrations may considerably affect the transverse dynamics (Jauvtis

and Williamson, 2003, 2004; Marcollo and Hinwood, 2006; Srinil and Zanganeh, 2012; Srinil et al.,

2013). However, for the sake of simplicity and given the leading-order nature of the resistive drag term

considered here, we choose to disregard the influence of the in-line fluctuations in this study.
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2.2. Governing equations

We non-dimensionalize all variables but the transverse displacement using the length L of the

cylinder as characteristic length, and the inverse of the natural shedding frequency on the undeformed

straight cylinder f0w = StU/D as characteristic time scale. Because the amplitude of the VIVs classi-

cally scales with the diameter of the structure, we non-dimensionalize the transverse displacement Y

using D instead of L. We also define the following non-dimensional parameters: the Cauchy number

CY , the reduced velocity u, the aspect ratio Λ, the mass ratio β

CY =
ρCDDU

2L3

2EI
, u =

StU

D
L2

√
m+ma

EI
, Λ =

L

D
, β =

ma

m+ma
(5)

and rescaled drag and lift coefficients cd = 2CD/π and cl = C0
L/π. The Cauchy number measures

the level of static in-plane deflection. The definition of the Cauchy number used here is classical in

studies of the static deflection of slender structures (Gosselin et al., 2010; Leclercq and de Langre, 2016;

Hassani et al., 2016). More details about the significance of this number will be provided in Section

2.3. Note that the reduced velocity used here is consistent with the classical definition used in VIV

studies of systems with only one degree of freedom (see for instance Khalak and Williamson, 1999;

Päıdoussis et al., 2010), in the sense that it compares the characteristic scale of the natural period of

the structure Ts = L2
√

(m+ma)/EI to the reference vortex shedding period 1/f0w = D/StU . Our

definition of the mass ratio on the other hand differs from the more classical ratio m∗ = m/(ρπD2/4)

(Päıdoussis et al., 2010) and they are related by m∗ = 1/β − 1. The proper linearization of the model

presented in Section 2.1 is detailed in Appendix A, and its appropriateness for the modelling of VIVs is

discussed in Appendix B. Note that, for the sake of simplicity we do not introduce different notations

for the non-dimensional variables and in the rest of this paper, the notations Y , κ, s and t always refer

to the non-dimensional quantities. In terms of the non-dimensional variables, the governing equation

for the leading order static deflection in the xz−plane then reads

κ′′0 +
1

2
κ30 +

CY
cdΛ

(
S2
0 −

1

2
C2

0

)
κ0 − CY C2

0 = 0 (6)

where the prime notation stands for curvilinear differentiation, the notations S0 = sin θ0 and C0 =

cos θ0 have been used for brevity, and with the curvature κ0 = θ′0. The corresponding boundary

conditions are θ0 = 0 at the clamped edge s = 0 and κ0 = κ′0 = 0 at the free tip s = 1. At the linear

order, the equation for the non-dimensional vibration Y (s, t) is

u2Ÿ +
βu2

StΛ

[
2S0Ẏ

′ + C0 (κ0 + cdΛ) Ẏ
]

+

([
βu2

S2
t Λ2

(
S2
0 +

1

2
C2

0

)
+

3

2
κ20

]
Y ′
)′

+ cd
βu2

S2
t Λ

C0S0Y
′ + Y (4) = cl

βu2

S2
t

C2
0q (7)
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with Y = Y ′ = 0 at the clamped edge s = 0 and Y ′′ = Y ′′′ = 0 at the free tip s = 1. The lift

magnification factor q(s, t) then satisfies the Van der Pol equation

q̈ + ε (2πC0)
(
q2 − 1

)
q̇ + (2πC0)

2
q = AŸ . (8)

2.3. On the governing parameters

Within the four non-dimensional parameters defined above (CY , u, Λ, β), only three are necessary

to fully characterize the problem. In fact, for a given structure with a fixed mass and aspect ratios,

the Cauchy number and the reduced velocity are redundant parameters that are related by CY =

(cdβ/S
2
t Λ)u2. Both quantities scale the influence of the flow to the rigidity of the structure, but from

different perspectives. The Cauchy number expresses the ratio between the leading order drag force

and the restoring structural stiffness (Tickner and Sacks, 1969; Chakrabarti, 2002; de Langre, 2008).

Consequently, it controls the level of static deflection in the xz−plane. For small CY < 1, deflection

is negligible and the structure stands upright in the flow, while for CY � 1 the cylinder is highly

deformed in the direction of the free-stream (Gosselin et al., 2010). On the other hand, the reduced

velocity compares the natural shedding frequency f0w (on the straight structure) to the scale of the

natural period of the structure Ts, so it controls the dynamic behaviour of the coupled wake-structure

system.

The mass ratio β represents the amount of fluid inertia within the total inertia of the system. We

do not expect the precise value of β should significantly influence the qualitative features of the VIVs

presented in this article. We also expect the influence of the gravity and buoyancy forces on the static

deflection due to the flow to remain small (Luhar and Nepf, 2011). Thus, for the sake of simplicity,

we restrict this study to the case of a neutrally buoyant cylinder β = 0.5. Finally, the aspect ratio

Λ = L/D scales the relative contributions of the resistive and reactive terms. In the case of slender

structures Λ� 1 as those considered in this paper, the contribution of the reactive force O(CY /Λ) to

the static equilibrium shape in Eq. (6) is in fact negligible. On the other hand, as will be shown in

Section 3.3, the reactive force may be responsible for triggering the large-amplitude flutter instability,

and its influence on the vortex-induced dynamics may still be significant near the critical threshold

when the deflection is large. Thus we may not neglect a priori the terms originating from the reactive

force in Eq. (7).

Our main interest in this study is the effect of the flow-induced bending on the properties of the

vortex-induced vibrations. In other words, we wish to compare the dynamics of structures with varying

levels of deflection in the direction of the free-stream (varying Cauchy numbers CY ), at a given reduced

velocity u. However, as explained above, for a given fluid-structure system of fixed mass and aspect

ratios (β,Λ), the Cauchy number and the reduced velocity vary together as CY ∝ βu2/Λ. Therefore,

8



increasing the Cauchy number with a fixed reduced velocity requires to change the structure to lower the

aspect ratio Λ. This may seem counter-intuitive, as a lower aspect ratio is classically associated with

lower deflections. Indeed, the Cauchy number is an increasing function of the aspect ratio CY ∝ Λ3

when the dimensional flow velocity, fluid density, and Young’s modulus of the solid material are

kept constant. In our case however, we allow these dimensional quantities to vary in order to keep

the reduced velocity u constant instead, and consequently the Cauchy number becomes a decreasing

function of the aspect ratio. In the limit of an infinitely slender structure Λ → +∞, the Cauchy

number remains much smaller than 1 even for arbitrarily large reduced velocities. This asymptotic

case is therefore equivalent to considering a structure that remains straight in the free-stream. For

this benchmark case, the dynamic system (7)-(8) reduces to

u2Ÿ + cd
βu2

St
Ẏ + Y (4) = cl

βu2

S2
t

q (9)

q̈ + ε (2π)
(
q2 − 1

)
q̇ + (2π)

2
q = AŸ (10)

which is the standard system of equations for the modeling of VIVs by means of a wake oscillator, in

the case of a straight slender cylinder with flexural stiffness and hydrodynamic damping (Mukundan

et al., 2009).

3. Numerical results

In order to analyse the vibration behaviour, we solve the problem defined by equations (6),(7),(8)

numerically. The beam is discretized using N = 100 Gauss-Lobatto points sk = 1
2 (1−cos((k−1)/(N−

1)π)), and the curvilinear derivatives are computed by Chebyshev collocation. For a given aspect ratio

Λ, we first compute the static solution of Eq. (6) iteratively by increasing the Cauchy number from the

upright case CY = 0. After each increment, we solve Eq. (6) with a pseudo-Newton solver (method

of Broyden, 1965) using the solution at the previous step as initial guess. Then, for each value of

CY (corresponding to a given u), we solve the nonlinear system (7)-(8) using a time-stepping method,

with time step dt = 10−2. The time derivatives are computed using implicit second order accurate

finite differences. At each time step, the nonlinear boundary value problem involving the unknown

spanwise distributions (Y, q) is solved thanks to the pseudo-Newton solver. The simulations are run

for 200 periods and the last 100 periods are considered for the analysis in order to cut the transient.

3.1. Wake excitation bandwidth and inhibition of single mode lock-in

First, we discuss the influence of the deflection on the modal content of the dynamics. To do so,

we compare the vibrations of a structure that bends (finite aspect ratio Λ = 103) to that of a structure
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that remains straight (Λ→ +∞), on the same range of reduced velocities. For the structure with finite

aspect ratio Λ = 103, the variations of u within the range considered will be associated with variations

in the Cauchy number CY ∝ u2/Λ leading to varying levels of deflections. On the other hand, the

infinitely slender cylinder will remain straight because the Cauchy number will remain asymptotically

small in the same finite range of u. We recall here that the cylinder with the finite aspect ratio is the

one that deflects while the infinitely slender one remains unbent because we compare the dynamics of

the two structures on the same range of reduced velocities (see Section 2.3 for more details).

As explained in Section 2.1, the independence principle states that the natural frequency of vortex

shedding fw(s) decreases along the span when the structure is deformed because of the projection of

the free-stream on the normal direction fw(s)/f0w = Un0/U = cos θ0(s). The deforming structure is

therefore subjected to a forcing by the wake on a continuum of frequencies that broadens when the

deflection is enhanced with increasing Cauchy numbers, as shown on Fig. 2.

s

Un0/U = cos θ0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a) (b)

Figure 2: (a) Deflection in the xz−plane and (b) normal velocity profile normalized by the horizontal velocity, in the
straight case (grey —–), and in deflected cases CY = 100 ( · · · ), CY = 101 (− − −), and CY = 102 (black —–) for
Λ = 103.

The enrichment of the excitation spectrum significantly alters the modal content of the structural

response. This is illustrated on Fig. 3 for the vibration spectrum and Fig. 4 for the spanwise

localization of the vibration. In the straight case, the structure is subject to a forcing by the wake at

a single frequency along the whole span. The frequency of the vibration remains close to the Strouhal

law (f ' 1 on Fig. 3(a)), but slightly deviates to follow an evolution closer to that of the nearest

structural mode. As u varies, lock-in with the successive structural modes occurs in turn and frequency

discontinuities mark the transitions between consecutive lock-ins. This phenomenon is a well-known

feature of the VIVs of flexible structures perpendicular to the flow (King, 1995; Chaplin et al., 2005;

Violette et al., 2010). As expected, this behaviour remains unchanged for as long as the deflection is

negligible (CY < 1 on Fig. 3(b)) in the case Λ = 103. However, at the early stages of reconfiguration

(CY . 101 on Fig. 3(b)), the ranges of reduced velocities within which lock-in with a given mode
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occurs are slightly widened and increasingly shifted towards larger reduced velocities (see Table 1).

For instance, lock-in with mode 4 persists on a slightly larger range u ∈ [16.3, 29.9] when the structure

is bent compared to u ∈ [15.2, 27.0] when it is not. The modal shapes in both configurations remain on

the other hand almost identical, as illustrated for u = 19.8 in Fig. 4(c), which proves that the curvature

of the structure in the xz−plane only has a very limited impact on the transverse deformation.

Following the method of Violette et al. (2010), we may interpret these results by comparing the

spectrum of the nonlinear dynamics to the frequencies of the eigenmodes found by a linear stability

analysis (see Fig. 5). The details of the linear stability analysis can be found in Appendix C. The

eigenmodes thus found can be classified in 3 distinct types. Firstly, a series of N unstable modes (where

N is the number of discretization points sk) with eigenvalues matching almost exactly the eigenvalues

of the linearized wake oscillator without structural coupling ωk ' cos θ0(sk)(2π
√

1− (ε/2)2− iπε) are

observed. They have no significant structural component (φk(s) ' 0), and their wake components

are localized respectively at each discretization point (|ψk(s)| ' δ(s− sk) with δ the Dirac function).

These modes thus correspond to the naturally unstable free wake modes. For the sake of clarity, the

continuous spectrum of the free wake oscillator itself is represented in grey on Fig. 5(b) instead of

the N individual eigenmodes spanning the area. Secondly, the modes in blue correspond closely to

the eigenmodes of the structural equation (7) without coupling with the wake. These modes may

thus be designated as the free structural modes. Finally, the four modes in black are coupled modes

that each arise from lock-in with one of the structural modes. They are all unconditionally unstable

and will be referred to as the lock-in modes. Following Violette et al. (2010), we expect lock-in with

a given mode to persist in the nonlinear limit-cycle if the corresponding linear lock-in mode is the

most unstable. The comparison of the linear and nonlinear lock-in ranges in Table 1 confirms these

findings and we may thus lean on the linear analysis to interpret the dynamics observed in the limit-

cycle. In particular, as deflection increases, we notice on Fig. 5 that the broadening of the free wake

spectrum allows the structural frequencies to remain within the excitation bandwidth on a larger range

of reduced velocities. Lock-in with these modes may consequently occur on these larger ranges as well.

Hence, it appears that the primary consequence of the deflection is the broadening of the free wake

spectrum due to the increased shear in the normal component of the free-stream. At leading order,

a bending structure in a uniform flow is therefore equivalent to a straight structure in a sheared flow

whose profile varies, depending on the Cauchy number, according to that of the normal flow shown on

Fig. 2(b).

When bending is more pronounced (CY > 101), not only one but several frequencies are involved

in the spectrum of the nonlinear limit-cycle Fig. 3(b), and the localization of the transverse vibration

significantly deviates from the single-mode shape on Fig. 4. Indeed, when the wake spectrum becomes

large enough, several structural modes are excited simultaneously at different locations along the span
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straight case (nonlinear) bent case Λ = 103 (nonlinear) bent case Λ = 103 (linear)
mode 1 0− 2.3 0− 2.3 0− 2.16
mode 2 2.4− 6.8 2.4− 6.9 2.16− 6.80
mode 3 6.9− 15.1 7− 16.2 6.80− 15.86
mode 4 15.2− 27.0 16.3− 29.9 15.86− 28.70

Table 1: Reduced velocity ranges for lock-in in the straight and bent cases (nonlinear and linear ranges).

(several structural modes appear within the wake excitation bandwidth on Fig. 5). Consequently,

single mode lock-in is replaced by a multi-frequency response of the whole structure associated with

the spatial fragmentation of the wake into multiple cells of locally uniform frequency. As illustrated

on Fig. 6, the frequency within each wake cell matches that of the structural mode that is closest

(in the frequency space) from the Strouhal law, so that it might be said that single mode lock-in is

actually replaced by multiple occurrences of lock-in along the span. It is however noteworthy that the

local wake dynamics is essentially monochromatic, while the structural dynamics involves comparable

contributions from all the excited modes at any location along the span. Besides, the linear analysis

shows that, past u > 28.7, the most unstable mode is not one of the coupled lock-in modes anymore,

but is found instead within one of the free wake modes. No fifth coupled mode that would appear

because of lock-in with the fifth structural mode is observed. It thus appears that the large shear

in the normal flow hinders single mode lock-in, but leads to the simultaneous excitation of multiple

structural modes that all participate in the dynamics.

We may finally conclude that bending primarily affects the dynamics through its influence on the

component of the free-stream normal to the cylinder. More specifically, the growing shear in the

normal flow is responsible for broadening the wake spectrum. When the deflection remains moderate,

the wake excitation bandwidth remains narrow enough so that single-mode lock-in still prevails, but

on a slightly larger range of reduced frequencies. On the other hand, when the deflection is large,

several structural modes may be simultaneously excited, leading to the inhibition of single mode

lock-in replaced by a multi-frequency response to the broadband excitation. These conclusions are

consistent with the observations of Bourguet et al. (2012), Bourguet et al. (2015) for a pinned-pinned

cylinder experiencing small in-line deformations, as well as those of Vandiver (1993); Ge et al. (2011);

Srinil (2011) for straight pinned-pinned cylinders in shear flow.

3.2. Localization of the excitation and VIV mitigation

As emphasized in the introduction, the experimental work of Assi et al. (2014) and Seyed-Aghazadeh

et al. (2015) has shown that the amplitude of the vibrations of rigid cylinders is much reduced under

the effect of the curvature. The same observation was made by Bourguet et al. (2015) regarding the

VIVs of pinned-pinned flexible cylinders. Similarly, the works of Trim et al. (2005); Ge et al. (2011);

Srinil (2011) have also shown that sheared incoming flows entailed lower structural responses than
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Figure 3: Comparison between the power spectral densities of the motion at the tip Y (s = 1, t) in (a) the straight case
and (b) the deflected case Λ = 103, for varying reduced velocities u. The natural wake excitation bandwidth (WEB) is
superimposed. The particular values of the reduced velocity u corresponding to Fig. 2 are indicated as well.

uniform flows. Our numerical simulations indicate that this observation holds true as well for flexible

cantilever cylinders curved by the flow. Indeed, the amplitude of the VIVs of the deflecting cylinder

(Λ = 103) reduces progressively on Fig. 7(a) compared to the straight case above the bending thresh-

old CY > 1. For large deflections CY > 10, the amplitude settles around approximately 1/3 of the

amplitude of the straight case.

We may explain this reduction of amplitude by considering the energy transferred to the structure

from the wake oscillator. In non-dimensional form, the work of the oscillating lift force at a given

location along the span reads e = Ẏ · q cos2 θ0, so that the total energy E transferred to the structure

over one cycle of oscillations is the temporal mean of e, integrated over the whole span. The evolution

of E with the reduced velocity on Fig. 7(b) proves that deflection drastically mitigates the transfer.

A more detailed look at the spanwise distribution of the mean energy transfer on Fig. 8 indicates

that the excitation by the wake, which is equally distributed in the straight case, concentrates around

s ∼ 0.2 as the deflection increases. This is actually quite intuitive, because the lift force varies with

the square of the normal component of the free-stream ∝ cos2 θ0. When deflection is important, only

the small region close to the clamping point remains close enough to the vertical so as to significantly

contribute to the excitation. As the Cauchy number increases and the cylinder bends more and more,

the size of that region reduces progressively. The amount of energy transferred overall is consequently
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Figure 4: Comparison between the spanwise localizations of the transverse deformation in (a) the straight case and
(b) the deflected case Λ = 103, for varying reduced velocities u. The colorplots show the temporal RMS of Y (s, t),
normalized to 1 along the span. The particular values of the reduced velocity u corresponding to Fig. 2 are indicated
as well. (c) Comparison of the envelopes of the transverse deformation in the straight case (− − −) and deflected case
Λ = 103 (—–), for particular values of u corresponding to successive structural modes in the straight case.

reduced, and the amplitude of the vibrations accordingly mitigated.

Note that the discontinuities observed in the straight and low-deflection cases on Fig. 7 correspond

to mode switches. The disappearance of these jumps above u > 30 in the deflected case is consistent

with the continuous evolution of the spectrum and vibration shape reported in Figs. 3(b) and 4(b).

3.3. Influence of the reactive force

Finally, we discuss the influence of the large axial component of the free-stream when the structure

is highly reconfigured. Indeed, as the flow velocity increases, the inclination of the structure switches

from perpendicular to mostly parallel to the flow. As explained in Section 2.3, the level of deflection is

controlled by the Cauchy number CY ∝ u2/Λ. We focus here on a case where the deflection increases

more rapidly with the reduced velocity than before, that is to say a structure with a smaller aspect

ratio Λ = 10.
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Figure 5: Evolution of the linear frequencies of the coupled wake-structure system with the reduced velocity u, for (a)
the straight case and (b) the deflected case Λ = 103. The unconditionally unstable free wake spectrum is represented
by the grey area. The structural modes in blue are always stable. The coupled modes, displayed in black, are always
unstable. The most unstable mode for a given range of u is emphasized in bold.

At first, the amplitude of vibrations on Fig. 9(a) follows the same trend as in the previous case:

below CY < 1, the effect of bending is unnoticeable, while it results in a constant amplitude much

reduced compared to the straight case when bending is significant. The amplitude is even reduced

as low as 1/10−th of the straight case. But conversely to the previous case, the vibrations start

growing again slowly past u ∼ 20 and they even exceed the amplitude of the straight case for u & 33.5.

Above some critical threshold u ∼ 35, the amplitude finally grows continuously during the whole

time of the simulation. The VIVs are by nature a self-initiated and self-limited phenomenon. In the

model, the onset of the VIVs is ensured by the negative damping of the Van der Pol wake oscillator

when the amplitude of q is small, while the limitation of the amplitude is ensured by the nonlinear

saturation of that same term. This unbounded growth is therefore not related to the VIVs, but is

instead the consequence of the onset of a flutter instability caused by the destabilizing influence of the

hydrodynamic reactive force on the large portion of the cylinder that is aligned with the free-stream
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Figure 6: Spanwise distribution of power spectral density of (a) the structural motion Y and (b) the wake oscillator q,
for Λ = 103 and u = 49.0. The natural shedding frequency f0w(s) given by the Strouhal law is superimposed in (b) (—–).
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Figure 7: Comparison of (a) the RMS amplitude of vibration Yrms and (b) the total energy transfer E from the wake to
the structure, between the straight case (blue ◦) and the deflected case Λ = 103 (orange O) for varying reduced velocities
u. The particular values of the reduced velocity u corresponding to Fig. 2 are indicated as well.
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Figure 8: Comparison of the spanwise distributions of energy transfer from the wake to the structure between (a) the
straight case and (b) the deflected case Λ = 103, for varying reduced velocities u. The colorplots show the mean work of
the oscillating lift force < e > normalized by the total energy transfer E. The particular values of the reduced velocity
u corresponding to Fig. 2 are indicated as well.

(Eloy et al., 2007; Singh et al., 2012a).

This is confirmed by the results of the linear stability analysis presented on Fig. 9(b) and (c).

Lock-in with structural mode 1 occurs for the smallest reduced velocities (the coupled linear mode is

the most unstable as long as u < 2.30), when flow-induced bending is still small. When deflection

becomes significant (CY � 1), several structural modes are simultaneously excited by the wake on

Fig. 9(b). But in this case, one of the structural modes (mode 3) is progressively destabilized as u

increases. Above u & 20, the growth rate of this mode starts increasing on Fig. 9(c) until it finally

becomes unstable at the critical threshold uc = 34.9 (marked by the orange cross on Fig. 9(b) and (c)).

If the effect of the curvature on the structural modes has been proved negligible in Section 3.1, these

observations prove on the other hand that the influence of the reactive force may be very significant in

the vicinity of the critical threshold. The progressive increase of the vibration amplitude from u ∼ 20

until the actual onset of the instability uc = 34.9 is indeed concomitant with the destabilization of

structural mode 3. Hence, the larger vibration amplitudes observed in this range of reduced velocities

are most likely attributable to the growing influence of the gradually destabilizing structural mode 3.

The flow-induced bending thus has competing consequences on the amplitude of the vibrations. On

the one hand, we have shown in Section 3.2 that the shrinkage of the wake excitation zone considerably

mitigates the VIVs. We demonstrate here that on the other hand, the reorientation of the structure
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Figure 9: (a) Comparison of the RMS amplitude of vibration between the straight case (blue ◦) and the deflected case
Λ = 10 (yellow �). (b) and (c) Linear frequencies flin and growth rates σ of the coupled wake-structure system, for
Λ = 10. The unconditionally unstable free wake spectrum is represented by the grey area. The structural modes are in
blue when stable, and in bold orange when unstable. The orange cross marks the stability threshold for structural mode
3. The coupled mode, displayed in black, is always unstable. It is emphasized when it is the most unstable mode.

18



in the direction of the free-stream may amplify the vibrations because of the destabilizing effect of

the reactive force on the structural modes. This last effect becomes significant in the vicinity of the

structural stability threshold. As explained in Appendix D, the structural stability threshold in terms

of either the reduced velocity u or the Cauchy number CY is close to proportional to the aspect ratio

Λ. More slender structures may consequently reach much higher modes and larger deflections before

feeling the destabilizing influence of the reactive force.

4. Discussion and conclusion

In this paper, we have provided a qualitative analysis of the consequences of flow-induced bending

on the vortex-induced dynamics of slender flexible cylinders based on reduced order models. Overall,

the effects of the deflection may impact the features of the vibrations on two levels.

Firstly, the deformation of the cylinder changes the spanwise profile of the component of the free-

stream normal to the structure. We have shown that the increasing non-uniformity of the normal

flow leads to the spreading of the wake excitation spectrum and the localization of the energy transfer

from the wake to the structure, owing to the independence principle. These two effects result in a

strong mitigation of the amplitude of the vibrations coupled with the inhibition of single mode lock-in

replaced by the simultaneous excitation of multiple structural modes. These mechanisms were indeed

evidenced in several experimental and numerical studies about the VIVs of straight cylinders in shear

incoming flow, such as Vandiver (1993); Trim et al. (2005); Srinil (2011); Ge et al. (2011); Bourguet

et al. (2013) for instance. As any deformation of a straight cylinder in the direction of the free-

stream would induce shear in the normal flow, we expect that these conclusions are independent of

the initial structural configuration, boundary conditions, or the features of the in-plane deformation.

For instance, similar observations have been reported by Bourguet et al. (2015) for a pinned-pinned

cylinder initially inclined and slightly deformed by the flow. Similarly, the smaller amplitudes of

vibrations reported in Assi et al. (2014) and Seyed-Aghazadeh et al. (2015) for rigid curved cylinders

compared to straight ones is likely also the consequence of the difference in the normal flow profiles

between the two configurations. The loss of harvesting efficiency reported in Antoine et al. (2016)

when increasing the sag (and consequently the deformation) in the in-flow catenary configuration also

results from the induced shear in the normal flow.

Secondly, the deformation of the structure is responsible for a modification of the structural modes

resulting from both the flow-induced tension and the axial component of the flow through the reactive

forcing term.
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The effect of the tension is negligible in our case, but it should be noted that it may be of significant

importance in other situations. Indeed, the structural frequencies depend on the total stiffness of the

system, which can be decomposed in the natural bending stiffness EI specific to the structure, and

an additional tension-induced stiffness. In our case, the structural tension T = −1/2EIκ20 itself is the

physical consequence of the structural stiffness EI, and so it is understandable that the influence of

the tension-induced stiffness on the natural frequencies of the structure be small compared to that of

the natural stiffness that originated it. However, in the rather common case of tensioned cables, the

structural tension is either externally controlled or flow-induced but it is in any case independent of

the usually small bending stiffness. Its influence on the structural frequencies and thus on the vortex-

induced dynamics may then be totally dominant (see for instance the study of Antoine et al., 2016),

but this effect is out of the scope of the present work as the tension in this case is not related to the

flow-induced deformation of the structure.

The effect of the axial flow component may on the other hand be dramatic in the configuration

chosen in this article. When the deflection is very large, the axial flow may become the dominant

component, and the added damping and stiffness stemming from the reactive forcing on the inclined

portion of the cylinder may significantly alter the structural modes. Above some critical velocity

threshold, the cylinder might undergo some large-amplitude oscillations originating from a flutter

instability. It should be noted that only the transverse stability along the y−direction has been

considered in this article, but flutter may also be initiated in the xz−plane (see Leclercq et al., 2018).

However, we do not expect the in-plane destabilization to have consequences on the vortex-induced

dynamics below the stability threshold. Indeed, the geometrical linearization performed in Appendix

A.2 results in the decoupling of the small-amplitude dynamics in the two directions. There should

consequently be no interactions between the in-plane structural modes and the transverse vibrations

as long as the amplitude of vibration remains small Y/L � 1. On the other hand, we have shown

that the progressive destabilization of the transverse structural modes may enhance the amplitude

of the VIVs even in the stable domain. These conclusions may not easily be generalized to other

structural configurations as the stability of the structural modes is highly dependent on the boundary

conditions of the structure. The choice of the cantilever configuration in our work merely demonstrates

the potentially large consequences the axial flow may bear through the reactive force, and neglecting

the terms originating from it must only be done with great care. Nonetheless, we also found that

the magnification of the vibrations due to the reactive force becomes significant for higher modes of

vibrations and larger levels of deflection as the structure is made more slender. In this regard, it may

thus be considered as a secondary effect that sets a limit to the strong abatement of the vortex-induced

vibrations more commonly observed.
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We may thus conclude that the primary consequence of flow-induced deformations on the vortex-

induced dynamics of flexible cylinders is the hindrance of single mode lock-in, replaced by a multi-

frequency response of the structure, and the strong mitigation of the vibrations that rest on the

modification of the spanwise profile of the normal component of the free-stream. Neglecting the

in-line deformation when assessing the features of the VIVs should therefore generally result in an

overestimation of the severity of the vibrations.
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Appendix A Derivation of the governing equations

A.1 Details about the structural model

Following Audoly and Pomeau (2010), we define a local direct orthonormal frame ei=1,2,3 =

(n,w, τ ), materially attached to the structure and such that (n,w, τ )|s=0 = (ex, ey, ez). We also

define the Darboux vector Ω = κnn + κww + γτ where κn and κw are the material curvatures and

γ is the twist of the cylinder. By definition, the Darboux vector is such that ei
′ = Ω × ei. For

an Euler-Bernoulli beam of bending stiffness EI in both (n,w)−directions, torsional stiffness GJ ,

and subjected to an external force q and no external torque, the Kirchhoff equations governing the

dynamics of the structure read

mr̈ = F ′ + q , 0 = M ′ + τ × F (11)

with the internal force vector F = Tτ + Qn + Pw and the constitutive law for the internal bending

moment M = GJγτ + EIκnn + EIκww. The inextensibility condition reads r = τ , and for a

cantilever beam, the boundary conditions read r = 0 and r′ = ez at the clamped edge s = 0, and

F = M = 0 at the free end s = L. Using the second Kirchhoff law (11) and the boundary conditions

for the twist, we find that

γ = 0 , Q = −EIκ′w , P = EIκ′n (12)

so that finally the curvilinear derivatives of the material frame simplify in

τ ′ = κwn− κnw , n′ = −κwτ , w′ = κnτ (13)

and the curvilinear derivative of the internal force vector that appears on the right hand side of the

first Kirchhoff equation (11) reads
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F ′ =

(
T +

1

2
EI
(
κ2n + κ2w

))′
τ +

(
κwT − EIκ′′w

)
n−

(
κnT − EIκ′′n

)
w. (14)

The boundary conditions read r = τ = 0 at s = 0 and T = κn = κ′n = κw = κ′w = 0 at s = 1.

A.2 Linearization of the structural model

As explained in Section 2, we expand r(s, t) = r0(s) +Y (s, t)ey where the transverse displacement

Y is taken as a first order perturbation to the static shape r0. At the leading order the deformation

is contained exclusively in the xz−plane so κn is a first order perturbation as well and we also expand

κw = κ0 + δκ and the frame vectors

τ = τ0 + δτ , n = n0 + δn , w = ey + δw. (15)

Using (13), the inextensibility condition and all the expansions above mentioned, we obtain after some

calculations the expansions of the material frame

τ = τ0 + Y ′ey , n = n0 + αey , w = ey − Y ′τ0 − αn0 (16)

where the small angle α and the small curvature κn satisfy

α′ = −κ0Y ′ , κn = κ0α− Y ′′ (17)

and δκw = 0. Besides, expanding all the terms in (14), we obtain up to the linear order

F ′ =

(
T +

1

2
EIκ20

)′
τ0+

(
κ0T − EIκ′′0

)
n0+

((
T − EIκ20

)
Y ′′ − 3

2
EI
(
κ20
)′
Y ′ − EIY (4)

)
ey. (18)

A.3 Linearization of the fluid forces

The oscillating lift force pw defined in (3) is a linear order term by assumption. On the other

hand, the resistive and reactive forces (1),(2) both include a leading order and a linear order term.

First, the expansion of the relative velocity up to the linear order in Y gives Urel = Ẏ ey − Uex =

Ẏ ey−US0τ0−UC0n0 so that projection on the tangent direction and its orthogonal plane using (16)

yields

Uττ = −US0τ0 − US0Y
′ey , UNN = −UC0n0 +

(
Ẏ + US0Y

′
)
ey. (19)

Making use of that decomposition in (1) and (2), we obtain the linearized fluid loads

pam = −maU
2

(
S2
0 −

1

2
C2

0

)
κ0n0 −ma

(
Ÿ + 2US0Ẏ

′ + UC0κ0Y
′ + U2

([
S2
0 +

1

2
C2

0

]
Y ′
)′)

ey

(20)
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pd =
1

2
ρCDDU

2|C0|C0n0 −
1

2
ρCDDU |C0|

(
Ẏ + US0Y

′
)
ey. (21)

A.4 Governing equations

Finally, the linearized structural acceleration reads r̈ = Ÿ ey so that substitution of (18),(20),(21)

and (3) in the first Kirchhoff equation (11) provides, after projection along τ0 and n0, the leading

order system of equation

(
T +

1

2
EIκ20

)′
= 0 ,

(
κ0T − EIκ′′0

)
+

1

2
ρCDDU

2|C0|C0 −maU
2

(
S2
0 −

1

2
C2

0

)
κ0 = 0 (22)

with leading order boundary conditions θ0 = 0 at s = 0 and T = κ0 = κ′0 = 0 at s = L. The first

equation provides the expression of the tension T = −1/2EIκ20. Replacing T in the second equation

yields the static equilibrium equation (6) after non-dimensionalization. Similarly, projection of (11)

on ey yields

mŸ =

((
T − EIκ20

)
Y ′′ − 3

2
EI
(
κ20
)′
Y ′ − EIY (4)

)

−ma

(
Ÿ + 2US0Ẏ

′ + UC0κ0Y
′ + U2

([
S2
0 +

1

2
C2

0

]
Y ′
)′)

− 1

2
ρCDDU |C0|

(
Ẏ + US0Y

′
)

+
1

4
ρC0

LDU
2C2

0q (23)

which gives the VIV equation (7) after replacement of the tension and non-dimensionalization.

Appendix B Validity of the linearization

The model used throughout this study is based on the assumption that the only relevant source of

nonlinearity in the dynamics comes from the damping term in the Van der Pol wake oscillator. This

term is indeed sufficient to ensure the saturation of the vibration amplitude in the limit-cycle to a

magnitude consistent with physical observations. However, the linearization leading to the governing

equation for the structure (7) relies on the assumption that the transverse displacement Y is a small

perturbation to the leading order deformation r0(s), while the amplitude of the limit-cycle oscillations

due to VIVs is not infinitesimal. Thus, the adequacy of the linearization detailed in Appendix A for

modeling VIVs requires verification.

The linearization of the structural model performed in Appendix A.2 is purely geometrical and holds

as long as Y � L. The numerical results displayed on Fig. 7(a) and 9(a) indicate that the amplitude

of the transverse perturbation does not exceed Y . 0.5D in the case of VIVs. The geometrical
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linearization thus still holds in the limit-cycle for the slender structures considered in this work Λ =

L/D � 1.

On the other hand, the linearization of the fluid forces performed in Appendix A.3 relies on the

additional assumption that the transverse velocity is small compared to the free-stream Ẏ � U . The

frequency of the VIVs is approximately equal to f0w = StU/D as shown on Fig. 3. Assuming an

amplitude Y ∼ 0.5D and with St = 0.2, the order of magnitude of the transverse velocity scales as

Ẏ ∼ 2πf0wY ∼ 0.6U , which is at the mathematical limit of validity of the linearization. Nonetheless,

considering only the linear contribution of the fluid forces in the dynamic equation is consistent with

the leading-order nature of the models generally used in VIV studies involving wake oscillator models

(Skop and Luo, 2001; Facchinetti et al., 2004b; Mathelin and de Langre, 2005; Mukundan et al., 2009).

A more detailed discussion about the appropriateness of such an approximation can be found in Skop

and Balasubramanian (1997). If the nonlinearity in the Van der Pol wake oscillator is critical in the

limitation of the amplitude of the vibrations in the limit-cycle, we expect that the influence of other

nonlinearities should be less significant on a qualitative point of view. More details about the influence

of nonlinearities arising from the structure, the fluid forces, or the coupling between them can be found

in Srinil and Zanganeh (2012).

Finally, when the system becomes unstable to flutter, the amplitude of the oscillations becomes

too large for the geometrical linearization of Appendix A.2 to remain valid. In this case, nonlinear

coupling between the transverse and in-plane directions in the structural equation would eventually

lead to a complex large-amplitude 3D motion.

Appendix C Linear stability analysis

To perform the linear stability analysis of the coupled system (7)-(8), we neglect the nonlinear term

in Eq. (8) and assume a perturbation of the form (Y, q) (s, t) = (φ(s), ψ(s)) eiωt. The coupled system

(7)-(8) then yields

− u2ω2φ+ iω
βu2

StΛ
[2S0φ

′ + C0 (κ0 + cdΛ)φ]

+

([
βu2

S2
t Λ2

(
S2
0 +

1

2
C2

0

)
+

3

2
κ20

]
φ′
)′

+ cd
βu2

S2
t Λ

C0S0φ
′ + φ(4) − cl

βu2

S2
t

C2
0ψ = 0 (24)

−ω2 (ψ −Aφ)− iωε (2πC0)ψ + (2πC0)
2
ψ = 0 (25)

with boundary conditions φ = φ′ = 0 at s = 0 and φ′′ = φ′′′ = 0 at s = 1. We then solve the coupled

quadratic eigenvalue problem (24)-(25) at the discretization points with the MatLab function quadeig
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of Hammarling et al. (2013). The linear frequency flin and growth rate σ of the linear modes are then

related to the eigenvalues thus found by ω = 2πflin − iσ.

Appendix D Structural stability thresholds

The destabilization of the structural modes is due to the influence of the reactive force in the

structural equation (7), and the effect of the oscillatory lift force due to the wake is most likely

negligible in this regard. To compute the stability threshold for the structural modes only, we may

thus neglect the coupling between equations (7)-(8) and consider exclusively the left-hand side of (7).

Besides, the frequency of shedding f0w is irrelevant in this case and we rescale the dimensional time

with respect to the characteristic structural time Ts = L2
√

(m+ma)/EI instead of f0w. The governing

equation then reduces to

Ÿ + v
√
β
[
2S0Ẏ

′ + C0 (κ0 + cdΛ) Ẏ
]

+

([
v2
(
S2
0 +

1

2
C2

0

)
+

3

2
κ20

]
Y ′
)′

+ cdΛv
2C0S0Y

′ + Y (4) = 0 (26)

where the flutter-specific reduced velocity v = UL
√
ma/EI is related to the VIV-specific reduced

velocity used throughout this article through u = (St/
√
β)Λv, and to the Cauchy number through

CY = cdΛv
2. The stability thresholds found by linear stability analysis of Eq. (26) for β = 0.5 and

three different aspect ratios are provided in Table 2 in terms of the three parameters v, u and CY .

The threshold for Λ = 10 in terms of the VIV-specific reduced velocity uc = 35.8 is very close to

that found in Section 3.3 for the coupled system (7)-(8), uc = 34.9. This confirms the very limited

influence of the wake coupling on the structural stability. Besides, the thresholds expressed in term

of the flutter-specific reduced velocity v seems almost insensitive to the aspect ratio Λ. Consequently,

according to the scalings of the VIV-specific reduced velocity u ∝ Λv and Cauchy number CY ∝ Λv2

provided here, the stability thresholds in terms of both these parameters is close to proportional to

the aspect ratio Λ.

critical velocity vc critical velocity uc critical Cauchy number CY,c
Λ = 10 12.7 3.58× 101 2.04× 103

Λ = 102 16.1 4.55× 102 3.30× 104

Λ = 103 17.1 4.85× 103 3.74× 105

Table 2: Structural stability thresholds in terms of the flutter-specific reduced velocity v, VIV-specific reduced velocity
u, and Cauchy number CY .
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Titre : Déformations induites par l’écoulement et réduction d’efforts par la flexibilité

Mots clefs : Interactions fluide-structure, Reconfiguration, Réduction de trâınée, Efforts internes, Instabilité de
flottement, Vibrations induites par vortex

Résumé : La déflection statique d’une structure flexible exposée à un écoulement transverse permet classiquement

de réduire la trâınée à laquelle elle est soumise. Dans le domaine de la biomécanique, la déformation induite par

l’écoulement d’éléments végétaux flexibles conduisant à une réduction du chargement est désignée par le terme

‘reconfiguration’ pour souligner le caractère avantageux de ce processus adaptatif. Dans cette thèse, nous examinons

les mécanismes qui sous-tendent le processus de reconfiguration, dans des systèmes fluide-structure présentant une

variabilité spatiale, ou de la dynamique provenant au choix de l’instationnarité de l’écoulement de base, d’un couplage

fluide-structure conduisant à une instabilité, ou de vibrations induites par vortex. Nous montrons que l’aptitude

des structures flexibles à réduire l’intensité du chargement imposé par l’écoulement est préservée en présence de

non-uniformités ou de dynamique, à condition que le design de la structure soit tel que la trâınée résistive domine

les forces inertielles. Nous montrons de plus que la capacité à se déformer présente l’avantage supplémentaire de

permettre la réduction des vibrations induites par vortex. Notre travail indique également que des structures légères

et élancées sont les mieux adaptées pour supporter les chargements induits par l’écoulement en se reconfigurant,

et que l’efficacité de la réduction du chargement par reconfiguration élastique dépend faiblement de la distribution

spatiale des propriétés du système. Finalement, la réduction des chargements résulte toujours, indépendamment

du régime de reconfiguration, de la concentration de la déformation sur une longueur caractéristique inférieure à la

longueur réelle de la structure.

Title : Flow-induced deformations and stress reduction by flexibility

Keywords : Fluid-structure interactions, Reconfiguration, Drag reduction, Internal stress, Flutter instability,
Vortex-induced vibrations

Abstract : The static deflection of a flexible structure exposed to a transverse flow is classically known to reduce the

drag it has to withstand. In the field of biomechanics, the flow-induced deformation of flexible plant elements leading

to a reduction of the loads is referred to as ‘reconfiguration’, in order to highlight the alleged benefits of such adaptive

process. In this thesis, we investigate the mechanisms underpinning the reconfiguration in flow-structure systems

featuring some spatial variability, or some dynamics arising either from the unsteadiness of the free-stream, from

a flow-structure coupling leading to an instability, or from vortex-induced vibrations. We show that the ability of

flexible structures to reduce the magnitude of the flow-induced loads is preserved in the presence of non-uniformities

or dynamics, provided that the design of the structure is such that resistive drag dominates over inertial forces. We

also show that the ability to deform has the added benefit of reducing the magnitude of the vortex-induced vibrations.

Our work further indicates that light, slender structures are better suited to accommodate the flow-induced loads by

reconfiguring, and that the efficiency of the process of load reduction by elastic reconfiguration is weakly sensitive to

the spatial distribution of the system properties. Finally, regardless of the regime of reconfiguration, the reduction

of the load always results from the concentration of the deformation on a characteristic bending length smaller than

the actual length of the structure.
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