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dans une équipe formidable. Pendant la thèse, malgré ton emploi du temps extrêmement
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de la compagnie des interfaces que j’aurais aimé pouvoir côtoyer plus souvent : Joachim,
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Un grand merci à tous mes coéquipiers du Vincennes Volley Club qui m’ont aidé à me
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âge quand Nicolas me faisait croire qu’il me poussait en vélo alors qu’en fait il venait de
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Résumé substantiel

Les sous-marins, bien qu’existant depuis plus de 100 ans, n’ont que peu évolués dans leur
forme. Etant des véhicules non-profilés, et, aux vues de l’évolution de leur vitesse maximale,
on peut se demander s’ils parviendront à dépasser la vitesse de 100 m/s.

En effet, pour un objet non-profilé métrique, la puissance nécessaire pour atteindre cette
vitesse est d’environ 1 GW. Cependant, il est connu que l’utilisation de carénages autour
d’un corps non-profilé permet de diminuer la trainée qu’il subit par un facteur 10. Ce gain
substantiel est directement retranscrit sur la puissance de propulsion nécessaire pour se
déplacer à une vitesse donnée. Ce gain, appliqué à un sous-marin, permettrait d’envisager
qu’il se déplace à 100 m/s. Cette thèse a pour objectif de déterminer s’il est possible d’obtenir
de telles réductions de trainée grâce à la présence d’une bulle de gaz, éventuellement créée
par cavitation, dans le sillage d’un projectile non-profilé, tout en conservant sa stabilité.
Elle est séparée en trois parties qui sont brièvement résumées dans ce qui suit.

Dans une première partie, nous étudions la modification de trainée induite par l’injection
d’air dans le sillage d’une sphère, c’est-à-dire un projectile non-profilé modèle. Pour ce
faire, nous avons développé un canal hydraulique à veine verticale dont la vitesse maximale
d’écoulement est de 6 m/s. Le projectile étudié est fixé à des capteurs de force et de l’air
peut être injecté à débit variable dans son sillage. Dès que cette injection d’air se fait à
un débit suffisant, nous observons qu’une grande bulle d’air s’accroche au niveau du plan
équatorial de la sphère. Nous démontrons que l’extension spatiale de cette bulle est limitée
par la croissance de perturbations à l’interface entre l’air et l’eau. Ainsi, sa longueur est
uniquement déterminée par un paramètre adimensionnel reliant la vitesse caractéristique
de l’air dans la bulle à celle de l’écoulement de l’eau. La mesure de la trainée de la sphère
montre que l’injection d’air n’induit pas nécessairement une réduction de trainée. En effet,
dans le régime super-critique, nous montrons qu’une faible injection d’air peut induire une
augmentation, jusqu’à un facteur 5, de la trainée de la sphère. Plus généralement, l’injection
d’air entraine la suppression de la crise de trainée.

Dans une deuxième partie, nous évaluons la possibilité de faciliter l’apparition de cette
bulle grâce à la cavitation. Ainsi, nous étudions la croissance de bulles de cavitation dans
un fluide accéléré. Nous utilisons une tour d’impact afin de générer des accélérations
contrôlées et reproductibles sur des réservoirs confinés. Suite à ces accélérations, nous
mesurons une dépression dans la zone opposée au point d’impact et nous montrons qu’elle
est similaire à une pression hydrostatique où l’accélération maximale du réservoir remplace
la constance gravitationnelle. De plus, nous montrons qu’il est nécessaire de relâcher la
condition d’incompressibilité du contenant, par exemple en équipant le réservoir d’une paroi
flexible, afin d’observer la croissance des bulles de cavitation. Nous démontrons que la taille
maximale atteinte par une bulle de cavitio,, quantifiant l’énergie qu’elle a emmagasiné, est
déterminée par l’accélération maximale et le temps caractéristique de l’impact. Finalement,
le dispositif peut être adapté afin de mieux comprendre l’origine des dommages lors d’une
commotion cérébrale. Nous démontrons que le potentiel de destruction de bulles de cavita-
tion se développant dans la bôıte crânienne que nous prédisons est corrélé aux observations
heuristiques faites lors de commotions cérébrales résultant d’un choc frontal.

5



Enfin, dans une troisième partie, nous nous intéressons à la stabilité de la trajectoire des
projectiles résultant de la croissance d’une bulle de gaz dans le sillage d’un objet non-profilé.
Nous les modélisons par des projectiles profilés avec une répartition de masse inhomogène.
Après l’impact de tels projectiles à la surface d’un bain d’eau, nous observons que leur
trajectoire n’est pas nécessairement rectiligne. En effet, en fonction de la vitesse d’impact
du projectile et de la position de son centre de gravité, trois types de trajectoire peuvent
être observées. L’apparition de trajectoires courbes résulte d’un équilibre entre la force de
portance (déstabilisatrice) et la poussée d’Archimède (stabilisatrice). Après avoir caractérisé
les projectiles utilisés en soufflerie, nous démontrons que leur trajectoire peut être prédite
en résolvant les équations quasi-statiques du mouvement.
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0.1. Can a bluff body go up to 100 m/s underwater?

Intro

Figure 1: Drawing of the front page of Red Rackham’s Treasure, by Hergé 1944.

The publication of Red Rackham’s Treasure in 1944 followed the early development of sub-
marines in the navy, such that, at this time, the invention of Professor Cuthbert Calculus
was still uncanny to most of the readers. Since then, even though submarines have com-
pletely changed (size, shape, propulsion technique...), their maximum speed is still below
100 m/s. Which leaves the following question open: Can a bluff body go up to 100 m/s
underwater?

0.1 Can a bluff body go up to 100 m/s underwater?

0.1.1 Evaluation of the required power

When a body travels underwater at a velocity U , it experiences a drag force D resisting to
its motion. This force is generally expressed as follows [1]:

D =
1

2
ρSCDU

2 (1)

where ρ denotes the density of water, S the cross-stream surface of the body and CD the
drag coefficient. The drag coefficient depends on both the geometry of the object considered
and the Reynolds number Re = UL/ν, which compares the inertial effects to the viscous
effects in the flow [1]. In this expression, L is the characteristic size of the body and ν the
kinematic viscosity of the fluid.
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Figure 2: Experimental measurements of the drag coefficient CD of a sphere of diameter L
as a function of the Reynolds number Re = UL/ν. In this expression,U is the flow velocity
and ν the kinematic viscosity of the fluid. Five characteristics regimes are identified in this
curve. Figure reproduced from [1].

The evolution of the drag coefficient with the Reynolds number is plotted, for a sphere, in
figure 2. The curve can be separated in five characteristic regimes. In the first regime, below
Re ≈ 1, drag is dominated by viscous effects and we have CD ∝ Re−1. Between Re ≈ 1
and Re ≈ 103, i.e. in the second regime, drag is dominated by the viscous effects in the
boundary layer and we have CD ∝ Re−1/2. Between Re ≈ 103 and Re ≈ 105 and the drag
is dominated by inertial effects, CD is constant and has a value around 0.5. This regime (3)
bounds sub-critical domain. Indeed, around Re ≈ 3× 105, the drag coefficient drops to 0.1:
this is called the drag crisis and is identified in figure 2 as the fourth characteristic regime.
After that, the drag slowly increases up to ∼ 0.2 at Re = 107: this is the beginning of the
supercritical domain (5).

Going back to our initial question, Professor Calculus’ submarine is metric (i.e. L ∼ 1
m) and going at 100 m/s, the corresponding Reynolds number of the water flow around it
Re ∼ 108. In this regime, for a bluff body, CD ∼ 1, and the power P necessary to reach this
velocity is:

P = DU =
1

2
ρSCDU

3 ∼ 109 W (2)

This power is on the order of the one produced by a nuclear power plant (the expected
power of the ”EPR Flamanville” is 1.7 GW) and, today, it appears ridiculous to think that
we could design a submarine with such propulsion power. However, this would technically
become feasible if we managed to reduce the power necessary, and hence, the drag coefficient
of the submarine, by a factor 100.

0.1.2 Origins of the drag

Let us remind that the drag of a projectile travelling underwater at high Reynolds number,
far from the free surface, has two components, namely the skin friction and the pressure
drag. Both components rely on the viscous properties of the the fluid as an inviscid flow at
constant velocity does not generate any drag.

Skin friction originates from the friction between the fluid and the surface of the object:
in other words, through viscous effects and the non-slip condition, the fluid entrains the
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Intro

object. As a consequence, the skin friction mainly depends on the flow in the boundary
layers, i.e. the regions near the surface of the object, where viscosity dominates. Locally,
the contribution of the skin friction to a unit surface δS is δDF = ηδS ∂u∂y , where u is the
tangential component of flow velocity, ∂u/∂y its gradient normal to the surface and η the
dynamical viscosity of the fluid. From this expression, we deduce that this component of
the drag depends on the total wetted area of the projectile.

Pressure drag arises from the pressure difference between the upstream and downstream
faces of the projectile. As a consequence, it is strongly correlated to the streamwise asym-
metry of the flow: for instance to the development of structures in the wake of the projectile.
This component of the drag depends on the frontal area of the projectile.

104 105 106 107

100

Thom (1929)
Achenbach (1968)

1 %

Figure 3: Contribution of the skin friction to the total drag (CF /CD) as a function of the
Reynolds number. Figure reproduced from [2]. Dot are experimental data corrected to
account for the finite width of the tunnel. Solid line is a semi-theoretical prediction in the
sub-critical regime drawn from [3].

The relative contribution of the skin friction and the pressure drag to the drag coefficient are
respectively written CF and CP , such that CD = CF +CP . Due to the physical phenomena
at play, the relative contribution of the two drags depends on the Reynolds number of the
flow. At low Reynolds numbers (Re < 1), the flow is dominated by viscous effects and
the pressure drag is negligible CD ∼ CF . For Reynolds numbers between 104 and 107 the
contribution of the skin friction to the total drag CF /CD is plotted in figure 3, reproduced
from [2]. We observe that, in that range of Reynolds number, the skin friction typically
represent 1 % of the total drag. More precisely, the contribution of the skin drag is slightly
decreasing: it passes from 3 % at Re ∼ 104 to ∼ 0.3 % at Re ∼ 5× 106.

This suggests that in the regime of interest (Re > 105), skin friction is negligible and the
efforts to reduce the drag should be focused on the pressure drag.

0.1.3 Streamlining a projectile

A technique to reduce the pressure drag consists in using fairing around a bluff body to
make it streamlined. This effect is particularly used in mechanical sports (Formula 1, Moto
GP) or bicycle: The effect of fairings is striking when comparing the velocity record of
recumbent bike. On the one hand, without fairing, the maximum velocity is around 74
km/h, outdoor on a flat 200 m section. The recumbent bike used for this record is similar
to the one used by Aurélien Bonneteau to break the indoor hour record in 2012 (56.7 km)
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shown in figure 4(a). On the other hand, on a fully faired bike, shown in figure 4(b), Todd
Reichert reached 144.2 km/h over an outdoor section of 200 m. Assuming that the power

(a) (b)

Figure 4: (a) Picture of Aurélien Bonneteau for his attempt to beat the hour record on
track in 2012. He managed to bike 56.7 km in an hour. The peak record for a 200 m section
on a similar bike is 74 km/h. (b) Picture of the fully faired bike used to break the record
of velocity on a 200 m section in 2016. The velocity reached was 144.2 km/h on a slightly
downhill section (−0.6 % slope).

generated by the two cyclists is equivalent, we compute the drag coefficient gain of adding
fairings using equation (2):

(SCD)streamlined
SCD

=

(
Ustreamlined

U

)3

≈ 13.5 % (3)

Although it does not completely suppress the pressure drag (this would correspond to
(SCD)streamlined

SCD
∼ 3 %), adding fairing on a bluff body generate a important drag reduc-

tion. The gain on the drag coefficient is greater as the frontal surface of the bike has been
slightly increased by the presence of fairing. The history of fairing in human powered vehicles
is thoroughly discussed in [4].

The gain on the drag coefficient can be precisely evaluated from wind tunnel measurements.
Figure 5 presents the drag coefficient of a streamlined body of revolution in the range of
Reynolds number between 104 to 108. In this range, the drag coefficient is mostly decreasing:
it passes from 0.3 atRe = 104 to 0.03 atRe = 108. The minimum value of the drag coefficient
(0.02) is reached in the drag crisis, for Re ∼ 2× 106. This corresponds to a drag coefficient
of ∼ 10 % when compared to the one of a sphere.

Both observations suggest that streamlining a projectile leads to drag reduction up to a
factor 10. In this thesis, we investigate cavitation as a way of streamlining a projectile
travelling underwater.
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Figure 5: Drag coefficient CD of a streamlined body of revolution as a function of the
Reynolds number Re = UL/ν. Figure reproduced from [1]. Solid lines indicate the trends
for sub and super critical regimes. Dots are experimental data. The profile of the projectile
used is the one of the R101 airship and is sketched in the inset. Drag coefficient is based on
frontal area.

0.2 Cavitation onset

0.2.1 Pressure distribution around a cylinder

When a projectile travels underwater, the pressure distribution in the fluid is modified. At
high Reynolds number, the pressure field around a two-dimensional projectile can easily be
evaluated assuming that the flow is potential.

Let us consider a cylinder of radius R in a cross flow of velocity
−→
U , far from the projectile.

This situation is sketched in figure 6(a). For a potential flow, writing −→u (r, θ) the streamwise
velocity and −→v (r, θ) the cross-stream velocity, we have:





u(r, θ) = U

(
1− cos(2θ)

(
R

r

)2
)

v(r, θ) = − U sin(2θ)

(
R

r

)2
(4)

Using Bernoulli, we express the pressure at the boundary of the cylinder:

ps = p∞ +
1

2
ρU2

(
1− 4 sin2 θ

)
(5)

This relation is plotted in figure 6(b) and compared with measurements taken from [2]
for Reynolds numbers ranging from 105 to 3.6 × 106. Potential theory matches well the
experimental data up to Φ = 50◦. Beyond this value, for all Reynolds the pressure is
found to reach a plateau, such that Cp = (ps − p∞)/(12ρU

2) lies between -1.25 and -0.4.
The discrepancies between potential theory and experiments comes from the fact that the
boundary layer is neglected, in particular the flow separation it induces and the wake it
creates.
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Figure 6: (a) Sketch of a cylinder in a cross-flow of velocity U . The pressure far from
the cylinder is p∞. The cylinder has a radius R and as a pressure ps at its surface. The
streamwise velocity of the fluid is −→u (r, θ) and the cross-stream velocity is written −→v (r, θ).
(b) Pressure coefficient Cp = (ps− p∞)/(12ρU

2) as a function of the position on the cylinder
surface Φ, where U2 = u2 + v2. Potential theory (equation (5)) is drawn in solid black line.
Experimental data are taken from [2] and plotted in dashed line. Reynolds number is varied
between 105 and 3.6× 106.

In all the cases, we observe that both experimentally and theoretically, we expect a pressure
drop around the projectile. The physics of which lies in the fact that the space occupied by
the object reduces the path of the fluid: in the incompressible limit, this constraint induces
an increase of velocity and thus a decrease of the pressure. The magnitude of this pressure
drop grows with the velocity of the flow. Theoretically, the minimum pressure is reached at
the equatorial plane of the cylinder and has a value:

pmins = p∞ −
3

2
ρU2 (6)

0.2.2 Cavitation

We deduce from equation (6) that it exists a velocity Ucav for which the pressure reaches
the vapor pressure of water. The vapor pressure Pvap(T ) is defined as the pressure at which
the water is in equilibrium with its own vapor for a fixed temperature T [5]. The phase
diagram of water is sketched in figure 7(a). We note that the vapor pressure of water grows
with T . At T = 25◦C, the vapor pressure of water is 2.3× 103 Pa. At atmospheric pressure
(P = 1013 hPa), the vapor pressure is reached at T = 100◦C.

Excepting metastable cases, when P = Pvap, a phase transition is observed. The transition
from liquid to gas at constant pressure (increasing T ), is easily observed in cooking pot and
is called ebullition. Conversely, the transition from liquid to gas at constant temperature
(decreasing P ), is less common and referred as cavitation.

For water flowing around a cylinder, this transition is expected for:

p∞ −
3

2
ρU2

cav = Pvap ⇒ Ucav =

√
2

3

p∞ − Pvap
ρ

≈ 8.1 m/s (7)
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Figure 7: (a) Phase diagram of water as a function of its temperature T and its pressure
P . The vapor pressure of water is written Pvap. (b) Picture of the cavitation trail observed
behind a ship propeller at the Cavitation Research Laboratory of the Australian Maritime
College (http://www.amc.edu.au/facilities/cavitation).

Cavitation is thus expected roughly above 10 m/s. This velocity is typically reached at
the tip of the blades of ship propellers where it is known that cavitation is observed as
illustrated by the picture of figure 7(b), taken from the Cavitation Research Laboratory
of the Australian Maritime College website. In this picture, we observe that bubbles are
created on the low pressure side of the boat propeller blades. An helicoidal wake of bubbles
is then created by the advection of bubbles in the wake of the blades.

According to the results obtained for a cylinder in a potential flow (equation (5)), the
dimensionless parameter that governs the pressure at the boundary of an object travelling
underwater, and hence the creation of vapor bubbles in a flow [6, 7], called the cavitation
number σ, writes:

σ =
p∞ − Pvap

1
2ρU

2
(8)

0.3 Supercavitation

0.3.1 Entry in the regime

From the definition of the cavitation number (8), we expect cavitation bubble to nucleate in
a flow wherever σ ∼ 1. For a two dimensional wedge, the influence of the cavitation number
on the phase transition is shown in figure 8 adapted from [8]. For σ = 1.4, we indeed observe
a trail of bubbles created in the near wake of the cavitator. These bubbles then display a
characteristic wake pattern.

As the cavitation number is decreased, the bubbles invade a larger region of the wake of
the wedge. For σ below 1.23, a large bubble starts pinning at the rim of the wedge. The
characteristic streamwise size of this bubble grows when σ is reduced. Above σ = 0.78 the
interface of the bubble is largely turbulent and unstationnary. However, for σ = 0.69 the
instabilities at the interface of the large bubble have almost disappeared. This regime, in
which a large cavitation bubble is pinned on the cavitator is called supercavitation.
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Figure 8: Picture of a 45◦ angle wedge and its wake in a cavitation tunnel for various
cavitation numbers. Figure adapted from [8]. Cavitation number is σ = (p∞−Pvap)/1/2ρU2,
where p∞ is the pressure far from the projectile, Pvap the vapor pressure of water, ρ its
density and U the velocity of the flow. The base of the cavitator is 2 cm. The shutter speed
is below 1/50000 s.

0.3.2 Drag reduction

One major advantage of this cavitation regime is that the wake of the projectile is modified.
At high Reynolds number, for a bluff body, the main component of the drag arises from the
pressure difference between the upstream and downstream surfaces of the projectile. This
pressure difference as well as the structures in the wake come from the symmetry breaking
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due to the boundary layer separation [1].

Since the cavitation bubble tends to ”streamline” the solid that moves through water, the
main consequence of the modification of the wake of the projectile in the supercavitation
regime is a reduction of its drag. Numerous studies have focused on the determination of
the drag reduction via the computation of the stationnary shape of the bubble. All those
studies are thoroughly reviewed in [6, 7]. However, it is interesting to note that all theoretical
studies assume a potential flow, a constant pressure in the gas and they neglect evaporation.
The closure condition of the cavity is widely discussed and the different models includes:
releasing the free-surface dynamical conditions at a fixed point (open wake model) [9], the
use of an ”image object” onto which the clavity closes (Riabouchinsky model) [10], having
a jet flowing back into the cavity (re-entrant jet model) [11].

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.2

0.4

0.6

0.8

1

1.2

1.4

(o) (i)U d

Figure 9: Drag coefficient of a 30◦ wedge as a function of the cavitation number σ. Figure
adapted from [12]. Experimental data are corrected to account for the finite width of the test
section. Solid line is the Riabouchinsky model [10]. Inset: sketched of the Riabouchinsky
model. The closing of the cavity is imposed on a image (i) of the wedge placed at a distance
d downstream the object (o).

Figure 9 shows the drag of a 30◦ wedge as a function of the cavitation number σ and compare
it with the Riabouchinsky model. In this model, the distance d between the downstream
image (i) onto the cavity closes and the object (o) is a free parameter which grows with σ
as sketched in the inset. The rest of the figure is adapted from [12]. We observe that the
drag coefficient is reduced when σ is decreased: it passes from ∼ 1.2 for σ = 1.4 to ∼ 0.5
for σ = 0.4. In other words, drag is reduced by the elongation of the cavitation bubble. CD
tends to 0.3 when the cavitation number goes to 0. Riabouchinsky model describes well the
experimental data, which are corrected to account for the finite width of the test-section.
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0.4 Statement of the problem and approach

This thesis is dedicated to the experimental and theorical study of cavitation and supercav-
itation. It is decomposed in three different parts:

• In Part I, we focus on the cavitation onset and the early growth of a cavitation bubble.
To that end, cavitation is triggered by an hydrostatic-like pressure drop following the
acceleration of a closed container. We will study both the influence of the confinement
on the vapor production and the dependence of the bubble dynamic on the time
evolution of the acceleration. This unsteady induction of cavitation can be used to
facilitate the entry in the supercavitation regime, model the early stages of the launch
of torpedoes or missiles or to better understand the implication of cavitation in brain
concussion. This last application is the main point of interest of Part I.

• In Part II, we present the experimental set-up developed to determine the hydro-
dynamic properties of a supercavitating sphere. We create a system analogous to
supercavitation by replacing the phase transition of water by a controlled air injection
in the wake of the sphere. We concentrate on the influence of the bubble on the drag
crisis of the sphere.

• In Part III, we consider that a supercavitating is analogous to a streamlined projectile
with inhomogeneous mass distribution. We focus on determining the condition under
which, such projectiles, follow straight trajectories following their impact on water.
This work can be apply to predict the trajectory stability of projectile such has missiles
or torpedoes as well as to understand the way birds like gannet dive.
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CAVITATION ONSET AND
BUBBLE GROWTH INDUCED
BY ACCELERATION UNDER

FREE AND CONFINED
CONDITIONS
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I

Decreasing the pressure of a liquid below its vapor pressure can trigger a phase transition
through the nucleation of gas bubbles. This phenomenon is called cavitation. We wish to
characterise the early stage of the growth of cavitation bubbles developing near a projectile
travelling underwater. However, in such a system, the velocities required to reach a pressure
drop high enough to observe cavitation are challenging to obtain in a simple experimental set-
up. In this part, we study the dynamic of a bubble growing in a low pressure region of a fluid
created through the acceleration of its container. In a first chapter, we quickly review the
state of the art of cavitation in accelerated container. We then present our experimental set-
up and show how the confinement of cavitation bubble change their threshold of apparition.
Finally, the third chapter focus on the study on bubble dynamics in accelerated container.
Through this part, we show that this framework allows us to investigate whether cavitation
can be the cause of the damages observed in the brain following a shock on the head, the
so-called brain concussion.
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Fluid container accelerated when hit by a hammer: Cavitation bubbles grow in the region
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Chapter 1. Short review on cavitation onset and bubble dynamics

I

1.1 Cavitation in accelerated container

A simple method to accelerate a container filled with fluid is to impact it with, for example, a
mallet. This situation is sketched in figure 1.1(a), taken from [13]: a reservoir partially filled
with a height h of fluid initially at rest at atmospheric pressure pr is hit by a hammer. The
corresponding maximum acceleration a of the container can easily reach 900 g. Intuitively,
we can predict that the shock will induce a pressure modification in the container: as the
reservoir is impacted, it instantaneously moves downward while water, due to inertia, will
only move after a delay, resulting in a reduction of the pressure in the region opposite of
impact.

mallet
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g

accelerometer

pb

pr

pb rigid floor

pr

pb

h
g

pr

pb

t=t0 t=t1 t=t0 t=t1

A B

Fig. 2. Free body diagram of the fluid column: mean liquid column height (h), reference pressure (pr ), pressure at the bottom of the container (pb), and
gravitational acceleration (g). Experiment done at USU/BYU facilities (A), where the impact is imparted by a rubber mallet. The TUAT experiment uses a glass
test tube with a rounded bottom, where the impact is imparted by collision with the ground (B). The small difference traveled between t0 and t1 is shown
as dashed lines to emphasize the relative acceleration (experimental evidence shown in Fig. S2 and Movie S4).

Experimental Setup

More details about the experiments can be found in Materials and

Methods. Two separate groups independently conducted the fol-
lowing experiments with different setups and measurement tech-
niques to validate Eq. 4 or 5.

pr = 101.3 kPa, D = 8.0 mm,   Silicone oil, TUAT
pr = 101.3 kPa, D = 14.2 mm, Silicone oil, TUAT
pr = 101.3 kPa, D = 27.2 mm, Silicone oil, TUAT

pr = 86.9 kPa,   D = 55.0 mm, Water,  USU/BYU

pr = 19.0 kPa,   D = 55.0 mm, Water,  USU/BYU
pr = 85.7 kPa,   D = 55.0 mm, Water,  USU/BYU

pr = 101.3 kPa, D = 14.2 mm, Ethanol,       TUAT 

Ca =1No Cavitation 

Cavitation

A

B C

Fig. 3. Phase diagram for the cavitation onset by acceleration in the {(pr � pv )/⇢gh, a/g} plane (A) for various fluid types, container diameters (D),
pressures (pr ), and fluid depths (h) as marked in the legend. Open markers denote cavitation detection and filled markers denote absence of cavitation
detection. Lines represent theoretical separation between cavity formation (shaded in red) and none (shaded in green) based on Ca = 1 in Eq. 5. Changing
the stiffness of the container and a nonfluid medium was also investigated as shown in Figs. S3 and S4 and Table S2. Close-up view (B) of concentrated data
points in the region where the reference pressure was varied (red-squared region in A). Close-up view (C) of collapsed data points in the region where the
fluid type was varied (blue-squared region in A).

The group from Utah State University and Brigham Young
University (USU/BYU) used a cylindrical cavitation tube built
from transparent acrylic (1, 20). The cavitation tube was fitted
with a pressure tap to control internal pressure and an accelero-
meter with a maximum measurable acceleration of 1,000 g

8472 | www.pnas.org/cgi/doi/10.1073/pnas.1702502114 Pan et al.
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The group from Utah State University and Brigham Young
University (USU/BYU) used a cylindrical cavitation tube built
from transparent acrylic (1, 20). The cavitation tube was fitted
with a pressure tap to control internal pressure and an accelero-
meter with a maximum measurable acceleration of 1,000 g
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Figure 1.1: (a) Sketch of a simple set-up used to study cavitation in accelerated containers
taken from [13]. A reservoir partially filled with a height h of fluid initially at rest at
atmospheric pressure pr is vertically hit by a hammer. The acceleration of the container is
measured with an accelerometer located at the bottom of the reservoir. The experiment is
filmed with a fast-camera to check for the potential apparition of cavitation bubbles. (b)
Outcome of the experiment described in (a) in the diagram (a/g,(pr − Pvap)/ρgh) adapted
from [13]. g denotes the gravitational constant, Pvap the vapor pressure of the fluid and ρ
its density. The solid black line represents the curve for which the cavitation number Ca is
equal to 1, where Ca = (pr−Pvap)/ρah. Open symbols are tries for which cavitation events
have been recorded and conversely for filled symbols. Shape and color of the symbols are
for different fluids (water, silicon oil, ethanol) and size of containers. Height of the fluid is
varied from 1 to 200 mm.

However, the cavitation number σ, previously introduced, cannot account for this inertial
pressure drop and hence, cannot be the relevant dimensionless number in this problem. To
that end, a new cavitation number Ca was introduced by Pan & al. [13]:

Ca =
pr − Pvap
ρah

(1.1)

where Pvap is the vapor pressure of the fluid and ρ its density. This formula suggests that
the pressure drop necessary for cavitation bubble to grow (pr − Pvap) is an hydrostatic-
like pressure (ρah) where gravity g has been replaced by the characteristic acceleration a
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of the shock. The experiment described before can then be performed while measuring
the acceleration a and filming the container to check for cavitation bubbles. The figure
1.1(b), reproduced from [13], displays the results in the diagram (a/g, (pr−Pvap)/ρgh). The
dimensionless acceleration of the shock a/g is extensively varied from 20 to 800 (changing the
intensity of the hit) and the parameter (pr−Pvap)/ρgh is varied from ∼ 10 to 1000 (changing
the fluid and its height h). Over the whole range of parameters, most of the experiments
in which cavitation events have been recorded (open symbols) lies below the curve Ca and
reciprocally for tries where no cavitation bubbles were detected (filled symbols).

This cavitation number and the experimental results suggest that the pressure drop in an
accelerated column of fluid scales as ρah. However, this does not tell us how this relation is
modified when the container does not have a free surface and is fully filled. Additionally, the
study of the dynamic of the cavitation bubble in such a set-up is left open. These questions
are the main interests of our work, and before addressing them, let us briefly review the
literature on bubble dynamic.

1.2 Bubble growth

To study the dynamic of the cavitation bubble, let us consider the situation sketched in
figure 1.2(a): a spherical gas bubble of radius R is immersed in a fluid of varying pressure
P (t), far from the bubble. In this section, we derive the Rayleigh-Plesset equation which
governs the dynamic of R. For greater details, the reader is referred to the original derivation
by Rayleigh [14] and Plesset [15] or to the enlightened explanations gathered in [16, 7, 6].
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Figure 1.2: (a) Schematic of a spherical bubble in a spherically symmetric environment. The
bubble has a radius R(t) and an inner pressure pb. The particle of fluid at distance r from
the center of the bubble has a purely radial velocity v(r, t). The pressure of the fluid far
from the bubble is P . (b) Time evolution of the radius R of two bubbles as they go through
a varying pressure field P . Figure reproduced from [15]. Blue lines correspond to the
theoretical evolution of R computed with equation (1.9) for the experimentally measured
pressure evolution drawn in red line. The corresponding experimental measurements are
displayed in blue squares and dots.

For a flow with spherical symmetry, the incompressibility of the fluid imposes div(−→v ) = 0
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which yields, assuming that there is no mass transport through the bubble interface:

v =
R2Ṙ

r2
(1.2)

The fluid flow is governed by the Navier-Stokes equation which, when projected along the
radial direction, reads as follows:

ρ
∂v

∂t
+ ρv

∂v

∂r
= −∂p

∂r
+ η

(
1

r

∂2(rv)

∂r2
− 2v

r2

)
(1.3)

Where η denotes the dynamic viscosity of the outer fluid and p(r, t) its pressure at a distance
r from the center of the bubble. Substituting v with its expression (1.2), we find that the
viscous term is strictly null and we obtain:

ρ
R2R̈+ 2RṘ2

r2
− ρ2R4Ṙ2

r5
= −∂p

∂r
(1.4)

Integrating between r = R(t) and r =∞ where p(∞) = P (t) we obtain:

ρ
R2R̈+ 2RṘ2

r
− ρR

4Ṙ2

2r4
= p(R)− P (t) (1.5)

The pressure in the outer fluid at the interface of the bubble p(R) can further be evaluated
through the continuity of the radial stress across the bubble interface:

p(R) = pb −
4ηṘ

R
− 2γ

R
(1.6)

where pb(R) is the pressure of the gaz inside the bubble and γ the surface tension between the
liquid and the gas. Substituting this expression in equation (1.5) yields the Rayleigh-Plesset
equation:

RR̈+
3

2
Ṙ2 +

4νṘ

R
+

2γ

ρR
=
pb − P∞

ρ
(1.7)

pb(R) can itself be expressed assuming that the gas transformation in the bubble is isother-
mal and that the bubble is initially at rest with the surrounding liquid of pressure P0:

pb(R) =

(
P0 +

2γ

R0

)(
R0

R

)3

(1.8)

with R0 being the initial radius of the bubble and Pvap the vapor pressure of water. Injecting
this relation in the Rayleigh-Plesset equation gives:

RR̈+
3

2
Ṙ2 +

4νṘ

R
+

2γ

ρR
=
Pvap + (P0 + 2γ

R0
)
(
R0
R

)3 − P (t)

ρ
(1.9)

This equation was first confronted to experimental data by Plesset in 1949 [15]. The cavita-
tion bubble was created in a cavitation tunnel and then travelled through a spatially varying
pressure field, resulting in a time evolution of its radius. This evolution could be followed
using a fast-camera. Figure 1.2(b), reproduces two of the time evolution of the radius of
the bubble from [15]. This suggests that as the pressure difference is negative, the bubble
grows. When the outer pressure exceeds the inner pressure, the bubble keeps growing with
inertia, but then rapidly collapses.
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1.3 Bubble collapse and cavitation damage

Cavitation has been thoroughly studied for boat propeller applications. Indeed, a propeller
or the rotor of a hydraulic pump is composed of streamlined blades with a concave and
a convex side. When rotating towards the concave side, the blades produce a pressure
difference between their two sides. In particular, a low pressure zone will appear on the
convex side, called the suction side. As shown before, when the rotor velocity is high
enough, the pressure on the suction side can go below the vapor pressure of water, and
hence, trigger the nucleation of cavitation bubble. This phenomenon has been shown to have
two consequences on the propeller operation. First, it reduces its efficiency and changes the
optimal shape of a propeller [17]. Second, it erodes the blades and dramatically shortens its
life expectancy [18, 19, 20].

M. Dular et al. / Wear 257 (2004) 1176–1184 1179

Fig. 6. Sequence of top view images for ALE25 hydrofoil. The flow is from
left to the right. Significant dynamic cavitation behaviour can be seen near
the front wall, while the cavitation at the rear wall remains nearly steady.

(fluctuations of cavitation region with separation of the cav-
itation cloud) while cavitation at the rear wall (where the
hydrofoil length is the greatest) remains nearly steady (with
no cloud separation).

4. Cavitation erosion tests

Due to the problems with reproducibility of the galvanic
copper coating method, only a small part of the surface was
investigated for the cavitation erosion in previous investiga-
tions. This was done using pure copper specimens inserted
into the hydrofoil [10]. To get the information about the ero-
sion on the whole surface of the hydrofoil, a polished copper
foil, 0.2-mm thick, was fixed to its surface using adhesive
film. The hardness of the copper coating was approximately
40HV. A sufficient number of pits was obtained after 1 h ex-
posure to the cavitating flow (the exposure time was constant
for all operating conditions).
Pits have a diameter of magnitude order 10−5 m, and can

be distinguished only by sufficient magnification. Images of
the pitted surface were acquired using an Olympus BX-40
microscope and a CCD camera (Fig. 7).
The enlargement scale was 50:1 leading to the resolution

of 1.95!m per pixel. 925 images (one image embraces an
area of 1.2mm× 1.5mmbig) of the pitted surfacewere taken
for each operating point (the part of the surface evaluated by
images represents approximately 48% of the copper coated
hydrofoil surface).

Fig. 7. Camera, microscope, light source and hydrofoil arrangement for
surface image acquisition. About 925 images of the pitted surface were
taken for each experiment.

Fig. 8. Image of the surface prior (left) and after (right) the exposure to the
cavitating flow. While we see no damage on the left image, almost 5% of
the surface on the right image is covered with pits.

Fig. 8 shows an image of the surface before the exposure
to cavitating flow (left) (0% damaged surface) and after 1 h
of exposure (right) (4.98% damaged surface).

5. Image post-processing

Image post-processing is based on the fact that image n
with ij pixels can be presented as a matrix with ij elements. 8
bit resolution gives 256 levels of grey level A(i, j, n), which
the matrix element can occupy (0 for black pixel and 255 for
white pixel):

A(i, j, n)∈ {0, 1, . . . , 255}. (2)
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Fig. 1. Two cases of cavitation onset introduced by large accelerations in low-speed flows. A bottle filled with water accelerated by the impact of a
mallet on the top (A). A test tube filled with silicone oil accelerated by an impact with the ground (B). Both image sets correspond to the impact (first
frame), tiny bubble appearance (second frame), bubble expansion (third frame), bubble collapse and cracking (fourth frame), and crack propagation/failure
(fifth frame). Although the time between each event is different, the overall behavior is very similar (Movies S1–S4). Relative timing of bubble collapse
and fracture incidence suggests that implosion-induced waves are likely responsible for fracture initiation, although further investigation into fracture
mechanisms in the case studies presented here would be necessary to confirm this observation (Fig. S1). Relationships between cavitation and structural
damage are well-documented elsewhere in biological and man-made systems (27–31).
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Integrating Eq. 2 along the centerline of the liquid from the free
surface to the bottom of the column (assuming the depth of the
liquid is h), denoting the magnitude of the vertical component of
@v/@t as a , and solving for the pressure difference in the liquid
column yields

pr � pb = ⇢ah, [3]

where pr is the reference pressure at the free surface and pb is
the pressure at the bottom of the column. Cavitation is likely to
occur when pb < pv . Thus, we can establish

Ca =
pr � pv

⇢ah
[4]

as an indicator of cavitation onset when the flow undergoes a
violent acceleration. We refer to this expression as the quiescent
cavitation number.

To gain physical insight into the interpretation of the quiescent
cavitation number, gravitational acceleration can be introduced
and Eq. 4 can be reformulated as

Ca =
(pr � pv )/⇢gh

a/g
. [5]

Gravitational acceleration is not an essential term in the cav-
itation number. However, it is included here to enable a for-
mulation with explicit physical meaning. The numerator is the
maximum nondimensionalized force that the pressure differ-
ence can provide (similar to Eq. 1) and the denominator is
the nondimensionalized inertial force the liquid experiences
under acceleration (in contrast to the fluid momentum of Eq. 1).
Thus, once the inertial forces exceed the maximum pressure
difference (i.e., Ca < 1), cavitation is likely. However, when
Ca > 1 the pressure is large enough to balance the vacuum intro-
duced by acceleration. Hence, cavitation is not likely.
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Figure 1.3: (a) Pictures of a copper plate composing the suction side of an hydrofoil taken
from [21]. Top panel: before being exposed to cavitation. Bottom panel: after one hour
of exposition to cavitation in a cavitation tunnel. 4.98 % of the surface is damaged. (b)
Chronophotography of a glass bottle partially filled with water and impacted with a mallet
at t = 0. Bubbles appear 0.1 ms after the shock in the region opposite to impact (contrecoup
location) and grow until reaching their maximum radius at t ≈ 1.46 ms, after which they
rapidly collapse. At t = 3.2 ms, all the bubbles have disappeared and the glass is fractured
in the contrecoup region, while it surprisingly remains intact at the impact point. Later,
the entire bottle is shattered.

The damaging potential of cavitation is shown in the two pictures presented in figure 1.3(a),
taken from [21]. The suction side of a hydrofoil (i.e. the side potentially exposed to cavita-
tion) is made of an initially undamaged copper plate (upper panel). The hydrofoil is then
placed in a cavitation tunnel of maximal velocity 20 m/s for one hour, such that cavitation
bubbles form on the suction side. The bottom picture of figure 1.3(a) shows the suction side
after being exposed to cavitation: nearly 5 % of the surface is damaged by pits.

As noted in [13], cavitation bubbles are also damaging when growing in accelerated contain-
ers. This phenomenon is illustrated in the chronophotography reproduced from [13] in figure
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1.3(b) where the effect of the impact of a hammer on a glass reservoir partially filled with
water is followed. Time origin is fixed at impact, and cavitation bubbles quickly appear in
the contrecoup area (at t ≈ 0.1 ms), that is, the region with size comparable to that of the
hammer and located opposite to it. Bubbles then grow and reach their maximum size (a few
millimeters) at t ≈ 1.46 ms, after which they collapse in less than 2 ms, which fractures the
glass at t ≈ 3.2 ms. Remarkably, the glass is fractured at the point of collapse of cavitation
bubbles while it remains intact at the point of impact of the hammer, suggesting that the
collapse of cavitation bubbles is responsible for the damages. At later times, the whole
container is shattered.

The collapse of a cavitation bubble has been identified as the cause of a local increase of the
pressure on a solid boundary nearby. This was illustrated in [22] and is reproduced in figure
1.4(a), where the collapse of a cavitation bubble on a photoelastic material is recorded. After
the disparition of the bubble (t = 0), fringes pattern develop around the point of collapse
in the material, which suggests that a large variation of pressure has been triggered. 10
microseconds after the end of the collapse, the fringes cover an area of diameter roughly one
centimeter. The magnitude of this large pressure variation is quantitatively measured in
the same study [22] and reproduced in figure 1.4(b): at the point on the surface nearest to
the bubble collapse, the pressure is found to increase up to ∼ 21 Mpa. The total duration
of the pressure increase is ∼ 10 µs.
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FIGURE 6. Comparison of experimentally determined bubble shapes (open circles) on 
collapse of a spherical bubble near a plane solid wall with theoretical curves taken from 
Plesset & Chapman (1971) (solid curves). The framing rate is 300000 framesls, the mexi- 
mum bubble radius R, = 2.6 mm, the distance of the bubble centre from the wall 
6 = 3.9 mm and b/Rmx = 1.5. 
Curve 0 1  2 3 4 5 6 7 
Time, R-(po/Ap)4 0 0.725 0.825 0.961 0.991 1.016 1.028 1.036 
(p,, is the density of the liquid and Ap is the constant difference between the ambient 
liquid pressure and the pressure in the cavity.) 

compared backwards in time. The result is shown in figure 6. The open circles 
represent experimental data while the solid lines are taken from the calculations 
of Plesset & Chapman. The initial (experimental) bubble shape is not exactly 
spherical. But nevertheless the behaviour of the bubble (involution of the top 
and jet formation towards the boundary) fits the theory almost quantitatively. 

6. Discussion 
The dynamics of laser-induced cavitationbubblesin water near solid boundaries 

have been investigated by high-speed photography. Jetting effects could be 
studied in considerable detail. I n  the example reported here a maximum jet 
velocity (or, rather, tip velocity) of 120 m/s was measured at a framing rate of 
250000 framesls and a value of b/RmBx = 3-08 (figure 4). The measured tip 
velocities depend on the framing rate used. They are higher the higher the 
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FIGURE 16. Initiation of stress fringe caused by liquid-jet impact; R,,, = 5.1 mm, 

LIR,,, = 0.68, a = 5.2 mm/kg. 
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FIQURE 17.  Isochromatic fringe patterns in epoxy resins due to impulsive pressure generated at 
the first collapse of a bubble; (a )  LIR,,, = 0.059 (R,,, = 3.5 mm); ( b )  LIR,,, = 0.43 
(R,,, = 5.1 mm); frame interval 2 p, exposure 0.4 p. 

of the gth-order fringe. Since the shape of the w1.5 versus LIR,,, curve is very similar 
to that of theplmsx versus LIR,,, curve, i t  can be conjectured that the pressure-time 
histories measured by the transducer represent the shock-wave pressures. In  this 
connection, an important piece of experimental evidence is the generation of multiple 
shock waves prior to a main shock wave. It is interesting that the maximum value 
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shock waves prior to a main shock wave. It is interesting that the maximum value 
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phenomenon can be seen in figure 17 ( b )  : two longitudinal waves are generated from 
different points on the model surface. This suggests the generation of local impulsive 
forces acting on the surface. On the other hand, as shown in figure 8, the solid 
boundary is probably hit by impulsive pressures at not only the first but also a t  the 
second collapse of a bubble near a boundary. Figure 18 shows the fringe patterns for 
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can be seen to develop from different portions of the epoxy surface and combine into 
a single fringe with the passage of time. The new fringe is quite similar to the one 
a t  the first collapse shown in figure 18(a)(l) .  In general, a bubble vortex ring 
composed of a number of tiny bubbles seems to be formed in the torus-like bubble 
interior after the first collapse of the original bubble. At the second collapse, a part 
of the ring collapses rapidly and results in the radiation of a shock wave. Lauterborn 
( 1982) observed shock waves emitted from individial tiny bubbles. The pressures 
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shock waves prior to a main shock wave. It is interesting that the maximum value 
of wo.5 occurs at LIR,,, z 0.9, which corresponds exactly to  the tendency of plot 
of the pulse width of pressure wave versus L/R,,, (Shima et al. 1983, 1984). 

Figure 17 shows the isochromatic fringe patterns. I n  particular, an interesting 
phenomenon can be seen in figure 17 ( b )  : two longitudinal waves are generated from 
different points on the model surface. This suggests the generation of local impulsive 
forces acting on the surface. On the other hand, as shown in figure 8, the solid 
boundary is probably hit by impulsive pressures at not only the first but also a t  the 
second collapse of a bubble near a boundary. Figure 18 shows the fringe patterns for 
LIR,,, = 1.05 and 0.35. At the second collapse of a bubble, weak stress fringes appear 
in figure 18(a)(2), whereas impulsive stress fringes can be clearly seen in figure 
18(b)(2). I n  particular, in the fourth and fifth frames of figure 18(b)(2) two fringes 
can be seen to develop from different portions of the epoxy surface and combine into 
a single fringe with the passage of time. The new fringe is quite similar to the one 
a t  the first collapse shown in figure 18(a)(l) .  In general, a bubble vortex ring 
composed of a number of tiny bubbles seems to be formed in the torus-like bubble 
interior after the first collapse of the original bubble. At the second collapse, a part 
of the ring collapses rapidly and results in the radiation of a shock wave. Lauterborn 
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interior after the first collapse of the original bubble. At the second collapse, a part 
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t = 0 µs t = 2 µs t = 4 µs

t = 6 µs t = 8 µs t = 10 µs

1 cm

Figure 1.4: (a) Collapse of a cavitation bubble near a photoelastic material reproduced from
[22]. The bubble collapse ends at t = 0. The bubble maximum radius is Rmax = 3.5 mm
and it is initially located 0.21 mm away from the solid boundary. Fringes are observed in the
photoelastic material and a shock wave can be observed in the fluid using Schlieren imaging.
(b) Time evolution of the pressure at the wall Pp after the collapse of a bubble of maximum
radius Rmax = 3.5 mm and located a distance d = 1 mm of the boundary. The figure is
reproduced from [22]. (c) Comparison of the experimental shape of a bubble collapsing near
a solid boundary. Figure adapted from [23]. Solid line is the theoretical prediction from
[24]. Time step is 3.3µs. The bubble has a maximum radius Rmax = 2.6 mm and is initially
located at a distance d = 3.9 mm from the surface.

The local increase of the pressure on the boundary is the cause of the deterioration of the
surface. Two main mechanisms are at play during the collapse of a cavitation bubble in the
creation of this pressure increase: the emission of a shock wave [25, 26] and the creation of a
fast moving jet [27, 28]. However, their relative contribution to the damages is still debated
[22, 29].

The shock wave can be observed using Schlieren imaging: it starts propagating at the
collapse and is observed 4 µs after it in 1.4(a). At a distance r from the bubble, the peak
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pressure of the shock wave Pp was shown to scale as [30, 6]:

Pp ≈ 100P∞
Rmax
r

(1.10)

where Rmax denotes the maximum radius of the bubble.

When a cavitation bubble collapses near a solid boundary, a jet is created. The jet is found
to be directed towards the boundary. The formation of the jet can be intuitively understood
assuming potential flow: a collapsing bubble behaves as a sink and its mirror image with
respect to the wall needs to be considered to respect the impermeability boundary condition.
As a consequence, the bubble collapses in a pressure gradient perpendicular to the wall which
results in the deformation of its interface and the creation of the re-entrant jet. The early
development of the jet was observed experimentally in [23] and compared with theoretical
prediction from [24]. The results, from [23] are presented in figure 1.4(c). The bubble, before
the collapse, has a maximum radius Rmax = 2.6 mm and is located at a distance d = 3.9
mm from the boundary. Roughly 16 µs after the beginning of the collapse, the interface
at the point opposite to the solid boundary starts to curve in, resulting in the creation of
the jet. At later times, beyond the scope of the theoretical study presented here, the jet is
found to impact the boundary at a velocity up to 200 m/s. This impact could be the cause
of the local increase of the pressure in the material.

1.4 Statement of the problem: Application to brain concus-
sion

The study of cavitation in an accelerated and confined environment is relevant for defenses
applications: the launch of missiles and torpedoes from submarines or the acceleration
phases of propellers. Additionally, the damages caused by the collapse of cavitation bubbles
are often listed as a possible cause of the brain concussion following a violent impact on
the head. In such applications, avoiding or at least reducing the damages induced by the
collapse of cavitation bubbles is crucial.

The application of cavitation to the understanding of mild Traumatic Brain Injuries (mTBI)
particularly caught our attention: the experiment of a mallet impacting a fluid container
sketched in figure 1.1(a) seems to be a direct model of a shock on the head. Indeed,
the container represents the cranial vault while brain tissues and physiological fluids are
modelled by the water (they have a relative density close to 1 and are mainly composed of
water).

So far, mTBI are known to be a common consequence of linear shocks on the head, in
motorized vehicle accidents or sports [31, 32] . Their detection and prevention is a major
medical concern not only because they can be lethal, but also because they are often involved
in the early development of neuronal diseases [33, 34, 35]. One of these disease is the Chronic
Traumatic Encephalopathy (CTE), which results from repetitive brain trauma [36], and was
diagnosed on an important rate of U.S. football players. Figure 1.5(a), taken from [36],
presents coronal sections of a normal brain (top) and of a brain displaying a CTE (bottom):
the pathological brain shows dilatation of the ventricles, atrophy and shrinkage of cerebral
structures.

The severity of the damages following a linear impacts on the head are commonly classified
by the so-called Wayne State University (WSTC) curve [37, 38]. Characterizing shocks
by their peak acceleration a and timespan τ , the WSTC, drawn in figure 1.5(b), has a

21



Chapter 1. Short review on cavitation onset and bubble dynamics

I

hyperbolic-like behavior that draws a frontier between innocuous and acute shocks. The
curve was empirically constructed on post-mortem and animal experiments, and data lying
above it imply a probability of brain concussion greater than 50 %, which shows that linear
shocks become lethal when having strong acceleration or long duration. As seen in figure
1.5(b), the WSTC curve also captures observations in American football (squares and dots),
where colors (red or green) indicate the occurrence of brain concussion or not. A more precise
analysis reveals that the curve is not hyperbolic, as seen for instance for typical shocks in
football where the acceleration threshold of damage decreases from ∼ 100 g for τ ≈ 5 ms
to ∼ 70 g for τ ≈ 15 ms, denoting g as the acceleration of gravity. For shorter shocks, the
WSTC also predicts that the critical acceleration of damage dramatically increases, rising to
a value as high as ∼ 400 g for τ ≈ 1 ms. The WSTC is the starting point for the derivation
of most severity indexes for linear shocks. Above the threshold, lesions in the brain tissues
are usually found in the so-called contrecoup area, opposite to impact [39].

0 2 4 6 8 10 12 14 16
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200
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Concussion
No Concussion

WSTCWSTC

(a) (b)

Figure 1.5: (a) Comparison of coronal sections of brains: a normal one (top) and another
showing Chronic Traumatic Encephalopathy (CTE). Figure 1.5(a) taken from [36]. The
pathological brain presents severe dilatation of ventricles II (1) and III (2), cavum septum
pellucidum (3), marked atrophy of the medial temporal lobe structures (4), and shrinkage of
themammillary bodies (5). (b) The Wayne State University Tolerance Curve [37] (WSTC,
solid line) empirically quantifies the head tolerance towards shocks with peak acceleration
and characteristic duration. For a shock above the curve, the probability of brain concussion
is larger than 50%. Data are recorded for shocks on football players (dots: Pellman 2003
[40]; squares: Broglio 2010 [41]) where the characteristic time of the shock was computed
from the Severity Index (SI). The color indicates if concussion (red) is observed, or not
(green).

However, there is no widely accepted damaging mechanism: traumas might arise from the
local increase of shear stress in brain tissues, from large variation of intracranial pressure
[42, 43] or from the collapse of cavitation bubbles [44, 45, 46]. As a consequence, WSTC
remains heuristic and fails to capture all the experimental observation.

In the rest of this part, we focus on studying the possibility of cavitation being a cause of
mTBI. To that end, we propose to make the simple experimental set-up sketched in figure
1.1(a) closer to the real cranial vault by using a completely filled container. This is expected
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to change the onset of cavitation as the pressure at the bottom of the tank was determined
by both the acceleration of the shock and the ambient air pressure in the container.

As for defenses applications, evaluating the damaging potential of the cavitation bubbles is
also crucial. To that end, equation (1.10) suggests that the maximum radius of a cavitation
bubble is a good proxy for assessing its damaging potential. To determine its maximum
radius, we wish to study the dynamic of the growth of a cavitation bubble in an accelerated
fluid container. In particular, we would like to determine if it is governed by Rayleigh-Plesset
equation.

Finally, the heuristic observations gathered in the WSTC state that the severity of the
damages following a shock is uniquely determined by both its maximum acceleration and its
characteristic timespan. This raises two questions regarding a scenario of mTBI based on
cavitation: Does the damaging potential of a cavitation bubble in an accelerated container
depends on these two parameters? If so, can it be analytically evaluated?

In chapter 2, we present an experimental set-up, analogous to the cranial vault, which allows
us to monitor the growth of the confined cavitation bubbles and measures both the pressure
and the acceleration of the container.

In chapter 3, we focus on determining the damaging potential of a cavitation bubble in such
an experimental set-up. To that end, we study, both experimentally and theoretically the
dynamic of the cavitation bubbles.
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2
Bubble apparition in a confined

environment

The large majority of the work presented in the two following chapters was realized in collab-
oration with Juliette Amauger, at that time, intern in the group. This work would not have
been nearly as good without her implication and determination to overcome the (numerous)
difficulties.

Illustration of the growth and the collapse of a bubble recorded using the experimental set-up
described in this chapter.

Contents

2.1 Pressure drop in the contrecoup region . . . . . . . . . . . . 26

2.2 Incompressibility and cavitation . . . . . . . . . . . . . . . . 28
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2.1 Pressure drop in the contrecoup region

2.1.1 Description of the experimental set-up

The set-up we use to study the growth of confined cavitation bubbles during a shock is
sketched in figure 2.1. Cavitation occurs in a water container, made of transparent acrylic,
which has a square base of side 5 cm and a length L. This reservoir, drawn in the left panel
of figure 2.1, is hermetically sealed with a membrane located at its bottom. The bending
stiffness K of the membrane can be tuned from 1 to 109 N/m. In this chapter, flexible
membrane will refer to a membrane with K ≈ 1 N/m while rigid will refer to a membrane
with K ≈ 109 N/m.

4

6

L

C

2 3

1

5

�!
U

g

Figure 2.1: Set-up for the study of cavitation bubble growth generated by an acceleration
under a controlled confinement. Left panel: fluid container. An acrylic reservoir (length
L = 16.5 cm and square section of side 5 cm) equipped with a flexible membrane (1) at
its bottom is filled with degasified water. At point C (the contrecoup area, opposite to
impact), pressure and acceleration are measured with a capacitive transducer (2) and with
a piezoelectric accelerometer (3). Right panel: impact device. The reservoir is fixed on the
falling stage (4) of a three-meters drop tower and experiments are recorded from the top
with a high-speed video camera (5). The characteristics of the impact on the ground are
tuned with a damper (6) that fixes both the shock acceleration and duration. The vertical

velocity of the falling stage, positive when directed upward, is written
−→
U .

The container is clamped on the falling stage of a three-meters high drop tower sketched in

the right panel of figure 2.1. The falling stage is then impacted at a vertical velocity
−→
U on a

damper, resulting in the application of a vertical acceleration U̇ on the reservoir. The height
of the fall as well as the damper characteristics can be adjusted to modify the properties
of the shock (shape of the acceleration signal, maximum acceleration...). The region C,
opposite to the point of impact, the so-called contrecoup area, is video recorded either from
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the side or from above using a fixed fast-camera filming up to 20,000 frames per second.
Additionally the pressure P in this region and the acceleration U̇ of the tank during a shock
are measured using a pressure transducer and an accelerometer. Both sensors sample at a
frequency of 10 kHz. The dynamic of a bubble initially nucleating in the contrecoup area is
followed and correlated to the pressure and acceleration measurements.

2.1.2 Pressure drop

During a shock, the pressure P (t) in the contrecoup region is P (t) = P0 − δP (t), where P0

denotes the static pressure and δP (t) the dynamic pressure which varies during a shock. For
a container equipped with a flexible membrane (K ≈ 1 N/m), synchronous measurements
of the acceleration U̇ of the container and of the dynamic pressure δP (t) during a shock are
shown in figure 2.2(a). For a shock of maximum acceleration a ≈ 60 g and time duration of
∼ 7 ms, the hydrostatic-like pressure ρU̇L, where ρ and L respectively denotes the density of
the fluid and the length of the container, and the dynamic pressure δP (t) are synchronized
and have the same trend. They rise up from 0 at the beginning of the shock (t = 0) to ∼ 1
bar at t ≈ 7 ms before going back to zero at t ≈ 13 ms. In this situation, the total pressure
P = P0 − δP (t) in the contrecoup area is decreasing during a shock corroborating the fact
that bubbles growing in this region are a result of cavitation. Additionally, this suggests
that, when the container is equipped with a flexible membrane, the dynamic pressure in the
contrecoup region is linked to the acceleration of the container by the relation δP ∼ ρU̇L.
To check these observations on a larger scale, we define δPm the maximum of the dynamic
pressure δP (t) during a shock.
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Figure 2.2: (a) Temporal evolution of the hydrostatic-like pressure ρU̇L (blue) and dynamic
pressure δP (t) (red) in the area opposite of the point of impact during a shock of maximum
acceleration a ≈ 60 g and timespan τ ≈ 7 ms. Dynamic pressure is defined as δP (t) =
P0 − P (t) when P0 is the static pressure and P (t) the total pressure in the contrecoup
area. The maximum dynamic pressure is denoted δPm and the maximum acceleration a.
(b) Dynamic pressure δPm as a function of the hydrostatic-like pressure ρaL for different
flexibility of the membrane. Blue data is for a flexible membrane of bending stiffness K ≈ 1
N/m. Red data is for a rigid membrane of bending stiffness K ≈ 109 N/m. Blue dashed
lined is the potential model δPm = ρaL for the flexible membrane. The red dashed lined
is the potential model δPm = 1

2ρaL for the rigid membrane case. Both models are plotted
with no fitting parameters.

We plot δPm as a function of the hydrostatic-like pressure ρaL for different flexibilities of
the membrane in figure 2.2(b). For all membranes, δPm has an increasing linear trend with
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ρaL. This confirms that, no matter what are the properties of the container used, there is
always a pressure drop in the contrecoup region. For a flexible membrane (K ≈ 1 N/m, blue
data), we recover the previous relation δPm = 1.03ρaL ± 0.08ρaL for the maximum value
of the pressure drop. However, when using a rigid membrane (K ≈ 109 N/m, red data), we
find δPm = 0.49ρaL± 0.05ρaL.

These behaviours can be recovered theoretically in the following way: as the characteristic
velocity of the reservoir filled with water when it impacts the damper is 1 − 3 m/s, the
Reynolds number of the flow in the reservoir is greater than 105 which allow us to assume
the flow to be potential. Writing U the velocity of the reservoir, aligned with the vertical
axis z directed upward, the only solution for the potential Φ is Φ(z, t) = U(t)z and the
unstationary Bernoulli equation writes:

ρz
dU

dt
+

1

2
ρU2 + P + ρgz = constant (2.1)

The pressure at the bottom of the tank is PB(t) = P statB − δPB(t) and at the top P (t) =
P0−δP (t). For the rigid membrane case, the problem is fully anti-symmetric with respect to
the middle of the reservoir. Hence, δPB(t) = −δP (t). Using Bernoulli equation between the
top and bottom points yields δP (t) = 1

2ρU̇L. This relation is plotted in red dashed line in
figure 2.2(b) and describes well the data for the container equipped with a rigid membrane.
For the flexible membrane regime, a pressure is initially imposed near the membrane. Hence,
expressing Bernoulli equation between the extremities of the reservoir, we get δP (t) = ρU̇L.
It is plotted in blue dashed line in figure 2.2(b) and is in good agreement with the data for
the flexible membrane regime.

As a consequence, the apparition of cavitation bubbles in a confined environment depends
on the properties of the container. For a flexible container, we recover that the pressure in
the contrecoup reaches the vapor pressure of water Pvap for Ca =

P0−Pvap

ρaL = 1 as previously
observed in [13]. However, using a rigid container will result in a delayed apparition of
cavitation bubbles: the vapor pressure of water is reached in the contrecoup region for cav-
itation number as low as 1/2. In other words, using a rigid reservoir inhibits the nucleation
of cavitation bubbles.

Additionally, it is interesting to note that, in either situation, the pressure variation in the
tank alone cannot be the cause of traumatic brain injuries reported in American football or
boxing: head accelerations rarely overcome 150 g [47, 48] and the pressure drop below 600
g in the contrecoup region is negligible compared to the typical yield stress of tissues [49].
Hence, an energy focusing mechanism needs to be involved in the brain damaging process.

2.2 Incompressibility and cavitation

For a shock of maximal acceleration a ≈ 150 g, the maximal pressure drop is δPm ∼ 2.5
bar in the flexible membrane case and δPm ∼ 1.3 bar in the rigid membrane case. The
minimum absolute pressure in the contrecoup region Pm = P0 − δPm is far below the vapor
pressure of water (Pvap ≈ 1.3 × 10−2 bar) in both cases, i.e. the cavitation number is far
below 1/2. As a consequence, we expect cavitation bubbles to nucleate in this region in
both situations. To check for their growth, we observe the container from the side during a
shock of maximum acceleration a ≈ 150 g and time duration of ∼ 7 ms. Figure 2.3 presents
the two chronophotographies obtained for different rigidities of the membrane used.

For a flexible membrane (K ≈ 1 N/m), we observe that, during the shock, the initially
bubbles present on the wall grow until they reach their maximum size around t = 9.6 ms.
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Figure 2.3: Chronophotographies of the impact of the reservoir on a damper for different
values of the bending stiffness K of the membrane. The shock results in a vertical maximal
acceleration a ≈ 150 g applied on the container for a time ∼ 7 ms. The contrecoup region
C is located at the point opposite of impact.

At this point, they cover the whole contrecoup region and have a thickness close to ∼ 0.5
cm. After the end of the shock, they rapidly collapse and have completely disappeared at
t = 14.4 ms. However, for a rigid membrane (K ≈ 109 N/m), the sub-millimetric bubbles
initially present in the contrecoup area barely grow to reach a sub-millimetric maximum size
around t = 6.4 ms. At this time, they sparsely cover the contrecoup area. At t = 9.6 ms,
they already have recovered their inital size.

This simple experiment draws our attention on an important property of the container:
its deformability. Indeed, when a rigid membrane is used for seal our reservoir, it can be
considered as incompressible and no gas bubble can grow in such a system. However, when
we use a flexible membrane, it deforms in a way that modifies the volume of the container.
This is observed in the chronophotography for K ≈ 1 N/m in figure 2.3: initially flat, the
membrane deforms outward when the bubbles start to grow in the contrecoup region. As a
consequence, having a container equipped with a flexible membrane has two consequences:
first, following a shock, the pressure drop measured in the contrecoup area (i.e. region
opposite of impact) is more important than when the container is completely rigid. Second,
as the incompressibility condition is released, bubbles have space to nucleate and grow.

These observations do not rule out the possibility of cavitation bubbles to grow in the cranial
vault. Indeed, it must itself be seen as a container with a variable volume, as known from the
measurements of the variations ∆V of the intracranial volume (typically a few milliliters)
accompanying the change ∆P of the intracranial pressure (typically a few millimeters of
mercury) during a heart cycle [50, 51, 52]. Additionally, we adjusted the bending stiffness
of the membrane used in our experimental set-up to comply with the known in-vivo relation
∆P (∆V ) reported in figure 2.4. The value of the bending stiffness K of the equivalent
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Figure 2.4: Relationship between the pressure and volume variations ∆P and ∆V , for a
human head (blue data) and for our model system (red data). Both series of data overlap
if we use a soft flexible membrane of bending stiffness 1 N/m. Human data are taken from
Unnerbäck 2017 where peak values have been discarded. Pressure in our set-up are measured
for a membrane of thickness 3.5 mm an then extrapolated for the equivalent membrane of
thickness 1 mm.

membrane corresponds to the previously introduced flexible case (i.e. K ≈ 1 N/m), which
validates the possibility of cavitation bubbles growing in the head. For the rest of the
chapter, we will focus on a container equipped with a flexible membrane.
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3
Influence of the shock duration

on the bubble dynamic

Chronophotography of the shattering of a rounded bottom flask induced by the collapse of
cavitation bubbles in the region opposite to the point of impact. Yellow is for t = 0 (i.e.
impact of the hammer), green is for t = 1.2 ms and blue for t = 6.65 ms.
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3.1 Methods

3.1.1 Shock duration

The set-up presented in the previous chapter allows us to measure the acceleration U̇ of
the container during a shock. The typical time evolution of U̇ following the impact on
a damper is plotted in figure 3.1(a). The overall shape of the signal is symmetric about
the time at which the maximal acceleration is reached. Additionally, the signal is close to
triangular. From such a recording, we extract the maximum acceleration of the shock a and
its characteristic timespan τ , defined as the full width at half maximum, i.e the width of
the signal at U̇ = a/2.
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Figure 3.1: (a) Typical time evolution of the acceleration U̇ of the reservoir after impact on
the damper (t = 0). a is defined as the maximum acceleration of the container during the
shock. τ is the width of the signal at U̇ = a/2. In this particular case, a = 75 g and τ = 9
ms. (b) Range of shocks accessible in the diagram (a,τ). Properties of the shock depend
on the damper and the height at which the falling mass is released. Shape and thickness
of the damper is varied from flat (red-orange curves, lighter color are thicker dampers) to
conical (green blue) and spherical dampers (yellow). Dashed lines are the mean trend for
each damper. WSTC is plotted in solid black line.

We vary the parameters (a,τ) of an impact on a damper by changing the height at which the
falling stage of the drop tower is released or by modifying the properties of the damper. The
properties of the damper that are varied are its shape (cylindrical, conical, hemispherical),
its thickness and its Young’s modulus. As the Young’s modulus of the polymer is only
tunable in the range 0.2 to 0.7 MPa, we mainly vary the shape and the thickness of the
damper. Doing so, the range of accessible impacts in the (a,τ) diagram is shown in figure
3.1(b). For each damper, a characteristic curve a(τ) is obtained by varying the drop height.
We observe consistently that a is decreasing with the shock duration τ . Flat dampers
produce shock of peak acceleration ranging from 30 to 300 g with short duration τ between
0 and 7 ms. This duration is also observed to increase with the thickness of the damper
(orange curve). Other geometries of damper (hemispherical and conical) produce a smaller
acceleration (0 to ∼200 g) but a shock duration up to τ = 25 ms. Overall, the region of
accessible shocks with our set-up is delimited by an hyperbolic-like curve.

Most importantly, with the aim of applying this work to brain concussion, this set-up allows
us to explore the relevant part of the (a,τ) diagram. Indeed, the Wayne State Tolerance
Curve (WSTC), plotted in figure 3.1(b) (solid black line), goes through our accessible range
of shocks from τ = 0 ms up to ∼ 10 ms. This is satisfactory as the WSTC is found to
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depend on τ only in this range of timespan of the impact: for τ > 10 ms, the WSTC is
fairly flat.

3.1.2 Radius of the cavitation bubble

The aim of this chapter is to determine the influence of the shock duration on the dynamic of
a cavitation bubble. To that end, only the flexible membranes (K ≈ 1 N/m) are used as the
rigid one does not allow bubble growth. However, we have seen in the previous chapter that
many bubbles nucleate in the contrecoup area which makes the tracking of the bubble radius
difficult and generate interactions [53, 54, 55, 56]. To avoid these effects, we seed degasified
water with a unique bubble of radius R0 = 1 mm, initially located in the contrecoup area.
The evolution of this bubble is tracked during the shock with a fixed high-speed camera.
The resulting chronophotography is shown in figure 3.2(a) for a shock of peak acceleration
a ≈ 100 g and timespan τ ≈ 3.7 ms. At the beginning of the shock (t = 0), the bubble has a
radius R ≈ 1 mm. It then slowly grows until it reaches its maximum radius Rmax of around
1 cm at t = 6.4 ms. It then rapidly collapses in about a millisecond.
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Figure 3.2: (a) Chronophotography of a single bubble growing in the contrecoup area during
a shock of maximum acceleration a ≈ 100 g and timespan τ = 3.7 ms. A pressure sensor
is used to monitor the pressure in the contrecoup region. The container is equipped with a
flexible membrane (K ≈ 1 N/m). (b) Time evolution of the bubble radius R. Blue data are
for a shock with peak acceleration a = 77 g and timespan τ = 4.9 ms. Red: a = 69 g and
τ = 5.4 ms. Green: a = 82 g and τ = 5.4 ms.

The radius R is precisely tracked for different shocks and figure 3.2(b) collects data for
three growths in a container equipped with a flexible membrane. In each case, we recover
the previously noticed behaviour: bubbles expand to their maximum radius Rmax before
rapidly collapsing. For instance, for a = 82 g and τ = 5.4 ms, the bubble grows from R0 = 1
mm to Rmax = 7.5 mm (corresponding to a volume increase by a factor 420) in 7 ms, before
collapsing in about 1 ms. Rmax is observed to increase with the acceleration a (red/green
curves), but also with the shock duration τ (blue/green curves).

3.1.3 Numerical methods

We wish to compare these time evolutions of the bubble radius with solution of Rayleigh-
Plesset equation. Let us recall the Rayleigh-Plesset (RP) equation:

3

2
ρṘ2 + ρRR̈+

4η

R
Ṙ+

2γ

R
= ∆p (3.1)
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Where ∆p = pb−P (t) is the pressure difference across the interface of the bubble. In the rest
of the section, ode15i, a solver for fully implicit ordinary differential equations implemented
in Matlab, is used to numerically integrate equation (3.1). We first compare the numerical
solution to the analytical one in the small perturbations regime. For large perturbations,
we show that we recover results of previous studies.
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Figure 3.3: (a) Comparison between the numerical integration of Rayleigh-Plesset equa-
tion and the analytical solution of the time evolution of the dimensionless radius of the
bubble R/R0 in the small perturbations regime. The external pressure is sinusoidal:
P = P0 + p0 sin(ωt) with p0 = 0.01P0 and ω = 315 s−1. Initial radius is 1.3 mm. Nu-
merical integration is performed using Matlab ode15i and is plotted in solid black line.
Analytical solution (dashed red line) is given by equation (3.6) and results from the resolu-
tion of the Rayleigh-Plesset equation truncated to the first-order. (b) Comparison between
our numerical integration (solid black line) of Rayleigh-Plesset performed with ode15i, the
numerical solution (dashed red line) and experimental data (squares) from [53] for the time
evolution of the radius of the bubble in the large pressure drop regime. The bubble is ini-
tially trapped in a pit of diameter (20 µm). Integration is performed for the experimental
pressure signal reported in [54, 53] and reproduced in the inset.

3.1.3.1 Small perturbations

We first consider the simple case of a bubble in an oscillating pressure field of the form:
P (t) = P0 +p(t) where p(t) is a sinusoidal dynamic pressure p(t) = p0 sin(ωt) with p0 � P0.
For such small external perturbations, the radius of the bubble R remains close to its initial
value R0, such that it can be written:

R(t) = R0(1 + ε(t)) with ε� 1 (3.2)

Initially, the bubble is at rest (i.e. pb = P0 + 2γ/R0) and its constituting gas undergoes

an isothermal transformation: pb = (P0 + 2γ/R0)
(
R0
R

)3
. Substituting this relation and

equation (3.2) in RP equation yields, in the first-order approximation:

ε̈+ αε̇+ βε = −p(t)
ρR2

0

(3.3)

where α = 4η
ρR2

0
and β = 3P0+4γ/R0

ρR2
0

.
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For the initial radius considered (R0 ≈ 1 mm), α2 − 4β < 0 and the homogeneous solution
of equation (3.3) takes the form:

εh = exp(−t/tc) (A cos(ω0t) +B sin(ω0t)) (3.4)

with tc = 2/α and ω0 =
√
β − α2/4

A particular solution is:
εp = ε0 sin(ωt+ Φ) (3.5)

where ε = p0√
(β−ω2)2+α2ω2

and Φ = ±π arctan
(
−αω
β−ω2

)
if β − ω2 > 0.

Imposing the initial conditions ε(0) = ε̇(0) = 0, the solution to equation (3.1) is:

ε(t) = ε0

[
sin(ωt+ Φ) + exp(−t/tc)

(
− sin Φ cos(ω0t)−

(
sin Φ

ω0tc
+
ω cos Φ

ω0

)
sin(ω0t)

)]

(3.6)

For the characteristic timespan of the impacts in our experimental set-up (ω ≈ 315 s−1),
and a perturbation pressure p0 = 0.01P0 we plot this analytical solution and the numerical
integration of equation (3.1) performed using Matlab solver ode15i in figure 2.2(a). We
observe a good agreement between the analytical solution (dashed red line) and the result
of the numerical simulation (solid black line). Both curves have a sinusoidal behaviour of
frequency f = ω/2π ∼ 50 Hz and an amplitude of 0.3 % of R0.

In the range of time scales of our experiments, numerically integrating RP using ode15i is
efficient to recover the oscillatory behaviour predicted analytically.

3.1.3.2 Large perturbations

To determine if the solver we used also performs well for large pressure variations, we impose
a pressure drop of -1.4 MPa and half-width τ ≈ 2 µs and follows the time evolution of the
radius of the bubble. To allow comparison with previous studies, we take the pressure
signal recorded in [54, 53] as our input pressure. The time evolution of this pressure signal
is plotted in the inset of figure 2.2(b).

The result of our numerical integration -using ode15i - is plotted in figure 2.2(b) (solid black
line) alongside data (squares) and simulation (dashed red line) from the literature [53]. The
two numerical simulations are in excellent agreement with each other and well describe the
experimental data reported in [53].

The radius of the bubble rapidly grows from ∼ 10 µm to ∼ 0.17 mm. Interestingly, this
maximum value is reached at t ≈ 10 µs, long after the end of the pressure drop (∼ 4 µs),
suggesting that inertia plays a crucial role in the overall dynamic. After that, the radius of
the bubble slowly decreases to ∼0.1 mm at t ≈ 20 µs before rapidly collapsing (R = 0 at
t ≈ 22 µs). The relatively slow diminution of the radius in the first part of the collapse is
attributed to the presence of a second pressure drop (∼-3 bar) recorded around t = 12 µs.

As a consequence, the fully implicit solver for ordinary differential equations implemented
in Matlab ode15i accurately solve the Rayleigh-Plesset equation for the characteristics time
scales and large pressure drop expected in our experiments.
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3.2 Bubble dynamics

3.2.1 Rayleigh-Plesset equation

Using the pressure evolution recorded experimentally, we solve the RP equation numeri-
cally. The solutions are drawn in dashed line in figure 3.4(a) and are found to describe in a
satisfactory way the asymmetric behaviour. It is surprising to note that, even though this
equation is based on the assumption of a spherically-symmetric flow around a spherical bub-
ble, which break when the bubble implodes near the wall of the container, it still captures,
for these cases, fairly well the collapse.
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Figure 3.4: (a) Time evolution of the bubble radius R. Blue data are for a shock with peak
acceleration a = 77 g and timespan τ = 4.9 ms. Red: a = 69 g and τ = 5.4 ms. Green:
a = 82 g and τ = 5.4 ms. Dashed lines are numerical solutions of RP equation with the
experimentally measured pressure. (b) Time evolution of the bubble radius for a shock with
peak acceleration a = 77 g and timespan τ = 4.9 ms. Dashed line is the numerical solution of
the Rayleigh-Plesset equation solved with the pressure measured experimentally. Solid line
is the numerical solution of the Rayleigh-Plesset equation solved with a triangular pressure
with peak value ρaL and half-width τ . (c) Maximum radius of a bubble in the diagram (a,
τ) for a triangular time evolution of the pressure after a shock of peak acceleration a and
timespan τ . The initial radius of the bubble is 1.4 mm and the bubble it located in the
contrecoup region.

3.2.2 Maximum radius of a bubble

We focus here on the determination of the maximum radius Rmax of the bubble and we
wish to express it as a function of the couple (a,τ). To do so, we model the time evolution
of the pressure during a shock with only parameter the couple (a,τ). Given the form of the
signal of the acceleration presented in figure 3.1(a), we approximate this signal as triangular
of peak value a and width at half height τ . In the flexible regime, the dynamic pressure
in the contrecoup region is then also triangular of maximum value ρaL and half width τ .
With this model signal, we solve the RP equation and plot the time evolution of the radius
in figure 3.4(b). We observe that the overall asymmetric dynamics of the bubble remains
unchanged when using this signal. However, while the growth is steady with the measured
pressure signal, the growth rate varies with the model pressure signal: the bubble radius
barely increases before t = 4 ms (it changes from 1.4 mm to 2.5 mm), but rapidly catches
up to reach a maximum radius Rmax close to the one measured at t ≈ 7 ms. Overall, the
model signal captures fairly well the bubble dynamics but, most importantly, it describes
well the maximum radius Rmax.

36



3.2. Bubble dynamics

I

From that, we numerically integrate the RP equation for any shock determined by its couple
(a,τ). The computed maximum radiusRmax is displayed in the (a,τ) diagram in figure 3.4(c).
We first notice that, accordingly to what was previously observed, Rmax is monotonously
increasing with both the peak acceleration and the timespan of the shock. We also remark
that the diagram can be split into two regimes: below a = 60 g, i.e. the low acceleration
regime, maximum radius remains close to R0 and Rmax only depends on a. In the high
acceleration regime (a > 90 g), Rmax is growing rapidly with the timespan of the shock τ :
for a = 200, Rmax passes from 5 mm at τ ≈ 0.5 ms to 2.5 cm at τ ≈ 2 ms. These two
regimes will be investigated in greater details in the next sections.

3.2.3 Low acceleration regime

In this regime, the accelerations are smaller than 60 g and, hence, the total pressure in
the contrecoup area is always greater than the vapor pressure of water. As a consequence,
apart for very short shocks (τ < 1 ms), the rate of change of the pressure is small when
compared to the period of deformation of the bubble. We consider that the bubble is always
in quasi-static equilibrium with the surrounding fluid. This writes pb(R) = P (t)+ 2γ

R , where
pb is the internal pressure of the bubble and P the total pressure in the contrecoup region.
With R > 1 mm, this relation simplifies to:

pb ≈ P (3.7)

Assuming an isothemal transformation of the gas in the bubble we can write:

pb(R)

pb(R0)
=

4
3πR

3
0

4
3πR

3
(3.8)

Substituting (3.7) in (3.8) and solving for R yields an equilibrium radius Req:

Req ≈ R0

(
P0

P

)1/3

≈ R0

(
P0

P0 − ρaL

)1/3

(3.9)

where we used the potential expression of the pressure in the contrecoup area for a container
equipped with a flexible membrane: P = P0 − ρaL.

The ratio Rmax/Req is computed from the results of the numerical resolution of RP equation
(presented in figure 3.4) and displayed as a function of τ for different values of the peak
acceleration of the shock a in figure 3.5(a). We remark that all the numerical simulations
curves collapse along an horizontal line of value 1, which suggests that we accurately iden-
tified the underlying mechanism of this regime. Divergences from this line arise when the
pressure variation rate (dPdt ≈ a

τ ) is great, which is the case either for short shocks (τ < 2 ms)
or for the largest acceleration of this regimes (a ≈ 60 g). Additionally, both the theoretical
static equilibrium and the numerical simulation are in fair agreement with the experimental
observations.

3.2.4 High acceleration regime

In the high acceleration regime, the viscous and capillary terms of the Rayleigh-Plesset
equation are negligible when compared with the inertial effects: The equivalent Reynolds

number is Re = aR/τ
ν ∼ 109 � 1 and Weber number is We = ρ(a/τ)2R

γ ∼ 1013 � 1.

Multiplying equation (3.1) by R2Ṙ, we get:
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Figure 3.5: Maximum radius of the bubble in the different acceleration regimes. (a) Low
acceleration regime: ratio of the maximum radius of the bubble Rmax to its equilibrium
radius Req (equation (3.9)) as a function of the timespan of the shock τ . Solid lines show
numerical simulations for peak acceleration a ranging from 1 to 60 g. (b) High acceleration
regime: Maximum radius Rmax compared to its analytical value (equation (3.14)). Solid
lines show numerical simulations for shock accelerations ranging from 101g to 230g.

d(ρR3Ṙ2)

dt
= 2∆PR2Ṙ (3.10)

which we can see as the time evolution of the kinetic energy of the fluid entrained by the
bubble arising from the work of the pressure force at the bubble interface. An analytical
solution of this equation exists assuming that the shock is a crenel of amplitude a and width
τ , i.e. P is constant by part. Within the isothermal framework, we have ∆P = pb − P =

Pvap +
(
P0 + 2γ

R

) (
R0
R

)3 − P , which simplifies into ∆P ≈ Pvap − P as R >> R0 in this

regime. Hence ∆P is also constant by part. We integrate equation (3.10), and express R at
the time τ , i.e. the end of the shock:

R(τ) = R0 +

√
2∆P

3ρ
τ (3.11)

In a second phase, after the shock, the pressure falls back to the ambient pressure P0 >> Pvap
and equation (3.10) simplifies to:

d(ρR3Ṙ2)

dt
≈ −2P0R

2Ṙ (3.12)

At maximum radius we have Ṙ(Rmax) = 0. We integrate equation (3.12) in the second
phase with the initial condition given by equation (3.11) and get:

R3
max =

(
R0 +

√
2∆P

3ρ
τ

)3

+
3ρ

2P0

(
R0 +

√
2∆P

3ρ
τ

)3
2∆P

3ρ
(3.13)

With Pvap = ρavL, we have ∆P = ρ(av − a)L and ultimately find:
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Rmax ≈ R0 +

(
3ρ

2P0

) 1
3
(

2(a− av)L
3

) 5
6

τ (3.14)

In figure 3.5(b), we compare our data (obtained at various a and τ) with the values expected
from equation (3.14). We find a fair correlation: data align when plotted as a function of
the theoretical radius. The slope of the line is around 1/2, which can be understood when
plotting also the numerical solutions of the RP equation, assuming a triangular peak of
acceleration instead of a crenel: the solutions are then found to fit well the data, suggesting
that the numerical coefficient in the law depends on the shape chosen for the temporal
evolution of the acceleration.

3.3 Damaging potential

The damaging potential of a cavitation bubble can be evaluated via the energy storage E.
This energy is gathered through the work of the pressure forces accross the interface of the
bubble:

E ∼ δPR3
max ∼ ρaLR3

max (3.15)

This energy will be released during the collapse through a combination of local increase of
temperature [57], creation of a shock wave [58, 59] and eruption of a fast jet [60, 61], if
collapse occurs near a solid boundary. As presented in chapter 1, the importance of each
mechanism in the damaging process is debated [62, 63], but all of them involve energy
focusing, which is also the case for brain concussion.

For the parameters of the head, following the process used to obtain figure 3.4(b), we
compute the maximum radius and energy of cavitation bubbles after a triangular shock
with peak acceleration a and half-width τ . From that, we calculate the energy of the
cavitation bubbles using equation (3.15) and we plot in figure 3.6 the iso-energy curves in a
(a,τ) diagram. The energy E is varied from 0.4 mJ to 8.5 J. For small energies (blue curves
in figure 3.6), the iso-energy curves are almost angular, with a plateau at large τ (>3 ms)
and a strong divergence at small τ (< 0.5 ms). The plateau value is a ≈ 70 g, that is, the
acceleration necessary to generate cavitation in the contrecoup region. Curves get higher
and smoother when increasing E, and they eventually follow a close-to-hyperbolic behavior
when E is on the order of 1 J (red curves). Remarkably, a well-defined value of the energy,
namely ED = 8.5 J, is found to match the WSTC (dashes) in the range 0 to ∼ 2 ms of
shock duration. Above τ ≈ 2 ms, our results predict damages for higher acceleration than
the WSTC. This result is coherent with the observations gathered in [64], based on cadaver
and alive animal tests, suggesting that the plateau value of the curve is higher and closer to
100 g.

The value of ED can itself be rationalized: this energy is released in a volume Ω set by
the jet radius (fast jet damaging mechanism) or by the initial bubble radius (shock wave
mechanism), in both cases smaller than one cubic millimeter. The corresponding local
increase of pressure p ≈ E/Ω is greater than 10 MPa, that is, large enough to damage all
kinds of brain tissues [65] and even the skull itself [66].

For E = ED, we are in the high acceleration regime and we also have Rmax � R0 and
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Figure 3.6: Iso-energy curves in the (a, τ) diagram and comparison with the Wayne State
University Curve. The energy E = ρaLR3

max released by a bubble is calculated using
equation (3.15), which allows us to plot iso-energy curves in the (a, τ) diagram. Varying
E between 0.4 mJ and 8.5 J generates a family of curves that gradually evolve towards the
WSTC (dashes) as E increases. The value at which they match is ED=8.5 J.

a > av so that equation (3.14) becomes the simple scaling law:

Rmax ∼
(
ρ

P0

) 1
3

(aL)
5
6 τ (3.16)

Hence, substituting this relation in equation (3.15), we can derive a simple severity criterion
SCC for cavitation damages:

SCC ∼ ED ∼ a
7
2 τ3 (3.17)

which yields a threshold acceleration a of damage scaling as ED/τ
6
7 . This behavior is close

to be hyperbolic in τ , and its characteristic exponent (-6/7) is comparable to that of the
WSTC, found to decay as τα with α = -0.92 ± 0.03. This suggests that a scenario exclusively
based on cavitation not only captures most of the characteristics of traumatic brain injuries
(damages appear at acceleration greater than 50 g and locate in the contrecoup region), but
also quantitatively recover the observations of the heuristic WSTC: shorter shocks require
larger acceleration to be harmful.

3.4 Futur developments

The work presented in this chapter lead to research focuses:

• Refinement of the experimental set-up to take into account specificities of the in-vivo
system (skull, brain and cerebrospinal fluid). This include : the growth of bubbles in
a confined environment, the influence of a soft solid of the bubble dynamics and the
interaction between multiple bubbles.

• Development of a method to detect cavitation events in the head of a rugby player.
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In the rest of the section, we briefly describe these two axis.

3.4.1 Bubble interaction

The interaction between multiple bubbles influences their dynamics and was thoroughly
studied in the literature [53, 54, 55, 56]. However, most of the studies focus on the inter-
actions between bubbles of roughly the same initial size. In the in-vivo system, we expect
the initial size of the bubble to vary over large range and hence, we wish to look into the
interactions of bubbles of different sizes.
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Figure 3.7: (a) Time evolution of the radius R of two asymmetric bubbles following a shock
of peak acceleration a = 70 g and timespan τ = 7 ms. Red line is the radius of the large
bubble of initial value R02 = 7 mm. Blue lines are the radii of the small bubble of initial
value R01 = R02/ξ, with ξ = 4. Distance d between the center of the two bubbles is varied
from 2.5 cm to infinity. Different value of d are not distinguishable for the large bubble.
(b) Rmax/R

∞
max as a function of the dimensionless distance between the bubbles d/R02 for

a shock of peak acceleration a = 70 g and timespan τ = 7 ms. Asymmetry between the
bubbles is ξ = R02/R01 = 4. Rmax is the maximum radius of a bubble. R∞max is the
maximum radius of a bubble when infinitely far from the other one. Red line is for the
larger bubble. Blue line is for the smaller bubble. (c) Rmax/R

∞
max as a function of the

asymmetry between the bubbles ξ = R02/R01 for a shock of peak acceleration a = 70 g and
timespan τ = 7 ms. The two bubbles are separated by d = 2.5 cm. Red line is for the larger
bubble. Blue line is for the smaller bubble.

To that end, we consider the simplest case of two bubbles of initial radius R01 and R02 , with
R02 > R01 , which centers are separated by a distance d. In this system, the Rayleigh-Plesset
equation is replaced by the following system of two coupled equations:





3

2
ρṘ1

2
+ ρRR̈1 +

4η

R1
Ṙ1 +

2γ

R1
+ ρ

R2
2R̈2 + 2R2Ṙ2

2

d
= ∆p

3

2
ρṘ2

2
+ ρRR̈2 +

4η

R2
Ṙ2 +

2γ

R2
+ ρ

R2
1R̈1 + 2R1Ṙ1

2

d
= ∆p

(3.18)

We first solve this system for the growth of two asymmetric bubbles at various distance d
following a shock of peak acceleration a = 70 g and timespan τ = 7 ms. We define ξ the

ratio of the initial radius of the two bubbles: ξ =
R02
R01

> 1. For ξ = 4 we plot the time

evolution of the radii of the two bubbles in figure 3.7(a). We vary the distance d from 2.5
cm to infinity, i.e. equivalent to the study of the growth of a unique bubble. No matter how
close the two bubbles are, we recover the dynamic previously observed: bubbles slowly grow
to reach their maximum radius Rmax, after what they rapidly collapse. The large bubble
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(red curve), is barely affected by the presence of a small bubble in its vicinity: curves for
different distances cannot be distinguished in figure 3.7(a). However, the dynamic of the
small bubble (blue curve) is largely modified by the presence of the large bubble. The
curve of the time evolution of the radius R1 flattens and becomes more symmetric as the
two bubbles are brought closer: when alone (d =∞) the small bubble reaches a maximum
radius of ∼ 7 mm while it barely reaches ∼ 5 mm when the two bubbles are 2.5 cm apart.

We then concentrate on the maximum radius of the bubble Rmax, which we prove to be
a quantification of the stored energy, and compare it with the maximum radius that the
bubble would reach if it was alone R∞max. We plot in figure 3.7(b) the ratio Rmax/R

∞
max as

a function of the dimensionless distance d/R02 between the bubbles for ξ = 4. Looking at
the maximum radius of the larger bubble (red curve, R2), we retrieve the fact that it is not
affected by the smaller bubble (Rmax2/R

∞
max2 = 1). Nonetheless, the maximum radius of

the smaller bubble is reduced by the presence of the larger one. This influence is reduced
when the two bubbles are spread apart: Rmax1/R

∞
max1 onsets at ∼0.7 when d/R02 ≈ 3.5

and then tends to 1 when d/R02 goes to infinity (Rmax1/R
∞
max1 ≈ 0.98 for d/R02 ≈ 50).

Finally, we investigate the dependence of the maximum radii on the asymmetry of the two

bubble ξ =
R02
R01

as displayed in figure 3.7(c), where Rmax/R
∞
max is plotted against ξ for

d/R02 = 3.6. When the two bubbles are identical (ξ = 1), their maximum radius is slightly
reduced when compared to the case of an unique bubble (Rmax/R

∞
max ≈ 0.95). However,

as soon as the asymmetry is increased, the larger bubble reaches its plateau value for its
maximum radius (Rmax2/R

∞
max2 = 1 for ξ ≈ 2) while the smaller bubble has its growth

inhibited (Rmax1/R
∞
max1 decreases and reach ∼0.6 for ξ ≈ 9).

Although this dependencies should be investigated experimentally, we can already say that
interaction between bubbles should not influence the maximum damaging potential of cav-
itation bubbles created after a shock on the head. Indeed, it can be evaluated taking the
largest nucleus which will grow to the largest bubble being only slightly influenced by others.

3.4.2 In-vivo Measurements

We wish to detect cavitation events in the head of sports players (especially in rugby or
boxing) to facilitate the diagnostic of brain concussion during a game. As we mentioned
before, it is currently based on an on-field clinical test which leaves more than 30 % of the
concussions undetected before the end of the game. As a consequence, players face greater
aftermaths and longer recovery times.

To that end, we wish to use the characteristic noise generated at the collapse of a cavitation
bubble, already thoroughly studied in diverse situations [67, 68, 69]. Here we present the
in-vitro illustration of the set-up we wish to develop for sports players. The experimental
set-up is sketched in figure 3.8(a). Apart from the fact that two accelerometers are used, it is
identical to the one previously described: it consists of a reservoir, equipped with a flexible
membrane, accelerated vertically upon a shock on a damper. The first accelerometer (A1) is
located on the outer wall of the contrecoup region while the other (A2) is on the falling stage
of the impact tower. For a shock of peak acceleration a = 135 g and timespan τ ≈ 2 ms,
the time evolution of the acceleration measured by the two accelerometers is shown in figure
3.8(b). The acceleration measured by the second accelerometer (blue curve) only consists
of a typical shock of peak acceleration ∼ 120 g and half-width ∼ 2 ms. However, the first
accelerometer not only measures roughly the same shock, but also captures a high intensity
(∼ 200 g) and frequency signal 8 milliseconds after the beginning of the impact. Figure
3.8(c) displays a choronophotography of the contrecoup region during the shock. Initially,
no bubbles are present in the container. 1.5 ms after the shock, a cloud of millimetric bubbles
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Figure 3.8: (a) Sketch of the experimental set-up used to detect in-vitro cavitation event
using accelerometers. The first accelerometer (A1) is located on the outer wall of the contre-
coup area. The second accelerometer (A2) is located on the falling stage of the impact tower.
(b) Acceleration U̇ measured by two accelerometers when a container, equipped with a flex-
ible membrane, is accelerated at a peak acceleration 145 g for τ ≈ 2 ms. Signal recorded
by the first accelerometer is plotted in red. Signal recorded by the second accelerometer is
plotted in blue. (c) Chonophotography of the contrecoup area. Accelerometer 1 is located
on the top-right corner of the pictures.

have developed in the contrecoup area. After that, bubbles only grow in the bottom part of
the image (suggesting that, for this shock, the acceleration is not perfectly vertical) while
they collapse in the upper part of the image. At t = 3 ms, all bubbles start collapsing until
they completely disappear shortly after t ≈ 6.5 ms. This suggests that the signal recorded
by the first accelerometer starting 7 ms after the shock corresponds to the collapse of the
cavitation bubbles on the wall of the container in the contrecoup area.

Hence, a cavitation event in our in-vitro experimental set-up can be detected using an
accelerometer placed on the outer wall of the container, near the contrecoup region. We
expect this to be reproducible in-vivo, with rugby players.
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Take home message of Part I

1. A pressure drop is measured in the region opposite of impact (contrecoup
area) when a container of length L filled with water is accelerated by a shock of peak
acceleration a and characteristic timespan τ . For a container equipped with a flexible
membrane, the pressure drop has a magnitude δP = ρaL while it is δP = 1

2ρaL
when the container is completely rigid.

2. Cavitation onset in a confined environment is determined by the cavitation
number Ca introduced in [13]. For a deformable container, cavitation occurs for
Ca ≈ 1. However, for non-deformable container, the incompressibility condition
prevent bubbles from nucleating.

3. Growth of the bubble during a shock is accurately predicted by Rayleigh-
Plesset equation. The maximum radius of the bubble Rmax can be analytically

predicted for a crenel shock. We find: Rmax ≈ R0 +
(

3ρ
2P0

) 1
3
(
2(a−av)L

3

) 5
6
τ . In

particular, this shows that the characteristic time of the shock is a crucial
parameter and that considering only the peak acceleration of the shock is not suf-
ficient to fully capture the behaviour of cavitation bubbles in an accelerated container.

4. Maximum radius of the bubble quantify the energy E it stores. E is found
to scale as δPR3

max ∼ ρaLR3
max. This is also the damaging potential of a bubble.

5. Damages caused by cavitation in a brain concussion scenario can account
for the overall observations gathered in the Wayne State University Tolerance Curve
(WSTC).

6. This work is expected to lead to improvement of the detection of brain concus-
sions in sports (using the characteristic noise produced at the collapse of cavitation
bubbles) as well as to lead to the development of new safety gears (such as self-
rigidifying necklaces that would limit cavitation bubbles).
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We have seen in the previous part that a pressure drop can trigger the growth of cavitation
bubbles. As a consequence, if an underwater projectile travels fast enough, i.e. at a small
enough cavitation number, it enters the supercavitation regime. In this regime, the pressure
around the projectile is far below the vapor pressure of the liquid, such that a large cavitation
bubble develops around the projectile. We wish to quantify the drag modification induced
by the presence of such a bubble. As we stated before, this regime is experimentally difficult
to reproduce. However, the natural bubble created through cavitation can be mimicked via
artificial gas injection. This system is called ventilated cavities and is going to be the main
focus of this part. First, we briefly review earlier works on the subject. We then present
our experimental set-up designed to study ventilated cavities behind spheres near the drag
crisis. Finally, we focus on the main results of our study, which address how the morphology
of the ventilated cavity affect the drag of the projectile.
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4.1 Generalities on ventilated cavities

The entry in the supercavitation regime necessitates a projectile moving at several tens of
meters per second which largely complicates its study. It also reduces the broadness of the
field of application. However, under certain conditions, gas injection (usually air) around an
underwater projectile can generate a large air cavity, often referred as a ventilated cavity,
which mimics the supercavitation regime. In other terms, everything happens as if the phase
transition from liquid to gas of water was replaced by an artificial supply of air. Starting
from this observation, one question should be addressed: is a drag reduction, the main
advantage of the supercavitation regime, still measured for ventilated cavities? [70]

(a) (b)

l0
U

Q
Q

U

2 cm 10 cm

Figure 4.1: Common set-up for the study of ventilated cavity. (a) Top panel: scheme of
the axisymmetric cavity set-up. An axisymmetric body of diameter l0 is placed in a flow of
water of velocity U and air is injected at its back at a volumetric rate Q. Bottom panel:
picture of the cavity experimentally obtained taken from [71]. The disk is on the left-hand
side of the picture and the flow is going from the left to the right. (b) Top panel: sectional
drawing of the 2D cavity set-up. A fence is placed on a wall of a hydraulic tunnel and air is
injected in its wake at a rate Q. Bottom panel: top view picture of the cavity experimentally
obtained taken from [72]. Fence is on the left-hand side of the picture and the flow is going
from the left to the right.

Even though most applications are military and concern torpedo optimisation [73, 74, 75],
ventilated cavities can also reach commercial marine transportation through the improve-
ment of hydrofoils [76, 77, 78, 79] and the drag reduction on hulls [80, 81].

As a consequence of these applications, ventilated cavities have mainly been studied in the
two different configurations presented in figure 4.1. The first one, sketched in the top panel
of figure 4.1(a) is an axisymmetric body (usually a disk or a wedge) of diameter l0, placed
in a water stream of velocity U , with air injected in its near wake at a volumetric rate Q.
This set-up results in the development of a nearly axisymmetric cavity pinned at the rim of
the body as shown in the picture in the bottom panel of figure 4.1(a), taken from [71]. This
set-up typically models projectiles and torpedoes. The second one, drawn in the top panel
of figure 4.1(b), consists of a small fence placed on a wall submerged into a flow of water.
When air is injected behind the fence, a nearly 2D cavity grows in the wake of the fence as
shown in the picture presented in the bottom panel of figure 4.1(b), taken from [72]. This
mimics the cavity that would form on the hull of a boat.

In this chapter, we concentrate on ventilated cavities in the wake of projectiles and briefly
review the literature on the topic.
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4.2 Ventilated cavities in the wake of projectiles

4.2.1 Dimensional analysis

In order to determine the key parameters of the problem, we first carry out its dimensional
analysis. The p = 9 physical variables of the problem are the following: the diameter of the
body l0, the length of the bubble l, the flow velocity U , the air injection volumetric rate
Q, the fluid density ρ, its dynamic viscosity η, the drag of the system D, the gravitational
constant g and the variation of pressure across the interface of the bubble ∆p. These 9
variables relies on k = 3 dimensions, namely length, time and mass. According to the
Buckingham π-theorem, we can construct p = n − k = 6 dimensionless numbers for this
problem. Denoting S = πl20/4 the frontal area of the sphere, we obtain the following six
dimensionless number:





π1 =
l

l0

π2 =
Q

SU

π3 =
D

1/2ρSU2
= CD

π4 =
l0Uρ

η
= Re

π5 =
U√
gl

= Fr

π6 =
∆p

1/2ρU2
= σc

(4.1)

π1 is the dimensionless size of the bubble. π2 is the the dimensionless volumetric injection
rate. It can also be seen as the comparison between the flow velocity U and the characteristic
velocity of the air in the bubble Q/S. π3 is the drag coefficient CD of the ventilated object.
π4 is the Reynolds number which compares the inertial effects to the viscous effects in the
outer flow. π5 is the Froude number based on the size of the bubble and is the ratio between
the inertial effects to the gravitational effects in the flow. π6 is the relative underpressure
of the cavity σc and is the ventilated cavities equivalent of the cavitation number σ.

We now discuss how these different parameters have been investigated in the literature.

4.2.2 Length of the cavity and shedding process

The length of the cavity depends on the relative underpressure σc as plotted for two-
dimensional wedge (prism with an isosceles triangle as base) in figure 4.2(a) taken from
[7]. This plot shows that, similarly as for cavitating object, for all flow velocities, decreasing
the relative underpressure σc of the cavity, creates longer bubbles (i.e. l/l0 increases). It
also suggests that the dimensionless size of the bubble follows a law of the form l

l0
∼ σ−αc .

To rationalize this dependency one has to recall that the length of the cavity l is set by an
equilibrium between the air injected at a flow rate Q and the air shed at the trailing edge
of the bubble at a rate Qout. In the steady state, we have:

Q = Qout(l/l0, Q/SU, Fr,Re, σc, CD) (4.2)
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Figure 4.2: (a) Dimensionless size of the bubble l/l0 as a function of the relative underpres-
sure σc for a two-dimensional wedge (prism with an isosceles triangle as base). Velocity is
varied from 4 to 10 m/s. Figure taken from [7]. (b) Sketches of the three different shed-
ding processes for an axisymmetric cavity of length l. Left: Sectional drawing along the
streamwise direction. Right: Sectional drawing in the cross-stream direction (along the
dashed line). From top to bottom: shedding by toroidal vortices, shedding by hollow vortex
tubes and shedding by pulsating cavities. (c) Dependency of the steady state shedding rate
Qout/SU on the relative underpressure σc in the hollow vortex tube regime. Froude number
based on the length of the cavity is varied ”1” Fr = 19.3, ”2” Fr = 16.5, ”3” Fr = 14.6,
”4” Fr = 12.7, ”5” Fr = 11. Figure taken from [82].

As a consequence, many studies have focused on the understanding of the shedding mech-
anism. Three major shedding processes have emerged and we briefly describe them. For a
thorough review, the reader is referred to [7].

• For small cavities, gravity can be neglected. This is typically the case for σ
3/2
c Fr2 > 10

[83]. In this regime, the cavity is axisymmetric and shed thoroidal vortices as shown
in the top sectional drawings of figure 4.2(b), the shedding rate can be evaluated semi-
empirically and only depends on U and σc [84].

• For large cavities, the back of the bubble is deformed by gravity and the shedding
happens via two vortex tubes as presented in the middle sectional drawings of figure

4.2(b). This regime is observed for σ
3/2
c Fr2 > 1.5 [83]. In this case, the Froude number

based on the cavity length is an additionnal parameter to consider for evaluating the
shedding rate. As the regime of large cavities is relevant for the study of supercavita-
tion, it was thoroughly studied in the literature [85, 86]. However, as supercavitating
projectiles travels at higher Froude numbers, the gravity effects restrict the similarity
of the two systems.

• For large injection rate Q, the cavity is axisymmetric and is observed to be pulsating:
it periodically shed bubbles at its trailing edge. This regime is sketched at the bottom
of figure 4.2(b). In this regime, the shedding rate is found to depend on the ratio

σc/σ, where σ =
p−Pvap

1/2ρU2 is the natural cavitation number [87].

From such mechanisms, the air entrainment rate Qout can be obtained. In the hollow vortex
tube regime, this dependency is shown for several Froude number in figure 4.2(c) taken
from [82]. For all Froude numbers, entrainment rate is mainly decreasing with the relative
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underpressure: large cavities tends to shed greater amount of air. Increasing the Froude
number shifts the curves towards lower underpressure σc.

4.2.3 Influence of the blockage ratio

Unlike in the unbounded flow configuration, increasing the size of the ventilated cavity in
the cross-stream direction in a wall-bounded flow changes the pressure distribution in the
surrounding water. As a consequence, the dimensions of the created cavity are expected to
depend on the geometry of the test-section. The blockage ratio B = W/l0, defined as the
ratio of the width of the tunnel W to the diameter of the object l0, has been identified as
the parameter [88] which drives the influence of the wall on the bubble.
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Figure 4.3: Numerical simulations of the dimensionless length of the cavity l/l0 as a function
of the cavitation number σ for different blockage ratio B = W/l0 (see inset). Figure adapted
from [6].

For natural cavitation experiments, figure 4.3, adapted from [6], presents results of numerical
simulations of the length of the bubble as a function of the cavitation number σ for different
blockage ratio. We first recover the tendency previously observed: for all blockage ratios,
decreasing the cavitation number σ results in the elongation of the cavities (l/l0 increases).
Similarly, it was also shown [88] that the maximal width w of the cavity also increases when
σ is reduced. However, the flow is choked when the cavity is too large, resulting in a minimal
accessible cavitation number σmin in a bounded tunnel. The value of σmin is decreasing with
the blockage ratio B (it increases from ∼ 0.18 for W/l0 = 3.5 to ∼ 0.48 for W/l0 = 1.7).
As a consequence, the cavities are always longer in bounded tunnels. Even though this
effect is limited for short cavities (l/l0 smaller than ∼ 1), it becomes very important when
σ approaches σmin: for instance at σ = 0.5 the cavity in a tunnel with B = 1.7 is six times
longer than in an unbounded flow.

4.2.4 Drag reduction: application to spheres

For axisymmetric body, most of the previous studies use wedges as bodies. Firstly because
they are good model for bullet, torpedoes or missiles heads. The second reason is that
wedges are experimentally easier to manipulate as they create more stable cavities. Finally
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and most importantly, using wedges fixes the pinning point of the ventilated cavity and its
detachment angle: this constrains two free parameters and makes modelling and numerical
simulation possible.

(a) (b)
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If the solid-liquid interface of the sphere is replaced by
an ideal nondeformable spherical gas-liquid interface
where it is assumed to have zero tangential stress, the
drag coefficient has the form CD ¼ 16=Re at low
Reynolds number that follows from the Hardamard-
Rubczynski formula: FD ¼ 4!"RU, for Re ! 0; and
has the theoretical limiting form CD ¼ 48=Re, for
Re ! 1 as obtained by Levich [18]. However, deforma-
tion of the gas-liquid interface has a significant effect on
the drag coefficient at large Re [19] so the Levich result is
not observed in practice [20]. The present experimental
technique offers an alternative methodology to probe the
drag on a nondeformable ‘‘bubble’’ at larger Re.

We produce an inverted Leidenfrost effect by immersing
a metallic sphere, heated to an initial temperature TS, in a
liquid with a low vaporization heat capacity. The perflu-
orinated liquid we used, FC-72 (3MTM FluorinertTM

Electronic Liquid, mostly composed of perfluorohexane,
C6F14) has a boiling point of 56

"C and a vaporization heat
capacity that is approximately 30 times lower than that of
water. Figure 1 shows snapshots of the states of fluid
motion associated with the cooling of a stationary steel
sphere (initial temperature TS ¼ 250 "C) suspended mag-
netically in the FC-72 liquid. When first immersed in
the liquid, a continuous thin vapor layer forms around the
sphere, evident by the rippling waves moving along the
sphere surface accompanied by periodic release of bubbles
from the upper pole of the sphere [Fig. 1(a)]. The vapor
layer thickness estimated by high magnification imaging at
the sphere surface was found to be in the range of 100 to
200 "m (see supplemental materials Fig. 3S [21]). After
the sphere temperature cools below the Leidenfrost tem-
perature, TL, of about 130

"C, in about 25 sec. in this case,
the continuous vapor layer surrounding the sphere can no

longer be maintained and the fluid comes into direct con-
tact with the hot sphere surface. This point is marked by a
very dramatic and explosive release of bubbles [Fig. 1(b)].
The entire sphere cooling process can be seen in the
supplemental video 1 [21].
In our moving sphere experiments, a sphere is heated in

a temperature-controlled furnace and then released to fall
freely under gravity in a cylindrical tank with height of 2 m
and diameter of 80 mm filled with the perfluorinated liquid.
The subsequent motion is captured with a high-speed
camera to determine the terminal velocity, U. The drag
coefficient of the sphere can then be calculated from the
balance between gravity, buoyancy and drag forces as:
CD ¼ ð8g½#s % #&RÞ=ð3#U2Þ, where g is the gravitational
acceleration, #s is the sphere density and # is the liquid
density (See supplemental material for experimental de-
tails and notes on the drag coefficient derivation account-
ing for the cylinder wall effects [21]).
In Fig. 2 we show the dependence of the terminal

velocity of a 20 mm diameter steel sphere with sphere
temperatures in the range: 25 "C< TS < 280 "C. The
data clearly demonstrate the dramatic effect due to the
onset of the Leidenfrost regime. An initial increase in
sphere temperature from 25 "C to 110 "C results in a
moderate increase in the terminal velocity of about 20%
in the range 1:3 m=s to 1:6 m=s. Such variations could be
due to a confluence of the heat-induced viscosity change of
the surrounding fluid and the partial coverage of the sphere
with bubbles when the sphere temperature is above the
boiling point of the fluid. However, when the sphere
temperature exceeds the Leidenfrost temperature,
TL ¼ 130 "C, we observe an increase in the terminal ve-
locity by a factor of 2.6 to a nearly constant value of about

FIG. 1 (color online). (a) Digital camera snapshot of a heated
15 mm steel sphere held stationary in fluorinated liquid with
sphere temperature TS above the Leidenfrost temperature TL. A
thin vapor layer streaming around the sphere can be observed by
the ripples moving along the sphere surface. (b) Snapshot at the
instant when the sphere has cooled to the Leidenfrost tempera-
ture that is marked by an explosive release of bubbles. (See
supplemental video 1 [21]).

FIG. 2 (color online). Variation of the terminal velocity with
the sphere temperature measured for a 20 mm steel sphere
falling through the liquid (FC-72). Open square data points
(blue) are for temperature below the Leidenfrost temperature
(TL ¼ 130 "C) and solid square (red) for temperature above TL

(see supplemental video 2 [21]).
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Stable–streamlined and helical cavity formation 729

60.7 cm 66.8 cm 73.5 cm 73.3 cm

95.9 cm 95.8 cm 99.6 cm 109 cm

(a)

(b)

FIGURE 5. Stable–streamlined cavities obtained using D0 = 10 mm (a) steel (% = 4.54,
Ut = 1 m s�1) and (b) tungsten carbide spheres (% = 8.70, Ut = 1.6 m s�1) for increasing
impact velocities of U0 = 3.43, 3.70, 3.96, 4.20 and 4.43 m s�1 (corresponding to release
heights of hr = 60, 70, 80, 90 and 100 cm respectively). The depth zs (cm) indicates
the distance from the free surface where the stable cavity state is first achieved in each
case. Here, Dc and Lc are the cavity diameter and length measurements respectively; Fr =
240–400.

which finds its roots in the dual-cavity structure reported previously by Marston et al.
(2012). This structure, which is shown forming in figure 7(a) with close-up views in
(c), results in a distinct cavity pinch-off of its own (t = 30 ms) and is described as
having sensitive dependence on the sphere temperature and impact speed. Marston
et al. (2012) ascribed the origin of the dual-cavity structure to the vapour layer not
being able to fully form within the time scale of one radius penetration, i.e tU0/R0 = 1.
The presence of a physical contact line observed around the sphere equator initiated
nucleate boiling and was shed backwards by the advancing vapour layer until the
sphere was encapsulated entirely. However, since the presence of a vapour layer
around the entire bottom hemisphere was indicated with marked uncertainty in the
images recorded, the origin of the dual-cavity structure could not be fully understood
in their study. For hot spheres impacting the liquid medium at comparatively higher
velocities (U0 = 6.25 m s�1), the formation of asymmetric cavities comprising three
or four columns of liquid converging towards the cavity centre was also shown using
top-down views. The liquid columns were attributed to the contact of the cavity wall
with the hot sphere, but the origin of the instability resulting in their formation could
not be explained.

In the parameter space of experiments conducted at constant Ts in this study,
the series of events occurring before a dual-structure cavity forms (i.e t 6 10 ms in
figure 7a) are observed to occur indefinitely (as shown in figure 7b) above a threshold
impact Reynolds number (see figure 12). The cavity is noted to develop evident ridges
or streaks (see the close-ups in figure 7d) which stem from the sphere surface and
follow random trajectories about its equator as it descends into the tank. Columns
of liquid very similar to those observed by Marston et al. (2012) are noted to
originate from each of these ridges, which break up while moving radially inwards to
induce a fine and continuous spray of droplets within the cavity. The cavity collapses
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Figure 4.4: (a) Drag coefficient CD of a sphere as a function of the cavitation number
σ. Figure reproduced from [6]. Theoretical work of [89] is plotted in solid line. Mean
line for experimental results are drawn in dashed [90] (ventilated cavity) and dotted lines
[91] (natural cavitation). (b) Picture of a heated 15 mm steel sphere held stationary in
fluorinated liquid with sphere temperature above the Leidenfrost temperature taken from
[92]. (c) Picture of a tungsten carbide sphere sphere of diameter 1 cm following the impact
at 3.43 m/s on the surface of perfluoro-2-methylpentane (boiling temperature 57◦C). Picture
taken 90 cm below the surface. Sphere is heated at ∼ 200◦C. Picture extracted from [93].

To that end, most of the work on ventilated cavities behind spheres or supercavitating
spheres focus on the detachment point of the cavity [88, 94, 95]. As a result, even though
the hydrodynamic properties of a sphere without air injection are well known and could
consist of a firm ground to start the study of ventilated cavities, only few studies report the
drag modification induced in that way.

Figure 4.4(a), adapted from [6], gathers some of the experimental and theoretical results
on drag coefficients CD [91, 90, 89] obtained on spheres with a cavity. Solid line is a
theoretical result taken from [89]. Dashed line is the mean trend of the experimental results
on ventilated cavities behind a sphere taken from [90]. Dotted line is the mean trend
for a cavitation sphere [91]. For both theory and experiments, decreasing the cavitation
number σ, i.e. increasing the size of the cavity, results in a reduction of the drag. However,
experimental results are lower than the theoretical predictions, which is assumed to be
caused by discrepancies between the theoretical detachment angle and its experimental
value. In any cases, when σ → 0, CD tends to a fix value which ranges from ∼ 0.2 (for
experimental data) to ∼ 0.35 (for theoretical studies). For a Reynolds number between 103

to 105, this corresponds to a drag reduction by a factor ∼ 2.

Recent studies have also pointed out another way of creating the vapor: using heated
projectile [92, 93, 96]. In such experiments, the spheres are heated up to 400◦C, and when
in contact with water, they generate an envelop of vapor, similar to the Leidenfrost effect.
The envelop can be a thin film (figure 4.4(b)) or even a stable streamlined cavity (figure
4.4(c)) when formed after the impact at the water surface. For the case of a thin film, the
minimum drag coefficient measured is 0.1 (corresponding to a reduction by a factor 5 at
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Re ∼ 105) [92] while the drag coefficient can be as low as 0.05 (corresponding to a reduction
by a factor 10 at Re ∼ 105) in the regime of a stable streamlined cavity [93].

4.3 Statement of the problem

It appears that one of the dimensionless parameters introduced in the dimensional analysis,
namely the Reynolds number Re deserves to be thoroughly studied.
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Figure 4.5: (a) Experimental measurements of the drag coefficient CD of a non-cavitating
sphere as a function of the Reynolds number Re. Figure reproduced from [1]. The drag crisis
corresponds to the sudden diminution of drag observed between Re = 105 and Re = 106.
(b) Picture of smoke visualizations of the near wake of a sphere taken from [97]. Air flow
is coming from the right. Left panel: sub-critical regime for Re = 2.3 × 104. Right panel:
super-critical regime for Re = 5.8 × 105. (c) Drag coefficient CD in the drag crisis as a
function of the Reynolds number Re for different roughness of spheres. Figure taken from
[98]. Solid line is a smooth sphere. Roughness is defined as the ratio of the size of surface
defects to the diameter of the sphere and is varied from 2.5 × 10−4 (crosses) to 1.2 × 10−1

(squares).

Indeed, the Reynolds number controls the morphology of the flow around the body and in
its wake. For the extensive literature on the subject, sphere appears as the natural body
to study the influence of the Reynolds number. Indeed, its influence on the drag coefficient
of a sphere is well-known and is presented in figure 4.5(a). This curve has been thoroughly
described in the introduction. However, let us recall that between Re ≈ 103 and Re ≈ 105,
the drag is dominated by inertial effects, CD is constant and has a value around 0.5. Around
Re ≈ 3× 105, the drag coefficient drops to 0.1: this is called the drag crisis. The drag crisis
corresponds to important changes in the flow in the boundary layer and in the wake of the
projectile. Figure 4.5(b) displays smoke pictures of the wake before (left) and after the
crisis (right). In the sub-critical regime, the boundary layer detaches near the equatorial
plane of the sphere, the wake is large and presents characteristic vortices structures. In the
super-critical regime, the boundary layer detaches near the trailing edge of the projectile
and the wake is thin and tilted with the flow. The drag crisis can appear at lower Reynolds
numbers with rough spheres as shown in figure 4.5(c). Additionally, the drag reduction
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previously reported for Leidenfrost spheres enveloped with a thin layer of vapor [92, 96] has
been attributed to an early trigger of the drag crisis.

Most applications of ventilated cavities are underwater fast moving object (typically tor-
pedoes). They are in a regime for which gravity is negligible and the flow super-critical.
However, ventilated cavities have only been studied for Reynolds numbers between 103

and 105. Given the differences in the flow and in the origin of the drag depending the
Reynolds number, it appears crucial to investigate ventilated cavity flow in a broader range
of Reynolds number.

As a consequence, the rest of the study will concentrate on ventilated cavities behind spheres
in the range of Reynolds number of the drag crisis. The study will be carried out in a regime
for which the gravity is negligible. The ventilation will be controlled via the dimensionless
volumetric injection rate Q/SU .
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5
Experimental set-up

The set-up presented in this chapter is used to study ventilated cavities behind spheres. It
is the result of almost two year of preparation. Thierry Pichon, Caroline Frot and Ro-
main Labbé greatly contributed to the improvement of the initial design. Magali Tutou and
Delphine L’Huillier spent hours negotiating with a company under liquidation to have our
orders delivered. Finally, it took us almost a month, along with Juliette Amauger to erect
the complete structure. Needless to precise that the whole process was carefully (or maybe
anxiously) followed by Christophe Clanet and Caroline Cohen.

Two illustrations of the ventilated cavities behind a sphere that can be obtained with the
experimental set-up presented in this chapter.
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5.1 Hydraulic tunnel construction

The experimental set-up used to study ventilated cavities is an hydraulic tunnel with a ver-
tical test section sketched in figure 5.1. The flow of water is driven by a pump (Grundfos,
(1)) with tunable flow rate from 50 to 270 cubic meters per hour. Pumped water passes
through a valve (2) and is poured via a vertical outlet pipe (3) into a three-meters long tran-
quilization tank (4). At the other end of the tank, the water passes though an honeycomb
(with centrimetric holes) and a vertical converging nozzle (5), which reduction ratio is 4 to 1,
before entering the test-section (6). The test-section is vertical and has inner dimensions of
11 by 11 by 70 cm. It is made of three centimeters thick transparent acrylic and is equipped
with two side windows to change the object tested. An air-injection system (7) allows us to
inject, at a control flow rate, air in the test section. Finally, water is fed back into the pump
through a return pipe (8). In this study, objects tested are spheres of diameter l0 varying
from 2 to 3 cm. To obtain smooth spheres, half spheres are 3D-printed in Acrylonitrile
Butadiene Styrene (ABS), attached together and then smoothed above an acetone bath at
70◦C during two minutes. W = 11 cm being the width of the tunnel test-section, we define
the blockage ratio B = W/l0 which ranges from 3.5 to 5.5. As presented in figure 4.3, these
values should be sufficient to reach equivalent cavitation numbers as low as 0.15.

To measure the drag of tested projectiles (i), they are attached onto two submersible force
sensors (iii) with a 3D-printed streamlined holder (ii) as shown in figure 5.1(b). Air is
injected at the trailing edge of the projectile (i) through the holder (ii) as drawn in figure
5.1(c). The flow rate is measured using mechanical flow meter (Key Instruments, (7) in
figure 5.1) with an accuracy below 5% and can be varied from 0.4 to 20 liters per minute
(lpm).

5.2 Flow in the empty test-section

The resulting flow in the test-section can be visualized via Particle Image Velocimetry
(PIV). We use the sub-millimetric bubbles entrained in the tunnel as PIV particles. The
intantaneous velocity field can decomposed in a streamwise (vertical) component −u(t) ey
and an horizontal component v(t)ex. The typical streamwise velocity u all across the tunnel
is plotted in figure 5.2(a) for the pump running at 75 Hz. We note that, apart from the
0.5 cm close to the tunnel walls, the streamwise velocity is fairly homogeneous. Indeed, in
the ten central centimeters of the test-section, the velocity only varies between 4.4 and 4.6
m/s, which corresponds to a variation below 5 %. From such measurements, we compute
the average velocity in the streamwise direction U in the central part of test section. Figure
5.2(b) displays the typical intantaneous non-dimensional cross-stream velocity v/U . In
most of the tunnel, its value is below 1.5 % and it never exceeds 4%. The maximum value is
only reached in the right part of the tunnel, which create an asymmetric in the test-section.
Although this is satisfactory for our applications, this effect was further reduced by ensuring
that the swirling motion induced by the suction in the tranquilization tank is axisymmetric.

With such measurements, we can average the velocity u over the streamwise direction (y-
axis) to obtain the mean profile across the tunnel. Doing so for different running frequencies
of the pump, we obtain the profiles plotted in figure 5.3(a). All the profiles share the same
shape: the velocity u is fairly constant in the central part of the tunnel and rapidly decays
in the centimeter near the walls. The maximum velocity of the profile increase with the
running frequency of the pump. From this profile, we compute U , the average of u in the
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Figure 5.1: (a) Drawing of the hydraulic tunnel used to study ventilated cavities. It is
composed of a pump of variable speed (1), a valve (2), a vertical outlet pipe (3), a three-
meters long tranquilization tank (4), a converging nozzle (5), a vertical test-section (6),
an air injection device (7) and a return pipe (8). (b) Close-up on the test-section of the
tunnel. The tested object (i) is attached onto a streamlined holder (ii) which rests on two
submersible force sensors (iii). Air is injected at the trailing edge of the projectile through
a flexible tubing (iv). (c) Sectional drawing of the projectile (i) and the holder (ii) along
the axis 0y. Air is injected at a volumetric rate Q at the back of the projectile.

central part of the tunnel. Figure 5.3(b) shows the evolution U with the running frequency
of the pump. In range of accessible frequencies (25 to 100 Hz), U is affine with the pump
frequency. We deduce that streamwise velocity in our test-section ranges from 1 to 6 m/s,
which leads to a Reynolds Number Re = Ul0

/ ν between 104 and 2× 105.

5.3 Drag measurements

5.3.1 Validation of the measurement set-up

Drag measurements are done with two submersible miniature force sensors (Futek) loaded
in compression ((iii) in figure 5.1(b)). The two sensors with their acquisition system were
separately calibrated with precision scale. To avoid any perturbation, all drag measurements
are averaged over at least 30 seconds. The calibration of the whole drag measurement set-up
is checked with a simple cylinder running across the tunnel for Reynolds Number between
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Figure 5.2: Particle Image Velocimetry (PIV) measurements all across the test-section.
The origin of the axis is placed at the center of the test section (i.e. where the test-
object is located). Walls of the tunnel are in x = ±5.5 cm. Velocity field is decomposed
in a streamwise (vertical) component −u(t) ey and an horizontal component v(t) ex. (a)
Streamwise component of the flow velocity u all across the tunnel. (b) Non-dimensional
cross-stream velocity v/U all across the tunnel where U is the average of u over time in the
ten central centimeters of the test-section.

3 × 103 and 4 × 104. The drag force D is plotted against the velocity of the flow U in
figure 5.4(a). As expected in this range of Reynolds numbers, the drag is proportional to
U2 [1]. As a consequence, the drag coefficient based on the frontal area S of the cylinder
CD = D

1/2ρSU2 , is constant equal to ±1.1. This value is coherent with what can be found

in the literature [1]. Hence, we can effectively measure the drag on a body placed in the
test-section of the hydraulic tunnel.

5.3.2 Drag coefficient of a sphere

Taking into account the error in the force measurements, the range of Reynolds numbers
accessible in our experimental set-up is 4 × 104 to 2 × 105. These numbers are below
the critical Reynolds number (3 × 105) for which the crisis happens for smooth spheres as
previously shown in figure 4.5(a). However, as we wish to study the influence of ventilated
cavities in the drag crisis, we use the trick previously presented to trigger the transition
earlier: rough sphere are used to carry out the experiments.

Sphere we use for the experiments are 3D printed with a thickness layer of t ≈ 0.1 mm.
After smoothing, the resulting roughness t/l0 is on the order of ∼ 5× 10−3 for a sphere of
diameter 2 cm and on the order of ∼ 3.3×10−3 for a sphere of diameter 3 cm. As previously
stated, we expect that this will induce an early drag crisis (figure 4.5(c) from [98])

Using this experimental set-up, we measure the drag D on a single sphere in the range of
accessible Reynolds numbers. The drag can be expressed as follow:

D =
1

2
ρSCDU

2 (5.1)

where the drag coefficient of the sphere CD is based on its frontal area (πl20/4). For the
spheres we use, CD is plotted in figure 5.4(b). For a sphere of diameter 3 cm (black dots),
the drag coefficient CD is ∼ 0.5 for a Reynolds number around 6 × 104, after that, CD
decreases monotonously to reach ∼ 0.1 at Re ∼ 2 × 105. This phenomenon corresponds
fairly well to the drag crisis that we described in the previous chapter for an equivalent
roughness of 5× 10−3 (plotted in dashed black line, data taken from [98]). For a sphere of
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Figure 5.3: (a) Cross-stream profiles of the streamwise velocity u for running frequencies of
the pump ranging from 25 Hz to 95 Hz. Walls of the tunnel are located in x = ±5.5 cm.
(b) Average streamwise velocity U in the center part of the the tunnel as a function of the
pump frequency. Dotted line is an affine fit in the range of accessible running frequencies
(25 to 100 Hz).

diameter 2 cm (red squares), the measurements can be exploited after Re ∼ 6×105. At that
point, the drag coefficient is CD ∼ 0.42 and then decreases to reach CD ∼ 0.27 at Re ≈ 105.
After that, the drag increases with the Reynolds number. The equivalent roughness for this
crisis, taken from [98], is 1.25× 10−2, which is greater than the actual one (∼ 5× 10−3).

The discrepancies in the predicted roughness and the equivalent one found using [98] are
attributed to the fact that the sphere studied are placed downstream the holder. As a
consequence, the spheres are in the wake of the streamlined holder resulting in slightly
modified drag crisis (mostly shifted towards lower Reynolds numbers) [99]. This effect is
more important as the size of the sphere is close to the size of the holder (i.e. as the size of
the sphere is reduced).

As a consequence, our experimental set-up allows us to reproduce the drag crisis at lower
Reynolds number and to measure the drag on the sphere. In the following chapter, we will
investigate the influence of the growth of a ventilated cavity in the wake of the sphere on
the drag coefficient.
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Figure 5.4: (a) Experimental drag of a cylinder of diameter 4 mm and 11 cm long as a
function of the mean streamwise velocity U . The dotted line is a fit with a power 2 law.
The resulting drag coefficient based on the frontal area S of the cylinder CD = Drag

1/2ρSU2 is

CD =1.1. (b) Experimental drag coefficient CD of a sphere as a function of the Reynolds
number Re. Black dot are for a sphere of diameter l0 = 3 cm while red squares are for a
sphere of diameter l0 = 2 cm. Dashed line, taken from [98], are the drag crisis measured for
roughness ratio of 5× 10−3 (red) and 1.25× 10−2 (black).
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6
In-crisis drag modification

Pictures of a sphere with air injected at its back at an increasing rate from the left to the
right picture.
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6.1 Morphology of the bubbles

We display in figure 6.1 the different types of bubbles developing in the wake of a projectile,
placed in a flow of water at a velocity U , when air is injected at its trailing edge at a constant
volumetric rate Q. In all three pictures, the projectile used is a sphere of diameter l0 = 3
cm and the overall structure (object and bubbles) can be decomposed in a stationary part
and a dynamic shedding part.

U

Q
(lpm)

(m/s)

0.4

10

1 3.2

(b)

(c)

(a)

1 cm

1 cm1 cm

Gravity 
Dominates

Inertia 
Dominates

l0

U

Figure 6.1: Pictures of the structures obtained when injecting air at the back of a sphere,
depending on the air injection rate Q and the flow velocity U . Flow is running downward
and the sphere of diameter 3 cm is always at the top of the picture. For a flow velocity of
1 m/s and Q > 2 lpm, the tunnel is blocked due to the large width of the bubble and stops
running.

For flow velocities below 2.5 m/s (figure 6.1(a)), a steady single large bubble attaches to the
sphere with injection rates as low as 0.4 lpm. This bubble has an increasing width with the
downstream distance from the sphere, up to a diameter of ∼ 2.5 l0. At this point, roughly
two diameters behind the sphere, the bubble loses its stationary behaviour and millimetric
bubbles are shed at the rim of the main structure. For such low flow velocities, bubbles
become too large when compared to the tunnel for injection rate greater than ∼ 2 lpm: the
tunnel is blocked and flow stops.

For high velocity flows U > 2.5 m/s (figure 6.1(b)), no steady bubble is observed in the wake
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of the sphere. Sub-millimetric bubbles are created at the back of the projectile. Although
a few of them remain trapped in the near wake of the sphere (typically a centimeter behind
the sphere), most of the bubbles are shed. When the injection rate is increased above ∼ 4
lpm (figure 6.1(c)), a stationary bubble attaches to the sphere. The bubble created has a
width which hardly varies with the downstream distance: the stationary bubble is close to a
cylinder of diameter l0. At Q = 10 lpm, the shedding occurs approximately 4l0 downstream
the sphere.

The large bubble observed for low velocities is attributed to the effect of gravity. Indeed,
for such velocities, the Froude number Fr, based on the size of the projectile Fr = U√

gl0
is below 5. However, in the high velocity regime where Fr > 5, gravity does not affect
the shape of the bubbles, even for the largest ones. This confirms that the relevant Froude
number, in our experimental set-up, is based on the size of the projectile and not the length
of the bubble. The fact that we can neglect gravity for long bubble is a major improvement
compared to previous studies, as gravity was setting the limit of the largest bubbles, and
this was made possible by the use of a vertical test-section.
For the rest of the study, we will remain in the regime for which gravity is negligible, that
is to say, for Fr > 5.

6.2 Bubble length

6.2.1 Bubble length measurements

Pictures of the evolution of the bubbles behind the sphere for increasing values of the
injection rate Q are gathered in figure 6.2 (a) for a flow velocity U of 3.2 m/s. As previously
noticed, for Q < 4 lpm, no bubble attaches to the sphere and only sub-millimmetric bubbles
are created. Thanks to those bubbles, we observe that the characteristic patterns of vortex
shedding behind a sphere are still present when air injection is weak. We also notice that
the amount of bubbles trapped in the near wake of the sphere increases with Q: bubbles
travel further upstream along the surface of the sphere. At Q ≈ 4 lpm, the trapped bubbles
reach the equatorial plane of the sphere. From that point, a large steady bubble pins at
the equatorial plane of the sphere and grows when increasing Q. As a consequence, the
characteristic vortex shedding also fades away. The resulting stationary bubble has a shape
close to a cylinder of diameter l0 and of characteristic streamwise length l growing with Q.

This length l is precisely defined as shown in figure 6.2(b). In the fully developed bubble
regime, we detect the instantaneous bubble boundary as shown in the left panel of figure
6.2(b). We average 1000 images taken over a second to obtain the mean shape of the bubble
drawn in black in the right panel of figure 6.2(b). The mean boundary of the bubble is
pinned very close to the equatorial plane of the sphere: its initial diameter is close to l0 = 3
cm. As we follow the boundary in the streamwise direction y, the bubble gets larger and
reaches a maximal diameter of w ∼ 4 cm at y ∼ 7 cm downstream from the equatorial
plane. Beyond that point, the bubble becomes thinner until pinches y ∼ 14 cm. After that,
the width becomes roughly constant and independent of y. This part is identified in the
pictures 6.2(a) as the wake of the projectile. The length l of the projectile and its bubble is
evaluated from its leading edge to its wake. Using this definition of the length of the bubble,
we measure it for this set of experiments and we plot its evolution as a function of the air
injection rate Q in figure 6.2(c). This confirms the initial observation that the characteristic
length of the bubble increases monotonously with Q. Moreover, for Q > 4 lpm, l/l0 follows
a close-to-affine trend. Similarly, we measure the maximal width w of the cavity and plot
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Figure 6.2: (a) Pictures of a sphere with an air injection at the back of the sphere when
the air injection Q is varied from 0.4 to 10 lpm. The water flow is going downward at a
velocity kept constant at U = 3.2 m/s. The sphere has a diameter of l0 = 3 cm and is
always located at the top the image. (b) Determination of the characteristic size l of the
bubble for a flow velocity of 3.2 m/s. When the cavity is fully developed, its boundary can
be detected. The typical instantaneous bubble boundary is plotted in red in the left panel.
Origin of the axis is set at the center of the sphere. This boundary is then averaged over
1000 frames taken over 1 second to obtain the mean boundary. This resulting profile is
drawn in black in the right panel. The width w and the length l are determined using this
profile. (c) Dimensionless length of the bubble l/l0 (black) and width w/l0 as a function of
the volumetric air flow rate Q for U = 3.2 m/s.

it in red in figure 6.2(c): when a bubble is pinned at the equatorial plane of the sphere,
the width is roughly constant and equals ∼ 1. The overall cavity is close to a cylinder of
diameter l0 and length l.

After varying the flow velocity and the size of the sphere, we measure the ratio l/l0 and
plot the results in figure 6.3(a). Although the sets of data are spread apart, similar trends
are observed in all data sets: the length of the bubble increases with Q. In the range
of parameters accessible in our experimental set-up, the longest bubbles reach l/l0 ∼ 9.5.
Furthermore, we observe that at a constant air injection rate Q, either increasing the flow
velocity U or using a larger sphere (increasing l0) decreases the length of the bubble.

A first approach to rationalize these observations is obtained by using the results of the
dimensional analysis previously carried out. Among the 6 dimensionless parameters, the
dimensionless size of the bubble l/l0 and the dimensionless injection rate Q/SU , where
S = πl20/4 denotes the frontal area of the sphere, are the more relevant for this part of the
study. We thus plot in figure 6.3(b), the reduced length l/l0 as a function of the dimensionless
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Figure 6.3: (a) Dimensionless length of the bubble l/l0 as a function of the volumetric air
injection rate Q. Black markers are for a sphere of diameter l0 = 3 cm while l0 = 2 cm
for the red markers. Velocity of the incoming flow is varied from 2.6 to 5.6 m/s and is
represented by the marker shape. (b) Dimensionless length of the bubble l/l0 as a function
of the dimensionless injection rate Q/SU . Black dots are for l0 = 3 cm and red squares for
l0 = 2 cm. The dashed line has a slope 1 and is plotted as a visual guide.

air injection rate Q/SU . All the sets of data align in a master-curve composed of two
regimes. For Q/SU greater than ∼ 0.02 we measure l/l0 ∝ Q/SU which corresponds to the
fully developed cavity regime. Below that, the bubble wake is small (l/l0 ∼ 1) and weakly
increasing with Q/SU .

6.2.2 Surface instability properties

In the steady state, let us recall that incompressibility of the cavity implies:

Q = Qout (6.1)

where Qout denotes the volumetric rate at which air is shed at the trailing edge of the bubble.
In order to determine the dependency of Qout on the parameters of the problem, we first
visualize the typical shedding process shown in the post-treatment chronophotography in
figure 6.4(a). We observe that the instantaneous bubble boundary (drawn in red) deviates
from the mean boundary (drawn in black) near the pinning point at t = 0 ms. While
this initial perturbation, on the order of ∼ 2 mm large, travels along the interface in the
streamwise direction, it grows in the cross-stream direction, until it reaches the end of the
stationary bubble at t ≈ 18 ms. At this point, the perturbation is roughly ∼ 1 cm large,
and it is then shed in the wake of the projectile. The consequence of this shedding process
through the growth of instabilities at the interface is that, if we write Ωi the characteristic
volume of air advected by the instability and fi its shedding frequency, we have:

Qout = Ωifi (6.2)

As drawn in figure 6.4(b), the mean profile of the bubble is close to a cylinder of diameter l0.
Hence, the volume of the unstable perturbation at the shedding point can be approximated
as:

Ωi ≈ πl0λiδx(l) (6.3)
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Figure 6.4: (a) Post-treatment chronophotophy of a sphere in a downward water flow with
air injected at its back. Picture are separated by two milliseconds. The sphere has a diameter
l0 = 3 cm, the flow velocity is U = 3.2 m/s and the air injection rate is Q = 10 lpm. The
instantaneous bubble interface is plotted in red while the mean bubble profile is drawn in
black. A perturbation is tracked down the interface profile and indicated with a triangular
black marker. (b) Sketch of a sphere of diameter l0 in a water flow with an air bubble pinned
at its equatorial plan. Typical instantaneous bubble interface is drawn in red and the mean
profile in black. The flow is aligned with the y-axis, which origin is set at the equatorial
plane of the sphere. Air is shed at the trailing edge of the bubble at a rate Qout. δx is the
standard deviation of the instantaneous profile. The instability growing at the interface has
a typical wavelength λi and embraces a volume Ωi of air. (c) Streamwise velocity Ui of an
instability on the interface of the bubble as a function of the flow velocity U . Dotted line
is the line Ui = U . Velocity Ui is extracted from the typical time evolution of the vertical
location yi of the perturbation plotted in the inset. (d) Standard deviation δx of the width
of the instantaneous bubble as a function of the distance from the equatorial plane y. Dots
are for a sphere of diameter 3 cm. Squares are for a sphere of diameter 2 cm. Yellow is for
an air injection rate Q = 5 lpm, red is for Q = 10 lpm and green for Q = 15 lpm. Velocity
is varied from 3.2 (light colors) to 5.6 m/s (dark colors).
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where λi is the typical wavelength of the instability and δx(l) its amplitude at the shedding
point (y = l). Introducing Ui, the instability velocity of the perturbation in the streamwise
direction, we can write:

fi ≈
Ui
λi

(6.4)

Finally, substituting relations (6.3) and (6.4) in equation (6.2) yields:

Qout ≈ πl0δx(l)Ui (6.5)

where Ui and δxi remain to be determined.

A characteristic feature on the instability can easily be tracked over its motion on the inter-
face of the bubble. A typical time evolution of the streamwise position yi of the perturbation
is plotted in the inset of figure 6.4(c). This evolution is linear and we can extract from it the
velocity of the perturbation Ui. Doing so for various flow velocities, we plot Ui as a function
of U in figure 6.4(c). We observe a linear trend for Ui, very close to the line Ui = U (dashed
line). As a consequence, the instabilities are advected with flow and we deduce:

Ui ≈ U (6.6)

δx can be approximated as the standard deviation of the width of the instantaneous bubble
interface. Using this definition, we average δx(y) of the two sides of the bubble and plot
it in figure 6.4(d) as a function of the distance y from the equatorial plane of the sphere.
After varying the size of the sphere, the flow velocity and the injection rate, we note that,
for each data set, a linear trend for δx. Additionally, the slope of δx is independent of all
the parameters. From these observations, we can write:

δx(l) ∼ l (6.7)

Hence, equation (6.5) can be rewritten using the two heuristic relations (6.6) and (6.7):

Qout ∼ ll0U (6.8)

Finally, introducing S = πl20/4 the frontal area of the sphere and using the steady state
condition (equation (6.1)), we can express the dimensionless length of the bubble to find:

l

l0
∼ Q

SU
(6.9)

which captures in a satisfactory way the behaviour observed in figure 6.3(b).

6.3 In-crisis force measurements

Ultimately, the goal of the injecting air is to reduce the drag on the sphere. To see the
influence of the air injection on the drag, we now concentrate on the measurements of
forces.
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Figure 6.5: Top panel: simultaneous measurements of the drag coefficient CD (blue) of the
sphere with air injection at a volumetric rate Q at its back and of the dimensionless size of
the bubble l/l0 (red). Bottom panel: typical picture of the global structure composed of the
sphere and its bubbles wake for selected air injection rates between 2 and 7 lpm. (a) For a
flow velocity of 2.6 m/s, i.e. Re ≈ 8×104. (b) For a flow velocity of 3.6 m/s, i.e. Re ≈ 105.
(c) For a flow velocity of 4.6 m/s, i.e. Re ≈ 1.5× 105.
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Figure 6.6: (a) Drag coefficient CD of a sphere of diameter 3 cm as a function of the dimen-
sionless air injection rate Q/SU . Measurements are presented for 9 different flow velocities
ranging from 2.6 to 6.4 m/s. (b) Drag coefficient CD as a function of the dimensionless
injection rate. Red squares are for a sphere of diameter 2 cm and black dots for a diameter
of 3 cm. Dashed line is a line of slope -1/3 and is plotted as a visual guide. (c) Drag
coefficient CD as a function of the dimensionless length of the bubble l/l0. Red squares are
for a sphere of diameter 2 cm and black dots for a diameter of 3 cm. Dashed line is a line
of slope -1/3 and is plotted as a visual guide.
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6.3.1 Drag of a sphere with air injection at its back

6.3.2 Drag modification

Once again, based on the dimensional analysis previously carried out, the dimensionless
injection rate Q/SU should be introduced as a relevant parameter in this problem. For a
sphere of diameter 3 cm, CD is plotted for all accessible velocities, as a function of Q/SU in
figure 6.6(a). We can note that for Q/SU above 0.03, all the sets of data align on a master
curve, decreasing with the dimensionless air injection rate. The drag coefficient passes from
∼ 0.3 for Q/SU = 0.03 to ∼ 0.22 for Q/SU = 0.1. When Q/SU is decreased below 0.03,
the sets spread apart to reach the in-crisis drag coefficient limit value without air injection.

This observation can be further checked for a different size of sphere. CD is shown for two
different sizes of sphere in a log-log plot in figure 6.6(b). We first notice that the data for
the smaller sphere align with the one previously drawn. Additionally, in the fully developed
cavity regime Q/SU > 0.03, CD remarkably follows a power law of exponent -1/3 on nearly
one decade. The transition between the two regimes happens around Q/SU ∼ 0.03 which
is consistent with our previous observation. The value 0.03 can itself be rationalized: CD
reaches it maximum when the bubble pins at the equatorial plane, which roughly corresponds
to a dimensionless length of the bubble l/l0 of 2 and according to the previous section (figure
6.3) l/l0 ∼ 2 for Q/SU ∼ 0.03− 0.04.

This observation suggests that the dimensionless size of the bubble should also be a relevant
parameter in the study of the drag of the sphere. The drag coefficient is plotted as a function
of l/l0 in figure 6.6(c). The same characteristic feature can be observed: data align in a
master curve above 2 on a power law of exponent -1/3.

All these observations support the following scenario for the drag modification. When the
dimensionless injection rate is greater than 0.03, a large bubble pins at the equatorial plane
of the sphere. From that point, increasing Q/SU elongates the bubble (l/l0 ∼ Q/SU) which
increases the thickness ratio of the global structure. On solid projectile, such as ellipsoids,
this is known for reducing the pressure drag while increasing the skin drag [1]. Overall, the
variation of the drag on such projectile is found to be well described by the semi-empirical
law:

CD = CF

(
3
l

l0
+ 4.5

(
l

l0

)− 1
2

+ 21

(
l

l0

)−2)
(6.10)

where CF is the skin friction coefficient.

However, as the non-slip condition is released on an air-water interface, in our set-up, we
expect the term proportional to l/l0 to vanish. Thus, increasing the thickness ratio of the
whole structure will mainly result in a pressure drag reduction. As a consequence, in the
fully developed regime, increasing Q/SU results in a reduction of the drag. Which accurately
captures the trend of our experimental observation (CD ∼ (Q/SU)−1/3). Nonetheless, we
would need to enlarge the range of parameters to discriminate between only a pressure drag
reduction (typically a sum of several power terms as in equation (6.10)) or a more complexe
scenario (CD ∼ (Q/SU)−1/3 on a broader range of value of Q/SU).

In the low injection rate regime (Q/SU < 0.03) the influence of air injection depends on the
value of the Reynolds number: in the sub-critical regime air injection reduces the drag while
it increases in the super-critical regime. This is due to the fact that air injection creates a
small recirculation zone (identified by the presence of trapped bubbles) in the near wake of
the sphere. The size of this zone is non-negligible when compared to the width of the thin
super-critical wake. As a consequence, in the super-critical regime, the wake is enlarged
by the air injection. In other words, injecting air is equivalent to riding up the drag crisis
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Figure 6.7: Drag coefficient CD of a sphere as a function of the equivalent cavitation number
σeq. σeq is evaluated using our measured cavity length and [88]. Theoretical work of [89] is
plotted in solid line. Mean line for experimental results [90, 91] are drawn in dashed and
dotted lines.

(decreasing Re). This drag increase effect ceases when the size of this recirculation zone is
on the order of the size of the projectile (i.e. l/l0 ∼ 2), after that, a large bubble pins on
the sphere.

Finally, our results can be compared to the literature introduced in figure 4.5(b). We first
compute an equivalent cavitation number σeq from the length of the cavity measured in our
experiments using figure 4.5(a). For the sphere of diameter 3 cm we used, this predicts a
minimum equivalent cavitation number of ∼ 0.18. We then plot CD as a function of σeq
in figure 6.7. Although the tendency of the measurement is identical to the one observed
in [90] and [91], our values are ∼ 0.02 − 0.04 lower. As before, this could be attributed
to a change in the detachment point of the cavity from the sphere due to the air injection
method: even though we did not focus on that point, we can easily note in figure 6.2(a)
that it is just downstream of the equatorial plane.

6.3.3 Application to supercavitation

Let us reconsider the problem stated in the introduction: can a submarine go up to 100
m/s?

We first compute the cavitation number σ of the flow around the submarine and find σ ∼
0.02. At this cavitation number, extrapolating our data, we predict that the drag coefficient
of the sphere is CD ∼ 0.2, i.e. a drag reduction of a factor 2.5 in the sub-critical regime
or a drag increase of a factor 2 in the super-critical regime. As the width of the submarine
is typically metric, we have Re ≈ 108, and in the case of a sphere, the flow would be
super-critical.

In any cases, this suggests that supercavitation would not be sufficient to reach the drag re-
ductions necessary to have (spherical) submarines going at 100 m/s. However, the influence
of the geometry of the object and the shape of the bubble is important and could change
the conclusion stated here. In particular, as shown in [92], the stability of the bubble is
crucial: ensuring that perturbations are damped at the interface of the bubble and that the
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bubble pinches off in a stationary point as presented in figure 4.4(c), the drag coefficient
can be reduced as low as 0.05. This value of the drag coefficient is still too high to make a
submarine going at 100 m/s technically feasible. However, it shows that an important drag
reduction (by a factor 10) can be achieved using supercavitation, as low as the one that are
measured when streamlining a projectile using fairing and presented in the introduction.
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Chapter 6. In-crisis drag modification

II

Take home message of Part 6

1. Three types of bubble wakes can be observed: for small flow velocities,
gravity matters and the resulting bubble is large. For higher flow velocities, when
the injection rate is small, typically sub-millimetric bubbles are created and part of
them are trapped in the near wake of the sphere. For high injection rate and high
flow velocity, a nearly cylindrical large bubble pins on the sphere.

2. There are three relevant dimensionless numbers: the dimensionless size
of the bubble l/l0, the dimensionless volumetric air injection rate Q/SU and the
drag coefficient CD.

3. Characteristic size l of the bubble increases with the injection rate Q.
We have l/l0 ∼ Q/SU . This scaling is the result of the air shedding at the trailing
edge of the bubble via instabilities growing at the interface. These instabilities are ad-
vected by the flow and have an amplitude growing linearly in the streamwise direction.

4. Drag is modified by air injection. When a bubble is pinned to the sphere,
pressure drag is reduced by the increase of the thickness ratio and we have CD ∼
(Q/SU)−1/3. Otherwise, if the sphere is in the sub-critical regime, drag is reduced
by air injection. If it is super-critical, injecting air perturbs the wake inducing a large
drag increase.
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PART III

STABILITY OF THE
TRAJECTORY OF THE

STREAMLINED PROJECTILE
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III

We have seen in part I that a projectile going fast enough underwater generates a gas bubble
around it. We then showed that such a bubble reduces its drag, making the whole system
analogous to an inhomogeneous streamlined projectile. In the present part, we characterise
the trajectory of a streamlined projectile following its impact on water. In particular, we
determine whether the projectile will have a straight trajectory and will reach its target. In
chapter 7, we review the literature and present our experimental set-up. We then present
our main results in chapter 8: the conditions under which a streamlined projectile follows a
straight trajectory.
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7
Short review on water entry and

path instabilities

Picture of a gannet about to enter water. Photo credits: Steve Ward Nature Photography
(www.stevewardneature.co.uk).
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Chapter 7. Short review on water entry and path instabilities

III

7.1 Water entry

7.1.1 Cavity formation

Modern studies on the impact of projectiles in water started with the experimental work
of Worthington and Cole [100]. The reason why it has drawn the attention of so many
researchers [101, 102] lies in the diversity of applications. It is obviously of great interest
for military purposes such as the optimisation of the shape of missiles [103, 104, 105] or the
design of floats for floatplanes [106]. It can also be used to describe the underlying physics
of animals waking on water such as basilik lizards [107, 108, 109], or to understand the dive
of birds like gannets [110, 111, 112, 113].

(b)
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Figure 13. Comparison between the cavity observed experimentally with a solid sphere
of radius R = 11.5 mm and Froude number Fr =52 (left-hand image) and the numerical
integration of equation (4.18) (right-hand image).

R0 must be chosen large compared to the capillary length a ≡
√

σ/(ρg). The present
study is conducted in this limit R0/a ≫ 1.

With these assumptions, the challenge now is to make an appropriate choice for
the potential φ: a direct extension of the method used to solve the Besant–Rayleigh
problem consists of assuming a purely radial motion ru = RṘ, which leads to

φ = RṘ ln(r/R∞), R < r < R∞ (4.15)

= 0, r > R∞. (4.16)

In this expression for the velocity potential, R∞ is a function of time which can
be evaluated through an assumption on the total kinetic energy: At a depth z, we
consider a layer of liquid of thickness dz. The total kinetic energy in this layer is
T ≡ 1

2

∫ R∞
R

ρ 2πr dr dz u2. Using the above evaluation of the velocity we can integrate
this expression and find T = πρ dz R2Ṙ2 ln(R∞/R). Since all the motion is radial, this
kinetic energy comes from the motion of the liquid layer πR2 dz. Assuming that
T ≈ πR2 dz Ṙ2, this suggests that ln(R∞/R) ≈ 1, which states that the motion in the
liquid extends over a region of the order of the local size of the hole R (R∞ ≈ 2.7 R).

Using this expression for the potential, we can simplify the momentum
equation (4.14) and get the equation for the cavity:

RR̈ + 3
2 Ṙ

2 = −gz. (4.17)

The only difference with the equation (4.5) obtained for the Besant–Rayleigh problem
is that the pressure is not constant but depends linearly on z. At a given z, this equ-
ation for the cylindrical cavity can be integrated once:

Ṙ2 = αU 2

(
R0

R

)3

+
2

3
gz

[(
R0

R

)3

− 1

]
(4.18)

where we have used the limit condition Ṙ2 (R = R0) = αU 2 with α a constant smaller
than 1. Since H = Ut is the depth of the cavity at time t , we integrate equation (4.18)
numerically from z = 0 to z = H and for each z location from t = 0 to (H − z)/U ,
using the initial condition R(t = 0) = R0. The results obtained are compared to the
experimental observations in figure 13, where the solid sphere (R = 11.5 mm) impacts
with a Froude number Fr = 52. The numerical integration is done with α = 0.1. The
comparison reveals that the general features observed experimentally are captured
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Figure 13. Comparison between the cavity observed experimentally with a solid sphere
of radius R = 11.5 mm and Froude number Fr =52 (left-hand image) and the numerical
integration of equation (4.18) (right-hand image).

R0 must be chosen large compared to the capillary length a ≡
√

σ/(ρg). The present
study is conducted in this limit R0/a ≫ 1.

With these assumptions, the challenge now is to make an appropriate choice for
the potential φ: a direct extension of the method used to solve the Besant–Rayleigh
problem consists of assuming a purely radial motion ru = RṘ, which leads to

φ = RṘ ln(r/R∞), R < r < R∞ (4.15)

= 0, r > R∞. (4.16)

In this expression for the velocity potential, R∞ is a function of time which can
be evaluated through an assumption on the total kinetic energy: At a depth z, we
consider a layer of liquid of thickness dz. The total kinetic energy in this layer is
T ≡ 1

2

∫ R∞
R

ρ 2πr dr dz u2. Using the above evaluation of the velocity we can integrate
this expression and find T = πρ dz R2Ṙ2 ln(R∞/R). Since all the motion is radial, this
kinetic energy comes from the motion of the liquid layer πR2 dz. Assuming that
T ≈ πR2 dz Ṙ2, this suggests that ln(R∞/R) ≈ 1, which states that the motion in the
liquid extends over a region of the order of the local size of the hole R (R∞ ≈ 2.7 R).

Using this expression for the potential, we can simplify the momentum
equation (4.14) and get the equation for the cavity:

RR̈ + 3
2 Ṙ

2 = −gz. (4.17)

The only difference with the equation (4.5) obtained for the Besant–Rayleigh problem
is that the pressure is not constant but depends linearly on z. At a given z, this equ-
ation for the cylindrical cavity can be integrated once:

Ṙ2 = αU 2
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where we have used the limit condition Ṙ2 (R = R0) = αU 2 with α a constant smaller
than 1. Since H = Ut is the depth of the cavity at time t , we integrate equation (4.18)
numerically from z = 0 to z = H and for each z location from t = 0 to (H − z)/U ,
using the initial condition R(t = 0) = R0. The results obtained are compared to the
experimental observations in figure 13, where the solid sphere (R = 11.5 mm) impacts
with a Froude number Fr = 52. The numerical integration is done with α = 0.1. The
comparison reveals that the general features observed experimentally are captured
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Figure 13. Comparison between the cavity observed experimentally with a solid sphere
of radius R = 11.5 mm and Froude number Fr =52 (left-hand image) and the numerical
integration of equation (4.18) (right-hand image).

R0 must be chosen large compared to the capillary length a ≡
√

σ/(ρg). The present
study is conducted in this limit R0/a ≫ 1.

With these assumptions, the challenge now is to make an appropriate choice for
the potential φ: a direct extension of the method used to solve the Besant–Rayleigh
problem consists of assuming a purely radial motion ru = RṘ, which leads to

φ = RṘ ln(r/R∞), R < r < R∞ (4.15)

= 0, r > R∞. (4.16)

In this expression for the velocity potential, R∞ is a function of time which can
be evaluated through an assumption on the total kinetic energy: At a depth z, we
consider a layer of liquid of thickness dz. The total kinetic energy in this layer is
T ≡ 1

2

∫ R∞
R

ρ 2πr dr dz u2. Using the above evaluation of the velocity we can integrate
this expression and find T = πρ dz R2Ṙ2 ln(R∞/R). Since all the motion is radial, this
kinetic energy comes from the motion of the liquid layer πR2 dz. Assuming that
T ≈ πR2 dz Ṙ2, this suggests that ln(R∞/R) ≈ 1, which states that the motion in the
liquid extends over a region of the order of the local size of the hole R (R∞ ≈ 2.7 R).

Using this expression for the potential, we can simplify the momentum
equation (4.14) and get the equation for the cavity:

RR̈ + 3
2 Ṙ

2 = −gz. (4.17)

The only difference with the equation (4.5) obtained for the Besant–Rayleigh problem
is that the pressure is not constant but depends linearly on z. At a given z, this equ-
ation for the cylindrical cavity can be integrated once:

Ṙ2 = αU 2

(
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+
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[(
R0
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− 1

]
(4.18)

where we have used the limit condition Ṙ2 (R = R0) = αU 2 with α a constant smaller
than 1. Since H = Ut is the depth of the cavity at time t , we integrate equation (4.18)
numerically from z = 0 to z = H and for each z location from t = 0 to (H − z)/U ,
using the initial condition R(t = 0) = R0. The results obtained are compared to the
experimental observations in figure 13, where the solid sphere (R = 11.5 mm) impacts
with a Froude number Fr = 52. The numerical integration is done with α = 0.1. The
comparison reveals that the general features observed experimentally are captured
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Figure 13. Comparison between the cavity observed experimentally with a solid sphere
of radius R = 11.5 mm and Froude number Fr =52 (left-hand image) and the numerical
integration of equation (4.18) (right-hand image).

R0 must be chosen large compared to the capillary length a ≡
√

σ/(ρg). The present
study is conducted in this limit R0/a ≫ 1.

With these assumptions, the challenge now is to make an appropriate choice for
the potential φ: a direct extension of the method used to solve the Besant–Rayleigh
problem consists of assuming a purely radial motion ru = RṘ, which leads to

φ = RṘ ln(r/R∞), R < r < R∞ (4.15)

= 0, r > R∞. (4.16)

In this expression for the velocity potential, R∞ is a function of time which can
be evaluated through an assumption on the total kinetic energy: At a depth z, we
consider a layer of liquid of thickness dz. The total kinetic energy in this layer is
T ≡ 1

2

∫ R∞
R

ρ 2πr dr dz u2. Using the above evaluation of the velocity we can integrate
this expression and find T = πρ dz R2Ṙ2 ln(R∞/R). Since all the motion is radial, this
kinetic energy comes from the motion of the liquid layer πR2 dz. Assuming that
T ≈ πR2 dz Ṙ2, this suggests that ln(R∞/R) ≈ 1, which states that the motion in the
liquid extends over a region of the order of the local size of the hole R (R∞ ≈ 2.7 R).

Using this expression for the potential, we can simplify the momentum
equation (4.14) and get the equation for the cavity:

RR̈ + 3
2 Ṙ

2 = −gz. (4.17)

The only difference with the equation (4.5) obtained for the Besant–Rayleigh problem
is that the pressure is not constant but depends linearly on z. At a given z, this equ-
ation for the cylindrical cavity can be integrated once:

Ṙ2 = αU 2

(
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)3

+
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3
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[(
R0

R
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− 1

]
(4.18)

where we have used the limit condition Ṙ2 (R = R0) = αU 2 with α a constant smaller
than 1. Since H = Ut is the depth of the cavity at time t , we integrate equation (4.18)
numerically from z = 0 to z = H and for each z location from t = 0 to (H − z)/U ,
using the initial condition R(t = 0) = R0. The results obtained are compared to the
experimental observations in figure 13, where the solid sphere (R = 11.5 mm) impacts
with a Froude number Fr = 52. The numerical integration is done with α = 0.1. The
comparison reveals that the general features observed experimentally are captured
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(a)

1 2

3 4

Figure 7.1: (a) Pictures taken 6 ms after the impact of a sphere on water, adapted from
[114]. Top panel: side view of a polished serpentine spherical stone of diameter 2.57 cm
impacting water after a 14 centimeters fall (i.e. an impact velocity of 1.66 m/s). Bottom
panel: three-quarter view of a rough sphere of diameter 1.5 cm impacting milky water after
a 15 centimeters fall (i.e. an impact velocity of 1.72 m/s). (b) Side view of the water entry
of a sphere of radius 1.2 cm impacting at a velocity of 2.4 m/s. Comparison between the
cavity observed experimentally (left-hand image) and the numerical integration of Bernoulli
equation assuming potential flow (right-hand image). Figure adapted from [115].

The early works have focused on characterising the splash emitted at the surface of the
fluid when it is impacted by a projectile, for instance a sphere. Splash appears only for an
impact velocity U0 greater than a threshold value which was found to depend on two main
parameters: the fluid properties and the surface characteristics of the projectile [114]. This
is illustrated in the two pictures of figure 7.1(a), adapted from [114]. The top picture is
taken 6 ms after the impact of a smooth sphere on water. On this side view of the impact,
following a 14 centimeters fall (U0 = 1.66 m/s), no splash is observed: only a thin film of
water covers part of the smooth sphere. Conversely, when a rough sphere, initially released
from an equivalent height (U0 = 1.72 m/s), impacts on water, it produces a large splash
(bottom picture).

When a splash is observed, a large quantity of air is entrained by the projectile at the passage
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7.1. Water entry

III

of the air-water interface, which forms a cavity. Many of the following studies focused on
describing and modelling the dynamic of the cavity [103, 104, 116, 115], underlying the
influence of the ambient air [117] and of the surface properties of the projectile [118, 119].
The main features of the cavity dynamic are gathered in the chronophotography (left) and
numerical simulation (right) presented in figure 7.1(b), adapted from [115]. In a first part
of the entry, air is entrained behind the projectile and the cavity grows both vertically and
horizontally (1 and 2). In a second part, the cavity keeps growing vertically but shrinks
horizontally (3) until it completely closes at pinch-off (4) [120]. After that, both parts
of the cavity resorbs. The numerical simulation is obtained assuming potential flow and
captures all the previously described features. It also quantitatively matches fairly well the
observations.

7.1.2 Slender bodies

So far, we have presented results on spherical bodies, however, the bodies we are interested in
are elongated axisymmetric bodies. Impact of such bodies have recently drawn the attention
of many researchers [121, 122, 123], which can be explained by the complex dynamic of
the cavity. Indeed, even though the projectile is axisymmetric and impacts water almost
perpendicularly, the resulting cavity can be very asymmetric.
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time of cavity break increases as the inclined angle increases. 
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Fig. 9. Time characteristics of the impact cavities of the inclined cylinders with hor- 
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reason is that a greater moment, caused by the inertial force 
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d ). The flow behaviour of the water wedge is shown in Fig. 10 . The 

Fig. 10. Sketches of the behaviours of the water wedge. This cross section was cut 
from Fig. 8 d by a horizontal plane. 

t = 2 ms t = 18 ms

t = 70 ms t = 122 ms

(b)(a)

072108-10 Bodily, Carlson, and Truscott Phys. Fluids 26, 072108 (2014)

FIG. 8. (a) Hydrophilic and hydrophobic vertical (0◦) entry cases show less than 0.6 diameters of lateral displacement. (b)
The half-and-half case resulted in maximum lateral displacement of 2.1 diameters. (c) A 2◦ impact angle results in a maximum
lateral displacement of 7.8 diameters. (d) A maximum lateral displacement of 13.1 diameters is seen for the hydrophobic 5◦

entry case. The legend in (a) is used for all four plots. The gray lines represent Uo = 2.7 m/s and the black lines represent
Uo = 3.13 m/s. The coordinate frame in (b) is the same for all subsequent trajectory plots. D is the diameter of the projectile
(2.54 cm). The markers indicate a time step of 15.63 ms. See Table I for wetting angles.

Truscott et al.30 showed that from impact to pinch-off hydrophobic spheres had increased
velocity compared to hydrophilic ones due to the diminished formation of vortices behind the
cavity-forming hydrophobic spheres. Here it appears that the slender bodies have relatively the same
speeds up to pinch-off whether hydrophilic or hydrophobic. However, the flat nose hydrophobic case
does seem to have a significantly slower speed at depth. This difference between spheres and slender
axisymmetric bodies could be due to the long body inhibiting vortex shedding in both hydrophilic
and hydrophobic cases near the surface coupled with the increased hydrodynamic drag for the
hydrophobic case. Further study of the slender axisymmetric bodies using PIV would be beneficial
to understand the exact causes of the velocity differences.

Dz

x

Figure 7.2: (a) Chronophotography of a cylinder impacting water taken from [122]. At the
impact, the cylinder has a vertical velocity of 2.45 m/s and an horizontal velocity of 0.98
m/s. The cylinder has a diameter of D = 29 mm. (b) Trajectories of the center of mass of
a cylinder after its impact on water. The angle of the projectile at the impact is 2◦. Gray
data are for an initial vertical velocity of 2.7 m/s while black data are for a vertical velocity
of 3.13 m/s. Material, surface properties and shape of the end of the cylinder are varied.

This situation is represented in the chronophotography of figure 7.2(a), taken from [122]
where a cylinder impacts water at an angle ∼ 0.4◦ with the vertical. At impact, the projectile
has a vertical velocity of 2.45 m/s and an horizontal velocity of 0.98 m/s. Up to 18 ms
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after impact, the projectile remains close to vertical. However, the air cavity entrained is
asymetric and is only on one side of the projectile. When the cavity grows the projectile
rotates (t = 70 ms) resulting in a projectile at an angle ∼ 15◦ at the pinch-off of the cavity
(t = 122 ms). This rotation of the projectile will induce an horizontal motion for the centre
of mass of the projectile.

Such lateral deviation of the center of mass of a slender projectile after the passage through
an air-water interface was also reported in [121], and so, without initial horizontal velocity.
Noticeably, this deviation is recorded no matter the shape of the end of the cylinder and
its surface properties as shown on figure 7.2(c) taken from [121]. The main parameter
influencing the magnitude of the deviation appears to be the initial angle: as one could
guess, the lateral deviation grows with the initial angle.

7.2 Path instabilities

However, the previous studies only focused on the early times after the passage of the
interface: one could wonder what is the trajectory of the projectile long after the crossing
of the interface? This question is particularly relevant for applications requiring to reach a
specific position underwater (diving bird or military applications).

Unsteady aerodynamics of fluttering and tumbling plates 71
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Figure 2. Measured plate trajectories: (a) the fluttering plate with h = 0.081 cm and β = 1/14,
(b) two apparently chaotic trajectories for the h = 0.162 cm and β = 1/6 plate, and (c) the
tumbling plate with h =0.162 cm and β =1/5. For clarity the two trajectories in (b) are
displaced from each other 0.5 cm horizontally and 1.5 cm vertically. The thick line segments
show the plate cross-sections with time intervals of 0.04 s in (a) and 0.025 s in (b) and (c).

where Ω, V1, V2, and V3 are constants. The constant Ω is the angular frequency of
the periodic motion, V2 is the average descent speed, and V1 and V3 describe the
amplitudes of the oscillations in vx and vy , respectively. Figure 4 shows the curve
(4.1) and (4.2) with the parameters Ω = 9.8 rad s−1, V1 = 32.6 cm s−1, V2 = 9.1 cm s−1,
and V3 = 14.5 cm s−1 obtained from the fits shown by the two dotted lines in figure 3.
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potentialflowtheoryisperformedasawaytoemphasize
indirectlytheroleofthewake.

Wecarriedoutanexperimentalstudyonthefreerise
offlatcylinders.Thephysicalparametersgoverningthe
problemarethegravityg,thefluiddensity!fandkine-
maticviscosity",thebodydensity!b,thediameter
d,andthicknessh.Theproblemisthenentirelycharacterized
bythreedimensionlessparameters,namelytheaspectratio
d/h,thebody-to-fluiddensityratio!b/!f,andthe
Archimedesnumber,whichmaybethoughtofasa
Reynoldsnumberbasedonagravitationalvelocityscale,
Ar=d/"!3/16"#!f−!b$/!f%gh.Notethatforbodieswith
negligiblethickness#d/h→#$thenondimensionalparam-
eterI*proportionalto!b/!fh/discommonlyused.Itis
clearlyimportanttointroduceanondimensionalparameter
involvingthedensitydifferenceandanotheroneinvolving
thedensityratio,butweknownophysicalargumenttopre-
ferI*to!b/!f.Forpracticalreasonsthedensityratio!b/!fis
fixedclosetounityinthepresentexperiments,andwefocus
ontheroleoftheaspectratioandArchimedesnumber.The
aspectratiod/hisvariedfrom1.5to10inordertoinvesti-
gatethemajorkinematicdifferencesoccurringwhenthe
bodyanisotropyissignificantlychanged.Thecylindersare
madeofanylonofdensitycloseto1.02g/cm3andtheir
diametersrangefrom1to1.8cm.Theyarereleasedatthe
bottomofatank1.70mhigh,havingasquaresectionof40
cmsidewidth,filledupwithsaltwater.Weusedverysmall
body-to-fluiddensitydifferences,!f−!b/!f&10−2,resulting
inmoderateArchimedesnumbers,70$Ar$120,forwhich
harmonicoscillationsofthebodiesareobserved.Forthis
purposethedensitiesofboththebodiesandthefluidwere
determinedwithanaccuracyof5%10−4g/cm3.Thehomo-
geneityofthesolutionwithinthetankwasalsocheckedto
makesurethatnostratificationoccurred.Thecylinderswere
releasedatthebottomofthetankusinganoriginalshutter
consistingoftwohorizontalplatesthatslideinoppositedi-
rections.Wecheckedthattheinitialconditionsofrelease
#inclinationandvelocityperturbation$hadnoinfluenceon
theperiodicmotion.Nevertheless,thecylinderswerere-
leasedgentlyandface-up#withaninclinationlessthan10°$.
Theriseofthecylinderswasthenfollowedbytwoperpen-
diculartravellingcameraswhosepositionwasrecordedbya
high-accuracymagneticencoder.Imageprocessingallowed
thedeterminationofthebodytranslationandorientationvia
contourdetectionwithanaccuracyof±0.15mm.

IntherangeofArconsideredhere,aftertheinitialtran-
sient,theperiodictrajectoryofthebodylieswithinanearly
verticalplane:thehorizontaldriftislessthan2°andthe
angularvelocityofthepossiblerotationofthezigzagplane
ismorethan50timessmallerthantheprincipaloscillation
frequency.Figure1showstwoinstantaneouspicturesofa
bodyanditswakeduringthefinalperiodicmotionforaspect
ratiosof2and10,respectively,andArabout85.Inthis
figure,thebodieshavebeencoveredwithdyeinorderto
visualizetheunsteadinessofthewake.Sincetheuseofdye
doesnotallowustomaintaintherequiredaccuracyonthe
densitydifference,thequantitativeresultsonthebodymo-
tiondiscussedbelowwereobtainedwithoutdye.

WithinthechosenrangeofArchimedesnumber,thever-

ticalmeanvelocity#Vz$variesbetween10and35mm/s,and
thecorrespondingReynoldsnumber,Re=Vzd/",variesbe-
tween200and320.TheevolutionofRewithArisgivenin
Fig.2fordifferentvaluesoftheaspectratio.TheReynolds
numberisseentobelinearlydependentontheArchimedes
numberandtodependonlyweaklyontheaspectratio.This
allowsustocharacterizetheflowaroundbothfixedand
freelymovingbodiesthroughRe,insteadofusingArforthe
latter.

Thetwo-dimensionaloscillatorymotionofthebodymay
becharacterizedbyatwo-componentvelocityvectoranda
one-componentrotationrate.Inallcases,thehorizontalve-
locitycomponentandtherotationratearefoundtoexperi-
enceharmonicoscillationsatthesamefrequency#Fig.3$.
Theamplitudeofthehorizontalvelocitycomponentliesbe-
tween1and10mm/s,whichcorrespondstodisplacements
ofthebodycenterrangingfrom1.5to6mm.Theamplitude
oftheverticalvelocityoscillationisconsiderablysmaller.As
alreadyreportedforrisingbubbles

7,12
andfallingthin

strips,
13

theverticalvelocityoscillateswithafrequencythat

FIG.1.Visualizationofthewakebehindtwofreelyrisingcylinders,Ar
=85#Re&240$.Left:d/h=2;right:d/h=10.

FIG.2.ReynoldsnumberasafunctionoftheArchimedesnumberforvari-
ousaspectratios.
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Figure 7. Definition of the principal frame of oscillations (⇠, ⌘, ⇣).
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Figure 8. Superimposition of 71 bubble trajectories in the principal frame of oscillation.

is determined while that of the secondary one depends on the experimental runs.
The vertical motion shows weak oscillations at twice the frequency of the horizontal
motion. Their amplitude, their phase and the mean rise velocity are determined.

At this point, we propose the following interpretation. The rectilinear trajectory is
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Figure 7.3: (a) Experimental fluttering of a plate of thickness 0.089 cm and of aspect ratio
1/14 at a Reynolds number Re = 1147. The time step is 0.04 s. Figure taken from [124].
(b) Trajectories, in the mean oscillation plane (z,x̃), of 71 rising bubbles of radius 2.5 mm.
Figure taken from [125]. (c) Smoke visualization of the wake behind a disk of aspect ratio
1/10 at Re ≈ 240. Picture adapted from [126].

The trajectory of a falling or rising object in a fluid can show complex behaviour even
in an infinite bath [127]. For instance, a light thin plate, initially released horizontally
will follow a characteristic oscillatory motion, called fluttering and often referred as ”the
metro ticket instability”. Such motion is presented in figure 7.3(a) taken from [124]. A
thin square plate, of aspect ratio χ = thickness

width = 1/14, initially released horizontal follows
an oscillatory motion of amplitude ∼ 3 time its side when falling. This behaviour is one
example of the whole family of trajectories, that ranges from nearly sinusoidal oscillations
to chaotic motion [124], which can be observed with a falling plate. The main parameters
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that determine the trajectory of a falling square plate of thickness t and side D at a velocity
U are: the aspect ratio of the object χ = e/D, its density ratio ρ̄ =

ρobject
ρfluid

and its Reynolds

number Re = UD/ν, where ν is the cinematic viscosity of the fluid. A thorough review of
their influence is made in [127].

However, it is interesting to note that oscillatory trajectories are also recorded for objects as
simple as spheres. Indeed, a rising bubble in a fluid will follow a nearly sinusoidal trajectory
as shown in figure 7.3(b) taken from [125]. This plot presents the trajectories, in the mean
plane of oscillation (z,x̃), of 71 bubbles rising in water. Their trajectory is consistently
sinusoidal of amplitude ∼ 2 bubble diameter. The fact that such oscillatory paths are
observed for fully spherically symmetric objects like bubbles led to discover that they arise
from the fluctuating wake. This is illustrated by the smoke visualization picture of the wake
of a flat cylinder presented in figure 7.3(c), taken from [126]. We observe the periodical
vortices emitted from the rim of the cylinder.

7.3 Statement of the problem

Here we wish to extend the studies on impact of elongated bodies (χ > 1) to their late
time behaviour. Additionally, considering some of the biological and military applications,
we consider floating projectiles (ρ̄ < 1), which corresponds to a complement to the litera-
ture on floating object so far focused on rising bubbles (ρ̄ � 1). Finally, to better model
supercavitating projectile, we will consider the mass distribution of the projectile inhomo-
geneous. In this part, we wish to determine both experimentally and theoretically, the
trajectory after impact of floating axisymmetric streamlined bodies. We focus on two main
questions, which are crucial for both military applications and understanding the way birds,
like gannets, dive:

• What is the maximum depth that can be reached?

• Is the trajectory of such projectile straight? In other words, can a passive projectile
reach its target?

7.4 Experimental details

7.4.1 Trajectory reconstruction

To that end, as shown in figure 7.4(a), we release our projectiles without initial velocity
from a height H above a square-based tank of dimensions 60 cm by 60 cm by 100 cm.
When a projectile reaches the water surface, its impact velocity is U0 and its impact angle
with the vertical is θ0. Its trajectory is followed using two perpendicular, synchronized
cameras recording the motion underwater, as sketched in figure 7.4(a). We use two high-
speed cameras Photron mini UX-100, equipped with 20mm f/1.8 Nikon lenses, recording at
frame rates ranging from 250 to 1500 frames per second. Taking into account magnification
due to the passage through the air-water interface as well as the divergence of the field of
view of the camera, we determine the three-dimensional position of the center of gravity of
the projectile for each pair of frames recorded by the two cameras with a precision on the
order of a few millimeters. U0 is determined using the first 20 frames following the impact.
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Figure 7.4: (a) Sketch of the set-up used to follow the underwater trajectory of the pro-
jectiles. θ0 is the angle between the axis of symmetry of the projectile and the vertical at
the impact. The projectile is released at a height H above the water surface. (b) Sectional
drawing of the projectiles used for our experiments. The dashed line represents the chord
and is used as the rotation axis to create the 3D axisymetric projectile where the center of
gravity G is located at a distance dg from the leading edge. The projectile has a length C
and a maximum width w and its aspect ratio χ = C/w is 5 for all our experiments. The eye
of a needle is attached to the trailing edge of the projectile. (c) Distribution of the impact
angle θ0 for various impact velocity. As marked with the red line, the impacting angle is
lower than 6◦ for 95% of the experiments.

7.4.2 Projectiles

The projectiles used in our experiments are axisymetric bodies generated by the rotation of a
wing profile around its chord, as shown in figure 7.4(b). The profile is such that its maximum
width w is one fifth of the length C of its chord, as defined by the National Advisory Comitee
for Aeronautics as the profile NACA 0020. The projectiles are 3D printed in Acrylonitrile
Butadiene Styrene (ABS) and smoothed above an acetone bath at 70◦C during two minutes.
The resulting objects are then coated with Rain-X to increase their hydrophilicity and thus
reduce the generation of air cavities when crossing the air-water interface [118]. Projectiles
are hollowed out and a moving brass cylinder ballasts the body and allows us to tune the
position of their center of gravity. The eye of a needle is attached to their trailing edge for
their release.
The projectiles are 75 mm long and 15 mm thick, with an aspect ratio χ = C/w of 5. Their
mass is between 6.2 g and 6.9 g. As they are slender, their added mass is neglected in the
rest of the study. Their relative density ρ̄ =

ρprojectile
ρwater

ranges from 0.85 to 0.95. The distance
dg from the leading edge to the center of mass of the projectile is varied from 18% to 45%
of the cord.

7.4.3 Releasing method

In order to release the projectile without initial velocity nor initial angle, we hold it by the
eye of a needle placed at its trailing edge with a 105 µm-thick nylon fiber onto a 0.5 mm-
thick copper wire. Upon current running through the wire, nylon melts and the projectile is
released vertically. The impacting velocity U0 ranges from 0.1 to 2.1 m/s. The impact angle
θ0 is measured using two cameras set just above the water surface. The histogram in figure
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7.4(c) shows that our method ensures an impact angle below 6◦ in 95% of the experiments.
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8
Path instabilities of streamlined

bodies

This work has been done in collaboration with Martin Coux, at the time when he was second
year PhD student in the group. It was started by Zhexin Pan during his internship. All this
study would not have been possible without the help of Romain Labbé and Caroline Frot.

Chronophotography of three different underwater trajectories of floating streamlined projec-
tile.
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8.1 Experimental Results

8.1.1 Nature of the trajectory

We display in figure 8.1 the different possible trajectories of the projectiles, depending on
their impact velocity U0 and location dg of the mass center. In the six presented experiments,
projectiles are floating and the global motion is the same: the projectile impacts water almost
vertically, slows down until it reaches its maximum depth before moving back toward the
water surface.

Early 
times

Late 
times

(a) (b) (c)

(d) (e) (f)

✓

h

U0

(m/s)

dg/C (%)

1.8

0.9

18 27 44

5 cm 5 cm 5 cm

5 cm 5 cm 5 cm

Figure 8.1: Chronophotographies of the projectile trajectories for various impacting veloc-
ities U0, and for various distances dg between the center of gravity of the projectile and
its leading edge. The center of buoyancy is located at 37.5 % of the total chord from the
leading edge. For all chronophotographies, frames are separated by 0.15 seconds. The stable
trajectories are boxed in green whereas the unstable ones are boxed in red.

The two chronophotographies on the left-hand side of figure 8.1 (2a, 2d) correspond to
the trajectories of projectiles whose center of mass is located close to the leading edge
(dg/C = 18 %). For such projectiles, both at low impact velocity (U0 ≈ 0.9 m/s for 2d) and
high impact velocity (U0 ≈ 1.8 m/s for 2a), the path followed in the descending phase is
a vertical straight line. At the maximum depth of the dive, the projectile has no velocity.
Later, it follows the same straight path as in its ascending phase until the trailing edge
reaches the water surface close to the impacting point. The depth h increases with the
impact velocity.

The two chronophotographies centered in figure 8.1 (2b, 2e) correspond to the impacts of a
projectile with a center of mass located at dg/C = 27 %. At low impact velocity (U0 ≈ 0.9
m/s for 2e), the trajectory followed by the projectile is a vertical straight line in both
descending and ascending phases, as observed earlier. However, the trajectory changes at
higher impact velocity (U0 ≈ 1.8 m/s for 2b). In the first half of the descending phase,
the projectile rotates such that the angle θ between its chord and the vertical increases
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Figure 8.2: (a) Underwater 3D trajectory of the center of mass of the projectile after its
impact at the red spot of coordinates (x0, y0, 0). The maximum depth of the dive is reached
at the red square. The trajectory is obtained from the images of the two high-speed cameras.
(b) The blue curve is the actual projected trajectory of the projectile onto the (Oxy) plane.
Projectile impacts water at the red spot and reaches its maximum depth at the red square.
The yellow straight line is the projection of the mean plane of the trajectory in the descending
phase onto the (Oxy) plane. The direction of the axis x̃ is contained in the mean plane of
the trajectory. (c) Projected trajectory on the mean plane defined in (b). The coordinate
x̃ = |x− x0| is defined such that the origin coincides with the impact point marked by the
red spot.

and its path deviates from a straight line. In the second half of the descending phase, the
projectile slowly realigns with the vertical (θ decreases) until it reaches its maximum depth.
At this point, the projectile has no velocity and is fully aligned with the vertical with its
leading edge pointing down (θ = 0). Then, in the ascending phase, the projectile follows a
vertical straight line up to the water surface, which it reaches at a point different from that
at impact. We call ”y-shaped” such a trajectory. Increasing the impact velocity increases
the horizontal distance between the entry and exit points.

The two chronophotographies on the right-hand side of figure 8.1(2c, 2f) finally correspond
to impacts of a projectile whose center of mass is located far from the leading edge (dg/C =
44 %). At low impact velocity (U0 ≈ 0.9 m/s for 2f), the projectile rotates (θ continually
increases) and the trajectory deviates from the vertical during the descending phase. The
projectile reaches its maximum depth horizontally (θ = 90◦) with a non-zero horizontal
velocity. In the ascending phase, the projectile keeps on rotating until its leading edge
reaches the water surface (θ ≈ 180◦) at a different location from the impacting point. Such
a trajectory has a ”U-shape”. Compared with the straight trajectories observed at the
same impact velocity for projectiles with center of mass closer to the leading edge, the
projectile travels further horizontally but the dive is shallower. Even though the shape of
the trajectory is not modified at higher impact velocity (U0 ≈ 1.8 m/s), the depth of the
dive is reduced - due to the existence of a large cavity of air entrained at water entry, as
shown in the inset of figure 8.1(c).

To summarize our observations, three different types of trajectory can be observed : straight,
y-shaped and U-shaped. Straight trajectories appear for a center of mass located close to
the leading edge and at low impact velocity. When velocity is increased, the motion follows
a y-shape. Finally, when the center of mass is far from the leading edge, the trajectory has
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a U-shape at all velocities .

8.1.2 Quasi-planar trajectories

For a y-shaped path, a typical 3D-trajectory of the center of mass of the projectile is
presented in figure 8.2(a). The projectile impacts water at the coordinates (x0, y0, 0). When
plotted in the (Oxy) plane, orthogonal to gravity, the trajectory is close to be planar, apart
from the ascending phase, where the projectile slowly drifts and oscillates, as shown in
figure 8.2(b). Hence, we can define the mean vertical plane of the descending phase of the
trajectory drawn in yellow in figure 8.2(b). Finally, we define a new coordinate system (x̃, z)
centered at the impact point (x̃ = |x−x0|) and the 3D trajectory is projected along the mean
plane to obtain the typical 2D y-shaped trajectory plotted in figure 8.2(c). This protocol is
followed for the three types of trajectory observed (straight, U-shaped, y-shaped).
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Figure 8.3: (a) Experimental trajectories for a projectile with a fixed position of the center
of gravity (dg/C = 35%) and a mass of m = 6.4 g. The impact velocity U0 is varied from
0.23 to 1.46 m/s. Red crosses represent the maximum depth of the dive h for each dive.
(b) Experimental trajectories for an impact velocity of 0.91 m/s. The relative position of
the center of gravity (dg/C) of the projectile is moved from 18% to 39%. The mass of the
projectile is kept constant at m = 6.7 g. The center of buoyancy is located at 37.5 % of the
total chord from the leading edge. The standard deviation of the impacting velocity is 0.04
m/s over the set of trajectories. Red crosses represent the point of maximum depth h.

Figure 8.3 shows experimental trajectories obtained varying independently the impact ve-
locity U0 and the position dg of the center of gravity of the projectile . In figure 8.3(a), the
center of mass of the projectile is fixed (dg/C = 35 %) and the impact velocity is varied.
The transition between straight and Y-shaped trajectory is observed between 0.23 and 0.39
m/s. Above the latter speed, the horizontal travelled distance increases with the impact
speed while the maximum depth h hardly depends on U0.

As shown in figure 8.3(b), an increase of the distance dg modifies the shape of the trajectory:
at U0 = 0.91 m/s when dg/C < 33 %, the trajectory is straight, when 33% ≤ dg/C < 38%,
the trajectory has a y-shape and above 38 %, the trajectory is U-shaped. Overall, when
dg is increased at fixed impact velocity, the depth of the dive is reduced and the horizontal
distance travelled is increased. Hence, there is an optimal impact velocity and position of
the center of mass such that the dive depth h is maximum.
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8.2 Equations of motion and closing parameters

8.2.1 Presentation of the model

In the plane of the trajectory, the position of the projectile at every moment is fully described
by the two coordinates of the center of mass of the projectile (x̃g, zg) and the angle θ, as
presented in figure 8.4(a).
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Figure 8.4: (a) Schematic representation of the projectile during its underwater motion,
θ is the angle between the vertical and the chord of the projectile, α the angle of attack
of the projectile (angle between the velocity U and the chord of the projectile). P is the
point of application of the Archimedes’ force, G the center of gravity of the projectile of
coordinates (x̃g, zg) in the laboratory frame of reference and A the point of application
of the hydrodynamic forces. da, dg and dp are the distances between the leading edge
and respectively A,G and P. (b) Forces applied to the projectile during a dive. Π is the
Archimedes’ force, W the weight, D the drag and L the lift.

For a projectile moving underwater at a velocity U , with an angle of attack α, the sketch
of figure 8.4(b) shows the forces coming into play. The projectile is subjected to the
Archimedes’ force Π, applied at the point P; the lift L and the drag D, that is, the hy-
drodynamic forces, both applied at the hydrodynamic center A and respectively orthogonal
and aligned with the velocity U ; the weight W applied at the center of mass G. The points
A, G and P are respectively located at a distance da, dg and dp from the leading edge of the
projectile, as defined in figure 8.4(a). The evolution of the position and angle of a projectile
of mass m and moment of inertia J are given by Newton’s second law and the conservation
of the angular momentum:





mdU
dt = W + Π + L+D

J d
2θ
dt2

= −Π(dp − dg) sin θ + (dg − da)(L cosα+D sinα)−Dt
(8.1)

where −Π(dp−dg) sin θ is the moment of the Archimedes’ force, (dg−da)(L cosα+D sinα)
the moment of the hydrodynamic forces and Dt a fluid friction force resisting rotational
motion.

The mass of the projectile m is determined using a scale Mettler H51AR with a precision
of 10 mg. The moment of inertia J of the projectile depends on the shape and the mass
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distribution in the object and it is computed numerically or with a CAD software. The
distance dp corresponds to the position of the center of mass of an homogeneous projectile
and thus only depends on the shape of the projectile. For our projectile, it is found to be
37.5% of the total chord. The distance dg is predicted theoretically during the design and
experimentally verified with a precision of 1% of the total chord. The way to measure drag
and lift force, the distance da and the angular dissipation torque Dt are discussed in the
following sections.

8.2.2 Lift and Drag

In the range of Reynolds numbers 103 < Re < 105 corresponding to our experiments, where
we define Re as the ratio of U0w to the kinematic viscosity of water ν, the amplitudes of
lift and drag are expressed as follows [1, 128]:





D = 1
2ρSCD(α)U2

L = 1
2ρSCL(α)U2

(8.2)

where ρ is the density of water, S the total surface area of the projectile, U its velocity, CD
and CL the drag and lift coefficients.
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Figure 8.5: (a) Sketch of the experiment used to measure the lift L and the drag D forces
onto the projectile when placed in an air flow in the y’ direction with an angle of attack
α. Forces are measured simultaneously with a Sixaxes scale -a strain gauge scale capable of
measuring forces and moments along three axis-. (b) Drag and lift force coefficients CD (red
squares) and CL (blue dots) as a function of the angle of attack α. Lift and drag coefficients
are defined such that L = 1

2ρSCL(α)U2 and D = 1
2ρSCD(α)U2, where ρ is the density of

the fluid and S the total surface area of the projectile. The experiments were carried out
at a Reynolds number ranging from 9 × 103 to 5 × 104. The inset is a close-up on the low
angle of attack regime (α < 30◦). In this regime, CL is fitted by 0.00048 × α1.5 (red solid
line) and CD by 0.0070 + 0.000088× α.1.8 (blue solid line)

CD and CL are experimentally determined in a wind tunnel. Projectiles of different sizes
are held with an angle of attack α onto a Sixaxes scale measuring forces in the air flow of
velocity U , as shown in figure 8.5(a). After averaging forces over one minute, the dependence
of CL and CD on the angle α is plotted in figure 8.5(b). At α = 0◦, the profile is symmetric
and the lift coefficient CL is 0. CL increases up to 0.14 for α between 40◦ to 60◦ before
decreasing back to zero around 90◦. CL changes its sign for α > 90◦ and it reaches −0.15
around α = 135◦. As the projectile is streamlined, the drag coefficient is close to 0 (0.009)
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at α = 0◦. CD increases to reach a plateau value around 0.22 between α = 80◦ and 120◦.
It then decreases back to a low value (0.012) at 180◦. As a consequence, this axisymmetric
projectile has an high stall angle (around 50◦) when compared to cylindrical wings (10◦ to
30◦) [128].

8.2.3 Position of the aerodynamic center

The aerodynamic center is defined as the point of application of lift and drag. At this point,
no torque is exerted by the resulting pressure forces. As a consequence, its position may vary
with the angle of attack. As the projectile considered in this study is thin and axisymmetric,
it is assumed that the aerodynamic center is located on the chord of the projectile.
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Figure 8.6: (a) Sectional drawing of the experimental set-up used to determine the position
of the aerodynamic center. The projectile is placed onto a vertical rod at a distance d′a
from the leading edge. The projectile is free to rotate around the vertical z’-axis. (b) The
set-up is placed in a wind tunnel with an airflow aligned with the y’-axis. The projectile
equilibrates at a position such that the aerodynamic center of the projectile is located on
the holding point. The angle of attack α is averaged over ten pictures. (c) Dependence of
da/C on the angle of attack α.The experiments were carried out at a Reynolds number of
5× 104.

To experimentally determine the position of the aerodynamic center, a projectile is held
horizontally by a vertical brass rod located at a distance d′a from the leading edge, allowing
a free rotation around the vertical axis as shown in figure 8.6(a). When this set-up is placed
into the test section of a wind tunnel with the air flow aligned with the y’-axis, as sketched
in figure 8.6(b), the projectile equilibrates at an angle of attack α. This stable position
indicates that the torques of both lift and drag vanish at the holding point of the projectile.
Hence, the angle of attack α of equilibrium is such that the position of the aerodynamic
center, located at a distance da from the leading edge, coincides with the holding point:
da = d′a. Varying the holding point d′a using different 3D printed projectiles gives access to
the position of the aerodynamic center da for different angles of attack α. In figure 8.6(c),
we present the position of the aerodynamic center da/C (%) as a function of the angle of
attack α.

The position of the aerodynamic center da is increasing with the angle of attack α. For
α = 0◦, the aerodynamic center is located at the leading edge (da/C = 0%). da/C increases
rapidly between α = 0◦ and 40◦ from 0 % to 30 %, as well as between α = 160◦ and 180◦

from 60 % to 100 %. At α = 180◦, the aerodynamic center is located at the trailing edge
(da/C = 100 %).
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8.2.4 Dissipative torque

The dissipative torque Dt models the fluid friction resisting a purely rotational motion of
the projectile. In the range of Reynolds numbers corresponding to the experiments, the
torque takes the following form:

Dt =
1

2
ρSC3Ca(dg)

dθ

dt
|dθ
dt
| (8.3)

where CA(dg) is the non-dimensional angular dissipation coefficient. To determine CA, we
use the set-up presented in figure 8.7(a): a 10 cm long stainless steel projectile is free to
rotate around a vertical rod fixed onto the projectile at a distance dr from its leading edge.
A stable position, drawn in dashed line, is set with a torsional spring. The projectile is
released at an initial angle from the stable position with no initial angular velocity and the
time evolution is recorded at 250 fps. A chronophotography is shown in figure 8.7(a) and
the angle β(t) between the equilibrium position and the current position is tracked in figure
8.7(b). β(t) is fitted with a solution of:

Jm(dr)
d2β

dt2
= −Ktsβ − Fs

dβ
dt

|dβdt |
− 1

2
ρSC3CA(dr)

dβ

dt
|dβ
dt
| (8.4)

where Jm(dr) is the moment of inertia of the projectile and is determined numerically, Kts is
the torsional spring constant measured independently, Fs is the solid friction torque deter-
mined by carrying out the experiment in air and CA is the coefficient of angular dissipation
and the fitting parameter. A typical fit is shown in figure 8.7(b), which nicely captures the
data provided, yields an order of magnitude for CA ≈ 10−2.
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Figure 8.7: (a) Chronophotography and sketch of the experiment used to determine the
dissipative torque. The time delay between two frames is 0.24 second. dr defines the position
of the axis of rotation, aligned with the z’-axis. A torsional spring of constant Kts sets an
equilibrium position. The angle β is the angle between the projectile at equilibrium and its
current position. (b) Time evolution of the angle β fitted with a solution of the equation
of motion (8.4) to determine the coefficient CA such that Dt = 1

2ρSC
3CA(dr)

dβ
dt |

dβ
dt |. (c)

Dependence of CA with the position dr/C of the axis of rotation of the projectile, where C
is the length of the chord of the projectile.

By moving the position of the axis of rotation dr, the function CA(dr) is determined and
plotted in figure 8.7(c). CA is maximum (0.06) for extreme values of dr/C (5 % and 85 %)

90



8.3. Results and discussion

III

and it reaches its miminum for dr/C around 50%.

In the impacting projectile experiment, the projectile rotates around its center of gravity.
Hence, for a projectile with a gravity center located at a distance dg from the leading edge
Dt is computed with a coefficient CA(dg) = CA(dr = dg).

8.3 Results and discussion

8.3.1 Solution of the equation of motion

The equations of motion (8.1) can be solved using the parameters determined in the previous
section and the initial conditions. Figure 8.8 presents a set of trajectories obtained after
integrating numerically the equations for different impact velocities U0 and various relative
positions dg/C of the center of mass. The overall shapes of the trajectories are similar
to those observed experimentally and reported in figure 8.1. Indeed, for a gravity center
located close to the leading edge (dg/C = 18%), the trajectories at both low and high impact
velocity are straight -left-hand side of figure 8.8(9a, 9d)-. When the center of mass is further
from the leading edge (dg/C = 27%), the trajectory remains straight at low velocity (9e)
but it adopts a y-shape at high velocity (9b). Finally, for a center of gravity far from the
leading edge (dg/C = 44 %), the trajectory is U-shaped at all impact velocities (9c, 9f).

(a) (b) (c)

(d) (e) (f)

U0

(m/s)

dg/C (%)

1.8

0.9

18 27 44

5 cm 5 cm 5 cm
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Figure 8.8: Trajectories of the center of mass of the projectile calculated from the numerical
resolution of the equations of motion at different values of the impacting velocity (U0), and
for different positions of center of gravity of the projectile (dg/C). A trajectory is considered
unstable if we have dθ

dt (t = 0+) > 0. Stable trajectories are boxed in green, unstable ones in
red.

However, two discrepancies can be noted when comparing the observations in figure 8.1 to
the numerical solutions in figure 8.8 . First, for dg/C = 44 %, there is no reduction of the
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dive depth for U0 = 1.8 m/s, which is due to the fact that the equations of motion do not
take into account the formation of air cavities. Second, in the numerical resolution, the
motion is considered unstable if dθ

dt (t = 0+) > 0, that is, if the projectile deviates from its
initial position θ0 away from the vertical (θ = 0) just after impacting water. Although the
trajectory obtained for U0 = 1.8 m/s and dg/C = 18 % appears straight, it is found to be
numerically unstable. This can be explained by taking into account the growth rate of the
instability, which is adressed in the next subsection.

8.3.2 Critical velocity and growth time
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Figure 8.9: Stability diagram of a projectile impacting water at a velocity U0 with its center
of mass located at a distance dg from the leading edge. The critical velocity U∗ theoretically
predicted is plotted in blue for impact angle θ0 between 0.3◦ and 6◦. The area delimited
by the curves for which the characteristic growth time of the instability τi equates the
characteristic time of the fall τf (i.e. τi/τf = 1 with ∆θ = π/2) for θ0 = 0.3◦ and 6◦, is
shaded in yellow. Experimental points are the green dots (stable), orange dots (transition)
and red dots (unstable).

As observed in figure 8.4(b), if the center of mass of the projectile is located closer to the
leading edge than the point of application of the Archimedes’ force (dp > dg), Archimedes’
torque is stabilizing (it tends to align the projectile with the vertical) whereas the lift and
drag torques are destabilizing. Hence, we can define a critical velocity U∗ at which the
destabilizing and the stabilizing torques balance. Since the drag and lift forces apply at
the leading edge for small α (figure 8.6(c)), the angular momentum equation (8.1) can be
rewritten and solved for U∗. This yields:

U∗ =

√
2gV (dp − dg) sin θ0

dgS(CL cos θ0 + CD sin θ0)
(8.5)

where V is the volume of the projectile.

For U0 < U∗, the drag and lift torques are smaller than the stabilizing Archimedes’ torque so
that the initial small angle between the vertical and the projectile chord decreases: projec-
tiles align with the vertical and we have quasi-straight trajectories. For U0 > U∗, conversely,
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they deviate from the vertical (its initial angle θ0 increases). As the motion proceeds, the
velocity of the projectile decreases and Archimedes’ torque eventually takes over: the pro-
jectile aligns back with the vertical at the maximum depth of the dive and the motion is
y-shaped.

If the center of mass of the projectile is located further from the leading edge than the
point of application of the Archimedes’ force (dg > dp), all torques are destabilizing. The
projectile keeps deviating from the vertical: the trajectory is U-shaped.

Overall, as dg is moved away from the leading edge, the critical velocity U∗ decreases until
it vanishes for dg = dp. Additionally, when the impact angle θ0 is small, as CL ∝ α1.507

(figure 8.5(b)), it is interesting to note that the critical velocity diverges.

The equation (8.5) is plotted in blue for two different initial angles θ0 (0.3◦ and 6◦) in
figure 8.9: as one can expect, increasing the initial angle θ0 decreases the velocity necessary
to deviate the trajectory (U∗ decreased). When compared with data, one can note that
although all the experimental points laying below the theoretical prediction for U∗ are
observed to be stable (green points), motions can be observed to be stable even for U0 > U∗

(orange points).

For a fixed center of mass located close to the leading edge (dg < dp), an increase of impact
velocity U0 leads to a transition from straight to y-shaped trajectories (path (1) in figure
8.9), as observed in figure 8.3(a). Similarly, when the center of mass of the projectile is
further from the leading edge (increasing (dg/C) at fixed impact velocity, we observe a first
transition from straight to y-shaped trajectories and a second transition to U-shapes (path
(2) on figure 8.9), as also reported in figure 8.3(b).

In order to evaluate if the instability can develop, its characteristic growth time τi (time
necessary for a deviation of ∆θ from the vertical of the projectile) can be derived from a
scaling analysis of the angular momentum conservation equation (8.1). Assuming dθ2/dt2 ≈
∆θ/τ2i , we find:

τi =

√
J∆θ

1
2dgρSU0

2(cos θ0CL + sin θ0CD)− ρgV sin θ0(dp − dg)
(8.6)

To evaluate the characteristic time of the fall τf , we suppose that the motion is straight and
that the projectile is only subjected to drag [129]. Integrating the force balance, we get:

U(t) = Ũ

√
1− ρ̄
ρ̄

tan

(
arctan

(
U0

Ũ

√
ρ̄

1− ρ̄

)
− 1− ρ̄

ρ̄

g

Ũ
t

)
(8.7)

where Ũ =
√

2gm
ρSCD

is the characteristic velocity of the fall and ρ̄ the relative density of the

projectile. As U(τf ) = 0, using 8.7, we find τf to be:

τf =
Ũ

g

ρ̄

1− ρ̄ arctan

(
U0

Ũ

√
ρ̄

1− ρ̄

)
(8.8)

Using equations (8.6) and (8.8), the ratio τi/τf is computed and plotted when equal to 1
for ∆θ = π/2 in figure 8.9 for different values of the impact angle θ0. Below this curve, we
have τf < τi and the instability has no time to develop: the motion, when unstable, can
however follow a straight trajectory - a regime that corresponds well with the orange data.
This is the case for dg/C = 18 % and U0 = 1.8m/s, where the trajectory is experimentally
found stable (figure 8.1(a)) but numerically unstable (figure 8.8(a)).
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8.3.3 Quantitative comparison and dive depth

Quantitatively, one experimental trajectory of each type is fitted with the corresponding
numerical solution of the equations of motion in figure 8.10. For straight (figure 8.10(a)),
y-shaped (figure 8.10(b)) and U-shaped (figure 8.10(c)) trajectories, the overall shape of the
numerical solution, as well as the maximum depth and the maximum horizontal distance
travelled, are in good agreement with the observed trajectories. The small discrepancies
observed for the y-shape and the U-shape can be attributed to the fact that the only fitting
parameter is the initial angle θ0.
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Figure 8.10: Trajectories of the center of mass of different projectiles. Solid line is the nu-
merical solution of the equation of motion and the dashed line is the experimental trajectory.
The fitting parameter for the numerical solution is the angle θ0 between the vertical and the
chord of the projectile at impact. (a) Straight trajectory for dg/C = 18 % and U0 = 0.94
m/s. θ0 = 2◦. (b) y-shaped trajectory for dg/C = 27 % and U0 = 1.25 m/s. θ0 = 9◦. (c)
U-shaped trajectory for dg/C = 44 % and U0 = 0.95 m/s. θ0 = 5.5◦.

The depth h of the dive, can be determined numerically when the impacting velocity U0 is
varied for a range of impacting angle θ0 and it is plotted in colored area in figure 8.11. The
predicted depth is compared with data for different positions of the center of mass dg. The
agreement is good, except when an air cavity is entrained, an ingredient not present in the
model -the dive depth in this case being naturally found to be significantly smaller than
predicted.

To further understand the saturation in depth reached by the streamlined projectile, we
can obtain the theoretical variation of depth of a projectile zg with time t by integrating
equation 8.7:

zg(t)

L = log

{
cos

[
arctan

(
U0

Ũ

)
− 1− ρ̄

ρ̄

gt

Ũ

]}
(8.9)

where L = 2m
ρSCD

is the characteristic length of the dive. This relation can be evaluated in
t = τf to get the maximal depth of a straight dive, which is plotted in dotted line in figure
8.12. Furthermore, once the instability is established, the maximum depth of the dive will
rather be set by τi, so that we expect h ∼ zg(τi). This distance is plotted in dashed line
in figure 8.12. Finally, we can notice that the curve zg(min(τi, τf )) matches well both the
numerical and experimental data.

Therefore, we can conclude that: First, when τf < τi, the motion is stable, the trajectory is
quasi-straight and the maximum depth is zg(τf ). Second, when τf > τi, the instability has
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Figure 8.11: Comparison between the numerically predicted depth h of the dive and exper-
imental data. Shaded areas are the numerically determined depths for impacting angle θ0
ranging from 0.3 and 6 degrees. Filled dots are experimental data for different positions
of the center of gravity and mass of the projectile when no cavity is formed at the water
entry: dg/C = 24 %, m = 6.7 g, dg/C = 27 %, m = 6.85 g, dg/C = 37 %, m = 6.32 g,
dg/C = 44 %, m = 6.4 g. Empty dots are experimental data for projectile entraining an air
cavity at water entry.
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Figure 8.12: Comparison between the theoretical prediction for the dive depth and both
numerical and experimental data. Shaded areas are the numerically determined depths for
impacting angle θ0 ranging from 0.3 and 6 degrees. Filled dots are data for a center of mass
located at dg/C = 24 % and a mass m = 6.7 g. Dotted line is the theoretical maximum
depth of the dive for a straight trajectory, i.e. zg(τf ) using equation 8.9. Dashed line is the
theoretical depth zg(τi) of a straight dive reached at the time τi at which the instability has
developed. Solid line is zg(min(τi, τf ))
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time to grow, the projectile has y-shaped or U-shaped trajectory and the maximum depth
of the dive is zg(τi).

8.4 Controlling the instability

Controlling the instability to obtain a straight trajectory is crucial in most applications and
it should technically be achieved by adding fins near the trailing edge of the projectile. To
test this hypothesis, we evenly place four fins around the projectile at a distance df from
its leading edge. Each fin has a fixed chord Cf = 1 cm and its span l is varied from 0 to 25
mm as show in figure 8.13(a).
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Figure 8.13: (a) Sectional drawing of the projectile with four fins. Fins are evenly placed
around the projectile at a distance df from the leading edge. Each fin has a span l ranging
from 0 to 25 mm and a chord Cf = 1 cm. (b) Experimental trajectories for a projectile with
fins of span ranging from 0 to 20 mm. The position of the center of mass of the projectile
is fixed at 27% of the total chord and its mass is m =6.6 g. The impact velocity is U0 =1.2
m/s. (c) Depth of the dive h as a function of the span of the fins l. The position of the
center of mass of the projectile is fixed at 27% of the total chord and its mass is m =6.6 g.
The impact velocity is U0 =1.2 m/s.

Figure 8.13(b) displays five trajectories up to their maximum depth of a projectile with fins
of increasing span. With no fins (l = 0 mm), we recover the y-shape trajectory previously
described. When increasing the span of the fins the trajectory becomes closer to the straight
line, indicating that we effectively controlled the instability by adding fins. However, when
increasing l, the maximum depth h increases from ∼320 mm to a maximum value of ∼500
mm for l = 10 mm before decreasing to ∼300 mm for l = 25 mm as shown in figure 8.13(c).

Similarly as for equation 8.5, we can derive an expression for the critical impact velocity U∗l
above which the projectile trajectory is unstable. Writing the aerodynamics coefficients of
the fins CDf

and CLf
, we define a characteristic length of the fins

l∗ =
dgS(CL cos θ0 + CD sin θ0)

4(df − dg)Cf (CLf
cos θ0 + CDf

sin θ0)
(8.10)
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8.4. Controlling the instability

III

such that U∗l simply writes:

U∗l
U∗

=

√
1

1− l
l∗

(8.11)
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Figure 8.14: Critical impact velocity U∗l above which a projectile with four fins of span l
have a non-straight trajectory. U∗ is the critical velocity without fins and l∗ the span of the
fins above which the trajectory will always be stable.

For df < dg, U
∗
l /U

∗ < 1 meaning that the fins destabilize the trajectory of the projectile.
For df > dg, the fins are stabilizing and as l∗ ∝ 1/

√
df − dg, their stabilizing effect will grow

as the fins are placed closer to the trailing edge of the projectile. For df > dg, the relation
8.11 is plotted in figure 8.14. The first interesting feature of this curve is that for fin bigger
than l∗, independently of the impact velocity U0, the trajectory will always be straight. The
second noticeable feature is that for a fixed impact velocity U0 > U∗ correspond a minimal
span lopt, smaller than l∗, for which the trajectory is stable (e.g. lopt ≈ 0.8l∗ for U0 ≈ 2U∗).
If a span greater than lopt is chosen, the trajectory will still be straight but the drag of the
projectile will increase and hence the depth of the dive h will be reduced as observed in
figure 8.13(c).
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Chapter 8. Path instabilities of streamlined bodies

III

Take home message of Part 8

1. Three trajectories can be observed: straight trajectory (stable), y-shape
trajectory (unstable) and U-shape trajectory (unstable). The depth of the dive is
reduced when the trajectory is unstable.

2. The instability is driven by the torque of the lift force whereas
Archimedes’s torques stabilizes the trajectory.

3. The morphology of the trajectory is determined by the impact velocity
U0 and the position of the center of mass dg of the projectile. For center of
mass located close to the leading edge (dg < dp), a critical velocity U∗ exists, above
which the projectile follows a y-shape trajectory. For center of mass located far from
to the leading edge (dg > dp), the projectile follow a U-shape trajectory no matter
what the impact velocity is.

4. Instability can be controlled adding fins near the trailing edge of the
projectile. Above a characteristic span l∗ of the fins, the trajectory will always be
stable. However, for a fixed impact velocity U0, there is an optimal span lopt < l∗

such that the trajectory is straight and the drag coefficient of the resulting projectile
is the smallest.

98



CONCLUSION

99





Con

In this thesis we address the question of how cavitation can turn a bluff body into a stable
streamlined projectile. In particular, we wish to determine if cavitation alone could make
a submarine travelling at 100 m/s possible. A body moving underwater is surrounded by a
region of low pressure in its wake. If the projectile is travelling fast enough, the pressure drop
can trigger cavitation, that is, the phase change of the liquid to gas. A further increase of
the projectile velocity eventually leads to the formation of a large gas bubble: the so-called
supercavitation regime. This bubble induces a modification of the drag of the projectile
which, under certain circumstances, makes it analogous to a streamlined projectile. To
investigate this phenomenon, we first report, in Part I, the study of the initial growth of a
cavitation bubble. We then concentrate, in Part II, on measuring the drag reduction that
can be achieved with supercavitation and we finally derive, in Part III, the conditions for a
streamlined projectile to have a straight trajectory.

Cavitation bubble dynamics is an experimentally difficult problem to address if the
pressure drop is only generated by a steady velocity: this is due to the fact that velocities
needed for cavitation bubbles nucleation are typically larger than 20 m/s at atmospheric
pressure. However, cavitation of a fluid can easily be observed when the fluid is accelerated.
Simply impacting a container filled with water with a hammer can trigger pressure drop
of several bars. In Part I, we used this phenomenon to study the growth of a cavitation
bubble in a transient pressure field. A short review of previous work on this topic is made
in Chapter 1. To address this question, we built a drop-tower, described in Chapter 2,
which allowed us to have reproducible impacts of high acceleration on a water container.
We showed theoretically and experimentally that a pressure drop is indeed generated in
the area opposite to the point of impact and that its magnitude is proportional to both
the size of the container and the acceleration of the tank. This pressure drop eventually
triggers the phase transition of the liquid water into gas. In Chapter 3, we showed that the
radius of the cavitation bubble created has a dynamical evolution which follows the classical
Rayleigh-Plesset equation. As the pressure drop is transient, the bubble rapidly collapses:
we observed bubbles which typically had a life expectancy of a few tens of milliseconds and
reached centimetric maximum radius. The collapse of the bubbles is a fast process which
has been shown to be responsible for damages on nearby surfaces: for instance, it is known
to be the main mechanism involved in boat propellers aging. The energy released through
this process can be directly linked to the maximum radius of the bubble. We analytically
derived an expression for the the value of the maximum radius of a bubble in a transient
pressure drop. The whole study can be used to improve the understanding of material aging
induced by cavitation but also to investigate the causes of traumatic brain injuries, also
known as brain concussion in sports. Indeed, the container filled of water is analogous of
a cranial vault and the shock we imposed is similar to the impact that could be received
during boxing. We showed in Chapter 3 that we can predict the damaging potential of a
cavitation bubble in the head and that it is in a good agreement with the heuristic medical
observations. These results prove that cavitation is a relevant mechanism to consider for
brain concussion and they are encouraging as they could lead to an improved detection and
prevention of the brain concussion. However, a lot of questions are still open and need
to be tackled to prove the implication of cavitation in the damaging process of the brain.
Experimentally, it would be interesting to evaluate the damaging potential of a bubble on
a material similar to the brain. For instance, this material could be a cell layer, a brain
slice or a polymer of the same mechanical properties. Theoretically, the influence of the
confinement of the bubble on its dynamic is yet to be determined: as an incompressible flow
in a planar geometry does not vanish at infinity, the time evolution of the bubble radius
cannot be derived from Rayleigh-Plesset equation. Finally, in-situ recording of cavitation
bubbles would definitely prove that the phenomenon should be taken into account in the
brain damage process. To do so, one could identify the noise generated by the collapse
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of a cavitation bubble following a shock on the head of a boxer or rugby player. The
same process was recently used to identify cavitation as the mechanism of knuckle cracking
[69]. Finally, this work on cavitation under acceleration in confined environments opens the
perspective of a new way to generate the phase transition, which could facilitate the entry
in the supercavitation regime. This work could directly be applied to model the launch
of fast travelling objects underwater, for instance torpedoes, which begin their trajectories
accelerating in a confined environment.

Drag modification in the supercavitation regime can be evaluated in a standard
hydrodynamic tunnel replacing the vapor production due to cavitation by an artificial air
injection. The cavity created is referred as a ventilated cavity. In Part II, we investigate the
modification of the drag induced by a ventilated cavity behind a sphere near its drag crisis.
In chapter 4, we briefly reviewed the literature on this subject. To tackle this problem, we
developed a hydrodynamic tunnel, presented in Chapter 5, that allows us to measure the
drag on a sphere while injecting air at a constant rate in its wake. Additionally, we used
spheres of different roughness to study the influence of the ventilated cavity on the drag
crisis. We showed in Chapter 6 that the dimensions of the bubble created are uniquely
determined by the dimensionless air injection rate. This number compare the volumetric air
injection rate to the volumetric water flow rate based on the frontal area of the projectile.
In particular, for high dimensionless air injection rate (> 0.04), a unique bubble was found
to pin at the equatorial plane of the sphere. This bubble is nearly cylindrical and its length
was measured to be proportional to the dimensionless air injection rate. This behaviour
was shown to be caused by the growth of perturbation at the interface of the bubble. We
also measured the drag of the resulting system: in the high dimensionless air injection rate
regime (> 0.04), we found that the drag was proportional to the dimensionless injection rate
to the power (−1/3). As a consequence, we could measure drag reductions up to a factor
50% in our experimental configuration for the largest bubbles. This result also suggests
that we could reach even higher drag reductions by increasing the air injection. However,
we also showed that the air injection in the vicinity of the projectile does not always lead to
a drag reduction. In particular, when the water flow around the sphere is supercritical (at
Reynolds number above 106 for a smooth sphere), the wake of the sphere is thin and the
boundary layer detaches near the back of the sphere. Injecting air at the back of the sphere
in this regime results in a perturbation of the supercritical wake leading to a drag increase
(up to a factor 5). While the results presented in Chapter 6 suggest that a submarine, even
in the supercavitation regime, could not reach 100 m/s, several open questions should be
addressed before ruling out this possibility. Theoretically, most previous work to predict the
drag of supercavitating bodies are based on the potential flow theory and cannot account for
the complexity of the drag crisis. The complexity of the interactions of the injected air with
the wake could be approached using numerical models. Experimentally, it was shown, in a
different system, that drag coefficient of a sphere with a gas bubble in its wake could be as
low as 0.05 [92]. To achieve this ground breaking value, our experimental set-up should be
improved to limit the growth of perturbations at the interface of the bubble. The resulting
bubble pinch off at a stable point. Among all the possible improvements, we identified the
most important as: the reduction of the turbulence of the water flow, the limitation of the
influence of the holder on the flow around the sphere and the use of smooth spheres to avoid
constraining the pinning point of the bubble.

Stability of the trajectory of a streamlined body is crucial to predict the final des-
tination of the projectile. We showed, using air injection, that a supercavitating projectile
can reach drag coefficients as low as the one measured for streamlined bodies. To study the
trajectories of such projectiles, we simplified this system, in Part III to a floating streamlined
projectile with an inhomogeneous mass distribution. We focused on the trajectory of such
projectiles following an impact on water. To do so, in chapter 7, we briefly reviewed the
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available literature and presented the experimental set-up we developed to impact projectiles
at variable and nearly vertical velocity on water. We demonstrated both theoretically and
experimentally in Chapter 8 that three families of underwater trajectories could be observed:
straight, U-shaped, y-shaped. Although only the first type of trajectory was considered sta-
ble, all families share the same overall behaviour: the projectile slows down after its impact,
reaches a maximum depth and then moves back to the surface. The instability which re-
sults in the U-shaped and y-shaped trajectory is driven by the torque of the lift force on the
projectile while Archimedes’s torque stabilizes the trajectory. As a consequence, for a given
shape of the projectile, the transition between the stable and the unstable regime depends
on the position of the center of mass of the projectile and its impact velocity. Hence, for a
center of mass located near the leading edge, the projectile is stable for an impact velocity
below a critical velocity. Above this velocity, the trajectory was observed to be y-shaped.
For a center of mass located far from the leading edge, the trajectory will always be unstable
and U-shaped. After measuring in separated experimental set-up the different aerodynamic
properties of the projectile (aerodynamic coefficients, position of the aerodynamic center),
we were able to analytically predict the shape of the trajectory and the maximum depth of
the dive, which was found to be reduced when the trajectory is unstable. Further taking
into account the growth time of the instability, we were able to capture the experimental ob-
servations of the transition between the different families of trajectories. Finally, we showed
that the stability of the trajectory can be ensured by adding fins near the trailing edge of
the projectile. Such fins can be design to unsure stability either up to a certain velocity or
for all impact velocity. In the latter case, large fins are used which results in a increase of
the drag and a reduction of the depth of the dive. Even though we propose, in Part III,
several techniques to unsure stability, it does not provide any explanation on how gannets,
or other diving birds, control this instability and can reach their target. Our hypothesis, is
that gannets dive with a horizontal component of the velocity. In this manner, they impose
the plane of instability and they can prevent the instability from growing only with their
feet, which act as unidirectional fins. This hypothesis should be tested with projectile im-
pacting water with an initial horizontal velocity equipped with unidirectional fins. Finally,
we could get back to the initial system of a bubble pinned to a projectile, which raise two
questions: What is the dynamic of the bubble when it is not aligned with the flow? Can the
bubble exert a torque on the projectile? These questions remain open and would necessitate
rethinking both experimental set-up presented in Part II and III to be tackled.
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J. André, A. Guillen, F. Goh, A. Prieto and T. Guillet, Emergent Scientist 3 (2019).

107



Appendix A. List of publication

Apx

108



B
International Physicists’

Tournament

I had the chance to be Team Leader for the team representing École polytechnique at the
International Physicists’ Tournament. To prepare for the tournament, a team of 6 students
have to work on 13 to 17 physics research problems for 8 months. The problems cover a
wide range of different topics from fluid mechanics to electromagnetism and always have
an experimental component. During the tournament, the students have to present their
solution and debate on how it could be improved with other teams. I followed three groups
over my PhD and they ended up at the third position in 2017, the second position in 2018
and first in 2019: one could say that it is moment to retire!

After the tournament, we also encouraged students to have their first experience on peer-
reviewed publishing: some of their work has been published in Emergent Scientist. This
appendix present an example of such article entitled ”Sound of a nut rolling inside an elastic
rubber balloon”.
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Abstract. This article studies the sound produced by nuts of different shapes swirling in an elastic rubber
balloon. First, the sound is studied experimentally, both in terms of frequency and amplitude. Regarding the
frequency components of the sound, we show that they can be divided into two main contributions – one due
to the oscillations of the elastic membrane, the other due to the hits of the nut against the balloon – and
present models to describe the frequency’s dependence on the main parameters of the system. We analysed
the influence of several parameters such as the balloon’s geometry, the nut’s geometry and its mass.

1 Introduction

The study of spherical elastic shells probably started at
the end of the 19th century with the theoretical stud-
ies of Lamb [1,2]. Several refined theoretical studies have
focused on determining the eigenfrequencies (and the
amplitude) of such systems [3,4]. Works on spherical
shells have also tackled the problem numerically [5,6] and
more complex work has appeared such as the study of
instabilities of expanding and contracting shells [7].
Using large elastic balloons and the reflection of a laser

on the surface of its membrane, Kuo et al. [8] observed
these frequencies experimentally. Using an improved
model from the previous literature, they were able to show
good agreement between theory and experiments.
Nonetheless these previous studies are in majority the-

oretical and the experimental studies only focus on the
frequency response of the vibrations of the membrane
generated by a precisely controlled excitation. Hence, the
study of more complex phenomenon is left open.
In this article, using different types of nuts (and coins)

made to rotate inside an elastic rubber balloon, we inves-
tigate both the frequency content and the amplitude of
the sound produced by the internal periodical excitation
(produced by the rolling of a nut).
First, we present the different experimental methods

and the theoretical models for the frequency components.
Then, we report our experimental results and finally dis-
cuss the agreement between those experiments and our
predictions.

* e-mail: amaury.barral@polytechnique.edu
** e-mail: quentin.louis@polytechnique.edu

2 Experimental method

2.1 Experimental setup for sound capture
and analysis

In most of the experiments, hex nuts were used. However,
we also investigated nuts with several other shapes and
report results for coins as well.
A nut of side length l (with a total of N sides), width e

and massm (see Fig. 1a) is inserted in a new (non-inflated
before) transparent commercial rubber balloon (Nuolux
12 inches white latex balloons). The balloon is inflated
by a human operator and tightly closed by pinching the
nozzle, allowing it to be reopened and inflated further.
Once inflated, the new dimensions of the balloon are mea-
sured on ruler-calibrated pictures. As in Figure 1b the
human operator then gives the balloon a circular transla-
tion movement, inducing the swirling of the nut inside the
balloon.
The sound is recorded using a calibrated-response

microphone (Shure SM57) at a fixed distance from the
center of the balloon, facing the side of the balloon,
the motion of the nut is captured by a high-speed cam-
era (Photron FASTCAM SA at 3000 fps) and a regular
reflex camera (Canon EOS 700D) is used for pictures and
30 fps videos. A schematic view of the experimental setup
appears in Figure 1c.
The sound is analysed via its Fourier transform from

Audacity 2.2.1 with size 65536 using a Hanning win-
dow, on samples of a few seconds. Temporal Fourier
Transform and Amplitude calculations are also performed
using Python. A typical Fourier transform and its inte-
grated PSD (Power Spectral Density) are shown in
Figure 2. Sound occurs through all the spectrum but

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Fig. 1. Experimental setup and nomenclature. (a) Sketch of
the hex nuts used in experiments. A nut is characterised by
its number of sides N , it’s side length l, its width e and its
mass m, (b) Close sketch of the balloon, characterised by its
radius R and its rotating speed ω. (c) Sketch of the experimental
setup.

Fig. 2. Typical Fourier transform. In this case, the experimental
conditions were: N = 6, m = 0.3 g, l = 2.7mm, e = 2.4mm,
frot = 3.7Hz and R = 9.8 cm. Four identifiable zones (a), (b),
(c), (d). Only (c) and (d) are audible as showed by the PSD
(Power Spectral Density) integral. (a) Is the macroscopic sound
produced by the balloon pushing air during its movement. (b) Is
the sound components ranging from 30 to 80Hz. (c) Is the first
eigenfrequency of the membrane. (d) Is the frequency produced
by the nut rolling and hitting the membrane. Harmonics are also
produced.

the higher frequencies are the only ones audible (in most
cases), which the PSD integral confirms as its slope
changes abruptly. The sound can be divided into four
parts: two low frequency parts (3–6Hz and 40–80Hz),
a medium frequency part (100–200Hz) and a higher

frequency part that is much more variable depending on
the characteristics of the nut (200–2000Hz).

2.2 Assumptions of our model

2.2.1 Influence of gravity

Changes in the nut’s height during its trajectory lead to
changes in its velocity and thus in the sound we hear.
Assuming this change to be 10% (from the horizontal
plane) of the balloon’s radius and with an initial speed
of 1–3 ms−1, taking the condition ∆v/v < 0.1 where v is
the speed of the nut at the center height of the balloon and
∆v is the difference between the speed of the nut at the
highest point of the trajectory and at the middle of the
balloon, we get gR/v2 < 1 where R is the radius of the bal-
loon and g is the acceleration of gravity, which yields R <
20 cm (experimentally R varies between 3 cm and 15 cm).
We can therefore safely neglect the influence of gravity

in our experiments.
It is useful to note that even if gravity had a non

negligible influence, it would just broaden the spectrum
of frequencies around the gravity-less value, which only
increases error bars.

2.2.2 Influence of inertial forces

Balloons are not perfectly spherical, they are rather pear
shaped. This change in their radius induces a change in
the inertial energy of the nut E = 1

2mω
2R2. Taking the

condition ∆v/v < 0.05 gives ∆R < 0.05v2/Rω2 where R
is the radius of the balloon at the center of the balloon,
∆R the change in radius during the trajectory, v the speed
of the nut, ω = 2πfrot the rotation pulsation of the nut,
which for our typical setups gives ∆R < 6 cm across the
trajectory of the nut (experimentally ∆R is of the order
of a few cm at most).
We can therefore safely neglect the influence of uncon-

trolled changes in the inertial force in our experiments.
Even if changes in the inertial force had a non negligible

influence, it would be equivalent to greater uncertainties
in the measure of the balloon’s radius.

2.2.3 Influence of the Doppler effect

The relative frequency shift induced by the Doppler effect
is ∆f/f = v/c where v is the speed of the nut and c is
the speed of sound in air. We consider it negligible for
∆f/f < 0.01 which gives us v < 3 ms−1. Typical speed
ranges in our experiments are 1–3 ms−1.
We can therefore safely neglect the influence of the

Doppler effect in our experiments.

2.2.4 Influence of friction

Experiments show that the nut does not slide on the
membrane of the balloon, and that changing the friction
coefficient by adding oil (which dramatically reduces fric-
tion) has no significant influence on the sound emitted,
which leads us to affirm that friction is not an important
parameter in this problem. This allows us to use a no-slip
model to predict the primary frequency.
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Fig. 3. Spectrogram of a typical audio record of 3 seconds.
Experimental conditions are identical to Figure 2. Frequency
components are plotted as a function of time. The ladder of
intensity goes from dark blue (no frequency component) to
yellow (important frequency component). The amplitude modu-
lation is represented by the alternation of bright (yellow) and
dark zones. Oscillations of the harmonics of the main fre-
quency (∼800Hz) with the same periodicity as the amplitude
modulation are also visible.

2.3 Rotational frequency of the nut

Within our range of speeds and dimensions, the frequency
at which the nut rotates is equal to the frequency at which
the amplitude is modulated.
Since the amplitude of the sound received depends on

the distance between the nut and the microphone (which
varies significantly during the experiments as the nut goes
from one side of the balloon to the other) we observe a
modulation frequency on the spectrograms. The periodic-
ity of the spectrogram in Figure 3. is theoretically equal to
the rotation frequency of the nut. This is experimentally
checked using a camera.

2.4 Measurement of elastic properties

The elastic properties (the Young’s Modulus and Poisson’s
ratio) of commercial rubber balloons are not specified and
need to be determined experimentally. To do so, we cut
bands of known dimensions from new balloons and stretch
them while measuring the force required to do so. We
also measure the thickness/width of the band during the
stretching experiment. The Young’s modulus of a band
of length l is defined by E = σ/ε where σ is the stress
(force/surface) applied and ε = ∆l/l is the relative elon-
gation of the band. Poisson’s ratio ν is defined by the
amount of transverse expansion divided by the amount of
axial contraction.

In our experimental conditions, we are not in the elas-
tic regime on the whole strain curve. However, once the
balloon is inflated, the slope of the strain curve around
the inflation deformation is locally constant, and we can
define a local Young’s modulus for a given deformation.
The additional deformations of the inflated balloon dur-
ing the experiments, either due to the hex nut pushing
on the membrane or to waves travelling in the membrane,
are small enough to justify that this approximation holds.

2.5 Measurement of the main sound frequency – nut
hits on the membrane

The primary sound’s frequency produced is measured
by taking the frequency corresponding to the main
component in the spectrogram.

2.6 Measurement secondary sound frequency

In experiments appear a rather constant frequency that
can be heard in some remote cases between 100 and
200Hz. We measure this frequency by taking the high-
est amplitude component between 100 and 200Hz in the
spectrogram.

2.7 Measurement of the amplitude amplification

Due to its shape and oscillating properties we expect
the balloon to act as a sound box, amplifying the sound
produced by the nut.
To measure this amplification we measure the sound

produced by a piezoelectric transducer in the air at a given
frequency, then compare it to the sound produced when
a balloon is attached to the transducer under the same
conditions. The difference in amplitude between the two
experiments gives us the amplification for that frequency.
We then obtain a continuous graph by sweeping between
frequencies.
The amplitude considered here is the total amplitude of

the sound, with all its frequencies.

2.8 Measurement of the amplitude of the main sound

Since the primary sound is the one with the highest funda-
mental frequency and does not overlap with other sound
contributions in the studied frequency range, we extract
its amplitude from the Fourier transform by integrating
the peaks from 80% of the fundamental frequency (to
account for the peaks width) to infinity.

3 Models

3.1 Predicted main sound frequency – nut hits
on the membrane

The primary sound produced is due to the nut deform-
ing the membrane and creating a pressure wave at a
given frequency. The frequency at which a nut of side
length l rolling without friction at a speed v hits the
balloon is fpred = v/l. Harmonics are also generated by
the deformation.
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3.2 Predicted secondary sound frequency –
membrane vibration

A rubber balloon is an elastic medium with periodic
boundary conditions, we thus expect it to have spe-
cific eigenfrequencies at which the membrane is going to
oscillate and create a sound.
Following Baker [3] we model our balloon as a simple

spherical elastic shell. Its eigenfrequencies are given by

f2n =
α±

√
α2 − 4(1− ν2)[n(n+ 1)− 2]

2G

where α = n(n + 1) + 1 + 3ν,G =
(1− ν2)ρR2

E
. R is the

radius of the balloon, E, ν are its Young’s modulus and
Poisson’s ratio respectively, and ρ is the rubber’s den-
sity. The ± sign yields two branches of eigenfrequencies,
thereafter named lower branch and upper branch.
More simply, we can derive the dependency of the fre-

quency in 1/R with a simple rope model. Assimilate the
balloon sphere to a rope of length L = 2πR with peri-
odic boundary conditions. The wavelengths λ will be
quantified, proportional to L/n where n ∈ Z. Therefore,
f = cel/λ ∝ 1/R where cel denotes the speed of sound in
the elastic material.

4 Results

4.1 Influence of solid friction

The movement of the nut on the membrane is circular
as Figure 4a shows that it corners’ motion is sinusoidal.
The chronophotography in Figure 4b confirms this rolling
behaviour: when the nut topples over, its corner in contact
with the membrane does not slide.

4.2 Rotational frequency of the nut

The frequency of the modulation of amplitude is plotted
against the rotational frequency of the nut (captured by
video) in Figure 5.

4.3 Elastic properties

Traction curves such as in Figure 6 give us an estimate
on the Young’s modulus of our balloons of 1–3 Mpa.
Regular measurements of the thickness/width of the mem-
brane give a Poisson’s coefficient between 0.4 and 0.5,
within expected ranges (theoretical value 0.5 for an elastic
medium).

4.4 Main frequency – nut hits on membrane

We determine the primary frequency of the sound as a
function of the radius of the balloon, the side length of
the nut and its rotation frequency inside the balloon. The
theoretical frequency is plotted against the experimental
frequency in Figure 7.

Fig. 4. (a) Experimental data of the height of a corner of the
nut during one rotation of the nut extracted using Tracker (soft-
ware). A sinusoidal fit is performed on the experimental data
and plotted in solid line. (b) Superposition of three images
of the nut rolling on the membrane taken with a high-speed
camera at 3000 fps. For visualisation purposes the hex nut
is redrawn.

We found no influence of the mass and width of the nut
on this frequency.

4.5 Secondary frequency – membrane vibration

Using a high-speed camera at 3000 fps, we observe vibra-
tions on the surface of the membrane. The absence of
either visible nodal points or asymmetrical motion indi-
cates that the fundamental mode is dominant as described
in the model we used [3].
We determine the frequency of the sound produced by

the membrane in function of the radius of the balloon.
The experimental frequency is plotted against the inverse
of the radius in Figure 7.
We found no influence of the mass, length, width and

rotation frequency of the nut on the frequency.
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Fig. 5. Amplitude modulation frequency plotted against the
macroscopic rotational frequency of the nut. The frequency was
averaged over a period of 10 modulations for each experiment.
The macroscopic rotational frequency was derived from videos
of the balloon taken at 30 fps, using a regular camera.

Fig. 6. Traction curve of an elastic rubber balloon. The stress
σ is plotted as a function of the relative elongation of the band
ε. Black arrows show the path of the deformation. Their is a
non-linear stretching deformation (arrows upwards). The loos-
ening (arrows downwards) does not follow the initial curve, a
characteristic feature of the plastic domain.

4.6 Amplitude amplification

We plot the amplification due to the sound-box-like prop-
erties of the balloon against the frequency in Figure 8. The
amplification is calculated by subtracting the amplitude

Fig. 7. (Top) Theoretical frequency of the sound plotted
against the experimental main sound frequency. A wide range of
balloon radius (3–15 cm) and different nuts/coins (see legend)
were studied. Frequencies ranging from 100Hz to little less than
2000Hz were reached. The theoretical prediction is plotted
as a black line. (Bottom) Lowest vibrational frequency of the
balloon membrane plotted as a function of 1/R. A wide range
of balloon radius (3–15 cm) and different nuts/coins (see legend)
were studied. Frequencies from 100Hz to 200Hz were reached.

of the sound produced by the transducer alone from the
sound of the transducer stuck to the balloon.

4.7 Amplitude of the main sound

In our experiments, we used the same type of balloon but
varied its radius R as well as the parameters of the nut
(mass m, width e and side length l).

Appendix B. International Physicists’ Tournament
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Fig. 8. Amplification (in dB) is plotted as function of the
frequency at which a piezoelectric transducer excites the mem-
brane. Amplification was derived from the difference of ampli-
tude between the transducer vibrating alone and its action as
it was put on the balloon. For convenience, a sweep of frequen-
cies was performed. The distance to the microphone remains
constant between the two sound samples.

Fig. 9. The amplitude A plotted as a function of Rω for the
same type of nuts, same rotation speeds and same balloon radii
as above. Linear regressions are plotted for each type of nuts.
Coin data points are plotted with low opacity due to deviation
from the regression coefficient of the hex nuts.

We plot the amplitude A as a function of the translation
velocity of the nut Rω in Figure 9.
We also plot the linear fits for all types of nuts.

5 Discussion

5.1 Rotation frequency of the nut

As shown in Figure 5, experiments attest that in our range
of speeds and radii, the rotation frequency of the nut can
be approximated with a good precision by the amplitude
modulation’s frequency.
In other experiments, we take the amplitude mod-

ulation’s frequency as the rotational frequency, as it
is significantly less time-consuming and experimentally
constraining than tracking the nut on a video.

5.2 Main sound frequency – nut hits on membrane

Our model predicts a frequency varying as fpred = v/l
using aforementioned notations. Assuming constant speed
over the perimeter of the balloon this yields fpred =
(2πR/l)× frot where frot is the rotation frequency of the
nut.
As shown at the top of Figure 7, experiments show a

very good agreement between the predicts and experimen-
tal frequencies. We conclude that the main audible sound
is indeed produced by the shocks of the nut’s sides on the
membrane of the balloon at a given frequency.

5.3 Secondary sound frequency – membrane vibration

As shown at the bottom of Figure 7, experimental frequen-
cies are in good qualitative agreement with the predicted
eigenfrequencies in [3] for both the lower and upper
branch. The lower branch, very tightly packed, coincides
with the main peak of the membrane’s sound. The upper
branch, more diluted, is harder to analyze, and corre-
sponds to eigenmodes harder to excite with free boundary
conditions.
Baker as well as our simple rope toy model predict a

dependence of the eigenfrequencies in f ∝ 1/R, which is
experimentally verified and justifies our model.

5.4 Amplitude amplification

As shown in Figure 8, experiments show a roughly con-
stant amplification over the audible range of +20 dB in
the range of a 100Hz to around 4000Hz, which explains
why we can hear the sound of the nut.

5.5 Amplitude of the primary sound

Results in Figure 9 show that for hex nuts, the amplitude
of the sound produced collapses well under Rω (the trans-
lation velocity of the nut). Although we performed some
in depth modelling of the amplitude, we were not able to
provide any satisfactory account of experimental results.
A lower linear coefficient for coins as well as for the

smallest nut at high speed suggest some saturation phe-
nomena of the amplitude that could be due to the
saturation of the deformation of the membrane (due to
the smallness of the those nut’s sides).
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6 Dead ends and possible improvements

6.1 Higher order eigenfrequencies

Measuring higher order eigenfrequencies proves a very dif-
ficult task using Fourier transforms. Due to their smaller
amplitudes they tend to overlap with other less significant
signals or with one another, especially in the lower branch.
A setup based on laser measurements as done by Kuo [8]
would be more suited for such experiments.

6.2 Mechanical setup

Doing the experiments by hand induces non negligible
incertitudes. We also used a mechanized setup via a lab
shaker but did not present any such results here. Indeed,
that setup has two major drawbacks: first of all it cre-
ates a nontrivial background noise, which can not easily
be removed by simple algorithms, and masks most mem-
brane frequencies. The other issue is that while using a
mechanized setup we encountered a new phenomena of
frequency modulation due to the forced excitations, which
hinders our experiments. We believe this phenomena to
occur the following way: to a given excitation frequency
is associated a stable orbit in the balloon. If the nut is
not initially on this orbit, it will move towards it due
to the normal reaction on the balloon’s surface. Due to
inertia, it will however not stop at the stable orbit but
overshoot it. This induces an up/down motion of the rota-
tion plane, and thus a modulation of the sound. This is
backed up by experimental data but we do not discuss it
further here.

6.3 Influence of gas

Our model does not take into account the inner and
outer gas. This has been studied by Kuo [8] but requires
experimental data we do not have (such as the pressure
difference across the membrane). We expect the gas to
have no significant influence on the main sound’s fre-
quency, save for the heavy gases which could leads to
non negligible dampening of the oscillations and thus a
change in the harmonics’ amplitude and frequency. We do
expect a dependency of the membrane’s eigenfrequencies
with the gas’s density.

6.4 Unexplained frequencies

During most experiments we consistently observe between
30 and 80Hz a block of inaudible frequencies that seems
relatively unaffected by experimental parameters. A quick
analysis did not permit to determine whether this was only
due to noise. We believe this block might be due to fine
details on the nut’s geometry but do not discuss it further
here.

6.5 Theoretical model for the amplitude

Although results show an interesting collapse of the data
of amplitude with Rω dependency and despite a thorough

research to provide a theoretical explanation of this depen-
dency, we did not manage to provide any convincing
proof. The issue residing in the large range of mod-
elling hypotheses one can make which would require more
experimental data with a wider range of different nuts to
be tested.

7 Conclusion

In this article we have investigated the sound produced
by a nut when it is made to roll inside a balloon, both
experimentally and theoretically. After discussing the
behavior of the nut on the membrane and explaining the
amplitude modulation that one can hear when listening
to the sound emitted we have studied the two main
components of the sound emitted: membrane vibrations
and the impact of the nut on the membrane. Regarding
the membrane oscillations we showed experimentally that
the frequency of the lower branch varies as the inverse of
the radius of the balloon. Regarding the impact of the nut
we derived the theoretical frequency of the sound that
correlates very well with the main frequency component
measured in the experiments. On the amplitude of the
sound, we studied the effect of the balloon acting as a
sound box and experimentally showed that in the range
of frequencies at which the nut rolls the amplification of
the sound is around 20 dB. For nuts, we experimentally
showed a linear dependency of the amplitude of the sound
emitted on the speed of nut.

This work is based on a problem proposed in the 2018 edition of
the International Physicists’ Tournament (IPT). We are grateful
to Christophe Clanet, from the LadHyX, Guilhem Gallot from
the LOB and Fabian Cadiz from the PMC at Ecole polytech-
nique for their fruitful suggestions and corrections brought to
the core of this article. We also thank the teams from ParisSud
at the French Physicists’ Tournament (FPT) and the teams of
Switzerland and Brazil at the IPT for the intense discussions we
had in order to solve this problem.
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Thibault Guillet. Sound of a nut rolling inside an elastic rubber balloon, Emergent Scientist 3, 6 (2019)

Apx

117



Appendix B. International Physicists’ Tournament

Apx

118



Bibliography

bib

Bibliography

[1] S. F. Hoerner. Fluid-dynamic drag: practical information on aerodynamic drag and
hydrodynamic resistance. Hoerner Fluid Dynamics, 1965.

[2] E. Achenbach. Distribution of local pressure and skin friction around a circular cylin-
der in cross-flow up to re = 5 × 106. Journal of Fluid Mechanics, 34(4):625–639,
1968.

[3] A. Thom. An investigation of fluid flow in two dimensions. HM Stationery Office,
1929.

[4] Albert C Gross, Chester R Kyle, and Douglas J Malewicki. The aerodynamics of
human-powered land vehicles. Scientific American, 249(6):142–152, 1983.

[5] Yakovich Ilich Frenkel. Kinetic theory of liquids. 1955.

[6] C. E. Brennen. Cavitation and bubble dynamics. Cambridge University Press, 2014.

[7] J. P. Franc and J. M. Michel. Fundamentals of cavitation, volume 76. Springer science
& Business media, 2006.

[8] B. K. Ahn, T. K. Lee, H. T. Kim, and C. S. Lee. Experimental investigation of super-
cavitating flows. International Journal of Naval Architecture and Ocean Engineering,
4(2):123–131, 2012.

[9] N. E. Joukowsky. I. a modification of kirchhoff’s method of determining a two-
dimensional motion of a fluid given a constant velocity along an unknown streamline.
ii. determination of the motion of a fluid for any condition given on a streamline. Rec.
Math, 25:121–278, 1890.

[10] D. Riabouchinsky. On steady fluid motions with free surfaces. Proceedings of the
London Mathematical Society, 2(1):206–215, 1921.

[11] D. A. Efros. Hydrodynamic theory of two-dimensional flow with cavitation. In Dokl.
Akad. Nauk SSSR, volume 51, pages 267–270, 1946.

[12] T. Y. T. Wu, A. K. Whitney, and C. E. Brennen. Cavity-flow wall effects and correction
rules. Journal of Fluid Mechanics, 49(2):223–256, 1971.

[13] Z. Pan, A. Kiyama, Y. Tagawa, D. J. Daily, S. L. Thomson, R. Hurd, and T. T. Tr-
uscott. Cavitation onset caused by acceleration. Proceedings of the National Academy
of Sciences, 114(32):8470–8474, 2017.

[14] Lord Rayleigh. VIII. On the pressure developed in a liquid during the collapse of
a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 34(200):94–98, 1917.

[15] M. S. Plesset. The dynamics of cavitation bubbles. Journal of applied mechanics,
16:277–282, 1949.

[16] M. S. Plesset and A. Prosperetti. Bubble Dynamics and Cavitation. Annual Review
Fluid Mechanics, 9:145, 1977.

[17] S. Gaggero, G. Tani, D. Villa, M. Viviani, P. Ausonio, P. Travi, G. Bizzarri, and
F. Serra. Efficient and multi-objective cavitating propeller optimization: An applica-
tion to a high-speed craft. Applied Ocean Research, 64:31–57, 2017.

119



Bibliography

bib

[18] R. E. A. Arndt. Recent advances in cavitation research. In Advances in Hydroscience,
volume 12, pages 1–78. Elsevier, 1981.

[19] J. R. Blake and D. C. Gibson. Cavitation bubbles near boundaries. Annual review of
fluid mechanics, 19(1):99–123, 1987.

[20] R. E. A. Arndt, R. L. Voigt Jr, J. P. Sinclair, P. Rodrique, and A. Ferreira. Cavitation
erosion in hydroturbines. Journal of Hydraulic Engineering, 115(10):1297–1315, 1989.

[21] M. Dular, B. Bachert, B. Stoffel, and B. Širok. Relationship between cavitation struc-
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Titre : Cavitation & Supercavitation : Obtenir un projectile profilé stable

Mots clés : cavitation, supercavitation, dynmique de bulles, cavité ventilée, réduction de trainée, entrée dans
l’eau, instabilité

Résumé : La supercavitation utilise le changement de
phase du liquide-vapeur au mouvement rapide d’un
projectile pour le profiler et ainsi réduire sa trainée.
Dans cette thèse, nous abordons la supercavitation
sous différents aspects : la cavitation induite par
accélération en environnement confiné, la réduction
de trainée engendrée par la cavité d’air et la sta-
bilité des trajectoires des objets ainsi profilés. Plus
précisément, nous nous intéressons dans un premier
temps, à la fois expérimentalement et théoriquement,
à la croissance des bulles de cavitation. Après avoir
montré que cette croissance n’est possible que dans
une enceinte déformable, nous prouvons, dans le cas
particulier où la dépression à l’origine de l’appari-
tion de ces bulles est transitoire, que leur dynamique
suit l’équation de Rayleigh-Plesset et que leur rayon
maximal peut être prédit analytiquement. Si la vitesse
du projectile est assez grande, les bulles de cavita-
tion grossissent et coalescent pour former une unique

bulle, accrochée à la surface du projectile et située
dans son sillage: c’est le régime dit de supercavita-
tion. Nous montrons que ce régime peut être repro-
duit dans un canal hydraulique ”classique”, à faible
vitesse, en injectant de l’air à la surface du projectile.
Avec ce dispositif expérimental, nous démontrons que
la taille relative de la bulle est uniquement déterminée
par un paramètre adimensionnel. Dans le cas d’une
sphère, nous mesurons la modification de trainée
ainsi engendrée. Enfin, le système global { sphère +
bulle } peut être considéré comme un projectile profilé
de densité inhomogène. Nous montons que de tels
projectiles profilés, suivent des trajectoires courbes
après leur impact dans l’eau. Nous démontrons, à
la fois expérimentalement et théoriquement, que la
forme de leur trajectoire est déterminée par leur vi-
tesse d’impact, leur forme et la position de leur centre
de gravité.

Title : Cavitation & Supercavitation: From a bluff to a stable streamlined projectile

Keywords : cavitation, supercavitation, bubble dynamics, ventilated cavity, drag reduction, water entry, insta-
bility

Abstract : Supercavitation uses the phase transition
liquid-gaseous, triggered by the fast motion of a pro-
jectile, to streamline its shape and reduce its drag. In
this thesis, we address several aspects of supercavi-
tation: cavitation triggered by acceleration in a confi-
ned geometry, drag reduction induced by the air ca-
vity and the stability of the trajectory of such stream-
lined projectiles. More precisely, we first study both
experimentally and theoretically the growth of cavita-
tion bubbles. After showing that their growth is uni-
quely possible in a deformable container, we prove, in
the case of a transient pressure drop, that the dyna-
mic of the bubbles follows the Rayleigh-Plesset equa-
tion and that their maximum radius can analytically be
predicted. If the velocity of the projectile is high en-
ough, the bubbles grow and coalesce to form a large
bubble pinned at the surface of the projectile and lo-

cated in its wake: this is the so-called supercavitation
regime. We show that this regime can be mimicked in
”regular”, low velocity, hydrodynamic tunnel via air in-
jection at the surface of the projectile. In this set-up,
we demonstrate that the relative size of the bubble is
governed by an unique dimensionless parameter. In
the case of a sphere, we measure the drag modifica-
tion induced by the presence of the bubble. Finally, the
overall system { sphere + bubble } is analogous to a
inhomogeneous streamlined projectile. We show that
such streamlined projectiles can follows curved paths,
following their impact on water. We demonstrate, both
experimentally and theoretically, that the morphology
of their trajectory is governed by the impact velocity,
their shape and the position of the center of mass of
the projectile.
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