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ABSTRACT

Over the last decade, the field of droplet microfluidics has built upon the concept of droplet
microreactors, i.e. the idea that a drop can be used to collect, carry and characterize chemicals,
biological systems or genetic material. Although droplet microfluidics promises to miniaturize and
automate standard microtiter plates on-a-chip, the field has remained dominated by a serial mindset
which contrast with the inherent 2D format of the microtiter plate. This manuscript provides a novel
strategy for droplet management that allows droplet microfluidics to be implemented easily inside 2D
chambers. To do so, it relies on confinement gradients to apply forces on the droplets.

This manuscript is divided into two complementary parts. The first is dedicated to the
theoretical modelling of droplet motion in a 2D chamber with confinement gradients. The theory relies
on a minimum principle that applies to viscous two phase flows. We apply this minimum principle to
the simple case of a drop moving in a flat chamber and provide new physical insights on phenomena
initially predicted by Taylor and Saffman. We then build onto the minimum principle to predict the
trajectory of a droplet in a chamber with confinement gradients. We compare our model with
trajectories measured experimentally in deformed microchannels and find satisfying agreement.

The second presents and analyzes experimental implementations of droplet actuation by
confinement gradients within microfluidic devices. First, we show how rails and anchors, which are
small grooves and holes etched in one of the channel walls respectively, are able to guide and trap
droplets against a mean outer flow in a 2D chamber. Then, we address the issue of droplet production
and transport using confinement gradients. We show that when fluid is injected from an inlet channel
into a non-parallel reservoir, it breaks up into monodisperse droplets. Combined with rails and anchors,
this techniques opens perspectives for a new generation of droplet 2D microfluidic devices that are
simpler to operate than flow powered serial droplet microfluidics and less expensive than electrode
based digital microfluidics.

RESUME

L’usage de goutte comme microreacteurs motive le développement rapide de la microfluidique
de gouttes. En effet, une goutte peut étre utilisée pour collecter, transporter et analyser du matériel
chimique, biologique ou génétique. Ainsi, la microfluidique de goutte porte la promesse d’une
miniaturisation et d’une automatisation sur puce des process actuellement mis en ceuvre sur
microplaques. Toutefois, 1’architecture des dispositifs reste essentiellement sérielle et en opposition
avec le format intrinsequement 2D des microplaques. Ce travail de thése fournit une nouvelle stratégie
de gestion de gouttes sur puce qui permet d’implémenter des procédés de microfluidique de goutte au
sein de chambres bidimensionnelles. Les méthodes mises au point emploient des gradients de
confinement pour agir sur les gouttes.

Le manuscrit comporte deux parties complémentaires. La premiére fournit un cadre théorique
pour I’étude de la dynamique de gouttes dans des chambres avec gradients de confinement. La théorie
s’appuie sur un principe minimum pour écoulements visqueux bi-phasiques. Nous appliquons ce
principe minimum au cas élémentaires d’une goutte en mouvement dans une chambre mince et
obtenons ainsi une réinterprétation physique des phénomenes initialement prédits par Taylor et
Saffman. Ensuite, nous ajoutons des gradients de confinements dans le modele et décrivons la
trajectoire d’une goutte dans ce cas. Les trajectoires prédites sont en accord avec les observations
expérimentales obtenues.

La seconde partie présente et analyse I’implémentation expérimentale de la gestion de goutte
par gradient de confinement au sein de puces microfluidiques. Tout d’abord, nous montrons comment
rails et ancres, qui sont de petites rainures et puits gravés a la surface du canal, sont capables de guider
et piéger des gouttes respectivement. Ensuite, nous adressons la production et le transport de goutte
par gradient de confinement. Nous montrons que lorsqu’un fluide arrive a I’extrémité d’un injecteur se
jetant dans un réservoir en forme de biseau, celui-ci se scinde spontanément en gouttes monodisperses.
Combinée avec les rails et ancres, cette méthode de production de goutte nous permet d’imaginer une
nouvelle génération de dispositifs microfluidiques a base de goutte dont 1’architecture
bidimensionnelle se rapproche de la microplaque, tout en restant simple a utiliser et peu cher a
fabriquer.
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Introduction

Let’s start with a riddle: what played an important role both in the historical measurements
of ¢ the unit charge of the electron at the turn of the 20th century and in the current advent
of sequencing in biological research? Or, as illustrated below,

WHAT DO THESE MACHINES HAVE IN COMMON?

Hint 1: on the left is the apparatus used by Robert Andrews Millikan and Harvey
Fletcher to perform their famous oil drop experiment between 1908 and 1917.
Hint 2: on the right is the IonTorrent OneTouch instrument which prepares a genetic
sample for sequencing by performing an emulsion PCR.

Answer: .oidsariotai o ednvoms baiidasup 9181 to 219itiso 26 edslqoib 1o sey odT

The fact that droplets played a crucial role in the discovery of the electron is little
known in the microfluidic community. Yet, in my opinion, Millikan’s oil drop experiment
marks the dawn of droplet microfluidics.

Soon after the experimental discovery of the electron by Sir Thompson in 1897, Millikan
designed a clever experiment to measure the unit charge of the electron [1]. He built a
closed container at the top which could be introduced a single oil droplet several microns
in radius. An X-ray source then ionized the gas in the chamber in order to charge the
droplet with a relatively small number of electrons (up to a few hundred) and an electric
field was applied to induce an electromagnetic force opposite to gravity on the drop. He
then measured the terminal velocity of the drops with and without the electric field and
noticed that the change in velocity was always quantified and a multiple of some constant
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number. Last, he related this constant to the unit charge of electrons and found the
remarkable measure e = 1.5924(17) - 107" C, less than a percent off the actual value
e = 1.602176487(40) - 107! C. Millikan was rewarded with the Nobel prize in 1923 for his
work on the elementary charge of electricity and on the photoelectric effect [2].

In Millikan’s experiment, the droplet is used to collect, carry and characterize a num-
ber of electrons. In modern droplet microfluidics, a droplet is used to collect, carry and
characterize chemicals [|, biological systems [] or genetic material as in the case of the
IonTorrent OneTouch instrument. And remarkably, Millikan’s justification for the use of
droplets is still relevant today: it is far more practical to produce nano- to femto-liter
droplet containers than equivalent solid spheres, capsules or gels.

0.1 Motivations for 2D droplet microfluidics

0.1.1 A very brief history of droplet microfluidics

Lederberg in 1954 [3] and Rotman in 1961 [4] published two seminal papers concerning
the use of droplets to address biological and chemical questions. They introduced the idea
that a droplet could be considered as a tiny version of the chemist’s flask, a nanoliter
compartment in which cell cultures and chemical reactions could be performed. Indeed, a
droplet presents a number of advantages:

e It is a natural microreactor: the interface of the drop provides a natural chemical
boundary for molecules, cells or biological systems if they are not soluble in the
medium surrounding the drop (air, oil, etc...). As a result, the contents of a drop are
isolated from the contents of a neighboring drop.

e [t covers a wide range of small volumes: droplets range in size from the millimetric
capillary length down under a micron depending on the method of production, which
translates to a volume range from the micro- to the atto-liter. In all cases, these
volumes are small compared to the milliliter volume of a chemist flask.

e It allows straightforward multiplexing: droplets are usually produced in numbers
and since each droplet is an individual microreactor, multiplexing of an experiment
is easily achieved.

Despite these promising assets, the field of droplet microfluidics stayed dormant for
almost 50 years. This is largely due to the fact that methods to produce, manipulate
and monitor droplets then lacked in throughput, efficiency and/or reproducibility [5] when
compared with competing bulk approaches.

In the early 2000’s, microfluidics underwent a boom in activity with the development
of soft lithography techniques that enabled the rapid and cost effective prototyping of
microfluidic device in polymer [6, 7]. The field of droplet microfluidics wasn’t left behind
with the emergence of new methods for droplet production and transport, namely the
T-junction [8] and the flow focusing [9] microchannel geometries shown on Fig. 1.
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Figure 1: Image of a) T-junction and b) flow focusing microchannels producing water
droplets in oil.

These methods differed from techniques like ink-jet printing [10], membrane emulsifi-
cation [11], the historical vaporisation [1, 4] and the everyday mixing of the vinaigrette
mainly because the droplets were produced on-chip, inside the closed and controlled envi-
ronment of the microdevice. Furthermore, since in both cases a strong flow of continuous
phase is required to shear the dispersed phase and produce the droplets, advection from
the outer flow was readily available to transport the droplets inside the device [12].

0.1.2 A serial mindset in droplet microfluidics

Ultimately, these new methods of droplet production drove the field of droplet microfluidics
towards a serial mindset. Because droplets are produced and arrayed in a train which flows
inside linear microchannels, operations on individual droplets can only occur in series, one
droplet after the other.

The conceptual workflow of chemical or biological assays [13, 14, 15, 16, 17] in droplet
microfluidics is shown below on Fig. 2. First, a train of droplets containing various reagents
is produced, forming a chemical library. Then, a drop of the sample to be analyzed is
merged with each individual reagent droplet. Last, the merged droplets are analyzed one
by one, by fluorescence for example, to obtain a readout of the assay.

reagents
2 1. MAKE DROPLETS

[ ] a éG @& @ N
AN

A
'
e [ ] a a @&
' o

L 1. FUSE DROPLETS ® ® ©<«sample

’

III. ANALYSE DROPLETS laser

Figure 2: Tllustration of the conceptual architecture and workflow of a droplet mi-
crofluidic device for chemical or biological assays.
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Tremendous efforts have been dedicated to the implementation in series of the key
operations that are necessary to perform chemistry or biology in droplets. This includes
merging, splitting, dilution (the combination of merging and splitting), sorting, readout,
etc... A number of reviews [14, 18, 12, 5] give inventories of the techniques available.

The issues of throughput and reproducibility that initially rendered droplet microflu-
idics impractical [3, 4] are today solved. As a matter of fact, the first commercial products
based on such a serial approach have hit the market and triggered a wave of excitement in
the biotechnology community.

0.1.3 Inherent weaknesses of serial architectures

However, serial droplet microfluidics, like all serial architectures, have one unavoidable
weakness: long range interactions. Imagine that for one reason or another (dirt, wetting,
crystallization, etc...) a droplet suddenly stops in the microchannel. The entire train
of following droplets eventually abuts onto the one blocking the channel and the device
completely breaks down. This examples illustrates the overall sensitivity of the train of
droplets to any localized perturbation. What affects one drop affects all drops.

Building analogies with electronics is often useful in microfluidics [19] and in this case,
Christmas fairy lights are ideal. If the tinsel is designed in series, when one light bulb
breaks, the entire tinsel turns off. Not only is the tree in the dark but it is also a nightmare
to identify which light bulb is broken. What affects one light bulb affects the entire tinsel.

A related yet distinct problem is the issue of traffic jams which are a signature phe-
nomenon of transport in serial architectures, as illustrated on Fig. 3. Traffic jams can
occur spontaneously even when the device is perfectly functional [20], or more frequently
when the droplets are heterogeneous in size or content. Indeed, a change in the geometry,
surface tension or viscosity of the droplet affects its transport velocity [12]. Eventually, the
fast drops catch up with slower ones and a packed group of droplets develops inside the
device, jeopardizing the performance of the microfluidic device. This is none other than
the delivery-truck-in-a-one-lane-street (DTOLS) issue to which can be attributed a large
proportion of the honking concerts in the streets of Paris.

Figure 3: Limitations to a serial mindset reach the top of Everest as a traffic jam
forms in the death zone while hundreds of climbers try to summit on May 23 2012.
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Because of long range interactions, the vertical integration on a single chip of a chain
of operations lacks robustness and turns out to be impractical for chemical or biological
applications. As a result, protocols are cut down to individual steps which are then imple-
mented individually on separate microfluidic devices [15, 16, 17]. The effective schematic
of a serial droplet microfluidic protocol is shown on Fig 4.

reagents Device I. MAKE DROPLETS
/
oil
[ ] ab égb &g &
Device II. FUSE DROPLETS collzct
oD G G e o an
® reinject

collect ® 0 0« gl
and
reinject Device III. ANALYSE DROPLETS

laser

Figure 4: In order to limit long range interactions, assay protocols are cut down to
individual steps and performed seperately of distinct chips. For example, a first device
produces a library of droplets which is collected in an Eperdorf tube. The emulsion is
reinjected in a second chip to be merged with a sample. A third chip is used to analyze
the result.

This representation of serial droplet microfluidics is to some extent an exaggeration since
there are reports in the literature of devices integrating multiple steps [21]. Nonetheless,
all commercial products which by definition require irreproachable robustness, like the
Raindance RainDrop ' or the BioRad QX100" ", are one-operation-per-chip solutions.

0.1.4 The microplate: a 2D lab standard

A few years before the first demonstration by Lederberg [3] of the use of droplets for biology
and chemistry, the hungarian doctor Gyula Takatsy invented another alternative to the
chemist’s flask. In order to improve the screening throughput of influenza during a violent
epidemic, he created a plate into which was machined an 8 by 12 array of small sample
wells. In 1951, the 96 wells microtitration or microtiter plate was born [22].

Microtiter plates do not differ significantly from the original droplet microfluidic format
of Rotman [4] since essentially, each well contains a droplet of sample or reagent. In fact,
microtiter plates and droplets share a number of advantages:

e [solated microreactors: each wells is separated from the others by solid walls.

e Small volumes: the microliter volume of a well is significantly smaller than the
milliliter volume of a flask.

e Multiplexing: the array format of the wells is ideal for parallel experiments.
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Figure 5: Photograph of a collection of microtiter plates with various number of
wells. [23]

Yet, whereas droplet microfluidics stayed dormant for half a century, microtiter plates
quickly became a standard in labs around the world. The combination of the arrayed
format of the plate with the accessibility of the wells by pipetting is in great part responsible
for this success since it enabled the parallelization of the labor intensive pipetting and its
automation [22].

To compare with serial droplet microfluidics, the workflow for an assay in a microtiter
plate is straightforward: load each well with a specific reagent, pipette simultaneously the
sample into the wells, incubate if necessary and read the results directly on the plate by
absorbance, fluorescence, spectroscopy, etc... Here, owing to the parallel 2D format of
the plate, what happens in a well does not affect neighboring wells. Interactions between
samples are minimal. Furthermore, wells can be accessed individually or collectively and
at any time during the experimental procedure and vertical integration is natural. In
particular, the results of successful experiments can be easily recovered for further use
with a standard pipette.

If droplet microfluidics have a chance at competing with microtiter plate technologies,
it is because pipetting accuracy is largely compromised at volumes below 1 pL. Droplet
dispensing is not the limiting operation. Microarray technologies for example use inkjet
printing or derivatives to array thousands of nanoliter drops on microscope slides. However,
owing to surface tension, small droplet strongly resist detachment from solid surfaces [24]
such that reverse pipetting is compromised. A significant proportion of the droplet always
remains on the surface after aspiration. Overall, the miniaturization of the microtiter plate
below microliter volumes is possible but at the cost of losing accessibility to the contents
of the wells.

0.1.5 Towards 2D droplet microfluidics

The combined observations that i) serial droplet microfluidics cannot be used to design
vertically integrated microfluidic devices and that ) the downscaling of the microtiter
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plate has reached its limits motivates the field of microfluidics to elaborate alternative
approaches for liquid handling at the nanoliter scale. Innovations in microplumbery like the
elastomeric Quake valve [25, 26] have enabled the design of small volume fluidic circuits for
example. Droplet manipulation on surfaces with surface acoustic waves (SAW) is another
approach [27]. Amongst these technologies, 2D droplet microfluidics is emerging as a
promising solution.

In a 2D droplet microfluidic device, the linear microchannels are replaced by a single
large, wide but thin chamber in which droplets are free to move in a plane. Such a chamber,
with a high width-to-thickness aspect ratio, is often referred to as a Hele-Shaw cell in the
fluid mechanics literature [28] and we adopt this vocabulary here on.

droplet
production

Figure 6: Sketch of an ideal 2D droplet microfluidic device. Droplet production,
transport, arraying, merging and splitting can all occur simultaneously within the Hele-
Shaw cell.

Ideally, all the key droplet operations necessary to carry out an assay take place in the
chamber as illustrated on Fig. 6. Some drops are produced and transported to be stacked
in an array. Others are merged to initiate a chemical reaction while a third is split into two
daughter droplets. Owing to the 2D format of the chamber, droplet to droplet interactions
are reduced. Static arrayed drops do not impedes the movement of other drops elsewhere
in the device for example.

The fundamental difficulty in implementing a 2D droplet microfluidic device lies in the
actuation of individual droplets inside the chamber. Unlike the microtiter plate, the closed
environment of the Hele-Shaw cell hinders a direct access to the drops.

A first approach was developed over the last 10 years. Digital microfluidics uses elec-
trodes patterned on the chamber walls to locally apply electric fields and manipulate the
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droplets. The actuation relies either on electrowetting (EW) [29], electrowetting on di-
electrics (EWOD) or on dielectrophoresis [30] to exert a force on a droplet. Digital mi-
crofluidic devices have been developed for numerous applications from cell culture to com-
binatorial chemistry [31]. Furthermore, the recent combination of an EWOD device with a
high resolution electrode array usually found in LCD display technologies paves the way for
the large scale integration of droplet manipulations with digital microfluidics, as it enables
a decrease in the size of the electrodes and an up-scaling in the number of individual ad-
dressable droplets [32]. An issue with digital microfluidics remains the cost of chips which
are often disposable in biochemical applications.

A second approach consists in using an outer flow like with serial droplet microfluidics.
In this case, all droplets are advected in a given direction by the flow and actuation then
boils down to either altering the nominal motion or trajectory of the droplets or controlling
the outer flow. A simple solution is suggested by Huebner ef. al. [33]: small structures
with solid walls are placed inside the Hele-Shaw cell to trap droplets as shown on Fig. 7.
When the flow comes from one direction, it pushes the drops into the pockets. In the other
direction, it releases them. In a more elaborate version, two drops with different contents
are loaded in each trap and coalescence is triggered with electrodes [34]. Although the
vertical integration of a chemical reaction in droplets is achieved on a single chip from
production to readout, all drops are here actuated simultaneously and the device is far
from the ideal 2D droplet microfluidic layout of Fig. 6.

Figure 7: Top: figures from Huebner et. al. [33] illustrating the use of solid pockets to
trap droplets in a Hele-Shaw cell. Numerous drops are flowed from left to right into the
device and some of them randomly enter the traps to form an static array. Reversing
the flow direction releases the droplets. Bottom: Demonstration of droplet actuation
with a focused laser spot. In a channel wider than a droplet diameter, a first pattern
of light highlighted with the dotted line is used to deviate a droplet onto the side of
the channel and trap it further downstream. Then, the pattern is switched to deflect
the next drop on the other side of the channel while holding the first drop in place.
Eventually, the second drop passes the first. Time stamps indicate chronological order.
Adapted from Cordero et. al. [35].
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Another elegant solution was developed in the lab by M.-C. Cordero and collaborators.
When a laser is focused on the interface of a droplet, a repulsive force appears from soluto-
Marangoni effects [36]. Consequently, points and lines of light act as invisible pillars or
walls that strongly influence the motion of the drops. This property is illustrated in Fig.
7 which shows how drops are deflected and trapped by active light patterns [35]. Laser
actuation was also adapted to force rapid mixing of a drop’s contents [37] and was shown to
trigger coalescence [35]. Unfortunately, the focused laser locally heats the droplet, possibly
jeopardizing this technology for biological applications.

Nonetheless, the experiment shown on Fig. 7 also clearly demonstrates that the long
range interactions so critical in serial droplet microfluidics vanish as soon as the microchan-
nel is wide enough for one drop to pass another. It validates the idea that 2D droplet
microfluidics is a viable solution for vertically integrated devices.

My PhD work, presented below, reveals yet another strategy for droplet management
in Hele-Shaw cells which relies on confinement heterogeneities to apply forces on droplets.
Confinement heterogeneities are local and small amplitude variations in the thickness of
the Hele-Shaw cell: instead of having perfectly flat and parallel walls, the chamber contains
wedges, bumps, grooves, etc... This approach is shown to provide a robust, passive and
cost effective solution for droplet production, guiding and trapping. When combined with
local active actuation, it enables the design of fully operational 2D droplet microfluidic
devices.

0.2 Outline

This manuscript is divided into two complementary parts. The first is dedicated to the
theoretical modeling of droplet motion in a Hele-Shaw cell with confinement gradients.
The second presents and analyzes experimental implementations of droplet actuation by
confinement gradients within microfluidic devices.

The first half of Part I is a review and critical analysis of the literature on droplet
actuation by confinement gradients and on viscous two phase flows in general. In the
second half, we formulate an energy approach to these phenomena that differs from the
classical force based models. We apply it the cases of a droplet flowing in parallel and
deformed Hele-Shaw cells respectively.

e In Chapter 1, we review the basic concepts behind droplet actuation using confine-
ment gradients and identify the pioneering literature on the subject. Starting from
the seminal experiments performed by Hauksbee in 1710 [38], we follow history to
introduce interfacial tension, surface energy and related phenomena relevant for our
study. Along the way, we define useful vocabulary specific to droplet microfluidics in
confined geometries.

e The first half of Chapter 2 is a reminder of the minimum principle that applies to
viscous two phases flows, which we show to be equivalent to the classical Stokes
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equations combined with the dynamic Young-Laplace equation. Given the frequent
misuses of this principle in the literature, we give a critical analysis of its implications.
In the second half of Chapter 2, we apply this minimum principle to the case of a
drop moving in a Hele-Shaw cell and compare our results with the Taylor-Saffman
prediction [39] obtained from a kinematic analysis of the flow. Our analysis provides
new physical insights on the phenomena at play in this system.

e We then build onto the minimum principle to formally derive a new formulation for
the energy production-dissipation balance of viscous two phase flows that accounts for
variations of surface energy. In the rest of Chapter 3, we make use of this equation
to predict the trajectory of a droplet advected by an outer flow in a Hele-Shaw
cell with confinement gradients. We compare our model with trajectories measured
experimentally in deformed microchannels and find satisfying agreement.

In Part 2 of the manuscript, we demonstrate experimentally droplet actuation by confine-
ment gradients within 2D microfluidic devices. This includes droplet production, transport,
guiding and trapping.

e Chapter 4 is a summary of three articles that we published over the last three years.
First, we show how rails and anchors, which are small grooves and holes etched in one
of the channel walls respectively, are able to guide and trap droplets against a mean
outer flow in a Hele-Shaw cell. After presenting proof of concept experiments and
some early applications to chemistry and biology in droplets, we rely on the energy
approach developed in Part 1 to give a quantitative analysis of the trapping force
developed by an anchor. Last, we add controllable laser actuation to microfluidic
devices with rails and anchors to create addressable 2d droplet arrays. The articles
are included at the end of the chapter.

e To finish, we address the issue of droplet production and transport using confinement
gradients in Chapter 5. We show that when fluid is injected from an inlet channel
into a non-parallel Hele-Shaw cell, it breaks up into monodisperse droplets. We
study experimentally the performance of this new method for droplet production and
reveal its peculiar properties. To explain our observations, we identify a novel droplet
formation mechanism that originates from an equilibrium condition of the fluid thread
upstream of the injection nozzle rather than from an instability of the droplet forming
in the Hele-Shaw cell. Last, we demonstrate that massive parallelization of the
injection nozzles is straightforward and enables the production of complex emulsions
and high-throughput droplet production.

We conclude with the presentation of a new generation of 2D droplet microfluidics that
does not require a flow of the outer phase.
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An energy model for droplet
manipulation with confinement
gradients
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Nomenclature

g Gravity

INTERFACIAL TENSION

¥ Interfacial tension

vsr  Surface energy density of a Solid-Liquid interface

vsy  Surface energy density of a Solid-Vapor or Solid-Outer Fluid interface
0, Contact angle

FLUID PROPERTIES

p Fluid density

1 Fluid viscosity

41 Viscosity of the drop

Lbo Viscosity of the outer fluid

GENERAL GEOMETRY

n Normal vector of an interface, oriented from the drop to the outer fluid
C Mean curvature of an interface

Q Entire fluid domain of the system

0 Fluid domain inside the drop

Q9 Fluid domain outside the drop

S Domain of the fluid interface

B,  Outer boundaries of the system

CHANNEL OR HELE-SHAW GEOMETRY

13
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h Gap width of a Hele-Shaw cell

ho Nominal gap width of a Hele-Shaw cell
Ah  Spatial variations in thegap width of a Hele-Shaw cell
W Width of a Hele-Shaw cell

DROPLET GEOMETRY

@) Center of mass of a droplet

(x4,ya) Position of O

R Radius of a droplet

V Volume of a droplet

S Surface area of a droplet

k Aspect ratio k = /125 /h of the droplet

Semi-major axis of an elliptic droplet

S

b Semi-minor axis of an elliptic droplet

c Focal distance ¢ = v/a2 — b2 of an elliptic droplet

e Eccentricity e = ¢/a of an elliptic droplet

A Aspect ratio A = a/b of an elliptic droplet

P Perimeter of an elliptic droplet

VELOCITY FIELDS, VELOCITY POTENTIALS, STREAM FUNCTIONS
u General notation for a velocity field

U  Imposed velocity at the outer boundaries of the system

Vu  Gradient operator of the velocity field

Avu  Laplacian operator of the velocity field

U Height averaged velocity field in the Hele-Shaw cell

Q Flow rate of the outer fluid in the Hele-Shaw cell
Uy

Uniform height averaged velocity field imposed at the boundaries of the Hele-Shaw
cell
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U, Velocity of the center of mass of the droplet

Velocity ratio U = Uy /U f

a Relaxation velocity a = da/dt of an elliptic droplet
A Rate of change A = d\/dt of the aspect ratio
A Normalized A = A = /S/w\/U;

S Rate of change dS/dt of the surface area of the droplet interface
U, Inner height averaged velocity field

U, Outer height averaged velocity field

U, Component in z of the height averaged velocity field

U, Component in y of the height averaged velocity field

U,1 Inner radial component of U

Up, Inner angular component of U

U,2  Outer radial component of U

Upo  Outer angular component of U

P Potential of the height averaged velocity field U

D, Inner potential

b, Outer potential

v Stream function of the height averaged velocity field U

Uy Inner stream function

v, Outer stream function

w Complex velocity potential w = & + ¥

wy Inner complex velocity potential

Wa Outer complex velocity potential

v Complex velocity v = U, + iU, of the height averaged velocity field U

T Material trajectory of the droplet
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FORCES

G Weight of the drop

ﬂ Force due to the confinement gradients

v Propulsion force from the outer fluid flow of mean velocity Uy
F,  Viscous drag of a droplet moving in a Hele-Shaw cell

Fy  Viscous drag due to far-field flows in the Hele-Shaw cell

F_[ ¢ Viscous drag due to the lubrication films around the drop
CAPILLARY NUMBERS

Cay Capillary number Ca; = psCay/v based on the outer flow velocity
Cay  Capillary number Cay = usCag/7y based on the droplet velocity
COORDINATE SYSTEMS

(x,y,z) Cartesian coordinates

¢ Radial coordinate in an elliptic coordinate system

n Angular coordinate in an elliptic coordinate system

&o Radial coordinate &, = 1/2log(a + b)/(a — b) of an ellipse (a, b)
& Radial coordinate of the elliptic control volume in Chapter 2

¢ Complex coordinate ¢ = £ + i in an elliptic coordinate system
Je, gn Metrics of an elliptic coordinate system

(r,0 Polar coordinates

p Radius of the control volume in Chapter 3

ENERGIES, LAGRANGIANS

& Total free energy of a system
&, Surface energy of a fluid interface
&, Surface energy of a Solid-Liquid interface

&

vov  ourface energy of a Solid-Vapor interface
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&p Potential energy of a system, other than the surface energy &,
5;7 Rate of change of the surface energy of a fluid interface
Sp Rate of change of the potential energy

L Lagrangian of the system

L Normalized Lagrangian

D Dissipation function

By Contribution of the far field boundary conditions U to the Lagrangian £
W Power injected in the control volume

P Energy dissipation from viscosity

P1 Inner energy dissipation from viscosity

Psr, Inner energy dissipation from the far-field flows

Pri;, Inner energy dissipation from the near-interface flows
Piy Inner energy dissipation from the lubrication films

Po Outer energy dissipation from viscosity

Pss,  Outer energy dissipation from the far-field flows

Pri, Outer energy dissipation from the near-interface flows
MISCALLENEOUS

Di Pressure field inside the drop

Do Pressure field outside the drop

[I(e) Disjoining pressure in thin lubrication films

o; Fluid stress tensor inside the drop

Oo Fluid stress tensor outside the drop

Su  Subsidence number
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Chapter 1

Interfacial tension and droplets in
confinement gradients: a rich
intertwined history

“Un des phénomenes capillaires les
plus intéressants et les plus propres
a vérifier la théorie est celui de la
suspension d'une goutte de fluide en-
tre deux plans formant entre eux un
tres-petit angle”.

Laplace, Supplément au Livre X de
la Mécanique Céleste, p. 55.

My PhD work addresses the use of confinement gradients to drive droplet microfluidics,
a topical subject given the current explosion of interest for Lab-on-a-Chip technologies. Yet,
it finds its origins more than 300 years ago, long before anyone saw in droplets a solution
to the miniaturization of chemical and biological reactors.

In 1710, Francis Hauksbee the elder, one of Sir Isaac Newton’s lab assistants, observes
that a drop of oil placed between two non-parallel glass plates is immediately set in motion
and travels towards the thinest side of the apparatus [38]. Three centuries before the first

applications, he thereby demonstrates how confinement gradients are able to propel drops
and bubbles.

At the time, the understanding of capillary phenomena is in its infancy. Hauksbee and
Newton invoke the power of attraction of surfaces which, from their accounts, increases in
strength as the distance between the plates becomes smaller [38, 40]. In the sections that
follow, we navigate through the long history [41] of this experiment to introduce the basic
concepts around interfacial tension upon which this dissertation is built.

19
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1L An decount of an Experiment touching the Di-
rettion of a Drop of Oil of Oranges, between twe.
Glafs Planes, towards any [ide of them that is nearef}
prefs’d vogether. By Mr. Fr. Hanksbee, 7. R.S,

to be explain’d from the Power of Attration, that one
Surface has to another at fuch a nearnefs (as I {ee no
Reafon to doubt it:)

Figure 1.1: Title, main figure and analysis in the original work by Francis Hawksby [38].
Is it also the first subtle use of emoticons?

1.1 Interfacial tension

It took nearly one hundred years before two scientists, namely Thomas Young and Pierre-
Simon de Laplace, explained Hauksbee’s account as a consequence of the interfacial tension
of the drop itself and not as the result of some force exerted by the plates on the liquid.

In the meantime, the concept of a tension at the interface between immiscible fluids
slowly emerged. In 1787, Gaspard Monge finishes his essay [42] on the attraction or
repulsion of bodies floating at the surface of liquids by suggesting a molecular origin for
interfacial tension. His explanation is essentially the one found in textbooks today [43].
He says

En fuppofant ainsi que l’adhérence des molécules d’un liquide n’ait d’effet
fenfible qu’a la furface méme, et dans le fens de la furface, il feroit facile
de déterminer la courbure des furfaces des liquides dans le voifinage des
parois qui les contiennent; ces furfaces feroient des lintéaires dont la
tenfion, constante dans tous les fens, feroit par-tout égale a ’adhérence
de deux molécules; et les phénomenes des tubes capillaires n’auroient plus
rien qui ne put étre déterminé par [’analyse.

Excerpt from Mémoire sur quelques effets d’attraction ou de répulsion apparente entre les
molécules de matiére by Gaspard Monge [42].

The interfacial tension, here on written -, is a molecular force per unit length which
pulls the interface equally in every direction. The famous experiment of the loop of string
placed in a soap film shown on Fig. 1.2 illustrates perfectly this force-like nature of interfa-
cial tension. Initially, the loop hangs under gravity as it would outside the film. Once the
inner soap film is punctured, interfacial tension from the outer film starts to pull strongly
on the string. In the end, the loop is stretched out in all direction and has a circular shape.
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Figure 1.2: Photographs by Walter Wick [44] of a loop of string immersed in a planar
soap film before (left) and after (right) perforation of the inner film. Initially, interfacial
tension from the outer film represented with the red arrows is exactly balanced by its
counterpart from the inner film (orange arrows). Once the inner film is punctured, the
outer film interfacial tension pulls the string radially until it is balanced by tension from
the string itself. The loop is stretched into a circle.

1.2 The Young-Laplace equation

The conclusion of Monge’s essay foresees the mathematical formulation of capillarity given
by Laplace in his famous Supplément au X® Livre du Traité de Mécanique Céleste [45] of
1806. In this work, Laplace rigorously establishes the equation suggested by Monge which
dictates the curvature of a fluid interface.

Assuming an interface has an inherent and isotropic tension, an equilibrium condition is
easily derived from the force equilibrium of a small segment of curved interface, as sketched
in Fig. 1.3. The interfacial tension v on the left does not exactly balance its counterpart
on the right and a normal force component remains. The only other forces that apply on
the segment are the inner and outer pressures, p; and p,, which must then differ in order
to compensate for interfacial tension. It yields that the mean curvature C of the interface
verifies

V'C:pi_p07 (11)

an equation known today as the Young-Laplace equation. The pressure difference Ap = p;,—
Do 1s known as the Laplace pressure jump. If there are no other forces that act on the fluids
besides the interfacial tension, then the pressure fields p; and p, are constant at equilibrium.
It immediately follows from the Young-Laplace equation that the mean curvature C is then
also constant everywhere on the interface, explaining the typical spherical shape of bubbles
and drops.

In the presence of gradients of v along the interface and of flows in either fluid phase,
the system is out of equilibrium. Yet, because the interface can be treated as a mechanical
system with no mass, acceleration disappears from Newton’s second law of motion and the
sum of forces acting on the segment of interface must still be zero. Balancing normal and
tangential stresses yields the dynamic boundary condition at a fluid interface, also known
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Figure 1.3: Tllustration of the force balance on the small segment of interface in black.
The tension from the rest of the interface pulls on both side of the segment tangentially
to the interface (red vectors). The inner pressure in blue pushes the interface outwards
while the outer pressure in gray does the contrary. The segment is at equilibrium only
if the sum of these forces is zero.

as the generalized Young-Laplace equation [46]:

L . Oy
VW -n=—(0;—0,) -1 o

n (1.2)
in which o; and o, are the inner and outer stress tensors at the interface, 9y/9n denotes
the gradient operator of v along the interface and 7 is the normal vector oriented from the
inner to the outer fluid.

1.3 Drops on solid surfaces: wetting properties, con-
tact angle and shapes

A remarkable manifestation of capillarity is the variety of shapes that droplets can adopt
on a solid surface. The shape of a drop actually defines the wetting properties of the liquid
on the solid:

e Complete wetting: the drop spreads into a thin layer that covers a large surface of
the solid. This is typically cooking oil in a pan.

e Non-wetting: the drop forms a very mobile liquid marble that is not in direct contact
with the solid, like mercury on most surfaces.

e Partial wetting: the drop adopts the shape of a spherical cap which intersects the
solid surface at an angle 6, called the contact angle. A rain drop on a windshield is
an example.

These three states are illustrated on Fig. 1.4.

Within partial wetting, hydrophilic surfaces on which the contact angle of a water drop
is below 90° as pictured on Fig. 1.4 are usually distinguished from hydrophobic surfaces
for which the contact angle exceeds 90°. This is the modern definition of the solids that
are or are not wet by the liquid often encountered in the historic literature [42, 47, 45]. The
more a surface is hydrophobic, the larger is the contact angle. Above 150°, the term
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complete wetting non wetting partial wetting

Figure 1.4: Tllustration of the three wetting configurations of a drop on a solid surface
and definition of the contact angle 0.

superhydrophobicity is often used [48] and non-wetting can be considered as an extreme
case of partial wetting with ¢, = 180°. If the droplet is oily rather than aqueous, then the
terms oleophylic and oleophopic are preferred. In the Hawksbee’s experiments for example,
the glass plates are partially wet by the oil of oranges: 0 < 6, < 7/2.

Thomas Young is accredited with the first theoretical model for the contact angle 0.,.
In his famous essay of 1805 [47], he writes

We may therefore inquire into the conditions of equilibrium of the three
forces acting on the angular particles, one in the direction of the surface
of the fluid only, a second in that of the common surface of the solid and
fluid and a third in that of the exposed surface of the solid.

Excerpt from An Essay on the Cohesion of Fluids by Thomas Young [47].

The first force is the interfacial tension ~+ of the fluid interface. The other two are
similar in nature but capture the attractive molecular interactions at the wet and dry
solid interfaces respectively. We name these tensions sz and ygy for the Solid-Liquid and
Solid-Vapor interfaces, as sketched on Fig. 1.5. Balancing the forces at the contact line
yields a condition on the contact angle ¢, known as the Young equation:

ycosty, =vsv — Ysi (1.3)

Figure 1.5: Representation of the three tensions 7y, vsr, and gy that apply at the
contact line.

Obviously, the wetting properties strongly affect the shape that the droplet adopts in
contact with the solid surface. This is especially true in the confined geometries of microflu-
idic devices. The contemporary vocabulary used to differentiate between the different con-
figurations encountered in microfluidics is illustrated in Fig. 1.6. In a hydrophobic square
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capillary, a drop has an elongated sausage shape whereas in the case of hydrophilic chan-
nels, the drop is referred to as a plug. In a Hele-Shaw cell, a drop bridging two hydrophilic
plates resembles a pulley. However, a non-wetting drop has the shape of a pancake. The
case of complete wetting is not mentioned here because it has to be avoided at all costs in
droplet microfluidics. Indeed, if the drop transforms into a layer of fluid when in contact
with the solid surface, it no longer forms a closed container.

NON WETTING PARTIAL WETTING

saugage plug

SQUARE
CHANNEL

HELE-SHAW
CELL

pulley

|
|
|
|
|
|
|
|
|
|
|
pancake I
|
Figure 1.6: 3D schematics of the different droplet shapes when channel geometries
and wetting properties are varied.

1.4 Drops in confinement gradients: a force model

Having both worked out the relation between the curvature of interfaces and capillary
effects, Young and Laplace suggest explanations for Hauksbee’s account amongst other
things.

It is regrettable that Young was refractory to calculus: his essay does not contain a
single equation or formula, and surprisingly not a single illustration. For a reader today,
his analysis of the drop squeezed between two non-parallel plates appears as qualitative
and confusing. He invokes the suction force of a concave meniscus and quantifies it with
the height of the water column it would raise in a capillary. According to Jurin’s law [49],
the height of rise of a liquid in a tube is inversely proportional to the radius of the tube
and thereby, he concludes

The theory is sufficient to explain the law of the force by which a drop is
attracted towards the junction of two plates inclined at each other [...] If
both plates were parallel, the capillary action would be equal on both sides
of the drop: but when they are inclined, the curvature of the surface at
the thinnest part requires a force proportionate to the appropriate height
to counteract it; and this force is greater than that which acts on the
opposite side.
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Excerpt from An Essay on the Cohesion of Fluids by Thomas Young [47], p. 80.

At first, this analysis seems flawed since it uses a height to measure a force. The weight
of the water column should have instead been used. However, the weight of the column
of liquid that rises in the capillary tube is proportional to the radius of the capillary,
which would mean that the capillary action on the thinnest side is less than that on the
opposite side and the liquid should move towards the thickest side, in contradiction with
experiments.

A second interpretation is that by force, Young means pressure which is indeed directly
proportionate to the height of a liquid column. Then, according to the Young-Laplace
law (1.1), the pressure jump across the thinnest meniscus is greater than the one on the
opposite side. The pressure in the droplet is lowest near the thinest meniscus and the drop
sucked towards the touching end of the plates.

Surprisingly, the first qualitative explanation in terms of forces contradicts the second
in terms of pressures.

\"I
Figure 1.7: Geometric parameters of a liquid bridge between parallel plates.

In his analysis, Laplace is instead methodical and relies intensively on calculus to obtain
his results. In his theory, curvature plays a central role. In question 9 of his book, he starts
by computing the mean curvature of a droplet of radius R squeezed between two horizontal
plates of gap width i for any contact angle 6, of the liquid on the plates, as sketched on
Fig. 1.7. For large droplet (R > h), he obtains the general asymptotic expression

2cos b 7/2—6, 1 1
C=- 1 L 4+ —sinb, | — 1.4
h +<20080ﬂ, o 7)R’ (14)

which gives the curvature of bridges (6., < 7/2) and pancakes (6, > 7/2). In the case of a
non-wetting pancake drop, it simplifies to

2 w1
C==—+-= 1.5
n AR (1.5)
whereas for a completely wetting pulley droplet, it becomes
2 w1
C=——+-——=. 1.6
n AR (1.6)

It is noteworthy that both of these equations are often forgotten in the literature [50] and
re-derived on occasions [51]. In Appendix B, we identify the shape of a droplet squeezed
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between two plates as a portion of a Delaunay surface [52] and give an alternative derivation
of the expressions above, along with a discussion of the 7/4 prefactor.

In the case of non-parallel plates, equation (1.4) shows that the curvature of the interface
is greater on the thinnest side of the drop. The Young-Laplace equation (1.1) can then be
applied to estimate the pressures in the liquid as illustrated on Fig. 1.8:

e for 6, < m/2, the pressure on the thinnest side is less than on the opposite side. The
liquid flows towards the touching end of the plates.

e for 0., > /2, the pressure on the thickest side is less than on the opposite side. The
liquid flows towards the diverging end of the plates.

a. 0,<n/2

b. 0,>n/2

Figure 1.8: Asymmetric pressures inside a) a pulley and b) a pancake squeezed
between plates inclined at an angle « force the drop to flow in the direction of the
arrows. b) Drop equilibrium is possible by tilting both plates at an angle w with
respect to gravity. In that case, the weight G of the drop is balanced the capillary force
from the confinement gradient F’, and the reaction R from the bottom plate.

Laplace and later contributors [53, 54] never directly compute the capillary force F,
that applies on the drop due to the wedged geometry and in fact, never express it as such.
Instead, they consider an apparatus tilted at an angle w with respect to gravity (see Fig.
1.8) for which the hydrostatic pressure across the drop Ap, exactly balances the capillary
pressure difference from the wedged geometry Ap,. In this particular configuration, the
drop is at equilibrium and the tilting angle w measured experimentally can be used to
confront the theory [38, 40, 47, 45, 53].

Yet, if the drop is at equilibrium, then the weight G = mR2hpg of the drop projected
in the direction of the plates provides an indirect measure for the capillary force: F, =
Gsinw. Calling o the angle of the wedge, balancing Ap, with Ap, yields pg2Rtanw =~
4~y tan aR/h?. Tt is then found that

2tan a - TR?

) (1.7)

F, = ~cosb,
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1.5 Examples of droplet propulsion in confinement
gradients

In the 300 years that followed Hauksbee’s initial observation of spontaneous droplet move-
ment between non-parallel plates, only a small number of other asymmetric geometries
were studied in that spirit. There is essentially the case of a drop in a conical or tapered
tube. It is the direct the analogue of the inclined plates but has the advantage of rotational
symmetry which eases geometrical considerations [45, 54, 55]. A less evident manifestation
of droplet propulsion from confinement gradients is the spontaneous motion of a wetting
drop towards the diverging end of a conical wire [56].

Figure 1.9: Left panel: a. A Red Necked Phalarope feeding by confinement gradient.
b. A drop of silicon oil spontaneously moves towards the closing end of an artificial
beak [57]. Right panel: a-b. The web of the cribellate spider Uloborus walckenaerius is
capable of capturing large droplets from moist air. c-d This is due to the succession of
spindle knots and joints along the threads of silk which act as two-sided conical wires.
Water drops are attracted to the spindle knots by the combined action of confinement
gradients and asymmetric contact angle between the joints and knots [58].

Nonetheless, it was recently found that there are actually animals which use either one
of these geometries to collect water droplets [57, 58]. In the case of the conical tube, these
animals are certain species of shorebirds that are part of the Phalarope family, like the
red necked phalarope (Phalaropus lobatus) shown on the left panel of Fig. 1.9. These
birds have beaks too long for suction feeding. Instead, they bring food to their mouth by
collecting their prey in water drops at the tip of their beak (see left Fig. 1.9.a), drops
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which are then propelled upwards by confinement gradients [59]. Using artificial beaks, it
was shown that capillarity alone is sufficient to drive only completely wetting liquids like
silicone oil (Fig. 1.9.b). For partially wetting water drops, the bird has to tweeze its beak
to enhance droplet motion. [57].

Associated to the conical wires is the cribellate spider Uloborus walckenaerius shown
on the right panel of Fig. 1.9. This spider produces a silk which has the remarkable ability
to collect air moisture in large droplets. This phenomenon is due to the architecture of
the silk thread which is a succession of spindle knots and joints. To small droplets, the
thread appears as a conical wire and propels the liquid towards the knots (see Fig. 1.9.c-d,
right). The effect of the confinement gradient is enhanced by variations of the contact
angle between the joints and knots [58].

In all the cases listed above, the behavior of the droplet is well captured by the force
approach of Laplace which essentially compares the curvatures and consequent pressures
at two extremities of the drop in order to predict motion. For more complex confinement
geometries as the one depicted in Fig. 1.10, this type of analysis may prove delicate. In
this example, a pancake drop is placed between two parallel plates, one of which features
a rectangular trench. Let’s consider that the center of the droplet is off-center with the
trench. As drawn on 1.10, the curvature of the droplet appears to be constant everywhere
along the interface and a force approach would conclude that no force is applied on the
droplet by the trench. Yet intuition tells that at equilibrium, the drop should be centered
with the trench.

1

Figure 1.10: Sketch of pancake droplet of radius R squeezed between two horizontal
plates of gap width h, one of which features a trench of width w and depth e. The
droplet is off-centered by a distance x with the trench. The curvature of the linear
flange that enters the trench can be set equal to the curvature at the rim, as illustrated
by the dotted circles. Only where the flange meets the outer rims (red region) is the
geometry complex and the curvature a priori unknown.

Here, the force approach fails because the pressure variations are localized at the inter-
section of the trench and the outer rim of the droplet where geometric details and exact
curvature variations are unknown. A thorough analysis of this situation is given in Chapter
4.
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1.6 Swurface energy

In the wake of Young and Laplace, the next significant contribution to the modelling
of interfacial tension was brought by Karl Friedrich Gauss in 1830 with the Principia
generalia Theoriae Figurae Fluidorum in statu Aequilibrii [60, 41]. Rather than looking
at the conditions of equilibrium of one element of fluid (or molecule in the text) at the
interface, he applies the principle of virtual velocities to all the fluid particles and thereby
derives an expression for the potential energy (or force-function) of the system. He finds
that, regardless to the nature of the cohesive forces between the fluid molecules, an interface
(fluid-fluid or fluid-solid) has an energetic cost proportional to its surface. Schematically,
a molecule of fluid at the interface is missing half the cohesive interactions it would have
if it were in the bulk of the fluid and as a result, is in a higher state of energy [43]. Last,
he finds that at equilibrium, the potential energy is a minimum and goes on to recover not
only the Young-Laplace equation (1.1) but also the Young equation for the contact angle
(1.3) from a variational minimization.

Ad stabiliendam aequationem aequilibrii systematis punctorum physi-

corum quotcunque, quorum motus conditionibus qualibuscunque ad-

stringuntur, mazime idoneum est principimu motuum virtualivm, quod

SiC ENUNCIAMUS.

kR

Aequatio ista constituit theorema fundamentale primum in theoria aequi-
librii fluidorum, quo iam ab ill. Laplace erutum est, sed per methodum
a nostra plane diuersam.

Kk

Hoc est theorema fundamental secundum, quod etiam inuestigationibus
ill.  Laplace intertextum, sed e principio virium molecularium haud
demonstratum videmus.

Three excerpts from Principia generalia Theoriae Figurae Fluidorum in statu Aequilibrii
by Karl Friedrich Gauss [60].

Finally, a comparison of the equation of Gauss with the Young-Laplace equation yields
that the energetic cost per surface area is equal to the interfacial tension ~. It adds up
over the entire interface and defines the surface energy &, of the droplet

£ - /Sfde. (1.8)

'Personal English translation with help from the German edition [61] First: An equilibrium equation for
a system of any number of mass points, whose movements are subject to any conditions, is best established
with the principle of virtual work. Second: This equation is the first fundamental theorem for the equilib-
rium theory of liquids, the same that Laplace had already found by in a very different way. Third: This
s the second fundamental theorem, which was also established in the investigations of Laplace. However,
it was not derived from a principle of molecular forces.
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When the interfacial tension 7 is homogeneous over the interface of the drop, the surface
energy is simply proportional to the surface area S of the drop: £, =~ - S. For a drop in
an unbounded domain and in the absence of an external force, minimizing surface energy
is then equivalent to minimizing surface area. This yields the trivial result that the drop
is spherical in equilibrium.

Similarly, when a drop touches a surface, the energetic costs per surface area of the
Liquid-Solid interface and the Solid-Vapor interface are ys; and ~ygy respectively. The
overall surface energy £ of the system is then the sum of the three surface energies

8 = E’Y + g"fsv + E'YSL (19)

and it is a minimum at equilibrium.

Clearly, there is a strong force-energy duality in surface tension. The force proposition
at equilibrium, the interface and its contact angle verify the Young-Laplace and the Young
equations is equivalent to the energy proposition at equilibrium, the interface minimizes
the surface energy £ of the system.

However, concerning the out-of-equilibrium analysis of the dynamic of a droplet, surface
energy provides a simple and rigorous approach. The qualitative force proposition the
droplet flows from high to low pressures is replaced by the established theorem the system
evolves in a direction that reduces its potential energy [60].

1.7 Drops in confinement gradients: energy consider-
ations

Amongst all systems, completely wetting and non-wetting droplets are particularly well
suited for an analysis in terms of energy.

Because a non-wetting droplet is never in direct contact with solid walls (it may flatten
against a surface but a lubrication layer of outer fluid must remain between the droplet
and the solid), it does not modify the surface energy of the solid. In the overall surface
energy £ of the system, the term &, , is zero and the term &, is a constant. Hence, the
effective surface energy of an unbounded or confined non-wetting droplet is the same:

£=¢, :/vdS . (1.10)
S

The same considerations apply for a completely wetting droplet, although in this case
&y = 0and &, is constant.
We may then conclude that in confined geometries, a completely wetting or a non-

wetting droplet of homogeneous interfacial tension

e is at equilibrium where the surface area of its fluid interface is minimum
e and otherwise moves in a direction that reduces the surface area of its fluid interface.
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The equilibrium shape of a droplet in a confined geometry may differ from the spherical
shape that minimizes energy in the unbounded case because the solid walls add constraints
to the minimization. For example, the circular pancake drop is the shape of minimum
surface area under the constraint that the thickness of the pancake cannot exceed the
thickness h of the Hele-Shaw cell.

Such considerations allow to easily predict the motion of drops in confinement gradients,
as suggested by Henri Bouasse in his textbook Capillarité - phénomeénes superficiels of
1924 [54]. He considers a drop in a conical tube. In the case of complete wetting, the drop
minimizes its fluid interfaces by minimizing the size of its meniscus and therefore moves
towards the tip of the cone. In the opposite case of non-wetting, the flat section of the
interface that is pressed against the walls of the tube dominates the surface area of the
drop. Its area and thereby the surface energy decrease as the drop moves away from the
tip.

These examples illustrate the following rules of thumb which will prove useful through
the rest of the manuscript:

e in the case of complete wetting, drops are attracted to regions of maximum confine-
ment.

e in the case of non-wetting, drops are attracted to regions of minimum confinement.

1.7.1 Application to the case of a pancake drop over a trench

These rules are simple to implement in simple confinement gradients like cones, wedges,
etc... and also in more complex geometries like the trench from Fig. 1.10. The trench is
a region of weaker confinement and the more a non-wetting drop expands into the trench,
the smaller its surface energy. The minimum position is when the drop is centered on the
trench.

This result can be verified by calculus. To simplify the geometry, we consider a trench
of geometry w = h and e = h/2. In this case, the cross-section of the flange in the trench
is a half-circle of diameter h. For very large pancakes (R > h), the volume of the droplet
is well approximated by V = wR? - h and the surface area S of the droplet is dominated by
the top and bottom flattened interfaces. Hence, we model the drop by combining a vertical
circular cylinder of radius R and height h with an horizontal half-cylinder of diameter h
and length L, as shown on Fig.1.11.

The volume of the drop when over the trench is the sum of the volume of the pancake
mR?h and the volume of the flange 7L - h?/8. Hence, we have

vszQ-h+gh2-L, (1.11)
which must be the same as when the drop is away from the trench, provided the fluid is
incompressible. The surface area is the sum of the surface area of the bottom interface 7 R?
and that of the top interface. The latter is approximately a disk minus the rectangular



Chapter 1. Interfacial tension and droplets in confinement gradients: a rich intertwined
32 history

Figure 1.11: Simplified model of a pancake drop over a trench. It is the combination
of a vertical cylinder of radius R and height h (in blue) with an horizontal half-cylinder
of diameter h and length L spanning the width of the drop (in red).

band of the trench which is replaced by the surface of a half-cylinder of diameter h and
length L. Overall,

SzQsz-h—h-L+gh-L. (1.12)
In the end, we can express S from the volume V to obtain
\%4 s
s=2--(1-2)n-L. 1.13
- 1 (1.13)

Clearly, the surface area of the droplet decreases as L increases and the extremum position
is when the droplet is centered with the trench, for which L = 2R.

1.8 The free and constrained interface of confined non-
wetting drop at equilibrium

Given that we will mostly study confined non-wetting drops in the rest of this thesis,
we finish this brief review of the literature concerning droplets in confinement gradients
with the description of two distinct regions of the interface: the free interface and the
constrained interface. The effect of confinement on the geometry of a non-wetting interface
at equilibrium is illustrated on Fig. 1.12 with the example of a drop in a square box of
size h.

When the drop is much smaller than the box, it is as if the drop were in an unbounded
medium. For this configuration sketched in Fig. 1.12.a, the Young-Laplace equation (1.1)
implies a homogeneous curvature of the interface and therefore a spherical geometry for
the drop. However, as soon as the volume V of the drop exceeds the volume 7/6h? of the
largest inscribed sphere in the box, it cannot retain its spherical shape since it no longer
fits into the box. Furthermore, the drop cannot have the shape of a truncated sphere as
sketched in Fig. 1.12.b since the interface would then intersect the walls of the box at a
finite angle, violating the non-wetting property of the fluid in the drop. The only solution
is for part of the interface to flatten against the walls of the box while the rest bends in
the corners to smoothly connect the flattened segments as illustrated on Fig. 1.12.c.

Clearly, this geometry of the interface does not have a constant mean curvature. The
flattened sections have zero curvature while the bent segments in the corner have a strong
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‘ h

sphere

constrained interface:
[~ lubrication films

EQUILIBRIUM UNPiIif_SICAL EQUILIBRIUM

Figure 1.12: Sketches of a non-wetting drop confined in a square box of size h. a. A
small drop is unconfined and has the shape of a sphere of radius R < h/2 at equilibrium.
b. A spherical drop of radius R greater than h/2 does not fit in the box. At equilibrium,
the shape of the interface in the box cannot be a truncated sphere as it would then
intersect the walls at a finite angle, violating the non-wetting condition at the wall. c.
Instead, the drop flattens against the walls, forming thin flat lubrication films of outer
fluid while bending in the corners to connect the flat segments.

positive curvature. Hence, this shape a priori contradicts the equilibrium condition set
above. In particular, if we assume that the pressure p; in the drop is constant, the pressure
of the outer phase in the thin lubrication films exceeds the pressure in the corners which
leads to a flow of the outer phase from the films to the corners and a thinning of the films.

However, when the fluid in the drop is non-wetting, the films cannot vanish completely:
the energy cost of having a drop/solid interface is so high compared to the cost of an
outer-fluid/solid interface that a layer of outer fluid necessarily screens the drop from the
surface. In terms of molecular forces, this means that there is an attractive force that keeps
molecules of the outer fluid near the wall. Forty years ago, Derjaguin et. al. [62] suggested
to represent these forces at the macroscopic level by adding a negative disjoining pressure
II(e) to the hydrostatic outer pressure field p, of the outer phase. The magnitude of the
disjoining pressure decreases as the thickness of the films e increases and vanishes above a
cutoff length ey, a few tenths of nanometers classically [63].

&  prlle) e

free interface : constrained interface

Figure 1.13: Tllustration of the two types of regions on the interface of the drop. On
the left, the interface is far from the wall, verifies the classic Young-Laplace equation.
This is a free interface region. On the right, the pressure in the outer phase is modified
by the disjoining pressure II(e) which represent the microscopic molecular forces that
maintain a finite thickness e of the lubrication films. This is a constrained interface
region.

As a result, we can distinguish two types of regions on the interface of the drop, as
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sketched on Fig: 1.13:

e regions of free interface that are farther than eg, from any solid wall and for which
the classical Young-Laplace equation applies:

vC = pi — Do (1.14)

e regions of constrained interface influenced by the disjoining pressure for which the
augmented Young-Laplace equation for the curvature C;y of the lubrication films
applies [64]:

YCip = pi — po + 1(e) (1.15)

At equilibrium, there are no flows in both phases and the pressure fields p; and p,
are constant. Hence, the mean curvature of the free interface is homogeneous as in the
unbounded case and implies an overpressure p; > p, inside the drop. This overpressure in
the drop presses the constrained interface against the walls and drains outer fluid out of
the lubrication films. The films thin until their thickness reaches a value e for which the
disjoining pressure I1(e) exactly balances the Laplace pressure jump p; — p, imposed by the
regions of free interface elsewhere on the drop. In this configuration, the entire interface is
at equilibrium.

In the microfluidic systems that we consider, the nanometric thickness of the equilibrium
lubrication films is much smaller than all other micrometric length scales (dimension of the
channel, size of the drop, etc). Hence we model the lubrication films as layers of outer fluid
of zero thickness, which results in the condition that the free interface connects directly
to the walls and with a contact angle 6, = 180°. The shape of the non-wetting drop
is then fully described by the shape of the free interface and the apparent contact line
where it touches the walls and meets the constrained interface. The exact thickness of the
equilibrium lubrication films is effectively irrelevant to the model.

Consequently, we will improperly refer to the free interface as the interface of the non-
wetting drop and assume lubrication films on the walls where needed. These assumptions
simplify the discussion: for example, we can then say that the shape of the drop confined
in the square box shown in Fig. 1.12 has a constant mean curvature of its interface. By
interface we mean free interface since obviously, the flat constrained interface has a different
curvature that is imposed by the walls.

Summary of Chapter 1

In this first chapter, we recalled Hauksbee’s account of spontaneous droplet motion between
non-parallel plates and traced its historical implication in the development of the basic con-
cepts explaining droplet manipulation in confinement gradients, namely interfacial tension
and surface wetting. We then summarized the existing work on the most commonly studied
geometries (wedges and cones) and listed examples of droplet manipulation by confinement
gradient in nature.
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We continued our course in history with the introduction by Gauss of the concept of
surface energy. Last, we showed that an energy approach to interfacial tension is often
more practical than a force approach when it comes to modeling droplet manipulation in
confinement gradients. Indeed, the minimum principle of potential energy gives simple and
general criteria to qualitatively predict droplet motion and identify equilibrium states.

However, this minimum principle does not provide any information on the actual dy-
namics of the droplet when out-of-equilibrium and there are no models for the motion of the
droplet in the literature. Therefore, over the next two chapter, we derive an energy-based
model for the flow of a droplet in confinement gradients.
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Chapter 2

A minimum principle for the flow of
a droplet in a Hele-Shaw cell

“Such principles are fascinating, and
it is always worth while to try to
see how general they are. But also
from a more practical point of view,
I want to know.”

Feynam, lecture 11.19

We begin this chapter by recalling a little known minimum principle for viscous two
phase flows. Minimum principles are usually derived for conservative systems but viscous
flows are the opposite: they are systems dominated by energy dissipation. In that sense,
this minimum principle is peculiar and include a discussion of its origin useful to its un-
derstanding. In addition, we give a critical analysis of its implications in order to avoid
misuses.

We then apply the minimum principle to the simplest possible system related to 2D
droplet microfluidics: the flow of a droplet in a perfectly flat Hele-Shaw cell. Our approach
recovers classic results first obtained by G.I. Taylor and P.G. Saffman from a kinematic
analysis of the problem but also clearly identifies the key role played by interfacial tension
in the mechanism that selects the shape of the flowing droplet, a question in debate in the
literature.

Only in the Chapter 3 are confinement gradients added to the model.

37
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2.1 A minimum principle for viscous two phase flows

2.1.1 Generalities

Minimum principles, or extremum principles in the more general sense, arise naturally in
mechanics and electrodynamics, from Fermat’s principle of least time for the trajectory
of a light ray to Hamilton’s canonical formulation of classical and later on of quantum
mechanics [65, 66, 67]. They provide global expressions for the laws of physics and often
offer a clearer and broader understanding of the fundamental physics at play than their
local equivalent.

Mechanical systems at equilibrium verify the principle of minimum free energy [65]
and an interface between two immiscible fluids makes no exception as we have seen in the
previous chapter. Gauss showed that an interface has an energy &, of surface density equal
to the interfacial tension 7. Including all other contributions to the free energy of the
system in the potential energy &,, the principle of minimum free energy then states that

the shape of an interface at equilibrium minimizes

£ +E, = / vdS + &, (P1)
S

amongst all possible shapes,

where the potential energy &, may be gravitational for example.

The most famous consequence is that, in the absence of potential energy, an interface
of homogeneous interfacial tension + has a shape of minimum surface area. Hence, a freely
suspended drop is spherical and the interface of a liquid bridge stretched between two
circular plates describes a catenoid. The statement (P1) can also be used to obtain the
shape of the pendant drop pulled by gravity from the tip of a syringe, as sketched on Fig.
2.1.

x(z)

iz=L

Figure 2.1: Sketch of a pendant drop of water in air.
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The case of a 2D pendant drop will serve as an example to illustrate the minimum
energy principle. The potential energy is the gravitational potential energy which is equal
to —pgx(z)zdz for the infinitesimal slice of thickness dz shaded on Fig. 2.1, with p the
density of the drop fluid and ¢ gravity. The length of the interface on the side of this same

slice is given by ds = Vda? + dz? = \/1 + (dx/dz)2dz. Therefore, the shape of the drop
z(z) minimizes

L dz\?
&+ & = / v/ 1+ (%) — pgzx(z)| dz (2.1)
0

for all possible shapes x(z) that verify the boundary conditions z(0) = a/2, z(L) = 0
and dz/dz(L) = —oo. Taking the Gateaux derivative of the integral with respect to the
function z(z) then yields that the interface verifies the pendant drop equation

v-C — pgz = cst (2.2)

in which C is the interface curvature. It is noteworthy that this variational approach relies
only on the statement (P1) and a general formula for the length of a curve to finally
recover a particular case of the Laplace equation (1.1), a local equilibrium condition of the
interface.

In addition, although the principle of minimum free energy only applies to free surfaces
at equilibrium, it is easily extended to dynamic systems of conservative energy as the prin-
ciple of least action [65]. This formalism can then describe the free undamped oscillations
of a droplet which exchange surface and kinetic energy.

Viscous flows

Viscous flows however do not verify the principle of least action since the laws of physics
involved are dominated by energy dissipation rather than energy conservation. Instead,
Batchelor [46] states that for single phase viscous flows

the rate of dissipation (of energy) in the flow in a given region with
negligible inertia forces is less than that in any other solenoidal velocity
distribution (of zero divergence) in the same region with the same values
of the velocity at all points of the boundary of the region.

This statement is a detailed expression of the principle of minimum energy dissipation
suggested by Helmholtz in 1868 [68]. Using the dissipation function of a viscous flow as
defined by Rayleigh [69], its algebraic formulation is the following:

the velocity field « minimizes the dissipation function
1 —>
D(u) = §/M(Vu)2d9 (P2)
Q

amongst all possible divergence free velocity fields «

that satisfy the kinematic boundary conditions of the fluid domain €2 .
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Viscous two phase flows

An interesting question arises in the case of viscous two phase flows which combine in-
terfaces and viscous flows: “which minimum principle applies?” Arguably, both (P1) and
(P2). Indeed, the interface should still work to minimize interfacial energy while the flow
should continue to distribute across the domain so as to minimize energy dissipation. How-
ever, combining (P1) and (P2) is dimensionally ill stated since the first minimizes energy
while the second minimizes energy dissipation, i.e. the rate of change of energy per unit of
time.

In fact, viscous flows are one example of systems which follow irreversible processes
characterized by energy dissipation or entropy production. Other examples are heat diffu-
sion or electric conduction. For such systems, Onsager [70, 71] extended the principle of
least dissipation of energy to include the presence of potential energy and showed that

the system’s free energy decreases as quickly as possible

subject to a penalty of energy dissipation. (P3)

An interpretation in the case of viscous flows is given by Glasner [72]:

Suppose that a system’s free enerqy is a function of the FEulerian configu-
ration (for incompressible fluids, this is just the volume the fluid occupies)
but does not depend on the Lagrangian positions of individual molecules.
Then there may be many trajectories the system can take which each re-
duce the free energy by the same amount. In this case, the second half of
the minimum dissipation principle can be invoked, requiring the selected
trajectory to be the one with the least dissipation.

Mathematically, the principle of minimum dissipation states that

for any given configuration of the interface,
the velocity field « that captures the evolution of the system minimizes

. .1 . . .
D(@)+ &+ & =5 | w(Tupdas & (@) + (@ (P3-bis)
Q

amongst all possible divergence free velocity fields .

Here, 6:7 and Sp are the rate of change of the surface and potential energies as the system
is advected by the flow.

2.1.2 Note on stationary states

A frequent misunderstanding concerning the principle of minimum dissipation is that it
identifies stationary states of the system. In the case of viscous two phase flows, possible
misinterpretations are: in its stationary state, a viscous two phase flow minimizes viscous
dissipation or the stationary shape of an interface in a two phase flow is the one that
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minimizes viscous dissipation. Such statements are wrong in most cases. It is possible that
this misunderstanding originates from erroneous analogies with the principle of minimum
energy for an interface at equilibrium.

As a first comment, the expression stationary state too often lacks definition. Does it
refer to a state for which the energy of the system is independent of time? Or to a state for
which the surface energy of the drop is constant? Imagine a drop of water falling in a bath
of oil under gravity. The shape of the drop will reach a stationary state but the potential
and total energy of the system will constantly decrease as the drop falls down. When
searching for a stationary state, it is always essential to clearly state of which physical
quantity.

Second, the principle of minimum dissipation has little to do with the principle of
minimum energy. Surely, the system will tend to reduce its free energy but it may not
necessarily reach a minimum in its stationary state. Hence, it cannot be said that a drop
flowing in a viscous fluid adopts a shape that minimizes the free energy of the system.
Moreover, it has a priori no meaning to search for the state of minimal free energy since
there is no fundamental reason that it be the stationary state of the system. The case
studied by Taylor [73] of a droplet placed in a four roller apparatus illustrates this consid-
eration (see Fig. 2.2). Neglecting kinetic energy and gravity, the free energy of the system
is equal to the surface energy of the drop. It is minimum when the drop is spherical and
yet, the drop reaches an elongated stationary state of higher free energy.

FILLING HOLE

Z
DROP i*\

..\ /4

DRIVING PULLEYS

Fig. 1. ‘Four roller’ apparatus.

Figure 2.2: Sketch of the four-roller apparatus as drawn in the publication by G.I.
Taylor illustrating the stationary shape of the drop at the center of the extensional flow

Another valid interpretation of the minimum principle (P3-bis) is that

an interface in a viscous flow relaxes towards its shape of minimum sur-
face energy as long as the associated deformations along the way do not
imply a substantial increase in viscous dissipation.
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For example, the minimum principle can be used to describe how an elongated drop in a
quiescent unbounded viscous fluid restores its spherical shape. At a time ¢, amongst all the
velocity fields that could make the droplet more spherical, the one that effectively applies
is the one that verifies (P3-bis): it decreases the surface energy but not too fast so that
viscous dissipation stays small. At time ¢ + dt, the shape of the drop has partially relaxed
and the minimum principle selects the next velocity field, etc...

The statement above also sheds light onto the case of the elongated in the four roller
apparatus of Fig. 2.2. If the droplet has a stationary elongated shape, it is because all
velocity fields that advect the shape of the droplet towards the sphere would causes a cost
in viscous dissipation greater than the rate of decrease in surface energy. Similarly, it does
not elongate any more although it would reduce viscous dissipation because the rate of
increase in surface energy would exceed the reduction in viscous dissipation.

Overall, it is essential to understand the minimum principle (P3-bis) is a minimization
with respect to the velocity field only, like the minimum of dissipation for single phase
viscous flows. It is not a minimization with respect to the shape of the drop. It is unrelated
to any sort of general property, if one exists, of the stationary state of an interface in a
viscous flow.

The simplicity to express Onsager’s theory underlines a beauty common to all vari-
ational principles. However, it also hides the difficult task of translating it to solvable
mathematical equations. Below, we start by showing that (P3) is indeed equivalent to the
two phase Stokes equations. Then, we apply the principle of minimum dissipation to the
elementary case of a droplet flowing in a Hele-Shaw cell. We recover the classic results
of Taylor and Saffman [39] and rigorously confirm that they are a consequence of surface
tension.

2.1.3 Equivalence between the minimum dissipation and the Stokes
equations for two phase flows

Below, we demonstrate the the principle of minimum dissipation (P3-bis) is equivalent to
the Stokes equations in both fluids combined with the dynamic Young-Laplace equation
at the interface. While this result is not new [72, 74], it is the cornerstone of this study
and we therefore include its demonstration.

We consider the inertia-less motion of a droplet of viscosity p; in an outer incompressible
liquid of viscosity ps. The two immiscible Newtonian fluids are separated by an interface
characterized by an interfacial tension . The droplet occupies a volume 21 never in contact
with the outer boundaries B, of the system, whether they are fluid or solid. The rest of
the domain €2, is filled with the outer fluid. The interface S is referenced by the positions
Zg of its points. We impose the velocity i, at outer fluid boundaries B, provided it
verifies the incompressibility constraint fBoo Uy * MdBs = 0. The system is sketched in
Figure 1.

For simplicity, we neglect all energy potentials (such as the gravitational potential
energy) apart from the surface energy of the drop. The formulation (P3-bis) of the principle
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Figure 2.3: Sketch of the two incompressible two phase system

of minimum energy dissipation requires an expression for 6;7, the rate of change of surface
energy as the interface is advected by the flow. Conceptually, 6;7 is the material derivative
d&,/dt of surface energy. The general expression for the material derivative of a surface
integral is obtained by applying the theorem

For a quantity Cy = / f(t)dS then C; = / ﬁalS—i—/ [(a—{ + fC) - d]-ndS , (2.3)
s() s Ot st O

in which C is the mean curvature of the interface and « is the velocity field at the interface.
In the above expression, the first component is the partial temporal derivative 9/0t of C},
while the second term is the change due to advection by the flow u. Here, we will assume
that surface tension v does not vary in time. Hence, applying the formula above, we obtain

g = / YCil - 7idS + / 8—Zﬁ-ﬁds. (2.4)
S(t) 0

S(@t) on

Inserting this expression for 57 into (P3-bis), we obtain that the velocity field minimizes

1 1
—/ m(vm2dﬂl+—/ ug(Vﬁ)Qng—l—/ fyCﬁ-ﬁdS+/ 8—Zﬁ-dd5. (2.5)
2 Jo, 2 Ja, S(1) s(t) On

At this point, it is useful to incorporate the incompressibility constraints and the imposed
velocity field at the far-field boundaries directly into the minimization problem using La-
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grange multipliers py, po and A. The corresponding Lagrangian is

1 1 0
L= —/ p (V@)?dQy + —/ po (Vi) ?dS2y +/ ~CU - 1idS —i—/ —Zﬁ - udS
2 Ja, 2 Ja, s on
dissipation function rate of change of surface energy
- / prdiv(id)dy — / podliv(i@)d2 — / i — i, )dBeoy (2.6)
Ql QQ oo
incompressibﬁirty constraints imposed far:ﬁeld velocity

which has to be minimized with respect to the velocity field u, the pressures p and the
Lagrange multiplier .

Taking the variations of £ with respect to the Lagrange multipliers simply gives back to
constraints inserted in the Lagrangian. For example, writing that the Gateaux derivative
of the Lagrangian with respect to p; is zero simply yields the condition div(@;) = 0 that
was injected into the Lagrangian via the multiplier p;. Hence, we expect to obtain the
Stokes equations along with free surface boundary conditions from an evaluation of the
variations with respect to the velocity field # only. These are obtained by considering an
infinitesimal variation du in the velocity field @ to compute the Gateaux derivative of the
Lagrangian L:

a—‘faﬁ: / 11 (V@) - (Vou)d + / 112(V) - (Vou)dQy + / VCii - dudS + / a—Zﬁ-gudS
ou o Qs S(t) s On
- / prdiv(ou)dy — / Ppodiv(du)dQy — / A - SudBo (2.7)
04 Qo Boo

However, the Gateaux derivative is not directly expressed as a function of Su as it involves
differential operators Vou and div(du). Each time such an operator appears, an integration
by parts is required in order to transform the operator into a workable form. For example,

/ 1 (V) - (Vou)dy = / (1 Vit ) - dudS — / [ AT - dudS);
(951 S(t) (951

After these transformations, the Gateaux derivative becomes

—0u —/ (6}91 — 1 AQ) - SudS),

VPQ /LgAU) 5Ud92
Qo

N . oy ~
—pa + 1o VU) — (=p1 + V)] - 9 — (7Ciir2 + 8—%711—&) - dudS

\

S(t

—py + 115V @) - 7] - dudBo (2.8)

é"\
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with 77;_,o the oriented normal at the interface. The Lagrangian is at an extremum when
(0L /0u)du = 0 for all possible variations du. The variations can be located exclusively in
Q7 or €25, and on S or B,,. Therefore, we obtain 4 local equations to be verified everywhere
by the fluid:

Vpr — 1 Al =0 in (2.9a)
Vps — [ A =0 in €, (2.9Db)
ﬂ . 4 o,
[(—pz + ,UQVU) — (—p1 + M1VU)] s N152 :'nd1_>2 -+ 8—g,nl_>2 on S(t) (29(3)
A =(—ps + pVu) - it on B, (2.9d)

In the boundary condition, 0v/07 denotes the gradient operator of 7 on the interface. It
is a tensor, like V.

These equations are precisely the bulk Stokes equations in both fluids along with the
dynamic Young-Laplace boundary condition at the interface with Marangoni stresses [46]
(see (1.2)). Reciprocally, if the velocity field verifies these equations, each integral in the
Gateaux derivative (0L/0u)du is zero and the Lagrangian is at an extremum.

As a result, we have shown that

Minimizing the Lagrangian

1 )
/ 10 (V@)2d, + = / 112(VT)2dQ + / ~CT - 7dS + / D 7. qds
% 2 Ja, @) s On

/p1d1V )d€y — /pzdiv(ﬁ)dQQ—/ AU — Uoo ) dBoo
(951 Qo Boo

N | —

with respect to the variables i, p1, po and X is equivalent to

ﬁpl — 1 Au =0 in

div(@) =0 in

ﬁpg — peAu =0 in Q,

div(w) =0 in

[(=p2 + p2 Vi) — (=p1 + 1 V)| - 1o =7Cil1 0 + %ﬁl—ﬁ on S(t)
U =Uso on By

which 1s precisely the Stokes equation for incompressible two phase flows with the
dynamic Young-Laplace boundary condition at the interface
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2.2 The motion of a drop in a Hele-Shaw cell

We now turn to the case of a non-wetting drop flowing in a Hele-Shaw cell since this
configuration is closely related to the flow of a droplet in a 2D microchannel.

Let’s introduce the Hele-Shaw cell: a Hele-Shaw cell is a generic name for a channel
of length L and width W much larger than its height A (L > h, W > h). It is named
after Henry Selby Hele-Shaw who first suggested in 1898 such an apparatus could be used
to visualize the solutions for potential flows past solid objects [28]. Indeed, assuming that
the flow has a low Reynolds number and verifies the Stokes equations, then, owing to the
scale separation between the in-plane (z,y) and transverse z dimensions, the velocity field
u(z,y, z) is given by the set of equations

. 62(h —
= U(x,y)% (2.10a)
. B2 . L .
% — — . p— . 2-1
Um 13,99V 0=0 (2.10b)

Hence, the velocity field is fully captured by the in-plane height averaged velocity field
U(x,y) which derives from the potential ® = —h?/12u - p proportional to the height-
invariant hydrodynamic pressure p.

Figure 2.4: Two photographs of colored streamlines past a flat plate and an airfoil
from the original publication by H. S. Hele-Shaw [28§]

Hele-Shaw cells saw a renewal of academic interest with studies concerning viscous
two-phase flows. In 1958, G. I. Taylor and P. G. Saffman (hereon TS) published a sem-
inal paper [75] in which they investigate the penetration of a fluid into a Hele-Shaw cell
filled with a second more viscous liquid. Their initial motivation came from oil recovery
methods that consist in injecting a fluid into the porous oil reservoir. Taylor noticed the
striking similarity between the Darcy law that models flows in such porous media and
the equations (2.10). He understood two phase flows in a Hele-Shaw cell could serve as a
model experiment and this study lead to the discovery of the now famous Saffman-Taylor
instability [76].

While exploring viscous fingering, TS sometimes observed bubbles flowing in the Hele-
Shaw cell, leading to the publication of “A note on the motion of bubbles in a Hele-Shaw
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cell and porous medium” in 1959 [39]. Here and in the rest of the discussion below, the
bubble size is large compared to the height of the Hele-Shaw cell such that the bubble is
squeezed between the plates and has a flattened pancake shape, as sketched on Fig. 1.6
and discussed in Appendix B. The authors discuss the in-plane shape and the velocity U,
a bubble should take when propelled in a Hele-Shaw cell by a flow of velocity U ¢ of the
outer fluid. In the framework of potential flow theory and ignoring interfacial tension,
they find a family of possible solutions and select one they suspect in agreement with
the principle of minimum dissipation: the bubble is circular and travels at twice the flow
velocity Uy = 2[7f.

However, the authors were unable to derive the shape selection mechanism from physical
grounds. Many studies tackled this issue and several explanations have been suggested.
The most common is the interfacial tension of the bubble interface [77, 78], but others [79]
applied ad hoc extremum principles to justify the results found by TS.

Here, we apply the minimum principle (P3) to recover the counter-intuitive bubble
velocity Ud = 2U ¢ and firmly identify interfacial tension as the shape selection mechanism.
The tedious calculations lead to another counter-intuitive result: the stationary shape of
the droplet does not minimize energy dissipation, it maximizes it.

2.2.1 The Taylor-Saffman analysis

In their analysis, TS model the bubble in the Hele-Shaw cell as a cylinder of arbitrary
in-plane shape moving at a velocity U, in a Hele-Shaw cell with a far field velocity of the
outer fluid U 7 as sketched in Fig. 2.5. Hence, they neglect the curved rim of the bubble
and the lubrication films between the bubble and the cell walls.

Figure 2.5: 3D sketch of the Taylor-Saffman model of a bubble moving in a Hele-Shaw
cell.

Implicitly, they are searching for stationary solutions since they do not consider vari-
ations in the velocity of bubble. From the Hele-Shaw equations, they conclude that the
velocity field U is potential and define the velocity potential ®(z,y) and the stream function
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U(z,y)
Ux:g—i:g—jandeza—@:—é—\P (2.11)
which both verify Laplace equations A® = AV = (.
The far-field boundary condition is a uniform flow U = U 7€, such that & — Usx
and ¥ — Uyy as \/2?2 4+ y? — oo. For the boundary conditions at the surface of the
bubble, they assume that the pressure inside the bubble is constant and neglect interfacial
tension to apply this constant pressure to the outer fluid near the interface. Clearly, this
violates the Laplace pressure jump but it could be valid if the pressure jump remains small
compared to the viscous pressure drop along the bubble or if it is constant around the
bubble. The condition of constant pressure leads to a constant velocity potential, ® = 0

for example. Also, they impose the normal velocity

op  ov .y
an s Ugey -1 = Udas (2.12)

where (n, s) are the local normal and tangential coordinates near the interface. The pro-

jection of the bubble velocity Ugé, - 7 is transformed by noting that €, - 7 = 0y/ds. It

follows an expression for the stream function along the surface of the bubble: ¥ = Uyy.
Mustrated on Fig. 2.6, the T'S model becomes a 2D potential flow problem:

What are the bubble shapes and velocities Uy
for which there exists a velocity potential ® and a stream function ¥
that verify the boundary conditions

VU = Uy, -y at the interface where ® = 0
and
U = Uy at infinity ?

->
->
Ur
->
->

Figure 2.6: Sketch of 2D potential flow problem for the Taylor-Saffman problem and
definition of the necessary variables.

TS obtain a family of solutions parametrized by the half-width 0 < b < co and velocity
Uy < Uy < o0 of the bubble. Given values for (b, Uy), the problem above selects the ellipse

2 2

z y
vy 2.13
R(U U, — 12 1 (2.13)
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of axis ratio a/b = Uy/Uy; — 1 as the shape of the bubble. It is noteworthy that there are
only solutions for bubbles traveling faster than the fluid.

Amongst these solutions, one stands out: for ljd = 2[701, the bubble is circular. The
authors select this particular solution because it minimizes the quantity b- Uy but they are
unable to find a physical basis to this minimization, while briefly recalling the principle of
minimum dissipation:

The product “b-Uy” of the velocity of the bubble and half its maximum
width does not have a clear physical significance, although it may be iden-
tified intuitively with the rate at which fluid is pushed aside by the bubble.
We have in fact been unable to place the hypothesis on a sound physical
basis (attempts to relate it to a minimum rate of energy dissipation fail).

Excerpt from A note on the motion of bubbles in a Hele-Shaw cell and porous medium by

G.I. Taylor and P.G Saffman [39].

Another property of the solution U, =20 ¢ is that the circular bubble has a constant
curvature such that the Laplace pressure jump across the interface is also constant, in
agreement with the ad hoc boundary condition of a constant outer pressure along the
interface. As a result, the solution of a circular drop traveling at twice the fluid velocity is
the only exact solution still valid when interfacial tension is taken into account. It is also
the one that minimizes surface energy.

In the end, the circular bubble appears to be singular both in terms of energy dissipation
and surface energy. In the following sections, we show that the minimum principle (P3-bis)
provides a way to identify which mechanism truly selects the bubble shape and obtain new
insights on the physical mechanisms at play.

2.2.2 Applying the minimum principle

The goal of this work is to apply the minimum principle (P3-bis) in order to identify the
stationary state of a drop flowing in a Hele-Shaw cell. The stationary state here refers to
a state in which the shape of the drop is unchanged as it travels through the Hele-Shaw
cell.

As explained previously, the minimum principle cannot directly identify a stationary
state. Consequently, we consider a family of shapes which we believe includes the sta-
tionary shape and apply the minimum principle to each configuration. If for one of these
configurations, the result of the minimum principle is a flow field which does not deform
the droplet, then it is a stationary state. Last, we verify its stability.

The original analysis by TS has selected the family of elliptic drops (or bubbles) as
the family of shapes that have a stationary potential flow solution for the motion of the
drop. Hence, we consider elliptic droplets (viscosity p1), of major axis a and minor axis
b, moving at a velocity U, in an outer flow (viscosity po) of far-field velocity Usé, and
ignore the relationships found by TS. In other words, a/b and U, can take any arbitrary
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values. In addition, we allow the droplet to deform into another ellipse by elongation or
contraction at a rate a = da/dt.

Last, instead of trying to minimize the Lagrangian (2.6) over all possible velocity fields,
we restrain the minimization domain to incompressible potential flows which are known to
partially verify the equations motion for viscous two phase flows in Hele-Shaw cells. For
each elliptic drop geometry, this procedure reduces the space of unknowns to the droplet
velocity U, and elongation rate a. A stationary solution is then one for which @ = 0.

A bit of geometry

The elliptic shape of the drop dictates the use of inconvenient elliptic coordinates. We
recall briefly some generalities concerning ellipse and the associated coordinate systems.
An ellipse of major axis @ and minor axis b can also be described by its focal distance
¢ = va? —b?, its eccentricity e = ¢/a or its aspect ratio A = b/a. It has a surface area
S = mab and a perimeter P = 4aF(e) where E(x) is the complete elliptic integral of the
second kind [80]. Elliptic coordinates (£,7n) are defined from the cartesian coordinates

(x,y) as

x = ccosh & cosn (2.14a)
y = csinhsinn . (2.14Db)

A representation is given in Fig. 2.7. The family of curves parametrized by & = cst is
the family of ellipse of focal distance c. Amongst those, we select the ellipse of major and
minor axis a and b by taking £ = 1/2- (a +b)(a — b). Last, the complex plane z = x + iy
transforms to the elliptic complex plane ( = £ + in via the equation z = ccosh (.

In this coordinate system, the base vectors € and €, are orthogonal since the lines of
iso-¢ and iso-n are orthogonal. However, they are not normal and the metrics for £ and 7
are equal:

G = Gy = c+/sinh €2 + sin n? (2.15)

As a result, surface elements are given by

dzdy = geg,d&dn . (2.16)

Potential flow past a moving and deforming elliptic cylinder

The potential flows around a static elliptic cylinder or due to a moving elliptic cylinder can
be found in the litterature [81, 82]. However, the flow created by an elliptic drop elongating
at a rate a has not yet been treated to our knowledge.

To obtain this flow, we consider an elliptic drop of given dimensions (a,b) that it is
continuously elongating at a rate a while keeping its volume V' constant. As discussed in
Chapter 1, the volume of a large pancake is well approximated by V = h - S, the product
between the height of the Hele-Shaw cell and the in-plane surface area S of the drop.
Since h is constant, conservation of volume implies conservation of S. Hence, the drop



2.2. The motion of a drop in a Hele-Shaw cell 51

Figure 2.7: Definition of the elliptic coordinates. The green lines are lines of iso-&
and red lines are iso-7. Lines of iso-£ are all the centered ellipses of focal distance c.
The black one is the ellipse of parameters a and b, which is found by taking ¢ = ¢0 =
1/2log (a+b)/(a —b).

is elongating while keeping constant the product ab. This defines a unique path amongst
the parameter space (a,b) that the droplet follows as it deforms. It is then possible to
identify the necessary flow field around the drop to stay on that particular path of shapes,
as detailled in Appendix A.

Using elliptic coordinates, it is possible to express the complex velocity potential w for
the flow around a moving and deforming elliptic drop. We distinguish the inner flow of
potential w; and the outer flow of potential ws:

w1 (U, Uy, a) =0 + Ugqccosh ¢ + %be2(<_5°) (2.17a)
. (¢ a, o
wy(Uy, Uy, @) = Ug(a + b) gsh(g — &)~ Usbe ) — e 2A¢=%) (2.17D)
flow past a flow due to a Aow due to

static cylinder moving cylinder the elongations

The flow is simply the linear superposition of the flow past a static cylinder, the flow
due to a moving cylinder and the flow due to the elongation of the cylinder. Hence, the
potential has three parameters: the outer velocity Uy, the droplet velocity Uy and the
elongation rate a.
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Taking the real and imaginary parts of the complex potential w = ®+iV¥, we obtain the
corresponding velocity potentials ® and streamfunction ¥ for the inner and outer flows:

O, (Uy, Ug, @) =Ugccosh € cosn + gbBQ(E_EO) cos 27 (2.18a)
®y(Us, Uy, 4) =U;ccosh (U= U)oy | b€ sy — Lpe=26-0) cog 2y (218D
2o(Us, Ug, @ recosh € cosn — (Ug — Uy) —¢ cosn— Sbe cos2n (2.18b)
and
Uy (Uy,Uq, ) =Ugesinh Esinng — gbe%_fo) sin 2n (2.19a)
2 .
Uy (Up, Uy, a) =Usesinh Esinng 4+ (Ug — Uy)b ¢ j_L 66_5 sinn + gbe_z(g_&’) sin2n (2.19b)

Plotting lines of constant streamfunction W yields the streamlines of the flow, as illustrated
on Fig. 2.8. We recover the known flow characteristics for the static and moving circular
cylinder but in elliptic coordinates. The flow past a moving cylinder is the superposition
of a uniform flow and a dipole while the flow due to a moving cylinder is a dipole. In
addition, we find that the flow due to the elliptic drop elongating into another ellipse of
identical surface area is a quadripole. For details on this last flow, refer to Appendix A.

d.

Figure 2.8: Streamlines for a) the flow past a static elliptic drop; b) the flow due to
a moving elliptic drop and c) the flow due to an elongating elliptic drop. The drop
dimensions are always a = 2 and b = 1.

The complex velocity in the z-complex plane, v = U, + iU,, is found by applying the
classical formula

_dw  dw dg

YT T d_C dz
which yields
. Ugbsinh(¢) — abe?(¢—%)
Ul(Uf, Ud, CL) = CSinhC (220&)
Uf(a + b) Slnh(C — 50) + Udbe_(c_go) + abe_2(g_£0)
csinh ¢ ‘

UZ(Ufa Uda CL) =

(2.20Db)
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Recalling the Hele-Shaw equations (2.10), the pressure field is obtained from the velocity
potential ® to a constant:

].2,&1
h?

1249
h?

p1(Us, Ug, @) — cst = — <Udc cosh § cosn + be 26=60) cos 27)) (2.21a)

pQ(Uf, Ud,d) —cst = —

<UfCCObh§CObT] (Ud—Uf)beE S cosn — 2b ~2(6=%0) cog 2
(2.21b)

Estimating the Lagrangian of the flow

Finding the flow that verifies the principle of minimum dissipation of energy (P3-bis)
is equivalent to minimizing the augmented Lagrangian (2.6). The terms concerning in-
compressibility of the flow are here obsolete since all considered flows are potential and
divergence free. Remains the dissipation function D, the rate of change of surface energy
&, and the term imposing the far-field boundary condition By =— fBoo AU — Us) - 1dS.

The dissipation function D
In the present analysis, we keep the TS assumption that the flow is fully captured by the
Hele-Shaw solutions (2.17a). This assumption neglects the lubrication films between the
droplet and the channel walls (top and bottom) and the boundary layer near the interface
where the flow becomes fully 3D. Contributions from these two regions to the dissipation
are for now omitted and will be treated later in Chapter 3.

Anyway, the dissipation function has contributions from the inner and outer flows:

1 1
D= —/ MI(Vﬁ)ZdQI + —/ Mg(Vﬁ)QdQQ . (222)
2 Jo, 2 Ja,

In a Hele-Shaw cell, the shear is concentrated in the local transverse Poiseuille flows (2.10)
because of the scale separation between the in-plane and transverse dimensions. Therefore,
the velocity gradient simplifies to

6(h —22)

Vi ~ 2

(Uper ® €5 + Uyey, @ ey) (2.23)

where we used the notation U = U.e; + Uyéy.
By injecting (2.23) into the dissipation function D, it gives

h -2 h —2
D, :,ul/ %(hh—z)dz/dexdy o D, :ﬂ,g/ BG(hh—Z)dZ/UQZda:dy

_6 6
atl / / UZgegnddn (2.24) 22 / / UZgegydédn . (2.25)

Here we need to distinguish between the inner and outer ﬂows because of the different
viscosities py and po.
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To compute the dissipation functions D; and Dy, we only need an expression for UZ,
the square of the in-plane velocity field both for the inner and outer flows. U? is easily
obtained using the complex velocity field v from equations (2.20) since U? = v - v, where
~ represents the complex conjugate. We detail the computations for the outer flow only
(subscripts o) and state the result for the inner field flow (subscript ;).

Recalling the expression (2.20a) yields

Ups(a+ b) sinh(¢ — &) + Ugbe™ %) + ghe=2(c~%0)
csinh ¢
y Ug(a + b)sinh(C — &) + Ugbe™€—%0) 4 ghe2(C—40)
csinh ¢

vz =

(2.26)

and since the denominator csinh ¢ - ¢sinh ( = JeGn, We have

9e9yUs = (Us(a + b) sinh(C — &) + Ugbe ™7 4 ghe~2(~%0))
x (Up(a + b)sinh(C — &) + Ugbe =€)  ahe20)) | (2.27)
Expanding this expression, we obtain
9egnUs =U}(a+ b)*sinh*(€ — &) + Ug(Uy — Up)b?eE75) — U Ugabe %)
+ Ui (a+b)*sin’n
+ terms proportional to sinn , cosn, sin2n or cos2n (2.28)

To estimate the integral in (2.24), we start by integrating over a finite domain around
the elliptic drop bounded by the ellipse & = & to later on assume £ — oo. Since all
periodic terms in cosn, sinn, etc... have no contribution to the overall integral, we obtain

27 & b 3
/ / gggnUgdfdn :ZU]%6262§1 _ IUJ%MG—%l + WUd(Ud o Uf)bQ(l _ 6—2(51—50))
0 o 4 4 (a — b)
— WUfUdab(l - 672(51750)) + ngaQ(l — 6*4(61750)) (2'29)

which simplifies to
2m &
/ / 9egnUs dEdn :ZU]%c%Q& + 7U4(Ug — Up)b* — 7UUqab + gb%ﬂ (2.30)
0 o

once all terms vanishing as & — oo are neglected.
Finally, by summing the contributions from the inner and outer flows D; and D, we
obtain

6mps (.9 1.5, 4ab
D= Ujab+ —a®b
A ( 10 —|—2a CEE +

1 1
67ZLZ (ZUJ%CQeQﬁl + (Ug — Uf)2b2 — U?b2 — UyUgb(a — 1) + 551252) . (2.31)
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The rate of change of surface energy 57

The translational component of the motion of the droplet does not modify the surface
energy since it does not deform the interface. However, the elongation or contraction of the
drop modifies its geometry. The overall surface S of the pancake drop is well approximated
by the formula

8:2~7rab+gh-P (2.32)

where P is the perimeter of the in-plane ellipse. Conservation of the volume implies that
the in-plane surface area mwab is kept constant throughout the motion of the drop. Hence,
only the rate of change of the perimeter of the ellipse dP/dt contributes to the rate of

change of the surface area §. We obtain
; m_ dP

The perimeter of an ellipse is equal to

1
P(\, S) =4 g—E(\/l — \?) for elongated ellipses (A < 1)

VAN
S 1 .

A4y SVAE(]1 - ﬁ> for flattened ellipses (A >= 1) (2.34)
7r

where F is the complete elliptic integral of the second kind.
The variables S and A are separated and we can write the perimeter as

P\, S) = 4\@ FOV (2.35)

where the function f(\) is
1

) :ﬁE(\/ 1 — \?) for elongated ellipses (A < 1)

1
\/XE(\/ 1-— ﬁ> for flattened ellipses (A >= 1)

Figure 2.9 plots f(A). It shows that the circle (A = 1, 1/S/m = R) has indeed the minimum
perimeter of all ellipses and f = 7/2 such that we recover P = 27 R.
Since the droplet is deforming while keeping its in-plane surface area S constant, we

may express
dP [S df .

to finally obtain a simple expression for the rate of change of surface energy:

. d S .
£ = 727rhd—§ : ( —A) (2.37)

™
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3n/4t

1)

/2

n/4 : i

Figure 2.9: Plot of the f(A), highlighting the minimum perimeter of the circular case
A=1

Effect of the far-field boundary condition B;
In the case of a Hele-Shaw cell, By simplifies to

2 . .
By = h/o p(&,m) [U(&,n) - Uf] - flgndn (2.38)

due to the same scale separation argument used to express the dissipation function D.

Although the velocity field U, verifies the asymptotic far-field boundary conditions,
B is not equal to 0 because the far-field boundary conditions are never exactly met in
the domain. The perturbations of velocity field due to the presence of the drop decay
away from the drop but do not strictly vanish. In fact, they couple with the linear term
Ujccosh & cosn of the pressure field to generate a non vanishing contribution in Bj as
& — oo. We find that this contribution is

67 1o

By = Y

Uf(Ud — Uf)b(a + b) (239)

The complete Lagrangian £
Finally, the Lagrangian £ =D + &, + By is equal to

6 1 4ab
L =" (Ugab+—a%2 d >

h 2 (a+b)?
1 1
" :2 (Z_lr 120262& [ ]%(ab bz) — 2UsUq(ab + bz) T ‘3[)2 2b2a2)
df S .
oxn il 2.40
ven d\ < s ) | )

The term Ufc26251 /4 corresponds to the dissipation due to the uniform outer flow of ve-
locity Uy in the entire domain. It depends neither on the droplet velocity Uy, nor on the
deformation rate @, nor on the geometry of the drop a and b. Hence, it is a constant which
we will forget in the rest of the discussion.
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Furthermore, we can define a non-dimensional Lagrangian L as L = L/(6mabusU7 /h):

H1 2 Lio 4 2 Lig1 4 df
L= 2 ) (0PA— 21 £ NU — 1+ A+ ~AP— a4 A
m( T3 va+m0+( (LHNT =LA+ A5 |+ f2Cain

(2.40)

where U = U;/Uy is the relative velocity of the droplet compared to the outer flow,
A =./S/mAJU 7 is the elongation velocity relative to the outer flow velocity, k = V12S/h
is the transverse aspect ratio of the drop and Cay = psUy/~v the capillary number based
on the outer flow velocity Uy.

2.2.3 Comparison with the Taylor-Saffman results

Taylor and Saffman considered a bubble that is not allowed to deform, meaning that p; = 0
and A = 0. In this case, the Lagrangian simplifies to

L=U —21+\NU -1+ ). (2.42)

We begin by recovering the relationship between the bubble velocity U and its aspect
ratio X\. According to the principle of minimum dissipation (P3-bis), for any given A, the
bubble velocity that satisfies the Stokes equations and boundary conditions is the one that
minimizes L with respect to U. Here, we emphasize the fact that solutions are minimum
of the Lagrangian in terms of velocity field. Hence, we have

oL
— =2\U-2(1+)) =0 2.43
o (1+) (2.43
such that the velocity of an elliptic bubble is
14+ A
UQLJ%%. (2.44)

This formula is identical to the one found by TS. For a circular bubble A = 1, we obtain the
classical result U = 2. Elongated bubbles (A < 1) are faster while flattened ones (A < 1)
are slower.

Taylor and Saffman suggest that the solution (U = 2, A = 1) is the one that minimizes
energy dissipation amongst all possible flow fields and bubble shapes, and in particular
amongst the family of solutions given by Eq. (2.44). Our analysis shows quite the contrary.
In the (U, \) phase space, the position (U = 2,\ = 1) is a saddle point of the Lagrangian
and not a global minimum as shown on Fig. 2.10.a. In addition, along the particular
trajectory (U,1/(U — 1)) defined by Eq. (2.44) which corresponds to the Taylor-Saffman
family of solutions, U = 2 actually corresponds to a maximum of the Lagrangian as it can
be seen on the plot of Fig. 2.10.b. This result is in contradiction with the intuition of T'S.

This is not surprising since the principle of minimum dissipation selects a velocity field
for a fized shape of the domain boundaries. Hence, trying to apply this principle to find
an appropriate shape of the drop does not stand on physical grounds. To correctly harvest
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Figure 2.10: a) Plot of the non-dimensional Lagrangian L in the phase space (U, \).
The value increases from dark to light regions. b) Plot of L along the particular trajec-
tory (U,1/(U —1) of the phase space (U, \) , in red in a.. This trajectory corresponds to
the TS family of solutions. c) Plots of L as a function of U for fixed droplet geometries
A = 0.4,0.6,0.8 and 1. d.) Derivative of the L with respect to U for fixed droplet
geometries A = 0.4,0.6,0.8 and 1.

information from the Lagrangian, one must assume a particular geometry (here fix \) and
look at the variations of L with respect to the parameters of the velocity field only, as
illustrated on Fig. 2.10.c-d. For any given aspect ratio A, we find that there exists a
unique minimum of the Lagrangian in terms of bubble velocity, in agreement with Eq.
(2.44).

2.2.4 The shape selection mechanism

A critical ingredient is missing in the reduced Lagrangian (2.43): bubble deformations. If
we imagine that we were able to release a bubble of some geometry into the flow, say an
elongated ellipse with A = 0.5, then the flow would advect the bubble at some velocity
U but also possibly deform the bubble progressively. An interesting initial shape is one
that would not deform: it defines the stationary state of both the bubble’s velocity and
shape. Here, we imagine such an experiment. We assume the initial shape is one of the
elliptic shapes identified as a possible solution by Taylor and Saffman and make the strong
hypothesis that, as it deforms, the bubble keeps an elliptic shape.

This last assumption simplifies considerably the shape parameter space and is necessary
for the problem to be tractable analytically. In practice, it is only a valid approximation
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for nearly circular ellipses.
In this case, the time evolution of the bubble is fully captured by the Lagrangian (2.41),
which simplifies to

, 1,1 4 df
L—(U/\ 20+ MU 1+>\+8A )\2>+k‘20ad)\'A (2.45)
when gy = 0. This Lagrangian has two variables U and A. The shape of the bubble (), k)
and the flow properties Ca are parameters.

The stationary state, as defined above, is then obtained by finding the shape which
does not deform. In other words, we are looking for (A, k) such that the Lagrangian (2.45)
has a minimum for A = 0.

For example, a possible set of parameters is (A = 0.5,k = 0.5,Ca = 1). In this case,
df /dA\(A = 0.5) = —0.8 and the Lagrangian is

L =050%—-3U—0.5+0.5A% — 5A (2.46)

as plotted on Fig. 2.11.

Figure 2.11: Lagrangian (2.46) plotted in the velocity field phase space (U, A).

To find how this particular ellipse will move and deform in the flow, we need to find
the minimum of L in the phase space of the velocity field (U, A). The partial derivatives
of L should both be zero at the minimum. Since

oL
— =U-3
oU
Qﬁ:A—5,
A

we obtain that the bubble will move at U = 3 and deform towards the circular shape
at an instantaneous elongational velocity A = 5. Therefore, this particular shape is not
stationary.
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In the general case, the partial derivatives of the Lagrangian (2.45) are

oL
3 =2\U —2(1 4+ \) (2.47a)
OL 1 . 4 df
—_— = — 2.4
oA~ T Rcadn (247b)
such that the flow solution is
1

U :%’\ (2.48a)

. 1672 df

A=— — 2.48b

k2Ca d\ (2.48D)

These equations describe a path in the velocity field phase space (U, A) along which
the system travels as the droplet is advect by the flow and deforms due to surface tension.
This path is plotted on Fig. 2.12. For A > 1, the path is located in the half space A < 0
while for A < 1, it is the contrary. Since A is proportional to d\ /dt, the system necessarily
travels in the directions indicated by the red arrows along the path. It shows that the
system always converges to (U = 2, A = 1) which is the circular drop configuration.

A<l A>1

& <
<

A

0 2 4 6 8 10

Figure 2.12: Plot (red curve) of the path defined by equations (2.48) in the velocity
phase space (U, A).

Remarkably, the stationary state (U = 2, A = 1) is independent of the capillary number
Ca and thereby of the interfacial tension 7. Even though interfacial tension is the driving
mechanism, the system converges to the same state whatever the value of v, no matter
how small. In other words, the slightest amount of interfacial tension is sufficient to drive
the bubble towards the circular shape configuration identified by Taylor and Saffman. The
value of Ca will only select the time required for the relaxation to occur.
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2.3 Summary and discussion of Chapter 2

We expressed a minimum principle for viscous two phase flows (P3-bis). Its Lagrangian
formulation (2.6) was shown to be equivalent to the Stokes equations for two phase flows.
When applied to the flow of a droplet in a Hele-Shaw cell, it demonstrated that

e for any shape of the drop, there is a minimum which dictates both how the drop
deforms and translates;

e the circular bubble moving at twice the outer flow velocity is not a minimum of
energy dissipation amongst all possible solutions;

e the circular bubble moving at twice the outer flow velocity is a maximum of energy
dissipation amongst the family of solutions identified by Taylor and Saffman;

e interfacial tension is the mechanism that selects the bubble shape;

e the slightest amount of interfacial tension drives the bubble shape to deform into a
circle.

However, the Taylor-Saffman solution has never been observed experimentally. In fact,
studies on the motion of a bubble or a drop in Hele-Shaw cell [83, 84, 85] revealed a
complete zoology of bubble shapes and measured bubble velocities either smaller or equal
to the outer flow velocity.

A suggested explanation is the presence of lubricating thin films between the bubble
and the walls of the Hele-Shaw cell, or a contact line along which the bubble interface
intersects the walls. Indeed, Bretherton [86] in the first case and Tanner [87] in the second
showed that these effects increase significantly the drag of a bubble moving in a capillary
tube. Similar effects were shown to occur in a Hele-Shaw cell [51, 88, 89] and numerical
studies [78, 77| revealed that they are sufficient to explain for the reduced bubble velocity.
The surfactants used in the experiments to enhance the wetting of the outer fluid and to
prevent droplet coalescence are also known to rigidify the interface [90, 91, 89] and can
cause a significant increase in the drag of the droplet.

In Chapter 3, we briefly discuss the effects. Nonetheless, despite considerable efforts
to model these secondary effects of interfacial tension, it is still impossible to predict the
velocity of a bubble in a Hele-Shaw cell, and consequently in a 2D microchannel.
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Chapter 3

Droplet trajectories in a Hele-Shaw
cell with confinement gradients

“Liebnitz, offensé des soupcons que
les Anglais avaient jeté sur ses
travaux, leur proposa, comme une
espece de défi, le probleme des tra-
jectories.”

D’Alembert, Eloge de Bernouilli, p.
24.

In the first section of this chapter, we rigorously derive an energy production-dissipation
balance for open and confined viscous two phase flows from the minimum principle of
Chapter 1. This energy balance is simpler to use than the minimum principle. However,
it only identifies a family of potential solutions for the flow fields and a selection criterion
is required to select the solution.

We then derive an equation for the motion and trajectory of a droplet pushed by an
outer flow in a Hele-Shaw cell with confinement gradients. The predictions from the model
are compared to the droplet trajectories measured experimentally in deformed Hele-Shaw
cells.

Last, we reinterpret the terms that enter the energy production-dissipation balance as
expressions of the work of different forces that apply onto the droplet. In particular, we
identify the force due to the confinement gradient and the drag of the moving droplet which
leads us to discuss the velocity of the droplet.

3.1 An energy production-dissipation balance

From the minimum principle (P3-bis) and its Lagrangian formulation (2.4), it is possible
to derive an energy production-dissipation balance for viscous two phase flows from the
minimum principle, analogous to the conservation of energy in closed conservative system.
A similar balance was formulated and applied by Maxworthy [83] to the buoyant rise of a

63
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bubble in a Hele-Shaw cell. Here, we provide a rigorous demonstration and include changes
in the surface energy &, of the interface.
Let’s recall the Gateaux derivatives of the Lagrangian, equation (2.7):

a—/iéﬁ: / 11 (V@) - (Vou)d + / 112(V@) - (Vou)dQy + / vETT - dudS + / 8—Zﬁ-5uds
ou o o S(t) s On

(3.1)

- / prdiv(du)dy — / podiv(du)dy — / A+ SudBag
Ql QQ

oo

From this derivative, we define the operator GG that transforms any vector field Z into
a scalar

0
Gty pan(T) = / 1 (V) - (VE)dQ, + / 112(V @) - (VZ)dQs + / Vit - £dS + / D . 7dS
o Qs S(t) s On
1971 Qo Boo

and in which the scalars py, p2, A and the velocity field u are parameters.

If the velocity field @ and the scalars p;, po and X\ are the fields @*, pj, pj and A°
that minimize the Lagrangian (and thereby verify the Stokes equations), then the operator
verifies

Gigs ps ps. s () = 0 for all vector fields & . (3.3)

A particular case is obtained by taking ¥ = «®, the actual flow field that verifies the Stokes
equation. It yields that the flow verifies the equation

/ A wtdBy =

(&

-~

power injected
by the stress tensor

/ M1<Vﬁs>2d91 + / Mg(Vﬁs)2dQQ
951

SZZ
~ /
-~

viscous dissipation

9
+ / vkt - BdS + / Dg.@dS (3.4)
Js S(t) on B

rate of change in &,
due to advection
by u*

which is a balance between energy production and energy dissipation.
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Here, we have shown that if the flow field « is solution of the Stokes equation then it
verifies the energy balance (3.4). However, the reciprocal is not true: a velocity field that
verifies the energy balance (3.4) is not necessarily solution to the Stokes equation.

In that sense, the energy production-dissipation balance (3.4) is less powerful than the
minimum principle (P3-bis). Nonetheless, analytically solving an equation is much more
practical than performing a minimization, as illustrated in the following section which deals
with droplet trajectories in confinement gradients.

Equation (3.4) has a large number of unknowns (velocity and pressure fields, position
and shape of the droplet, etc...) and it can only be solved analytically if most of them are
taken as parameters.

3.2 Geometry, velocity fields and assumptions

We consider a non-wetting pancake drop flowing in a nonparallel Hele-Shaw cell. We call
ho the height of the chamber and dh the small amplitude height variations (dh < h). In
his account of an oil drop moving towards the touching end of two slightly inclined plates,
Hauksbee [38] mentions that the moving drop has a nearly circular pulley shape, closely
resembling the one it would have if the plates were horizontal. Our own observations,
discussed in Chapter 4 and 5, lead to the same conclusion but in the case of pancake
drops. Small confinement gradients do not significantly deform the shape of the droplet.
Consequently, we assume in our analysis that the droplet always has circular pancake shape
of radius R. This assumption is also confirmed by theoretical arguments put forward by
Laplace [45].

The outer fluid is forced to flow from left to right at an height-averaged velocity U 7.
As the droplet travels in the Hele-Shaw cell, the position of its center of mass O(z4,y4) in
the domain changes and its radius R(xg,y4) varies as the droplet adapts to the local height
h(z,y) = ho + dh(x,y) of the Hele-Shaw cell. A relation between R and h is obtained by
invoking the volume conservation of the droplet: V ~ mR?- h = cste, an approximation
valid for large pancake droplet and a slowly Varying height of the Hele-Shaw cell.

The instantaneous velocity of the droplet Ud may not be aligned with the input flow
velocity Uy = Us€,. The angle ¢ = cos™ (Uy - Up/U,Uy) identifies the direction of the
droplet movement. Last, we define the polar coordinates (r, 0, z) attached to the center of
mass of the droplet. All geometrical quantities are represented in Fig. 3.1.

3.2.1 Flow domains

As sketched on Fig. 3.1, the control volume is split into five different flow domains:

e Far from the transverse curved interface of the droplet, the Hele-Shaw approximation
is valid. In these inner and outer far-field regions, the velocity field is well captured
by a height-averaged potential flow analysis.
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Figure 3.1: a. 3D sketch of the geometrical configuration: a pancake drop is moving at
a velocity U, in an Hele-Shaw cell with confinement heterogeneities, pushed by an outer
flow of velocity U 7. b. Top-down projection with definitions of the main geometrical
parameters and coordinate systems. The different colors correspond to the different
flow domains: light green is the far-field outer flow, dark green is the near-interface
outer flow, dark blue is the near-interface inner flow and light blue is the far-field inner
flow. The thin lubrication films are not shown on this sketch.

e Near the interface however, the flow is fully 3D due to the presence of a transverse
curved boundary. As a result, there are inner and outer near-interface boundary
layers that extend a few gap widths O(hg) away from the interface.

e Last, the interface of the droplet deforms near the walls under viscous shear. There
are thin lubrication films of outer fluid that form between the droplet and the channel
walls.

Far-field flows

By definition, the flow field verifies the classical Hele-Shaw equations (2.10) in the far-field
flow domains. For height variations of small amplitude (6h < hyg), the local height of
the cell in the Hele-Shaw equations can be assumed everywhere as equal to hg. The flow
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field in a Hele-Shaw cell with confinement gradients of small amplitude is therefore well
approximated by the flow field in a parallel Hele-Shaw cell of height hy.

The far-field flow velocity is the superposition of the uniform outer flow, the flow around
the circular droplet and the flow generated by the movement of the droplet. A potential
flow analysis similar to the one used for the elliptic bubbles of Chapter 2 yields

U1 =Ugcos( — ¢) (3.5a)
R? R

U2 =Uy <1 — F) cos(0) + Udr_2 cos( — ¢) , (3.5b)

Up1 = — Uysin(0 — ¢) (3.6a)
R? R?

Upo=—Uy (1 + ﬁ) sin(6) + Udr—2 sin(f — ¢) (3.6b)

and
__ (0

pL=— h—%Udr cos(f — @) (3.7a)
2 2

pa=— M—Z {Uf (T + i) cosf — Udi cos( — ¢) (3.7b)
h r r

for the velocity and pressure fields, respectively.

Near-interface flows

Near the interface of the droplet, the Hele-Shaw approximation breaks down for two rea-
sons. First, the flow becomes fully 3D because of the geometry of the droplet. Second,
matching the inner and outer far-field flows requires four boundary conditions while the
far-field inner and outer potential flows only provide a single adjustable parameter, the
droplet velocity Uy. This mismatch between boundary conditions and adjustable parame-
ters can only be solved by adding boundary layers that extend a few gap widths hy away
from the interface.

To date, models only partially capture the flows in these boundary layers and analytical
expressions for the velocity fields have only been derived for a solid cylinder [92].

Nonetheless, it is possible to estimate the viscous shear in these regions. The velocity
scale is either Uy or Uy, depending on which of the two dominates. Experiments [84, 85
show that the droplet velocity is always smaller than the fluid velocity, pointing towards
U as the correct velocity scale. The boundary layer has a single length scale, the channel
height hy. Hence, the viscous shear Vi scales as Uy /hy.

Lubrication films

The movement of the droplet creates lubrication films between the droplet and the channel
walls. These lubrication films, sketched in Fig. 3.2, are similar in nature to the Landau-
Levich coating of a plate or to the Bretherton lubrication films [86] around a bubble moving



68 Chapter 3. Droplet trajectories in a Hele-Shaw cell with confinement gradients

in a round capillary. Indeed, in its frame of reference, the droplet sees the walls moving
backwards at a velocity —U,. Viscous shear then entrains outer fluid along with the walls,
creating the lubrication films sketched in Fig. 3.2.a.

a. b.

Lubrication el
films

f

Figure 3.2: a. 3D sketch of the front half of a moving droplet in the reference frame
of the droplet. The top and bottom walls are moving backward at a velocity —C_fd,
dragging outer fluid along and depositing lubrication films of thickness e. b. Zoom on
the film deposition region at the front of the droplet. The static interface of transverse
curvature hg/2 is deformed as outer fluid is dragged into the lubrication film. The
deformed region has a length [ and the deposited films have a thickness e.

The thickness e of the films is fixed by the competition between the viscous stresses
that drag the outer fluid into the films and the capillary pressure that presses the fluid out
of the films. Classically, a scaling law approach is used to estimate the thickness of the
film e [43, 88].

The cap at the front end of the large pancake droplet has a curvature hg/2 when it
is static and at equilibrium. When the droplet is moving, it is deformed by the presence
of the lubrication films in a small dynamic region of length [ near the channel walls, as
illustrated in Fig. 3.2.b. The Stokes equation then states that the pressure gradient Vp
balances viscous forces pus Au. The pressure difference across the dynamic region is given by
Young-Laplace equation (1.1). Assuming that the pressure inside the droplet is uniform,
the pressure jump across the interface at the curved static cap is approximately 2v/hg
while at the flat lubrication film, it is zero. Hence, Vp is proportional to y/(hgl). Viscous
forces puoAu are dominated by transverse shear stresses, which implies the scaling law
paAu o polUy/€e?. Balancing pressure and viscous forces yields

6’2

Cad X h_ol (38)

in which Cayg = ”27Ud is the droplet based capillary number.

A second scaling law is obtained by estimating the curvature of the interface in the
dynamic region. The change in curvature scales as [/e? and must be of order ho/2 in order
to match the static cap curvature. Hence,

- X — . (3.9)
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By combining these two scaling laws, we obtain estimates for the thickness e of the
lubrication films and for the length [ of the dynamic region:

e ocCa2/3h0

I xCal’3hy . (3.10)

While more detailed models of the lubrication films around a Hele-Shaw droplet are
found in the literature [51, 88], the scaling laws (3.10) capture the essential physics and
will serve the purpose of our discussion.

3.2.2 Control volume and simplifications

The control volume on which we apply the energy production-dissipation balance is a
cylinder centered on the droplet and of radius p much larger than the droplet radius R.

The power P injected by the stress tensor (2.9d) at the external boundaries of the
control volume is the work that is required to flow the outer fluid at a mean velocity Uy.
In a Hele-Shaw cell, the in-plane viscous shear stresses are always negligible compared to
pressure gradients far from any vertical boundaries. Hence, P reduces to the work of the
pressure on the boundaries of the control volume. Also, we only consider variations of
surface energy that are due to modifications of the droplet shape. The interfacial tension
v is assumed uniform and invariant of the droplet position.

As a result, the energy production-dissipation balance (3.4) becomes

2w
/ _p2(p7 H)Ur,2pd9 =
JO

power W injected
by the pressure

/m(vm)?dﬂl + /Mg(vm)?d@z
Ql Q2

[ S/ N J/
-~ -~

viscous dissipation P, viscous dissipation Po
inside the drop outside the drop
+ vS . (3.11)
~—

rate of change in &,
due to advection
by u*

3.3 Equation of motion

We now solve the simplified energy production-dissipation balance (3.11) by estimating
each term individually. For the viscous dissipation, we estimate separately the contribu-
tions for each of the five flow domains identified above in Fig. 3.1.
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3.3.1 Power injected into the control volume

The first term in the energy production-dissipation balance (3.11) is the power W injected
into the control volume, which amounts to the work of the pressure field on the boundary
of the control volume. Taking the potential flow solutions (3.5a) and (3.7a) for the pressure
field p, and radial flow velocity U, 2, we obtain

4
W — 12T (UJ% A LRl ) (3.12)
ho p?

For a large control volume (p > R), it simplifies to

1277'#2

W = I

=202 (3.13)

3.3.2 Energy dissipation in the far-field flows

In the far-field flow domains, the potential flow approximations for the velocity field (3.5a)
and (3.6a) apply. Recalling the expression (2.24) for the energy dissipation in this case
yields the following two expressions

s Py, :/ Vii*)2d)
Ps, :/ul(vu )2d) It pia( )7d€2

12 wnd _ B /U'Zd d (3.15)
_ / PPdedy — (3.14) ~h 2GF4Y ‘

h

for the viscous dissipation of the far-field flows inside and outside the droplet.

Inside the droplet, the potential velocity is uniform and equal to Uy (see Eqs. (3.5a)
and (3.6a)). Hence, we have
127 M1~

h

Outside the droplet, the flow field is a linear superposition of two potential flows: the
flow around a static droplet with a imposed far-field velocity Uy and the flow generated by

Pip = —— U R® (3.16)

the droplet moving at a velocity U, As a result, the square of the Hele-Shaw velocity (722
contains terms in U7 and U7 as well as crossed terms Uy - Ug. We find

4 2 2

Y e oo . R' LR R
Uy =U;+ (U — Ud)QF + QU?T—2 cos(260) + 2UfUdT_2 cos(20 — @) (3.17)

which has to be integrated over all § and for r ranging between R and p. In the end, it
yields

12 . L
Prp. = ZMZ (U —U;R* + (Uy — Ud)2R2> . (3.18)
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3.3.3 Other sources of viscous dissipation
Near-interface dissipation

In the near-interface boundary layers, the complexity of the flow field rules out the possi-
bility to compute analytically the viscous dissipation P,; in these regions. Consequently,
we only derive scaling laws.

As established in Section 3.2.1, the amplitude of shear in the flow is given by the scaling
law Vu o< Upg4/ho. The volume of the near-interface bands scales as h3 - R. Since, the
viscous dissipation in these regions scales as the square of the shear times the flow volume,
we find

Priry < pi12U7 4R . (3.19)

This scaling law shows that the viscous dissipation in the near-interface fluid bands is
h/R smaller than the far-field viscous dissipation P; 5. Consequently, we can neglect this
contribution in the case of large pancake drops.

Lubrication film dissipation

The velocity field in the established thin film region is uniformly equal to the wall veloc-
ity [43]: d(z,y,z2) = —U, in the droplet’s reference frame and w(z,y,z) = 0 in the lab
frame. No energy production or dissipation occurs in this region of the lubrication films.
In the dynamic region however, outer fluid is forced into the lubrication films which
creates shears of amplitude Vu oc Uy/e. The volume of the dynamic region around the
droplet is proportional to e - [ - R. Using these two estimates, we can express a scaling law
for the viscous dissipation P in the dynamic region and by extension in the lubrication

films:
2

U,
Py = 121Bp— 5 R (3.20)
Cay

with 8 a non-dimensional constant of proportionality.

3.3.4 Rate of change of surface energy

At last, confinement gradients are added into the model including the effect of height
variations 0h(x,y) of the cell on the surface energy of the non-wetting pancake droplet.
Although we assumed the in-plane circular shape of the droplet is invariant of the droplet
position in the Hele-Shaw cell, its radius R must still adapt to account for local height
variations of the cell: R becomes a function of the droplet’s position (x4, y4). The surface
energy £, = 7.5 of the droplet then also varies with the droplet position (z4,y4) and surface
energy gradients appear.

Over an infinitesimal time interval dt, the surface energy of the droplet changes of an
amount d&, while its position translates over a distance U, - dt. The rate of change of
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surface energy 57 can then be expressed as

—

. dE, o dx
b= = V8
—VS - Uy, (3.21)

when the interfacial tension v does not vary with the position and velocity of the droplet.
Here, we have also implicitly assumed that the shape of the droplet is independent of its
velocity Uy.

3.3.5 Equation of motion

All terms W, Py, Py, Piy and 57 are then injected into the energy production-dissipation
balance (3.11) to obtain an equation for the motion of a pancake in a Hele-Shaw cell with
small heterogeneities in confinement:

127 127 127 - - S S
ho’” U2p* = h’“ TR (@22 — U2R? + (U — U)*R?)

2
U2R? + "

772

—|—127T5,u2 U R+7VS Ud (3.22)

All terms in UJ% cancel out to yield the simplified equation

—»

Uiy 5 = U
T UdR2+127r6u2 SR+VS Uy (3.23)

Uy U;R? = = CL2R? +

0 0

127y - 1279 -
h h

In a Hele-Shaw cell, we approximate the volume V' of the droplet as V ~ 7R? - h. For
large pancake droplets, the surface area S of the interface is dominated by the top and
bottom circular surface: S ~ 2w R?. Hence, we have S(z4,vq) ~ 2V/h(z4,yq). It follows
that

£ ~— 27Kﬁh U, (3.24)
h
which simplifies to
TR? -
0

if we approximate the volume of the drop by V ~ 7 R2hy.
Injecting the expression (3.25)into the balance equation (3.23) yields

24Ty » = 1274y =9 o 127l =9 o U2 TR?
. = U2R? + U?R? +12 R—-2 h-U, 3.26
ho fUd hy 4 hy d + 7TB,U2 173 Y= o v a- ( )
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This equation has three solutions. U, = 0 can be ruled out as unphysical. The orthogo-
nality of the two vectors in the scalar production is possible although it is only a particular
solution corresponding to special alignments and amplitudes of Vh and Uy. The remaining
solution is

1 B h\ = = lys
1+—=—+——=|U;—-2Uy—=—Vh=0. 3.27
( +M2+Ca1/3R) ! 776 g (3:27)

This equation describes the motion of a droplet flowing in the Hele-Shaw cell with confine-
ment gradients of small amplitude.

It is noteworthy that while it is here easy to select the solution amongst the three
possible flow fields, it may be more difficult in other cases. It is then necessary to use the
minimum principle (P3-bis) on the family of solutions as a selection criterion.

3.4 Trajectory equation of the droplet

Let T be the in-plane trajectory curve of a droplet in a nonparallel Hele-Shaw cell pushed
by an outer fluid velocity Uyé,. The previous equation (3.27) contains information about
both the trajectory 7 of the droplet and the velocity at which the droplet travels along
this trajectory.

By definition, the unit normal vector 7 of T is normal to the droplet velocity at all
points on 7: U, - i = 0 as illustrated on Fig. 3.3.

r
Figure 3.3: The solid black line is the droplet trajectory 7. Its normal vector 7 is
necessarily normal to the droplet velocity Uy which defines the tangent to the trajectory.

X

By taking the scalar product of the equation of motion (3.27) with the normal vector
17, we obtain the equation

120 -7+ —Vh-ii =0 (3.28)
%)

for the trajectory T of the droplet. This equation can also be written

—

12Cayé, i+ Vh-ii =0 (3.29)
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recalling that Cay = ppUy /7 is the capillary number based on the outer flow velocity.

Remarkably, the trajectory of the droplet is independent of the velocity Uy. Indeed,
all terms associated with the drag of the droplet in equation (3.27), namely the terms
proportional to ljd, disappear with the scalar product -7. In particular, the unknown g
vanishes and the equation for trajectory (3.29) is fully solvable knowing the experimental
parameters Cay and Vh.

3.5 Experiments in swollen microchannels

The first experiments on droplets flowing in a non-parallel Hele-Shaw cell were performed
unknowingly in 2009 by a former undergraduate student, Hervé Turlier. To his surprise,
he observed pancake water droplets moving through a long and wide microchannel along
bent trajectories although they were pushed by a uniform unidirectional outer flow of
silicone oil. Under the same flow conditions, he also recorded straight trajectories for the
water droplets advected by paraffin oil. Figure 3.4 evidences the droplet trajectories by
superposing successive images taken in each experiment.

Figure 3.4: The microchannel consists of a flow focusing region for droplet production
followed by a test section analogous to a Hele-Shaw cell: the channel height h = 50 ym
was much smaller than its width w = 1 mm and length L =4 mm. Water droplet are
advected from left to right by a second carrier fluid. The trajectories of the droplets
are visualized by superposing successive images taken using a high speed camera: a)
straight trajectory for paraffin oil ( = 1.1 pL/min and R = 100 um) b) bent trajectory
with transverse migration toward the side wall for silicone V100 oil (@ = 3.0 uL/min
and R = 130 pm)

In these two experiments, the geometry and the hydrodynamic parameters are similar
(equivalent droplet radius R and approximately equal capillary numbers Cay) and yet, the
droplets behave differently in the two oils. The only difference in experimental conditions
lies in the chemical composition of the oils used to advect the droplet.

It turns out that PDMS, the polymer out of which are made the device, swells when in
contact with a wide range of organic solvents as shown by Lee et. al. [93]. In particular, it
swells in contact with all silicone oils but not with paraffin oil. Consequently, in the same
way a sponge deforms when wet, it is possible that the swelling of the PDMS deforms the
channel geometry away its nominal dry shape.

In order to verify this hypothesis and measure the nature and amplitude of the defor-
mations, we adapted an optical technique for measuring surface deformation called Free
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Surface Synthetic Schlieren [94]. This method consists in observing a random pattern
through a deforming surface and monitoring its optical distortion caused by refraction of
light at the interface, as illustrated in Fig. 3.5. In this case, grainy scotch tape stuck under
the test section served the purpose of the patterned surface. The experimental protocol is
the following: starting from an initially dry channel, we fill it completely with oil and then
let the liquid penetrate the PDMS and/or evaporate. Throughout the process, images of
the scotch tape similar to the one shown on Fig. 3.5.b are regularly captured to obtain
a movie of the distortions of the pattern. Although the movements are small, they are
clearly visible on a space-time diagram of the channel cross-section (Fig. 3.5.c). The last
step consists in reconstructing the deformed free surface(s) from the pattern distortions.
The details of the method are published in Lab-On-a-Chip [95] and the paper can be found
in Appendix C.

a.
CCD camera
mounted on
a microscope

PDMS block

patterned glass slide
adhesive tape

time
Figure 3.5: Tllustration of the Free Surface Synthetic Schlieren method used to measure
swelling induced microchannel deformations. a. Sketch of the experimental setup: the
textured scotch tape is observed through the deforming microchannel with a camera
mounted onto a microscope. b. Example of an image of the scotch tape. Scale bar is
500 pm. c. A space-time diagram of the pattern along the line AA’ clearly evidences
distortions in the image of the scotch tape by refraction at the deforming interface.

This study of the swelling induced channel deformation revealed that the swollen chan-
nel collapses along its centerline, as shown in Fig. 3.6.a. When filled with hexadecane for
example, the roof of the channel features a subsidence 6 um in amplitude that is well fitted
with a parabolic profile (see Fig. 3.6.b). The amplitude of the subsidence dh increases
with the swelling coefficient of the oil used in the experiment and with the width W of the
test section. Hence, we find that the test section is a Hele-Shaw cell with height variations
of the form

-

and use this generic expression to derive the droplet trajectories predicted by the energy

h(z,y) = ho — dh ( 4—y2) (3.30)
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production-dissipation.
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Figure 3.6: a) Height profile of the channel swollen with silicone oil, measured by
Synthetic Schlieren as described in Dangla et. al. [95]. b) The transverse channel
height profile averaged over the length of the test section from the Synthetic Schlieren
measurements.

3.6 Comparing observed and predicted trajectories

Injecting the height profile (3.30) into the trajectory equation (3.29), we obtain

dyq 8y
12Ca, ¥4 _ qn oY _ .
Cay ez =Y

The equation depends on a single non-dimensional number that we call the subsidence
number Su = dh/W - 1/Cay, once W is used a characteristic in-plane length scale for
xqg = Wxyand yg = Wyy:
0
3L Qugy = 0. (3.31)
diL’d

The subsidence number Su measures the force exerted on the droplet by the channel
deformations to the one due to the outer flow. For strong channel deformations (Su > 1),
the equation simplifies to dzq = 0 meaning that the droplet is barely advected by the flow
before it reaches the side walls of the channel. On the contrary, for strong flow advection
(Su < 1), the equation simplifies to dyg = 0 and the droplet travels across the test section
without being deflected by the channel deformations.

We can test these qualitative predictions by estimating the subsidence number for three
experiments of water drops flowing in oils of different viscosities and swelling coefficients:
hexadecane, a swelling solvent of low viscosity; silicone oil, a highly viscous swelling oil;
and paraffin oil, a highly viscous non-swelling oil. The table below compares the three
experiments.
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Trajectory of a water droplet in paraffin oil

B

2 = 130 cP Cay S =1.00
Paraffin oil | v =20 mNm = dh=0pm | Su=0
Up=13mm/s | 84-107% | W =1mm
Trajectory of a water droplet in silicon oil

oD

%u_;nrmy

,ug =100 cP =1.08
Silicone oil = 35 mNm = dh =6 pm | Su=0.33
Uf: 1.3 mm/s 1.3-10_2 W =1mm
Trajectory of a water droplet in hexadecane

o = 3.1 cP Cay S=114
Hexadecane | v = 28 mNm = dh =8 pum | Su=18
Uy=4mm/s |44-107* | W =1 mm

Estimated subsidence number Su are in agreement with observed trajectories: for the
non-swelling paraffin oil, Su = 0 and the droplet travels in a straight line across the
microchannel while for the highly swelling and low viscosity hexadecane, Su > 1 and the
droplet splits in two as it enters the test section and crosses the test section pressed against
the side walls.

In the case of silicone oil, Swu is order 1 and the water droplets follow bent trajectories
that fall within the scope of this study. Hence, we use this configuration to further test
our model quantitatively. The generic expression for the droplet trajectories is obtained
by integrating the differential equation (3.31):

Su zg4

Ya
Jd_ g, 22 2d
W (3 7

In this expression, A is the only fitting parameter once W and Su are taken from

). (3.32)
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the experimental conditions. The predicted trajectories are in excellent agreement with
experimental data points along most of the trajectory, as shown on Fig. 3.7.

The model however fails to capture the boundary effects that occur as the droplet
approaches the side walls or the narrowing exit of the test section. Indeed, we observe
experimentally that the droplet accelerates its lateral migration when it is closer than a
diameter away from the sidewalls while near the exit of the channel, the converging flow
field tends to recenter the droplet.

b.

5
4
3
2
1
0

0.5 0 0.5 1 L5 2 25 3 35

Figure 3.7: a. Superposition of an image of the drop in the test section with the
experimentally measured trajectory (blue dots) and the fitted predicted trajectory (red
solid line). Experimental conditions : flow rate @ = 2.975uL/min, droplet radius
R = 130pm, dh = 6pym. Scaling bar : 200um b. Measured and predicted trajectories
from 4 different flow parameters: in blue, flow rate @ = 2uL/min, droplet radius
R = 116um, S, = 0.51; in red, flow rate Q = 2.3uL/min, droplet radius R = 123um,
Sy = 0.45; in green, flow rate Q = 3.1uL/min, droplet radius R = 124um, S, = 0.33;
in black, flow rate @Q = 3.7uL/min, droplet radius R = 119um, S, = 0.27

3.7 Summary and discussion of Chapter 3

The good agreement between the predicted and measured trajectories indicates that the
trajectory equation (3.29) captures correctly the effects of the outer flow and of the confine-
ment gradients. The fact that the trajectory of the droplet is independent of the velocity
Uy at which the droplet travels may seem surprising at first. However, it is a common
feature of mechanical systems without inertia nor lift. For example, we can expect the
trajectory of a bubble rising under gravity in a viscous flow [85] to be independent of the
actual bubble velocity as well.

We finish by discussing different aspects concerning the main result of this chapter, the
energy balance (3.23) and the resulting equation of motion (3.27).
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3.7.1 Physical insight on the Taylor-Saffman result

We first observe that it is possible to recover the Taylor-Saffman result U, = 20 ¢ by
keeping only the terms due to the potential flow fields in the balance of energy production-
dissipation. Since Taylor and Saffman neglected the near-interface and lubrication film
flow regions in their analysis, a balance between the power of the pressure forces W from
(3.13) and the viscous dissipation Pyrs, + Pys, given by the expressions (3.16) and (3.18)
contains all the physical ingredients were considered by TS. This balance corresponds to
the equation

1271 U2p2 127p

2 2 2 2 2 2 2
U] AT + h (720> — U2R* + (U; — U2’ R?) .

Hence, finding the droplet velocity amounts to solving the simplified equation
0= Kl+ ) Ud—2Uf} Uy . (3.33)
%)
This vectorial equation has two solutions,

— 2,[1,2 — — —
Uy = Usand U; =0 . 3.34
a p1 + e ! a ( )

The energy production-dissipation balance (3.4) then states that the solution to the Stokes
equation is necessarily one of these two solutions. Here, we can rule out the solution ﬁd =0
as unphysical and we recover the Taylor-Saffman result Uy =20 7 when the inner fluid is
gas (u1 = 0).

This balance of energy production-dissipation provides physical insight on this surpris-
ing result. Indeed, naively, one could think that the bubble should move at the speed of
the outer fluid: Ud U 7. Let’s assume this is the case. Then, the outer flow is uniform
with a velocity U ¢ everywhere in the Hele-Shaw cell. It dissipates energy over the entire
control volume except inside the inviscid bubble: Prp, = 12mpy/ hU]%(p2 — R?). The energy
injected in the system however is left unchanged: W = 127m2U?p2. Since Pyr, < W, we
find that there is a deficiency in energy dissipation. There is more energy injected into the
control volume than dissipated. The bubble must move at a different velocity than the
outer fluid in order to account for this deficiency.

3.7.2 An interpretation of the energy production-dissipation bal-
ance in terms of forces

Equation (3.27) for the movement of a droplet in a Hele-Shaw cell was derived from a
balance between the amount of energy injected in the system and the amount of energy
dissipated by viscosity plus the energy stored as surface energy. This approach differs
in its nature from the force balance usually considered to study droplets in Hele-Shaw
cells [89, 63, 85, 96].
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The force approach is based on the property that in Stokes flows, any volume of fluid is
force free. Hence, the sum of the forces acting upon a droplet must be zero. In the absence
of volume forces like gravity, only the pressure and viscous shear stresses at the interface
contribute to the force balance. The classical methodology then consists in identifying the
dominating terms in the pressure field and in the shear stresses around the droplet, like
the contributions from the outer flow of velocity Uy or from the thin lubrication films, and
integrating these contributions over the interface to obtain an expression for the force they
each apply on the droplet.

To compare the two approaches, we notice that all the terms in the reduced equation
(3.23) for the energy production-dissipation balance are in the form F-U, and can therefore
be interpreted as the work of a force F that applies on the moving droplet:

24T R 11y ~ . . B
—Wh P20, O+ (—7VS) U, =
o —

force F, from the

propulsion force Fy 5 .
from the outer How confinement gradients

—

120 Ry ~ 12 R% iy ~ - U, =
U, Uqg | -U, 1267 Rt ——— Ug . (3.35
( ho d+ o d d+ ! B MQCal/?) 7. ( )
drag force Fyr due to the drag force A s from
droplet induced flows the lubrication films

in the Hele-Shaw cells

We recover a force balance equation: the driving forces F;]f and ﬁ, from outer flow and
the confinement gradient respectively are countered by the viscous drag F u, sum of the two
forces Fy 'y and F? ¢ which originate from the flows in the Hele-Shaw cell and the lubrication
films respectively.

This reinterpretation of the energy production-dissipation balance yields a simple ex-
pression for the force ]57 that applies on a droplet in Hele-Shaw cell due to confinement
gradients:

—

E, = —-VS . (3.36)

This expression is of the form F, = —687, as if the surface energy &, behaves like a
source of potential energy in the system. In the Hele-Shaw cell with small height variations
studied above, we found VS ~ —2nR? / hoVh. Consequently, the force that applies on the
droplet in a deformed Hele-Shaw cell due to the confinement gradients is equal to

F,~2y""Vh . (3.37)

ho
When the height variations of the Hele-Shaw cell occur over length scales larger than
the size of the droplet, we can define locally the angle a between the top and bottom walls.
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The magnitude of the force F, is then

2 tan am R?

F| ~
‘ "Y| fY hU 9

(3.38)
in agreement with the expression (1.7) extracted from the seminal work of Laplace.
For the propulsive force Fj from the outer flow, we find using our energy dissipation

approach
- 247 R? 115 —
Fy, = Wh—“sz : (3.39)

0

in agreement with previous analytical studies of the pressure stresses applied by the outer
flow on a solid cylinder [92] and on a cylindrical droplet [89, 85] in a Hele-Shaw cell.

3.7.3 The viscous drag and velocity of a non-wetting droplet in
a Hele-Shaw cell

We conclude with a discussion of the viscous drag force F, that applies on a droplet moving
in a Hele-Shaw cell, an unsettled question in the literature. We illustrate the effect of the
drag by comparing the velocity U, of a droplet pushed by an outer flow of velocity Uy for
the different suggested models.

While Taylor and Saffman [39] predict a velocity Uy = 2Uy for an inviscid drop in
a Hele-Shaw cell, measurements [83, 84, 97, 89, 85| always yielded significantly smaller
velocities and suggest a scaling of the form Uy oc f(R/h)Caj; - Uy for the droplet velocity,
with n > 0. From their experiments, Maruvada and Park [89] conclude n ~ 2/3 while
Rabaud et. al. find instead a smaller decrease of the velocity, with n ~ 1/2.

Analytical studies [89, 63, 85] and numerical simulations [78] agree that the slow droplet
velocity is due the presence of the lubrication films. At first, it is not obvious that lubrica-
tion increases the drag of the droplet. Lubrication is usually thought of as a mean to reduce
friction at the walls. Also, in the case of a capillary tube, it was observed and demon-
strated that the speed of a bubble with lubrication films actually exceeds the velocity it
would have without them [98, 86, 12].

From our interpretation of the energy production-dissipation balance, we identify two
contributions to the total drag force F, = Fy + Fiy:

e a first term Fy which stems from the flows in the Hele-Shaw cell (including inside
the drop) that are induced by the movements of the droplet

R, R,
Fy = 12rpu—Uy + 12mps—Uy (3.40)
ho ho

e a second Fj; that is due to the viscous dissipation in the dynamic regions of the thin
lubrication films

Us
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Our estimate for Fy is in agreement with the consensual expression Fy = 12umR?/hg -
puUy found in the literature [83, 89, 99, 85, 96] although here we have also taken into
account the dissipation from the inner flow. Hence, if we balance Fy in the case of an
inviscid droplet with the propulsive force from the outer flow Fy, , we recover the Taylor-
Saffman prediction Uy = 2Uy.

However, in the limit of small capillary numbers, the drag Fj; due to the thin films
dominates the drag from the outer flow F. Indeed, the ratio of the two forces Fy/Fiy

scales as Cacl/3R/h0. When Caucl/3 < h/R, Fj; dictates a velocity
. R _ .
Ug o h—OCacl/de
R\ 32 )
X (h_()) \/Canf (3.42)

for a droplet pushed by an outer flow U;. Our analysis yields an exponent n = 1/3 in
agreement with previous studies that employed a force approach to estimate the effect of
the dynamic region of the thin lubrication films [86, 100, 78]. Nonetheless, the exponent
n = 1/3 is smaller than the ones obtained experimentally, meaning that the drag in the
dynamic region of the lubrication films is not sufficient to explain the fast decrease of the
droplet velocity with the capillary number Ca,.

In a seminal article [89], Maruvada and Park (hereafter M&P) explain the retarded
motion of bubbles in Hele-Shaw cells ! as an effect of the surfactants in the outer phase,
always present in experimental studies to enhance the wetting of the outer phase on the
channel walls and to inhibit coalescence. Under certain conditions, surfactants are known
to rigidify the interface, i.e. the usual slip boundary condition for a clean interface becomes
a no-slip boundary condition [90, 91]. This change in boundary condition does not modify
significantly the drag from the far-field flows Fy since in the case of a solid cylinder,
its expression is also given by the equation (3.40) [92]. However, M&P notice that if
the interface of the droplet is rigid, then viscous stresses are present everywhere in the
lubrication films, even in the central region where the thickness of the film e is established.
In this region, the continuous fluid is sheared between two parallel moving plates: the
static channel wall on one side and the rigid droplet (or bubble) interface moving at the
velocity Uy on the other. The authors estimate the shear stresses at the interface by a
simple scaling argument

- U,
uVu o ,u?d (3.43)

Prior to the study by M&P, Bretherton had obtained the scaling for the thickness e of the
lubrication films in the case of a rigid interface [86] by an asymptotic analysis. He showed

that e/h Caf/ % as in the case of the slip boundary condition. Hence, the nature of slip
boundary condition at the interface only affects the prefactor. Injecting this result in the

ITitle of their article
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scaling for the shear stress, M&P obtain

- U,
The shear stress applies over the entire surface of the films, of area oc R%. Therefore, the
authors estimate the associated drag force on the drop as

7TR2 ﬁd

Maruvada
F 20lpg———= .
L > = ho Ca?/3

(3.45)
Surprisingly, they omit the drag from the dynamic region of the films and conclude that
the overall viscous drag on a circular droplet is

R* Uy

2
ho h_o Ca?/?

R —
Ug+2.01mps

Maruvada
F
I ho

= 127415 (3.46)

which yields the scaling U, Caz/ U ¢ at low capillary numbers, in qualitative agreement
with their experimental measurements.

To explain their observed value n ~ 1/2, Rabaud et. al. also invoke the rigid boundary
condition of the interface in the presence of surfactants but apply a model developed by
Denkov et. al. to model the resulting drag force on the droplet. The main difference with
the model of Maruvada and Park lies in the scaling law e Ca}i/ ®ho for the thickness of
the lubrication films. This scaling yields

Denkov TR? Uy
Fiy X Mzh—ow (3.47)

for the drag force due to the lubrication films, which translates to
U-C]l:)enkOV x Ca}i/ 2 Uf

for the velocity of the droplet at small capillary numbers.
However, the scaling e o Cail/ ’ho derived by Denkov et. al. [63] disagrees with the

scaling e o Caf/ ®ho obtained in most studies of lubrication in the case of a rigid inter-
face, from the original estimation by Bretherton [86] to recent numerical and analytical
investigations [101, 102]. To find the stationary shape of the lubrication films, Denkov
et. al. explain we applied the principle of minimal rate of energy dissipation and argue
that this principle implies that the deformable surface of the wetting film (which is the only
“free” internal variable in the system under consideration) would acquire a shape, which
ensures minimal rate of energy dissipation [63]. This reasoning appears to be a misuse
of the minimum principle (P3) presented in Chapter 2 since, as we discussed, it does not
select stationary states of a system. This contradiction could explain the different scaling
found by Denkov et. al.

Finally, as suggested by I. Cantat [103], it is possible to derive an expression of the
drag F), that encompasses all existing results, analytical, numerical and experimental, by
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considering the drag both in the dynamic and established regions of the lubrication films for
a rigid boundary condition. Going back to our energy production-dissipation balance, the
central region of the lubrication films dissipates energy from the viscous shear of amplitude
puUy/e in a volume that scales as mR%e. Taking the classic law e oc Ca?/ ®ho for the film
thickness, we obtain a total dissipation in the lubrication films with a rigid boundary
condition at the interface

72 R 0
Plf = 12ﬁ17TRM2K2/3 + 12ﬁ2ﬂ-ﬂ2h—0@ (348)

N N J/
—~ —~

dynamic region established region

which translates to
R? h _ _ -
F, = 12r—p, [(1 + ﬂ) + B12Ca;? + B,Cag??| Uy (3.49)
ho K2 R

in terms of the droplet drag. The droplet velocity follows easily as

. 2U
Us = p— =5 (3.50)
<1 + Z—;) + B3 Cay " + B,Cay

For a clean interface or mobile surfactant laden interface, the established region of the
lubrication films does not dissipate energy and [y = 0. At low capillary numbers, the
droplet velocity scales then as Uy < R/hg - Caé/ Uy like in equation (3.42). For a rigid
(or mixed) boundary condition, the established lubrication films are sheared and dissipate
energy such that 8, > 0. This source of energy dissipation dominates all other terms at
very low capillary numbers that verify Ca}i/ S Bo/B1 - R/ho. In this case, we recover
the result by Maruvada and Park: U; o Caz/ U 7. For higher values of the capillary
number, dissipation in the dynamic and established regions of the lubrication films may
still dominate dissipation from the far-field flows in the Hele-Shaw cell but contribute
equally to the energy dissipation. We find a complex scaling for the droplet velocity

. 2 -
Ud X Uf.
BilaCa; ' 4 g,Cay

(3.51)

An estimation in the form Uy oc C'a;Uy over two to three decades in capillary number and
thereby less than a decade Cail/ ® can yield values of n between 1 /3 and 2/3 which can
explain the discrepancy in the experimental measurements [89, 63, 85].

Finally, given that the predicted drag (3.49) contains terms of order Caf/ 5, Cacl/ % and
Cal, it can only be verified experimentally by covering a very wide range of low capillary
numbers, over three decades at least. Hence it is a true experimental challenge.



Part 11

Experimental study of droplet
actuation with confinement gradients

In this second part of the manuscript, we implement confinement gradients in 2D
microfluidic devices and demonstrate the key droplet operations that are
production, transport, guiding and trapping.
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Chapter 4

Guiding and trapping drops with
rails and anchors

“Une petite citation par quelqu’'un
d’intelligent qui avait quelque chose
d’intéressant a dire”.

Untel, souvenir.

As discussed in the introduction, the basic structure of a 2D microfluidic device is a
Hele-Shaw cell, a channel in which droplets are free to move in any direction in the plane.
This is the strength of the approach: it opens up new perspectives in droplet microfluidics
by allowing a droplet to move around with minimal interactions with other droplets present
in the channel. However, the 2D format of the device raises the issue of guiding the drops,
a task which mainly achieved with the channel walls in serial droplet microfluidics.

In this chapter, we demonstrate a passive technique for droplet guiding and trapping
that relies on gradients of confinement and bypasses the need for solid side walls in a 2D
microfluidic device.

4.1 Guiding and trapping in sertal microfluidics

4.1.1 Guides

In sertal microfluidics, guiding is not strictly speaking an issue since the droplets flow
along the microchannel in one direction. It is only at branching junctions that a droplet
is offered multiple routes and hence, guiding comes down to distributing droplets between
the different outlets.

The typical branching configuration is a T- or a Y-junction as sketched on Fig. 4.1. A
large amount of literature is devoted to understanding the natural behavior of a drop or a
train of drops at such a junction. These studies were motivated by observations of periodic
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T-junction Y-junction

Figure 4.1: Sketch of a T- and Y-junction at which an oncoming train of droplets has
two possible trajectories.s

or even chaotic distribution patterns of the droplets across the two outlets [104, 105].
Empirically, it was shown that a droplet chooses the branch with the lowest hydrodynamic
resistance. As a result, when the branches do not contain any droplets, the shortest branch
is chosen. However, because a droplet increases the hydrodynamic resistance of the branch
it is in, the direction taken by a drop at the junction actually depends on the position of
the other drops downstream in the network.

Careful modeling of these phenomena provides the necessary ingredients to elaborate
passive strategies for traffic control. By playing with the geometry of the network, it is
possible to split a train of drops in an ordered manner or to rearrange the drops in the
train. Nonetheless, the behavior of a given device is sensitive to many flow parameters
(channel geometry, drop size, fluid viscosities, interfacial tension, flow velocity, etc...) such
that reproducibility is a critical issue.

This problem is robustly overcome by implementing active sorting techniques on chip.
Strategies differ on the nature of the force used to push the drops into the selected branch.
The most common approach [106] relies on two localized electrodes to apply a dielec-
trophorectic force on the drop, as shown on Fig. 4.2.a-c. While this approach allows kHz
actuation, the actuation occurs only between the tip of the two electrodes and results in a
local deflection of trajectory rather than a long-distance guiding of the droplet.

An alternative solution consists in using spatial modulations of temperature instead
of electric fields to modify the trajectory of a droplet. Indeed, a gradient of temperature
across a drop is known to create a Marangoni force that pulls the drop towards the hotter
regions [107] and this effect has been used to move a droplet across a Hele-Shaw cell [108].
More recently, Selva et. al. integrated an addressable heating source at a Y-junction in a
microfluidic device and demonstrated that temperature gradients could be used to drive
drops towards the selected outlet branch [109]. However, they observed that the drop
moved towards the coldest regions of the microchannel, in contradiction with the classical
thermo-Marangoni effect. They later found that the temperature gradients are in fact
inducing channel deformations alike to the chemical swelling described in Chapter 3 [110].
Consequently, Selva et. al. are effectively using confinement gradients to manipulate the
drops. Nonetheless, the heating source is cumbersome and cannot easily scale to large 2D
microfluidic devices.

A more flexible solution was developed by Maria-Luisa Cordero at LadHyx. It relies
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Figure 4.2: Two examples of active droplet distribution at a branch in a microfluidic
network. a-c) Electrodes are used apply a dielectrophoretic force on the droplets passing
through the junction. The droplets are attracted towards the energized electrode colored
in white and can either a) distribute randomly (no energized electrode), b) go left or
c) go right. Reproduced from Ahn et. al. [106]. d-f Multiple laser spots are focused
in the device to form the patterns drawn on the insets of the images. When a drop
approaches a laser spots, its interfaces heats up which creates thermo-soluto-Maragoni
recirculations of the fluid in and around the drop. As a result, the drop is pushed away
from the laser spot. [36]. Three patterns are used to send the drops d) to the left, e)
up the center or f) to the right. Reproduced from Cordero et. al. [35].

instead on a soluto-Marangoni force induced by locally heating the interface of the drop
with a focused laser. In this case, the actuation strongly modifies the behavior of the
drops and deflects the trajectories over significant distances. Furthermore, the laser can be
moved in real-time anywhere in the device, allowing for the complex operations featured
in Fig. 4.2.d-f. to be implemented.

Initially, we considered the possibility of using mobile laser spots to control drops
in 2D microfluidics. This would provide a microfluidic tool with ultimate versatility: a
programmable 2D chamber in which droplets could be move to any position following
any desired trajectory. Unfortunately, soluto-Marangoni actuation by laser heating lacks
robustness as it strongly depends on the surfactants covering the droplet and thereby on
the chemical contents of the droplet itself.

4.1.2 Traps

Trapping drops in serial microfluidics comes down to solving the very annoying and in-
credibly frequent delivery-truck-in-a-one-lane-street (DTOLS) problem introduced at the
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beginning of the manuscript. An obvious solution would be to have regularly spaced large
parking spaces into which the garbage truck could shift away from traffic while awaiting its
load of waste. Unfortunately, this solution is impractical in any city filled with disobedient
drivers like Paris since 99 % of the time, the cleverly designed garbage truck parking spaces
would be occupied by parked cars begging for a traffic ticket.

Fortunately, droplets are far less prone to breaking the law and the side pocket solution
is not doomed to failure. The trick however is then in how to attract the droplets into the
pockets and releasing them later on, as droplets are not known for their natural sense of
initiative.
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Figure 4.3: Three examples of droplet trapping in serial microfluidics. a-b The
pocket-in-a-loop solution developed to trap microfluidic beads. Reproduced from Tan
et. al., PNAS 2006. c-d The pocket-in-a-loop solution applied to microfluidic droplets
containing C. Elegans. Reproduced from Shi et. al., Lab Chip 2008. e-f The interfacial
tension based solution introduced by S. Fraden group. Reproduced from Shim et. al.,
J Am Chem Soc, 2007.

To my knowledge, the first and very elegant strategy that addresses the DTOLS problem
in microfluidics deals with the docking of large microfluidics beads [111]. In this approach,
the pocket is combined with a loop to ensure that beads always enter empty pockets
and flow around occupied ones as sketched in Fig. 4.3.a. When the pocket is empty, the
hydrodynamic resistance of the pocket by-pass is smaller than the hydrodynamic resistance
of the loop such that fluid flows mainly into the pocket. When the pocket is occupied by a
bead, the by-pass is closed and the fluid flows through the loop. By placing many pockets
in series, it is then possible to form an array of trapped beads (see Fig. 4.3.b). The beads
can also be released, either by reversing the flow or by forming a vapor bubble in the pocket
with a focused laser.

This design does not work exclusively with solid beads and it was later applied to trap
droplets [112] as shown on Fig. 4.3.c-d. A number of improvements were then implemented
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in order to make drops directly into the traps [113] or to create an array of drops with a
concentration gradient [114].

Instead of relying of viscosity and hydrodynamic resistance, an alternative approach
developed by Fraden et. al. utilizes the interfacial tension specific to drops as a mean to
attract the droplets into the side pockets [115]. In this case, the pockets are closed but
have a greater height than the main channel as illustrated by Fig. 4.3.e. The droplets,
larger than the size of the main channel, are flowing confined by the channel walls. When
a drop reaches a pocket, it expands into the cavity where it is less confined in order to
reduces its surface energy. If the volume of the trap matches the volume of the droplet, the
droplet is entirely withdrawn from the flow and prevents following droplets from entering
the same trap. The main inconvenient of this approach however is that droplets cannot be
easily ejected from the traps.

A noteworthy although trivial feature of all these trapping methods is that they preserve
but reverse the order of the drops: the first droplet in the train ends up being at the tail
of the array and vice versa. An approach for which order is not preserved is the DropSpot
method developed by the Weitz group [116] who looked at the DTOLS problem with a new
eye and asked the question: what if the garbage truck was the solution to droplet trapping?
Indeed, the cars piled behind the garbage truck are nicely arrayed after all. They designed
a device containing dozens of microfluidic channels with successive constrictions, as shown
on Fig. 4.4. Owing to interfacial tension, the droplets resist going through the constrictions
where there are more confined and a stop-and-go traffic jam motion appears the channels.
When the flow is stopped, the droplets then rearrange to occupy only the wide pockets
where they minimize their surface energy.
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Figure 4.4: a. Schematics of the architecture and mechanism of a DropSpot microde-
vice. b. Image of the traffic jams forming in the microchannels with constrictions.
Reproduced from Schmitz et. al. [116].

In summary, all passive trapping techniques developed to date are based on solid pockets
designed to host one or a few droplets and they only differ in the strategy employed to
attract the droplets into the pocket. Huebner et. al. showed that solid traps can be easily
adapted to 2D microfluidics. In their study, they added a number of traps resembling the
original format by Tan et. al. featured in Fig. 4.3.a inside a Hele-Shaw cell and thereby
captured an array of drops as shown in Fig. 7 on our introduction. Nevertheless, this
elegant solution departs from our paradigm of suppressing side walls in 2D microfluidic
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devices.

4.2 Droplet manipulation by confinement gradients in
the context of microfluidics

Overall, the unbounded geometry of a 2D microfluidic device calls for innovative strategies
to guide and trap drops. Drawing on our understanding of droplet trajectories in non-
parallel microchannels presented in Chapter 3, we designed Hele-Shaw cells with localized
height variations that serve this purpose: rails and anchors.

Microchannels made using standard soft lithography techniques [6, 7, 117] necessarily
have parallel top and bottom walls such that continuous confinement gradients cannot be
fabricated. However, multilayer soft lithography enables to the prototyping of microfluidic
devices with step changes in the channel height. Hence, this technique can be used to
etch secondary structures inside a microfluidic Hele-Shaw cell that locally reduce (negative
structures) or increase (positive structures) the height of the chamber, as illustrated in
Fig. 4.5. The in-plane geometry of these structures can be whatever is needed, provided
its in-plane size exceeds its depth or height.

a.

anchors

rails

Figure 4.5: 3D representation of a 2D microchannel with various types of etched
microstructures: a. positive structures like rails and anchors; b. negative structures
like posts or dikes.

Recalling the rules of thumb established in Chapter 1 from energy arguments 1.7, we
expect negative structures to repel non-wetting pancake drops because they locally increase
confinement. In that sense, elongated dikes and bumps could be use to create regions of
exclusions for the droplets in the 2D channel and serve the purpose of walls and posts.
Reciprocally, positive structures like grooves or holes should attract the drops since they
decrease confinement. In terms of energy, these structures are seen by the drops as valleys
or wells of surface energy, respectively. Hence, we expect grooves to guide drops and holes
to trap drops. Thereafter, we focus on these structures that we name rails and anchors.
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4.3 Rails and anchors: proof of concept and applica-
tions

The paragraphs that follow summarize the results obtained in collaboration with Paul
Abbyad for the Laboratoire d’Optique et Biosciences (LOB) at Ecole Polytechnique. They
were published in a Lab-On-a-Chip article in 2010 [118] that is included at the end of this
chapter.

First, we demonstrate that rails and anchors are able to guide and trap pancake droplets,
respectively, and then investigate in more detail the trapping performance of an anchor
against a train of droplets. We evidence a variety of trapping regimes that can be controlled
using the outer flow. Last, we show how the large surface area of an anchored droplet that
is in contact with the outer flow can be used to actively modify the chemical contents of
the droplet. This feature allowed Paul Abbyad to design a microfluidic device to study the
sickle cell disease.

4.3.1 Proof of concept

To test the guiding ability of rails, we fabricate microfluidic devices that contain a flow
focusing module for droplet production and a Hele-Shaw cell with etched grooves of various
geometries. In a first experiment, we flow large pancake droplets of radii R ~ 200 um into
a chamber containing a sinusoidal rail of width and depth significantly smaller than the
radius of the drops. As illustrated by Fig. 4.6, the drops are advected from left to right
following the winding rail and not in a straight line as they would if the Hele-Shaw cell
were perfectly flat.

channel wall
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Figure 4.6: Microscope images of multiple water drops of radii R ~ 200 pum guided
from left to right along a sinuous rails (50 pm in width and 50 pm in depth) in an
external flow of fluorinated oil. The Hele-Shaw cell has a height of h = 100 pm

Similarly, we perform experiments with a Hele-Shaw cell containing an array of anchors
50 pm in depth and diameter and flow a large number of pancake drops through the
chamber. As shown on Fig. 4.7, once droplet production stopped, an array of trapped
drops remains in the channel. This experiment also reveals that an anchor is able to trap
drops much larger than its own size. Here, the drops are approximately 300 ym in diameter,
roughly six times the anchor’s diameter.

In a third experiment, we trap a single drop on a single anchor against a continuous
outer flow and observe how the droplet behaves as the outer flow increases in magnitude.
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Figure 4.7 shows that the rear end of trapped drop aligns with the anchor and that the
drop deforms under the drag from the outer flow. As the flow rate () is increased from
4 pL/min to 12 pL/min, the drop elongates more and more until it finally detaches from
the anchor at @ = 12.5 uL./min. This defines the critical flow rate @Q* of outer flow velocity
U* above which the trapping force from the anchor is no longer sufficient to resist the drag
from the outer flow.
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Figure 4.7: a. Image of an array of droplets trapped by anchors of 50 um in depth
and diameter in a Hele-Shaw cell of gap width h = 35 um. b. Four images of a drop
trapped by an anchors 100 pym in diameter and 50 pum in depth, in a Hele-Shaw cell
of gap width A = 50 pm. The drop deforms more and more as the outer flow rate Q)
increases until it detaches at a critical flow rate @* = 12.5 pL/min.

Overall, these experiments evidence that small secondary structures like rails and an-
chors are able to significantly influence the dynamics and/or trajectory of large droplets
flowing in a 2D microfluidic chamber. In practical applications however, multiple drops
may be flowing inside the microchannel such that droplets will collide with one another.
Therefore, we investigate how an anchor performs when a train of droplets rather than a
single one is flown into the Hele-Shaw cell.

Figure 4.8.a illustrates the experimental setup: a regular stream of water droplets of
radius R ~ 180 um is produced upstream of the microfluidic chamber of height h = 50 ym
that contains a single small anchor, 75 pym in diameter. The drops are advected through
the Hele-Shaw cell by an outer flow of oil whose flow rate ) can be controlled independently
of the droplet production. As expected, if the flow rate ) exceeds the critical flow rate
Q* = 16.5 pL/min for this configuration, the droplets are not trapped by the anchor and
they are regularly advected across the test section. However, within a range of flow rates
10 uL/m< @ < Q* below the threshold Q*, the stream enters a buffering mode: a single
droplet is trapped by the anchor until the following one in the stream arrives, collides,
and pushes it out of the hole, thus replacing it. This behavior is illustrated by the time
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sequence shown in Fig. 4.8.b. If we decrease the flow rate @) further, the buffering mode
switches to a parking mode: a unique droplet is held in place by the anchor and remains
trapped even when following drops collide with it. This behavior is illustrated by the time
sequence shown in Fig. 4.8.c.
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Figure 4.8: a. A stream of droplets of radius R = 180 um is flowing from left to right
in a Hele-Shaw cell of height h = 50 pm over a anchor 75 pym in diameter. b. For an
outer flow rate @ = 12 uL/min, the stream exhibits a buffering mode (sequence frame
rate: 1 frame per second) c. For @ = 6 puL/min, the stream exhibits a parking mode
(sequence frame rate: 0.5fps). Droplets are artificially colored by image processing to
ease the tracking of individual droplets.

This experiment reveals the flexibility of the anchors and rails, contrasting with the
classical approaches that rely on solid walls spanning the height of the channel.
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4.3.2 Controlling the chemical environment of an anchored drop

Another key asset of anchored droplets compared to classical solid traps [33] is the large
surface area that an anchored droplet shares with the flowing outer liquid. This surface
allows the efficient exchange of chemicals like gases between the droplet and the outer
fluid. Furthermore, because flows are laminar in a Hele-Shaw cell, it is possible to have
parallel streams of the outer liquid that contain different chemicals and thereby create a
heterogeneous chemical landscape inside the 2D microfluidic device.

As shown in Fig. 4.9, we combined these two aspects to create an array of drops
anchored in a heterogeneous chemical environment. To this end, he used a Hele-Shaw cell
that has two inlets for the outer phase. One inlet is used to inject fluorinated oil with a
low concentration of dissolved carbon dioxide gas while the other is used to inject oil with
a higher concentration of CO,. If the flow rates are equal, the streams have equal width in
the Hele-Shaw cell which is chemically split in two as sketched on Fig. 4.9. Hence, the two
lines of anchored droplets are in a different chemical environment. The drops contain a pH
indicator which reacts to the carbonic acid produced by the carbon dioxide dissolving in
the water of the droplet. As a result, the droplets on the top become yellow while those
on the bottom remain blue.
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Figure 4.9: a. Schematic of the flows in the microfluidic chip for gas exchange. The
flow rates and gas contents are annotated as follows: @) flow rate of oil inlet one, Q5 flow
rate of oil inlet two, Cy gas partial pressure of oil inlet one and Cs gas partial pressure of
oil inlet two. When @1 = @2, the two streams of oil split equally in the Hele-Shaw cell.
b.Color image of trapped droplets containing the pH indicator bromothymol blue. The
oil flow rates, Q1 and @2, are both held constant at 2 pL/min. The upper oil stream
contains 5 kPa dissolved CO5 and the lower oil stream contains ambient dissolved COq
(0.04 kPa). The droplets exposed to the upper oil stream are acidic and yellow while
those exposed to the lower oil stream are neutral and blue. The scale bar represents
200 pm.

4.3.3 Application to the study of the sickle cell disease

Last, we briefly summarized the work of Paul Abbyad on the sickle cell disease, the details
of which can be found in the article at the end of the chapter.
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Sickle cell anemia is a genetic disease which causes the hemoglobin of the red blood
cells to polymerize when deoxygenated. The red blood cells then take on a “sickle” shape,
hence the name of the disease. Sickling is reversible and highly dependent on oxygen
concentration. Red blood cells are exposed to cycles of oxygen rich and oxygen poor
environments in vascular circulation and therefore, it is of biological importance to study
the effect of these cycles on red blood cell sickling.

To this end, Paul designed a microfluidic chip similar to the one shown on Fig. 4.9 that
enables the arraying of buffer droplets containing red blood cells and the flow of either
oxygenated or deoxygenated fluorinated oils. By controlling the flow rates of these two
oil streams, it is possible to control spatially and temporally the oxygen concentration of
the droplets in the array and in particular to perform oxygenation/deoxygenation cycles
in wvitro that mimic the vascular circulation. This technique has promising applications in
the search for new drugs to treat the sickle cell disease.

4.4 A model and measure of the trapping force

In this section, we summarize the results obtained in collaboration with Sungyon Lee con-
cerning the theoretical modelling of the anchoring mechanism. These results are published
Physical Review Letters [119]. The letter and detailed calculations are included at the end
of this chapter.

The aim of the study is to measure and model for the force F, generated by an anchor.
We use the drag force Fy, from a controlled outer flow to probe the trapping mechanism.
This allows us to measure experimentally the anchoring force. We also describe a simple
theoretical model that yields a scaling law for F, in very good agreement with experimental
measurements.

4.4.1 The force balance on an anchored drop

Consider a pancake droplet of radius R placed over an anchor of diameter d in a Hele-
Shaw cell of height i with an outer mean flow of far-field height averaged velocity U;. This
configuration is sketched on Fig. 4.10 which shows an image of a large anchored droplet.

When the droplet is trapped and held still by the anchor, it is in a state of equilibrium
such that the drag force Fy;, from the outer flow is exactly balanced by a trapping force F,
of the anchor due to the local decrease in confinement. Experimentally, we observe that
a droplet remains trapped on the anchor until the outer flow rate exceeds a critical value
Q*, which translates to a critical value U* in terms of the outer flow velocity.

Conceptually, when the flow velocity is equal Uy, the drag force F); from the outer flow
exactly matches the largest force F that the anchor can apply on the drop. Hence, if
we know how to express the drag force as a function of the outer flow velocity, then the
measured value of the untrapping flow velocity U* can be used to estimate the maximum
trapping force F7} of the anchor.
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Figure 4.10: Two forces apply on an anchored droplet of radius R trapped by an
anchor of diameter d in an outer flow of velocity Uy: F,, the trapping force from the
anchor, balances Fy,, the drag force from the outer flow. The scale bar represents
200 pm.

4.4.2 A model and measure of the drag force F

We model the outer flow around the stationary pancake droplet using the classical height-
averaged potential flow theory introduced in Chapter 2. The energy production-dissipation
balance yielded an expression (3.39) for the force applied by a uniform outer flow on a
pancake droplet. Here, we recall the classical force based approach. In a Hele-Shaw cell,
the in-plane viscous shear stresses are negligible compared to the pressure gradients and the
pushing force Fy, reduces to the pressure drag around the droplet. Solving the Hele-Shaw
equations (2.10) yields expressions

wy

Do = —24 ER + cst and (4.1a)
UrR?
Fy, = 247t / (4.1b)

for the outer pressure field p, at the interface and the resulting drag force Fy, respectively.
Asymptotic analyses of the full flow field in the case of a stationary inviscid bubble [89]
and around a solid cylinder [92] confirms these expressions.

Nonetheless, the pushing force of an outer flow on a stationary pancake droplet in Hele-
Shaw cell has never been measured. In a seminal article [73], G.I. Taylor shows that it is
possible to extract the drag on a stationary droplet by analyzing the deformations of the
drop due to the flow. Indeed, according to the Young-Laplace equation (1.1), the shape of
the drop is directly related to the pressure jump across the interface. Thereby, it is related
to the pressure field p, in the outer phase and consequently to the drag force Fy,.

Assuming the pressure around the droplet is captured by the expression above (4.1a),
we solve the Young-Laplace equation. Using polar coordinates (7, §) of origin positioned on
the center of the droplet to describe the shape of the drop, we obtain an expression for the
local deviations 6r(¢) = r — R in the radius of the droplet from away from its equilibrium
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value R:

2

% = %Caf%(l — 0sind) (4.2)
where Cay = pUy /7 is the capillary number based on the outer flow. In particular, it gives
a scaling for the elongation L of the deformed droplet, equal to the ratio of the elongated
length of the drop over its equilibrium diameter: L oc Ca;R?/h?.

To verify this scaling, we performed several hundreds of experiments in which we mea-
sured the elongation of an anchored droplet while varying the channel height h, the anchor
diameter d, the outer flow velocity Uy, the fluids used and thereby the viscosity p and the
interfacial tension . As a result, we covered almost two decades in flow based capillary
number Ca;. On Fig. 4.11, we plot L - h*/R? versus Ca;. The data collapses onto two
distinct lines which both agree with the theoretical scaling L oc CayR?*/h*. The two groups
of data points corresponds to the two different surfactants used in the experiments, which
suggests that Marangoni effects are present at the interface.

4

<|eg

FC40 + PFPE-PEG surfactant
0 h=40um, d=72 um
A h=27 um, d=50 um|]
0 h=40pm,d=80 um
v h=60pum, d=78 ym

FC40 + Krytox amnonium salt
# h=45pm,d=55pm

FC70 + Krytox amnonium salt
® h=45pm, d=82pym

- Ca -4
10 y 10

Figure 4.11: Imset: Sketch of the polar coordinates for the deformations d7(6) from
the static radius R. Main panel: Elongation L = r(0)/R of anchored droplets,
rescaled by h?/R2, as a function of the oil capillary number Ca ¢ for various channels,
liquids and surfactants. The solid lines are a linear fits of the two distinct data groups
while the dashed line is the theoretical prediction for equation (4.2).

Nevertheless, the elongation measurements are in agreement with the predicted scaling
for the pressure variations around the droplet. Hence, it validates the scaling Fy, o<
pUrR?/h for the drag force.
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4.4.3 The theoretical estimate of the trapping force F,

The force F, applied by the anchor on the drop originates in the confinement gradient
created by the hole in the Hele-Shaw cell. According to the result (3.36) obtained in
Chapter 3, F, is proportional to the gradient in the surface area S of the droplet as it
moves about the anchor: F, = - VS.

In order to evaluate the magnitude of this force, we start by estimating the difference
AS between the surface area of a droplet when it is over an anchor or away from the
anchors. The shape of the droplet over the anchors is modeled as a circular pancake shape
combined with a spherical cap extending in the anchor, which best describes the Surface
Evolver rendering shown on Fig. 4.12.a.

The curvature of the spherical cap in the anchor has to match the curvature of the
interface at the rim of the pancake. For a large pancake (R > h), this curvature is 2/h,
yielding a radius of curvature p of the spherical cap in the anchor p = h/4. If p is smaller
than half the anchor diameter d/2, then the spherical cap fits entirely into the anchor.
The droplet then fills the anchor until it touches the bottom of the hole. In this case,
the depth of the anchor e plays an important role. If on the other hand p is larger than
d/2, the spherical cap cannot enter completely into the anchor and, provided e > d/2, the
droplet does not touch the bottom of the hole. This is the situation depicted in Fig. 4.12.a.
Overall, the parameter b = d/h determines the behavior of the drop and in the rest of the
discussion, we consider the case of b < 2.

Figure 4.12: a. Surface Evolver [120] rendering of an anchored droplet of outer radius
R inside a microchannel of height h over an anchor of diameter d. b. Ilustration of the
imaginary displacement of the droplet out of the anchor that is considered to estimated
the gradient of surface area.

A geometric study of the shape shown on Fig. 4.12.a yields that the surface area of the
droplet over the anchor is indeed smaller than the nominal surface area and we obtain the
expression

AS ~ —gbf(b)hQ(l +o(h/R)) (4.3)
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Last, we estimate the gradient of surface area by observing that the change in surface
area occurs as the droplet moves over a distance d equal to the diameter of the anchor, as
illustrated on Fig. 4.12.b. Hence, we obtain

F, yghf(b) . (4.5)

4.4.4 Comparison with the measured trapping force

Balancing the theoretical expression for the two forces F, and Fy, yields a predicted scaling

law for the untrapping velocity
o Y B
U Lrp) == 4.6

which can be written in terms of the critical capillary number Caj} as

h2

Ca} o f(b)ﬁ :

(4.7)

Experimentally, we measured the untrapping flow velocity Uj for droplets of vari-
ous radii R between 75 pm and 1 mm trapped by anchors of different dimensions h =
27,40,45,60 pm and d = 50,55, 72,78,80,82 um. We also used two different oils (FC-40
and FC-70 fluorinated oils) for the outer fluid, of the viscosities = 4.1 cP and 16 cP. To
change the interfacial tension, we mixed two different surfactants (PEG-PFPE or Krytox
amnonium salt) yielding v = 20 mN/m and 10 mN/m respectively. In Fig. 4.13, we plot
the collected data rescaled in terms of Ca} and f(b)h*/R?. The data points all collapse
on a single line, validating the scaling law (4.5) for the trapping force F,. In particular,
it supports the use of d as the characteristic length scale to estimate the gradient of the
droplet surface area.
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Figure 4.13: Critical capillary number Ca} plotted against f (b)h?/R? for the channel
geometries, liquids and surfactants listed in the legend of Fig. 4.11. The solid line is a
linear fit of the data.
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Finally, using the characteristic values h = 100 ym, d = 100 gym and v = 1072 N/m,
we find that the anchoring force F), is in the range of 100 to 1000 nN, orders of magnitude
stronger than forces generated using optical tweezers [121] or dielectrophoresis (of the order
of 10 nN) for example.

4.5 Towards addressable 2D droplet arrays

In a recent review [122], Pompano et. al. survey droplet compartmentalization and its
applications. They distinguish bulk emulsions from arrays in which droplets have a spe-
cific spatial organization. They comment that “bulk emulsions are well suited for high-
throughput analysis of initially equivalent droplets to obtain statistical data, such as for di-
rected molecular evolution, screening for cellular behaviors by fuorescence-activated droplet
sorting, or emulsion-based PCR” and argues that “for multiplexed experiments involving
droplets of different compositions, such as large-scale screening of reaction conditions, in-
dexing (spatial indexing in an array for example) is required”.

In my opinion, indexing is not sufficient to aim for applications which involve multi-
plexed experiments. Individual droplets in the array must also be accessible to readout
obviously but also to combination, dilution, extraction, etc... In other words, the droplet
array must be addressable. As argued in the introduction, if microtiter plates have become
a lab standard, it is not just because they provide small volume arrayed equivalents of test
tubes but also because the contents of the microwells are easily accessible by pipetting.

To date, most microfluidic droplet array technologies strongly lack accessibility. Dig-
ital microfluidics [29, 123] are an exception but at the cost of a complex and expensive
technology which has yet failed to scale in number and volume with existing microwell
technologies. The SlipChip [124, 125] developed by Ismagilov and co-workers is a clever
approach to 2D droplet microfluidic that does not require an external flow of oil. In-
stead, droplets are stored in pockets etched into two glass plates which are held pressed
together. By sliding one plate relative to the other, wells from one plate can be aligned
with wells on the other to fuse droplets, allowing successive chemical reactions or dilutions
to be performed on chip. Figure 4.14 reproduced from Du et. al. [124] illustrates the
SlipChip mechanism. An inconvenient of this approach is that all droplets are actuated
simultaneously and not selectively.

Our rails and anchors technology has potential for selective accessibility owing to what
some might consider as its weakness: the droplets do not firmly interact with the etched
structures such that they can derail from rails or break free from anchors. Above, we
showed how easy it is to create a 2D droplet array with regularly patterned anchors. If we
are then able to trigger local derailing or untrapping events in a controlled manner, then
the array becomes selectively addressable.
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Figure 4.14: The SlipChip technology as presented by Du et. al. [124].

4.5.1 Combining rails and anchors with laser actuation

The original endemic technology of our microfluidic laboratory is droplet actuation by
laser [35, 37]. To summarize the basic principle, when an infrared laser is focused on the
interface of an aqueous droplet, it locally heats the water and locally changes the interfacial
tension. The gradient of interfacial tension then induces flow and the droplet swims away
from the laser.

Furthermore, the magnitude of the forced applied by the laser on the droplet was
measured to be above 100 nN, a range similar to the range of forces applied by anchors
and rails on droplets in our geometries. Hence, droplet actuation is an ideal candidate to
implement active untrapping and derailing events.

Along with Etienne Fradet and Craig McDougall, we designed various 2D droplet mi-
crofluidic devices that allow selective manipulations within droplet arrays. This includes
ordered arraying, selective removal and on-demand fusion of droplet pairs in a 2D format.
This results were published in Lab-On-a-Chip [126] and the article included at the end of
this chapter describes how each operation is implemented.

4.6 Summary and discussion of Chapter 4

Rails and anchors are simple and elegant techniques to guide and trap droplets in a 2D
microfluidic device. Owing to their small size, they only weakly perturb the flow of external
fluid but significantly interact with pancake droplets. The effect on a drop of an etched
microstructure can be adjusted prior to an experiment by designing different shapes and
during an experiment by varying the flow conditions. This versatility is especially useful in
the case of anchors. Indeed, it is possible to switch the behavior of an anchor from holding
multiple drops, a single drop or a buffering mode by simply changing the flow velocity.

In this study, we have only tested a few microstructure geometries. The idea of using
confinement heterogeneities in 2D droplet microfluidic will certainly lead to other appli-
cations in the near future. Already, a few research groups across the world have adopted
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this concept. The SMALL Lab at the University of Buffalo is combining rails and an-
chors [127, 128, 129] with other microfluidic components inside 2D devices. Allouch et.
al. from LAAS in Toulouse have instead relied on posts and dikes to force fractures and
exclusion zones in 2D crystals of bubbles, with possible applications to optical guides and
resonators.

In the following chapter, we demonstrate how confinement gradients can be used to
produce and propel droplets, paving the way for droplet microfluidic devices powered by
surface energy only.
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Figure 4.15: A striking similarity between droplets and elephants...

Published material
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This paper presents a method to control the motion of nanolitre drops in a wide and thin microchannel,
by etching fine patterns into the channel’s top surface. Such control is possible for drops that are
squeezed by the channel roof, by allowing them to reduce their surface energy as they enter into a local
depression. The resulting gain in surface energy pulls a drop into the groove such that localized holes
can be used as anchors for holding drops, while linear patterns can be used as rails to guide them along
complex trajectories. An anchored drop can remain stationary indefinitely, as long as the driving flow
rate is below a critical value which depends on the hole and drop sizes. By micro-fabricating holes into
a grid pattern, drops can be arrayed and held in the observation field of a microscope against the mean
carrier flow. Their contents can then be modulated by gas exchange with the flowing carrier oil. We
demonstrate in particular how the pH or the oxygen levels within the drops can be controlled spatially
and temporally, either by exposing rows of drops to two streams of oil at different gas concentrations or
by periodically switching oil inputs to vary the gas concentration of drops as a function of time. Oxygen
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control is used to selectively deoxygenate droplets that encapsulate red blood cells from patients
suffering from sickle cell disease, in order to study the polymerization of intracellular hemoglobin.
Cycles of oxygenation and deoxygenation of anchored droplets induce depolymerization and
polymerization of the hemoglobin, thus providing a method to simulate the cycling that takes place in

physiological flows.

I. Introduction

Performing a large number of experiments in parallel has become
increasingly important in molecular and cell biology. The most
common laboratory tool for such parallelization is the multi-well
plate, in which different reactions can take place in a large grid of
independent wells. Experiments in such two-dimensional arrays
simplify the observation, manipulation, and analysis of large
data sets. For this reason, many emerging miniature devices
aimed at replacing standard laboratory equipment have explored
ways to organize experiments in an array format, for example in
DNA-chips and cellular arrays.'*

Parallelization within the field of microfluidics is of great
interest and continues to be explored through different
approaches. For instance, the early work on collapsible channels
led to the large-scale integration of microfluidic networks, in
which isolated chambers were used to perform independent
reactions.? Other approaches involve for example a large number
of independent microchannels that are replicated side by side, in

view of integrating them with standard micro-pipette
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instruments.* Droplet microfluidics is particularly attractive for
parallel experiments as the content of each drop is isolated and
controlled. Furthermore, individual droplets can be transported,
sorted, merged and divided.>® However, arraying droplets within
microchannels must rely on immobilizing them in a controlled
fashion in the presence of a mean flow that constantly pushes
them downstream. Different groups have proposed ways to hold
droplets stationary, either using localized laser heating'®!' or
relying on microfabricated mechanical obstacles.'¢

In the case of mechanical traps, the devices rely on the drop’s
resistance to being squeezed.'*¢ Indeed, an unconstrained drop
takes on a spherical shape in order to minimize its surface energy,
which is equal to its surface area times its surface tension.
Therefore, if a drop is placed in a region of low surface energy, it
will resist leaving into a region where it will be squeezed. The
resistance force is given by the gradient of the surface energy.
This can be applied to block a droplet either by placing it in
a pocket and pushing it with the mean flow against a small exit
hole'*'*16 or by allowing it to expand into a chamber of increased
dimensions compared to its surroundings.'>'* In all of the above
cases, the drops were positioned in an array to maximize the
number of drops in the microscope field of view.

However, holding a droplet can be performed using much
weaker constraints than the ones described in the literature. As
we detail below, flattened drops that are constrained by the top
and bottom boundaries of the microchannel can be manipulated
by imposing modulations of the channel height, e.g. by etching
a pattern of holes and grooves into one of the microchannel
surfaces. The technique that we present here relies on simple
multi-layer photolithography, which allows any pattern to be

This journal is © The Royal Society of Chemistry 2011
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Fig.1 (A) Sketch of the experimental device which defines the geometric
parameters. (B) A water drop anchored to a hole in the channel roof with
oil flowing left to right. (C) An array of anchored droplets. The scale bar
represents 250 um in all images.

drawn on the channel roof. In particular, a circular hole anchors
a drop in place (Fig. 1A and B) and a series of patterned holes is
used to obtain a droplet array (Fig. 1C and Movie S1i).
Furthermore, linear grooves are used to guide drops in two-
dimensions (2D) much like a rail is used to guide a train. The
combination of rails and anchors therefore provides truly 2D
manipulation of drops, far from the lateral walls of the micro-
channel and with minimal interactions between the drops. The
simplicity of this approach ensures its robustness, since it relies
on a balance between two well-understood physical mechanisms.
Finally, the drops that are anchored in this way keep a large
exchange area with the flowing external oil phase, which allows
gas transfer between the oil phase and the stationary droplet as
shown in Abbyad er al'” This can be used to transport
a continuous supply of oxygen for cell cultures in droplets or to
provoke a temporal or spatial variation in gas content in
a droplet array.

The body of the manuscript is divided into three parts. The
Materials and methods section (Section II) explains the device
fabrication and experimental protocol. The second part (Section
III) discusses the physical principles and shows how droplets can
be guided and anchored using etched patterns. It further quan-
tifies the strength of an anchor point by measuring the critical
flow rate of the carrier phase required to displace the drop from
the anchor. In the third part (Section IV), the gas exchange with
the carrier phase is used to impose variable conditions within an
array of anchored drops, both in space, across different rows of
the array, and in time. This work is motivated by the study of
sickle-cell anemia and the gas-exchange techniques are used to
induce red blood cell sickling in anchored droplets as shown in
Section IVB.

II. Materials and methods
A. Microfluidic device fabrication

Chips of two different materials were used for the experiments.
PDMS devices were used for the experiments on anchor strength
and rails (Section III). For experiments involving gas exchange

(Section 1V), chips were made of gas impermeable Norland
Optical Adhesive 81 (NOAS81). The fabrication procedures for
both PDMS and NOA&8I1 devices are explained briefly below.

Microfluidic devices with channel depth modulations were
fabricated using the dry film photoresist soft lithography tech-
nique described by Stephan et al.'® since it enables rapid proto-
typing of multi-level structures. Here, the masters were etched in
Eternal Laminar E8013 and Eternal Laminar E8020 negative
films of thickness 33 + 2 um and 49 + 2 pum respectively.

The fabrication procedure is as follows: (i) photoresist layers
were successively laminated onto a clean glass slide using an office
laminator at 100 °C until the desired height / of the main channel
was reached. (ii) The photoresist film was exposed to UV through
the photomask of the main network (test section, entrance and
exit channels). (iii) Additional photoresist layers were laminated
on top of the exposed film until the desired depth p of the anchors
(or rails) was reached. (iv) The stack of photoresist films was again
exposed to UV, through the photomask of the depth modulations
aligned with the previous network. (v) Finally the full structure
was developed by immersion in an aqueous bath of carbonate
potassium at 1% mass concentration. PDMS (Dow Corning
SYLGARD 184, 1/10 ratio of curing agent to bulk material) was
then poured over the master and cured (2 hours at 70 °C). The
PDMS device was sealed on a glass slide by plasma bonding to
obtain a microchannel as sketched in Fig. 1.

Devices used for oil-droplet gas exchange were made of gas-
impermeable photocurable glue, NOA, following the protocol
described in Bartolo et al'® Briefly, a PDMS mold was made
from the master as described above. This PDMS mold was in
turn used as a template to produce a PDMS stamp. Exposing the
PDMS mold to gaseous 1H,1H,2H,2H-perfluorodecyltri-
chlorosilane (Alfa Aesar) for 3 hours in a sealed container
ensured that the PDMS layers did not permanently bond during
the curing process. The PDMS stamp was then pressed over
a drop of Norland Optical Adhesive 81 (NOAS81, Thorlabs) on
a glass coverslide before exposure to a UV lamp (exposure for
40 seconds at a power of 7 mW cm ?). A thin layer of glue
remained uncured on the surface due to the presence of oxygen,
which allowed the device to be sealed with a glass slide with
a second exposure to a UV source (exposure for 40 seconds at
a power of 7mW cm?). To render the internal channel surface
hydrophobic, a glass treatment chemical (Aquapel, PPG Indus-
tries) or 1H,1H,2H,2 H-perfluorodecyltrichlorosilane (20 pL in
1 mL of FC-40) was flowed briefly through the microchannel.

B. Oxygen control

To vary its oxygen concentration, the oil was flowed through
approximately 50 cm of gas permeable silicone tubing (0.3 mm
internal diameter and 0.6 mm outer diameter, Helix) in a vial
with a controlled oxygen atmosphere prior to entering the NOA
microfluidic device. By varying the relative flow rates of nitrogen
gas and air into the vial, the oxygen concentration in the vial
could be adjusted from 0% to 21% oxygen (atmospheric oxygen
percentage) i.e. from 0 to 21 kPa oxygen partial pressure (pQO,).
The flowing fluids equilibrated with the oxygen partial pressure
in the vials through gas exchange across the silicone tubing. After
the gas exchange vial, it is important to maintain a virtually gas-
tight environment. Therefore low-gas permeability tubing made
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of polyether ether ketone (PEEK, Upchurch) was used to
connect the vial to the NanoPort (Upchurch) inlets of the
microfluidic device.

C. Determination of on-chip oxygen concentration

The on-chip oxygen concentration in individual trapped micro-
droplets was determined using a fluorescence probe, ruthenium
tris(dipyridyl) dichloride hexahydrate (RTDP) (Sigma-Aldrich),
using a setup recently described in Abbyad et al.'” The fluores-
cence lifetime of the probe is proportional to the oxygen partial
pressure and varies from 600 ns for 0 kPa oxygen to 380 ns for
21 kPa oxygen.

In contrast with our earlier study on flowing droplets, a slow
drift to shorter lifetimes was observed when measurements were
made on an anchored droplet over extended periods. The drift
was not observed in the absence of excitation light or for
a flowing stream of RTDP solution. Therefore, this drift is likely
associated with production of an unknown photoproduct with
a shorter lifetime that accumulates in the small volume of
a droplet. Within the timescale of the experiments, the drift in
lifetime was constant in time and was more substantial for
smaller droplets. For a droplet with a diameter of 320 um, the
change in lifetime was 0.7 ns per second of illumination with
excitation light. To minimize this drift, the excitation light was
reduced to 0.5 second exposures every 2 seconds (for fast oxygen
changes as in Fig. 5D) or every 20 seconds (for slow oxygen
changes as in Fig. 5C). In the treatment of the lifetime data,
a linear slope corresponding to the drift was subtracted to correct
for the effect.

D. pH control

The pH of anchored droplets was altered by gas exchange with
CO, dissolved in the carrier oil. To monitor the droplet pH, the
indicator, bromothymol blue (Sigma-Aldrich), was dissolved in
the aqueous phase (0.5 mg mL ") and the pH of the solution was
adjusted to about 9 using sodium hydroxide. To dissolve CO; in
the carrier oil, a solution of FC-40 with surfactant was placed for
30 minutes in an incubator with a controlled atmosphere con-
taining 5 kPa CO,. The solution was then transferred to
a gastight syringe (SGE).

E. Sickling of red blood cells

Blood samples were obtained from untreated sickle cell patients
(Tenon Hospital, Paris) and stored at 4 °C using sodium citrate
as an anti-coagulant. Samples were used within a week after
extraction. Red blood cells were washed three times with PBS
buffer (137 mM NacCl, 2.7 mM KCI, 8.0 mM Na,HPOy,, 1.5 mM
KH,POy4, 5.5 mM glucose, 2 mM CaCl,, pH 7.4) by sequential
dilution and centrifugation (3000g). For experiments, the washed
red blood cells were diluted 100-200 fold in D-PBS buffer
(137 mM NaCl, 2.7 mM KCl, 8.0 mM Na,HPO,, 1.5 mM
KH,POy4, 0.9 mM CaCl,, 0.5 mM MgCl,, pH 7.4, Invitrogen)
and 35% v/v Optiprep (Sigma) to prevent cell sedimentation.
Biocompatible surfactant, 0.5% dimorpholinophosphate-PFPE
(DMP-PFPE)* in FC-40, was added to the oil. The microfluidic
chip was heated to 30 °C using a heater plate, thus approaching
physiological temperatures.

Polarization microscopy was used to detect intracellular
hemoglobin fibers in red blood cells. Images were obtained with
two crossed thin-film linear polarizers placed in the optical path
of the microscope before and after the sample as described in
Abbyad et al.’’

III. Droplet anchoring by depth modulations

A. Physical background

The basic geometry of the test section is a thin microchannel of
height 4 much smaller than its width W and length L, referred to
as a Hele-Shaw cell in the fluid mechanics literature.* It is filled
with a fully wetting oil, in which case a thin film of oil prevents
the water drops from being in direct contact with the channel
walls. In this geometry, large drops (of volume greater than the
largest sphere that can be inscribed in the channel V, = 41t/3(h/2)%)
are constrained by the top and bottom walls of the channel such
that they can only move in the plane of the Hele-Shaw cell. V. is
equal to 0.5 nL for a 100 micron high channel and typical droplet
volumes used here were around 10 nL. Such drops adopt a flat-
tened pancake shape, i.e. a rounded cylinder of radius R and
height #, as sketched in Fig. 1A.

A consequence of the vertical confinement on the drops is that
they become sensitive to depth modulations of the microchannel.
Indeed, any interface between two fluids has a surface energy ¢,
defined as the product between interfacial tension vy and the
surface area of the interface. For a drop of constant volume, this
surface energy is minimal for a spherical shape and it increases as
the drop flattens into a pancake shape. Therefore, in a micro-
channel of non-uniform height, flattened droplets are captured
by regions of reduced confinement which lower their surface
energy.

By this mechanism, a hole, i.e. a circular region of increased
channel height of diameter d and depth p, is able to trap
a droplet. Indeed, when a droplet reaches the hole, it lowers its
surface energy by partially entering into the cavity even if d is
much smaller than the radius of the drop R, as sketched in
Fig. 1A. The drop deforms and is held only locally, as if it were
anchored to the hole. In that sense, a hole can be seen as a surface
energy well in which the drop is trapped, in an analogy with
particle trapping in potential energy wells. An external force is
therefore necessary for the drop to detach from the anchor site.

In the presence of an external flow, the droplet is pushed by the
hydrodynamic drag of the carrier phase and it will remain
anchored only if the strength of the trap is sufficient to balance
the drag from the flow. The trap strength can therefore be
quantified by measuring the critical flow rate of the carrier phase
Q. above which the hole is no longer able to hold the droplet.

B. Determination of anchor strength

We measured the anchor strength experimentally using a PDMS
microfluidic chip that enabled separate control of the size of the
drops and the advection flow velocity, as sketched in the inset of
Fig. 2. The design consisted of a main test section, a Hele-Shaw
cell of height # =35 um or i/ = 50 pm, W =3 mm, and length L =
6 mm, which contained a single hole. It was connected upstream
to a flow focusing device which produced water droplets in oil
(FC-40 + 2% surfactant). The fluids were injected using syringe

This journal is © The Royal Society of Chemistry 2011
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Fig. 2 Inset: sketch of the microfluidic chip featuring the flow focusing
device for droplet production, the oil inlet for flow rate control and the
Hele-Shaw cell with a single anchor for the measurement of the anchor
strength. Main: critical flow rate Q. as a function of droplet radius
R for three channels and anchor geometries: # = 35 pm, d = 50 pum and
p = 35 pum (green circles); 4 = 50 um, d = 75 pm and p = 50 um (red
squares); i1 = 50 pm, d = 100 um and p = 50 um (blue diamonds).

pumps, at flow rates Q,, for water and Q, for the oil, which could
be tuned to adjust the droplet size. A second oil inlet with a flow
rate O, also led to the test section. The total flow rate of the
advecting oil in the test region was thus Q, = Q; + 0-.

Droplets of a given radius R were first produced at the flow
focuser®? and flowed into the Hele-Shaw cell, at which point the
entrainment flow rate Q, was lowered to a value at which a single
droplet was trapped by the hole. At this stage the flow of water
was stopped to end the production of droplets and all droplets,
except for the anchored droplet of interest, were flushed out of
the test section by the carrier oil. The value of Q, was then
incrementally increased up to the critical value Q. at which the
anchored droplet was pushed out of the hole by the oil flow. For
a given geometry of the test region (4,d,p), this protocol was
repeated for droplets of various radii in order to determine the
dependence of Q. on R.

The results for three channel and hole geometries (4,d,p) are
presented in Fig. 2. We observe that droplets are trapped by the
holes at low flow rates and that they can be held in this stationary
state indefinitely unless the flow rate is increased above a critical
value Q.. For a given hole geometry and droplet radius R, this
threshold is well defined since fluctuations in successive
measurements are below 5%. The strength of anchors displays
a general trend: the critical flow rate Q. decreases with R
regardless of the channel and hole geometry. This trend is due to
the increase in drag force with droplet radius R.>® Furthermore,
the experimental curves Q.(R) for the three geometries do not
intersect, indicating that anchors can be ranked according to
their trapping strength, independent of drop radius R. For
example, for a channel of height 4 = 50 um, the hole of diameter
d = 100 pm is a stronger anchor than the hole with diameter d =
75 um. This is in agreement with the intuitive argument that the
larger the hole, the more the surface energy decreases as the
droplet deforms into it.

From this empirical analysis, anchors appear as a simple and
robust device for trapping droplets in an external flow. In

addition, this technique is flexible and reversible since the flow
rate can be tuned to below Q. to anchor a droplet then increased
above Q. to flush it out after an experiment. Anchors are also
omnidirectional, capable of anchoring a droplet regardless of the
external flow direction.

C. Droplet interactions

In practical applications, multiple drops may be flowing inside
the microchannel such that mobile droplets will collide with
anchored ones. This raises the issue of droplet interactions which
we explore here. Using the same microfluidic chip as in the
previous section, we produced a continuous train of regularly
sized droplets that flowed into the Hele-Shaw cell containing
a single anchor. The total flow rate was adjusted by varying the
secondary flow rate Q,.

As expected, if the total flow rate Q, exceeded the critical flow
rate Q., the droplets were not trapped by the anchor and they
were regularly advected across the test section. However, within
a range of flow rates below the threshold, the droplet train
entered a buffering mode: a single droplet is trapped by the
anchor until the following one in the train arrives, collides, and
pushes it out of the hole, thus replacing it. This behavior is
illustrated by the time sequence shown in Fig. 3A which shows
droplets of radius R = 180 pm flowing from left to right with an
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Fig. 3 Image sequences of a train of droplets of radius R = 180 um
flowing from left to right in a Hele-Shaw cell of height 4 = 50 pm over an
anchor of diameter d = 75 um. Droplets are artificially colored by
image processing to facilitate tracking of individual droplets. (A) For
Qo = 12 pL min~', the train is in buffering mode (sequence frame rate: 1
frame per second). Droplets enter the Hele-Shaw cell at a rate of 15
droplets per minute. (B) For O, = 6 uL min~', the train enters into
parking mode (sequence frame rate: 0.5 frames per second). Droplets
enter the Hele-Shaw cell at a rate of 8 droplets per minute. The scale bars
represent 500 pm.
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oil flow rate Q, = 12 pL min~". This flow rate was lower than the
critical value Q. = 16.5 uL min' for this configuration. In the
figure, the droplets are artificially colored by image processing to
easily distinguish individual droplets. In the first 2 frames, the red
drop is held stationary by the anchor when the blue drop arrives,
advected by the external flow. The instant the two drops collide
(frame 3), the red drop is pushed off the anchor and the blue drop
takes its place. The blue drop is now stationary and anchored to
the hole (frames 5-9) until the arrival of the next drop. This cycle
can continue indefinitely, with each successive droplet replacing
the previous droplet in the anchor (see Movie S27).

If we decrease the flow rate Q, further, the buffering mode
switches to a parking mode: a unique droplet is held in place by
the anchor and remains anchored as later drops collide with it.
This behavior is illustrated by the time sequence shown in Fig. 3B
which has the same geometrical configuration as Fig. 3A but with
a lower oil flow rate, Q, = 6 uL min~'. Indeed, we observe that
the red drop is held stationary by the anchor throughout the time
sequence and resists collision with the incoming blue and green
drops.

These modes illustrate the flexibility of the anchors as trapping
devices as it is possible to switch from one mode to the other by
varying the external flow rate. Applications are numerous: the
buffering mode could be used to observe for a limited duration
successive droplets at a fixed position, increasing the integration
time for example in fluorescence experiments; the parking mode
is useful to observe droplets for an extended period at fixed
positions or to select a single droplet in a continuous train of
droplets. This is of particular interest when studying a slow
biological or chemical process in a droplet.

D. Drops on rails

Similar gain in surface energy is achieved when a pancake droplet
encounters grooves that extend along one direction. In this case,
however, the indentation only impedes movement along the
direction perpendicular to the groove but not along the groove
direction. In this way, a drop will be guided by the groove while
being pushed by the external flow, as a train follows a rail. These
rails can have much smaller widths than the radius of the droplet,
as shown in Fig. 4A where a sinusoidal rail pattern guides
droplets along its path. All the drops follow the path dictated by
the micro-fabricated etch, although they do not necessarily
remain centered on the rail, due to the drag force from the
external oil flow. The velocity of the drops depends on the rela-
tive local orientation of the rail with respect to the direction of
the mean oil flow. As seen in Movie S31, the drops flow rapidly
along sections where the rail is oriented in the same direction as
the mean flow but more slowly in sections where the rail is
strongly inclined relative to the mean flow.

Again, the simple microfabrication procedure allows complex
rail networks to be implemented, as shown in the snapshot of
Fig. 4B. In this image, drops that are of similar size as the rail
width are guided into a complex distribution along the channel
width. In this example, droplet—droplet interactions within the
crowded central rail push some drops to take alternative paths
between the inlet and the exit. If a drop “derails”, it will follow
the mean flow until it reaches an available position in another
rail. Drops spend variable amounts of time in the test section

A channel wall

/ rail\ 20
N
oo [ Y
direction 7

T 50
\ : L

channel wall i

Fig. 4 Microscope images of multiple water drops guided from left to
right along microfabricated rails (50 pm in width and 50 um in depth) in
an external flow of fluorinated oil. (A) Large drops of radius R = 200 um
follow a narrow sinusoidal rail inside a Hele-Shaw cell of height & =
100 pm. (B) Smaller drops of radius R = 50 pm follow a complex
network of rails with bifurcations and junctions inside a Hele-Shaw cell
of height 7 = 50 um. The scale bars represent 500 pm.

since it takes longer to follow the off-centered paths as compared
with the central rail.

These two examples of drops on rails demonstrate the basic
functions of guiding drops in a 2D area. Drops will follow
a micro-fabricated rail and this can be used to divide an initial
sample into many parallel paths. Conversely, several input
samples can be brought close together by designing drop inputs
and rail patterns accordingly. Furthermore, the combination of
rails and anchors provides a way to bring different initial samples
into close proximity and to hold them in place, in order to
facilitate their observation within a single image. Networks of
interconnected rails can be used for complex operations by
directing droplets at junctions. Droplets can be guided through
a complex network of rails by passive means, for instance by
relying on droplet—droplet interactions and rail geometry. An
example of this crowding effect is visible in Fig. 4B, where some
drops are pushed away from the central rail by their neighbors.
Moreover, the guidance can also be determined actively by
applying an external force that selects between two possible rails,
for example through electric fields** or laser heating.® In the rest
of the manuscript, we focus on arrays of stationary droplets and
show how the oil flow can be used to control the drop contents.

IV. Spatial and temporal control in droplet arrays

In two-phase microfluidic devices, the carrier oil serves both for
the production and the transport of microdroplets. We have
shown in a recent publication'” that the perfluorinated carrier oil
can also be used as either a source or a sink for oxygen exchange
in aqueous droplets. This approach can be generalized to many
different gases due to their high solubility in perfluorinated oils.
Below, we show how this gas exchange can be used to control the
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contents of anchored droplet arrays. For gas exchange applica-
tions, the devices are made of a gas impermeable chip material,
NOA photocurable glue, rather than gas permeable PDMS, to
ensure that exchange occurs solely between the oil and aqueous
phases.

A. Oil-droplet gas exchange

A train of droplets was produced at a flow focuser and trans-
ported to an array of anchors as shown in Fig. SA. By working at
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Fig. 5 (A) Schematic of the flows in the microfluidic chip for gas
exchange. The flow rates and gas contents are annotated as follows: Q,,
flow rate of aqueous phase, Q; flow rate of oil inlet one, Q, flow rate of oil
inlet two, C; gas partial pressure of oil inlet one and C, gas partial
pressure of oil inlet two. (B) Color image of trapped droplets containing
the pH indicator bromothymol blue. The oil flow rates, Q; and Q,, are
both held constant at 2 pL min~'. The upper oil stream, C;, contains
5 kPa dissolved CO, and the lower oil stream, C,, contains ambient
dissolved CO, (0.04 kPa). The droplets exposed to the upper oil stream
are yellow while those exposed to the lower oil stream are blue. The scale
bar represents 200 um. (C) Oxygen partial pressure (pO,) of an anchored
droplet as determined by RTDP fluorescence lifetime while alternating
the oxygen concentration upstream of the chip. The partial pressure of
oxygen is varied from 0 kPa to 21 kPa. The flow rate is held constant at
01 = Q> = 1 pL min~". (D) Oxygen partial pressure (pO,) of a trapped
droplet while alternating the flows of the two oil channels. The partial
pressures of oxygen of the oil channels are C; = 21 kPa and C, = 0 kPa.
The two oil flows, Q; and Q,, are alternated between 0 and 8 pL min~". In
all cases, the height / of the anchor is 50 pm and its depth p is 50 pm.

flow rates in the parking mode range, anchored drops remained
stationary despite the external flow of carrier oil. In this situa-
tion, the flowing oil can be used to control the gas content of the
droplets while they remain in the observation area of the
microscope. The control parameters of this experiment are the
flow rates of the oil inputs, Q, and Q-, as well as their respective
gas partial pressures, C; and C,. Controlling the flow rates and
gas contents of the two incoming oil streams allows both spatial
and temporal control of gas content in a droplet array.

For example, spatial variation of the dissolved gas content
along the width of the channel is achieved by using two laminar
oil streams at different dissolved gas concentrations. In our chip
geometry, setting Q1 = @, and C; # C, results in the droplets in
the upper part of the channel being exposed to a different gas
partial pressure from those in the lower part as shown sche-
matically in Fig. SA. In the same microscope viewing area, the
trapped droplets can thus be subjected to different gas conditions
if advection dominates over diffusion. This situation corresponds
to a large Peclet number Pe = UL/D, where U is the oil velocity,
L is the distance between two droplets, and D is the diffusion
coefficient of the gas molecules.

We demonstrate spatial control of the pH using two different
concentrations of CO, in the two streams: C; = 5 kPa and C, =
0.04 kPa (ambient CO,). A pH indicator, bromothymol blue,
was dissolved in the aqueous phase and the indicator undergoes
a color change from blue to yellow as the pH changes from 8 to 6.
The initial pH of the aqueous phase was adjusted to 9 and
therefore all droplets were blue as they were produced. The
droplets were anchored in two rows, separated by 1 mm, along
the length of the channel. The droplets in the upper row were
exposed to a higher concentration of CO,, which dissolves in the
droplet as carbonic acid. In a few seconds, the dissolved acid
decreased the droplet’s pH from 9 to 5 with a corresponding
droplet color change from blue to yellow (Fig. 5B). The drops of
the lower row were exposed to a far lower concentration of CO,
and remained blue. Under these flow conditions, the large Peclet
number, Pe = 300, indicates that the difference in CO, concen-
trations between the two streams remains sharp over the whole
array.

Temporal control of droplet gas content is obtained by
modulating the gas content of the carrier oil, which can be ach-
ieved in two different ways. The first is to vary the gas content of
the flowing oil prior to entering the chip while keeping the flow
rates Q; and Q- constant (Fig. 5C) and the second is to alternate
the oil flow rates, O, and Q, (Fig. 5SD). We demonstrate how
these two techniques induce oxygenation/deoxygenation cycles
of a trapped droplet.

The droplet was monitored for close to an hour as the oxygen
content was oscillated from ambient to zero oxygen content with
a period of approximately 20 minutes (Fig. 5C). In this case,
a single oil inlet was used and the flow was split equally into the
two oil channels of the flow focuser (Q; = Q,, C; = (). The
oxygen concentration of the oil was changed prior to entering the
chip using a gas exchange vial described in Section IIB, where the
oil equilibrates to the vial’s oxygen concentration by flowing
through gas permeable tubing. To vary the oxygen content of the
oil, the oxygen partial pressure in the vial was changed. The
oxygen change in the anchored droplet was slow since it is limited
by the equilibration time of the oil in the exchange vial.
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Faster changes are possible by using two independent oil inlets
at different oxygen concentrations (C; = 0 kPa and C, = 21
kPa) as shown in Fig. SD. By alternating the oil flow rates Q; and
0», oxygen changes in less than 10 seconds were readily attain-
able. The flows were modulated by using two different syringe
pumps, an operation that could be automated to study the effect
of cycling rate on a biological or chemical process. Furthermore,
faster oscillations should be attainable by using faster flow rates
or potentially by switching to pressure driven control systems.

The operations shown here demonstrate the most basic spatial
and temporal control of gas content in droplet arrays. More
complex operations, such as continuous gradients of oxygena-
tion for example, can be obtained by combining the techniques
described above or by adding more oil inlets with different gas
contents. This opens the possibility of using a large array of
droplets to perform dynamic assays over a range of conditions.

B. Sickling of red blood cells

To demonstrate the control and utility of gas exchange on
anchored droplets, we show here experiments on the sickling of
red blood cells. Sickle cell anemia is a genetic disease due to
a single mutation in hemoglobin.?*?® After oxygen is released in
the tissues, a conformational change in mutant hemoglobin
(HbS) exposes a hydrophobic residue on the surface of the
protein that provokes its polymerization. This in turn leads to the
red blood cells taking on a “sickle” shape, from which the name
of the disease derives, and greatly losing their deformability
provoking vaso-occlusions. Sickling is reversible and highly
dependent on oxygen concentration. Red blood cells are exposed
to cycles of oxygen rich and oxygen poor environments in
vascular circulation and residual hemoglobin fibers are known to
play a role in the dynamics of sickling.?” Therefore, it is of bio-
logical importance to reproduce these cycles of oxygenation/
deoxygenation to study its effect on red blood cell sickling.
Anchored droplet arrays provide a tool to oscillate the oxygen
partial pressure while continuously observing a small population
of red blood cells.

Polarization microscopy was used to detect intracellular
hemoglobin fibers based on their birefringence.?® It is compatible
with microfluidic approaches and we have recently shown that
polarization microscopy can be used to visualize intracellular
hemoglobin fibers in red blood cells encapsulated in flowing
droplets.'” By observing the sample between crossed polarizers,
red blood cells with dissolved hemoglobin appear dark while
those with hemoglobin fibers rotate the polarization and there-
fore appear bright relative to the background.

By using flow conditions in the parking mode, droplets with
encapsulated sickle red blood cells were trapped in an array of
anchors. Two oil inputs were used to obtain a channel with
varying oxygen concentration along its width (Fig. 6A). The
same chip geometry as in Fig. 5B was used and droplets with
sickle red blood cells were trapped in two rows along the length
of the channel. The continuous flow of oil (4 pL min~') was
enough to keep the cells in constant motion and suspension in the
droplet. The droplets in the upper row have oxygen concentra-
tions close to ambient and the cells appear dark with no indi-
cation of intracellular hemoglobin fibers (Fig. 6A, left and Movie
S47). In contrast, droplets in the bottom row were deoxygenated

and intracellular fibers appear as bright spots within the cells
(Fig. 6A, right and Movie S4%). This spatial control of droplet
oxygen content paves the way for experiments on multiple rows
of droplets kept under different oxygen partial pressures to
determine, for example, the critical oxygen concentration for
hemoglobin polymerization.

The flow of deoxygenated oil into a test region containing
a linear array of oxygenated droplets is shown in Fig. 6B and
Movie S5%. The linear array contains droplets separated by 600
um. Initially, the droplets were oxygenated and the red blood
cells inside all the drops appear dark. Deoxygenated oil was then
flowed at a rate of 1 uL min~! into the test region replacing the
oxygenated oil. The droplets in the linear array are deoxygenated
sequentially, with the red blood cells in droplets upstream
appearing bright earlier than those downstream. The mean flow
velocity was calculated to be 0.15 mm s~' which means that the
deoxygenated oil traveled between adjacent droplets in 4
seconds, which is consistent with the time interval for the dark to
bright transition in sequential droplets. By controlling the flow
rate and droplet spacing one can trigger a reaction in different
droplets at different times. In this way, a single snapshot can
yield information on the dynamics of a chemical process.

Finally, the oxygen concentration in a single trapped droplet
can be oscillated to subject red blood cells to repeated cycles of
oxygenation/deoxygenation (Fig. 6C and Movie S6}). Here the
oxygen concentration was oscillated by alternating the flow
from two oil inputs containing zero and ambient oxygen,
respectively. The flow of oil in the test region is altered at 1 =5 s
to deoxygenated oil, at = 155 s to oxygenated oil and finally at
t = 225 s back to deoxygenated oil. The sickle red blood cells in
the droplets undergo transitions from dark to bright that follow
the changes of oxygen content in the oil. We observe a delay of
approximately 30 seconds between the alternation of the oil
flows (Q, and Q») and the dark to bright transitions of the red
blood cells. This delay is due to the time required for the oil to
travel from the inlet of the test region to the anchored droplet.
The low oil flow used in this experiment, 1 pL min~!, is insuf-
ficient to keep the cells in constant suspension and the cells
sediment at later times in the image sequence. Higher oil flows
can be used if it is essential to keep cells in constant motion and
suspension.

The experiments above demonstrate how anchored droplets
can be used to study the effect of repeated sickling and de-sick-
ling events on individual red blood cells. Also, by combining
these cycles with spatial control of oxygen content, droplets with
oscillating oxygen partial pressures can be viewed simultaneously
with control droplets that undergo no oxygen variation. Future
work will focus on more closely reproducing the conditions that
red blood cells encounter in the vascular system, in particular,
with respect to cycling rates, oxygen partial pressure and shear
forces. Moreover, anchors and rails can be used to organize
droplets of different contents in arrays. This will provide a means
to study in a droplet array the effect of potential therapeutics on
sickling under conditions that approximate those in the blood.

V. Summary and conclusion

In summary, we have demonstrated a robust way to guide and
hold drops of a few nanolitres in a 2D area, without relying on
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Fig. 6 (A) Simultaneous polarization microscopy images of anchored droplets in a stream of oxygenated oil (left) and deoxygenated oil (right). Images
were taken with a 10x objective and the background was subtracted. A few red blood cells in each image are circled in orange. The contour of the hole is
outlined in blue. Using the notation defined in Fig. 5A: Q; = Q> = 2 pL min~" and the partial pressure of oxygen is equal to C; =21 kPa and C, = 0 kPa.
The inset shows the droplet position in the channel. The scale bar represents 100 pm. (B) Polarization microscopy image sequence showing the poly-
merization of intracellular hemoglobin in a linear array of anchored droplets as deoxygenated oil flows from left to right. Images were taken with a 4x
objective and the background was subtracted. The contour of the hole is outlined in blue in the first image. The oil flow rate is 1 pL min~"'. The scale bar
represents 200 pm. (C) Polarization microscopy image sequence showing the polymerization and depolymerization of intracellular hemoglobin due to
the alternating flows of the two oil channels. Images were taken with a 4x objective and the background was subtracted. The contour of the hole is
outlined in blue in the first image. The partial pressures of oxygen of the oil channels are C; = 21 kPa and C, = 0 kPa. The flow changes are the following
t=5s:01=1->0pLmin',0,=0— 1lpLmin';/=155s: Q=0 = lpuL min"', O, =1 - OpL min ;r=225:0;=1 - O0pLmin', 0, =0 — 1
pL min~'. The scale bar represents 100 um. In all cases, the height / of the anchor is 50 pm and its depth p is 50 pm.

the side walls or other structures within the microchannel. This
was used to anchor drops subjected to continuous flow of the
carrier phase, an important step for producing arrays of drops
for lab on a chip applications. The anchor strength determines
the maximum flow rate at which a droplet can be trapped. This
strength depends on the hole geometry and the droplet size, such
that the device can be loaded and emptied by changing the flow
rate. Moreover, it can also be run in different modes which allow
the observation of drops either sequentially in “buffer mode” or

for a long duration in “parking mode”. In parking mode,
patterning the holes in a grid allows observation of a droplet
array. Finally, guiding drops by rails was shown through linear
structures of arbitrary shape.

We have also shown how the gas exchange between the flowing
oil and the stationary droplet provides a way to modify the drop
contents after anchoring. The gas exchange can be used to
modify the pH or oxygen partial pressure within the drops, for
example to produce a droplet array with variable conditions over
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time and space. We used it to selectively provoke intracellular
hemoglobin polymerization in certain droplets in an array, while
temporal control was used to produce cycles of oxygenation and
de-oxygenation on encapsulated populations of red blood cells.
This spatial and temporal control can now be implemented to
study the effect of medical treatments on the polymerization and
de-polymerization of intra-cellular hemoglobin, while simulating
the cyclic oxygen variations in flowing blood.

This technique should be compared with other approaches that
have already been published for arraying drops. In contrast with
methods that rely on transport in confined microchannels,*!*15
the rails and anchors provide truly 2D arrays, which greatly
reduces the interactions between drops and which allows several
inputs to converge on a single test section. Gas control could thus
be performed without resorting to a supplementary layer of
microchannels. The other two-dimensional approach'*®
produces similar arrays but does not provide a method to selec-
tively place droplets in selected traps. The integration of rails and
anchors, possibly augmented with external actuation, would
allow such selective positioning. Finally, all of these advances in
arraying techniques should yield equivalent capabilities as drop
deposition on a flat surface,?! while keeping the flexibility and
functionality of droplet microfluidics.
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A small hole etched in the top of a wide microchannel creates a well of surface energy for a confined
drop. This produces an attractive force F, equal to the energy gradient, which is estimated from
geometric arguments. We use the drag Fy from an outer flow to probe the trapping mechanism.
When Fy < F,, the drop deforms but remains anchored to the hole. Its shape provides information
about the pressure field. At higher flow velocities, the drop detaches, defining a critical capillary
number for which Fq = F,. The measured anchoring force agrees with the geometric model.

When a spherical drop enters a channel whose height is
smaller than the sphere diameter, the drop must squeeze
and depart from its relaxed shape. The resulting defor-
mation leads to an increase in its interfacial area A and
a corresponding increase in free energy E. = vA, with v
the interfacial tension. By this mechanism, the drop can
store and transport this extra energy as it travels down
the channel. Given the chance, it will tend to decrease its
surface area in order to reduce its free energy. Variations
in the level of confinement can therefore be used to apply
a force on the drop by inducing gradients of the surface
energy. The migration of droplets in such gradients has
been known since Hauksbee [1] and exploited in several
geometries [2-5], both for wetting and non-wetting drops.

A novel use of surface energy gradients was recently
demonstrated in the context of microfluidics [6]. It con-
sists of creating localized areas of reduced confinement
by etching grooves into the top surface of a microchan-
nel, in order to attract drops to particular locations. It
was shown that the induced energy gradients are able to
guide or anchor drops against a mean flow if the outer
flow velocity is below a critical value, much as oranges
are trapped at the bottom of a bowl by the gradient of
gravitational potential energy.

We now turn to the physics behind such anchoring,
namely the balance between the force due to surface en-
ergy gradient (F:v) and the hydrodynamic drag force (15:1)
due to the outer flow of oil. First, we estimate F from
the geometric study of a static drop. Then, we consider
the conditions for which a drop remains anchored to the
hole, namely Fy < FJ with F} the maximum force due
to surface energy gradient. We analyze the shape of the
elongated drops and extract a scaling law for the drag
F,. Last, we measure the threshold velocity above which
the drop cannot be anchored, for which Fy = FJ. This
yields a direct measure of the maximum strength of the
anchoring mechanism.

The experiments were conducted in PDMS microchan-
nels (Dow Corning Sylgard 184), fabricated using dry
film photoresist soft lithography techniques [6, 7]. The
microchannel consists of a flow focusing junction to gen-
erate droplets, connected to a test section (width=3 mm)
containing a single anchor of diameter between d = 50
and 82 pum and of depth between e = 28 and 45 pm,

test section
l -

ry

flow focusing anchor

c)

FIG. 1. a. Schematic of a microchannel that consists of a flow
focuser to generate water drops in oil and of a test section with
a single anchor. b. A top-down image of a pancake droplet
held in place by an anchor against a mean external flow U.
c. Surface Evolver rendering of an anchored droplet of outer
radius R inside the microchannel of height i over an anchor
of diameter d and of depth e.

as sketched in Fig. la. The channel height is constant
everywhere else and ranges from h = 28 to 60 pm.

The oil is injected with two syringe pumps, at flow
rates Q¢ in the flow-focusing junction and @, through
the entrainment channel (see Fig. 1a). By injecting wa-
ter at a flow rate )y, water droplets are formed and
transported into the test section. Once a drop is trapped
by the single anchor, the water flow is set to zero and
Qo is gradually increased until the droplet detaches at
a critical flow rate @Q*. The experiment is repeated for
different drop and channel parameters.

The continuous phase consists of a fluorinated oil (3M
Fluorinert FC-40 or FC-70 of viscosities u ~ 4.1 cP and
u A~ 24 cP at 25°C respectively). Contrary to alcanes
or silicone oils, these oils do not swell the PDMS and
the surfaces of the channel remain parallel even for large
aspect ratios [9]. One of two different fluoro-surfactants,
based on the molecules described in Ref. [8], is added
to the oil phase at a concentration of 2%: the first is
a PFPE-PEG molecule while the second has a simpler
ammonium salt head group [8]. The water-oil interfacial



tension 7, is measured via the pendant drop method.
Independently of the oil type, the equilibrium value is
found to be 7, = 20 mN/m and 7, = 10 mN/m for the the
PFPE-PEG and ammonium salt surfactants respectively.
The time to reach these equilibrium values ranges from
30 minutes for the first surfactant, up to several hours
for the second.

As illustrated in Fig. 1b, even small anchors are able to
hold relatively large droplets. This implies that a droplet
reduces its overall surface area, despite locally creating
excess surface as it partially enters into the anchor. This
can be verified by comparing the surface area of a cir-
cular pancake drop, in the absence of an anchor, to the
modified area when the drop is above the anchor. The
area of the unperturbed drop is estimated by modeling
it as a circular cylinder of radius R;, surrounded by the
outer half of a torus of small radius h/2. This is strictly
valid in the limit of € = h/2R; < 1 and yields the area
of the drop: A; = 27 R? [1 + 7e].

When a static droplet feels the presence of an anchor,
it penetrates into it and forms a spherical cap whose lo-
cal curvature equilibrates with the interface curvature far
away. The parameter b = d/h determines the behavior of
the drop: If b > 2, curvature equilibrium is reached only
when the drop enters fully into the hole and the spherical
cap flattens against the top, rendering the hole depth e
an important parameter. Here, we will limit ourselves to
the case of b < 2, in which the drop only partially enters
into the hole. This situation is depicted in Fig. 1c, which
features a Surface Evolver simulation of the drop shape
in the absence of flow [10]. By matching the curvature
of the spherical cap in the hole with the curvature of the
interface far away C ~ 2/h + w/(4R) [11] and imposing
the volume conservation of the droplet, a new value of R
can be obtained. This yields a new value of the surface
area of the drop A in the presence of the anchor. The
change in surface area AA = A — A; then corresponds to

where

so=3-2[-(-5)]. e

The dimensionless function S(b) is positive for 0 <
b < 2, resulting in a negative AA and a decrease in E,.
Therefore, even an asymptotically small anchor reduces
the droplet surface energy, yielding AE, = yAA < 0.
For b > 2, the energy change remains negative but its
value will depend on the hole depth; S(b) does not fully
capture the energy change in this case.

The magnitude of the force due to this change in sur-
face area is equal to the gradient of surface energy. Es-
timating it therefore requires an estimate of the distance

over which the energy changes. Figure 1b shows that
even a weak external flow aligns the edge of the drop with
the anchor. This indicates that the gradients of surface
energy appear only as the edge of the drop passes over
the hole. Therefore, the characteristic length over which
the energy changes is given by the hole diameter d and
the force can be estimated as

AE
F o % ~ 7gh5(b). (3)
Having determined the anchoring force based on the
static droplet geometry, we now consider the drag force
F:i, exerted by the outer flow, which tends to push the
drop out of the anchor. Given the scale separation be-
tween the vertical (z) and in plane (z,y) dimensions, the
test section of the channel is modeled as a Hele-Shaw
cell [12]. Hence, the height averaged velocity field U is
potential and verifies Darcy’s law

Vp=—-——7-U, (4)

where the pressure s invariant in the vertical direction.

The drag force Fd acting on the droplet has two com-
ponents: the pressure drag F, = — f pods defined as
the outer pressure p, at the interface apphed on the sur-
face elements ds and the viscous drag F = ,uVU ds.
Darcy’s law (4) provides an estimate for the pressure as
p o< pUR/h?, while viscous shear stresses uﬁ(j scale as
uU/h to the leading order. Since both the pressure and
shear stresses act on the lateral drop surface (x hR), the
pressure drag F}, oc pU R?/h is greater than the viscous
drag F, o< pUR by an order R/h > 1. One may there-
fore ignore the viscous drag and focus on the pressure
drag.

This scaling argument has been validated by asymp-
totic analyses of the Hele-Shaw flow around a station-
ary inviscid bubble [13] and around a solid cylinder [14].
Those studies confirm the dominant role of pressure drag
and provide expressions for p, and F;i as

U
Do = — 24'122 - + Cst, (5a)
UR*
Fy =247t (5b)

In order to verify this expression for p,, we analyze the
shape of anchored droplets. Indeed, the Laplace equation
gives a local relationship between the mean curvature of
the drop C and the pressure jump, p; — p,, across the in-
terface. This provides an optical readout of the pressure
variations through the drop shape. By defining 6r(0) as
the local deviation from the radius R in the absence of
flow (see Fig. 2), the Laplace equation reduces to

(3o ) n



in the limit of 6r/R < 1 [11].

Although Eq. (6) involves the pressure field within the
droplet p;, this field does not affect the deformations. In
fact, the internal flow must satisfy potential flow theory
to leading order and, given the static drop interface as
the boundary, the only possible velocity field is the triv-
ial U = 0 with a constant pi- Consequently, the shape
deformations 6r(6) are mainly determined by the outer
pressure p,. Then, inserting the expression for p, from
Eq. (5a) in Eq. (6) yields

2
) _ 153 ca. %(1 — Osing). (7)

FC40 + PFPE-PEG surfactant
O h=40 pm,d=T72 pm
A h=27 pm, d=50 pm
o0 h=40 pym, d=80 pm
v h=60 pum, d=78 pm

FC40 + Krytox amnonium salt
m h=45pum, d=55 um

FC70 + Krytox amnonium salt
® h=45 pum, d=82 um

-4

10 Ca 10

FIG. 2. Inset: Sketch of the polar coordinates for the defor-
mations d7(0) from the static radius R. Main panel: Elon-
gation L = 67r(0)/R of anchored droplets, rescaled by h*/R?,
as a function of the oil capillary number Ca for various chan-
nels, liquids and surfactants. The solid lines are a linear fits
of the two data groups, with slopes 942 (PFPE-PEG surfac-
tant) and 17 £ 1 (ammonium head group). The dashed line
is the theoretical prediction of Eq. (7), with slope 15.3.

Equation (7) provides a scaling law for the drop elon-
gation L = 6r(0)/R o CaR?/h?. This scaling is ver-
ified in Fig. 2 where L - h?/R? is plotted vs. Ca for
various channel geometries, liquid viscosities, surfactant
types, and oil flow rates @, (or equivalently flow veloci-
ties U, = Qo/(Wh)). The data collapse onto two distinct
lines which both verify the linear scaling, although with
different prefactors. The value of the prefactor is only a
function of the surfactant type and is independent of the
other parameters.

Since the two surfactants exhibit different adsorption
kinetics in a pendant drop experiment, they may also

reach different spatial distributions on the drop interface
in the presence of an external flow [15]. Indeed, complex
recirculation patterns are observed on the surface of our
droplets, indicating that Marangoni stresses are present
on the interfaces. The dependence of these stresses on the
surfactant kinetics could explain the different prefactors
that are observed in the elongation experiments.
Nevertheless, the drop shape is well described by
Eq. (7), once the prefactor 15.3 is replaced by the slope
of the linear fit from Fig. 2 . The predicted deformations
display a good agreement with the drop shape at different
flow rates, as illustrated in Fig. 3. Given that the pres-
sure deforming the drop is linear in x, the drop shape ob-
tained in this flow is akin to a 2D pendant drop, where the
hydrostatic pressure also decreases linearly with height.

h=40pm, d=72 pm
1410

a) Ca =

—n/2 00 /2

FIG. 3. Left: Images of anchored droplets deformed by the
flow of oil. The dashed lines show the prediction from Eq. (7),
while the solid line shows the equivalent circle of radius R.
Scale bars represent 200 pym. Right: Comparison between
the deformations 6r(6)/R extracted from the microscope im-
ages on the left (solid line) and the theoretical curve (dashed
line) obtained from Eq. (7), using 9 as a prefactor.

The elongation and shape measurements of Fig. 2&3
verify the amplitude of the pressure variations along the
drop and, thereby, the scaling for the pressure drag in
Eq. (5b): Fy oc pU-R?/h. We can now obtain the anchor
strength by finding the maximum oil velocity U* that
the anchored droplet can resist and by using the force
equilibrium F = Fy4(U*). This yields the scaling

2
Ca* x S(b)%, (8)

where Ca* = pU* /7.
The experimental results agree with this theoretical
prediction, as seen in Fig. 4 which displays the value
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S(b) -
FIG. 4. Critical capillary number Ca* plotted against

S(b)h?/R? for the channel geometries, liquids and surfactants
as listed in the legend of Fig. 2. The solid line is a linear fit
of the data.

of Ca*® for all channels, liquids, and surfactants. The
data all collapse on a single linear law, thus confirming
the scaling law (3) for the anchoring force F}, which is
derived from purely geometric arguments. In particu-
lar, it supports the use of d as the characteristic length
scale in F¥. The actual value of the anchoring force can
be estimated by reintroducing the numerical prefactor of
Eq. (5b). It yields values of I in the range of 100-1000
nN, depending on the geometric parameters h and d.

These results verify that the gradient of surface en-
ergy and the hydrodynamic drag due to the external fluid
are indeed the dominant competing physical mechanisms
that determine the ability to anchor a droplet. In this
respect, anchoring droplets in wells of surface energy re-
sembles other methods of trapping in energy wells, such
as electrostatic cups [16] or optical tweezers [17], where
the maximum restoring force is given by the maximum
energy gradient. Below this limit, deviations from the
equilibrium shape or position provide information about
the magnitude of the opposing forces at play in all three
examples. In the present case, the drop shape depends
on the surfactant type, in addition to the global force
balance, which may yield information about the physical
chemistry at the free interface.

An important distinction between the anchors and
other trapping mechanisms resides in the source of en-
ergy: while most systems rely on an external field, the
energy here is contained in the droplet itself. The typical
values of surface energy therefore increase the range of at-
tainable forces up to several hundred nN. This value can
be further increased by etching larger and deeper holes,
thus exploring the regime b > 2. In this case, the drop
extends fully into the hole into a spherical or cigar shape
and the gain in surface energy is maximized. Although
this limit is not studied here, such devices would exert
very large anchoring forces.

In terms of applications, anchors are simple and ef-
ficient passive devices to hold drops stationary, even in

the presence of an outer flow. Parallelization is straight-
forward and enables easy production of droplet arrays
for chemical or biomedical studies. The array format has
gained in popularity recently since it provides a direct mi-
crofluidic equivalent to classic multiwell plates which are
ubiquitous in biological applications. A key benefit over
existing methods is the continuous flow of outer liquid,
which can be used to control the chemical environment of
the trapped droplets and their content, both in space and
time. A wide range of chemical and biomedical applica-
tions follows, from protein crystallization to the study of
sickle cell anemia [6]. Finally, more controlled droplet
placing can be achieved by combining the passive “rails
and anchors” approach with active forcing of individual
droplets, for example using a focused laser [18] .
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4.6. Summary and discussion of Chapter / 119

Detailed derivations

In this short letter, the details of the calculations are left out. Here, we explain how the
equations (6) and (7) that describe the shape of an anchored droplet are derived. Let’s
recall expression (Ha) for the pressure field around a circular droplet:

ulU
DPo = _24ﬁ - T+ Cst . (48)
The Laplace equation dictates how the droplet responds to this pressure field, by relating
the curvature of the interface C to the pressure jump p; — p,across the interface:

YC = pi — Po , (4.9)

where p; and p, are the inner and outer pressure fields respectively.

The curvature C of a large non-wetting pancake droplet is derived in Appendix B and
expressed as a function of the channel height A and the in-plane curvature of the interface
C

2

T
C:E+ZO// (4.10)

The in-plane shape is expressed in polar coordinates via the function r(#). The in-plane

curvature is then given by

o r2 420" =" 11420 /r)* =" 7
GRS TR

(4.11)

Next, we assume that the droplet is only slightly deformed, meaning that its in-plane
shape is a approximately circle of radius R with small perturbations dr(0) (0r < R). The
previous expression simplifies to

by keeping order 1 terms in 67/R only.

Finally, we can inject the curvature back into the Laplace equation and get equation
(6) of the paper
1 d?6r

V(EJFZE {1_7%(5T+W)D = Di = Po (4.12)

Because the Darcy prediction for the inner pressure p; is a constant, we can assume
that

Di — Po = 24£Rcos€ + Cst 4.13
2
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which can be inserted in the previous equation. We then obtain the following second order
differential equation

d*or 4 nU R?
We recognize the equation of an harmonic oscillator forced at the resonance frequency.
Hence, we look for a solution of the form §r(0) = Afsinf. With this assumption, we have

or +

or(0) =Afsind

dér(0) .

y7, =A(sin 6 + 6 cos 0)
d*6r(0) :
— =A(cos @ + cosf — 0sinh)

which, once inserted back into equation (4.14) yields

4 ulU R?
2. A cosf = —24-2 " Reosh . (4.15)
w7y h?
which must balance the right hand side of the differential equation.
In the end, we obtain

2
Ao BpUR oo
T v h?
48 nU R? .

as the solution of the differential equation, which we know is unique.

Notice however that this expression is slightly different than the one used in the article.
This is because of a discrepancy in the definition of R, the droplet radius. In the paper, R
is the radius of the drop when it is undeformed by the flow and circular. In the derivations
above, R is the radius of the circle best fitting the deformed droplet. Notice that the two
definitions are not identical, especially since the deformations o7 of (4.16) have a volume
contribution.

The droplet is incompressible and by applying the volume conservation, we can trans-
form the R in equation (4.16) into the R of the paper to obtain equation (7):

_ 48 CaR?

™ h?

or(6)

- R(1 —6sin0) (4.17)
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We demonstrate the combination of a rails and anchors microfluidic system with laser forcing to enable
the creation of highly controllable 2D droplet arrays. Water droplets residing in an oil phase can be
pinned to anchor holes made in the base of a microfluidic channel, enabling the creation of arrays by the
appropriate patterning of such holes. The introduction of laser forcing, via laser induced
thermocapillary forces to anchored droplets, enables the selective extraction of particular droplets from
an array. We also demonstrate that such anchor arrays can be filled with multiple, in our case two,
droplets each and that if such droplets have different chemical contents, the application of a laser at
their interface triggers their merging and a chemical reaction to take place. Finally by adding guiding
rails within the microfluidic structure we can selectively fill large scale arrays with monodisperse
droplets with significant control over their contents. In this way we make a droplet array filled with 96
droplets containing different concentrations of fluorescent microparticles.

1 Introduction

Performing a set of independent reactions in a two-dimensional
(2D) array formatis a standard approach for implementing a large
number of parallel assays. This is the case for instance in multi-
well plates, DNA or protein chips, and many other genomic
technologies. Droplet microfluidic techniques have aimed to
replicate such a 2D format in recent years, since the ability to keep
a drop stationary allows the long term observation of its contents,
in addition to providing combinatorial measurements on a single
image. Patterning a 2D area with different droplets is straight-
forward when using surface microfluidic manipulations, e.g.
through electro-wetting' or surface acoustic waves.? More clas-
sical drop deposition techniques have also been used to produce
arrays of distinct droplets for combinatorial enzymatic studies® or
for polymerase chain reaction (PCR).*

Producing arrays of droplets in microchannels has proved
more challenging, in part due to the standard methods for
forming drops: both T-junctions and flow-focusing devices rely
on the presence of a strong flow of the carrier fluid,’ so that
holding the drops in an array requires a method to stop their
motion against the outer flow. This has been achieved through
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1 Electronic supplementary information (ESI) available. See DOI:
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innovative designs of the microfluidic geometries and operating
protocols, leading to different methods to array drops: quasi-2D
arrays were formed by winding a linear path in the plane of the
microchannel. Drops flowed in series in this microchannel and
were blocked at particular locations, for example by having side
pockets in the channel,*” by flowing the drops into parallel dead-
end microchannels,? or into parallel corrugated channels.” These
devices however suffer from strong droplet interactions since the
drops are tightly confined into linear motion by the channel
walls, which can make their operation difficult. Some authors
reduced these interactions by increasing locally the channel width
and depth.'® Real 2D arrays, in which droplet interactions are
weak, were formed by placing obstacles in a wide microchannel™!
and the obstacles could be designed to hold one, two or more
drops.'»13

More recently, Abbyad et al.** demonstrated the manipulation
of drops in 2D by using rails and anchors, which correspond to
grooves that are etched on the surface of the microchannel. In
this approach, drops are squeezed by the top and bottom
boundaries of the microchannel, which increases their surface
energy. By partially entering into the grooves, the drop reduces
its surface energy. This creates a gradient of surface energy at the
edge of the grooves, which leads to an attractive force pulling it
into the region with larger depth. This was used to guide drops
along linear paths (a rail) or to hold them stationary in an
anchor.™

The current challenge is therefore to pattern a 2D area with
a heterogeneous droplet population, either by selectively placing
a drop at the desired location, selectively extracting a drop, or
selectively initiating a chemical reaction. To date, none of the
methods for arraying drops allow for such controlled operations.

This journal is © The Royal Society of Chemistry 2011

Lab Chip



Downloaded by ECOLE POLYTECHNIQUE on 02 November 2011
Published on 01 November 2011 on http://pubs.rsc.org | doi:10.1039/C1LC20541B

View Online

Instead, random filling is used in most cases and there exists no
mechanism for selectively extracting a particular drop. While
random distribution of drops can yield useful information in the
case of two droplet species,® it quickly becomes limiting when
there are many species to be studied simultaneously. Here we
demonstrate how the controlled filling, extraction, or reactions
can be performed by combining the rails and anchors approach
with the selective manipulation through laser-induced local
heating:*>"'7 The rails and anchors provide a passive, robust and
simple 2D guidance and trapping of drops, while the mobile laser
spot adds an intelligent and versatile selectivity.

After the materials and methods section (Section 2), we turn to
the physical ingredients that determine the different forces in
Section 3. This is followed by demonstrations of drop extraction
in Section 4. Filling an array with a controlled drop population is
then demonstrated by showing how to build an array of drops
which displays a gradient of concentration (Section 5). Finally,
we demonstrate how to trigger local reactions on demand
(Section 6).

2 Materials and methods
Microfluidic device fabrication

All experiments were conducted in PDMS microchannels (Dow
Corning Sylgard 184) sealed onto glass slides by plasma bonding.
The fabrication procedure relies on dry film photoresist soft
lithography techniques'® which enable rapid prototyping of
multi-level structures. The multilayer masters were etched in
stacks of Eternal Laminar E8013 and Eternal Laminar E8020
negative films (of thickness 35 4+ 2 um and 50 + 2 um respec-
tively) depending on the desired thickness of the main channel
and patterns.

The successive steps were the following: (i) photoresist layers
were successively laminated onto a clean glass slide using
a PEAK Photo Laminator (PS320) at a temperature 7= 100 °C
until the desired height /2 of the main channel was reached; (ii)
The photoresist stack was exposed to UV (Hamamatsu Light-
ningcure LC8) through a photomask of the base channel
(comprising a test section, droplet generation devices and
entrance and exit channels); (iii) Additional photoresist layers
were laminated on top of the exposed stack until the desired
depth p of the patterns (anchor holes and/or rails) was reached;
(iv) The stack of photoresist films was exposed again to UV,
through the second photomask featuring only the patterns to be
added onto the base channel. Finally, the full structure was
developed by immersion in an aqueous bath of carbonate
potassium at 1% mass concentration.

Furthermore, in order to render the internal channel surface
hydrophobic, a surface treatment was applied: A dilute solution
of 1H,1H,2H,2 H-perfluorodecyltrichlorosilane (Sigma-Aldrich)
in FC40 oil (3M Fluorinert) (20 uL in 1 mL of FC40) was flowed
through the microchannel for approximately 5 min. The channel
was then rinsed with pure FC40 to remove the residue chemicals
remaining in the bulk.

Chip design and operation

The common architecture of the microfluidic chip was a base
channel with a blank ‘test section’ onto which rail and anchor

patterns were etched. The base channel consisted of one (Sections
4-5) or two (Section 6) droplet generation devices discharging
into a wide main test section. The system then emptied into
a single outlet channel. The height of the base channel /& was 100
um everywhere. Channels upstream of the test section had widths
ranging from 100 to 200 um. The test section was a rectangle of
dimensions 10 x 3 mm (Sections 4 and 6) or 20 x 4.5 mm
(Section 5).

Various patterns of rails and anchors could then be added onto
the base test section depending on the desired applications.
Section 4 relied on a regular square array of small circular holes
of diameter d = 50 um and depth p = 35 um. For Section 6, only
two rows of holes with a diameter d = 200 pm were used. The
pattern designed for Section 5 was a complex combination of
rails, ranging in width from 50 um to 200 pm, combined with
square anchors of 120 um a side.

Throughout the study, the continuous phase was FC40 oil (3M
Fluorinert) of viscosity u = 4.1 cP containing fluorinated
surfactants for both emulsion stabilization and improvement of
the wetting conditions. Experiments described in Sections 4 and 5
used a Krytox (Dupont) ammonium salt,’® at 0.5% mass
concentration, while those in Section 6 used a PEG-based
surfactant at 0.01% mass concentration.' Two inlets of oil were
required: one at a flow rate Q, for the droplet generation and one
at a flow rate Q. to adjust droplet entrainment in the test section
independently of the droplet generation.

Different aqueous solutions were used as the dispersed phase
and were injected at a flow rate Qy: Section 4 uses pure water
droplets; in Section 5 a solution of water containing fluorescent
beads (Invitrogen green fluorescent beads, 1 um) at a volume
fraction of 0.4%. In Section 6, the two aqueous solutions con-
sisted of a solution of FeCl; at 0.27 M and a solution of KSCN at
0.8 M. The interfacial tension y between a pure water drop and
the FC40 solution was measured to be ~20 mN m~'. We
observed however that the contents of the drops, such as the
chemicals of Section 6 or the fluorescent beads, could have an
impact and reduce this value in some cases.

A system of computer controlled syringe pumps (Cetoni
neMESYS) was used to control the different flow rates (Qyw, O,
and Q) in real time.

Optical setup and laser operation

The optical arrangement employed for droplet manipulation
makes use of a 1480 nm continuous wave infrared laser source
(Fitel Furukawa FOL1424) and a commercial inverted micro-
scope system (Nikon TE2000) equipped with epifluorescent
illumination (Exfo X-cite 6210C). A pair of galvanometric
mirrors (Cambridge Technologies 6210H) permitted beam
positioning in the microchannels to be controlled by a mouse
click using in-house Labview programs. Following the galva-
nometric mirror, the laser beam was both expanded appropri-
ately (to overfill the back aperture of the microscope objective)
and relayed to the back aperture of the objective by a 4f conju-
gate lens system and an appropriate dichroic mirror (OCTAX).
The laser power was measured to be 200 mW in the focal plane of
the microscope objective. The described system provided an
approximately diffraction limited spot at the focal plane whose
position was readily computer controlled by the user. A camera

Lab Chip
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was used to image the field of view via a sideport and record
monochrome video at typical frame rates of 60 frames per second
(Photron Fastcam 1024 PCI). Alternatively, a digital SLR
camera (Nikon D70) was used to capture color images via the
front camera port of the microscope. Whilst the laser spot
wavelength was outside the range of both cameras, the spot
location was visible as a dark shadow on the computer screen.

3 Physical ingredients

Guiding and trapping drops in our devices are based on
manipulating three forces of different physical origins, as
sketched in Fig. 1: The force due to the surface patterning F.,, the
entrainment force due to the flow of the outer fluid Fy, and the
force due to the laser heating F. Below we discuss the main
attributes of each of these forces.

Force due to surface patterning

The surface energy of a droplet can be written as £, = yA, where
v is the interfacial energy and A the surface area of the droplet.
While y can be considered as nearly constant over the course of
an experiment, 4 can vary significantly as the droplet changes its
shape. An unconfined drop will take a spherical shape in order to
minimize its surface area while the confinement can be used to
force the drop to take a flattened “pancake” shape of height
nearly equal to the microchannel height /. In the plane of the
microchannel, one can describe the drop by its radius R; in the
case when R >> /., the main contribution to the surface area is
given by the top and bottom boundaries of the droplet and we
can write 4 = 2wR?, with a small correction due to the area
around the drop in the vertical direction.

When the channel height is locally modified, for instance by
etching a groove into one of the surfaces, the drop enters into the
groove. This always leads to a reduction of the total surface area
of the drop,? thus reducing its surface energy. Removing the
drop from the region of low surface energy therefore requires
a force F,, whose magnitude is given by the gradient of the
energy and always pointing towards the energy minimum.
Dangla et al.*® estimate this anchoring force as YA A/d, where AA
is the difference in surface area between the drop over the groove
and away from it, and d is a characteristic length scale over which

Outer flow =————————

Fig.1 Forces acting on a drop in the presence of surface patterning: The
anchoring force due to the surface patterning ., the drag force due to the
flow of the outer fluid Fy4, and the force due to the laser heating F}. (a) The
case of an anchor. (b) In the case of a rail, the unbalanced force due to the
drag parallel to the rail F4 leads to motion along this direction.

the energy changes. They measure forces in the range of 100-600
nN for similar geometries to the ones presented here.

For a circular groove, a geometric calculation shows that F,
does not depend on the drop size in the case when R >> h. This is
not the case however in the case of a rail, where F., scales linearly
with the drop radius R.

Force due to the outer flow

The flow of the outer fluid applies a drag force Fyqy on the
droplet through hydrodynamic drag. This force is always
directed in the direction of motion of the outer fluid. Its
magnitude scales as Fy ~ u,UR*h, where u, is the outer fluid
viscosity and U is the velocity of the outer fluid. Fy therefore
increases with the flow velocity and depends strongly on the
size of the droplet.

For given drop and channel geometries, we can measure
a critical velocity beyond which Fyq > F, at which point the drop
cannot be held anymore. For velocities below this critical
velocity, a drop in an anchor is deformed from its circular shape
(Fig. 1(a)). Conversely, a drop that is in a rail is pushed along the
rail due to the existence of a component in the tangent direction
F/ of the drag force (Fig. 1(b)). Once the critical velocity is
reached, drops cannot be held anymore and they are de-pinned
by the outer flow.’ An important regime concerns velocities that
are slightly below the critical velocity. In this regime, the anchor
strength is sufficient to hold one droplet stationary but not two,
since the net drag force experienced by the touching pair
increases while the anchoring force remains constant. Abbyad
et al.** identified a range of velocities where drops enter into
a ‘buffering’ mode, in which an incoming drop replaces the drop
that was previously anchored. This buffering regime will be used
below to determine the occupation of anchor sites in the
experiments.

Force due to the laser heating

The final force F; that we must consider is due to the localized
heating by a focused laser.® When the water—oil interface is
heated locally, variations in surface tension lead to the creation
of a flow along the interface, which in turn leads to flow inside
and outside the droplet.’® The net effect on the droplet is
a “pushing” force, by which the laser heating forces the droplet
away from the laser position. This has been used in one-dimen-
sional (1D) microchannels to sort or buffer drops, or change the
order in which they flow.'” The magnitude of F| was measured*
in confined microchannels to be in the range of 100-300 nN.
Verneuil et al. also observed that the contributions to the force
are dominated by the flows along the thin films between the drop
and the lateral channel walls, which implied that the force
depended on the drop size in that case.?! Finally, the direction of
the force due to the laser heating is determined by the direction of
the thermo-capillary flows. In the case studied by Verneuil
et al. > the presence of surfactants in the continuous phase
implied that laser produced a repulsive force, by inducing
anomalous thermo-capillarity. There are however no measure-
ments of the magnitude or size dependence of Fj in the absence of
lateral walls.

This journal is © The Royal Society of Chemistry 2011

Lab Chip



Downloaded by ECOLE POLYTECHNIQUE on 02 November 2011
Published on 01 November 2011 on http://pubs.rsc.org | doi:10.1039/C1LC20541B

View Online

4 Extracting a drop from an array of holes

The force balance described above can now be used to selectively
remove a drop from an anchor site, by adding the laser-induced
force to the drag force from the fluid flow. An example imple-
mentation is shown in Fig. 2 and in ESI movie S1.1 In this
experiment, drops are initially formed in a flow-focusing geom-
etry and flowed into the test section, which is patterned with
a square lattice of holes. Some drops become anchored at the
hole positions, filling the lattice in a random fashion. The water
flow is then stopped and the oil flow rate is held constant at Q, =
2 pL min".

Once the lattice is filled (Fig. 2(a)), the laser focus is selectively
positioned within the test section. If the laser is focused inside the
droplet, it can remove it from the anchor. This allows the user to
select a position on the computer screen and to remove the
corresponding drop at that particular position. The oil flow rate
then transports the drop away from the array and out of the
microchannel (Fig. 2(b)). Fig. 2(c) shows an ‘X’ pattern formed
using this method.

This device can be operated in two different regimes. In the
current regime, small anchors and a weak oil flow rate are used,
therefore requiring a high laser power (Ppser = 200 mW) to
remove the drops. Alternatively, lower laser powers can be used
by increasing the flow rate to work closer to the critical anchoring
velocity. In that case however, extracted drops interact with their
neighbours and can lead to a buffering mode, in which drops
downstream of the extracted drop also get unpinned.

5 Selectively filling an array

Here, the ability to sort and subsequently fill a two-dimensional
array with droplets of a uniform size is presented. The method-
ology is again based upon the combination of creative chip
design, which combines rails and anchors of different strengths,
and highly localised laser induced forcing for derailing the drops.
By superimposing anchors onto rails, droplets may be guided
directly to the anchor sites where they become trapped on these
‘storage rails’. The presented method involves first selectively
filling these storage rails and then allowing the droplets to
assemble into the desired array by entering into a buffering mode
through an increase of the carrier oil flow rate.

To construct an array of droplets, we use a chip test section
composed of 6 rails, each of which is periodically superimposed
with 16 anchor sites, producing a 96 drop array. The rail sorting
portion of this test section is shown in Fig. 3(a) which demon-
strates active switching of droplets between rails, achieved by
employing laser-induced forces as described above. In the

s

Fig. 3 (a) Test region (20 x 4.5 mm, 7 = 100 pm) for building an array
of droplets. All rails are 50 pm deep. The central default rail is 50 pm
wide. The side gutter rails used to filter out large droplets are 200 um
wide. The 6 storage rails are 75 pum wide and the anchor sites super-
imposed on these rails are 120 pm squares. The image shows the fifth rail
being filled (see movie S2 for full sequencet). The scale bar is 600 um. (b)
Superposition of three images showing a drop leaving the default rail into
a storage rail. (c) Once the storage rails are filled the entrainment flow rate
Q. is increased to initiate a buffering mode whereby the droplets self
arrange into an array of one droplet trapped at each anchor site. (d) A
schematic of the complete chip design illustrates the droplet formation
portions of the chip relative to the test region.

absence of the laser, droplets are guided along the central rail to
the exit of the chip by default. The selective derailing operation is
demonstrated in Fig. 3(b) and ESI movie S2.t1 To fill the array,
rails are filled in sequence, row by row, beginning with the right-
most junction to the left-most junction. Any order can be used
however, even working on a drop-by-drop basis.

Selective filling of the array, in addition to anchoring the drops
in place, depends upon several key design features which are
highly sensitive to droplet size. Consequently, the device geom-
etry is constructed specifically for a given droplet size. For this
experiment the chips (shown in Fig. 3(d)) are designed for
droplets of a 150 pm radius.

The first of these features is designed to ensure that all droplets
placed on the array are of the same size. Such steps are necessary,
as droplet monodispersity is not guaranteed for transient stages
of droplet production, nor for all flow rates. Droplets are only
placed in the array when the laser is used to direct them there.
Furthermore, droplets below the size of interest cannot be
derailed from the central rail, due to the limit on the maximum
deflection achievable with the employed laser power. Small
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Fig. 2 Selectively extracting drops. (a) The array of holes (¢ = 50 pm and p = 35 pm) is initially filled with water drops. (b) The laser is focused on the
water—oil interface, pushing the drops out of the anchor. (c) An X is patterned with the remaining droplets. Scale bar is 400 pm.
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droplets are therefore guided out of the chip and never reach the
storage rails. To ensure droplets of a size larger than those under
study are also eliminated, two side gutters are placed upstream
and redirect large droplets along the side of the test section.
Therefore, large droplets are prevented from entering the array
portion of the chip as the gutter rails provide an energetically
favorable alternative route. These features ensure that only
droplets of the desired size are available for active laser forcing
onto the array rails.

The remaining features are concerned with filling the storage
rails. Once a droplet passes the two side gutters, it enters the rail
switching area and is available for sorting into the storage rails
containing square anchor sites. As can be seen in Fig. 3(b), the
storage rails have been designed to be wider than the central
guide rail and there is a gap between the storage rails and the
central default rail. This intentional gap is to avoid junction sites,
where the local width reaches a maximum value. This leads to
junctions behaving as anchor sites from which drops cannot be
removed. Upon deflection by the laser, the droplet sees the wider
side rail as an energetically favorable route and leaves the default
rail as illustrated in both Fig. 3(b) and ESI movie S2.7

Once sorted onto the storage rails, the droplet encounters
anchor sites and becomes trapped. The dimensions of the
anchors have been chosen for the given droplet radii so that they
may hold one droplet parked stationary against the mean flow.
However, the anchor site is intentionally too weak to hold
multiple droplets stationary. Consequently, under the correct
external flow conditions the droplets will enter into a buffering
regime. It is noteworthy that whilst the storage rails are being
filled with droplets, the apparent channel cross section available
for the oil to flow through decreases due to the stationary
droplets. Such a reduction causes an increase in the velocity that
must be taken into account when filling the anchor sites, to
prevent all the droplets from being swept out of the array.
Therefore, the entrainment oil flow rate Q. is reduced from 40 to
20 pL min~' during the filling period as the storage rails become
populated, while the small oil (Q,) and water (Q,,) flow rates are
maintained at a steady 0.5 and 0.18 pL min ' respectively. This
ensures that all rails are completely filled with monodisperse
droplets during the filling procedure. Once this procedure is
completed, the entrainment flow rate Q. is increased slowly to 70
puL min~! to initiate the desired droplet buffering regime (Fig. 3
(c)). Under these conditions arrays of 96 droplets may be con-
structed in a controlled manner at a rate of approximately 1 min
per rail for droplet sorting and a further minute for droplet
buffering into a complete array.

Whilst maintaining the droplet size for a given chip design, this
methodology may be extended to droplets of varying composi-
tion. An example of such a controlled filling appears in Fig. 4,
where an array of 96 anchored droplets with an increasing
concentration of fluorescent beads is shown. In the chip used
here, a mixer was positioned before the T-junction used for
droplet formation, allowing the composition of the droplets to be
altered in time. To modify the composition of the droplets,
a stream of pure water is mixed with a concentrated bead solu-
tion in pure water (0.4% by volume). For the various rails of the
array, the ratio of pure water to bead solution is altered by
varying the relative flow rates whilst maintaining an overall flow
rate of 0.18 pL min~' for the mixture. This ensures that the
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Fig. 4 A superposition of bright-field and fluorescent images of a 96
anchor array. The droplet composition has been altered from pure water
to a solution of water and green fluorescent beads to create a gradient.
The droplet volume is 7 nL each. The scale bar is 300 pm.

droplets are of uniform size. For the top rail, droplets are
composed entirely of pure water and the flow rate of the bead
solution is set to zero. For each row, moving down the array, the
flow rate of the bead solution is increased in 0.005 pL min™!
increments whilst the water rate is decreased by the same
amount.

The filling protocol begins with the top rail, which is filled with
droplets containing pure water. The laser is then removed,
causing all droplets to follow the default central path to the
drain. The droplet composition is then altered to the concen-
tration required for the next rail and allowed to reach a steady
state before filling of that rail commences. To do so we translate
the laser to the correct position for the new rail and direct
droplets into the storage rail. Once the rail is filled with droplets,
the laser is again removed and the droplet composition altered.
The remaining storage rails are filled in this stepwise manner,
changing the droplet formation specifically for each rail and
using the laser to position the droplets onto the rails.

6 Controlled initiation of chemical reactions at
anchor sites

Our final demonstration of the power of the technique is to carry
out the loading of two droplets into the anchor sites and then use
laser induced merging of droplets to enable controlled chemical
reactions within selected droplet pairs. This can be done at
a location predefined by the anchor position and it indicates the
potential of this method as an analysis and assaying tool.

We make use of an array of anchors in the chip test section. A
key point here is that the anchor holes are designed to be twice as
wide as the droplet diameters, so that each can accommodate two
droplets. In this situation, where the holes are larger than the
droplet, an outer flow rate of 80 L min~' removes one drop per
trap while in the experiment presented in Section 4, an outer flow
rate of 10 pL min~' detaches all the drops.

To initiate a chemical reaction we must load droplets with
different contents into each hole site. We choose droplets with
FeCl; and KSCN, which react to form a colored liquid from two
colorless ones. We begin by generating one species of droplets
from the top flow focusing junction and fill the anchor sites (QP
=7 pL min~!, QP = 0.1 pL min'). Initially this leads to two
droplets occupying each anchor site, since the holes are twice as
big as the droplets (Fig. 5(a + b) and supplementary movie S37).
We then increase the oil flow rate (Q5P = 80 pL min~!, QiP =
0 pL min~') to wash out one of each pair, thus leaving one
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Fig. 5 (a + b) Filling first species into anchor holes. (¢ + d) Emptying
one droplet from each trap to leave one drop per anchor site. (¢) Bringing
in the second species droplets to anchor holes. The scale bar is 400 pm. (f)
Schematic of channel used, illustrating dual inlets for the two different
chemical species. The test section (containing the anchors) is 100 um high,
1 cm long and 3 mm wide. The anchor holes have a height of 50 pum and
a diameter of 200 pm. The scale bar is 3 mm.

droplet per site (Fig. 5(c + d)). We then introduce droplets
containing the second species from the bottom flow focusing
device (Fig. 5(e)). Here lower flow rates than for the first droplets
are used to prevent accidentally knocking any further droplet out
of the holes: Q%°"°™ = 5 uL min~"!, OB°"™ = 0.05 uL min~". A
loaded array, with two droplets per trap site, each with different
contents, is shown in Fig. 6(a).

Having established the ability to fill the holes with droplets we
can then use laser induced droplet merging® to start the chemical
reaction. With the control we have over the positioning of the
laser this means that we can target a specified droplet pair in the
array. The power used is 200 mW, and a dwell time at the droplet
interface of 100 ms is required before any fusion takes place when
laser position is well placed.

The process of laser initiated droplet merging is shown in
Fig. 6(b) and ESI movie S4, where we choose to react the
droplets such that they form a ‘W’ pattern. The track of the laser
is shown by the solid and dashed lines in Fig. 6(b), which
correspond to a time # = 117 ms after the merging of the drops at
the top-center location. Fig. 6(c) shows the final state where only
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Fig. 6 Laser induced merging of droplets in anchor sites. (a) Filled
droplet array. Laser spot is shown as a red dot. (b) The laser is scanned in
the pattern shown. As it stops on the droplet-droplet interface it initiates
fusion and a chemical reaction takes place. The solid line shows where the
beam has been, the dashed line its future path. (c) The laser completes its
path leaving 5 anchor points with a reaction product and all other
droplets undisturbed. Scale bar is 400 pm.

the droplets illuminated by the laser have undergone the
reaction.

7 Summary and discussions

In summary, we have demonstrated the first device that allows
a selective patterning of a 2D array with microfluidic droplets.
This is performed either through selectively filling or emptying
the array, or by triggering a chemical reaction on demand. The
approach relies on combining the rails and anchors approach,
which provides robust passive manipulation, and the localized
heating from the laser which adds selectivity and local actuation.

Both of these approaches are highly scalable, independent of
the microchannel material and rely on very simple micro-fabri-
cation: the rails and anchors are produced using lithographic
techniques and can easily be densified over wide areas. The
design of the test section is nearly common to all of the devices,
which only differ in the pattern of rails and anchors that are
designed for a specific application. This further simplifies the
fabrication in large quantities for commercial applications. As
for the optical heating, any number of operations can be per-
formed with single beam by simply scanning the laser focus or by
using holographic techniques to split one beam into a complex
pattern.?> The tight focus of the laser allows manipulation of
individual droplets, even in very dense arrays, providing a clear
advantage over electrical or acoustic methods.

The throughput of the devices presented here is appropriate
for many applications that require a high level of control, since
all of the experiments presented here lasted less than a few
minutes using purely manual control of the flow rate and the
laser position. This duration can be further reduced through use
of an automated time-sharing of the laser heating, which can
produce many operations simultaneously, or through optimiza-
tion of the device designs. In the case of the droplet extraction for
instance, a different pattern of anchors or the addition of gutter
rails would allow the device to function at higher oil velocity,
therefore allowing much faster sorting of the drops.

Lab Chip
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Increasing the throughput in the case of the array filling
depends on the ability to derail rapidly moving drops. This will
be realizable by improving the tolerance on the micro-fabrication
process, which would allow the distance between the side-rails
and the central rail to be better calibrated for the drop sizes. By
optimizing this distance, drops can be derailed with a minimal
deflection, which would allow us to work at higher flow rates.

Finally, future work will have to investigate the effect of the
laser heating on the contents of the droplets, as well as ways to
minimize these effects such as pulsing the laser source. While we
expect that the heating can damage some proteins or sensitive
biological material, it should still allow DNA or chemical
manipulation without any significant artifacts.
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Chapter 5

Producing and transporting drops
with wedges

In this last chapter, we address the question of producing droplets in a 2D microfluidic
device using confinement gradients. To this end, we rely on devices of geometry similar
to the one drawn in Fig. 5.1. It consists of an inlet channel of rectangular cross-section
that leads to a wide reservoir whose top and bottom walls are inclined at an angle a.. This
wedged geometry provides a constant confinement gradient in the microfluidic chamber.

Figure 5.1: 3D sketch of a device during operation. The non-wetting dispersed phase
is pushed through the inlet channel (width w and height hg) into a wide reservoir
containing a stationary continuous phase. The top wall of the reservoir is inclined at an
angle . Fluid from the continuous phase remains in the corners of the inlet channel,
forming gutters connected to the reservoir while the dispersed phase forms an elongated
tongue in the reservoir.

The device is initially filled with the liquid which will form the continuous phase (oil
or water) and its surface is treated to provide good wetting for this liquid. The dispersed
phase (water or oil) is then injected at a flow rate @ into the reservoir through the inlet
channel. Owing to the non-wetting character of the dispersed phase, we expect the injected
liquid to form an elongated thread in the inlet channel while leaving out corner gutters
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130 Chapter 5. Producing and transporting drops with wedges

of continuous phase [64]. Once the thread reaches the reservoir, lateral confinement is
suddenly released and the liquid should expand into a tongue, as sketched in Fig. 5.1.

The equation (3.38) from Chapter 3 shows that a pancake drop in a non-parallel Hele-
Shaw cell feels a force F, ~ 2y tanamR?/hq that propels it towards regions of least con-
finement. This force here pulls the tongue away from the inlet channel and we investigate
if it could induce droplet production.

5.1 Device microfabrication

All devices were made in PDMS (polydymethylsiloxane) using soft lithography techniques.The
novelty in the microfabrication lies in the construction of the reservoir whose top wall is
inclined at an angle a.

A first approach, most used for this study, consists in making a mold which has a region
inclined at the desired angle. To do so, the mold was fabricated in a two-step procedure: i)
the injection nozzles and all channels upstream were obtained using the dry film photoresist
soft lithography technique [117]; ii) the sloped reservoir was constructed by bonding glass
cover slips using NOAS81 optical glue (Norland Optical Adhesive). The microfabrication
stages are detailed below and illustrated on Fig. 5.2.

Figure 5.2: Sketch of the successive microfabrication steps required to produced a
device with a sloped reservoir.

Starting from a standard glass slide 1.1 mm in thickness (stage A), three layers of dry
film photoresist (1xEternal Laminar E8013 and 2xEternal Laminar E8020 negative films
of thickness 31 + 2 pum and 49 + 2 pm respectively) are successively laminated using an
office laminator at a temperature of 100° C until the desired channel height hg ~ 130 pum
is reached (stage B). The photoresist film is then exposed to UV through a photomask of
the injection network. The nozzle structures are developed by immersion in an aqueous
bath of carbonate potassium at 1% mass concentration (stage C). To make the sloped
reservoir, n square thin cover slips 1 cm a side and h, ~ 130 pum in thickness are glued
using NOA adhesive to the base slide at a distance [ from the nozzles (Stage D). Then,
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another thin glass slide is placed just against the nozzle and rested on top of the glass pillar
from the previous step (Stage E). Consequently, the glass slide is inclined compared with
the base structure, at an angle given by the relation tan o = n-h,/l. Last, the gap between
the inclined slide and the base slide is filled with NOA adhesive by capillary suction and
reticulated with UV (Stage F). For devices with structures etched into the reservoir, dry
film photoresist structures are added to the sloped glass slide prior to gluing.

Figure 5.3: Measured height profile of an injection nozzle of dimension hy = 130 pm,
w = 250 pm and a = 2.6°

The topography of the mold was obtained using an optical profilometer (Veeco Wyco
NT1100). These measurements verified that the height of the reservoir increased linearly
downstream of the injection nozzle, as illustrated by Fig. 5.3.

The channels were then replicated in PDMS (Dow Corning SYLGARD 184, 1/10 ratio
of curing agent to bulk material), poured over the master and cured 2 hours at 70° C.
Finally, the PDMS is cut off and sealed on a glass slide by plasma bonding to obtain a
device with a sloped reservoir.

This microfabrication protocol has the advantage of producing devices with a known
and reproducible reservoir slope . However, the minimum height of the channels is limited
by the thickness of the cover slip used to make the sloped reservoir at hg = 130 pm.

A second approach relies instead on the deformability of the PDMS to produce inflatable
devices which have reservoirs of any height and controllable slope at the nozzles. In this
case, a flat mold of the device is fabricated using the standard dry film photoresist soft
lithography techniques. For example, a 15 pum layer of photo-resist is laminated and
exposed to UV through a photomask corresponding to both the inlet channel and the
main reservoir. The structures are then etched, replicated in PDMS and sealed onto a
glass slide to form the microfluidic device, as described above.

At this stage, the reservoir is flat. In order to create the slope of the reservoir, the de-
vice is pressurized above atmospheric pressure by connecting it to a programmable pressure
source (Fluidgent MFCS-8C) via a dedicated pressure inlet in the chip design. Because
PDMS is elastic (Young modulus E =~ 1 GPa), the wide roof of the reservoir bends out-
wards [130]. This creates an apparent slope at the nozzles as illustrated on Fig. 5.4 and
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the slope angle a can be controlled by varying the imposed pressure in the reservoir p,.
The deformations are most significant in the reservoir because of its high width to height
aspect ratio. Comparatively, the the narrow geometry of the inlet channels is not affected
by the pressure stresses.

PDMS block

increasing
A pressure

increasing
o

device reservoir

Figure 5.4: Sketch of the evolution of the geometry of an inflatable device. The PDMS
top wall of the reservoir bends outwards and therefore connects with the side walls with
a slope « that increases with the inner pressure p,.

Although this method is easy to implement, the dependence of a on the imposed
pressure showed some variations from device to device. We believe this is due to differences
in the elastic property of the reservoir roof which depends both on the Young-Modulus and
on the exact thickness of the PDMS above the reservoir.

5.2 Experimental observations

5.2.1 A control experiment

In a first control experiment, we inject distilled water at a flow rate Q = 1 pL./min through
an inlet of dimensions w = 100 pym and hy = 130 pum into a flat reservoir (a = 0°) filled with
FC-40 fluorinated oil + 2% of PEG-PFPE surfactant. In this case, the top and bottom
walls of the reservoir are parallel and there is no gradient of confinement. We observe that
a circular tongue grows indefinitely into the reservoir and does not break off, as shown in
Fig. 5.5.

w = 100 pm
hy= 130 pm
o=0°

o<

Figure 5.5: Photograph of a water tongue growing in a flat reservoir filled with FC-40
fluorinated oil.
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5.2.2 A generic scenario for droplet production

Next, we repeat this experiment in a device which has its ceiling inclined with respect to
the floor at a small angle a ~ 1.2°, as illustrated in Figs. 5.6.a-c.

a a=12°
w =250 pm
hy= 130 pm

b neck\/,-k\
w,

- %
Siedyn) S5

: droplet
Bl mm
I'_

Figure 5.6: Photographs of a water tongue growing under continuous fluid injection
at Q = 1 pL/min in a sloped reservoir of dimensions w = 250 pm, hy = 130 pm and
a = 1.2° filled with FC-40 fluorinated oil + 2% PEG-PFPE surfactant.

In this case, the thread expands into an elongated tongue resembling a 2D pendant drop
upon entering into the reservoir (Fig. 5.6.a). The tongue’s equivalent radius R = / A/,
where A is the projected surface area, grows until it reaches a critical value R*. At this
point the thread locally forms a neck of width w,, (Fig. 5.6.b) that progressively shrinks
before suddenly pinching off when w,, = hq, thus liberating a pancake droplet of radius R,.
It is noteworthy that the neck systematically appears upstream of the nozzle, inside the
injection channel. The drop then spontaneously moves away from the nozzle (Fig. 5.6.c),
propelled by the confinement gradient.

This scenario is generic to all of the sloped nozzles that we have investigated, spanning
angles in the range 0.5° < a < 4.5°, widths from 100 < w < 500 pm, operated at flow
rates Q = 0.04 to 40 uL/min. Overall, these experiments demonstrate that the confinement
gradient of the wedged geometry is able to produce and transport droplets in a Hele-Shaw
cell.

5.2.3 Influence of a, fluid properties and the injection flow rate
on Ry

These experiments also reveal a strong dependence of R; on the value of the slope of the
reservoir. Indeed, a slope o = 0° yields a drop of infinite radius while for o = 1.2°, we
observe that Ry is approximately 5 times the reservoir height hg. The decrease in R; with
a is illustrated on Fig. 5.7.a which displays images of drops produced with nozzles of
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identical width w = 250 pm and height hy = 130 pm but varying slopes o« = 0.5,1.2,2.4

and 4.5°.
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Figure 5.7: a. Images of drops captured immediately after they are produced from
nozzles of identical height hg and width w but varying slopes a = 0.5,1.2,2.4 and
4.5°. b. Plots of Ry versus the injection flow rate @) for three different channels with
varying slopes(blue points for « = 2.6°, red points for & = 1.2° and black points for
a = 0.5°) and for three different fluid pairs (B for FC-40 drops in water + 2% SDS, A
for water drops in FC6-40 + 2% PEG-PFPE surfactant and x for air bubbles in water
+ CgE12 at the critical micellar concentration). c. Distribution of the size variations
A R4 normalized by the mean drop size Rmean fitted with a gaussian of standard mean
deviation o = 0.21%.

20r

=N

»S) lﬁ

gL
» >

(=}

» »
» »
» *»
> *m
*up X =
* P ¥
* = ¥
* Pk
* *»

1 1.02
ARd/R

mean

On the contrary, the injection flow rate () appears to play only a weak role in the
droplet production mechanism since we observe that it does not modify significantly the
drop size. As shown on the log-lin plot of R, versus @ of Fig. 5.7.b, we find that a 1000
fold increase in flow rate, from 0.04 pL/min to 40 pL/min, only doubles the size of liquid
drops and increases the radius of air bubbles by 25% at most. In addition, the drop size
decreases towards a finite value that we call R} as @ tends to 0. This also indicates that
the injection flow rate does not play a key role in the drop production mechanism, unlike
with flow focusing [131] or T-junction devices [132].

Another key observation is that the sizes of the drops and bubbles produced at low
flow rates are the same for all the fluid pairs investigated. Air bubbles in water have a
radius R, indistinguishable from that of water drops in oil and oil drops in water. Yet,
these fluids have different viscosities and interfacial tensions, as listed in the table below.
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Therefore, it appears that the mechanism for droplet formation is also independent of the
fluid properties.

Last, we evaluate the monodispersity of the drops by measuring with a high resolution
Spot camera (2048 x2048 pixel resolution) the radii of several hundreds of drops produced
sequentially by a nozzle of dimensions w = 250 um, hy = 130 pm and o = 1.2° at a flow rate
Q) = 1 pL/min. We find that the device immediately reaches excellent monodispersity since
the radii of the first few drops are within 5% of the long-time average Rmean. In addition,
the size distribution shown in Fig. 5.7.c reveals a steady-state polydispersity index of the
produced emulsions of 0.2%, an order of magnitude better than other microfluidic systems.

Continuous Viscosity Dispersed Viscosity | Interfacial tension
phase fre (cP) phase tq (cP) v (mN/m)
H>O +
CeE12! 1 Air 2-1072 50 + 2
at 1 CMC?
H,O +
SDS?at 1% 1 FC-40 oil (3M) 4.1 1242
mass concentration
FC-40 oil (3M) +
PEG-PFPE [133, 134, 135] at 1% 4.1 H>O 1 T+1
mass concentration

1 CgE12 = hexaethylene glycol monodecyl ether, provided by the LPS.
2 CMC = critical micellar concentration.
3 8DS = sodium dodecyl sulfate.

5.2.4 Recap of the experimental observations

Overall, the experimental observations reveal the following properties of droplet production
in the wedged geometry of Fig. 5.1:

e minute inclination angles a, smaller than 0.5°; are sufficient to trigger droplet pro-
duction

pinching systematically occurs upstream of the nozzle, inside the injection channel
the drop size R, decreases with increasing o

drops of finite size R are produced as the injection flow rate () approaches zero.
Ry is weakly sensitive to @)

at low flow rate, R, is independent of the fluid properties

In the following section, we identify a physical mechanism that captures all these prop-
erties.

5.3 A novel mechanism for droplet formation

The following model for droplet production is unconventional as it relies neither on a force
balance nor on a stability criterion.
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The systematic observation in our experiments of the collapse of the thread inside the
inlet channel suggests that the thread plays a key role in the droplet production mechanism.
By studying the equilibrium of the thread upstream of the injection nozzle instead of the
tongue in the reservoir, we identify a minimum C* of the mean curvature of a confined non-
wetting fluid thread below which there no longer exists equilibrium shapes of the interface.
We show that the tongue in the reservoir forces the curvature of the thread in the inlet
channel to decrease beyond C* value, at which point the thread is forced out of equilibrium
and collapses, releasing a droplet in the reservoir.

5.3.1 The minimum curvature of a confined non-wetting thread
at equilibrium

Consider a thread of non-wetting fluid confined in an infinitely long channel with a rect-
angular cross section of width w and height hy. Next, imagine that by some mechanism
we are able to impose an overpressure in the inner phase compared to the outer phase, i.e.
Ap = p; —p, > 0.

The thread then inflates inside the channel until part of its interface eventually presses
and flattens against the channel walls. The rest of the interface, referred to as the free
interface according to the definitions introduced in Chapter 1, bends in the corners of
the channel and forms gutters of outer fluid, as sketched on Fig. 5.8.a. An equilibrium
shape of the thread is reached as soon as the curvature C of the free interface verifies the
Young-Laplace equation (1.1): 7C = p; — p,. Calling r = 1/C the radius of curvature of
the gutters, this equation is equivalent the equilibrium condition v/r = p; — p,.

a. C>C":stable b. C=C": critical . C<C":un ysical s

Po

Figure 5.8: Sketches of the cross-sectional shape of an infinitely long non-wetting
thread confined inside a rectangular channel. a. For high inner pressures p; inside the
thread, the interface flattens against the channel walls except near the corners where it
bends and forms corner gutters with a strong curvature C and small radius of curvature
r = 1/C. b. When C decreases to the critical value C* = 2/hg, then r = hy/2 and
the inner fluid completely detaches from the channel side walls. ¢. When C < C*, the
shape of the interface is unphysical. The interface must adjust its mean curvature by
bending in the plane of the channel which eventually leads to pinching and collapse of
the thread.

Hence, decreasing the pressure p; inside the thread decreases the equilibrium curvature
C of the thread and thereby increases the radius r of the gutters. However, r is limited
by confinement and cannot exceed hg/2. Indeed, as illustrated by Fig. 5.8.b, the case
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r = ho/2 is a critical configuration of the thread for which the free interfaces of the top
and bottom gutters meet at mid-height in the channel. Increasing the radius of curvature
r of the gutters beyond hy/2 leads to the unphysical situation of a kinked interface at the
channel wall, as represented in Fig. 5.8.c.

The upper bound r < hy/2 imposed by the confinement on the radius of curvature of
the gutters implies a lower bound C* = 2/hy on the curvature of the thread below which
there does not exist any equilibrium shape of the thread. Equivalently, the condition
r < ho/2 for the existence of an equilibrium shape of the interface translates to a lower
bound Ap* = 2/hy on the imposed Laplace pressure jump at the interface.

Identical considerations apply to the non-wetting thread confined in the semi-infinite
inlet channel of our experiments. Consequently, the thread upstream of the nozzle can only
be at equilibrium if its curvature exceeds C* = 2/hg or equivalently if the Laplace pressure
jump across its free interface in the gutters is greater than Ap* = 2~/hy.

5.3.2 Equilibrium of the thread attached to the tongue in the
reservoir

In practice, the thread in the inlet channel is directly connected to the tongue in the
reservoir. Hence, we must consider the equilibrium of the entire interface, composed of the
tongue in the reservoir and the thread in the inlet channel.

To this end, we consider a tongue of size R attached to the thread in the inlet and
assume the entire system is at equilibrium. If it is effectively the case, then there are no
flows in either phases and the pressures p, and p; in the continuous and dispersed phases
are constant. The Laplace equation (1.1) then implies a constant mean curvature of the
free interface, everywhere around the thread in the inlet channel and over the tongue in
the reservoir. In other words, the mean curvature of the thread C; is necessarily equal to
the mean curvature of the tongue Cy. As a result, the shape of the tongue in the reservoir
imposes its curvature Cy to the thread in the inlet channel. We already foresee a critical
configuration, when Cy becomes smaller than the critical value C* = 2/hy below which
equilibrium shapes for the thread inside the inlet channel no longer exist.

Shape and mean curvature of the tongue

In order to estimate the curvature Cy of the tongue in the reservoir, we need to model
its geometry. To this end, we define a function y(z) that describes the shape of the
tongue in the horizontal (x,y) plane of the reservoir, of origin O at the injection nozzle as
sketched in Fig. 5.9. The function y(z) must verify two geometric constraints: a continuity
condition at the nozzle tip y(0) = w/2 and tangent continuity at the apex of the tongue
dy/dx(x = L) = dy/dx(y = 0) = oo, where L is the length of the tongue. However,
tangent continuity is not required at the nozzle tip (z = 0) because of the sharp angle of
the channel side walls.

As discussed in Appendix B, the mean curvature of the tongue C, has two local contri-
butions: the curvature C;/(z,y) of the projected shape in the (z,y) plane and the vertical
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reservoir

2

Figure 5.9: Sketch of the coordinate system used to describe the tongue shape.

transverse curvature C, (x,y). For a non-wetting tongue, the latter is constrained by the
top and bottom walls of the reservoir, of local height h(z,y), with a correction that de-
pends on the local in-plane curvature C,/(z,y) in order to verify the condition of constant
mean curvature [51]. Under these conditions,

2 ™
_ Z_.1). 1
and consequently, the mean curvature is given by
2 ™
_ e . 2

This equation closely resembles the expression (1.5) of the curvature of a non-wetting
pancake drop found by Laplace [45]. Its derivation is detailed in the Appendix. Constant
curvature then implies that

1
C//(m,y)—l—;m = cst . (5.3)

In the case of a reservoir of constant height h(z,y) = hg, the in-plane curvature is then
also constant. Therefore, the tongue adopts a circular shape at equilibrium, which is in
agreement with experimental observations as shown by Fig. 5.5. Its mean curvature is
given by ) .

T
“=h YR (54)
in which R is the equivalent radius R = \/A/7 extracted from the projected surface area
A of the tongue.

In the case of a Hele-Shaw cell with walls tilted at an angle «, the height of the channel
increases linearly with x from hy at the nozzle tip: h(x,y) = ho + tan(a)z. Assuming
small height variations over the length of the tongue (vtan o < 1), Eq. (5.3) expands and
simplifies to
8 tan(a)x

Cry(x,y) =C), + A

(5.5)
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with C(/) ) the curvature at the nozzle.

It is noteworthy that this shape equation is identical to the one describing the shape of
a 2D pendant drop [136]. For such drops, the curvature increases linearly away from the
needle tip due to gravity. This analogy points out the existence of a characteristic length
lo = \/m/(8tan ) hy, equivalent to the classical capillary length I, = /pg/~ for pendant
drops [43].

However, while [, is a function of the fluid properties (densities p and interfacial tension
), the length scale [, depends entirely on the geometry of the sloped reservoir (initial height
ho and angle «) and is independent of the fluids involved. Consequently, the tongue shape
does not depend on the fluid properties, not even on interfacial tension although it is the
cause of the specific shape of the tongue.

Continuing our analysis, the droplet shape can then be described by the unique equation

=1

_ U — B
Cr/(z,9) = T2~ CY +1, (5.6)

once all lengths are made non-dimensional by the characteristic length l,: z = o - 7,
y=1lo-yand C/y =C///lo. The two geometric boundary conditions become
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Figure 5.10: (A) Universal tongue shapes for various surface areas A, attached to a nozzle
of non-dimensional width w = 0.2. (B) Image sequence of the production of a water droplet
in a reservoir of FC40 + PEG-PFPE from a nozzle whose dimensions are hy = 130 pm,
w = 250 pym and a = 1.2°. Solid lines are the predicted shapes for the water tongue
growing in the reservoir: in blue, the shapes have a mean curvature C that verifies the
stability criterion C > 2/hy; in red, the equilibrium shapes violate this criterion. Scale bar
is 500 pm.

Equation (5.6) is a second order differential equation in () with two boundary con-
ditions and a shape parameter C? /5 the in-plane curvature at the nozzle. Consequently, for
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any value of é? ), there is at most one solution for the tongue shape. Or equivalently, given
a value of the tongue non-dimensional surface area A = A/I2, there is also a unique é? /
and shape that verify Eq. (5.6). Using MatLab, we can then generate the family of shapes
the tongue takes as it grows from a nozzle, as illustrated by Fig. 5.10.A.

These shapes can be compared to experimental observations. Figure 5.10.B displays 9
successive images of a tongue growing at a flow rate @) = 1 uL/min into a sloped reservoir,
along with predicted shapes (solid lines). A single fitting step at ¢ = 0 is used to produce
the series of theoretical shapes: the surface area A is extracted from the experimental
image at ¢ = 0 and the corresponding theoretical shape is computed. The predicted time
evolution of the tongue shape and surface area A(t) are then obtained by assuming the
volume of the tongue V(t) &~ hy - A(t) increases linearly at the flow rate @ = 1 uL/min
used in the experiment. Figure 5.10.B shows the 8 predicted geometries corresponding to
the experimental timesteps of the image acquisition. Excellent agreement is observed until
necking of the thread appears after t = 1.6 s.

The critical size of the tongue

From Eq. (5.6), we also obtain numerically the relationship between the mean curvature
C, and the surface A of the tongue. In particular, we can study whether Cy decreases below
the critical curvature C* = 2/hg of the tongue. At the nozzle, the mean curvature is given
by C =2/ho+7/4- C?/ using Eq. (5.2). Hence, the critical curvature Co = C* = 2/hy is
reached when Cf, = 0. Figure 5.11.a plots C}, versus A for 5 different nozzle widths w. We

observe that C? ; always decreases below zero as A increases.

0 0.4 A’/z 0.8 12 0 0.2 0.8 1

0.‘4 W/ 2[(10‘.6
Figure 5.11: a. Plot of C_? AL A/2 for 5 different nozzle widths w ranging from 0.2 to
1. b. Evolution of the critical tongue surface area A* as a function of the nozzle width

w.

The critical size A* for which C, = C* is extracted from Fig. 5.11.a and plotted on
Fig. 5.11.b for w ranging from 0.1 to 1, a range that includes all experimental conditions
investigated. We find that A* increases slightly with the nozzle width and the trend is well
captured by a linear fit. As a result, we approximate the critical tongue size by

A* =1.53 4 0.38w (5.7)
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which translates back to

tan o

2
A" = 0.60 (1 + 0.2\/tan(oz)h£) o (5.8)
0

using dimensional quantities.

In terms of equivalent radius R = \/ A/, we find

w ho
R*=0.44,/140.2y/tan(a)— . 5.9
\/ @ Viana (5.9
For small angles «, this expression simplifies to
w ho
R* =0.44(1+ 0.1y/tan(«a)— , 5.10
(01 tan(e) ) e (5.10)

by expanding the square root.

5.3.3 Beyond R*, a system out of equilibrium

As soon as the tongue in the reservoir exceeds the critical size R*, the system composed
of the tongue attached to the thread in the inlet channel is out of equilibrium. This
statement differs in meaning from saying the system is in a state of unstable equilibrium
since here there no longer exists equilibrium shapes of the interface for the thread. In that
sense, the key mechanism for droplet production mechanism is not an instability, like the
Rayleigh-Plateau instability that occurs for non-confined liquid threads [137, 138].

Indeed, in the case of the Rayleigh-Plateau instability, there exists an infinite number of
equilibrium shapes for the thread: the Delaunay surfaces [139] of constant mean curvature
detailed in Appendix B,amongst which the straight cylinder is one particular example.
The rupture of the thread then occurs because these equilibrium states are maximums of
surface energy and therefore unstable [137, 138|.

When R > R*, the curvature of the thread in the inlet channel cannot decrease to the
value imposed by the tongue. Because of the Laplace law (1.1), this curvature imbalance
leads to a pressure imbalance between the thread and the reservoir. Assuming that the
pressure in the dispersed phase remains constant, the pressure of the continuous phase in
the gutters is then lower than the pressure of the continuous phase in the reservoir. This
drives a reverse flow into the gutters which is responsible for the necking of the thread
upstream of the nozzle.

The necking implies an inflexion of the thread interface. This locally decreases the
curvature of the thread to the value imposed by the tongue in the reservoir and locally
restores equilibrium. Nonetheless, the rest of the thread upstream of the neck remains
out of equilibrium and continues to suck continuous phase into the gutters. As a result,
the necking region extends farther and farther into the inlet channel and the width of
the neck decreases until it reaches the critical value w,, = hg. At this instant, the neck
has a circular transverse shape and is no longer confined by the channel walls. It is then
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similar to a cylindrical fluid column which is prone to develop a Rayleigh-Plateau type of
instability [131, 140].

The same happens if the pressure in the continuous phase is assumed to remain constant.
Indeed, in this case, the pressure of the dispersed phase in the thread exceeds the pressure
in the tongue. The dispersed phase flows from the thread to the tongue which can only
lead to a necking of the thread. In practice, neither the pressure fields are constant but
both effects are complementary and eventually lead to the release of the droplet in the
reservoir.

5.3.4 A scenario for droplet formation
Using the three results discussed above, namely that

e the mean curvature of a confined thread at equilibrium has a lower bound

e the mean curvature of the fluid tongue in a sloped reservoir decreases below this
lower bound

e once out of equilibrium, the thread necessarily collapses

we lay out the theoretical scenario that leads to droplet formation in a sloped reservoir.

Prior to reaching the reservoir, the non-wetting fluid thread is confined in all directions
and the curvature of the advancing spherical cap at the tip of the thread largely exceeds
the minimum equilibrium curvature C*.

As soon as the thread reaches the sloped reservoir, confinement is suddenly released
in the plane and slowly in transverse direction. The thread forms a liquid tongue that
elongates under the force from the confinement gradient and adopts the shape of a 2D
pendant drop.

If the injection flow rate of the continuous phase is small (the meaning of small is
discussed in the next section), the tongue grows in a quasi-static manner from small equi-
librium shapes to larger equilibrium shapes. The good agreement between the computed
and observed shapes shown on Fig. 5.10.b corroborates this quasi-static assumption. As
the size of the tongue increases, its curvature Cy decreases and with it the curvature C; of
the thread.

Eventually, the curvature of the tongue reaches the critical value C* below which there
no longer exist equilibrium shapes for the thread in the inlet channel. In other words, the
slow decrease in the confinement of the tongue drives the thread out of equilibrium. It is
noteworthy that in this configuration, the tongue itself is at equilibrium and there even
exist larger equilibrium shapes with lower curvatures.

In order to locally adjust its curvature to match the tongue curvature, the thread forms
a neck upstream of the nozzle which irremediably thins as more and more fluid from the
reservoir is sucked into the gutters. Eventually, the neck narrows down to an unconfined
cylindrical column prone to the Rayleigh-Taylor instability. The column suddenly collapses
and a droplet is released in the sloped reservoir.

The newly formed droplet is then pushed away from the nozzle by the confinement
gradient in a manner similar to the movement of Hauksbee’s drops of oil of oranges.
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5.4 Confronting the model to the experimental obser-
vations

In the light of this model scenario, we can interpret the experimental observations listed
above and compare the predicted thresholds for droplet formation with our measurements.

Observation 1: pinch-off occurs in the inlet channel

First of all, the mechanism for droplet formation presented above immediately explains
why the rupture of the dispersed phase systematically occurs inside the inlet channel.
This peculiar property is not observed in other classical methods of droplet production at
nozzles, like dripping or ink jet-printing. This is because in these cases, droplet formation
occurs when the volume of fluid outside the nozzle becomes unstable. Here, the tongue of
fluid in the reservoir is actually at a stable equilibrium while the thread inside the nozzle
is driven out of equilibrium.

The measured evolution of the width w,, of the neck upstream of the nozzle also corrob-
orates the suggested scenario for collapse of the thread. Figure. 5.12 plots w,, as a func-
tion of the time ¢ initialized when necking appears for a nozzle of dimensions w = 250 um,
h = 135 pm and slope @ = 0.5°. The drop is produced at a constant flow rate ) = 1 uL/min
and images of the necking regions captured at 60 frames per second. We observe a regular
decrease of the neck width during approximately 3 seconds until w,, = 130 pm. At this
instant, the thread collapses and the droplet is released in the reservoir. Pinch-off occurs in
less than 1/60th of a second since not even a single image of the final collapse is captured.
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Figure 5.12: Measured width w,,, of the thread of water upstream of nozzle of dimen-

sions hg ~ 135 pm, w = 250 uym and o = 0.5° during formation of a droplet at a flow
rate ) = 1 pL/min.

The break-up process clearly takes place in two stages, the second significantly faster
than the first. A similar process was described by Garstecki et. al. [131] and others [141]
for the droplet formation at a flow focusing junction. The authors also observed a sudden
collapse of the thread when the width of the neck matched the height of their channel, a
phenomenon which was attributed to the Rayleigh-Plateau instability. Here, the sudden
collapse is due to the same phenomenon while the slow decrease corresponds to the growth
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of the neck due to the reverse flow of continuous phase in the gutters once the tongue
exceeds the critical size R*.

Observation 2: drop size R; decreases with o and is independent of the fluid
properties

Second, the model is in agreement with the experimental observation that droplet formation
does not occur in a flat reservoir. Indeed, when the walls of the reservoir are parallel, the
curvature of the tongue Cy decreases as

2 w1
Cy = » + 17 (5.11)
as its radius R increases such that it only reaches the critical value C* = 2/hq asymptotically
when R tends to infinity. The tongue may then grow indefinitely without driving the thread
out of equilibrium.
Conversely, we showed that the curvature of the tongue reaches C* for finite sizes R* in
the case of a wedged reservoir. From a numerical analysis, we obtained the approximation

ho
vtan «

for the critical tongue size which initiates collapse of the thread. Qualitatively, this expres-
sion captures the decrease of the drop size R, as the slope « increases, a trend illustrated
on Fig. 5.7.a. However, as shown on Fig. 5.13 which compares measured drop radii Ry
with the predicted critical radii R* for different reservoir slopes «, the expression (5.12) of
R* underestimates R,.

R* = 0.44(1 + 0.1\/tan(a)h%) (5.12)

0 = 0.1 uL/min

0 0.02 0.04 0.06 0.08 0.1
tan(a)

Figure 5.13: Measured radii Ry (circles) compared with the predictions of equations
(5.12) (solid line) and (5.13) (dashed line) for drops produced at a nozzles of inlet
dimensions hy = 135 pm, w = 250 um at a flow rate @ = 1 pL/min.

A cause for this discrepancy is the fact that R* only predicts the size of the tongue
for which necking is initiated. In particular, it fails to consider the volume of liquid from
the neck that is absorbed by the droplet. Given that this volume is proportional to w,
the expression (5.12) is modified by an empirical correction of the prefactor of the term in
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w/hg that accounts for the effect of the inlet width. The best fit yields

w ho
RY = 0.44(1 + 2.2¢/tan(a)— .
¥ ( ( )ho) e~

This expression for the radius of the produced drops shows excellent agreement with the
measurements of R, in our devices, as shown by the dashed line on Fig. 5.13. Finally, both
equations (5.12) and (5.13) are in agreement with the peculiar property that the droplet
size is independent at low flow rates of the fluid used in the experiments. Indeed, these
equations express R* and Rf; as a function of the nozzle dimensions hg, w and « only.

Remarkably, although interfacial tension is at the root of the mechanism for droplet
formation, its actual value has no effect on the size of the produced drops.

(5.13)

Observation 3: drops of finite size are produced at infinitesimal flow rates and
Ry is weakly dependent of ()

The presented mechanism for droplet formation is based on an equilibrium analysis of the
thread+tongue system and is strictly valid only in the absence of a continuous inflow of
the dispersed phase in the inlet channel. As such, it automatically explains why the drop
size decreases to a finite value RY as the flow rate @ tends to zero in our experiments.

The presence of a continuous inflow of the dispersed phase implies a viscous pressure
drop in the thread and tongue, which is in contradiction with the equilibrium assumption
of constant pressure fields in both phases and thereby constant curvature over the interface.
Yet, we can estimate the effect of the flow by comparing the viscous pressure drop Ap,, in
the vicinity of the nozzle to the variations Ap, of the Laplace pressure that occur as the
tongue grows in the reservoir.

The pressure gradient Vp, due to a constant flow rate @) in a rectangular channel of
dimensions hy and w scales as Vp,, o< u@/why. The region of the inlet channel where the
necking occurs has a length which amounts to a few channel widths w. Hence, the viscous
pressure drop of interest scales as Ap, o< uQ/hg.

When the tongue grows in the reservoir, changes in the curvature of the interface
are mainly due to an increase in the radius R of the tongue. As a result, the Laplace
pressure variations are of order 7/R. An estimate for the size of the tongue is given by
the critical tongue size Ry which scales as hg/+/a using equation (5.13). Consequently, we
have Ap., x vy/a/h.

Comparing Ap,, to Ap, defines a new capillary number Ca,, based on the reservoir slope
a and flow rate () of the continuous phase:

_ el
Th? Vo
For a typical low flow rate experiment, Q@ = 6 uL/min = 1071° m3/s, p ~ 1073 Pa-s, v ~

1072 Nm, ho ~ 107* m and a ~ 1072 such that Ca, is of order 10~2. The viscous pressure
drop is negligible compared to the Laplace pressure variations during the experiment.

Ca, (5.14)
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This simple scaling law explains the qualitative trends of Fig. 5.7.b. For flow rate below
say 1 puL/min, Ca, is much smaller than 1 and the drop size is well captured by the quasi-
static model suggested above. For stronger flow rates () = 50 pL/min, the viscous pressure
becomes significant and has a stabilizing effect. Indeed, it increases the pressure of the
dispersed phase in the thread relatively to the downstream tongue and thereby increases
the curvature of the interface in the thread compared to the quasi-static case.

Last, Ca, is in agreement with the observed trend that the flow has a stronger effect
for low reservoir slopes. Indeed, decreasing « increases Ca,,.

Observation 4: drops are highly monodisperse
In light of the previous results, we can qualitatively explain the high monodispersity of the
drops.

First of all, the drop size is weakly sensitive to variations in the injection flow rate. As
a result and contrary to what has been observed with flow focusing devices [142], flow rate
oscillations from the syringe pumps do not affect droplet production significantly. Second,
the drop size is independent of the hydrodynamic properties (viscosity and surface tension)
of the fluids. Hence, the performance of the device is unaffected by temperature variations
or aging of the fluids which may occur over long period of times.

Second, the production mechanism is due to equilibrium properties of the thread up-
stream of the nozzle and inside the injection channel. This region of the interface is never
in direct interaction with flows that may occur in the reservoir. Consequently, the droplet
formation mechanism is insensitive to what is occurring in the reservoir and especially to
the movements of the drops previously released in the device. This explains why the drops
are monodisperse from the first to the last. This last statement is true only if the tongue
grows sufficiently slowly that it never ends up pushing other droplets previously formed
in the reservoir. Indeed, once there is contact between the tongue and a droplet in the
reservoir, the shape of the tongue deviates from the equilibrium pendant drop geometry
described above and its mean curvature is modified.

Overall, modeling droplet formation as an out of equilibrium collapse of the thread
forced by the tongue in the reservoir explains all the phenomena and trends observed with
our devices, in addition to giving a valid estimate for the size Ry of the produced drops.
As such, it appears as the correct mechanism for droplet production.

5.5 Comparison with a classical force argument

Nevertheless, in the sloped reservoir, a force imbalance could also be responsible for droplet
formation. The expressions (1.7) extracted from the seminal analysis of Laplace and (3.38)
obtained in Chapter 3 from an energy approach can be used to estimate for the force F),
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that applies on the tongue in the reservoir due to the confinement gradient:

tan A

ho

F, ~ 2y where A is the surface area of the tongue. (5.15)
This force pulls the tongue away from the nozzle. The opposing force is the interfacial
tension which holds the tongue attached to the thread. In Chapter 1, we recalled that this
capillary traction is equal to the interfacial tension v times the length of the interface on
which it applies. Here, the capillary traction applies on a cross-sectional perimeter of the
thread whose length P is a weighted sum of the height hq and width w of the inlet channel:
P = a1hy + aw. Equilibrating the two forces yields a critical tongue surface area Ay for
which the force from the confinement gradient exceeds the capillary traction

tan A
27% = v(a1ho + ayw) . (5.16)
0

This translates in terms of its equivalent radius Ry to

h
0 1+22%
tan o ay hy

Rf X (517)

This equation gives a scaling for the size of the produced drops very similar to the
one obtained in equation (5.12) from an equilibrium analysis of the thread. The similarity
in the two results questions whether the mechanism for droplet formation based on the
equilibrium analysis of the thread is effectively distinct from the force balance approach,
or whether the two are equivalent formulations of the same physical mechanism.

To answer this question, we imagine another configuration in which droplet formation
would be triggered by driving a thread out of equilibrium and for which a force argument
would not apply or lead to a different scaling for the drop size. The two main ingredients
necessary for droplet formation to occur following the mechanism presented above are

e a confined thread of a non-wetting fluid
e directly connected to a less confined volume of the same fluid.

As the less confined volume of fluid grows, its curvature decreases which drives the thread
out of equilibrium. The simplest geometry that combines these two ingredients is a square
capillary of size h that leads to an unbounded domain.

5.5.1 The non-wetting pendant drop

With this geometry, when the non-wetting dispersed phase reaches the end of the channel,
it is completely unconfined and expands in all direction in a spherical cap as shown on Fig.
5.14.a. The curvature of the spherical cap is inversely proportional to the radius R of the
cap and equal to 2/R. As a result, it reaches the critical curvature C* = 2/h for the thread
in the square channel when

R =h. (5.18)
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Here again, the critical radius is independent of the properties of the fluids considered. In
the absence of volume forces, we are unable to identify a force that pulls the droplet away
from the thread. Hence, a force balance would predict that the drop can grow indefinitely
in opposition with the thread collapse mechanism.

We perform such an experiment with a glass capillary tube with an inner width of
100 gm immersed in a bath of hexadecane with 2% Span80 surfactant. When water is
injected at a constant flow rate @ = 0.2 pL/min through the capillary previously filled
with hexadecane, it does not wet the walls as shown on Fig. 5.14.a. As predicted, the water
forms a spherical cap as soon as it reaches the end of the capillary. It then grows until its
radius reaches R. ~ 105 um at which point necking appears significantly upstream of the
nozzle. The thread rapidly collapse and a droplet is released in the bath of hexadecane.
Remarkably, the measured value at which necking appears is in excellent agreement with
the prediction R = h = 100 um, which suggests that the thread collapse mechanism is the
one at play.

a. Non-wetting pendant drop b. Wetting pendant drop

gutters

pinch-off

Figure 5.14: a. Images of a drop of water forming in hexadecane+Span80 at the
tip of a square capillary for non-wetting boundary conditions of the thread inside the
capilly. b. Last image before pinch-off of a pendant water drop in hexadecane+Span80
for wetting boundary condition of the water thread inside the capillary.

Nonetheless, the density mismatch Ap = 200 kg/m? between the two liquid used intro-
duces a bias in the experiment and the water drop is also pulled down by gravity. Hence,
the drop could also have detached under its own weight. Rayleigh and later contribu-
tors [143, 144, 145] showed that the critical size R, of a pendant drop hanging from a tube
of diameter h can be approximated by the formula

B 13
R, ~ (l_) ly where [, =,/ Avpg is the capillary length . (5.19)
9
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The expression predicts a maximum size R, = 460 pum for the pendant drop at the tip of
our square capillary, a value significantly larger than the R* = 100 pum predicted by the
equilibrium condition of the thread in the capillary which we effectively measured in the
experiment.

To further support our argumentation, we alter the wetting condition by filling the
capillary with water before placing it in the bath of hexadecane. In this case, the water
wets the inner walls of the capillary which automatically kills the mechanism for droplet
formation based on the collapse of the non-wetting thread. Water is then injected at a
constant flow rate and a pendant drop significantly larger than the drop produced for non-
wetting conditions is formed as shown on Fig. 5.14.b. This last experiment identifies the
critical size R, for which weight exceeds the capillary traction of the interface. We measure
R, ~ 530 pm, a value close to the prediction 460 pm.

Overall, this simple non-wetting pendant drop experiment indicates that the mechanism
for droplet formation based on the out of equilibrium collapse of the thread inside the
capillary is not necessarily equivalent to the usual force based mechanism. In the case of
the sloped reservoir, the scalings obtained from the two approaches are identical such that
it is more difficult to identify the one at play. However, as shown on Fig. 5.10, the tread
collapses although there exists shapes for larger tongues that verify the force equilibrium.

Hence, we believe that the drop detaches before the force imbalance occurs due to the
out of equilibrium collapse of the thread in the inlet channel. The force F, then propels it
away from the nozzle.

5.6 Nozzle parallelization for emulsion production

A key asset of our method of droplet production is the weak sensitivity of the drop size to
perturbations in flow rate and variations in the fluid properties. This property not only
guarantees high monodispersity of the emulsion produced from a single nozzle but also
allows nozzles to be parallelized in a straightforward manner. This is demonstrated first
with a chip capable of producing an emulsion with a gradient of chemical content and then
with an inflatable device producing highly monodisperse droplets at kHz frequencies from
256 nozzles operated in parallel in a 2 cm? reservoir.

5.6.1 Emulsions with chemical gradients

The controlled production of emulsions with heterogeneous contents has many potential
applications in chemistry where screening the phase space of chemical concentration is
required [146], or in biology to perform different genetic tests in parallel [15]. A general
view of our chip used to produce an aqueous emulsion with a gradient in the chemical
content of the droplets is shown on Fig. 5.15.

Three solutions of water dyed with red, yellow and blue food coloring are injected from
three inlets into an hexagonal dispatching unit displayed in Fig. 5.16.a. This geometry
of the channel network splits each colored stream into three: one stream never in contact
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water

C>/ inlets

Figure 5.15: Photograph of the rainbow chip operating at flow rates of 12 L /min for
the colored stream of water and 10 uL/min for the fluorinated oil streams. Scale bar is
1 cm.

with the two other colored streams, and two streams that combine with each one of the
other two colors. Hence, it forms six streams colored with the rainbow gradation purple-
blue-green-yellow-orange-red. Sinuous delay lines are used to ensure complete mixing of
the colors upstream of the droplet production region.

Figure 5.16: a. Photograph of the hexagonal dispatching unit and the delay lines that
produced the rainbow gradation of dyes. b. Photograph of the sloped reservoir and the
six streams of rainbow colored droplets produced by injecting the aqueous solutions at
6 uL/min each. c. Photograph of the collected emulsion. Scale bars are 5 mm.

The six channels then lead to six nozzles of identical dimensions hy = 135 pm and
w = 250 pm placed side by side in a reservoir sloped at an angle o &~ 1.2° and filled with
FC-40 fluorinated oil + 2% PEG-PFPE surfactant. Each nozzles produces a monodisperse
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droplet stream of a given color which spontaneously flows away from the nozzle due to the
confinement gradient (see Fig. 5.16.b). The emulsion collected in a collection container
and shown in Fig. 5.16.c displays excellent monodispersity, even though the dyes interact
with the surfactant in the fluorinated oil such that the interfacial tension varies from nozzle
to nozzle.

A first method to collect the emulsion is to force the droplets out of the reservoir
through a tube and into a collection container by continuously injecting fluorinated oil in
the reservoir from two additional inlet, as shown on Fig. 5.15. A second solution is to
partially cut open the roof of the reservoir, allowing the water drops to rise by buoyancy
into a syringe filled with fluorinated oil, as demonstrated on Fig. 5.17.

Figure 5.17: Photograph of the colored water drops rising by buoyancy into an FC-40
syringe.

Compared with existing designs that rely on classical droplet production geometries [15,
146, 147], the current devices are much simpler to design. Because there are no hydrody-
namic interactions between the produced droplets and the nozzles, techniques developed
for continuous flow microfluidics to produce gradients of solute in the dispersed phase can
be used without modification upstream of the emulsification nozzles. From a practical
point of view, the device complexity is also reduced as only inlets and channels for dis-
persed phase are required. Last, the device are also simpler to operate and can cover a
wide range of flow rate, from 0.5 to 50 uL/min in the example discussed above.

5.6.2 High throughput emulsification

Massive parallelization can be achieved in order to reach high throughput emulsification
or to efficiently divide a microliter sample into a multitude of droplets which are held on
chip. We demonstrate this capability with the inflatable device featured in Fig. 5.18 which
contains 256 nozzles of dimensions hg = 15 pm and w = 50 um placed side by side around
a central circular reservoir 1.5 ¢m in diameter.

We recall the concept of inflatable devices which is detailed in Section 5.1. The device
is initially filled with the continuous phase, water + 2% SDS in this case, and a small
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Figure 5.18: a. Sketch of the device architecture featuring the inlet for the dispersed
phase which distributes to 256 nozzles via a peripheral distribution channel and an
inflatable circular central reservoir. b. Image of the device during operation, producing
225 pL drops of FC-40 in water at frequency of 1.47 kHz from a 20 uL/min influx of
the dispersed phase. The drops are collected out of the chip at the outlet located at
the center of the reservoir. c. Zoom on the nozzles. Scale bars are 5 mm.
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overpressure (between 10 and 200 mbar) is applied inside the device using a pressure
controller and a dedicated pressure inlet in the reservoir. This inflates the reservoir and
creates a slope at the nozzles.

At this stage, the dispersed phase (FC-40 fluorinated oil) is injected at constant flow
rate into the device from a single inlet which is distributed across all nozzles using large
distribution channel circling the reservoir. All nozzles then produce streams of droplets
that are advected by the confinement gradient towards the center of the reservoir. For
example, using an overpressure p = 100 mbar and a flow rate of 20 L /min, we produce
droplets of 226 pL in volume at a frequency of 1470 drops/second. The drops can either
be held on chip to form a dense array of monodisperse drops as shown on Fig. 5.19 or
collected by placing an outlet tubing at the center of the reservoir.

One advantage of using inflatable devices is that the slope can be controlled with the
overpressure. As a result, the size of the produced droplets can also be modulated by
varying the overpressure. For example, for pressures of 50, 100, 150 and 200 mbar, we
create droplets of spherical radius equal 41, 39, 37.5 and 36.5 ym. On Fig. 5.20, we
plot the distribution of the measured radii of droplets for these 4 different pressure. The
dispersion never exceeds 3%, a remarkable acheivement given the rudimentary architecture
of the device.

Because droplet production in a wedged reservoir only requires to flow the dispersed

phase, the architectural limitations encountered when scaling up cross-flow geometries like
the T-junction or flow focuser [148, 149, 150] are suppressed and massive parallelization is
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Figure 5.19: Brightfield image of an emulsion produced from 200 parallel nozzles and
held on chip in a square inflatable reservoir. Scale bar is 400 pm.
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Figure 5.20: Histograms of the radii of droplets measured in the center of the reservoir
where the drops are spherical for four overpressures of 25, 50, 100 and 200 mbar.

straightforward. Furthermore, the weak sensitivity of the droplet size to flow rate variation
means that the device performance is unaffected by partial clogging. On Fig. 5.18.b
for example, a few inlet channels on the right side of the reservoir are blocked by dust.
Yet, neighboring nozzles operate normally and the flow of the dispersed phase is simply
redistributed over the remaining unclogged nozzles.

5.6.3 High throughput emulsification with a micropipette

Last, because the droplet size does not vary significantly with the flow rate, we are able
to operate the device shown on Fig. 5.18 by relying only on a hand-held micropipette to
inject the dispersed phase.
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The device is initially filled with the continuous phase (water + SDS) and the tip of
the 100 puL micropipette is inserted in the inlet for the dispersed phase. The device is
pressurized at 50 mbar to create the slope in the reservoir. Then, 20 uL of sample (FC-40
fluorinated oil) are slowly injected into the device. The injection process takes about 30 s,
implying an average flow rate of 40 uL/min that distributes across the 256 nozzles. Figure
5.21 illustrates the process. In the end, the sample is split into approximately 20,000
monodisperse droplets of volume around 250 pL. and the droplets are held on chip in a
large 2D array format.

Microscope

Hand-held
micropipette

"\
ol

Live image fram microscope

P

Microfluidic chip

Figure 5.21: Photograph of the experimental setup used to demonstrate high through-
put emulsification with a hand-held micropipette. The chip at the bottom right of the
image is placed under a microscope which is used to monitor what happens in the sloped
reservoir. The live image is shown on the computer screen on the left. The device is
operated by injecting 20 uL of fluorinated oil in the reservoir filled with water + 2%
SDS with a hand-held 100 L. micropipette, which creates thousands of droplets in the
reservoir.

Non-inflatable devices of identical geometry are currently being developed. In practice,
this device could be fully operated manually. Typically, the user would hold the microchip
in one hand and inject the dispersed phase with the other using a micropipette. The
sample would then be split into thousands of droplets held and arrayed on a transportable
microchip, effectively droplet Lab-on-a-Chip technology out of the lab.

5.7 Discussion and summary of Chapter 5

Overall, the key asset of our method over classical techniques of droplet production in
microfluidics, like the T-junction [8] or the flow focusing [9] geometries, is that it does not
require a forced flow of the outer phase:

e it simplifies the design of the devices by suppressing the need for oil inlets and
channels
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e it improves the robustness of the droplet formation mechanism to perturbations in
the flow and the fluid properties.
e it makes droplet microfluidics accessible to manual operation

The step [151] emulsification technique (initially named MC emulsification) developed
by Nakajima et. al. in the early 2000’s for droplet microfluidic applications shares this
property with our method of droplet production. The basic geometry of an injection nozzle
for step emulsification is similar to the one we have developed. A rectangular inlet channel
leads to a wide reservoir whose height suddenly increases in a step like structure. Figure
5.22 illustrates droplet formation at a step emulsification nozzle. The dispersed phase,
which has to be non-wetting like with our devices, expands to form a tongue which grows
until it reaches the step in the reservoir. At this point, it expands a second time into a
spherical drop which immediately breaks away from the tongue.

aMC Terrace b. “

Well

Figure 5.22:

In contrast with our approach however, an outer flow of the continuous phase required
to move the droplet away from the nozzle since there are no confinement gradients to propel
the newly formed droplet. In our inclined reservoirs, the slope also prevents droplets already
present in the reservoir from coming near the nozzles. It thereby limits perturbations of
the droplet formation mechanism and allows the monodispersity of the emulsion to reach
values below 1%.

Over the past ten years, Kobayashi and collaborators have investigated numerous vari-
ations of their step emulsification geometry, by changing the position and the height of
the step [152] and by parallelizing nozzles in lines and stacks to form an emulsification
membrane [153]. Their approach was adapted by others who added co-flowing streams
of the continuous phase in the inlet channel to reach smaller droplet sizes [154, 155] or
controlled the injection flow rate to enable on-demand droplet production [156].

Despite the prolific literature on step emulsification, the physical mechanism for droplet
formation has only been partially identified [157]. It is understood the Laplace pressure
jump at the interface decreases when the droplet expands beyond the step and that this
effect is responsible for the droplet formation. However, how exactly it triggers the collapse
of the liquid upstream of the droplet remains in debate.

We believe that the novel mechanism identified in Section 5.3 also applies to the case
in step emulsification. Indeed, the main ingredient for droplet formation to occur following
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this mechanism, namely a confined thread of a non-wetting fluid directly connected to a
less confined volume of the same fluid, is present at the nozzle. In a step emulsification
device, the confinement is suddenly released and the tongue is completely deconfined like in
the case of the square capillary studied in Section 5.5. We obtained for this configuration
that the diameter D of the produced drops should be D = 2h with h is the height of
the inlet channel. This simple prediction is in qualitative agreement with most of the
observations in the literature [153, 158, 155] which report droplet diameters two to three
times the inlet channel height. A quantitative analysis is currently underway to further
support this result.

Overall, it appears that droplet production by deconfinement has been implemented
before with numerous geometries: in membrane emulsification, in step emulsification or
even recently in a particular T-junction geometry [159]. The mechanism above could
potentially explain droplet formation in all of these devices.



Perspectives

The tools introduced in Chapter 4 and Chapter 5, namely the rail, the anchor and the
wedge, enable all of the key operations required for a 2D droplet microfluidic platform
without the need for an external flow of oil. By relying on gradients on confinement only,
we are able to produce, transport, guide and trap droplets. Hence, we can imagine a new
generation of droplet microfluidic devices that are simpler to operate than flow powered
serial droplet microfluidics and less expensive than electrode based digital microfluidics.

To illustrate this statement, we designed a proof of concept device that achieves on-
demand chemical reaction by coalescing two single droplets containing reactants. The
device architecture and its operation is shown on Fig. 5.23. It consists in a wedged
reservoir of height hy =~ 130 um and slope a ~ 1.2° with two separate inlet channels of
identical width w = 200 pum that are used to inject the two different reactants. In the roof
of the sloped reservoir are etched oblique rails that link the injection nozzles to an anchor.
In the example of Fig. 5.23, the chemical reaction is a complexation between Fe3* cations
and SCN™ anions that produces Fe(SCN)?* of a deep red color.
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Figure 5.23: Successive images of a passive microfluidic device powered by confine-
ment gradients only enables a controlled chemical reactin between two unique droplets

containig different reactants.
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The operating protocol is the following. To start the experiment, a single drop is pro-
duced from each nozzle by injecting 170 nL at 50 pL/min during 0.2 s using a programmable
syringe pump. Following this initial injection step, the syringe pump stops and the rest of
the the experiment takes place without any imposed flow. Each droplet detaches and is
propelled by the confinement gradients while being guided towards the anchor site by the
oblique rail.

We observe that the droplet containing KSCN is slower than the FeCls droplet. This
difference in velocity is due to the interactions between the chemical and the interface which
modify the interfacial tension v of the two droplets. Yet, because here the propulsion
force due to the confinement gradients (3.36) and the guiding/trapping force from the
rails/anchors (4.5) are both proportional to v, the trajectory of the droplet is in the end
independent of the actual value of the interfacial tension. The path that the drops follow
in the device is fully dictated by geometry. For a given device architecture, it varies with
the size of the droplets only.

Since the two drops have identical volumes in our experiment, they are equally guided
by the rails. The faster drop is trapped by the anchor and waits until the slower one
arrives, at which point the conjugate action of the slope and the rails presses the two drops
together. It eventually leads to coalescence and initiates the chemical reaction.

Here, the anchor diameter and the droplet size are chosen such that that the anchor is
sufficiently strong to hold the merged droplet in place, thus allowing long term observation
of the reaction product. Alternatively, a weaker anchor or larger droplets can be used to
automatically release the merged droplet which can then flow to another anchor site and
merge with third droplet to perform a chemical reaction with multiple steps.

The current example provides similar functionality and performance to digital microflu-
idic devices: a chemical reaction is triggered on-demand in a few seconds and using sub-uL
sample volumes. In contrast however, the operations are here hard-wired, therefore not
requiring any programming. Furthermore, our devices are entirely made of polymer with
no active elements. Consequently, there are inexpensive and easy to replicate using mold-
ing methods. As such, it is well suited for diagnotics and other applications that require
a robust, disposable, drop-on-demand platform, and for which digital microfluidics is pro-
hibitively complex.

Finally, this device demonstrates that our droplet production method is able to cover
the entire range of droplet production frequency, from the single drop on-demand to the
high-throughput emulsification. In fact, we are also currently investigating the possibility
of multiplexing nozzles to the thousands by stacking devices similar the one shown on Fig.
5.18.

In conclusion, we are confident that the versatility and the flexibility of the tools we
have developed over the last three years will lead to numerous applications in the near
future.



Appendix A

Potential flow generated by a
deforming elliptical cylinder

In this first appendix, we identify the family of potential flow fields that transform one
ellipse to its closest relative of equal surface area. To this end, we consider a particular
ellipse of surface area S = T7R? = wab, with a and b being the main axis of the ellipse. We
recall the formulas for the focal distance ¢ = v/a? + b% and the eccentricity e = ¢/a of the
ellipse.

A.1 The kinematic boundary condition

We perturb the ellipse towards another ellipse of equal surface area. The new ellipse has
main axis of length a + da and b — a/bda.
In the x,y plane, the original ellipse is defined by the equation

2 2
$—+‘Z—2:1 (A1)

The perturbed ellipse lies at a distance (dx,dy) from the original one and it verifies the
equation
(x+0x)*  (y+ 0y)?

(at a2 T (brobE (42)

such that (dz, dy) verify

by Ty (A.3)
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We can express this equation in the elliptic coordinates of the original ellipse, defined
by x = ccosh € cosn and y = csinh sinn. The original ellipse lies on the line of iso-¢ for
€ =& =1/2log(a+b)/(a —b). The displacement translates to

dx = csinh & cos nd& — ccosh € sinndn (A.4)
0y = ccosh & sinndé + csinh & cos non (A.5)
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such that the equation becomes
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We can recall the properties a = ccosh & and b = sinh & to simplify the equation
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On the left hand side, we can recognize a familiar expression: g¢(&y)g,(&o) = b* + ¢ sin® 7.
Finally, we get
6 = b cos(2n)da (A.6)
gedn
As a result, we know that the deformation from the original ellipse to the perturbed
ellipse only involves varying £ and not 7. This means that the ellipse deforms along lines
of iso-n. The length of the displacement dr is necessary to compute a velocity. It is defined

as
or = +/0x? 4 dy?

Since the displacement is along lines of is-7, it simplifies to
dr = ge|6€| . (A.7)
Hence, we find that the displacement to perturb the ellipse is

L b
dr = — cos(2n)daeg
9n

Therefore, the velocity at the boundary of the ellipse is given by

b
U = — cos(2n)a (A.8)
9n

where we define Ug = 07 /6t and a = da/dt.
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A.2 The velocity potential

The velocity boundary condition given above is simple. It looks like the boundary condition

of a quadripolar flow. We suggest to take the complex potential

w = — pe2()
2

where ( = £ +in.
In this case, we have

¢ = —gbe_m—&)) cos 2n
V= gbe_2(5_§°) sin 2n

We can then express the velocity field

_ 1oy
Gn ON

= g1)6_2(5_50) cos 27

9n

Ue

which, at the boundary of the ellipse in & = &g, yields

Ue = % heos 2n ,
9n

matching the boundary condition derived above.

(A.9)

(A.10)

(A.11)

(A.12)

Hence, by uniqueness of the solution for the Laplace equation, we have found that

a
— _ Zpe2(¢0)
w 5 [&

(A.13)
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Appendix B

The shape of a non-wetting pancake
droplet

In this second appendix, we study the equilibrium shape of a non-wetting droplet placed
between two horizontal plates at a distance h from one another. When the volume V' of
droplet is smaller than the volume V, = /6 - h® of largest inscribed sphere between the
plates, it is not confined by the plates and its equilibrium shape is a sphere, as if it were
in an unbounded domain.

However, as soon as V' > V_, the droplet must flatten against the solid walls. This
configuration has been explicitly studied before in the asymptotic limit of very large
droplets [45, 51, 50], in which case the droplet has a pancake shape. Here, we provide
an analytical description of the intermediate regime, when the volume of the droplet is
larger but of the order of V..

As discussed in Chapter 1, when a non-wetting droplet is squeezed between solid walls,
we distinguish the regions of the interface that are pressed against the walls (i.e. the
constrained interface) from the rest of the interface (i.e. the free interface) which verifies
the Young-Laplace equation (1.1).

At equilibrium, the Young-Laplace equation implies that the mean curvature C of the
free interface is constant everywhere around the droplet. Hence, the free interface is a
surface of constant mean curvature, i.e. a CMC or minimal surface. Furthermore, given
the in-plane rotational symmetry of the confining geometry, the shape of the free interface
has rotational symmetry in the plane as well. As a result, the free interface of a non-wetting
droplet squeezed between parallel plates is necessarily a surface of revolution of constant
mean curvature whose axis is transverse to the plates.

B.1 Delaunay surfaces
Surfaces of revolution with a constant mean curvature were first studied, characterized and
classified by Charles-Eugene Delaunay in 1841 [52] and are today called Delaunay surfaces.

The sphere, the cylinder or the catenoid are classical examples surfaces of revolution with
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a constant mean curvature. Two other groups of surfaces called unduloids and nodoids
complete the family of Delaunay surfaces.

In his seminal work, Delaunay demonstrates that the generatrix of a surface of revolu-
tion with a constant mean curvature is necessarily the track of the focus of a conic rolling
on the axis of the surface of revolution, a curve called a Delaunays’s roulette. Reciprocally,
the surface of revolution whose generatrix is a Delaunay’s roulette has a constant mean
curvature. We illustrate on Fig. B.1 how to obtain a roulette by rolling an ellipse and how
to construct the associated surface of revolution. There are three families of conics, hence
three families of roulettes and thereby three families of Delaunay surfaces:

e if the conic is a parabola, the roulette is the ordinary catenary and the Delaunay
surface is a catenoid.

e if the conic is an ellipse, the roulette is an elliptic catenary and the Delaunay surface
is an unduloid.

e if the conic is an hyperbola, the roulette is an hyperbolic catenary and the Delaunay
surface is a nodoid.

The cylinder is a particular member of the unduloid family. Its generatrix is a straight
line and therefore the roulette obtained by tracking the center of circle rolling on the axis
of the cylinder. The sphere is an asymptotic member of both unduloid and the nodoid
family, a case we discuss later on.

focus of track of
the ellipse the focus

Figure B.1: An elliptic catenary is obtained by tracking the focus of an ellipse rolling
on a straight line. The elliptic catenary is the generatrix of the surface of revolution
while the line onto which it rolled is the axis of revolution. An undulated cylinder is
obtained by rotating this elliptic catenary.

All of Delaunay’s surfaces, except for the catenary, can be described by the following
sets of parametric equations in which ¢ = [—o00, 0] and § = [—7, 7] are two independent
parameter:

e when the generatrix is the elliptic catenary obtained by rolling an ellipse of major
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and minor axis a and b, the Delaunay surface is the set of points

x(t) Ji—e 1 —ecost cosd

o 1+ecost
t 1-— t
y@O) _ g, [Lecost
a 1+ ecost
¢ ! d
&2(1—62)-/ “ (B.1)
a 0o V1—e?cos?u(l+ ecosu)

in which e = va?2 — b%/a < 1 is the eccentricity of the ellipse.
e for the hyperbolic catenary obtained by rolling an hyperbola of major and minor axis
a and b, we have

t — t
ﬂ:\/62—1 L
a e+ cost
M: 62—1\/—6_C08tsin0
a e+ cost
z(t) ( 9 0 /t du (B.2)
— 7 = (e° — . .
a 0 vVe2—cos?u(e+ cosu)

in which e = va? + b?/a > 1 is the eccentricity of the hyperbola.

Hence, the family of Delaunay’s roulettes and the resulting family of Delaunay’s surface
are essentially a one-parameter family of shapes which are be scanned by varying the
eccentricity parameter e. The parameter a is only a scaling factor. In Fig. B.2, we displays
cuts in the (z,z) plane of eight different Delaunay surfaces obtained from MatLab using
the equations above. We scan through the family of unduloids and nodoids by varying e
from 1073 to 5.

From Fig. B.2, we conclude that:

e the cylinder is the unduloid obtained by taking e = 0 in equation (B.1).

e the sphere, or actually a collection of touching sphere, is the asymptotic limit of the
unduloid when e — 1 and the asymptotic limit of the nodoid when e — 1.

e the tangent plane of an unduloid is never perpendicular to the axis z, or equivalently
dz/dz # 0 everywhere on the generatrix of an unduloid.

B.2 Non-wetting pancake droplets

The analysis above shows that the free interface of a droplet squeezed between two plates
parallel to the (x,y) plane an at a distant h from one another is necessarily a slice of
thickness h of a Delaunay surface, i.e. the z-axis is bounded between values z; and z; + h
in Fig. B.2.
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z
1.1
Figure B.2: Eight different members of the unduloid and nodoid families of Delauny
surfaces, obtained by taking different values of e in equations (B.1) and (B.2). The
shape of a pancake droplet squeezed between two plates is a slice of a Delaunay surface,
between z = 0 and the dotted line for example. The non-wetting condition of the droplet
imposes that the dotted line intersects the generatrix tangentially. It is impossible for
unduloids drawn in red and possible at multiple z positions for nodoids in blue. The

interface of the pancake must bend outwards and can therefore only be the nodoid slices
in dark blue.

N

N

Elels

e=0.001 e=0.5 e=0.9 e=0.999  e=1.001 e= e=2 =5

The non-wetting condition of the droplet imposes that the free interface must connect
to the solid walls at a contact angle ¢, = m. This translates to the condition that the
tangent of the generatrix of the Delaunay surface at z = z; and z = z; + h must be
perpendicular to the z-axis, or equivalently that dz/dz = 0.

As shown on Fig. B.2, unduloids never verify such a condition over their entire surface.
Hence, the interface of a non-wetting pancake droplet cannot be a portion of an unduloid.
On the contrary, for every e > 1 and thus for every nodoid shape, there exists an infinite
number of positions z ordered periodically for which the generatrix verifies dz/dx = 0. We
call such positions flats. Between three or more flats, the generatrix crosses itself, meaning
that the surface intersects itself. Such surfaces are unphysical for a droplet and hence, the
slice can only be between two successive flats of the generatrix.

Between two successive flats, the generatrix is either convex and bends towards the
main axis Oz of the surface or concave and bends outwards. A convex portion corresponds
to 0, = 0, a perfectly wetting liquid bridge, while a concave portion verifies the non-wetting
condition 6, = . As a result, we obtain that the free interface of a non-wetting pancake
droplet can only be a concave portion of a nodoid between two flats of its generatrix.

Such portions are identified in dark blue on Fig. B.2. We notice that by varying
the parameter e, we modify simultaneously the height h and radius R of the non-wetting
nodoid slice and cover the entire range of the shape parameter h/R for pancake droplets.
When e — 1, h/R tends towards its maximum value 2 obtained with the sphere. When
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e=1.05

Delaunay's

/ roulette

Figure B.3: Three different pancake shapes are constructed as slices of nodoids from
different values of e. The larger e, the smaller the aspect ratio h/R of the pancake.

e — 00, the slice widens and flattens more and more and h/R — 0. Figure B.3 extracts
three different pancake shapes from slices of nodoids in 3D.

Since nodoids are the only surface of revolution with a constant mean curvature whose
generatrix has flats (the classic catenary not discussed here has none), the slices discussed
above are the only possible equilibrium shapes for the free interface of a non-wetting
pancake droplet.

B.3 The curvature of a pancake droplet

Having identified the exact shape of a non-wetting pancake, we are able to compute its
curvature C. In the parametric descriptions (B.1) and (B.2), the curvature C of the Delau-
nay surface is simply equal to 1/a. Once z, y and z are made non-dimensional using a, we
have aC = 1. Hence, for a given value of e, we compute analytically the distances between
two flats of the generatrix. This gives us a value of the non-dimensional thickness h = h/a
of the pancake. We also extract the non-dimensional radius R = R/a of the pancake. We
can then plot h as a function of h/R, which is equivalent to plotting hC versus h/R. The
result is shown on Fig. B.4.

As expected, we obtain for the sphere for a sphere of radius R and diameter h = 2R,
hC = h-2/R = 4. For very large pancakes, Laplace [45] derived an asymptotic expression

w1
=2 —— B.
C=2/h+ 1R (B.3)
which transforms into the expression
h
he=2+22 (B.4)

4R
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Figure B.4: Plot of the curvature C scaled with the height of the pancake h versus
the aspect ratio h/R of the pancake. The dotted line is the asymptotic prediction (B.3)
found by Laplace.

which can be compared to the numerical prediction of Fig. B.4. We find that the curvature
of pancakes of intermediate aspect ratio tends towards this asymptotic limit when A/ R — 0.

B.4 The asymptotic curvature of a pancake droplet

In this last section, we rederive and comment the expression

2
CZE—FZC// , (B.5)
for the mean curvature of a large non-wetting pancake drop with small in-plane deforma-
tions, in which C,, is the local in-plane curvature of the interface.
This expression is analogous to the expression obtained by Laplace for the curvature of
a large pancake drop at equilibrium. Two hundred years later, Park&Homsy [51] extended
Laplace’s result to include small in-plance deformations of the droplet using asymptotic
analysis. Here, we explain the physical origin of the puzzling /4 prefactor in front of the
otherwise logical in-plane curvature C,.
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Our analysis detailed below allows a decomposition of the curvature into its transverse
and in-plane components:

2 s
C= |:E -+ (Z — 1) C//} + E/’L . (B.G)

~” in-plane curvature
transverse curvature

From this decomposition, we find that

e the in-plane curvature is equal C;,, as expected intuitively.
e the /4 prefactor originates from a correction of the transverse curvature

We explain the correction of the transverse curvature as follows. Given the scale separa-
tion between the in-plane and transverse dimensions (h < R), the curvature is dominated

by the transverse curvature. Hence, the 0t1 order curvature C° in terms of h/R is given
by
Co = 2 + 0 (B.7)
0= 3 : .
~ in-plane curvature

transverse curvature
Indeed, the transverse shape of the free interface is best approximated by a half circle at
this stage. The in-plane curvature 1/R is h/R smaller than the transverse curvature. As a
result, it can only be captured by computing the 15 order corrections C! of the curvature.
To be correct, this correction must also include 15 order correction to the transverse shape
and transverse curvature. We find that C! is given by

C = <% — 1> Cy + E//// , (B.8)

_/_/ .
transverse curvature il-plane curvature

solving the mysterious origins of /4.

Onto the tedious calculations. We consider the general configuration of a roughly
circular pancake drop confined between two parallel plates, as observed a Hele-Shaw cell
or a 2D microfluidic device, and assume arbitrary wetting conditions at the walls. We use
cylindrical coordinates (r, 6, z) centered on the center of mass of the droplet and define the
non-dimensional coordinates 7 = /R and z = 2z/h. The interface of the droplet is then
described by the set of points (f(6, 2), 6, z), with f(6, z) an algebraic function.

Using differential geometry, we obtain the expression

_ f_02> fzz 2 1+2;_92_% z %fzf@z_ 3;_92
¢= (1 ) A e T s s e e {3)3@
B.9

for the mean curvature C of a surface defined in cylindrical coordinates.
In the case of a surface with rotational symmetry, the function f depends on z only
and all derivatives in € are zero. The curvature is then

fZZ 1
A+ /27 i

C=— (B.10)
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in agreement with classic results [160].

The expression (B.9) can be simplified in the case of a large pancake droplet by using
the scale separation between the in-plane and transverse dimensions (¢ = h/2R < 1). The
function f(6, z) is decomposed into two parts

f(0,z) :R-p(9)+g-F(€,z) (B.11)

The first term, R - p(f), describes the in-plane shape of the drop. The second term,
h/2 - F(0,z), describes how the interface locally spans the height of the channel, from the
bottom to the top wall. In order to verify the wetting conditions at the walls, the function
F must verify the following boundary conditions

£(6,7 =0) =0 (B.12a)
f:(0,Z=0) =0 (B.12b)
f.(0,z2=1) =tan(«a) (B.12¢)

(B.12d)

where « is the contact angle (o = 7/2 in the non-wetting case).
Next, we define the non-dimensional curvature C = h/2 - C and develop the F(6,z) in
terms of €e = h/R as
F(0,2) = F*0,2) + eF™(0,2) + o(e) . (B.13)
Once injected into the expression (B.9) for the curvature, we obtain an asymptotic devel-
opment for the curvature C

FO
(L (e

~
dominant term

] 1 po F2FY. — po/p(FY)?
[_ (i) + R0 2 A+ (PP

C_0+GC_1: +

(.

15t order term
(B.14)

in which C;; = (14 2p5/p* — peg)/(Rp) is the in-plane mean curvature of the droplet and
the curvature of the function R - p. This equation is strictly valid only when (py/p)? < e,
which means that the in-plane shape of the pancake drop is roughly circular and evolves
smoothly.

Balancing dominant terms: At the 0%! order, equation (B.14) becomes

_ FO
N (N (OB (1)
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The right hand side is simply the curvature of the function F° in the (e,,e,) plane. Hence,
the dominant curvature is the transverse curvature, as expected. The Hele-Shaw approx-
imation implies that pressure and curvature are invariant in the z direction. Hence, Cy
is z-invariant and we find that F° describes a circular arc in the (e,,e.) plane. Last, the
boundary conditions defines the value of the curvature such that

- 1
C() = (B16a)
sin «v
F°(0,2) = L »o (B.16b)
sin® a sin v
Balancing 15t order terms: At the 15! order in €, equation (B.14) becomes

C, = + pefmcFOng po/p(F2)*(1+ (F2)*)** .

_ Fl
‘(<1+<F£> 3/2) +RC//«/7F0
(B.17)

Recalling the assumption that (pg/p)? < € and the fact that Fy = 0, we notice that the
last term on the right hand side is negligible. Using the solution (B.16b) for F°(0, z) , we
can replace 1+ (F?Y)? by

1

0
1+(F) 1 — tan? az2

(B.18)
everywhere in the equation for C; above. It yields
Cr = — [(1 —sin?az?)?F!]_+ RC;/V/1 - sin®az? . (B.19)
Because C, is Z invariant, we can integrate a first time treating C; as a constant:

RC oo =1/ . _
(1 — sin® 0422)3/2F21 = T//(g 1 — sin o222 + sin” (sin(a)Z)

) —Ciz+Cste.  (B.20)

sin «

The symmetry condition F!(z = 0) = 0 imposes Cste = 0. Furthermore, since the contact
angle boundary condition at the solid walls F>(z = 1) = tan « is fully captured by F°(z),
F} must verify the condition F}(z = 1) = 0. As a result, we obtain from (B.20) that

_  RC

C // -

1 = —(cosa+ —
2 sin o

). (B.21)

We can finish the derivations by integrating (B.20) to find an expression for F':

pt = G | Zsin (sin(@)2) (C.OSZQ +— ) ! +Cste.  (B.22)
2 1 — sin® az2 sin“a - sin"a/ /1 — gin? @72

Since F1(z = 0) = 0, we have

RC
Cste = //( : + = ) . (B.23)

2 sinfa cosasin® «
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As a result,
RC 7 ¢in "1 (si > 3 1 1
= (b.m(a)_z) (C.OZ“ = ) (- —| . (B.24)
2 V1 — sin® az2 sin“a sin"a/ ‘cosa /1 — sin? 32

Results:  We recover the mean curvature C by summing by summing the dominant and
the 15¢ order terms: h/2C = Cy + €C,. We obtain

C = 2. % <cosa+ - ) (B.25)

sina h 2 sin av

This expression is in agreement with Laplace’s result for perfectly circular pancake droplets
and with Park&Homsy for slightly deformed pancake droplets.
In particular, for the non-wetting case (o = 7/2), we recover the result (B.5)

1 =«
=+ — B.2
C . + 4C// (B.26)
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The compatibility of polydimethylsiloxane (PDMS) channels with certain solvents is a well known
problem of soft lithography techniques, in particular when it leads to the swelling of the PDMS blocks.
However, little is known about the modification of microchannel geometries when they are subjected to
swelling solvents. Here, we experimentally measure the deformations of the roof of PDMS
microchannels due to such solvents. The dynamics of impregnation of the solvents in PDMS and its
relation to volume dilation are first addressed in a model experiment, allowing the precise measurement
of the diffusion coefficients of oils in PDMS. When Hexadecane, a swelling solvent, fills a microchannel
1 mm in width and 50 pm in height, we measure that the channel roof bends inwards and takes

a parabolic shape with a maximum deformation of 7 pm. The amplitude of the subsidence is found to

Downloaded by ECOLE POLYTECHNIQUE on 17 September 2010
Published on 16 September 2010 on http://pubs.rsc.org | doi:10.1039/C003504A

increase with the channel width, reaching 28 pm for a 2 mm wide test section. On the other hand,
perfluorinated oils do not swell the PDMS and the microchannel geometry is not affected by the
presence of perfluorodecalin. Finally, we observe that the trajectories of droplets flowing in this
microchannel are strongly affected by the deformations: drops carried by swelling oils are pushed
towards the edges of the channel while those carried by non-swelling oils remain in the channel center.

I. Introduction

In recent years, polydimethylsiloxane (PDMS) has emerged as
the material of choice for rapid, low cost fabrication of micro-
fluidic channels. This is due to the many advantages of PDMS,
particularly its transparency and biocompatibility, in addition to
the development of standard protocols for its fabrication.'* This
has allowed an explosion of interest in microfluidics by reducing
the costs and complexity of fabricating microchannels.

However, PDMS presents a few characteristics which can limit
its usefulness. It is a rubber elastic material® with a low Young’s
modulus £ ~ 1 MPa and a high Poisson ratio » = 0.5, making
microchannels highly flexible and compliant. As a result, struc-
tures of extreme aspect ratios are difficult to fabricate: tall pillars
bend and buckle while wide microchannels sag and collapse.*
Additionally, recent studies have shown that even stable geom-
etries may significantly deform when the imposed flow pressures
reach 10° Pa.>”

A second drawback arises from the porous nature of PDMS,
which leads to compatibility issues with some solvents.® Indeed,
the absorption of certain liquids in the polymer matrix can lead
to departures from the dry geometry of a microchannel. The
rubber-like PDMS expands when a swelling solvent diffuses into
the material, in an analogous fashion to heat diffusion and
thermal expansion in elastic solids. The extent of the swelling of
an isolated sheet is characterized by the swelling coefficient at
saturation S, which measures the ratio of its swollen length over

“LadHyX and department of Mechanics, Ecole Polytechnique, CNRS,
91128 Palaiseau Cedex, France. E-mail: baroud@ladhyx.polytechnique.fr
bLaboratory of Fluid Mechanics and Instabilities (LFMI), Ecole
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,
Switzerland

1 Electronic supplementary information (ESI) available: Derivations of
eqn (4) and eqn (5), supplementary data and supplementary movie. See
DOI: 10.1039/c003504a

its dry length. Typical values of S, are in the range of 1.05 to
1.20, meaning that solvents can induce strains of up to 20%.%

Deformations of this magnitude have also been reported for
PDMS microchannels, by observing the changes in the size and
shape of the channels on microscopy images.>'® However,
quantitative measurements of the microchannel deformation in
the third dimension have proved difficult to obtain, although
such information is of major importance for any microfluidic
application that relies on a precise knowledge of the flow profile,
for example when the shear stress on the wall must be known.™

In this paper, we study the deformation of PDMS micro-
channels when placed in contact with swelling oils. The swelling
characteristics of the oils (S and the diffusion coefficient D) are
first determined by analyzing the size of isolated PDMS sheets in
a bath of oil. The height profile of microchannels is then obtained,
when those are placed in contact with a swelling oil, and compared
with the case of non-swelling solvents. The measurements are
achieved by adapting an optical method, initially developed for
fluid free surfaces,'? which compares the displacement of a pattern
between two images (before and after). Finally, we demonstrate
that the swelling is responsible for deviations of droplet trajecto-
ries as they flow in a deformed microchannel.

Below, we begin by describing the experimental setup and
protocol in Section II. This is followed, in Section III, by an
explanation of the synthetic Schlieren method which is used to
obtain the channel deformations. The results are presented in
three parts: First the swelling characteristics of the oils are pre-
sented, followed by the shape of microchannels when in contact
with these oils. Finally, we demonstrate the effect of the defor-
mation on the motion of droplets in swollen channels.

II. Experimental setup and protocol

The microfluidic devices are fabricated in PDMS (Dow Corning
SYLGARD 184, 1/10 ratio of curing agent to bulk material)

This journal is © The Royal Society of Chemistry 2010
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using standard soft lithography techniques.'*!* They are sealed
onto a glass slide of thickness 4, = 1.1 mm by plasma bonding.
The microchannels have a nominal height of /. = 50 um and the
PDMS blocks have a global thickness /1p between 4 and 5 mm, as
sketched in Fig. 1. Two solvents, hexadecane or perfluorodecalin
(PFD), are used as the swelling and non-swelling oils in the
microchannel experiments. They are injected into the channel by
capillary suction, by depositing a drop at one of the channel
entrances. The test sections whose deformations are measured
have a length L = 6 mm and widths w of either 1 mm, 1.5 mm or
2 mm. They are connected to the entrance and exit through the
main channel which is 100 um in width.

The height profile of a test section is measured using
a synthetic Schlieren approach, in which the surfaces of the
PDMS act as lenses that refract a fixed pattern. By analyzing the
image of this pattern seen through the PDMS, before and after
the swelling, the local curvature of the surfaces can be recon-
structed. This method has previously been used to observe
deformations of a single free liquid surface'? but works with any
deformed refracting interface. Schematically, the refracted image
is compared to a reference image using a Digital Image Corre-
lation (DIC) algorithm to determine the apparent displacement
field &7 of the pattern, which is related to the gradient of the

CCD camera
mounted on
a microscope

patterned

PDMS block adhesive tape

glass slide

Fig. 1 Cross-section (top) and top view (bottom) of a microchannel test
section, displaying the synthetic Schlieren experimental setup. The cross-
section is not to scale.

height profile of the deformed surface. The deformations are then
reconstructed by numerically integrating the slope thus measured
in two dimensions.

The imaged pattern is obtained by fixing adhesive tape
(3M Scotch Magic Tape) under the glass slide, as sketched in
Fig. 1, and using its inherent texture. These patterns are visual-
ized through a channel’s test section using a digital camera
mounted on a low magnification (3x to 5x) stereo microscope
with backlighting. A typical image is shown in Fig. 2.a, where the
microchannel walls are visible, in addition to the grainy texture
to be tracked. The field of observation is a square, 3 mm to 5 mm
in width depending on magnification, and the microscope’s
objective is at a distance H = 7 cm from the PDMS block. The
DIC analysis to obtain the apparent displacement field is per-
formed using the commercial software DaVis (LaVision). Mul-
tipass iterations with a decreasing window size and a 50% overlap
are used for the computations of the correlation functions,
leading to a displacement field defined on a 128 x 128 grid, with
a spatial resolution ranging between 24.2 um and 40.8 um.

The experimental protocol consists of first preparing a micro-
channel and placing it on the apparatus described above. The field
of observation is chosen such that the test section and the inlet
channel are visible, then a reference image of the pattern is taken,
as shown on Fig. 2.a. The solvent is then allowed into the micro-
channel and the device is monitored for 5 h by taking an image
every 3 min. During this time, the solvent diffuses into the solid and
evaporates into the atmosphere, leading to continuous variations
of the observed pattern. These variations can be followed in
Fig. 2.b which shows a space-time diagram extracted from
a typical experiment. On this image, the horizontal axis represents
time and the vertical axis gives the gray values measured along the
line A — A’ in each image. Pattern displacements, which are a result
of swelling induced surface deformations, can be qualitatively
visualized in this way (see also movie in the ESIt).

III. Surface reconstruction

A typical experiment can be divided into two distinct periods, as
pointed out on the spatio-temporal graph. During period 1, from
t =0 to ¢ = 90 min in the example of Fig. 2.b, the channel is filled
with solvent and the pattern displacements are due to the
deformation of the top PDMS-air interface only. Indeed, the
optical indices of glass (n, = 1.47), PDMS (nppys = 1.42) and of
the solvents (Mjexs = 1.43, nprp = 1.30) are all close together.
Therefore, the bottom two interfaces (glass—solvent and solvent—
PDMYS) disappear and the channel walls become invisible as long
as the channel is filled.

The situation in period 1 is therefore strictly identical to the
one described by Moisy et al.'* Because the camera is far above
the microchannel (w/H < 1), rays passing by the field of obser-
vation and reaching the objective are all nearly parallel. As they
pass through the deformed interface, they are refracted at an
angle proportional to the local slope of the interface. Hence,
a point 7 of the pattern is actually seen by the camera as the point
I', at a distance &7, from its original position, as sketched in
Fig. 3.a. The slope of the top surface is given by the gradient of

the height deformations Gh’ p and, for small deformations
(hplhp < 1), it is related to the apparent displacement field 37 by
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channel
width

w=1mm

period 2

period 1

Fig. 2 a. Reference image of a channel taken before a swelling experiment, featuring the main test section of width w = 1 mm and the narrow inlet
channel. The scale bar represents 500 um. b. Space-time diagram showing the evolution of the pixel gray values along the axis (4 — A”) of the reference
image. The channel is filled with hexadecane from 7 = 0 min to # = 90 min and it is empty after = 105 min.
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Fig. 3 Refraction of light rays by a deformed microchannel. The initial
geometry is sketched by the dotted lines. a: The channel is filled with
a solvent of matching optical index. The two bottom interfaces (dashed
interfaces) disappear. The ray passing by 7 is refracted by the top surface
and is seen as passing by I’, inducing the apparent displacement 37;. b:
The channel is filled with air. The ray is refracted by three interfaces,
including two potentially deformed surfaces. Point J has an image at J',
inducing the apparent displacement 37.

2 1 1Y .
Vhp_(ﬁ—h—r)éru (D

where i1 = (1-ni/nppars)hp + npparsitoi = he + npparsing - hy).

When using a stereomicroscope, this relation is modified by
the fact that the optical axis of the microscope 7 is not aligned
with the vertical axis Z' of the channel. The resulting viewing angle
0, typically around 10°, is characterized by its projections ¢, and
0, on the in-plane axis (X,7). A consequence of this non-align-
ment is a blur in the image near the vertical wall. To limit this
drawback, the channel is aligned with the viewing angle, i.e.
setting #, = 0. A second consequence is a correction to the
relationship between the apparent displacement field d7] and the

refracting interface slope eh’ p, yielding
vi,— (L1 (67 — 8,%) )
P H h; 1 0 )

where 6y = h, [tan(sin~'(1/n,; sin 6)) — tan 6]. This small correc-
tion does not modify the qualitative features but improves the
homogeneity of the measured deformation.

Period 1 is followed by a short transition period, from 7 = 90
min to ¢+ = 105 min, during which the microchannel is partially
empty. This translates to a sudden reappearance of the channel
walls and to complex movements of the patterns on Fig. 2.b.
However, the channel remains in contact with the swelling
solvent during the transition (see movie in the ESIf).

The second period begins when the microchannel is completely
emptied due to absorption and evaporation, at ¢ = 105 min in
Fig. 2.b. During period 2, the PDMS block is no longer in
contact with the swelling agent and the geometry relaxes back to

This journal is © The Royal Society of Chemistry 2010

Lab Chip



Downloaded by ECOLE POLYTECHNIQUE on 17 September 2010
Published on 16 September 2010 on http:/pubs.rsc.org | doi:10.1039/C003504A

View Online

its initial shape, as observed on the space-time diagram. Again,
the first image in period 2 is compared with the initial reference
image by DIC analysis and yields a second displacement field 7.

During this period, the pattern is refracted by two deformed
surfaces: the air-PDMS interface which forms the channel roof
and the PDMS-air interface on top of the block, in addition to
the flat glass—air surface, as sketched in Fig. 3.b. One must
therefore write that the total displacement d75 is the sum of three
elementary displacements and it is related to the gradients of

both surface deformations V/'p and V7., which yields

=, 1o UK, —1/H =
Vi = -t em 4 L= U gy 3
e <h2 H) Yy A 3

where /1y" = (1-npprrsiMair)(he + NairNgrass - he) and hy™ = (1-n;,/
nppams)(p + npparsiia - he + nppusing + hy). Here, effects of the
viewing angle @ are already accounted for by the term — V/'p
coming from eqn (2).

Calculating the shape of the channel roof therefore depends on
the knowledge of the shape of the top PDMS surface, which we
extract from the displacement field &7}, at the end of period 1.
The numerical integration method provided by Moisy et al.*® is
performed twice, first using eqn (2) to reconstruct the profile of
the top PDMS surface /15, then on eqn (3) to reveal the channel’s
height profile /., thereby reconstructing the complete geometry
of the swollen microchannel.

The overall measurement accuracy and absolute error are
a combination of system and DIC uncertainties, the latter
being well documented in the literature for Particle Image
Velocimetry .'® The interrogation windows were chosen so that
the image of the patterned tape satisfies the criterion of 5 “dots”
per interrogation window. The feature size is around 10 pixels,
thus exceeding the optimal size of 2-3 pixels. Hence, DIC has an
uncertainty of 5% approximately and induces an absolute error
of 0.5 um on the reconstructed height profile. Uncertainties in the
experimental apparatus lie in the measurement of the effective
heights (/1;, K5, h3) and in the estimation of the viewing angle 6..
For the former, the glass slide and the microchannel have precise
nominal heights and the PDMS block is measured for each
channel with of precision of 0.1 mm. In addition, we measure
a viewing angle 6, = 9° + 1° for our setup. This leads to an
overall accuracy estimated at 10%.

IV. Results
A. Characteristics of the diffusion and the dynamics of swelling

To characterize the amplitude of PDMS swelling by solvents, Lee
et al.® measured the swelling coefficient S., for a number of
organic solvents: this coefficient is defined as the ratio of the
length L., of a PDMS piece saturated by the solvent over its
initial length L, before swelling. We conduct similar measure-
ments for hexadecane, silicone V100 oil and paraffin oil. A thin
square of PDMS (1 cm x 1 cm x 1 mm) is placed inside a Petri
dish filled with the solvent of choice and is photographed during
more than 12 h using a digital camera and a macro objective. On
each image (3008 x 2000 pixels, 1100 pixels/cm), the width L(7)
of the PDMS square is measured and compared to the reference
value L, to yield the amplitude and dynamics of swelling.

015 ’ ) //
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Fig. 4 Plots of the isotropic swelling coefficient S(¢) for hexadecane (e),
silicone oil (M) and paraffin oil (4) as a function of v/z. The lines corre-
spond to a linear fit before saturation.

The dynamics of swelling is linked to the absorption of the
solvent into PDMS, which is a diffusive process, characterized by
a diffusion coefficient D.'” Modeling solvent diffusion and the
deformations induced by local swelling in a thin PDMS sheet
shows that the length of the sheet L(z) evolves as

L(z) 2 Dt

L—Ofl_(Swfl)a g 4
where d is the thickness of the PDMS sheet (see ESI for the
derivation of this equationt). Eqn (4), which is valid before
saturation occurs, can be used to estimate the diffusion coeffi-
cient D.

Accordingly, the transient swelling ratio S(¢#) = L(¢)/Ly is
plotted as a function of /7 for hexadecane, silicone and paraffin
oils in Fig. 4. The swelling coefficient at saturation S, is evalu-
ated from the steady state values of S(z). Swelling is observed for
hexadecane and silicone oil only. Next, the values of [S(v/7) — 1]
are fitted with a linear law for early times. Fig. 4 shows a good
agreement between the data points and the linear fit for both
swelling oils, which validates the theoretical model used to
compute eqn (4). Hence, the slope § of the fit can be used to
evaluate the diffusion coefficient D of the solvent:

(B
D—n(z(sm : 1)) . )

The extracted values for S.. and D are listed in Table 1. They
show good agreement with previous measurements for other
carbon or silicone chains.®%2°

The diffusion coefficient D is useful to estimate the time t
necessary for the microchannel to reach its swollen steady state.
It is reasonable to assume that the system locally reaches its
equilibrium shape when the PDMS has swollen over a layer of

Table 1 Swelling coefficients S.. and diffusion constant D

Sw Dim? ™!
PFD 1.00 none
Paraffin oil 1.00 £+ 0.01 none
Silicone V100 1.08 + 0.01 10+ 1 x 1072
Hexadecane 1.14 + 0.01 44 +4 x 107"
n-Heptane 1.34¢ 13-70 x 10-12?

@ Extracted from ref. 8. ? Extracted from ref. 20.
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thickness comparable to that of the microchannel height /.. This
will occur over a time determined by the diffusion of oil into
PDMS, t « h2/D. For a 50 um-deep microchannel swollen with
hexadecane or silicone oil, 7 is on the order of 5 min, which is very
short compared to the duration of period 1. We may therefore
assume that our measurements of the microchannel deforma-
tions correspond to the swollen steady state.

B. Microchannel deformations

We follow the experimental protocol of Section 2 and perform an
experiment using hexadecane on a test section of width w = 1
mm. Eqn (2) is first integrated taking 6, = 9° to obtain the
relative deformation of the top PDMS surface, which is shown in
Fig. 5.b. This surface bends outwards away from the glass wall,
with an amplitude of 10 um above the microchannel. While these
deformations are negligible for a PDMS block of thickness

% ms 3 = 9
x (m) x107

0.5 1 1.5 2 2.5 3
x (m) %1077

hp = 4 mm, they become significant when compared with the
thickness of a second microchannel which may be stacked over
the first one, for instance in multilayer microfluidic devices.?

Next, the height profile of the channel /, is computed using eqn
(3) at the beginning of period 2. This is done by injecting the
deformations /15, obtained at the end of period 1. The assumption
that the top surface of the block has not significantly changed
during the transition between the two periods is justified by
noting that the pattern movements are small during this time
lapse, as seen on the space-time plot of Fig. 2.b. The resulting
swollen height profile /, is shown in Fig. 5.a. The roof of the test
section is found to deform into the microchannel, displaying
a transverse subsidence whose amplitude varies between 6 um
and 7 um along the x-axis.

On the other hand, the narrow 100 pm-wide injection channel
is not significantly deformed by swelling (/1./h. < 1%), while the
subsidence rapidly increases with the channel width in the

pood
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Fig. 5 Deformations of microchannels measured by the Synthetic Schlieren method. The position of the channel is outlined by solid lines. (a) Height
profile /. of the roof of the test section swollen by hexadecane. (b) Height profile /, of the top surface of the PDMS block swollen by hexadecane.
(c) Height profile /, the test section roof after PFD injection. (d) Transverse height profiles /.(y) of the main test sections averaged along the x-axis for
channels of widths 1 mm (o), 1.5 mm ({)) and 2 mm (]) swollen by hexadecane, and for a channel of width 1 mm after PFD injection (e).
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diverging region, indicating that deformations are highly
dependent on the channel’s local aspect ratio « = w(x)/h,, in
agreement with ref. 6.

To further investigate the influence of the channel’s width, we
perform experiments on test sections of width w = 1.5 mm and
w = 2 mm. Again, we measure a subsidence of the channel roof,
as seen on the height profiles (see ESI for figurest). The defor-
mations for the three widths investigated are compared by
averaging the subsidence along the length of the channel, in the x
direction. The resulting profiles are plotted on Fig. 5.d and we
observe that the amplitude of the deformations increases from
7 um for w = 1 mm to 20 um and 28 um for w = 1.5 mm and
w = 2 mm, respectively. In addition, an experiment on a 3 mm
wide test section reveals that parts of the channel collapse,
indicating that the deformations are larger than 50 um for this
width.

In contrast, the observed deformations are below the noise
level of 0.5 pum when the experiments are performed using the
non-swelling PFD, as shown on Fig.5.c. This is further confirmed
since the height variations that are observed are mostly located
near the channel edges where the vertical walls blur the images
and introduce further errors into the DIC analysis. The averaged
height profile for this case is also plotted in Fig. 5.d, showing no
discernible height variation along the y-axis. This control
experiment confirms that the deformations measured using
hexadecane are indeed due to the swelling of the PDMS block.

C. Effect of deformations on droplet trajectories

The effect of depth variations on the flow in a microchannel has
already been studied in the case of single phase flows. Indeed,
slight deformations in the channel geometries have been shown
to significantly influence the flow within it, for instance in the
production of three-dimensional flow profiles,*' in the amplifi-
cation of the Taylor—Aris dispersion for pressure driven flows??
or in the modification of the pressure vs. flow rate relationship.”
Here, we observe the effect of the subsidence on the transport of
droplets as they travel in the 1 mm wide test section. To this end,
drops of water in oil are produced in a flow-focusing geometry®
which is operated in a regime to produce large drops. In this way,
the drops are flattened when they flow through the test section
and are thus sensitive to the height variations.

We chose silicone oil (swelling solvent) and paraffin oil (non-
swelling) as the carrier fluids for the study of droplet dynamics
because these oils enable controlled droplet formation and
injection under identical hydrodynamic and capillary conditions.
Indeed, the two liquids have similar viscosities (v,; = 100 cP and
Vpar = 130 cP) and interfacial tensions (y,; = 0.25 N m™' and
Ypar = 0.25 N'm™"). Drops are made and transported by the two
fluids while keeping the flow rates and droplet radii similar, as
shown on Fig. 6.

If the test section’s geometry is unperturbed, droplets are
expected to follow straight trajectories along the channel’s
centerline as they would in a perfect Hele-Shaw cell.*** This
behavior is indeed observed in Fig. 6.a which displays the
trajectory of a water droplet in paraffin oil by superposing
successive images of the droplet train. These drops follow the
centerline of the channel and exit without feeling the presence of
the side walls.

(X

W

Fig. 6 Water droplets are advected from left to right along the large
microchannel by a second carrier fluid. By superposing a few successive images
taken using a high speed camera, the trajectories of the droplets are qualita-
tively visualized: (a) straight trajectory for paraffin oil (Q = 1.1 uL min~' and
R =100 um). (b) bent trajectory with transverse migration toward the side wall
for silicone V100 oil (Q = 3.0 uL min~" and R = 130 um).

In contrast, drops carried by Silicone oil follow different
trajectories, as shown in Fig. 6.b. These drops begin to deviate
from the channel centerline as they enter the diverging section
and they flow out of the test section along the side wall. Drops
flowing at different flow rates make contact with the side walls at
different locations, with faster drops advancing further before
touching the sides. However, all drops deviate from the centerline
before exiting the channel.

The physical reason for the trajectory modification can be
understood in simple intuitive terms by considering the surface
energy of the drop: Although the volume of each drop is fixed
after its formation, its surface area varies as its shape changes.
Recall that the smallest surface area for a drop of a given volume
is given by a spherical shape, such that a flattened drop has an
increased surface area and consequently an increased surface
energy. By moving towards the side of the channel, where the
subsidence is minimum, the drop minimizes its surface area by
approaching a spherical shape. The migration of the drops
towards the side walls therefore corresponds to a migration to
the area of minimum confinement and minimum surface energy.

V. Summary and discussion

The synthetic Schlieren method developed to measure the defor-
mations of PDMS microchannels only requires a low magnifica-
tion microscope and adhesive tape. It is a simple and cost effective
alternative to confocal or fluorescence microscopy with compa-
rable resolution and precision. It is however limited to volatile
liquids for two reasons. First, period 1 is excessively long for non-
volatile liquids and the channel is not revealed in reasonable time.
Second, the deformations of the microchannel are obtained at the
beginning of period 2 when the liquid fully leaves the channel, and
not when the channel is filled with the solvent at the end of period
1. The assumption that the roof of the channel has not deformed
during this time is only valid if the transition period is short, which
is the case for volatile liquids only.

The auxiliary experiment used to measure the swelling char-
acteristics of a solvent into PDMS is easy to implement. Through
an analysis of the time evolution of the PDMS sheet, this
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experiment gives access to the swelling coefficient S and also to
the diffusion coefficient D of the oil, which is a key parameter in
estimating the time necessary for establishment of a swollen
steady state.

Finally, the swelling of PDMS by a solvent induces a subsi-
dence of the microchannel. The amplitude of the deformations
increases with the width of the channels, exceeding 50% of the
channel’s thickness for the widest channel measured here. This
subsidence modifies the trajectories of pancake droplets and
pushes them towards the sides of the wide test section, where the
channel has a maximum depth. This behavior can be intuitively
explained by energy arguments and a precise prediction of the
trajectory based on such arguments is the subject of our current
research.
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I. TRANSIENT EXPANSION OF A SWELLING PDMS SHEET

Here, we detail the calculations for determining the swelling characteristics of a solvent from the deformations it
induces on a PDMS sheet. The swelling coefficient S, and the diffusion coefficient D are obtained by comparing the
observed time evolution of the length L(t) of a PDMS sheet immersed in a bath of the solvent to a theoretical model.
It is closely related to the method of sorption mass measurements described by J. Crank [1], which relies on the time
evolution of the mass of the sheet. The method requires a precise prediction of the transient swelling geometry of the
polymer sheet. To this end, we solve the coupled problems of solvent diffusion and induced mechanical strain. First,
we compute the diffusion of the swelling solvent in the initial geometry, which we then deform by evaluating the local
swelling expansion.

FIG. 1. a. Sketch of the thin square PDMS sheet and definition of the reference frame (Ozyz).
b. Illustration of the local swelling expansion of a stress-free infinitesimal cube due to a solvent
concentration c.

In the following derivations, we consider a square plane sheet of height d small compared to its width L (d < L).
The center O of the coordinate system is taken as the center of symmetry of the sheet. The (x, y)-directions are along
then in-plane directions while the z-direction is along the transverse direction, as sketched on Fig. 1.a.

A. Solvent diffusion and local swelling ratio s

The diffusion process of the solvent is characterized by a concentration at saturation c,, and a diffusion coefficient
D. In this model, we assume that D is independent of the solvent concentration, such that ¢(Z,t) verifies the classical
diffusion equation with saturated boundary conditions

pri DV2¢(Z,t) in Q , ¢ = cop 0on I, (1)
where €2 and 0f) are the inner volume and the boundaries of the sheet, respectively.

The local swelling induced by the solvent is quantified through the local swelling ratio s(#,¢). It is defined as the
ratio between the size di(c) of a stress-free, infinitesimal cube at the concentration ¢(#,t) over its dry size dly (see
Fig. 1.b).

Next, we make an analogy with linear thermoelasticity. In the same way that thermal strain is assumed to be
proportional to the temperature field T' [2], we make the assumption that the local swelling ratio s(Z,t) varies linearly
with the concentration field of the solvent ¢(Z,¢). In addition, it saturates at S, yielding

s@ty—1=EDg gy (2)

Coo
Therefore, the swelling ratio s(Z,t) also verifies the classical diffusion equation with saturated boundary conditions :
0s(Z, 1)

ot

= DV%s(Z,t) in Q, s = Sy on 9Q . (3)

For a thin plane sheet, there is a scale separation between in-plane (z,y) and transverse z coordinates. This
allows us to model the diffusion process as a one dimensional problem in the transverse direction and to treat the



concentration field as a function of z and ¢ only. In this case, the solutions for equations (1) and (3) can be found in

textbooks [1]. They are

o(z,t) . A= (-1 (2n + 1)z D(2n +1)%m%t
oo %;2 1% eXp( iz ’
s(z,t)—1 A= (-1)"  (2n+ )7z _ D(2n+1)°x%t
So—1 ﬂgznﬂm a P & ‘ )

Plots of this concentration field ¢(z,t) are shown on Fig. 2.a for different values of time ¢.
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FIG. 2. a. Concentration profiles c(z,t) plotted using equation (4) for different times ¢ =

[0,0.01,0.1,0.5,1,2] - D/d*. b. Plots of the overall strain L(t)/Lo — 1 for Se = 1.14 as a func-
tion of \/d? - t/D, the square root of the nondimensional time: using the exact solution from equation
(15) (solid line) and using the initial time approximation from equation (16) (dashed line).

B. The swollen geometry

To estimate the transient swelling geometry, we recall the analogy with linear thermoelasticity and rely on the
classical models that relate a given strain to mechanical stresses [2]. In our case, the concentration profile ¢(z,t)
imposed by diffusion induces a local swelling ratio s(Z,t), which can be expressed as a swelling strain : ¢* = (s(z,t) —

1)1L. This strain tensor is not geometrically compatible: there does not exist any physical displacement field 5 (Z,1)
that creates such a strain. In particular, it violates the second compatibility equation

8262 62 €, 4o 82€ZZ
022 oydz

()

As a result, the observed strain € has to be different from the natural swelling strain €* and it induces internal
mechanical stresses ¢ according to the Hook relation [2]:

(6)

We recall the thin sheet limit (d < L) to assume problem invariance in the (z,y) plane. When used along with the
compatibility equations, this limits the strain tensor to the form

IS}

=2u(e =€) + A Tr(e— €L .

) 00
=0 v 0 ). ™
0 0 f(z0)

where 7(t) and f(z,t) are the unknowns to be determined.



Plugging this strain into equation (6), the stress tensor becomes
Ova = Oyy = 2u[y(t) = (s(2,1) = D]+ A(Y() = (s(z,8) = 1)) + (f(2,1) = (s(z,8) = 1))]
022 = 2u[f(2,1) = (s(z,8) = )] + AR(v(1) = (s(2,1) = 1)) + (f (2, 1) = (s(2,t) = 1))] (8)
and shear components are zero.
At this point, we assume that the solid responds instantaneously to the variations of swelling strain induced by the
diffusion process. Hence, the stress tensor must verify the equation of statics dive = 0 with unconstrained boundary
conditions. This yields

< Opg =< 0yy >. =0,
0,,=0,Vz, (9)

where the < - >, operator is the mean in the z-direction. At each time ¢, these equations lead to a coupled linear
system in terms of f(z) and ~

20+ p)(y—<s—1>)4+ A< f>,—<s—1>,)=0,
Cu+N(f(z) = (s=1)+2M(y - (s 1)) =0, (10)
which has a unique set of solutions

v(t) =< s(z,t) — 1>, |

_3A+2p

These results can be further simplified in the case of PDMS because it is a nearly incompressible elastic solid, i.e.
a material for which p < A. Hence, the observed deformation is

< s(z,t) — 1>, . (11)

Ew(%y,zvt) =< S(th) -1 >o T,
fy(%lh«%ﬂ =< S(Z,t) -1 >,

&z, y,2,t) = S/OZ(s(z,t) —1)dz—2<s(z,t) = 1>, 2. (12)

In practice, the measurable quantities in an experiment are the overall thickness d(¢) and length L(t) of the sheet.
They are

d(t) = d() + 2fz(d0/2,t) =< .S(Z,LL) >, 'do s
L(t) = Lo+ 2§$(L0/2,t) =< S(Z,t) >, Lo . (13)
In the end, we find that the inhomogeneous swelling strain s(z,¢) — 1 induces a homothetic transformation on the
overall geometry of the swollen sheet: the length and thickness evolve as if the sheet is homogeneously swollen by

the solvent at a concentration < ¢(z,t) >,. Thereby, the overall length of a square swelling sheet is unambiguously
defined by
L(¢)

(1) _
T =< s(z,t) >, . (14)

C. Combining diffusion and deformations

The swelling ratio s(z,t) is given by the diffusion of a swelling solvent into the immersed sheet. Therefore, the
transient length of the swelling sheet L(t) is found by combining the main results from the two previous subsection,
in Eq. (4) and Eq. (14), to yield

L(t 4 & D(©2n + 1)27%¢
N (R e )]

For initial times, this expression simplifies [1] to

L(t) 2 | Dt

—— —1=(Scc —1)=4/— . 16
A comparative plot between the full solution (15) and the initial time approximation (16) is shown on Fig. 2.b,
revealing a good agreement until ¢t ~ d?/D.



II. HEIGHT PROFILES FOR CHANNELS OF VARIOUS WIDTH

[1] J. Crank, The Mathematics of Diffusion, Oxford Science Publications, 1975.
[2] R. B. Hetnarski and M. R. Eslami, Thermal Stresses - Advanced Theory and Applications, Springer, 2008.
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FIG. 3. Deformations of microchannels measured by the Synthetic Schlieren method. The position
of the channel is outlined by solid lines. a-c) Height profiles h¢ of the roof of the test section swollen
by hexadecane for channels of width 1 mm, 1.5 mm and 2 mm respectively. d-f) Height profiles h'»
of the top surface of the PDMS block swollen by hexadecane for the same channels of width 1 mm,
1.5 mm and 2 mm respectively.
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Appendiz C. Published paper: Microchannel deformations due to solvent-induced PDMS
188 swelling, LOC 2010
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