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DOCTEUR DE L’ÉCOLE POLYTECHNIQUE
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Foreword

The transition to turbulence in shear flows still leaves open several problems of
great practical importance. This thesis is the continuation of the work of the
Saclay group in this field. Their main focus was the investigation of the growth
of a finite amplitude perturbation introduced in the laminar plane Couette flow
(pCf), a shear flow between two parallel plates. When the control parameter
exceeds a certain threshold, this perturbation is self-sustained and gives rise to
a turbulent region, called a spot. Their study raised many questions and in this
thesis we focus on few of them: How do this turbulent region sustains itself? What
is the mechanism that spreads this turbulent region into laminar domain? The
turbulent domain looks separated from the laminar domain by a sharp boundary,
but is the flow outside this spot laminar? Once all the domain has become
turbulent, how is the distribution of the durations needed to relax towards laminar
state when the control parameter is decreased below the threshold?

To bring some elements of answer to these questions, we have derived a
model of pCf in terms of partial differential equations (PDEs) using the Galerkin
method. In this derivation, we used an assumption based on the experimental
observation of the Saclay group, which is the coherence of the observed structures
between the two plates, which permits us to consider few cross-stream modes.
This simplification makes the identification of involved physical mechanisms eas-
ier than using simulations of the full dynamic equations. This kind of model
allow us to approach the problem of spot propagation that requires explicit space
dependence (spatiotemporal chaos), by contrast with models in terms of ordi-
nary differential equations, obtained by frozen this spatial dependence (temporal
chaos).

The outline of the manuscript is as follows. In chapter I, we review some ex-
periments and results from the literature related to the questions under scrutiny:
The first part of this chapter concerns the recent studies of the distributions of
the transient lifetimes. The second part is dedicated to the spot spreading mech-
anisms and more generally to the coexistence between turbulent/laminar state.
The last part concerns the self-sustainment of the turbulent state.

Then, in chapter II, the derivation of the model is detailed. The numeri-
cal method and some results are presented in chapter III. We show that this
model reproduces the globally sub-criticality of pCf and that the global stability
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threshold (Rg) using this model is found to be a factor 2 less than the one in the
experiences. The extensivity of the turbulent state is also addressed. Then, the
study of the distributions of the transient lifetimes shows the same behavior as
in the experiments of the Saclay group: exponential decay of the duration of the
transients and a divergence of the mean value of these duration in 1/(Rg − R),
where R is the Reynolds number.

In chapter IV, we are interested by the self-sustainment of the turbulence
inside a growing turbulent spot as well as in a fully turbulent domain. A brief
survey of the work in the literature shows that the key question is about the
generation of streamwise vortices. After analyzing the different terms in the
streamwise vorticity equation, we find that the tilting term of the wall-normal
vorticity into streamwise direction is the dominant term, in accordance with the
other studies. However the tilting term of spanwise vorticity into streamwise di-
rection is not negligible. By analyzing each term contributing to the generation of
streamwise vorticity in physical space and tracking the evolution of this vorticity
into streamwise vortices in time, we discovered a simple process for streamwise
vortices generation where the flow field (U0,W0) related to the streaks (repre-
sented by the velocity component U0 in our model and where ∂xU0 + ∂zW0 = 0)
plays a crucial role. This process can be summarized as follows: a spanwise vor-
tex is deformed by this flow and gives a crescent vortex where its legs are two
counter-rotating vortices. They regenerate the streaks by the lift-up effect. We
find that the streamwise vortices are generated in regions where a positive streak
encounters a negative streak and results in a stagnation-like point, i.e., where
∂xU0 ≤ 0 and U0 ≈ 0. Then, we derive a 1D-model in terms of four PDEs, show-
ing the generation of streamwise vortices from spanwise vortices. The last part
of this chapter is concerned with the generation of spanwise vortices. Under the
action of the flow field (U0,W0), a localized region of streamwise velocity correc-
tion, represented in the model by U1 ≤ 0, is stretched in the spanwise direction,
under the action of W0 (where ∂zW0 = −∂xU0 ≥ 0). To this z-elongated region,
a vertical velocity is generated by the pressure to ensure the continuity equa-
tion. This vertical velocity and the z-elongated region of U1 form the spanwise
vortex. Finally, by piecing together the mechanisms described in this chapter, a
self-sustained process for wall-turbulence is proposed.

In chapter V, we focus on the spot spreading mechanism. First we analyse
the coherent structures on the border between the laminar and turbulent regions.
This reveals us the existence of many vortices with cross-stream axis extending all
over the gap. The streamwise velocity component of these vortices is the streak
(U0). The vortices move parallel to the plates and we show that the origin of
this motion is essentially due to the action of each vortex on the other. During
their motions, these dipoles carry the other perturbation components such as the
streamwise and spanwise vortices. This is the spreading mechanism. A simple
1D-model in terms of 8-PDEs is derived to corroborate it.

In chapter VI, we are interested by the outskirts of a turbulent spot. Outside
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a spot, our numerical results show the development of large scale flow, extending
over the whole gap, characterized by streamwise inflow and spanwise outflow,
giving it a quadrupolar shape. The spot is associated to a region where the
streamwise velocity correction (U1) is dominantly opposed to the base flow, as
seen by filtering out small-scale fluctuations. The origin of the quadrupole-like
flow is traced back to the shearing of this negative correction by the base flow,
whereas the correction itself is generated by the appropriate component of the
local average of the small-scale Reynolds stresses (streaks and streamwise vor-
tices).

Chapter VII is our concluding chapter. We summarize the work of this thesis
and we present some questions that we intend to examine by going beyond the
case of pCf and considering other wall flows experiencing a similar transition to
turbulence, such as plane Poiseuille flow and Taylor-Couette flow in narrow gap.
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Chapter 1

Introduction

The transition to turbulence in shear flows close to a solid wall still leaves open
several problems of great practical importance. This situation arises because
linear stability analysis is less fruitful for stable systems in which transient al-
gebraic energy growth may become relevant than when exponentially growing
modes are present. As a matter of fact, things are easier to understand in the
case of supercritical instabilities —especially in closed-flow configurations, e.g.
Rayleigh–Bénard convection and the Taylor–Couette instability— for which the
classical tools of weakly nonlinear analysis are available. The situation is indeed
delicate to handle in the case of a discontinuous transition marked by a competi-
tion between solutions arising from linear instability modes and other nonlinear
solutions, i.e. in the globally subcritical case (Dauchot & Manneville (1997) (21)).
A classical example is the plane Poiseuille flow —the flow between two parallel
plates driven by a pressure gradient— which is linearly unstable only beyond
some high Reynolds number Rc (Orszag (1971) (74)) while turbulent spots, i.e.
patches of turbulent flow scattered amidst laminar flow and separated from it by
well defined fronts, can develop in the flow for R as low as about Rc/4 (Carlson
et. al.(1982) (16)).

The situation is even worse for the plane Couette flow (pCf in the following) —
the simple shear flow driven by two plates moving parallel to each other, Fig. 1.1—
which is stable for all R, hence Rc =∞ (Romanov (1973) (84)), but experiences
a direct transition to turbulence at moderate values of R ((61; 98; 22)). Standard
modal and non-modal linear theory, as reviewed e.g. in Schmid & Henningson
(2001) (88), is of little help to understand the main problem alluded to above,
namely the nonlinear coexistence in physical space of these different solutions
testified by the existence of turbulent spots.

A detailed understanding of this transition to turbulence (globally subcrit-
ical) via turbulent spots nucleation and growth, relies on (i) an understanding
of microscopic processes such as the self-sustainment of turbulence and (ii) the
mechanism by which it propagates into the laminar domain. In the other hand,
some studies have been devoted to the transition from turbulent to laminar flow.
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Figure 1.1: Left: Experimental set-up for plane Couette flow, used by the Saclay
Group. Right: Laminar regime with linear velocity profile. Adapted from Man-
neville (2004) (64).

They were motivated by the determination of the stability threshold (usually
noted Rg) and also to investigate the behavior of the transient lifetimes near this
threshold.

We present some related works in §1.1. The development and growth of the
spot is presented in §1.2. Some studies concerning the spreading mechanisms are
summarized in §1.3. The process related to the self-sustainment of turbulence
(inside the spot) is discussed in §1.4. Throughout this chapter, we use a common
coordinate system with x in the streamwise direction, y along the normal to the
wall and z in the spanwise direction. The base flow is U and the fluctuations are
u, v, w. Most of the studies that we have found in the literature and which we
present in this chapter, are related to the turbulent boundary layer flow. Few
are concerned with the plane Couette or Poiseuille flow. The relevance of those
studies in understanding transitional flow especially pCf is justified by the fact
that turbulent flows in pipes, channels and boundary layers have some common
features, investigated below.

1.1 Transient lifetimes

1.1.1 Introduction

As it seems to be strange, the study of the transition from turbulent to lam-
inar state might bring some valuable elements to understand the transition to
turbulence itself. For example, this approach permits one to determine, with a
reasonable accuracy, the stability threshold (Rg).

Determining the distribution of the durations needed to relax from turbulent
state towards laminar state when the control parameter is decreased below the
threshold, was the aim of some studies. We summarize here some of them and
outline a few hints for our own study.
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1.1.2 Numerical and experimental studies

In phase space, we can consider that the laminar state is a fixed point. Since the
plane Couette flow is linearly stable, all points in the neighborhood of this fixed
point evolve towards it. The ensemble of these points form the basin of attraction
of the laminar state. Far from this basin, there is the turbulent state with its
complicated structure:an initial condition can remain turbulent while another
one very close to it can relaminarize. Such a structure is known, in dynamical
systems theory, as a chaotic saddle.

Some insight in this saddle can be obtained by studying the distribution of
lifetimes of turbulent transients. Many researchers went this way, using both ex-
perimental and numerical methods, to collect a large number of lifetimes, for pipe
flow and plane Couette flow. We will not describe the methods used in analyzing
the transition and determining the lifetimes (usually based on the determination
of the point in time where the energy drops below a threshold). For a fixed
Reynolds number below the threshold Rg, the probability to stay turbulent for
a duration of t = δt1 is less than the probability to stay turbulent for δt2 ≤ δt1.
Theory of dynamical systems predicts a probability Π ∝ exp−t/τ(R), where τ
is a characteristic decay time (also the lifetime). This exponential behavior was
obtained, among others, by Darbyshire & Mullin (1995) (20) for pipe flow as in
pCf experiments by Bottin & Chaté (1998)(11). The natural question that arises
is how τ depends on R.

For pCf, lifetimes have been measured experimentally by Bottin & Chaté
(1998) (11) in a large box with streamwise and spanwise lengths Lx = 190 and
Lz = 35. They observed that τ increased continuously with R, suggesting a
divergence at some finite value of R. By fitting their data, they concluded that
the best fit for τ is τ ∝ (Rg − R)−1, where Rg = 323 ± 2 is the global stability
threshold.

Peixinho & Mullin (2006) (78) run experiments in pipe flow and have ob-
tained an exponential distribution of lifetimes. They have shown that τ ∝
(Rc − R)−1±0.02, where Rc = 1750 ± 10 is the critical Reynolds number. They
pointed out that in dynamical systems theory, this behavior of τ is a generic
feature associated with transient behavior where an attractor loses stability at a
crisis.

Hof et. al. (2006) (45) presented new experimental data showing that the
lifetime does not diverge but rather increases exponentially with R. This has been
achieved by increasing the observations times (up to two order of magnitude)
for turbulent transient in a long pipe flow (30 m). They showed that τ can
be best approximated by τ−1 = exp (a+ bR) where a and b are two constants
determined from the fit. By means of numerical simulations, they confirm the
exponential fitting for τ (observations time around 3000 and the shorter extend
of the numerical pipe). They proposed that reanalyzing some distributions found
in the literature by subtracting a time t0 to t in the expression of the probability
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Π can substitute the exponential behavior of τ−1 by its linear scaling.
As a conclusion, determining the behavior of the transient lifetimes remains

a controversial issue.

1.2 Turbulent spots

1.2.1 Introduction

Turbulent spot is commonly used to describe a turbulent region sitting in a lam-
inar flow. During the transition process from laminar to turbulent flow, small
turbulent spots develop. They can be considered as the “building block” of a
space-time chaos. In a natural transition (as opposed to triggered), the first ap-
pearance of turbulent spots determines the start of transition location and the
subsequent growth of the spots leads to the turbulent flow. The main character-
istic of the transition is the coexistence of the two states turbulent and laminar.

Emmons (1951) (31) first recognized the intermittent nature of transitional
flow and the role of the turbulent spots in the transition process. Pomeau
(1986)(81) studied this transition and conjectured that it could be represented
by a contamination process model, i.e., a model in which a laminar site becomes
turbulent with some probability: the growth of the turbulent region results purely
from a stochastic process (see §1.3 below).

Such a transition to turbulence has been studied recently. Many new tech-
niques, as high-resolved direct numerical simulations (DNS) or stereo particle
image velocimetry (PIV), have been employed to track the growth and move-
ment of the spots. New phenomena have been observed and would lead to better
understanding of spots dynamics. In the next section, some of these phenomena
are presented.

1.2.2 Characteristics of turbulent spots

Attempts to investigate the interior structure of a turbulent spot and, in partic-
ular, the mechanisms involved in its development, have been undertaken recently
by many researches.Only some studies are presented here.

Lundbladh & Johansson (1991) (61) studied the development of turbulent
spots in pCf by means of direct numerical simulations (DNS). At that time,
in 1991, due to the absence of experiments for this kind of study, their results
represented a prediction of the physical situation. They found that spots were
sustained for Reynolds numbers above approximately Rg ∼ 375 and that their
shape was elliptical with a streamwise elongation that was more accentuated for
high Reynolds numbers. For R = 300 < Rg, the energy of the disturbed region
decayed. The u-disturbance decayed more slowly, but at large times the remaining
u-disturbance consisted merely of long longitudinal streaks of alternating low and
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Figure 1.2: From (61). The isocontours of (a)-u,(b)-v,(c)-w velocity in the (x, z)-
plane for y = 0. The solid contours represent positive value and the dashed
contours represent negative values. There is an inflow toward the spot in the
streamwise direction (represented by u) and an outflow from the spot in the
spanwise direction (represented by w). The remaining distribution of v in this
figure highlight a positive region at the leading edge of the spot and a negative
region in its tail. Both regions are elongated in the spanwise direction.

high velocity, dominated by one specific spanwise wavelength. At R = 375 the
turbulence was seen to be self-sustained as the region grew. From an analysis of
the data, they found that the velocity field outside the spot was essentially two-
dimensional in that it lacked a significant vertical component. Spatially filtered
mean values were obtained by use of a Gaussian low-pass filter in wavenumber
space. Various values of the filter length-scale were tested. The results were
found to be rather insensitive to the choice of this length-scale. Figure 1.2 shows
the averaged u, v, and w fields at the mid-plane y = 0. The modification of
the external flow standed out in a clear way as the turbulent fluctuations of the
interior were filtered out. They have seen that the modified external flow is totally
dominated by the horizontal components and that there is a motion out from the
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Figure 1.3: Experiments on turbulent spots by the Saclay group (1998). If the
amplitude of the initial perturbation is sufficiently high, it gives rise to a growing
turbulent spot, otherwise, it decays.

spot near the midpoint x = 0, contrasted with motion towards the spot at the
leading and trailing parts (as we have found with our models). Notice that this
motion shows a quadrupolar pattern outside the spot, which was not mentioned
explicitly in the paper of (61). Finally, they found that spanwise growth increased
with increasing R for low values, but leveled off to a constant rate at high R.
As we will see later on, the investigations of Schumacher & Eckhardt (2001)(91)
have shown the existence of the quadrupolar flow.

Dauchot & Daviaud(1994) (22) reported a detailed study of the transition to
turbulence in pCf. Externally applied perturbations that trigger turbulent spots
were made by injecting turbulent jets into the laminar flow. As shown in Fig. 1.3,
they found that if the amplitude of the initial perturbation is sufficiently high,
it gives rise to a growing turbulent spot, otherwise, it decays. All perturbations
are observed to decay below R = Ru ≈ 310 so that the flow rapidly returns to
the base state (the Reynolds number is defined as R = Uph/ν, where Up is the
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Figure 1.4: Some results of the Saclay group (1998). Left: Photograph of the
gap in the (y, z)-plane using Pyroceram particles. It shows the cross section of
vortical structures in the (y, z) plane at R = 380 as indicated by the arrows. This
is a cross section of the streamwise vortices that have been observed to pervade
the spot (right panel). The presence of these structures correlates well with the
streaks in the (x, y) plane visualizations using Iriodin particles and shows that
the streaks and streamwise vortices are correlated.

plate velocity, h is the half-gap between the plates and ν the kinematic viscosity
of the fluid). Between Ru and Rg ≈ 325, localized finite-amplitude perturbations
generate turbulent spots with finite lifetimes. These lifetimes increase as Rg is
approached from below, while beyond this value, most of the spots no longer
decay but on the contrary invade the system. A regime of uniform featureless
turbulence is eventually obtained beyond Rt = 415.

In the other hand, turbulent spots may form a variety of temporal shapes
which can be distinguished easily because of a sharp laminar/turbulent interface.
As these spots evolve, they grow, split and merge. The streakiness of the spot
was visible, as clearly shown in Fig. 1.4.

Hegseth (1996) (38) carried out and experimental study of the coexistence
of laminar flow and turbulent spots in pCf. He observed vortical structures in
the (z, y) plane as shown in Fig. 1.4. The circular structures in the figure could
be interpreted as cross sections of streamwise vortices that pervaded these spots.
Their temporal behavior was quite complex and included events such as vortex
creation, destruction and motion. These vortices almost filled the entire gap.

1.3 Spreading mechanisms

Roughly speaking, a complex spatiotemporal behavior that involves two phases
(a simple one, that describes a so-called laminar state and a complex one, that
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has been called turbulent state) is called spatiotemporal intermittency. It denotes
a complex dynamical behavior which is observed in spatially extended physical
systems.

The two states are separated by a front and the laminar state disappears
through the propagation of this front. Two types of front have been defined in
the literature: pulled and pushed.

In a complete review by Van Saarloos (2003)(105), the name pulled front
comes from the fact that such a front is being “pulled along” by the leading
edge of the front, the region where the dynamics of the front is governed by
the equations obtained by linearizing about the unstable state. In this way of
thinking, a pushed front is being pushed from behind by the nonlinear region.

From the theoretical side, little is known about the question of coexis-
tence between laminar flow and turbulence and the possible mechanisms of
(pulled/pushed) front propagation leading to the spreading of turbulent spot.

This question was discussed by Pomeau (1986)(81) from a fully abstract point
of view as a nucleation problem in terms of first-order phase transition. He argued
that when one of the competing states was chaotic, the competition could be
understood in terms of a stochastic contamination process in the same class as
directed percolation. In fact, directed percolation (DP) is the common name for
spreading processes with active (“live”) sites and an absorbing (“dead”) state.
Note that DP is a purely statistical process with no a priori dynamics; at each
time step, a site can become alive with probability p, if and only if at least
one of its neighbors was alive at the previous time step. For p ≈ 0 the process
rapidly terminates whereas for p ≈ 1, the live sites spread without limit. The
concrete connection between DP and subcritical transition to spatio-temporal
intermittency in hydrodynamic context, is still an open question.

Based on experiments in boundary layers flows, Gad-El-Hak et. al. (1981)(33)
proposed a mechanism called “growth by destabilization”. If the mean transport
velocity of the spot is lower than the mean velocity of the surrounding flow, the
spot acts as a blockage and the laminar flow field outside the spot is accelerated.
The linear stability of the profile maybe be lost and the growth of infinitesimal
perturbations occur.

Dauchot & Daviaud (1994)(22) discussed this mechanism in an experimental
study. They found velocity profiles indicating that the flow is accelerated outside
the spot. They also envisioned another mechanism related to the transient growth
of perturbations. But a direct demonstration of both mechanisms has not yet
appeared.

Spanwise spreading of the turbulent spot was investigated by Schumacher &
Eckhardt (2001) (91). They performed direct numerical simulations of Navier-
Stokes equations for plane Couette flow with free-slip boundary conditions and
added a bulk force to drive the flow. They found that the front advances at a
rather well-defined speed in the spanwise direction and that the presence of the
turbulent spot gives rise to a large-scale spanwise outflow.
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They defined vf , the velocity of the turbulent spanwise-advancing front. They
showed that this velocity vf was different from the large-scale spanwise outflow
velocity but they conjectured that this outflow had profound consequences for
the spreading of the spot. They also analyzed the linear spreading velocity v⋆ by
linearizing the flow equations about a laminar state viewed as a sum of the base
flow and this large-scale outflow, using an Orr-Sommerfeld equation. The mea-
sured front speeds in the numerical simulations were about a factor 10 larger that
the value of v⋆ obtained this way, leaving no doubt that the spanwise spreading
of the turbulent spot is not governed by a linear mechanism.

The question of which mechanism is involved in spot spreading (in shear
flows in general) is to a large extent open. We were motivated to study the spot
spreading within our model.

1.4 Self-sustainment of wall-turbulence

In this section, some studies related to the self-sustainment of wall-turbulence are
presented. Most of the investigations in this field were concerned with boundary
layer, few with pCf or Poiseuille plane flow. We have decided to present some of
them, since they can give us valuable hints to our study.

1.4.1 Definition of coherent structures

It is natural that in the aim to understand the wall turbulence, we use flow
patterns as building blocks. The purpose of this section is to define and describe
these elements in a simple way. These elements are called coherent structures,
noted as “CS”. Townsend in 1959 gave one of the first definition to coherent
structures: “a flow pattern which is of finite size, mechanically coherent and
resistant to disintegration”. One of the first CS was proposed by Theodorsen
in 1951. He imagined that a vortical element, with its spatial structure looks
like a horseshoe (Fig. 1.5), arose from the wall to transport fluid (v 6= 0). This
horseshoe vortex has two legs located near the wall, forming two counter-rotating
streamwise vortices, another important CS in wall-turbulence. He introduced this
concept, from a phenomenological point of view, to explain and to link all the
observed turbulent flow events (defined later on).

Streaks were also among the first and most important elements identified in
the early experiments. They were observed near the wall. In a review article,
Corrsin (1955)(17) discussed some experiments concerning the behavior of dyed
fluid being replaced by clear fluid in a tube flow. He stated:“The significant
property seems to be the strong orientation into streamwise filaments of the
residual dye. Presumably this indicates a predominance of axial vorticity near the
wall, sweeping the dyed wall fluid into these long narrow stripes.” The existence
of many streamwise vortices near the wall, lifting up near-wall fluid, is a possible
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Figure 1.5: Different parts of a hairpin vortex (Theodorsen, 1951). A vortical
element, with its spatial structure looks like a horseshoe, arose from the wall to
transport fluid (v 6= 0) and produces Reynolds stress (−uv 6= 0).

explanation. Since the near-wall fluid has a low speed, the term “low-speed
streak” is often used. On the other side of the vortex, fluid from a higher speed
region is brought closer to the wall. The high-speed regions are devoid of dye
because the fluid comes from region far from the wall.

The term “streak” originated from the behavior of flow visualization markers.
Nowadays, we use streaky flow to describe a U(y, z) velocity profile that has an
oscillation in the z-direction. As we will see later on, this streaky profile is used
in stability considerations.

1.4.2 Kinetic energy production

It is of interest to look at the spatial region where turbulent kinetic energy is pro-
duced. The Reynolds-Orr equation gives turbulence production P = −〈uv〉∂yU
where −〈uv〉 is one component of the (averaged) Reynolds stress. We are in-
terested in the processes that make essential contributions to P , i.e., why there
is, somewhere in space, a correlation between u and v such that −uv is positive
(since ∂yU > 0) rather than negative.

When flow is ejected from the wall, by a vertical velocity v > 0, it cre-
ates low speed streaks, u < 0, since the streamwise velocity at this location is
now 0 < U(y) + u < U(y). Hence, this ejection event makes a positive −uv
contribution to the Reynolds stress and is defined as Q2 event. Similarly, any
coherent event producing a Q4 contribution is frequently called a “sweep”. A
high speed streamwise-flow comes close to the wall by negative vertical velocity
v. It generates positive streaks since near the wall, the streamwise velocity is now
U(y) + u > U(y), i.e. u > 0. Hence, this sweep event makes also a positive −uv
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contribution to the Reynolds stress. A general concept is that the Q2 and Q4

events occur on each side of a streamwise vortex and hence those regions make a
significant contribution to the energy production. For this reason, elucidating the
dynamics of the streamwise vortices is crucial in understanding the production
of turbulence.

1.5 Characteristics of self-sustaining

mechanisms

To summarize the previous sections, we state that where Reynolds stress −uv
is positive, kinetic energy is produced. Since the key structure involved in such
production are the streamwise vortices, which appear and disappear, we may
understand that there is a cycle governing the generation of such vortices. The
occurrence of this cycle guarantees the self-sustainment of turbulence. The cycle
can be envisioned as follows: many different structures constitute the skeleton of
this cycle and they are linked together by some mechanisms. The main effort to
provide is to establish the cause-and-effect relationship between these structures
and the mechanisms behind their generations. Many studies are concerned with
identifying the structures, based on experimental or DNS data. A few others
focus on the mechanisms leading from one structure to another (actually there
are very few mechanisms, the well known is the lift-up, by which, the streamwise
vortices generate the streaks).

A self-sustaining cycle has several characteristics. The first might be the
time scale of the repetition of events. The time interval between the coherent
structures should be the same, or at least comparable between the cycles. Another
important characteristic is the spatial features of the coherent structures. It is
not clear that the generated streaks have the same amplitude (or strength) and
the same spanwise width as the previous streaks. Same question holds for the
streamwise vortices, especially if they are or not strong enough to restart the
cycle.

Another characteristic concerns the nature of the process. Some of them
include an instability, whereas in others, a vortex can generate another vortex.
Hence, in discussing self-sustaining mechanisms, we will use two main classes (for
a complete review, see Panton (1997) (76) and Panton (2001)(77)). The “parent
offspring” class is defined by having a flow structure that develops in time to
replicate itself without involving an instability. The second class has, during part
of the cycle, a velocity profile that is unstable to small disturbances.
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1.6 Self-replicating mechanisms

Let us first summarize generally accepted ideas ((77)). First, there are the streaks.
It is almost universally agreed that the streamwise vortices near the wall sweep
low speed fluid into the low-speed streaks (lift-up mechanism). On the other side
of this vortex, high-speed streaks are generated. This produces a characteristic
streak velocity profile (u) with spanwise variation. Together with the vertical
motion v of the streamwise vortices, Reynolds stress are produced.

Many people view the streamwise vortices as the legs of hairpin vortices (see
Fig. 1.5). From this viewpoint, the self-sustaining mechanism centers on how
hairpin vortices are produced given the initial situation as a fully developed tur-
bulent state. Here we focus on how a hairpin vortex is generated, or springs from
another hairpin vortex.

Brooke & Hanratty (1993)(15) performed computation of a channel flow and
examined vorticity patterns in (y, z) planes. Viewing (y, z) planes enables one to
see streamwise vortices, even if the vortex axis is not exactly in the (y, z) plane.
They found that a new vortex is born at the downstream end of the parent on
the down-wash side. This end is lifted from the wall and they refer to it as the
detachment point. They remarked that the vorticity in the child vortex is of the
opposite sign to that of the parent and that the regeneration is not influenced by
outer flow events. Thus, they envisioned a regeneration process that is entirely
within the inner region.

An interesting contribution is given by Heist et. al. (2000)(43). They iden-
tified a new process that forms about 30 percent of the streamwise vortices.
This was accomplished by examining the changes, with time, of the turbulent
field obtained from a direct numerical simulation of turbulent flow in a channel.
Streamwise vortices create a shear layer by pumping low momentum fluid from
the wall. One or more small spanwise vortices are formed at the top of this layer.
They grow in size and rotate in the direction of flow. The main focus of Heist’s
paper is not on how they form but on what happens after they form. Figure 1.6 is
a plan view of their DNS results. Vortex A is followed as a parent that produces
vortex B. Vortex B grows in the spanwise direction and then elongates in the
streamwise direction and intensifies.

Previous investigators have suggested that spanwise vortices could have a
direct role in the formation of streamwise vortices. A number of investigators have
argued that spanwise vortices play a key role in sustaining turbulence. Different
proposals have been made to explain how this occurs. A common assumption is
that spanwise vortices evolve into hairpin vortices, but the details of this process
are not given (see e.g. (77)).

A common picture (among many others) about the hairpin vortex generation
is presented in (76). A streamwise vortex collects fluid from near the wall and
creates a low-speed streak. Next, the low-speed streak region forms an obstacle
for the faster moving stream. This event takes place as long as the stream-
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Figure 1.6: Birth of vortex B and its growth and elongation. From (43).

wise vortices exist and pump more fluid into the streak area. Hence, this lifted
area produces a streamwise shear, due to the impingement of the faster moving
stream on it. This lifted region produces a stronger U(y) shear layer which rolls
up, much like a Kelvin-Helmholtz cat’s eye, into a vortex arch or head. The
vortex lines in the head extend down. As the head is convected downstream,
the legs are stretched and the swirling thereby intensified. Thus, the hairpin for-
mation process consists of streak lift-up, shear layer intensification, and hairpin
re-formation.

1.7 Instability-based mechanisms

The class of self-sustaining processes involving instability mechanisms is now
discussed. During part of the cycle, a velocity profile is unstable to infinitesimal
perturbations and a linear theory is developed. The velocity profile, which must
exist for sufficient time for the instability to develop, can be the base flow. A
perturbation is added to it and the question is, does this disturbance grow or not.
More specifically, what kinds of perturbations grow and how fast do they grow.
In order to form a complete cycle, the instability should ultimately lead back to
produce the initial velocity profile.

A disturbance and a velocity profile are the only common elements of a sta-
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bility analysis. The next choice concerns the equations that are used to follow
the development of the disturbance. Typical laminar flow stability analysis uses
linearized equations under the assumption that they govern the initial devel-
opment of infinitesimal disturbances. Furthermore, linear equations have many
mathematical properties. They allow an analysis by normal modes, i.e., the
eigenfunction and eigenvalues of the system. The fastest exponentially growing
normal mode determines the characteristics of the most-unstable infinitesimal
disturbance.

In some cases as pCf, this approach fails. However, the linearized Navier–
Stokes equations are non-normal and their eigenfunction are not orthogonal. This
allows certain disturbances that are composed of several normal modes to grow
to large amplitudes. Factors of 1000 or more have been found. At large times
the disturbance approaches the behavior of the last decaying eigenfunction. This
transient growth is algebraic and for that reason this phenomenon is also called
algebraic growth (as we see later on, Schoppa & Hussain used this transient
growth to show that normal modes growth is not sufficient to trigger nonlinearity).

Trefethen & Trefethen (1993) (100) make an analogy with vectors. Consider
two almost oppositely directed basis vectors that have large amplitudes. These
are normal mode components. Their resultant, the perturbation, has only a
small magnitude. Then, one basis vector magnitude decreases with time while
the other is unchanged. This causes the resultant perturbation to increase in
amplitude. Ultimately, the behavior of the resultant perturbation follows the
dominant eigenvector and decreases (stable case).

Transient growth was ignored for many years. Recently, it was realized that
it could lead to profiles that, because of their large amplitude, are subject to
secondary instability and or nonlinear effects. Transient growth has a history of
development and a nice introductory review is in (100).

Hence, in the instability mechanism class there are many questions. They
concerns the nature of the perturbations (finite or infinitesimal), the equations
to be used and the approach (normal mode or transient growth). Note finally
that what happens when nonlinear effects become important is another (difficult)
issue.

1.7.1 Inflectional profiles

In the first flow visualization experiments, Kline & Reynolds (1967)(54) noted
an oscillation in the dye streak and proposed that an instability existed. The
conjecture was that the lifted low-speed streak produced an instantaneous U(y)
profile that had an inflection point. Many authors made an analogy with linear
stability of plane two-dimensional profiles. Such 2D profiles with an inflection
point could be unstable (Rayleigh’s criterion). The inflection point is a neces-
sary, but not a sufficient condition. Rayleigh’s criterion has been superseded by
Fjørtøft theorem, not developed here (see (88)).



1.7 Instability-based mechanisms 17

Figure 1.7: Schematic of self-sustaining mechanism with inflectional instabilities.
Adopted from (7) (in (77)).

Blackwelder (1998) (7) noted that U(y, z) profile of a streak also has inflec-
tions in the z-direction. Figure 1.7 illustrates the self-sustaining relationships
envisioned by (7). The figure shows instability mechanisms in both U(y) and
U(z). A question mark indicates uncertain interactions and obscure mechanisms.

On the other hand, the study of Brandt et al. (2003) (14) was motivated by
the conjecture that the streak instability, being essentially wake-like in the span-
wise direction, could give rise to an absolute instability, as in classical wakes, and
then turbulence. Their conclusions do not confirm this conjecture; the streak
instability is produced sufficiently high above the wall, in regions where local
streamwise velocities are large so that perturbations are “advected away”. Con-
cerning the transition to turbulence, it is important to note that the relation
of the modal secondary instability to streak breakdown has not been definitely
proved (see also the premise of streaks-instability in general, later on).

1.7.2 Minimal flow unit

The minimal flow unit is a concept introduced by Jimenez & Moin(1991)(49).
They used the DNS code developed by Kim et al. (1987)(50) for a turbulent
channel and reduced the size of the channel width. The idea is to isolate a
basic process of wall turbulence. When the spanwise box width is large enough,
turbulence can be maintained on only one wall. The flow has only one streak
and a streamwise vortex. Calculations confirmed that the cycle is regenerative,
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Figure 1.8: Left: (a) Streamwise vortices (0, V (y, z),W (y, z)) in Couette flow.
(b) Contour plot of the initial streak profile U(y, z) produced by the vortices.
V = 0.02 is the strength parameter. Right: Growth rate vs. α. From Waleffe
(1997).

however, it had an unrealistically long time scale, perhaps because of strong
viscous effects. Jimenez & Pinelli (1999) (48) continued along this approach. A
noteworthy difference was that the channel was wider, wide enough for two or
three streak profiles in the spanwise direction and the flow could also contain some
large-scale outer structures. By various artificial modifications to the calculations,
they tested the viability of the streak instability mechanism and the parent-
offspring mechanism. They concluded that a streak instability cycle is possible
and entirely exists in the near wall region. This self-sustaining cycle needs no
interaction with the outer region. On the other hand, the parent-offspring cycle
did not appear viable under these severely viscous conditions. As the authors
noted, these conclusions might be modified at higher Reynolds number and/or
for larger domains. However, they believed that the streak instability mechanism
is the dominant self-sustaining mechanism.

1.7.3 Streaky velocity profiles

We discuss here the “instability” study of the streak profile U(y, z). Waleffe
& Kim (1998)(102) and Waleffe(1997) (103) investigated the stability and re-
generation of streak profiles in pCf. The streaky velocity profile is produced as
follows. Starting with the linear laminar profile, they impose streamwise vortices



1.7 Instability-based mechanisms 19

structures that extend across the whole channel. After about a quarter of a rev-
olution the vortices redistribute the flow to produce the streaky profile U(y, z)
as given in figure 1.8 (a, b). Then, the streaky profile is analyzed using linear
viscous equations. They impose a perturbation of a form that is sinuous in the
x-direction,

v = exp(λt)exp(iαx)
∑

vn(y) sin(nγz).

Results for the most unstable fundamental sinuous mode are shown in figure 1.8.
The maximum growth rate for a spanwise mode with γ = 5/3 is 0.135 for a
wavenumber α = 0.74. Within this streak instability, the self-sustaining process
proposed by Waleffe (1997) (103) has the following three events:

• 1- Streamwise rolls redistribute the mean flow to form streak profiles.

• 2- A sinuous streamwise disturbance leads to an instability of the streak
profiles.

• 3- Nonlinear feedback of the unstable mode injects energy to reform the
rolls.

Process (1) is well known. Process (2) is observed in the Gortler flows, but is so
sensitive to the used streaky velocity profile and one needs to establish that it
occurs in pCf. Process (3) is an essentially new and obscure sequence.

Furthermore, we may wonder if there is a relation between the perturbation
spanning all the gap as in Waleffe calculation and the near wall region in turbulent
boundary layer. In fact, the Couette flow where these events occur does not have
two turbulent wall layers, one on either wall, but a turbulent process within the
entire channel. However, in (103), the distance between the walls is 40y+ units (
This is roughly equivalent to the “buffer region”, in boundary layer terminology).
The entire flow might be considered as a wall region with a moving wall on it.
Nevertheless, as with the minimal channel calculations, the main supposition is
that the major characteristics of the process are similar to those in a traditional
wall layer. In other words, the mechanisms underlying the generation of the
streamwise vortices spanning all the gap of pCf would be the same in the near
wall region of a traditional turbulent boundary layer. This assumption is certainly
correct for some range of Reynolds number and it would be interesting to guess
whether this Reynolds number is very large or just moderate.

Schoppa & Hussain (2002)(90) examined the turbulent flow that develops
in a channel driven by a pressure gradient. They use a minimal channel of
L+
x = 300, L+

z = 100. In this channel flow a mean U(y) is constructed so that the
upper wall is laminar-like and the lower wall turbulent-like. Their first calculation
was a linear stability analysis. It identified a sinuous, linear, inviscid instability
that only occurs if the streak-profile strength is sufficient. In this analysis the
base-flow streak profile is taken as:

U(y, z) = U(y) +
∆u

2
cos(βz)yexp(−ηy), V = W = 0.
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Figure 1.9: Low-speed streak. (a) Realization from DNS of minimal channel.
Isosurface where U = 0.55U0: (b) Typical velocity contours in (y, z) plane. Bold
line is same in (a) and (b). (c) Similar contours for profiles used in stability
calculations. Streak strength parameter θ20 = 56 is shown. (d) Mean velocity
profile for half-channel. Adapted from (90).

Here β is chosen to give a streak spacing of 100 and η chosen to give a plateau
in y-vorticity at y+ = 10 − 30. Instead of using ∆u

2
to indicate the strength of

the streak profile, a more physical concept was introduced. The streak profile
strength is denoted by θy+, the maximum inclination of a base-flow vortex line
at y+. This occurs on the flank of the streak. Figure 1.9 shows the base-flow
profile and the (y, z) plane velocity contours with θ20 = 56 indicated. Results
of the stability analysis (the growth rate vs. the streamwise wavenumber) show
that only streaks with θ20 ≥ 48 are unstable. Schoppa & Hussain did not believe
that linear instability is a dominant mechanism in the self-sustaining process.
They used the database of [Kim et al. (1987)(50) and found that the unstable
streaks were only a small fraction of the streak population. Thus, the occurrence
of a normal mode mechanism was small. In addition, they noted that the time
scale for viscous diffusion to destroy the streak profile was short. For example,
a streak profile with intensity θ20 = 56 decayed to θ20 = 50 in t+ = 30. The
third reason was that normal mode growth rates were very small. For example
the most unstable mode for θ20 = 56 grew by a factor of two when diffusion of
the base flow was included.

As described earlier, researchers became aware of non-normality and they
started to appreciate that a normal mode stability analysis is only a partial
answer. The non-self adjoint nature of the Navier-Stokes equations means that
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the unstable normal modes are not the only mechanism of perturbation growth.
Perturbations grow algebraically to large levels and then die off exponentially
or become an unstable normal mode. The important point is that when the
disturbance is at a large level, it is essentially a new flow pattern that can initiate
other events. Schoppa & Hussain (2002) (90) chose a perturbation in the form:

w = W sin(αx)yexp(−ηy)

i.e. not a normal mode (but belongs to the eigen subspace if η is degenerate).
They compared the energy of a normal mode and a transient perturbation, de-
noted as streak transient growth STG, as a function of time. The transient
perturbation grew by a factor of 20 compared to the normal mode’s growth of
a factor of two. According to the author’s minimal channel calculations, the
perturbation continued to grow to a level where nonlinear equations had to be
used. The DNS calculation yielded a regeneration of the streamwise vortex. Here
starts the second part of the work of (90). They found that the stretching of the
streamwise vorticity ωx by the streak waviness ∂xu, i.e. the term ωx∂xu, caused
formation of a streamwise vortex, x-elongated region of ωx. Presumably the cycle
was then completed by formation of a new streak profile by this vortex. In this
thesis, our findings are compared to the results of (90) (chapter 5).

1.7.4 Conclusions on instabilities

The idea that streamwise vortices are created by the breakdown of the lifted
streak due to its inflectional point in the (x, y) plane is legitimate but arguing
that, in turbulent pCf, the streamwise vortices result from an inflectional in-
stability would be unwarranted. As noted by Schoppa & Hussain (2002) (90)
themselves, the occurrence of such instability in turbulent flow has to be proved.
Its nature and its origin have to be explained too.

1.8 Conclusions of the chapter

Transition to turbulence in pCf is marked by a competition between patches of
turbulent flow scattered amidst laminar flow. Hence, a detailed understanding of
this transition to turbulence (globally subcritical) via turbulent spots nucleation
and growth, relies on (i) an understanding of microscopic processes such as the
self-sustainment of turbulence and (ii) the mechanism by which it propagates
into the laminar domain. Unfortunately, elements of answer to these problems
are expected perhaps no longer from the detailed study of output of direct nu-
merical simulations or experiments, as shown in this chapter, but rather from
modeling that might provide heuristic explanations to be further tested in ex-
periments either in the laboratory or in the computer. Most rational modeling
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approaches are developed through truncations of appropriate Galerkin expansions
of the primitive equations. Such approach is the kernel of the next chapter.



Chapter 2

Modeling plane Couette flow

2.1 Introduction

Plane Couette flow which is stable for all R, experiences a discontinuous transi-
tion marked by a competition between turbulent spots, i.e., patches of turbulent
flow scattered amidst laminar flow and separated from it by well defined fronts.
A detailed understanding of this transition to turbulence via turbulent spots nu-
cleation and growth, relies on an understanding of microscopic processes such
as the self-sustainment of turbulence and the mechanism by which it propagates
into the laminar domain.

Direct numerical simulations of the Navier–Stokes equations (DNS) have been
heavily used to identify elementary processes involved in the sustainment of tur-
bulence within the spots. However they produce massive data sets requiring a
lot of post-treatment before giving useful hints.

The alternative approach is the development of models at different levels of
abstraction depending on the question under scrutinity ((67)). From the obser-
vation of near-wall turbulent flow, and its reduction to a so-called minimal flow
unit, Waleffe was able to derive a differential model involving the amplitude of
a few modes associated to coherent structures ((103)), a Galerkin-like approach
that was made more systematic by Eckhardt and co-workers (e.g., (28)). Such
models indeed enlighten some of the mechanisms involved in the sustainment
of turbulence and the competition between laminar and turbulent states at the
fractal border of the basin of attraction of laminar flow according to the abstract
phase space viewpoint underlying the concept of temporal chaos. However, their
low-dimensional nature does not allow one to approach such problems as spot
propagation that require the explicit reference to physical space. When similar
questions were posed for convection, i.e. pattern formation, it was found partic-
ularly valuable to pass from ordinary differential systems that can only deal with
the time behavior, such as the Lorenz model, to partial differential equations
(PDE) that also account for space dependence, e.g. the Swift–Hohenberg model
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((97)) and its numerous variants, in order to diagnose spatio-temporal chaos.

This chapter is concerned with the derivation of a closed set of PDEs appro-
priate to the plane Couette flow. This case is particularly interesting since, by
contrast with other wall-bounded flows such as the Poiseuille flow or the lami-
nar boundary layer (Blasius) flow, it completely lacks linear instability and the
absence of downstream advection makes it practical to observe the long term
dynamics of spots, a crucial element of the subcritical transition to turbulence.

The space-time dependent models to be developed below are mostly intended
to attack the two main problems: how the spots get sustained at moderate R,
and how they contaminate the laminar flow.

Contrasting with the regime of developed turbulence taking place at large R,
which requires a refined space-time resolution able to account for the cascade
toward “small” scales, the transitional regime around Rg involves structures that
appear to be “large,” i.e. to occupy the full gap between the plates, and “coher-
ent.” In turn, a model in terms of a few well-chosen modes with low wall-normal
resolution should be sufficient for describing spots and understanding their dy-
namics. The amplitude of these modes will then be taken as functions of the
in-plane coordinates. This is the reason why we speak of 2.5-dimensional mod-
els. In this terminology, the number 2 stands for the full in-plane dependence
(x, z) and the suffix .5 suggestively expresses that the dependence on the third,
cross-stream, coordinate y is only partly taken into account through low order
truncation. In the next section §2.2, we present the primitive set of equations
and we derive our no-slip model using the Galerkin method. In §2.3, we give a
glimpse on the derivation of models with stress-free boundary conditions.

2.2 No-slip model

The Navier-Stokes equation and continuity condition for an incompressible flow
read:

∂tv + ω.v + 1/2∇v2 = −∇p+ ν∇2v, (2.1)

∇ · v = 0 , (2.2)

where v ≡ (u, v, w), p is the pressure and ν is the kinematic viscosity. Further,
∇

2 denotes the three-dimensional Laplacian. We have rewritten the nonlinearity
using the identity v.∇v = 1/2∇v2 + ω.v, with ω = ∇

tv −∇v.

In the following we use dimensionless quantities. Lengths are systematically
scaled with h, and Up stands for the velocity scale, hence a basic velocity profile
U(y) = Uby for y ∈ [−1, 1] in the no-slip case (Ub = 1). The equations are
further developed for the perturbation (u′, v′, w′, p′) to the laminar basic flow:
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u = U(y) + u′, v = v′, w = w′, p = p′, so that (2.1,2.2) accordingly read:

∂tu
′ + (∂yu

′ − ∂xv
′)v′ + (∂zu

′ − ∂xw
′)w′ + ∂xE

′
loc

= −∂xp′ − U∂xu
′ − v′∂yU +R−1

∇
2u′ , (2.3)

∂tv
′ + (∂xv

′ − ∂yu
′)u′ + (∂zv

′ − ∂yw
′)w′ + ∂yE

′
loc

= −∂yp′ − U∂xv
′ +R−1

∇
2v′ , (2.4)

∂tw
′ + (∂xw

′ − ∂zu
′)u′ + (∂yw

′ − ∂zv
′)v′ + ∂zE

′
loc

= −∂zp′ − U∂xw
′ +R−1

∇
2w′ . (2.5)

0 = ∂xu
′ + ∂yv

′ + ∂zw
′ , (2.6)

where E ′
loc =

1
2
(u′2 + v′2 + w′2).

The Galerkin method is a special case of a weighted residual method ((32)). It
consists here in forcing the separation of in-plane and wall-normal coordinates by
expanding the perturbations (u′, v′, w′, p′) onto a complete basis of y-dependent
functions satisfying the BCs with amplitudes dependent on (x, z, t). The equa-
tions of motion are then projected onto the same functional basis, using the
canonical scalar product. The main modeling step is then performed when trun-
cating these expansions at a low order and keeping the corresponding number of
residuals in order to get a consistent and closed system governing the retained
amplitudes. The no-slip boundary conditions for the vertical velocity component
are:

v′(y = ±1) = ∂yv
′(y = ±1) = 0 (2.7)

obtained by combining the continuity equation (2.6) to the conditions

u′(y = ±1) = w′(y = ±1) = 0 . (2.8)

To satisfy these conditions, we take a basis made of polynomials in the wall-
normal coordinate y, which also forms a family of functions closed for multiplica-
tion and differentiation. We do not use Chebyshev polynomials fully adapted to
highly resolved DNS ((6)) because, in spite of their good orthogonality properties,
they do not permit a straightforward account of the BCs at the low truncation
orders we are interested in. By contrast, we can easily construct individual basis
functions all satisfying the BCs arising from the no-slip conditions (2.7,2.8) and
develop a strict Galerkin approach ((34)). Projections are performed by taking
the canonical scalar product 〈., .〉 defined by:

〈f, g〉 =
∫ +1

−1

f(y)g(y) dy .

It turns out that things are simple only when restricting consistently to the
lowest possible order, i.e. keeping only functions associated to U0, W0, U1, V1,
and W1, due to the parity properties of the functions involved that automatically
guarantee the orthogonality of the different contributions to the velocity field.
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Boundary conditions (2.7) suggest one to take ((34; 66)):

v′ = V1A(1− y2)2 , (2.9)

and accordingly (2.8):

{u′, w′} = {U0,W0}B(1− y2) + {U1,W1}Cy(1− y2) . (2.10)

The pressure is expanded like {u′, w′}, with two corresponding coefficients P0 and
P1 that can be interpreted as the Lagrange multipliers introduced to fulfill the
even and odd lowest order projections of (2.6). The normalization constants are
given by: A2 = J−1

0,4 = 315/256, B2 = J−1
0,2 = 15/16, and C2 = J−1

2,2 = 105/16.
Amplitudes introduced in (2.9,2.10) are all functions of x, z, and t. The drift-flow
component (U0,W0) has a plane Poiseuille profile, in close correspondence with
what happens in the Rayleigh-Bénard case, as noticed first by (93) and subse-
quently exploited to derive the generalized Swift–Hohenberg model described in
(66).

According to the Galerkin method prescriptions, we insert the assumed expan-
sions (2.9,2.10) in the continuity equation (2.6), then we multiply it by B(1− y2)
and integrate over the gap, which extracts its even part:

∂xU0 + ∂zW0 = 0 .

In the same way, multiplying (2.6) by Cy(1− y2), and integrating it extracts the
odd part that reads:

∂xU1 + ∂zW1 = βV1 ,

with β =
√
3. Doing the appropriate manipulations for (2.3) and (2.5), we

straightforwardly obtain the even parts as

∂tU0 +NU0
= −∂xP0 − a1Ub∂xU1 − a2UbV1

+R−1 (∆2 − γ0)U0 , (2.11)

∂tW0 +NW0
= −∂zP0 − a1Ub∂xW1

+R−1(∆2 − γ0)W0 , (2.12)

with γ0 =
5
2
, a1 = 1/

√
7, a2 = 3

√
3/2
√
7, Ub = 1 and

NU0
= α2β

′U1V1 − α3V1∂xV1 + α1W0(∂zU0 − ∂xW0)

+ α2W1(∂zU1 − ∂xW1) + ∂xEa,

NW0
= α2β

′V1W1 − α3V1∂zV1 + α1U0(∂xW0 − ∂zU0)

+ α2U1(∂xW1 − ∂zU1) + ∂zEa,

with α1 = 3
√
15/14, α2 =

√
15/6, and α3 = 5

√
15/22, β′ = 3β/2 and Ea =

1
2
(α1(U

2
0 +W 2

0 ) + α2(U
2
1 +W 2

1 ) + α3V
2
1 ). In the same way, the odd part of (2.3)
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and (2.5) read:

∂tU1 +NU1
= − ∂xP1 − a1Ub∂xU0

+R−1(∆2 − γ1)U1 , (2.13)

∂tW1 +NW1
= − ∂zP1 − a1Ub∂xW0

+R−1 (∆2 − γ1)W1 , (2.14)

with

NU1
= −α2β

′′U0V1 + α2W1(∂zU0 − ∂xW0) + α2W0(∂zU1 − ∂xW1) + ∂xEb,

NW1
= −α2β

′′V1W0 + α2U1(∂xW0 − ∂zU0) + α2U0(∂xW1 − ∂zU1) + ∂zEb,

with γ1 =
21
2
, β′′ = β/2 and Eb = α2(U0U1 +W0W1). Finally, the projection over

V1 gives us:

∂tV1 +NV1
= −βP1 +R−1(∆2 − β2)V1, (2.15)

with:
NV1

= α3(W0∂zV1 + U0∂xV1)− (α2β)(U0U1 +W0W1) + βEb,

and α2β =
√
5/2.

To eliminate the pressure P0 and P1 in Eq. (2.11-2.12) and Eq. (2.13-2.15),
we introduce stream functions (Ψ0(x, z, t),Ψ1(x, z, t)) and velocity potential
Φ1(x, z, t) that satisfy the two continuity equations:

U0 = −∂zΨ0, W0 = ∂xΨ0, (2.16)

U1 = ∂xΦ1 − ∂zΨ1, W1 = ∂zΦ1 + ∂xΨ1 (2.17)

and βV1 = ∆2Φ1. (2.18)

The velocity U1 has two components, Up
1 = ∂xΦ1 and U r

1 = −∂zΨ1, where “p”’
(“r”) denotes potential (“rotational”) component (as well as W1). By contrast,
the velocity U0 has only one rotational component (as well as W0).

The equations governing Ψ0 (Ψ1) are obviously obtained by cross-
differentiating and subtracting the equations for the velocity components (2.11-
2.12) ((2.13-2.14)) (the rotational part). Taking the divergence of the equations
(2.13-2.14) yields an equation for the pressure which is next used with (2.15) to
determine the potential part of the velocity field accounted for by the field Φ1.
These equations are:

(∂t −R−1(∆2 − γ0))∆2Ψ0 = (∂zNU0
− ∂xNW0

)

+a1(
3
2
Ub∂z∆2Φ1 − Ub∂x∆2Ψ1) , (2.19)

(∂t −R−1(∆2 − γ1))∆2Ψ1 = (∂zNU1
− ∂xNW1

)− a1Ub∂x∆2Ψ0 , (2.20)

(∂t −R−1(∆2 − β2))(∆2 − β2)∆2Φ1 = β2(∂xNU1
+ ∂zNW1

)

+45
2
R−1∆2Φ1 − β∆2NV1

. (2.21)
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The linear term −a1Ub∂x∆2Ψ0 in Eq. 4.6 comes by cross-differentiating the two
linear terms −a1Ub∂xU0 and −a1Ub∂xW0 in Eq. 2.13 and Eq. 2.14. In the same
manner, the linear term a1(

3
2
Ub∂z∆2Φ1 − Ub∂x∆2Ψ1) in Eq. 4.5 comes from

−a1Ub∂xU1 − a2UbV1 and −a1Ub∂xW1 in Eq. 2.11 and Eq. 2.12.
Note finally that the nonlinear terms can be written by developing the quan-

tity Ea and Eb:

NU0
= α1(U0∂xU0 +W0∂zU0) + α2(U1∂xU1 +W1∂zU1 + β′V1U1) , (2.22)

NW0
= α1(U0∂xW0 +W0∂zW0) + α2(U1∂xW1 +W1∂zW1 + β′V1W1) ,(2.23)

NU1
= α2(U0∂xU1 + U1∂xU0 +W0∂zU1 +W1∂zU0 − β′′V1U0) , (2.24)

NW1
= α2(U0∂xW1 + U1∂xW0 +W0∂zW1 +W1∂zW0 − β′′V1W0) , (2.25)

NV1
= α3(U0∂xV1 +W0∂zV1) . (2.26)

The benefit of using the first formulation for the nonlinear terms is now clear:
The number of FFTs to be performed is roughly divided by two, since only the
cross-derivatives of the velocity are computed (∂zU0, ∂xW1, etc...).

On the other hand, the equation governing the mean value of the streamwise
velocity component U1, denoted by U1 =

∫
D
U1 ds/D is easily obtained by aver-

aging Eq. 2.13 over the periodic domain and using the continuity equations and
reads:

d

dt
U1 = α2(β + β′′)U0V1 − γ1R

−1U1. (2.27)

For the spanwise velocity component W1, we have:

d

dt
W1 = α2(β + β′′)W0V1 − γ1R

−1W1. (2.28)

The mean value of V1 is governed by:

d

dt
V1 = −βP1 −R−1(∆2 − β2)V1. (2.29)

The mean value of P1 is chosen zero P1 = 0 and hence V1 obviously cancels.
Finally, the mean values of U0 and W0 are governed by the equations:

d

dt
U0 = α2(β − β′)U1V1 − γ0R

−1U0, (2.30)

d

dt
W0 = α2(β − β′)W1V1 − γ0R

−1W0. (2.31)

The average velocity components (U0, U1,...) have to receive a special treat-
ment. They are computed in parallel by integrating Eq. 2.27-Eq. 2.31. This is
further explained in the next chapter. In the following, we recall the models
derived for the stress-free boundary condition and some related results (§2.3.3).
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2.2.1 Reynolds stress −U0V1

The evolution equation for the disturbance kinetic energy is the Reynolds-Orr
equation: dE

dt
= P − D, where E(t) = 1

2

∫
V
(u′2 + v′2 + w′2) dV and the two

terms on the right-hand side represent the exchange of energy with the base flow
U = Uby i.e. the production P = −

∫
V
u′v′∂yU dv and energy dissipation D due

to viscous effects. The velocity components (u′, v′, w′) are the perturbations to
the basic flow U , given by (Eq. 2.9-Eq. 2.10). After integrating over y, we have
P = −

∫
Dx,z

χU0V1 ds, where χ is a positive constant.

One reason this equation is interesting is that the occurrence of the two events
(U0 negative, V1 positive) or (U0 positive, V1 negative) produce positive Reynolds
stress −U0V1 and hence are very significant events in the production of turbulence
(in the literature, they are called Q2 and Q4 events, as seen in §1.4.2) .

The linear deformation of the base flow by a vertical velocity is the well known
lift-up mechanism (or “effect”) (see e.g.(88)). The generated streamwise velocity
by this mechanism is called a streak. In our model, this mechanism is represented
by the linear term −a2UbV1 in the equation (2.11) and U0 represents the streak.

It is clear that when the lift-up feeds energy into the system (i.e., V1 generates
U0), we have positive Reynolds stress, −U0V1 > 0. The origin of this lift-up
are the streamwise vortices, which justifies their dominant role in turbulence
production. The central issue addressed in the chapter IV concerns the generation
of the streamwise vortices.

2.3 Free-slip model

2.3.1 Derivation

Models for the stress-free boundary condition have been introduced and used
in (60) and in (64). We recall here the main steps of their derivation, just in
order to compare the structure of the model, obtained by the lowest order trun-
cation, to that of the no-slip model, both qualitatively (nature of the terms) and
quantitatively (value of coefficients).

Stress-free conditions on the cross-stream velocity (v′) read: v′(y = ±1) =
∂yyv

′(y = ±1) = 0, which directly leads one to take:

v′ =
∑

k≥1

V2k−1 cos((2k − 1)βy) + V2k sin(2kβy) , (2.32)

with β = π/2. For the in-plane components (u′, w′), from the continuity equation
(2.6) one obtains ∂yu

′(y = ±1) = ∂yw
′(y = ±1) = 0, so that the corresponding
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expansion reads:

{u′, w′} = 1√
2
{U0,W0}
+
∑

k≥1

{U2k−1,W2k−1} sin((2k − 1)βy)

+ {U2k,W2k} cos(2kβy), (2.33)

As for the no-slip model, the pressure perturbation expands in the same way as
the in-plane velocity perturbations. All the expansion coefficients remain func-
tions of the space coordinates (x, z) and time (t). These expansions are compati-
ble with a bulk force taken in the form f = F sin(βy/h)x̂ added to the right hand
side of Eq. 2.1 and generating a basic profile U(y) = Up sin(βy/h), provided that
F = Upνβ

2/h2. As before, the Reynolds number is taken as R = Uph/ν but, in
contrast with the no-slip case, there remains some arbitrary in its definition. If we
stick to our definition of Up as the speed at y = 1, given ν, R is numerically equal
to 1/ν but other conventions exist, e.g. take the reference velocity as U(y = 1/2)
or define R from the root-mean-square shear rate of the sine profile as in (103).

It is clear that the trigonometric basis is closed for multiplications and dif-
ferentiation with respect to y, which makes the Galerkin projection particularly
straightforward. It suffices to substitute expansions (2.32,2.33) in equations (2.3–
2.6), to compute the derivatives, expand the products, and isolate the different
harmonics, one after the other. In (60) this modeling approach has been shown
to preserve both the conservation of the perturbation energy by advection terms,
a feature of Navier–Stokes equations, and the linear stability of the basic flow for
all Reynolds numbers, a property of pCf (as already shown by Tollmien, the sine
profile lacks inertial instability in spite of the presence of an inflection point, see
e.g. (26).)

From the continuity equation (2.6), one immediately gets:

∂xUk + ∂zWk + kβ(−1)kVk = 0, ∀k ≥ 1. (2.34)

which, for k = 0 and k = 1 yields:

∂xU0 + ∂zW0 = 0, ∂xU1 + ∂zW1 = βV1. (2.35)

The lowest order truncation (beyond kmax = 1) gives the free-slip model with
the three fields Ψ0, Ψ1 and Φ1 and is called 3F model (F for field) . Its structure
is similar to the no-slip model (§2.2). Hence, for the sake of simplicity, only the
values of the coefficients for this model are given here in Table. 2.1. Only the
full expression of the next case kmax = 2 (5F model) is given, but models with
kmax up to 4 have been explicitly derived and used in numerical simulations (9F
model).

We give now the equations governing the amplitudes (U0,W0), (U1, V1,W1),
and (U2, V2,W2) of the 5F model. From the projection of the continuity equation
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(2.34) we have:

∂xU0 + ∂zW0 = 0, ∂xU1 + ∂zW1 = βV1, ∂xU2 + ∂zW2 = −2βV2.

Then, the projection of the perturbation equations gives for U0 and W0:

∂tU0 +NU0
= −∂xP0 − 1√

2
Ub∂xU1 − 1√

2
βUbV1 +R−1∆2U0 ,

∂tW0 +NW0
= −∂zP0 − 1√

2
Ub∂xW1 +R−1∆2W0 ,

where the nonlinear terms are:

NU0
= 1√

2

(
U0∂xU0 +W0∂zU0 + U1∂xU1 + βV1U1 +W1∂zU1

+ U2∂xU2 − 2βV2U2 +W2∂zU2

)
,

NW0
= 1√

2

(
U0∂xW0 +W0∂zW0 + U1∂xW1 + βV1W1 +W1∂zW1

+ U2∂xW2 − 2βV2W2 +W2∂zW2

)
.

Next, for U1, W1 and V1 we have:

∂tU1 +NU1
= −∂xP1 − 1√

2
Ub∂xU0 +

1
2
Ub∂xU2 − 1

2
βUbV2 +R−1(∆2 − β2)U1 ,

∂tW1 +NW1
= −∂zP1 − 1√

2
Ub∂xW0 +

1
2
Ub∂xW2 +R−1(∆2 − β2)W1 ,

∂tV1 +NV1
= −βP1 − 1

2
Ub∂xV2 +R−1(∆2 − β2)V1 ,

with:

NU1
= 1√

2
(U0∂xU1 +W0∂zU1 + U1∂xU0 +W1∂zU0)− 1

2
(U1∂xU2 + 2βV1U2 +W1∂zU2)

− 1
2
(U2∂xU1 − βV2U1 +W2∂zU1) ,

NW1
= 1√

2
(U0∂xW1 +W0∂zW1 + U1∂xW0 +W1∂zW0)− 1

2
(U1∂xW2 + 2βV1W2 +W1∂zW2)

− 1
2
(U2∂xW1 − βV2W1 +W2∂zW1) ,

NV1
= 1√

2
(U0∂xV1 +W0∂zV1) +

1
2

(
U1∂xV2 + U2∂xV1 + βV1V2 +W1∂zV2 +W2∂zV1

)
.

Finally, for the velocity components U2, W2 and V2, we have:

∂tU2 +NU2
= −∂xP2 +

1
2
Ub∂xU1 − 1

2
βUbV1 +R−1(∆2 − 4β2)U2 , (2.36)

∂tW2 +NW2
= −∂zP2 +

1
2
Ub∂xW1 +R−1(∆2 − 4β2)W2 ,

∂tV2 +NV2
= 2βP2 − 1

2
Ub∂xV1 +R−1(∆2 − 4β2)V2 ,

where the nonlinear terms are:

NU2
= 1√

2
(U0∂xU2 +W0∂zU2 + U2∂xU0 +W2∂zU0)− 1

2
(U1∂xU1 − βV1U1 +W1∂zU1) ,

NW2
= 1√

2
(U0∂xW2 +W0∂zW2 + U2∂xW0 +W2∂zW0)− 1

2
(U1∂xW1 − βV1W1 +W1∂zW1) ,

NV2
= 1√

2
(U0∂xV2 +W0∂zV2) +

1
2
(U1∂xV1 − βV1V1 +W1∂zV1) .

As usually, the pressure amplitudes (P0, P1, P2) are eliminated by introducing the
five fields Ψ0, (Ψ1,Φ1) and (Ψ2,Φ2).



32 Modeling plane Couette flow

Table 2.1: The coefficients for the no-slip and 3F free-slip models.

Coef. β′ β′′ a1 a2 α1 α2 α3 γ0 γ1
free-slip π/2 0 1/

√
2 π/(2

√
2) 1/

√
2 1/

√
2 1/

√
2 0 π2/4

no-slip 3
√
3/2

√
3/2 1/

√
7 3
√
3/(2
√
7) 3

√
15/
√
14
√
15/6 5

√
15/22 5/2 21/2

2.3.2 Formal comparison of the models

Since the no-slip and 3F free-slip models have remarkably similar structures,
with comparable coefficients (Table 2.1), it is interesting to point out more quan-
titatively similarities and differences. As far as non-normal effects and nonlinear
interactions are concerned, one may think that the two models are close to each
other and that the dynamics they generate will be robust (the role of the differ-
ences can however be studied in detail to elucidate specific points).

First of all, it is clear that the quantity
√
3 in (2.35), which measures the

typical order of magnitude of gradients in the wall-normal direction, plays exactly
the same role as β in the second equation of (2.35) and has a comparable order
of magnitude, since

√
3 ≈ 1.732 is not so different from π/2 ≈ 1.571.

The most important difference between the two models is then observed when
considering the viscous terms. Whereas in the stress-free model, the drift velocity
component {U0,W0} can relax only through in-plane modulations via the terms
involving ∆2 in (2.11,2.12) since (γ0 = 0), an additional damping is observed in
the no-slip case with coefficient γ0 = 5/2 independent of the in-plane dependence
of that flow component. In the same way the damping of components {U1,W1}
is much stronger in the no-slip case, coefficient γ1 = 21/2 in (2.13,2.14), than
in the stress-free case, coefficient β2 ≈ 2.41. These features show that one goes
in the right direction (from stress-free to no-slip) since the stress-free model is
known to underestimate thresholds by a large factor ((64)).

Another important feature of the no-slip model is that an (x, z)-independent
component of U1 can be created as the flow evolves, so that the model already
contains a mean flow correction to the base profile U(y) = Uby even when trun-
cated at lowest order, whereas a similar correction formally appears only beyond
k = 3 for the stress-free model, as stressed in (70).

2.3.3 Main results for the free-slip models

Both 3F and 5F free-slip models have been observed to display a globally subcrit-
ical transition to turbulence qualitatively similar to what is observed in laboratory
experiments, though at unrealistic low Reynolds numbers, found to be around
Rg ≈ 38. This anomalously low value (when compared to experimental results) is
at least partly attributed to the unrealistic stress-free boundary conditions that
artificially decrease the gradients and the associated dissipation, thus lowering
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Figure 2.1: Left: The global stability threshold vs. number of modes (kmax).
Right: time evolution of the energies 〈E0〉, 〈E1〉, 〈E2〉, 〈E3〉 and 〈E4〉 with the
9F model for R = 120 and Lx × Lz = 64× 64. Note that 〈E0〉 ≥ 〈E1〉 ≥ 〈E2〉 ≥
〈E3〉 ≥ 〈E4〉.

the thresholds, in exactly the same way as is convection. Also, the discrepancy
in R is attributed to the low order of truncation since adding more functions in
the expansion allows for a transfer of energy towards smaller cross-stream scales
where it can be dissipated. Increasing the order of truncation by enhancing the
y-resolution for the free-slip model is simple to do. But increasing the trunca-
tion order becomes rapidly tedious with our approach (i.e with fields equations).
We used instead the full pseudo-spectral scheme developed by J. Schumacher
(Phillipps Universität, Marburg) with the same stress-free boundary conditions
and external forcing. The lowest truncation gives the same results as with our
model, while the threshold saturates around Rg ≈ 125 as the number of fields
is increased, Fig. 2.1. In the other hand, we have observed that the energy con-
tained in the mode k, Ek = 1

2
(U2

k + V k
1 +W k

1 ) is greater than that contained in
the mode k + 1, as illustrated with the 9F model (kmax = 4) in Fig. 2.1.

2.4 Conclusions

Modeling transitional pCf might provide heuristic explanations to be further
tested in experiments either in the laboratory or in the computer. Most rational
modeling approaches are developed through truncations of appropriate Galerkin
expansions of the primitive equations. Such an approach was presented in this
chapter for both no-slip and free-slip boundary conditions.

For the sake of conciseness, not all our simulation results for the stress-free
models have been presented here. In fact, interesting things (e.g. growth of
turbulent spots, etc...) happen in the models at unrealistically low values of R
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whereas Rg ∼ 325 in the laboratory experiments. As we have seen, this feature
is not drastically changed by adding more fields to describe the cross stream
dependence though an embryo of cascading transfer from modes k towards k+1,
for which dissipation is more intense. This shows that the stress-free assumption
plays the dominant role in the lowering of thresholds. This assumption is raised
by turning to realistic no-slip boundary conditions, as we have done in §2.2. All
the presented results in the forthcoming chapters, are obtained with the no-slip
model.



Chapter 3

Numerical results

3.1 Introduction

In order to check the ability of our no-slip model to capture the essential features
of the globally subcritical nature of the transition to turbulence of the plane
Couette flow, numerical simulations have been performed. The study of the
no-slip model in view of elucidating specific processes such as the propagation
of turbulent domains is left to forthcoming chapters. In §3.2, we outline the
numerical method used throughout all this manuscript. Some simulation results
obtained with the no-slip model are then presented in section 3.3, illustrating
the globally subcritical character of the spatio-temporal unfreezing of coherent
structures assumed in previous low dimensional modeling approaches.

3.2 Numerical implementation

First of all, we recall the set of equations of the no-slip model to be solved:

(∂t −R−1(∆2 − γ0))∆2Ψ0 = (∂zNU0
− ∂xNW0

)

+a1(
3
2
Ub∂z∆2Φ1 − Ub∂x∆2Ψ1) , (3.1)

(∂t −R−1(∆2 − γ1))∆2Ψ1 = (∂zNU1
− ∂xNW1

)− a1Ub∂x∆2Ψ0 , (3.2)

(∂t −R−1(∆2 − β2))(∆2 − β2)∆2Φ1 = β2(∂xNU1
+ ∂zNW1

)

+45
2
R−1∆2Φ1 − β∆2NV1

. (3.3)

where the nonlinear terms are given in the previous chapter. The two equations
(3.1,3.2) govern the in-plane fluid motion (the velocity components U0, W0 and
the rotational components of U1 and W1). The third equation (3.3), governs the
vertical velocity V1 and the potential components of U1 and W1. The relations
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between the velocity components and the three fields are:

U0 = Ũ0 − ∂zΨ0, W0 = W̃0 + ∂xΨ0, (3.4)

U1 = Ũ1 + ∂xΦ1 − ∂zΨ1, W1 = W̃1 + ∂zΦ1 + ∂xΨ1, (3.5)

and βV1 = ∆2Φ1. (3.6)

Though not necessary on general grounds, the introduction of the additional
quantities Ũ1, ... is forced by our choice of in-plane periodic boundary conditions
for the fields Ψ0, Ψ1 and Φ1. This is because these uniform components are
generated by contributions to the correponding stream-function and potential
that would vary linearly with x and z, a space dependence that is precluded
by their representations as truncated Fourier series expansions inherent in our
computational approach that we present now.

3.2.1 Numerical scheme

The governing equations of Ψ0, Ψ1 and Φ1 can be taken in the form:

∂tv = Lv +N (v) , (3.7)

where L is a linear part that can be integrated exactly and N some nonlinear
part. Then, we rewrite (3.7) as

∂t [exp(−Lt)v] = exp(−iLt) [∂tv − Lv] = exp(−iLt)N (v) . (3.8)

or setting u = exp(−Lt)v andM(v) = exp(−Lt)N (v):

∂tu =M(v) . (3.9)

This is integrated by a standard second order Adams–Bashforth scheme, which
yields

un+1 = un + τ
[
3
2
Mn − 1

2
Mn−1

]
(3.10)

or returning to v and N , after appropriate simplification which, reads:

vn+1 = exp(Lτ)vn + τ exp(Lτ)
[
3
2
Nn − 1

2
exp(Lτ)Nn−1

]
. (3.11)

With this expression truncation errors are of order τ 3 and it is essential to include
the weighting factors exp(Lτ), since otherwise for small τ one gets exp(Lτ) =
1 +Lτ +O(τ 2) and when using 3

2
Nn − 1

2
Nn−1 instead of expression on the r.h.s.

of (3.11), one makes an error which is of order O(τ 2), i.e. the accuracy of the
computation is one order lower than believed (the difference is

[
3
2
Nn −Nn−1

]
τ 2 ≈

1
2
Nnτ

2 since Nn = Nn−1+O(τ). The first step is computed by a backward Euler
scheme.
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The space integration was done using standard Fourier pseudo-spectral
method with periodic boundary conditions in the streamwise and spanwise di-
rection. This allows us to develop a standard Fourier pseudo-spectral numerical
scheme solving the diagonal viscous terms in spectral space and integrating them
exactly. The nonlinear terms and the linear non-normal terms are evaluated
in physical space and integrated in time using a second order Adams–Bashford
scheme. Fast Fourier transforms (FFTs) are used to pass from spectral to physical
space and vice versa. In the next section, we present our numerical code.

3.2.2 The algorithm and numerical validations

Here is the algorithm:

• Input: Initial condition (Ψ0,Ψ1,Φ1) and mean values of the velocities

(Ũ1...).

• Iteration: To compute the velocities at tn+1:

– Compute the velocities from Ψ0,Ψ1,Φ1 and correcting the mean value
using the quantities (Ũ1...) at tn (i.e., using Eq. (3.4-3.6))

– Compute the nonlinearities and all the r.h.s of the fields equations
(3.1-3.3) with those velocities.

– Advancing in time (Adams-Basford) using the r.h.s at tn and tn−1 ;

we get the three fields at tn+1.

– Compute the r.h.s of the mean equation (Eq. 2.27-2.31) at tn.

– Advancing in time (Adams-Basford) using the r.h.s at tn and at tn−1.
; we get the mean values of the velocity components at tn+1.

– r.h.s at tn−1 ← r.h.s at tn.

• Ouput: The three fields (Ψ0,Ψ1,Φ1) and the velocity components.

The code was tested and verified in four ways: (i) In Figure 3.1, we verified
the order of the numerical scheme by computing the L∞ norm for the error, i.e.,
max∞|Etot − Eexact

tot | for different time steps, where Eexact
tot is the energy obtained

with the smallest time step (dt = dt0/26 with dt0 = 0.01) and considered, without
loss of generality, as the “exact” solution (except for accumulation of round-off
errors but negligible when using double precision). The quantity Etot denotes
energy obtained with larger time step. For a temporal scheme of order k, dividing
the time step by 2 will divide the error by 2k. Hence, by plotting the logarithm of
L∞ norm of the energy, i.e., max∞|Etot − Eexact

tot | versus the different time steps,
we can determine the order of the scheme, i.e. k = 2 as indicated in Fig. 3.1.
(ii) Then we confirmed energy conservation in the Eulerian case, where there is
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Figure 3.1: The temporal order of the scheme. The value of max∞|Etot−Eexact
tot |

versus the different time steps in red line: the first point corresponds to dt =
dt0 = 0.01, the next point to dt = dt0/2n, n = 1..5 and Eexact

tot is obtained with
dt = dt0/26. We plot in blue a curve with slope -2. The order of the scheme is
hence k = 2 as expected.

no dissipation and no input of energy by the base flow. The fluctuation in the
temporal mean value of the energy is less than 0.01% for ∆t = 200, confirming
that our numerical scheme conserves the energy. (iii) Next, we simulated the
full system (i.e. with non-normal term and dissipative term). For a period of
about ∆t = 10000 and with different time steps δt from δt ≡ δt0 = 0.01 to
δt = δt0/1000, the more important aspects of the dynamics as temporal mean

value of the energy and the mean value of the base flow correction Ũ1 did not
change, even when using an Adams-Bashford method of third order. Therefore,
all the simulations presented here were done with δt = 0.01 (and δx = δz =
0.25). For 2h = 0.7cm, the viscosity of water ν = 0.01cm2/s and a Reynolds
number of R = 200, the time unit is τ = h/U0 = h2/(νR) = 0.5s and for
∆t = 10000, this corresponds approximately to 10 min. (iv) Concerning the
dynamics of the coherent structures (streaks, streamwise vortices...), we have to
be sure that we obtain the same structures for different time and space steps.
First, we simulated the growth of a turbulent spot with two different space steps,
namely δx = δz = 0.25 and δx = δz = 0.125 with the same time step. In the
second time, we simulated the evolution of a turbulent spot with two different
time steps δt = 0.01 and δt = 0.001 and with the same space step. All those
simulations give us the same coherent structures, which are investigated in the
following chapters.
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Finally, concerning the aliasing errors, we have found that for the Reynolds
numbers that we are concerned with (R ∈ [160, 200]) and the space steps used
here, all the aspects of the dynamics are unchanged when we apply the 3/2
rule to remove these errors. Hence, all the presented results are obtained with
no-unaliased simulations. These simulations were performed in boxes with sizes
ranging from Lx × Lz = 16 × 16 up to Lx × Lz = 256 × 256. With δx = δz =
0.25 and Lx = Lz = 128, we need 512 Fourier modes in each direction. The
numerical integration over a time interval of 200 time units needs on the NEC-
SX 5 supercomputer at the IDRIS 900 sec-CPU time and about one day on a
PC station. Using a smaller box, i.e., Lx = 128 and Lz = 64, which corresponds
to 256 Fourier modes in the spanwise direction, this integration takes about 450
sec-CPU time.

3.3 Results

3.3.1 Global sub-criticality

Global sub-criticality of the model is depicted in Fig. 3.2 which displays the
behavior of the average turbulent energy per unit surface as a function of the
Reynolds number R. For R > Rg ≈ 173, spontaneous collapse of the uniformly
turbulent state is never observed, even when pursuing the simulation for durations
so long that, for all practical purposes, one can safely claim that turbulence is
sustained. On the other hand, below ≈ 172, the laminar state is always obtained
but at the end of turbulent transients of variable durations. A series of such
transients is illustrated in Fig. 3.2 for R = 170. It can be seen that they end quite
abruptly so that it makes sense to define a conditional average turbulent energy
restricted to the plateau value, before final decay. Such conditional averages are
indicated by stars in Fig. 3.2 while squares denote averages corresponding to
sustained turbulent regimes. The amplitude of the fluctuations of the turbulent
energy per unit surface in the sustained regime is indicated by an arrow-headed
bar at R = 200. This amplitude is comparatively large only because the size of
the domain has been chosen not so large.

3.3.2 Extensivity of the sustained turbulent regime

It has been argued by (67) that the low-dimensional modeling in terms of ordi-
nary differential equations that stems from the MFU hypothesis may give valu-
able hints only about the mechanisms of turbulence sustainment well beyond the
transitional regime but not necessarily about the transitional regime itself where
space-time behavior is involved. Indeed the MFU hypothesis freezes the space
dependence of the perturbations and introduces phase-space resonances at the
origin of the fractal properties of chaotic transients involved in the decay of tur-
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Figure 3.2: Left: Total perturbation energy Etot as a function of time in a series
of transients from a turbulent flow prepared at Ri = 200 suddenly quenched at
Rf = 170. Right: Variation of the average turbulent energy with R. Evidence of a
global stability threshold Rg ≈ 173. Values corresponding to squares R > Rg cor-
respond to sustained regimes, those corresponding to transients are marked with
asterisks. The double-arrowed bar at R = 200 indicates the order of magnitude
of the fluctuation of the turbulent energy around its means. The computational
domain is Lx × Lz = 32× 32.

bulence, but all that remains extremely sensitive to the physical size of the MFU.
By nature, the hypothesis is thus unable to deal with growth or decay of turbu-
lence through the coexistence of laminar and turbulent domains that fluctuate in
space and time. Considering this specific problem, it seems legitimate to require
that, to be appropriate, a model should display some kind of statistical robustness
when the size of the simulation domain is varied. This point was stressed by (82),
shown to hold for the Kuramoto-Sivasinsky model of space-time chaos ((65)), and
judged important in the ergodic theory of chaotic extended systems ((30)). As
an indication that our model behaves appropriately is obtained by considering
the total perturbation energy per unit surface and its fluctuations as the surface
of the simulation domain is increased. Table 3.1 displays our results. A series
of experiments over domain was performed, with domain surfaces starting from
16× 8 to 128× 128 and for R = 200.

For smallest system, turbulence was only transient for that value of R. Sus-
tained turbulence was obtained but at much larger values. This is not surprising
since much dissipation is associated with the in-plane space dependence forced
by periodic boundary conditions, raising the thresholds for complex behavior ac-
cordingly. That behavior is however better understood as temporal chaos since
the domain can only fit a very small number of structures, and the transient
possibly better analyzed in terms of chaotic saddles (29).

Our results for values of Lx×Lz beyond 16×16 clearly shows that the turbulent
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Table 3.1: Total perturbation energy: time average and fluctuations for R = 200.

Lx × Lz 16× 8 16× 16 32 × 16 32× 32 64× 32 64×64 128× 64 128× 128
Etot 0.06501 0.0690 0.0691 0.0696 0.0700 0.0697 0.06959 0.06948
σEtot

0.01510 0.0105 0.0078 0.0055 0.0038 0.0026 0.00175 0.00118

regime is extensive. Evidence of it is obtained from (i) the time average of Etot

which is independent of the size and (ii) the fluctuations around this average
value which decrease roughly as the inverse square root of the size.

3.3.3 Transient lifetimes

The global stability threshold Rg is best defined as the value of the control pa-
rameter beyond which the non trivial state, here the turbulent regime, is unstable
and thus cannot be sustained in the long term. Accordingly, the trivial state here,
the laminar flow, is the only possible equilibrium solution, whatever the initial
configuration. For globally sub-critical extended systems such as the pCf, many
studies have been devoted to the transition from laminar to turbulent flow, either
under the effect of natural fluctuations, upon triggering specific localized pertur-
bations, or upon modifying the base flow in a well-controlled way (see the review
in (63)). Theses studies do not allow the determination of Rg in a straightfor-
ward way since, in such experiments, the turbulent state is reached with finite
probability only due to the local stability of the base flow, thus explaining the
dispersion of results in early studies and some sensitivity to the triggering pro-
cess. By contrast, from the very definition of Rg, observing relaxation from a
typical turbulent state prepared at some initial R = Ri > Rg down to lower
Rf < Rg yields Rg without ambiguity. Such quench experiments have produced
the value Rg ≈ 323 mentioned earlier for pCf in the laboratory. The cumulative
distribution of duration’s of turbulent transients was studied and could be fitted
against exponential laws in the form Π(τtr) ∝ exp(−τ/〈τtr〉), where Π(τtr > τ) is
the probability to observe a transient with duration τtr larger than some given τ .
In this expression 〈τtr〉 defined as the mean transient duration, is the character-
istic decay time of the distribution, provided it is effectively exponential. In (11)
and (12), that quantity was shown to diverge to infinity as Rf approached Rg

from below as 〈τtr〉 ≈ (Rg−Rf)
−1. This behavior was recently questioned by (45)

and the proposition was made of an indefinitely exponentially increasing decay
time instead of a critical behavior of the decay time at some finite value Rg. This
reservation was made on the basis of specific observations for Poiseuille pipe flow.
As we show below, quench experiments using our no-slip model can be seen to
behave according to 〈τtr〉 ≈ (Rg −Rf)

−1 with the same degree of confidence.
Experiments were performed by quenching the system from some initial tur-

bulent state at R = Ri = 200. The Reynolds number was next suddenly decreased
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Figure 3.3: Left: Distribution of transient durations in quench experiments with
Ri = 200 and different Rf in semi-log plot. Right: Inverse of the mean transient
duration as a function of a quench value R = Rf < Rg ≈ 172.65 as found by
extrapolation.

to a final value R = Rf . The size was reduced as much as possible in order to
be able to perform statistics over a large number of independent trials. It was
however kept sufficiently large to remain well within the range where extensivity
is expected. In practice we took Lx = Lz = 32.

The durations of individual transients were determined as the time needed
to reach some cut-off value of the total specific perturbation energy below which
the system immediately and irreversibly decays to the laminar state. Fig. 3.3
displays a typical set of experiments to be analyzed. The statistics were checked
to be insensitive to the precise value chosen for the cut-off.

Below R = 173, transients of different durations began to appear and well-
defined distributions of durations were seen to develop, while relaxation could be
considered as “immediate” below R = Ru ≈ 164 (notation introduced in (11)).
Focusing rather on the approach of Rg ≈ 173 from below, using lin-log scales
Figure 3.3 shows that the statistics of turbulent transients’ durations are indeed
exponentially decreasing and that the slope decreases as Rf increases. For each
Reynolds number, we have gathered about 200 transients. The decay rate char-
acterizing the distribution Π can be determined from the inverse of the average of
the durations measured at given Rf since the exponential behavior apparently ex-
tends down to the shortest durations. Otherwise it could be estimated by fitting
the tails of the cumulated distributions functions against exponentials. Expecting
that the mean decay time 〈τtr〉 diverges as (Rg − R)ξ as Rf approaches Rg from
below, we have plotted 1/〈τtr〉1/ξ against R = Rf for different values of ξ. As seen
in Fig. 3.3, trial and error nicely supports the value of ξ = 1 that corresponds
to experimental observations (11). The mean decay rate extrapolates to zero at
Rg ≈ 172.65, which us thus the global stability threshold for our model.
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Figure 3.4: During the transient decay, pockets of laminar flow nucleate and
widen, until all the domain become laminar. Left, the spatial distribution of U0

at t = t0 + 50 and right at t = t0 + 2000. At t = t0, the Reynolds number is
decreased from Ri = 200 to Rf = 168.

Figure 3.5: Tracking the transient decay with another velocity component. The
spatial distribution of V1 at t = t0 + 50 (left) and at t = t0 + 2000 (right). This
distribution shows many structures which are analyzed in the coming chapters.
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Figure 3.6: Left: Traces of the average flow components as functions of time:
Ũ1 = −0.2210±0.0158, W̃1 = 1.8436e−04±0.0070, Ũ0 = −1.6694e−04±0.0040
and W̃0 = −1.5888e− 04± 0.0030 with R = 200 and Lx × Lz = 32× 32. Right:
Mean turbulent flow profile umf = y + Ũ1Cy(1 − y2) with its characteristic S-

shape. The laminar profile is in blue line. The values of Ũ1, W̃1... are obtained
by averaging the trace in the left panel over time.

Though the dimensions of the system for which these results have been ob-
tained, Lx = Lz = 32, situate it well inside the extensive regime, we intended
to check the robustness of the mean decay time behavior when the domain size
is increased. Despite that gathering a large number of independent trials be-
come tedious since it requires a much more computational (and human) times,
we were able to collect few transients that shows that the mean decay time 〈τtr〉
diverges as (Rg−R)−1. However, the extrapolation to zero of 〈τtr〉 gives a slightly
higher Rg ≈ 173. It is instructive, before closing this chapter, to give a glimpse
on what happening in the physical space during a transient decay. Fig. 3.4 and
Fig. 3.5 show the spatial distributions of the velocity U0 and V1 during a tran-
sient obtained by performing a quench experiment for Ri = 200 to Rf = 168, with
Lx×Lz = 128× 64. First , all the domain were turbulent (Ri = 200). Then, the
metastable turbulent flow nucleate pockets of laminar flow that next widens, un-
til all the domain become laminar (between the two snapshots, ∆t ≈ 2000). The
outbreak of these pockets can be seen as regions where the dissipation dominates
the production of the turbulence and hence the perturbation energy decays to
zero. In other words, regions where the self-sustainment of turbulence is no more
“effective” become laminar pockets. Hence, the study of the self-sustainment of
turbulence and the coexistence of laminar/turbulent domain and the contamina-
tion of one by the other are the keys to understand the transition to turbulence
in pCf. The observed pattern in the spatial distribution of the velocity V1 and
U0 are the starting point.



3.4 Conclusions 45

3.3.4 Mean turbulent flow

In the previous chapter, the mean values of the velocity component, e.g. U1,
was denoted by Ũ1 =

∫
D
U1 ds/D. Starting from an initial condition taken from

some turbulent state, in which all the quantities Ũ1, Ũ0...etc were turned off, it
is interesting to note that after a short transient (∆t ∼ 50), the mean value of
the streamwise component U1 builds up. As the sustained turbulent regime is
reached, Ũ1 has a negative value and is statistically constant (Ũ1 = −0.2210 ±
0.0158), as depicted in Fig. 3.6 with R = 200. In the same time, the transverse

contribution W̃1 averages to zero, as well as Ũ0 and W̃0.
The mean turbulent flow profile umf ≡ u where the streamwise component

u = Uby + U0B(1 − y2) + U1Cy(1− y2), is displayed in Fig. 3.6 (right panel) as

the superposition of a correction Cy(1− y2) with amplitude Ũ1 to the base flow
U = Uby, pointing out the expected formation of a central region with reduced
shear. It will be interesting to study the patches of negative U1 that should
appear during growth/decay of turbulent spots, as a local counter-part to the
steady state uniform correction in the sustained turbulent regime.

3.4 Conclusions

Our model that keeps quite close to the primitive Navier-Stokes equations and
preserves their main properties also preserves the statistics of transients close
to Rg. Other questions posed by the transition to turbulence in globally sub-
critical flows can be also attacked using our model, since it represents a simplified
version of the Navier-Stokes equations, at least for R not too large. For example,
whereas it is clear how streamwise vortices generate streaks through the lift-up
effect introduced long ago, instability mechanisms and some nonlinear processes
involved in the regeneration of vortices are still unclear in spite of recent progress
described in (73). Also, the very coexistence of laminar and turbulent flow implied
by global sub-criticality, the mechanisms by which one of the “phases” gains
against the other, i.e., how spots grow (transition laminar → turbulent) or how
the turbulent state collapses (transition turbulent→ laminar), what is the role of
the base flow correction (i.e., U1) inside a turbulent domain, etc... are examples
of questions that we intend to examine. Hence, the study of the model in view of
elucidating specific processes such as the propagation of turbulent domains and
the self-sustainment of turbulence with a deliberately spatiotemporal flavor is the
heart of the forthcoming chapters.
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Chapter 4

On the outskirts of a turbulent
spot

Resumé

abstract

Numerical simulations of a model of plane Couette flow focusing on its in-plane
spatio-temporal properties are used to study the dynamics of turbulent spots.
While the core of a spot is filled with small scale velocity fluctuations, a large scale
flow extending far away and occupying the full gap between the driving plates is
revealed upon filtering out small scales. It is characterized by streamwise inflow
towards the spot and spanwise outflow from the spot, giving it a quadrupolar
shape. A correction to the base flow is present within the spot in the form of
a spanwise vortex with vorticity opposite in sign to that of the base flow. The
Reynolds stresses are shown to be at the origin of this recirculation, whereas
the quadrupolar shape of the in-plane flow results from the transport of this
recirculation by the base flow that pumps it towards the spot in the streamwise
direction and flushes it in the spanwise direction to insure mass conservation.
These results shed light on earlier observations in plane Couette flow or other
wall flows experiencing a direct transition to turbulence by spot nucleation.
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4.1 Introduction

Being stable against infinitesimal perturbations for all Reynolds numbers, plane
Couette flow (pCf), the shear flow between two parallel plates moving in opposite
directions with velocity ±Up, is the prototype of flows that require localized
finite amplitude disturbances to be pushed towards a turbulent regime. The
transition is thus characterized by the nucleation and nonlinear growth of domains
of turbulent flow, separated from laminar flow by sharp fronts and called turbulent
spots (e.g., (98; 24; 27)). This kind of transition is not restricted to pCf but
is also present in plane Blasius (boundary layer) flow (31) or plane Poiseuille
flow. A review of some relevant laboratory experiments is given by Henningson
et al. (42) and of their numerical counterpart given by Mathew & Das (69).
In practice, direct transition to turbulence via spots can be expected whenever
no low-Reynolds number instability of inertial origin exists, whereas turbulent
solutions to the Navier–Stokes equations may exist and compete with the laminar
base flow at moderate Reynolds number (68, Chap.6, §6.3).

Growing turbulent spots in pCf have been studied both experimentally
(98; 24; 27) and numerically (25). In their pioneering direct simulations of
Navier–Stokes equations with realistic no-slip boundary conditions, Lundbladh
& Johansson (61) pointed out that (i) the wall-normal velocity component —
typical of internal irregular small scale structures— faded away outside the spot
but (ii) slowly varying in-plane velocity components extended far outside with
an inwards streamwise motion towards the spot at the streamwise edges and an
outward spanwise motion at its spanwise edges. These observations were made
by low-pass Gaussian filtering the small scales of the velocity field at mid-gap.
Tillmark (99) confirmed them experimentally by detecting the outwards spanwise
component that developed over the full gap between the plates.

More recently, Schumacher & Eckhardt (91) re-investigated the growth of
turbulent spots by means of direct numerical simulations but using unrealistic
free-slip boundary conditions at the plates. By averaging the flow field between
the two plates, they also observed that the turbulent spot was accompanied by an
overall spanwise outflow and streamwise inflow, which they termed quadrupolar .

Spots seem to behave as obstacles in the base flow (58). Accordingly, they in-
troduce additional pressure fields induced by the distribution of Reynolds stresses
associated with the small scale fluctuations inside the spot and generating the
large scale flows. A similar interpretation was put forward by Hayot & Pomeau
(37) who introduced a back-flow to explain the organization of spiral turbulence
in cylindrical Couette flow (18), with possible application to the banded turbulent
regime discovered more recently in pCf (80) and numerically studied by Barkley
& Tuckerman (5).

Previous experimental studies by Bottin et al. (12) have shown that, in the
lowest part of the transitional Reynolds number range, flow patterns of interest
extend over the full gap. We take advantage of this observation to study the
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dynamics of spots using numerical simulations of a previously derived model of
pCf shown to display sufficiently good properties for this purpose. The model
is briefly sketched and typical results of simulations are presented in §4.2 em-
phasizing the output of the filtering procedure: (i) the in-plane quadrupolar flow
outside the spot and (ii) a spanwise recirculation cell inside. These observations
are then interpreted in §4.3 where the generation of these two large scale flow
components is explained in terms of Reynolds stresses averaged over the surface
of the spot. In the concluding section, we summarize our results and point to
their relevance to the interpretation of previous observations in other wall flows
of less academical interest, such as plane Poiseuille or Blasius flows.

4.2 Numerical simulations of turbulent spots

Our no-slip model was integrated on a rectangular (x, z) domain with periodic
boundary conditions. Simulations were performed in a domain of size (Lx×Lz) =
(128 × 128) with effective space steps δx = δz = 0.25 and δt = 0.01; for details,
see the previous chapter.

As an initial condition, we took localized expressions for Ψ0, Ψ1, and Φ1:

Ψ0(x, z, t = 0) = Ψ1(x, z, t = 0) = Φ1(x, z, t = 0) = A exp−(x2+z2)/S

where A is an amplitude and S is the size of the germ. Parameters A = 5
and S = 2 were found efficient in generating turbulent spots for R = 250, well
beyond Rg ∼ 173, above which sustained turbulence is expected in our model.
In practice, due to the highly unstable characteristics of the flow at such values
of R, the apparent simplicity of the initial condition played no role after a few
time units.

Spots are best illustrated by their most spectacular feature, namely their
streamwise streaky structure (98; 24; 33; 16). In turn, the latter is best visualized
from the amplitude U0 since streamwise streaks are easily identified as regions
where |W0| ≪ |U0| alternating in the spanwise direction, and since U0 is associated
with velocity perturbations that are maximum in the mid-gap plane y = 0.
Figure 6.1 displays gray-level snapshots of U0 at different times after launching.
Denoting by (xC, zC) the in-plane coordinates of the center of the spot we see
that, contrasting with the cases of plane Poiseuille or boundary layer flows, the
spot does not drift due to the absence of mean advection. One can also notice
its overall ovoid shape with dominant negative values (dark gray) for x > xC and
positive values (light gray) for x < xC. Regions where U0 is positive correspond
to high and low speed streaks for y > 0 and y < 0, respectively, which compares
well with the experimental observations in (13).

In the sequel, we study the state at t = 150 but results and conclusions are
identical at different times. The complete field (U0,W0) corresponding to this
reference state is displayed in Figure 4.2. Except in the very center of the spot
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Figure 4.1: Growth of a turbulent spot at R = 250 in a wide domain (Lx×Lz =
128 × 128). Field of amplitude U0(x, z, t) in gray levels at t = 50, 150, 250 and
350 (from left to right and top to bottom). The whole domain becomes uniformly
turbulent at t ≈ 700.

that looks rather messy, streamwise structures are easily recognized but the trace
of the large scale quadrupolar flow, of main concern in this chapter, is already
visible.

As done by (61), we now proceed to the elimination of small scales using a
Gaussian filter in spectral space:

Ẑ(kx, kz) = Ẑ(kx, kz) exp[−(k2
x + k2

z)/(2σ)
2] , (4.1)

where the hat denotes the Fourier transform of any quantity Z = U0,. . . . In phys-

ical space, this corresponds to a convolution with a kernel ∝ exp
(
−σ

√
ξ2x + ξ2z

)

where σ is the parameter controlling the width of the domain over which the small
scales are smoothed out by the operation. Small scales, indicated by superscript
‘s’, are recovered afterwards from the relation Zs = Z − Z.
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Figure 4.2: Streak flow field (U0,W0) at t = 150.

The diameter of the Gaussian averaging window has to be chosen in accor-
dance with the size of the modulations to be eliminated, here the small scale
streaks with spanwise wavelengths of the order 3–6 as can be guessed from Fig-
ure 4.2. We used σ = π/11, but the results were found to be rather insensitive
to this choice provided that σ is sufficiently small.

As seen in Figure 4.3, this filtering procedure yields a clear picture of the
flow outside the spot: the overall pattern formed by the in-plane components
U0 and W 0 has a quadrupolar aspect that could already be guessed from the
consideration of the unfiltered stream-function Ψ0 whose Laplacian is related to
its vortical contents. In what follows, we term drift flow the large-scale velocity
field (U0,W 0) with Poiseuille-like cross-stream profile by analogy with the case
of Rayleigh–Bénard convection where a flow with the same global features was
introduced by (93).

Figure 4.4 displays the velocity components associated with the fields Ψ1,Φ1.
The distribution of the amplitude of V 1, displayed in the left panel, represents an
average wall-normal motion which is maximum in the mid-plane y = 0, positive
on the right of the spot’s center x > xC and negative on its left. In turn, the flow
(U1,W 1) shown in the right panel consists of a region centered around the spot
where |U1| ≫ |W 1| and U1 < 0. This structure is easily interpreted as a wide
spanwise recirculation cell with vorticity opposite in sign to that of the base flow.
It is further reminiscent of what can be deduced from DNS simulations of (61),
as displayed in seen their Fig. 9.

In Figure 4.5 (a) we display the profiles of U0 and U1 along a streamwise line
going through the center of the spot. The dashed line corresponds to U0 and
clearly points out the inwards character of the drift flow. In contrast, U1 (solid
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Figure 4.3: Top: level lines of averaged velocity components U0 (left) and W 0

(right), illustrating large scale streamwise inflow and spanwise outflow around
the spot. Bottom, left: representation of this flow as vectors. Bottom, right:
level lines of the unfiltered stream function Ψ0.
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Figure 4.4: Velocity amplitudes V 1 (left) and (U1,W 1) (right).
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Figure 4.5: (a) U1 (red-solid) and U0 (blue-dashed) as functions of coordinate x
along the streamwise center-line. (b–d) Full average streamwise velocity profiles
U(y) at x = xC (b), x = xL (c) and x = xR (d); the laminar profile Ub(y) ≡ y is
indicated by a dashed-dotted line.

line) presents a deep trough at the location of the spot. At the spot’s center where
U0 ≃ 0, the superposition of the perturbation u′ = U1Cy(1 − y2) and the base
flow Ub(y) ≡ y, shown in Figure 4.5 (b), displays the characteristic S shape of the
turbulent velocity profile expected for pCf. The presence of the spot thus locally
increases the wall friction. At different positions inside the spot, where U0 6= 0
(and W 0 6= 0), the full superposition U(y) = y(1 + U1C(1− y2)) + U0B(1− y2)
leads to asymmetric mean velocity profiles (Fig. 4.5(c) for point xL and (d) for
point xR) that are reminiscent of the averaged profiles obtained by (5) in their
simulations of the banded regime of turbulent pCf.

4.3 Generation of large scales from small scales

The mechanism driving the quadrupolar drift flow is discussed in terms of equa-
tions obtained by filtering from the model’s equations, as described in the Ap-
pendix. We focus on the slowly varying quantities A0 = ∆Ψ0, A1 = ∆Ψ1,
and A2 = ∆Φ1, driven by B1 = −ξU s

0V
s
1 where ξ = α2(β + β′′) > 0 and

B2 = α1(U s
0)

2 − (W s
0)

2 + α2(U s
1)

2 − (W s
1)

2. The latter quantities represent the
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the maximum of the distribution taken as the center of the spot at xC = 64,
zC = 60 (right).

components of the Reynolds stress tensor which do not average to zero over the
surface of the spot (B1 corresponds to the energy extracted from the laminar flow
and B2 mostly to the energy contained in the streamwise streaks).

Introducing slow variables X and Z whose rate of change is inversely propor-
tional to the width of the window that is dragged over the data upon averaging
through (4.1), one can observe that, in the equations, the quantity B1 appears
with one derivative in X or Z less than B2, due to the fact that B1 substitutes one
in-plane differentiation by a cross-stream O(1) differentiation. Further assuming
that the spot is in a quasi-steady state (∂t ≈ 0) and that space derivatives are neg-
ligible when compared to O(1) constants when operating on the same quantities,
at lowest significant order one can simplify Equations (4.5–4.7) to read:

R−1γ0A0 = a1
(
3
2
∂ZA2 − ∂XA1

)
, (4.2)

R−1γ1A1 = ∂ZB1 − a1∂XA0 , (4.3)

R−1γ1A2 = −∂XB1 . (4.4)

The structure of this system invites one to examine the shape of the dominant
Reynolds stress contribution B1 as a function of the slow variables. Figure 4.6 dis-
plays the averaged Reynolds stress field associated with the small scales −U s

0V
s
1 .

As could be anticipated the latter is positive under the spot and one can fur-
thermore observe its single-humped shape that, following (58) who developed a
similar approach for spots in plane Poiseuille flow, can be modeled as a Gaussian
function of the form exp[−(X2 + Z2)/2]. This assumption will help us to make
an educated guess about the mechanisms at work.

Considering first Equation (4.4), from 3.6, i.e. V1 = ∆Φ1/β, we obtain that
the contribution to V 1 generated by B1 is ∼ X exp[−(X2+Z2)/2], i.e. a pattern
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with a positive hump for X > 0 and a negative one for X < 0, resembling
that in Figure 4.4 (left). This velocity component forms with U1 a large scale
recirculation loop. As seen from 3.5, U1 contains two contributions of potential
and rotational origins, respectively. In the neighborhood of the X axis, the
variation of ∂XB1 is dominated by its X dependence so that A2 = (∂XX +
∂ZZ)Φ1 ≈ ∂XXΦ1 ∼ −∂XB1 and, accordingly, ∂XΦ1 ∼ −B1 ∼ − exp[−(X2 +
Z2)/2]. As to the rotational contribution −∂ZΨ1, from (4.3) and forgetting the
coupling with A0 (which is of higher order owing to the way it is generated from
A1 and A2), we have similarly A1 = (∂XX + ∂ZZ)Ψ1 ≈ ∂ZZΨ1 ∼ ∂ZB1, hence
−∂ZΨ1 ∼ −B1 so that it adds constructively to the potential part. The resulting
U1 closes the recirculation loop as inferred from Figure 4.4 (right).

Inserting A1 ∼ ∂ZB1 and A2 ∼ −∂XB1 in (4.2) we obtain a right hand side
in the form −XZ exp[−(X2 + Z2)/2] for ∆Ψ0 which is the vorticity contained
in the (U0,W0) velocity field. This field displays four lobes with alternating
signs. An approximation to the large scale drift flow along the axes can easily
be obtained. Indeed, U0 can be obtained from U0 = −∂ZΨ0 by integrating
A0 = (∂XX + ∂ZZ)Ψ0 over Z and neglecting ∂XXΨ0 since Ψ0 varies much less
with X than with Z along the X axis. We obtain U0 ∼ −X exp[−(X2 + Z2)/2]
which accounts for the observed inward flow along the streamwise center-line
of the spot. The same argument can be transposed for the spanwise direction
(now Ψ0 varies most rapidly in the X direction, which makes ∂ZZΨ0 negligible
and eases the integration over X), yielding W 0 ∼ Z exp[−(X2 + Z2)/2] which
similarly accounts for the outward flow along the spanwise center-line. Notice
however that this solution is too approximate to fulfil the continuity condition
accurately since computing ∂XU0 + ∂ZW 0 leaves a residual of the form (X2 −
Z2) exp[−(X2 + Z2)/2], though the main contribution in exp[−(X2 + Z2)/2] is
nicely compensated near the origin where the Gaussian is at its maximum. At
any rate the chosen shape is only a simplifying assumption.

Physically, the spot is thus characterized by a mean correction to the base
flow (represented in the model by U1 < 0) itself generated by a wall normal
velocity component (here V 1) and forming a large recirculation loop. In turn,
the transport of that mean correction (here U1Cy(1 − y2)) by the base flow
appears to be a source term for the large scale drift flow (here (U0,W 0)) whose
pattern is enslaved to its streamwise gradient, balancing viscous forces and inertia
(according to R−1γ0U0 + a1∂xU1 ≈ 0) and expressing flow continuity (∂xU0 +
∂zW0 = 0).

4.4 Conclusion

In this chapter, we have studied the large scale structure of the flow inside and
around a turbulent spot in a transitional pCf model focusing on the in-plane de-
pendence of a small number of velocity amplitudes. The approach is supported
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by the qualitative consistency between previous experimental results in the tran-
sitional regime (13) and our own numerical simulations of the model.

Inside the spot, we find a wide spanwise recirculation loop with vorticity oppo-
site in sign to that of the base flow. In particular, a patch of streamwise correction
counteracting the base flow is observed, giving an S shape typical of turbulent
flows to the velocity profile inside the spot. A reduced model (4.3–4.4) links this
recirculation to Reynolds stresses −U s

0V
s
1 generated by the small scale fluctua-

tions. Outside the spot, the existence of an inward-streamwise outward-spanwise
quadrupolar drift flow has been pointed out, the origin of which is attributed to
a linear coupling with this recirculation and linked to linear momentum conser-
vation through (4.2). By simply assuming that the region where the Reynolds
stresses contribute to the turbulent energy production (i.e. > 0) is one-humped
with localized support, the main features of the large scale flow extracted from
numerical simulations by filtering are recovered. In this approach, we only fo-
cused on the generation of large scales by small scales but considered neither (i)
the interactions between small scales themselves nor (ii) the feedback of large
scales on small scales. Closure assumptions are clearly needed in order to have
a self-consistent theory, and especially to explain the sustainment of turbulence
within a spot, problem (i), and its spreading as time proceeds, problem (ii).

Owing to the general character of the argument leading to their existence,
one might also expect to find these large scale corrections in and around spots
developing in transitional shear flows other than pCf for which they have already
been accounted for (61; 91; 99). Evidence of their presence can indeed be ob-
tained from Figure 12 reporting numerical work of (41) on plane Poiseuille flow
and from Figures 6 and 9 describing the result of ensemble averaging of turbu-
lent spots in boundary layer flow with slightly adverse pressure gradient in the
laboratory experiments of (92). Despite its limited cross-stream resolution, our
modeling of transitional plane Couette flow has thus been shown to provide valu-
able explanations to previous observations, which might call for new laboratory
experiments since, besides the theoretical challenge of understanding laminar–
turbulent coexistence in detail, the problem of the transition to turbulence in
wall flows has a great technical importance.
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Appendix: Model’s equations and derivation of

(4.2–4.4)

It was observed in Figure 6.1 that the flow within the turbulent spot resembles
developed turbulent flow, see also (42; 58). Accordingly, one obtains that the
only contributions to the averaged equations come from the terms that keep a
constant sign over the surface of the spot, namely the main Reynolds stress term
−U0V1 associated with energy extraction from the mean flow and the other terms
U2
0 , W

2
0 , U

2
1 , and W 2

1 . Equations (3.1-3.3) then reduce to:

(∂t −R−1(∆− γ0))∆Ψ0 =
1
2
∂xz

(
α1U2

0 −W 2
0 + α2U2

1 −W 2
1

)
+

a1
(
3
2
∂z∆Φ1 − ∂x∆Ψ1

)
, (4.5)

(∂t −R−1(∆− γ1))∆Ψ1 = ∂z

(
−ξU0V1

)
− a1∂x∆Ψ0 , (4.6)

[
∂t(∆− β2)−R−1(∆2 − 2β2∆+ γ1β

2)
]
= β2∂x

(
−ξU0V1

)
, (4.7)

with ξ = α2(β + β′′). Following Li & Widnall, we then split the velocity com-
ponents into small and large scales, i.e. U0 ; U0 + U s

0, etc., and only keep the
contribution to the Reynolds stresses coming from the small scales. This leads
to the same set of equations as above except that U0, U1. . . are replaced by their
small scale parts U s

0, U
s
1 etc.
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Chapter 5

Generation mechanism for
streamwise vortices

abstract

Streamwise vortices play important role in the sustainment of wall-turbulence.
Their generation mechanism is studied in the particular case of plane Couette flow
using a model in terms of partial differential equations, obtained from the Navier-
Stokes equations through a Galerkin projection. The sequence of events leading
to their generation is as follows. A spanwise vortex, with vorticity opposite in
sign to that of the base flow, is deformed by a flow spanning the whole gap
between the driving plates. The resultant vortex has a crescent shape and its
two legs are the streamwise vortices. The generation mechanism for the spanwise
vortices is also elucidated. Comparisons with previous works are presented and
a self-sustained cycle for wall-bounded turbulence is proposed.



60 Generation mechanism for streamwise vortices

5.1 Introduction

For a sufficiently large values of the Reynolds number, laminar flow close to a solid
wall becomes turbulent. This laminar-turbulent transition process still leaves
open several questions and problems of great practical importance. The turbulent
state is sustained and has complex dynamics involving the interactions of many
spatio-temporal flow patterns, referred as coherent structures (e.g. (76; 96)).
Regions where the Reynolds stress −uv (u is the streamwise (x) and v the wall-
normal (y) perturbation velocity components) is positive indicate the spatial
locations where energy is being extracted from the laminar flow and fed into the
turbulent state (e.g. (77)). Therefore, to understand how turbulence is sustained,
it is of interest to study the origin of this Reynolds stress.

A particular type of coherent structure having the dominant role in turbu-
lence production is the streamwise vortex, an x-elongated region of streamwise
vorticity. It is now well established that the generation of Reynolds stress −uv
occurs on each side of a streamwise vortex. The upwelling (v ≥ 0) and down-
welling (v ≤ 0) motions associated with this vortex generate, through the lift-up
effect, the streamwise perturbation u such that the product −uv is positive on
each side of the vortex (77).

For this reason, elucidating the generation mechanism of the streamwise vor-
tices is crucial to understand the production of turbulence, as is the goal of this
chapter in which we are concerned with the particular case of plane Couette flow
(pCf), shear flow between two parallel plates moving in opposite directions with
velocities ±Up. This flow is stable for all Reynolds numbers R, but experiences
a transition to turbulence when R exceeds the stability threshold Rexp

g ∼ 325,
based on the half-gap h and the velocity Up ((13)).

An important feature of the streamwise vortices in pCf, for low-Reynolds
numbers, is that they span all the gap between the driven plates. In their direct
numerical simulations of Navier-Stokes equations, Lee & Kim (57) observed such
vortical structures with circular cross-section and elongated in the x-direction.
Their computational small box was sufficient to contain a pair of such vortices.
Numerical simulations investigating the effect of the domain size on the dynamics
of these structures were carried out by Komminaho et al. (56) who considered
larger computational box (88h×25h). They obtained similar streamwise vortices
but their dynamics was less constrained by the size of the box and they can
meander in the flow field (Figure 8 in (56)). The used Reynolds number was
R = 750, i.e. roughly twice the value of the stability threshold Rexp

g .
Papavassiliou & Hanratty (75) discussed some conditions for the existence of

large streamwise vortices that extend from wall to wall. For example, a favorable
property to their existence is the asymmetry of the base flow profile. In fact, flow
outward from the bottom wall that extracts energy from the base flow, continues
to do so when it moves past the mid-plane. Hence, the vortices contribute to the
turbulence production by extracting energy across the entire gap and injecting it
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into the turbulent state. In turn, this turbulent state sustains these vortices by
some mechanisms, not clarified yet.

Tsukahara et al. (101) further examined the effects of the computational
box size and the value of the Reynolds number on these vortices. Through the
visualization of the instantaneous flow field, they found that these vortices are
present for R = 750 as well as for the higher value R = 2150 (with the definition
above) and that their spanwise width is about 5h.

Finally, the studies of Bottin et al. (13) (for Reynolds numbers near Rexp
g )

and, more recently, of Kitoh et al. (51) (for R = 750), give experimental evidence
for these streamwise vortices and hence confirm the previous numerical results.

We take advantage of these numerical and experimental observations to study
the dynamics of the streamwise vortices by means of numerical simulations in an
extended computational box with low wall-normal resolution.

The outline of this chapter is as follows. In section §5.2, some mechanisms
for the generation of streamwise vorticity are first presented. Their different
contributions are studied with our model and comparisons are made with some
previous works. The evolution of this streamwise vorticity to streamwise vortices
is analyzed and a generation mechanism for streamwise vortices is elucidated in
§5.3. It is further developed in §5.4 using a 1-dimensional model. In the last
section §5.5, the origin of the spanwise vortices, flow patterns involved in this
mechanism, is investigated. By piecing together the mechanisms described in
this chapter, a self-sustained process for wall-bounded turbulence is proposed.
The main results of the four sections are summarized in the conclusion §5.6.

5.2 Generation of streamwise vorticity

5.2.1 Previous works

The natural starting point of our study is the equation governing the streamwise
vorticity. By denoting u the streamwise (x), v the wall-normal (y) and w the
spanwise (z) velocity components (perturbations and base flow), the equation of
the streamwise vorticity Ωx = ∂yw − ∂zv reads (e.g.(90)):

∂tΩx = −u∂xΩx − v∂yΩx − w∂zΩx + Ωx∂xu+ ∂zu∂xv − ∂yu∂xw +∆2Ωx/R.(5.1)

The three first terms represent the nonlinear advection of Ωx and the dissipation
term is ∆2Ωx/R, where R is the Reynolds number. The stretching term is Ωx∂xu
and the tilting terms are ∂zu∂xv and−∂yu∂xw. More precisely, the term−∂yu∂xw
represents the generation of streamwise vorticity Ωx by the tilting of wall-normal
vorticity ∂xw into the x-direction by the wall-normal shear ∂yu, as shown in
Fig. 5.1. In the same way, the second term ∂zu∂xv represents the generation of
Ωx by the tilting of the spanwise vorticity ∂xv into the x-direction by the shear
flow ∂zu, as shown in Fig. 5.2.
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Figure 5.1: Tilting term −∂yu∂xw. Consider two regions of the spanwise velocity
w which alternate in sign in the x-direction (∂xw 6= 0). Due to the wall-normal
shear ∂yu, the initial velocity distribution is deformed. Near x = 0, the velocity
w becomes y-dependent, as shown in the plane (y, z). Consequently, streamwise
vorticity is generated.

Despite the fact that these mechanisms are well-known, there is, however,
much less of an agreement concerning the origin of streamwise vorticity (and
vortices) in wall-bounded shear flows. Many possible scenarios have been pro-
posed in the literature (for a review, see (76)) and some of them are given below,
proposed either for pCf or for other shear flows.

In their numerical investigation of plane Poiseuille flow, Jimenez & Moin
(49) were interested in the generation mechanism of streamwise vorticity. By
analyzing the vorticity field, they found that a streamwise vortex lifts a layer
of vorticity and rolls it around itself. When this rolled vortex layer encounters
another one, wall-normal vorticity is induced. Then, the tilting of this vorticity
into the streamwise direction by the mean shear (the term −∂yu∂xw) generates
Ωx.

Studying pCf, Hamilton et al. (36) found that −∂yu∂xw was the source term
with the largest contribution to Ωx. However, much of the streamwise vorticity
induced by this term is not in the correct x-independent Fourier mode, but in
other modes, which do not represent streamwise vortices. Hence they argued
that despite the fact that this mechanism is an important one, it is not sufficient
to produce streamwise vortices. They suggested that some additional nonlinear
constructive interactions must occur between these x-dependent Fourier modes
to complete the generation of the streamwise vortices.

Using instantaneous visualizations of the velocity field, obtained from numer-
ical simulations of plane Poiseuille flow, Brooke & Hanratty (15) found that the
largest contribution to the generation of the streamwise vorticity comes from the
term −∂yu∂xw. The contribution of the term ∂zu∂xv is less than 10% of that of
−∂yu∂xw.
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Figure 5.2: Tilting term ∂zu∂xv. Consider two regions of the wall-normal velocity
v which alternate in sign in the x-direction (∂xv 6= 0). Due to the spanwise shear
∂zu, the initial velocity distribution is deformed. Near x = 0, the velocity v
becomes z-dependent.

Moreover, by means of direct numerical simulations of turbulent channel flow,
Schoppa & Hussain (90) have found that Ωx intensification occurs due to the
generation term−∂yu∂xw, which dominates the ∂zu∂xv term. However, according
to these authors, the term −∂yu∂xw is not responsible for vortex formation, which
is driven by the stretching term Ωx∂xu. Hence, regions where ∂xu is positive are
the eventual locations of streamwise vortices. The finite amplitude of this ∂xu is
a consequence of the streak waviness. In our study, the locations where ∂xu 6= 0
are also important, however, they are not due to the streak waviness but to the
formation of stagnation points, as we will see later on.

5.2.2 Comparisons

From the streamwise vorticity Ωx = ∂yw−∂zv, we define the averaged streamwise
vorticity over the gap as:

ωx ≡
∫ 1

−1

ΩxS1(y) dy. (5.2)

Then, to compare the contributions of the individual nonlinear terms of the
vorticity equation (5.1) to the generation of ωx, it is easier to consider the equation
for ω2

x, since the quantity ∂tω
2
x is positive at (x, z) locations where ωx is being

increased, and negative where it is being reduced, as used in (36). The equation
of ω2

x is obtained directly from Eq. 5.1 by averaging over y and then over the
horizontal plane (x, z) and reads (with neither dissipative nor advective terms):

d

dt
ω2
x = t1 + t2 + t3, (5.3)
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Temporal evolution of: t1 in black dotted-line, t2 in blue dashed-line and t3 in
red solid-line.

with: t1 = 〈Ωx∂xu〉, t2 = 〈∂zu∂xv〉, t3 = 〈−∂yu∂xw〉, and where for a function f ,
we note

〈f〉 = (

∫ 1

−1

fS1(y) dy)ωx, and f =

∫

xz

f dxdz.

Throughout the chapter, numerical simulations are performed in a computa-
tional box with streamwise and spanwise lengths Lx×Lz = 32× 32. The spatial
resolution is dx = dz = 0.25, the time step is dt = 0.01 and the Reynolds number
is R = 180 ≥ Rg.

In accordance with the previous works, we find that the tilting term −∂yu∂xw
represents the largest positive contribution to the generation of the streamwise
vorticity, as shown in Fig. 5.3. Despite the fact that the positive contribution
of the term ∂zu∂xv is smaller, it is not negligible compared to that of −∂yu∂xw.
Hence, both tilting mechanisms are important. In addition to that, the generation
of streamwise vortices is not due to the stretching term Ωx∂xu which here is a
compression term since its contribution is negative. This last point attests to the
fact that there is another mechanism which elongates and transforms streamwise
vorticity into streamwise vortices.

It is rewarding to examine why the behaviors of the two tilting terms are
similar while the stretching term is a sink term. This analysis is done in the next
section.
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5.3 Generation of streamwise vortices

5.3.1 Equations of the vorticities

Using the velocity expansions of the perturbations and Eq. 5.2, we have:

ωx ≡
∫ 1

−1

ΩxS1(y) dy = βW1 − ∂zV1,

where β =
√
3 accounts for a wall-normal gradient. Then the governing equa-

tion for ωx follows from W1 and V1-equations and reads (without the dissipative
terms):

∂tωx = β∂tW1 − ∂z∂tV1 =

= −α2(U0∂x.+W0∂z.)ω̃x + ββ′′V1W0

+α3∂zU0∂xV1 − a1βŨb∂xW0 + ω̃x∂xU0, (5.4)

where Ũb = Ub +
α2

a1
U1 and ω̃x ≡ (βW1 − α3

α2
∂zV1). Due to the fact that in the

no-slip case α2 =
√
15/6 6= α3 = 5

√
15/22, in contrast with the free-slip case, we

have ωx 6= ω̃x. However, the spatial distributions of ωx and ω̃x are similar and in
the following they are considered equivalent.

Two remarks are in order. First, the last three terms in (5.4) exist in both
free- and no-slip cases. Their physical interpretations are easily recovered from
Eq. 5.1 and are as follows. The term ω̃x∂xU0 accounts for the stretching of
the vorticity Ωx by the flow U0R0(y) filling all the gap. The term ∂zU0∂xV1

represents the tilting of a spanwise vorticity ∂xV1S1(y) by a spanwise shear of the
flow component U0R0(y). The last term −a1βŨb∂xW0 accounts for the tilting
of wall-normal vorticity ∂xW0R0(y) by the flow component U(y) + U1R1(y). In
regions where U1 is negative, U(y) + U1R1(y) has locally an S-shape (for the
no-slip case). Hence, U1R1(y) represents a local correction to the base flow U(y).
The flow component U(y) + U1R1(y) as well as its projection Ũb = Ub +

α2

a1
U1

are termed herein the corrected base flow. The factor β in front of −βŨb∂xW0

accounts for the wall-normal gradient of this flow.
Second, to compare the contributions of these terms to the generation of

the streamwise vorticity, we multiply Eq. 5.4 by ωx, average over the domain
the three quantities ωx(−a1βŨb∂xW0), ωx(α3∂zU0∂xV1) and ωxω̃x∂xU0 and study
their temporal contributions to d

dt
ω2
x. As in §5.2.2, we find that the two first

terms are source terms with positive contribution of roughly the same order and
that the last term is a sink term.

For later use, we introduce the spanwise vorticity Ωz associated with the
perturbations and defined by Ωz = ∂xv

′− ∂yu
′ with u′ = U0R0(y) +U1R1(y) and

v′ = v = V1S1(y). Once averaged over y, it yields:

ωz ≡
∫ 1

−1

ΩzS1(y) dy = ∂xV1 − βU1,
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Figure 5.4: From left to right and top to bottom: ωx, α3∂zU0∂xV1, −a1βŨb∂xW0

and ω̃x∂xU0, at t = 5. There are two patches of positive and negative ωx, indicated
by the two arrows. The distributions of α3∂zU0∂xV1 and of −a1βŨb∂xW0 are
similar to the one of ωx.

and its governing equation reads:

∂tωz = ∂x∂tV1 − β∂tU1 =

= −α2(U0∂x.+W0∂z.)ω̃z + β(a1Ub∂xU0 +W1∂zU0)

−β′′βV1U0 − α3∂xW0∂zV1 + α2ω̃z∂zW0, (5.5)

where ω̃z ≡ (α3

α2
∂xV1 − βU1). The spatial distributions of ωz and ω̃z are similar

(for the same reason as before for ωx and ω̃x) and they are considered equivalent.

5.3.2 Generation of ωx and the key-structure

The spatial distributions of the last three terms in Eq. 5.4 are now studied. As
attested to by Figure 5.4, both terms α3∂zU0∂xV1 and −a1βŨb∂xW0 are source
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terms since their distributions are similar to the one of ωx, in contrast with
ω̃x∂xU0 which is a sink term since it has opposite-signed distribution to that of
ωx. Since the nature of these terms is related to the local structure of the flow,
the distributions of the velocity components are now studied.

On one hand, the distribution of V1, displayed in the left panel of Fig. 5.5,
represents two patches of negative and positive values elongated in the spanwise
direction. On the other hand, the in-plane flow (U1,W1) shown in the right panel
of Fig. 5.5 consists of a region where |U1| ≫ |W1| and U1 ≤ 0. Regions where
U1 is negative play a crucial role in the dynamics as we will see. As explained in
Fig. 5.6, these particular distributions of (U1,W1) and V1 represent a z-elongated
spanwise vortex with positive ωz (Fig. 5.5). In the literature, such vortices are
called retrograde spanwise vortices since their rotation is in the opposite sense
to the base flow. Note that regions in which ωz has a sign opposite to the mean
wall shear were observed in (49) (qualified there by curious phenomenon).

Furthermore, the pattern formed by the flow (U0,W0), given in Fig. 5.5, has a
quadrupolar structure with an inflow U0 towards the patch of ωz and a spanwise
outflow W0 pointing out of this patch. The (x, z)-location where U0 ≈ 0 and
∂xU0 ≤ 0 is termed a stagnation point herein (as the one shown in Fig. 5.5).

Hence, in the region where ωx is generated, there is a spanwise vortex, defined
by a z-elongated patch of positive ωz, and a quadrupolar flow (U0,W0) with a
stagnation point (U0 ≈ 0 and ∂xU0 ≤ 0). In the following, this particular flow-
structure is termed key-structure. In chapter 4, we have encountered a similar
flow-structure involving a large-scale recirculation in the (x, y)-plane elongated
in the z-direction and a large-scale quadrupolar flow (U0,W0) with the inflow
towards the spot (compare Fig. 5.5 here with Fig. 4.3 and Fig. 4.4). By similarity,
this particular flow-structure, developing on the outskirts of the spot, can be
called a large-scale key-structure. Hence, it is interesting to note that similar flow-
structure does occur inside the turbulent domain (localized or not) and outside
it.

Next, by considering Eq. 5.4 and studying each term in the r.h.s with the
idealized flow distribution given by the key-structure, we can easily recover the
nature of each term. For example, it is clear that the term ωx∂xU0 is a sink term
since near the stagnation point where ∂xU0 ≤ 0, it has a negative contribution in
d
dt
ω2
x = ...+ω2

x∂xU0. The nature of the two remaining tilting terms is explained in
Fig. 5.7. This analysis highlights the role of the key-structure on the generation
of streamwise vorticity ωx. Its occurrence will be attested to by some statistical
tools in §5.3.6.

Before tracking the evolution of this generated ωx to streamwise vortices, it is
intriguing to compare the contribution of each tilting term to this ωx. Such com-
parison is rewarding for the physical interpretation of the forthcoming generation
process of streamwise vortices.
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Figure 5.5: From left to right and top to bottom: Spatial distribution of V1, the
flow field (U1,W1), ωz, and the flow field (U0,W0). The stagnation point (U0 ≈ 0
and ∂xU0 ≤ 0) is marked with a red point. t = 6.

5.3.3 Different roles of both tilting terms: Complemen-
tarity

The contribution of each tilting term in the generation of ωx is now discussed.
Special care is to be addressed to the wall-normal velocity V1 since the existence
of streamwise vorticity ωx does not imply existence of streamwise vortices unless
V1 exists. Thus, it is important to note that the velocity V1 associated with the
generated ωx comes from the tilting of spanwise vorticity by the spanwise shear
(the term ∂zU0∂xV1) and that the tilting of wall-normal vorticity contributes only
to the generation of spanwise velocity W1.

Since this wall-normal velocity V1 represents the potential part of the flow
(βV1 = ∆2Φ1), it is clear that only the terms present in the equation governing
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Figure 5.6: The 3D reconstruction of the flow (U1R1,W1R1, V1S1), using the
distribution of the velocity components U1, V1 and W1 given in Fig. 5.5, shows a
spanwise vortex with vorticity opposite in sign to that of the base flow. Red-solid
(blue-dashed) contours indicate regions of positive (negative) values.
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Figure 5.7: Consider the idealized key-structure represented by the quadrupolar
flow (U0,W0) with its stagnation point indicated by the black point and with two
z-elongated patches of V1, with x-alternating sign (a). The distributions of ∂zU0

and ∂xW0 are easily obtained from that of U0 (b) and W0 (c). Then, the signs of
∂xV1∂zU0 (with ∂xV1 ≥ 0) and of −a1βŨb∂xW0 (where Ũb ≥ 0) are determined
(d). The distributions of the two terms are hence similar around the stagnation
point. Red-solid (blue-dashed) contours indicate regions of positive (negative)
values. Positive (negative) quantities are marked with “+”(-).
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Tilting α3∂zU0∂xV1
x

x

x

x

x

x

y

y

y

y=-1y=1

y=0

y=0

z

z

z

z

z

z

z

x=0

x=0

x=0

−∂zU0

+∂zU0

Figure 5.8: On the complementarity of the two tilting terms ∂zU0∂xV1 and
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shear associated with the key-structure. Only the half of the quadrupolar flow
(U0,W0) is shown here. The velocity W r
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1 . Compare

with Fig. 5.2 and Fig. 5.1. The resultant ωx = βW1−∂zV1, with W1 = W p
1 +W r

1 ,
represents an embryo of streamwise vortices, shown in the (y, z)-plane at x = 0.

the velocity potential Φ1 might produce V1. This is further discussed below.

The tilting term −a1βŨb∂xW0 can be written as the sum of −a1βUb∂xW0 and
−α2βU1∂xW0, since Ũb = Ub+

α2

a1
U1. The first term −a1βUb∂xW0 is present in the

equation of the stream-function Ψ1 (Eq. 3.2), whereas it is absent in the equation
of the potential velocity Φ1 (Eq. 3.3). Hence, it only generates a spanwise velocity
of rotational origin, W1 = ∂xΨ1.

The second term −α2βU1∂xW0 might produce V1 since it is present in the
equation for Φ1 (in NW1

). However, this term is a sink term in the equation of
ωx. In fact, the two terms −α2βU1∂xW0 and −a1βUb∂xW0 have opposite-signed
distributions (U1 is negative as inferred from Fig. 5.5 while Ub = 1), and since the
latter has a same-signed distribution as the source term −a1βŨb∂xW0 (Ũb ≥ 0),
so the former is a sink term. Therefore, the tilting term −a1Ũb∂xW0 produces a
spanwise velocity, noted W r

1 (the superscript “r” indicates its rotational origin)
which forms two sheets of streamwise vorticity ωx (and not streamwise vortices),
as shown in Fig. 5.8 (compare also with Fig. 5.1). Consider now the second tilt-
ing term. As shown in Fig. 5.8, the tilting of the spanwise vorticity by positive
(negative) ∂zU0 produces negative (positive) ∂zV1. To this z-dependent V1 corre-
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sponds a velocity potential Φ1 and hence a spanwise velocity W p
1 = ∂zΦ1, where

the superscript “p” indicates its potential origin. Its distribution is obtained from
the one of V1 through the continuity equation (∂zW

p
1 ∝ V1). The negative (posi-

tive) ∂zV1 together with positive (negative) W p
1 gives a positive (negative) patch

of ωx (compare also with Fig. 5.2). This W p
1 has a similar distribution that of

W r
1 and this allows us to highlight the complementarity of the two tilting terms.

The tilting of the spanwise vorticity ωz into the streamwise direction provides the
wall-normal velocity V1 and its corresponding spanwise velocity W p

1 (of potential
origin), whereas the tilting of the wall-normal vorticity only provides the span-
wise velocity component W r

1 (of rotational origin). The two spanwise velocities
have similar distributions and their sum, with the wall-normal velocity V1, gives
two adjacent patches of ωx which is an embryo of streamwise vortices. Hence the
two tilting terms play complementary roles in the generation of this embryo, as
summarized in Fig. 5.8. In the next section, we study the growth of this embryo
to streamwise vortices.

5.3.4 Nonlinear advection of ωx by (U0,W0)

The vorticity ωx shown in Fig. 5.4 consists of two regions of positive and negative
values. Their subsequent evolution is given in Fig. 5.9: they become elongated in
the x-direction and, as we will see later on, form two counter-rotating vortices.
The mechanism by which the initial patches of ωx become x-elongated is simply
the nonlinear advection by the two-dimensional flow (U0,W0). By lumping to-
gether this mechanism with the mechanisms studied in the previous sub-sections,
the two-time process: (1) tilting of vorticities and then (2) nonlinear advection of
ωx by (U0,W0), is called deformation of a spanwise vortex to two counter-rotating
streamwise vortices. Two points must be considered regarding this process. The
first point concerns the most suitable quantity to be studied in order to give a
simple picture of the generation of streamwise vortices from spanwise vortices.
The second point concerns the phase (2) of the process. Showing the nonlinear
advection of ωx by the flow (U0,W0) by considering the distribution of the ad-
vective terms at each time and studying their contributions to ωx will generate
a huge number of figures, similar to Fig. 5.10, and an alternative is presented
below. Regarding the first point, this deformation is easily represented by the
common quantity to both kinds of vortices (spanwise (+ωz) and streamwise vor-
tices (±ωx)), which is the wall-normal velocity V1. This velocity allows us to
track the evolution of spanwise vortices to streamwise vortices, whereas this is
not easy with ωx and ωz. Furthermore, the governing equation of V1 is explicitly
integrated in the numerical simulation (in fact, it is Eq. 3.3 since βV1 = ∆2Φ1), in
contrast with Eq. 5.4 and Eq. 5.5 for ωx and ωz which are not integrated. More-
over, the presence of this wall-normal velocity V1 guarantees that the vorticity,
oriented in either the spanwise or streamwise directions, corresponds respectively
to spanwise and streamwise vortices. Following the deformation of a spanwise
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vortex to two counter-rotating streamwise vortices using the isocontours of V1,
is presented in §5.3.5, and shows some crescent structures similar to the one de-
picted in Fig. 5.8 with the red-line contour. The second point is studied in §5.4
using a set of partial differential equations of (x, t) governing the flow (U0,W0),
the spanwise vortex and the streamwise vortices.
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Figure 5.9: Sequence of figures showing the formation of streamwise vortices.
The isocontours of the vorticity ωx are reported. From left to right and top to
bottom: (a) t = 5,(b) t = 7,(c) t = 12,(d) t = 17. The two patches with positive
and negative values of ωx are elongated in the streamwise direction and form two
counter-rotating vortices.

5.3.5 From spanwise to streamwise vortices

Figure 5.11 displays the evolution of the spanwise vortex (shown in Fig. 5.5) using
the velocity V1. In each sub-figure, the total flow (U0,W0) is shown with vectors.
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Figure 5.10: Spatial distribution of the term −(U0∂x.+W0∂z.)ω̃x at t = 5.

From sub-figures (a) to (d), the isocontours of V1 are deformed. From (c) to
(d), the positive patches of V1 are advected in the streamwise direction towards
negative x and they both come closer. The last configuration is a crescent vortex
shown in Fig. 5.12 together with the associated flow field (U1,W1). While the
spanwise vortex represents its head, the two counter-rotating streamwise vortices
form the legs of this crescent vortex and they regenerate the streaks by the lift-
up effect. Regions with positive (negative) V1 at t = 17 correspond to regions
of negative (positive) U0 (represented with horizontal vectors since |U0| ≫ |W0|).
Therefore, on each side of the legs, we have positive Reynolds stress −U0V1, as
shown in Fig. 5.13. Hence, the streamwise vortices extract the energy from the
base flow across the gap, as discussed in (75). By inspecting the full turbulent
domain, we have found that the regions which make essential contributions to the
production of energy are at both sides of the legs of the several crescent vortices.
Also, we have found two kinds of crescent vortices, the first one already shown in
Fig. 5.11 and the second one shown in Fig. 5.13. As attested to by Figure 5.14,
the crescent vortices are numerous in the turbulent domain and can be observed
by monitoring the wall-normal velocity V1. Both kinds of crescent vortices can
be easily depicted in this figure. They have roughly similar size (≈ 2h in x and
3h in z) for different Reynolds numbers R ∈ [180, 250].

A remark is worth making here. As shown in Fig. 5.15, the deformation of
a spanwise vortex with ωz ≥ 0 gives a crescent vortex (of either the first or the
second kind) which regenerates the streaks, whereas the deformation of a spanwise
vortex with ωz ≤ 0 would give a crescent vortex which damps the streaks (anti
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Figure 5.11: Sequence of figures showing the deformation of the spanwise vortex
to a crescent vortex. From left to right and top to bottom: (a) t = 5, (b) t = 7,
(c) t = 12, (d) t = 17. Wall-normal velocity V1 in gray levels and the flow
(U0,W0) is shown with red vectors. The two legs of the crescent vortex (t = 17)
are x-elongated and form the streamwise vortices.
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Figure 5.12: Left: The velocity (U1,W1) at t = 17. The corresponding V1 is
given in Fig. 5.11. The region dominated by positive (negative) W1 represents
a streamwise vortex. The 3D reconstruction of this flow represents a crescent
vortex (right panel).
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Figure 5.13: Left: The legs of the crescent vortex (Fig. 5.12) are two streamwise
vortices. On each side of the vortex, there is a region of positive Reynolds stress
−U0V1. Right: Second kind of crescent vortices. The velocity V1 is depicted by
its isocontours and the flow (U0,W0) is shown with vectors.
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Figure 5.14: The crescent vortices are numerous in the turbulent domain, as
attested to here by the spatial distribution of V1 in a large numerical box with
Lx×Lz = 128h×64h. Left: for a sustained turbulent state with R = 200 ≥ Rg ∼
173. Right: During the decay of the turbulent state where pockets of laminar
flow nucleate and widen, R = 168 ≤ Rg.

lift-up effect giving −U0V1 ≤ 0). Therefore, only spanwise vortices with ωz ≥ 0,
i.e. retrograde, are important in the self-sustainment of turbulence.

The question about which kind of crescent vortex will be generated by the
deformation of a given spanwise vortex by a quadrupolar flow (U0,W0) relies on
the symmetry of this flow. The study of such a point is more suitable in terms
of ordinary differential equations and is presented in the next chapter.

Since the key-structure is at the origin of the generation of ωx by the tilting
mechanisms, its occurrence is now studied using some statistical tools.

5.3.6 Statistical tools

The occurrence of some events related to the key-structure can be measured by
well defined quantities. First, since a retrograde spanwise vortex is characterized
by a positive ∂xV1 and the stagnation point by a negative ∂xU0, the simple signa-
ture of the event leading to the generation of a crescent vortex is the positiveness
of the (correlation) quantity:

A(t) ≡ −∂xU0∂xV1 > 0,

where the overline denotes the spatial average. Second, using the wall-normal
vorticity −∆2Ψ0 = ∂zU0−∂xW0 of the quadrupolar flow (U0,W0) and the stream-
wise vorticity ωx, as shown in Fig. 5.7, the occurrence of such key-structure is
confirmed by the positiveness of the quantity:

C(t) ≡ (−∆2Ψ0)ωx > 0.

Furthermore, the streamwise vortices and the streaks are characterized by a
spanwise gradient ∂zV1 and ∂zU0 respectively. Hence, the occurrence of the lift-up
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Figure 5.15: The deformation of a spanwise vortex (with ωz ≥ 0) by a quadrupolar
flow (U0,W0) can give one of the two kinds of crescent vortices. Same contour
convention as in Fig. 5.7. For the first kind, both adjacent regions with opposite-
signed ωx on the left of the stagnation point in Fig. 5.7 are x-elongated (see also
Fig. 5.9), whereas, for the second kind, both regions on the right of this point are
x-elongated.

is attested to by the positiveness of the quantity

F(t) ≡ −∂zV1∂zU0 > 0.

Let us now quantify the contribution of a single crescent vortex to the total
Reynolds stress B ≡ −U0V1. If d denotes the surface of the sub-domain containing
such vortex (d ≈ 3.5× 2.5), so

∫
d
−U0V1 dxdz measures its contribution in terms

of Reynolds stress. It follows that the quantity

B′ ≡ B/
∫

d

−U0V1 dxdz

is related to the “number” of crescent vortices in the whole domain. In the same
way,

A′ ≡ A/
∫

d

−∂xU0∂xV1 dxdz

accounts for the number of occurrence of the event leading to the formation of
the crescent vortex, as well as the quantities

C ′ ≡ C/
∫

d

(−∆2Ψ0)ωx dxdz, F ′ ≡ F/
∫

d

−∂zV1∂zU0 dxdz.

Since all the quotients above are related to the same event, i.e. generation of
a crescent vortex, it is interesting to verify that they give similar values or at
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Table 5.1: Contribution of a single crescent vortex, for R = 180

Quantity
∫
d
−U0V1 dxdz

∫
d
−∂xU0∂xV1 dxdz

∫
d
−∂zU0∂zV1 dxdz

∫
d
(−∆2Ψ0)ωx dxdz

value 0.28± 0.05 0.25± 0.6 1.17 ± 0.12 2.53 ± 0.12
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Figure 5.16: Some statistical tools. R = 180, Lx × Lz = 32 × 32. The rescaled
quantities: A′ in black, B′ in red, C ′ in blue and F ′ in green. These quantities
do not cancel and since they describe the same event (generation of a crescent
vortex), so they are similar.

least that their time behaviors are similar. This is in fact the case, witnessed
in Fig. 5.16 where the rescaled quantities (using Table 5.1) have similar time
behaviors.

Many other events can be measured with more complicated quantities and
tools, but the quantities considered here are sufficient to attest the frequently
encountered key-structure.

5.3.7 Conclusions on the generation of streamwise vor-
tices

The streamwise vortices are produced through a two-time process. First, adja-
cent regions of streamwise vorticity ωx with opposite signs are generated by the
tilting of the spanwise (wall-normal) vorticity into the x-direction by the shear
∂zU0 (−βŨb). The contributions of these tilting terms are correlated due to a
particular distribution of the velocity components, termed key-structure. Its fre-
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quent occurrence was confirmed by some statistical tools (§5.3.6). Then in a
second time, the nonlinear advection of ωx by the flow field (U0,W0) results in
two counter-rotating streamwise vortices. This two-time process is summarized
as follows. A spanwise vortex with positive ωz is deformed by the flow (U0,W0)
and yields two counter-rotating streamwise vortices. Then, the tilting of the
wall-normal vorticity by the corrected base flow intensifies the in-plane spanwise
velocity associated with these streamwise vortices.

In the next two sections, we further illustrate (i) the generation of streamwise
vortices with a simple model and (ii) study the generation of spanwise vortices.

5.4 From spanwise to streamwise vortices: an

illustrative model

In this section, a model is derived to illustrate the deformation of a spanwise
vortex into two counter-rotating streamwise vortices under the action of the flow
(U0,W0).

5.4.1 Derivation

The field functions Ψ0, Ψ1 and Φ1 are expanded onto a complete basis of z-
dependent functions with x, t-dependent amplitudes. The equations of the no-slip
model (3.1-3.3) are then projected onto this functional basis.

For the stream-function Ψ0, we choose an odd expansion in z. With this
choice, justified later on, the parity of the remaining functions Ψ1 and Φ1 is
determined using the symmetries of the problem.

It follows that Ψ0, Ψ1 and Φ1 have these Fourier expansions:

Ψ0 =
∑

n≥1

An(x, t) sin(nθz),

Ψ1 =
∑

n≥1

Bn(x, t) sin(nθz),

Φ1 =
∑

n≥0

Cn(x, t) cos(nθz),

where θ = 2π/Lz is the spanwise fundamental. A dipole (U0,W0) such as the
one depicted in Fig. 5.11 (at t = 17) can be represented at the lowest order,
by the first mode of the stream-function Ψ0(x, z, t) = A1(x, t) sin(θz), which
changes its sign along the z-direction. Then, since the vorticity ∆2Ψ1 is generated
linearly by ∆2Ψ0 through the linear term −a1Ub∂x∆2Ψ0 in Eq. 3.2, the stream
function Ψ1 has to include the first mode too. Then, the first z-independent
mode of Φ1, C0, represents a spanwise vortex characterized by V1 = ∂xxC0/β
and U1 = ∂xC0 (with W1 = 0). The second mode C1 cos(θz) represents two
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streamwise vortices where the corresponding wall-normal velocity reads V1 =
∆2Φ1/β = (∂xx − θ2)C1 cos(θz)/β ∝ cos(θz). These streamwise vortices have
the correct z-distribution and are able to regenerate the streaks U0 ≡ −∂zΨ0 =
−A1θ cos(θz) ∝ cos(θz). The sign of C1 is determined by the dynamic and has
to be examined later on. Hence, the expansions for the fields are:

Ψ0 = A1(x, t) sin(θz), Ψ1 = B1(x, t) sin(θz), Φ1 = C0(x, t) + C1(x, t) cos(θz).

The projection gives the set of equations forming the illustrative model:

(∂t +R−1(δ1 − γ0))δ1A1 = −δ1a1(32θC1 − ∂xB1) + TNA1 , (5.6)

(∂t +R−1(δ1 − γ1))δ1B1 = −a1δ1∂xA1 + TNB1 , (5.7)

(∂t +R−1(∂xx − β2))(∂xx − β2)∂xxC0 =
√
15
2
θ2∂xx(A1B1)

+TNC0 + γ6R
−1∂xxC0, (5.8)

(∂t +R−1(δ1 − β2))(δ1 − β2)∆1C1 = γ6R
−1δ1C1

+θ
√
15

(
5
22
(δ1 − 1

4
)(A1∂xxxC0)− ∂xA1∂xxC0

)
, (5.9)

where δ1 ≡ (∂xx − θ2), a1 = 1/
√
7 and γ6 = 45/2. The nonlinear terms TNA1 ,

TNB1 and TNC0 are given in the appendix.
The only parameters of this model are the Reynolds number and θ. We choose

θ = π so that the spanwise width of the streaks is of the same order as with the
no-slip model (∼ 1).

Our aim is to illustrate how a streak deforms a spanwise vortex to give stream-
wise vortices which in turn, regenerate the streak through the lift-up mechanism.
Hence starting with a streak A1 and a spanwise vortex C0, we have to show that
(i) the streamwise vortices C1 are generated by the nonlinear action of the streaks
on this spanwise vortex and (ii) that these streamwise vortices have the right sign,
i.e. that they amplify the streaks (lift-up) instead of damping them (anti lift-up).

The first point (i) is easy to prove since the r.h.s. of the governing equation
for C1 contains the product of A1 and C0, which proves that the streamwise
vortices C1 are solely induced by the nonlinear action of A1 on C0. Then, this C1

would regenerate the streaks by the lift-up term −δ1a1 32θC1 if C1 has the correct
sign. The two points (i) and (ii) are further examined by means of numerical
simulations.

5.4.2 Numerical integrations

For the initial condition, we take A1(x, 0) = 1

2
√√

π
e−2(x−xc)2 , C0(x, 0) = (x −

xc)e
(x−xc)2/2, C1 = B1 = 0 and xc = 4. The streak U0 = −θA1 cos(θz), associated

with this A1, is positive at z = 1 as seen in Fig. 5.17. The retrograde spanwise
vortex, associated with C0, is depicted in Fig. 5.17 by the wall-normal velocity
componant V1. It is also characterized by a z-elongated patch of positive vorticity
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Figure 5.17: From left to right and top to bottom: the flow field (U0,W0) repre-
sented with vectors, V1 at t = 0.2 at its subsequent evolution at t = 1 and t = 6.
R = 180.
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Figure 5.18: The isocontours of ωz at t = 0.2 (left) and t = 6 (right). The
spanwise vortex is characterized by a positive spanwise vorticity ωz = ∂xV1−βU1.
The head of the crescent vortex (right panel) is a spanwise vortex, with ωz ≥ 0.

ωz, as shown in Fig. 5.18. The width of this spanwise vortex (∼ 1) is close to the
one observed in the numerical simulations.

As in the previous section, we follow the temporal evolution of the spanwise
vortex using the velocity V1. As displayed in Fig. 5.17, the contours of V1 are
deformed and result in a crescent contour. Together with the corresponding
velocity field (U1,W1) given in Fig. 5.19 (left), this crescent contour is a crescent
vortex. Its two legs are two counter-rotating vortices, represented by two x-
elongated patches with opposite-signed ωx depicted in Fig. 5.19 (right), whereas
its head is a spanwise vortex with ωz ≥ 0 as shown in Fig. 5.18.

It is easy to recover some results related to the tilting mechanisms. For
instance, the generated ωx given in Fig. 5.19 has a distribution similar to that
of the term ∂zU0∂xV1, which passes from positive to negative values in the z-
direction as inferred from the flow (U0,W0) and V1 depicted in Fig. 5.17.
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Figure 5.19: Left: the velocity field (U1,W1) at t = 6. Right: the isocontours of
ωx at t=6.

Regarding the role of the crescent vortex, it is clear from Fig. 5.17 that the
positive (negative) x-elongated patches of V1 correspond to the negative (positive)
regions of U0. Hence, on each side of the legs, we have positive Reynolds stress
−U0V1: the streamwise vortices have the right sign and the lift-up feeds energy
into the system.

As we stated in the previous section, the crescent vortices are essentially of two
kinds. An example of generation for the first kind was already given in Fig. 5.17.
By considering an initial condition with the same spanwise vortex (ωz ≥ 0) as
above but with a dipole (U0,W0) rotating in the opposite direction, A1 → −A1,
a crescent vortex of the second kind is generated. The corresponding ωx and
V1 are obtained respectively from Fig. 5.19 and Fig. 5.17 by ((x − xc), ωx) →
(−(x− xc),−ωx) and ((x− xc), V1)→ (−(x− xc),−V1).

As a conclusion, the events leading to the formation of the streamwise vortices
are well captured and explained by this illustrative model.

In the next section, the generation mechanism of the spanwise vortices is in-
vestigated. We can already note from the equations of the illustrative model, that
the only source term for the spanwise vortex C0 is the nonlinear term θ2∂xx(A1B1)
(when C0 = C1 = 0). Since A1 and B1 are the stream-functions of the in-plane
flow, this source term shows that the spanwise vortex is generated from the non-
linear interactions of the in-plane flow components.

5.5 Generation mechanism for the spanwise

vortices

5.5.1 Study of the spanwise vorticity equation

From §5.3.1, the governing equation for ωz is:

∂tωz = ∂x∂tV1 − β∂tU1 =

= −α2(U0∂x.+W0∂z.)ω̃z + β(a1Ub∂xU0 +W1∂zU0)

−β′′βV1U0 − α3∂xW0∂zV1 + α2ω̃z∂zW0. (5.10)
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Figure 5.20: Spatial distribution of the advective term −α2W0∂zω̃z (left) and the
stretching term α2ω̃z∂zW0 (right) at t = 5.

As done for ωx, we start by considering the contributions of some (dominant)
terms in the equation of ωz. The distributions of −α2W0∂zω̃z, a1βUb∂xU0 and
α2ω̃z∂zW0 are given in Fig. 5.20 and Fig. 5.21, while the distribution of ωz was
already given in Fig. 5.5. It is clear that a1βUb∂xU0 is a sink term since it
represents a region with negative values where ωz is positive (this is obvious since
near the stagnation point, ∂xU0 ≤ 0 and Ub = 1). In contrast, the stretching
term α2ω̃z∂zW0 represents a region with positive values since ∂zW0 is positive
near the stagnation point (∂zW0 = −∂xU0 ≥ 0). This term intensifies ωz. The
behaviors of these two terms can be verified from a statistical point of view by
showing that the temporal value of the spatial averaged ωz(Ub∂xU0) is negative
whereas the value of ωz(ω̃z∂zW0) is positive in the equation of ω2

z .

Furthermore, due to the nonlinear advection by W0, the patch of the spanwise
vorticity is elongated in the z-direction (−α2W0∂zω̃z), as depicted in Fig. 5.20.
Near the stagnation point, the contribution of this term vanishes (W0 ∼ 0),
whereas the contribution of the stretching term α2ω̃z∂zW0 is maximal.

Despite this analysis of the main contributions to ωz, it is difficult to under-
stand the generation of the spanwise vortices which are characterized, in par-
ticular, by the wall-normal velocity V1. In fact, the spanwise vorticity can be
written as ωz = ∂xV1 − βU1 = ωp

z + ωr
z , where the first part is of potential origin

ωp
z = ∂xV1 − βUp

1 and the other part is of rotational origin ωr
z = −βU r

1 . The
presence of a spanwise vortex implies a non-zero ωp

z since ωr
z represents sheets of

vorticity and not vortices.

The study of the equation of ωz enables us, however, to identify the terms
which play an important role in the generation of z-elongated region of ωp

z and
which are not zero when V1 is zero. The first term is −α2U1∂zW0 and comes
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Figure 5.21: Spatial distribution of the sink term βa1Ub∂xU0.

from the stretching term α2ω̃z∂zW0. The second term is α2W0∂zU1 and comes
from −α2W0∂zω̃z. These two terms are present in the nonlinear term NU1

in
the equation governing U1. Their roles in the generation of spanwise vortices are
summarized as follows. An initial localized region of negative U1 of rotational
origin (i.e., without V1) is intensified and stretched along the spanwise direction by
these two terms. Then to this z-elongated region of U1, a wall-normal velocity V1

is induced by the pressure to satisfy the continuity equation and hence a spanwise
vortex is generated (and characterized by ωp

z ≥ 0). To prove this mechanism, we
have to show that these two terms are source terms for (a positive) ωp

z which
reads:

βωp
z = ∂xβV1 − β2Up

1 = (∆2 − β2)∂xΦ1,

since βV1 = ∆2Φ1 and Up
1 = ∂xΦ1. Then, using the equation of Φ1 (3.3) which

reads (without dissipative terms):

∂t(∆2 − β2)∆2Φ1 = β2(∂xNU1
+ ∂zNW1

)− β∆2NV1
,

and deriving it w.r.t x and considering in the r.h.s only the two nonlinear terms
in NU1

with which we are concerned, yields the equation for ωp
z :

∂t∆2ω
p
z = β2α2∂xx(−U1∂zW0 +W0∂zU1).

This equation shows the generation of ωp
z through the nonlinear interaction of

the rotational flow (U0,W0) and the rotational part of the flow (U1,W1), noted
(U r

1 ,W
r
1 ), and can be written as:

∂t∆2ω
p
z = β2α2∂xx(−U r

1∂zW0 +W0∂zU
r
1 ).
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This fact is also supported by Eq.5.8 since the amplitude C0 of the spanwise
vortex attains a finite value, when starting from a flow with no wall-normal
velocity (C0 = C1 = 0 thus is V1 = 0), thanks to the nonlinear term A1B1,
where A1 and B1 represent respectively the stream function of the rotational flow
(U0,W0) and the rotational part of the flow (U1,W1).

To gain some insight into the distribution of the generated ωp
z from the equa-

tion above, we have to further simplify the equation above (by dropping ∆2 and
∂xx). At first approximation, we can suppose that ωp

z is slowly z-varying, hence
the gradient in the z-direction is smaller than the gradient in the x-direction
which yields ∆2ω

p
z ≈ ∂xxω

p
z , and we get:

∂t∂xxω
p
z ≈ β2α2∂xx(−U r

1∂zW0 +W0∂zU
r
1 ).

Then simplifying the x-derivative yields:

∂tω
p
z ≈ β2α2(−U r

1∂zW0 +W0∂zU
r
1 ).

As shown in Fig. 5.22, the r.h.s. of this equation has, around the stagnation
point, a positive and z-elongated distribution. Thus the resultant ωp

z consists of
a positive patch.

Therefore the potential part of the vorticity, ωp
z , is generated through the

nonlinear interactions between a correction of rotational origin (U r
1 ≤ 0) to the

base flow and a quadrupolar flow (U0,W0).

5.5.2 Generation of the quadrupolar flow (U0,W0)

We consider now the generation of this quadrupolar flow (U0,W0), characterized
by a stream function Ψ0. We will see that in addition to the lift-up, the streaks
U0 can be generated by another mechanism, which does not necessitate a wall-
normal motion. Hence, streaks can exist without streamwise vortices, as noted
by (90).

This mechanism is linear and is driven by the term −Ub∂xU1 in the U0-
equation. Consider, as initial condition, a localized region of negative U r

1 ≤ 0
located at (xc, zc). For x ≤ xc, (x ≥ xc) ∂xU

r
1 is negative (positive) and hence

the generated U0 is positive (negative), according to ∂tU0 ∼ −Ub∂xU1. This dis-
tribution of the induced U0 points out its inflow character. It has a stagnation
point (U0 ≈ 0 and ∂xU0 ≤ 0) located at (xc, zc).

This linear source term comes from the Galerkin projection of the term
−Uby∂xU1R1(y) in the equation of U0R0(y). It represents the generation of U0R0

through the shearing of U1R1(y) by the base flow Uby. Hence, the inflow U0 and
its characteristic stagnation point are the consequences of the shearing by the
base flow of the localized region of negative U1. The outflow W0 derives from the
continuity equation ∂xU0 + ∂zW0 = 0.
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Figure 5.22: Generation of the spanwise vorticity ωp
z . Consider a localized region

of negative U1(= U r
1 ) with the inflow U0 and outflow W0. Based on this velocity

distribution, the contributions of both terms −U1∂zW0 and W0∂zU1 result in a
positive and z-elongated region. The resultant ωp

z is a z-elongated patch with
positive values. See also Fig. 5.20. Solid-red (dashed-blue) contours indicate
positive (negative) values.

Similar generation of the quadrupolar flow (U0,W0) by this linear mechanism
has been encountered in Chapter 2, where the shearing of the large-scale com-
ponent of the correction to the base flow, U1, by the base flow Ub, gives the
large-scale inflow U0 with a stagnation point at the center of the spot. Here the
same mechanism does apply but with small-scale structures.

A more physical intepretation to this mechanism as well as the role of the
different terms in the U0-equation will be discussed later.

5.5.3 Generation of the spanwise vortex

The different steps in the generation process of spanwise vortices are given in
Fig. 5.23 and discussed as follows. Consider a localized region of negative U1 =
U r
1 , which represents a correction of rotational origin to the base flow. The base

flow shears this U r
1 and generates the inflow U0 with its characteristic stagnation

point (U0 ≈ 0 and ∂xU0 ≤ 0 at the center of the region of U r
1 ). Then, according

to the continuity equation, an outflow W0 is induced with ∂zW0 = −∂xU0 ≥ 0 at
the center of the region of U r

1 .
Under the action of this outflow W0, the distribution of U1 is intensified and

elongated into the z-direction, thanks to the generation of the potential part Up
1 by

the two terms −U r
1∂zW0 and W0∂zU

r
1 and is given now by the sum U1 = U r

1 +Up
1 .

The distribution of the flow associated with this U1 depends on the wall-normal
coordinate y and is given by U1R1(y). Since U1 is negative, we have a flow towards
negative x for positive y and conversely, for negative y, the flow is towards positive
x. Due to incompressibility, this flow escapes towards negative y and in the other
half space, the fluid escapes towards positive y. This wall-normal escaping motion
generates the velocity V1.

This is nicely supported by the V1-equation since all the terms in its r.h.s
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Figure 5.23: Generation of a retrograde spanwise vortex. Consider a localized
region of negative U1 of rotational origin. The base flow shears this velocity and
generates U0 with its characteristic stagnation point and the spanwise outflow
∂zW0 ≥ 0 (1). This spanwise velocity intensifies (by the term −U1∂zW0) the ve-
locity U1 and elongates (by the term W0∂zU1) its region in the spanwise direction
(2). To this z-elongated region of U1, with its y-reconstruction given in sub-figure
(3), a wall-normal velocity V1 is generated. The resultant retrograde spanwise
vortex in shown in (4). Positive (negative) quantities are marked with “+”(-).

vanish when V1 = 0 except the pressure term P1, the role of which is to assure the
incompressibility of the flow. Hence, from the in-plane motion (U0,W0, U

r
1 ,W

r
1 ),

a wall-normal velocity V1 (associated with the spanwise vortex) emerges due to
the pressure.

Note finally that we were concerned in this study with some terms which play
an important role in the generation of a spanwise vortex (especially −U1∂zW0

and W0∂zU1). For example, the term U0∂xU1 which compresses the initial region
of U1 in the x-direction was deliberately omitted (to simplify the presentation)
and only the related term W0∂zU1, which elongates this region in z, is studied.

Further details which are necessary for the study of the self-sustained mech-
anisms (see below), as the size of the initial patch of U1, the spanwise streaks
spacing, and the size of the generated spanwise vortex, will be given later.

5.6 Discussion and conclusion

The main question that was addressed in this chapter concerns the generation
mechanism for streamwise vortices. By analyzing each term contributing to the
generation of the streamwise vorticity in the physical space and tracking the
evolution of this vorticity into streamwise vortices in time, we have found a
process for streamwise vortices generation where the flow field (U0,W0) related to
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the streaks (represented by the velocity component U0) plays a crucial role. This
process is summarized as follows. A retrograde spanwise vortex is deformed by the
flow (U0,W0) and gives a crescent vortex where its legs are two counter-rotating
vortices. Then, the tilting of the wall-normal vorticity by the corrected base
flow intensifies the in-plane spanwise velocity associated with these streamwise
vortices. They regenerate the streaks by the lift-up effect.

Then, we derived an illustrative model in terms of four PDEs, showing the
generation of streamwise vortices from spanwise vortices. In the last part of this
chapter, a mechanism for the generation of spanwise vortices was presented. Un-
der the action of the flow field (U0,W0), a localized region of streamwise velocity
correction, represented in the model by U1 ≤ 0, is intensified and stretched in the
spanwise direction under the action of W0 (where ∂zW0 = −∂xU0 ≥ 0). To this
z-elongated region, a wall-normal velocity is generated by the pressure to satisfy
the continuity equation. This wall-normal velocity and the z-elongated region of
U1 form the spanwise vortex.

Our results leave one with a rather different understanding of the mecha-
nisms of streamwise vortices formation to what might have been inferred from
other works. In some previous studies, direct numerical simulations of a highly
constrained plane Couette flow and plane Poiseuille flow were used by minimiz-
ing the lateral dimensions of the domain or by externally imposing a streaky flow
with a chosen analytical form.

Hamilton et. al (36) stressed on the fact that studies have to be made in
unconstrained turbulent flows and that comparisons are needed to conclusively
comment on any generation mechanisms and their occurence in real turbulent
flow.

The works of (56; 101) (among others) as well as the present work are examples
of such studies. In fact, in our simulations, no constraints were imposed. The flow
was free to evolve in an extended domain and no perturbation with particular
shape was externally imposed to this flow. The coherent structures were free to
move and we obtained rich spatiotemporal dynamic.

The main difference with the turbulent flow in the experiments is the low
y-resolution. But near the stability threshold Rg, this low resolution is justified
based on (i) the experimental observations (large coherent structures spanning all
the gap, e.g. Bottin et al. (13)) and (ii) the fact that all the dynamics elucidated
in the present study (flow structures as well as the mechanisms) still hold when
we increase the y-resolution in both free-slip and no-slip cases. The derivation
procedure of models with higher y-resolution in the free-slip case (involving har-
monic functions) is straightforward and is detailed in (64). In the appendix, we
give a glimpse on the derivation of higher y-resolution models for the no-slip case.

Although we will not undertake a detailed comparison here, we will present
some points found with our model and revealing a close correspondence to well-
known instantaneous experimental events. One has to keep in mind, however,
that we will extend the analysis beyond the case of pCf and consider other shear
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flows, better documented in the literature. Hence, we have to be careful in
comparing the present results with others due to their similarity. For instance,
the question whether the crescent vortices are the representation in the case of pCf
of the well-known hairpin vortices, needs a complete study to account for their
possible relationship, despite the fact that they share several common features.
If it is the case, the present model will constitute an ideal tool for studying such
vortices and giving insight into some of the several proposed mechanisms for their
generation (e.g., see the recent work of Heist et al. (2000)(43)).

Furthermore, the stagnation points (U0 ≈ 0 and ∂xU0 ≤ 0) found in the
present study, agree well with experimental events. Note first that in the half-
space y ≥ 0, positive U0 represents a high-speed streak since U(y) + U0R0(y) ≥
U(y) and that negative U0 represents a low-speed streak since U(y) +U0R0(y) ≤
U(y). In the half-space y ≤ 0, the situation is reversed. We have shown that
these stagnation points play important role in the generation of the spanwise
vortices (and then streamwise vortices).

Bogard & Tiederman (10) have also shown that the stagnation points are
important because they are associated with the regions containing high Reynolds
stress production. They discussed their physical origin and according to these
authors, they are a straightforward kinematic consequence of the impact of a
high-speed streak on the back of a low-speed streak. Quoting (10), when a
low-speed fluid is lifted away from the wall by the streamwise vortices, it will
represent an obstacle onto which the high-speed fluid will impact and then flow
around. This would cause the impingement point—termed in the present chapter
a stagnation point—and produces a shear layer with high (negative) velocity
gradient in the streamwise direction. These shear layers are another important
feature of the wall-bounded turbulence and they have been shown to be related
to the turbulence production in fully turbulent flow at low Reynolds numbers
(e.g.(8)) as well as inside localized region of turbulence (e.g. (41)). In addition
to the negative streamwise gradient ∂xu, they are characterized by a positive ∂xv
(e.g. see Figure 12 in (8)), which is in fair agreement with our finding ∂xV1 ≥ 0.

As we have already mentioned, Schoppa & Hussain (90) have shown that
the streamwise velocity gradient (but positive ∂xu) plays an important role in
the generation of streamwise vortices (stretching term Ωx∂xu ) and that it is a
consequence of the streak waviness induced by a sinuous instability.

In our study, we have shown that (i) the origin of this gradient is the linear
shearing of the correction to the base flow (the velocity U1) by the base flow itself
(§5.5.2) which gives a negative ∂xU0 and that (ii) the origin of the positive ∂xV1

is the retrograde spanwise vortex.
Furthermore, by measuring the statistical properties of the vorticity field in

boundary layer flow, Balint et al. (4) found that the stretching of the spanwise
vorticity in the spanwise direction, due to a positive ∂zw, is more frequent than
compression. According to Antonia & Kim (2), it is plausible to assume that
this ∂zw is the result of a wallward moving fluid which, on encountering the wall,
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is deviated in both positive and negative z-directions. In the present study, the
spanwise vorticity is also stretched in the z-direction (rather than compressed)
due to the positiveness of ∂zW0, which is related, however, to the stagnation
points events (∂zW0 = −∂xU0 ≥ 0).

Hence, there is an agreement between the shear layer structure observed in
turbulent flows and the key-structure studied in this chapter. Both represent
islands where the turbulence is being produced.

Finally, the present study prompts us to consider the self-sustainment of the
turbulence. By piecing together the mechanisms described in this chapter, a self-
sustained process for wall-bounded turbulence can be proposed. In fact, we have
studied two sequences of events. The first sequence deals with the generation of
a spanwise vortex and the second sequence concerns its subsequent evolution, i.e.
its deformation into a crescent vortex and the generation of streamwise vortices.
To present a complete self-sustained process, it suffices to link between the last
point, the streaks regenerated by lift-up, and the first point, the localized region
of negative U1. Once the streak is amplified by the streamwise vortices, it is
sheared by the base flow Ub and generates U1, according to the term −a1Ub∂xU0

in the U1-equation. Regions of negative U1 nucleate at the leading edge of a low
speed streak (U0 ≤ 0) and at the trailing edge of a high speed streak (U0 ≥ 0). In
these regions, spanwise vortices are then generated and the cycle restarts. Hence,
the immediate next step is to formulate this cycle in terms of a set of ordinary
differential equations (ODEs). Such ODEs model provides an ideal system for
studying the interplay between the streaks, the correction to the base flow and
the different types of vortices.

Appendix A: nonlinear terms of the illustrative

model

The nonlinear terms TNA1 , TNB1 and TNC0 read:

TNA1 =
√
15
4
(θ(θ2C1∂xC0 + C1∂xxxC0 − ∂xxC1∂xC0)− ∂xB1∂xxxC0)

+
√

5
12
((θ2(∂xB1∂xC0 +

5
2
B1∂xxC0)− (∂xxxB1∂xC0 +

5
2
∂xxB1∂xxC0)))

TNB1 = 3
√
5

4
(θ2(∂x(A1∂xC0) + ∂xA1∂xC0) + ∂x(∂xA1∂xxC0)− 2∂x(∂xxA1∂xC0)),

TNC0 = −
√
15
8
(3θ3∂x(A1C1) + θ(A1∂xxxC1 + 5∂xA1∂xxC1) + 4θ∂xxA1∂xC1)

− 5
44

√
15θ(θ2∂xxx(A1C1)− ∂x(∂xA1∂xxxC1)

−(A1∂xxxxxC1) + ∂xxxA1∂xxC1).
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Figure 5.24: Right: polynomials for (u, w), R1 in thin red-line, R2 in dash-dotted
blue, R3 in dashed magenta and R4 in solid-black. Left: polynomials for v, S1 in
thin red-line, S2 in dash-dotted blue, S3 in dashed magenta and S4 in solid-black.

Appendix B: Higher order no-slip models

The y-resolution of the no-slip model is increased by further including y-
polynomials. The Gram-Schmidt orthogonalization is used to construct an or-
thogonal basis of such polynomials. We give here the expansions of the velocities
truncated at the order 4.

v = V1S1 + V2S2 + V3S3 + V4S4,

u = U0R0 + U1R1 + U2R2 + U3R3 + U4R4,

with the same expansion for the spanwise velocity w as u. The orthonormal
polynomials, plotted in Fig. 5.24, read:

S2(y) = A2y(1− a2y
2)(1− y2)2,

S3(y) = A3(1 + a3y
2)(1 + b3y

2)(1− y2)2,

S4(y) = A4y(a
2
4 − y2)(b24 − y2)(a25 − y2)(1− y2)2,

R2(y) = B2(1− y2)(1− 14y2 + 21y4),

R3(y) = B3y(1− y2)(7.2494− 42.84y2 + 46.41y4),

R4(y) = B4(1.14− y2)(1− y2)(0.66− y2)(0.028− y2)(0.26− y2),

with a2 = 3, b3 = −16.6312, a3 = −1.9842, a4 = 0.3288, b4 = 1.0968, a5 = 0.6880
and the Ai, and Bi are normalization constants. As illustrated in Fig. 5.25, most
of the perturbation kinetic energy

Etot ≡ 1
2

∫

V

u2+v2+w2 dV = 1
2

∫

xz

(U2
0+W 2

0 ) dxdz+
∑

k=1..4

1
2

∫

xz

(U2
k+V 2

k +W 2
k ) dxdz,
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Figure 5.25: Energies contained in the modes, E0 in red-solid, E1 in blue-dashed,
E2 in magenta-dotted, E3 in black-solid, E4 in red-dashed. E0 ∼ E1 > E2 >
E3 > E4. Most of the energy is contained in the two first modes, i.e k = 0
(U0,W0) and k = 1 (U1,W1, V1). R = 250 and Lx × Lz = 32× 32.

is contained in the two first modes, i.e k = 0 (U0,W0) and k = 1 (U1,W1, V1),
constituting precisely the no-slip model studied in the present chapter.



Chapter 6

Spreading mechanism

abstract

In this chapter we study the spreading mechanism of turbulent spots in plane
Couette flow, where fluid is sheared between two parallel plates moving in op-
posite directions. The analysis of the coherent structures on the border between
the laminar and turbulent regions reveals the existence of many vortices with
wall-normal axes occupying the full gap between the plates. The streamwise
component of the velocity field of these vortices are the streaks. Due to their
self-advection, these vortices move parallel to the plates. During their motions,
they carry the other perturbation components such as the streamwise and span-
wise vortices.
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6.1 Introduction

Plane Couette flow (pCf), shear flow between two parallel plates moving in
opposite directions with velocities ±Up, experiences a transition to turbulence
marked by the nucleation and growth of turbulent spots, i.e. patches of turbulent
flow scattered amidst laminar flow and separated from it by well defined fronts
(e.g.(23)).

This transition is not restricted to the pCf case but also occurs in other shear
flows with great practical interest, such as plane Poiseuille (16) and boundary
layer flows (33). Despite a large body of numerical (61; 91; 53) and laboratory
(98; 99; 22; 13) experiments, many questions regarding such transition remain
unanswered, such as the mechanisms involved in the growth of turbulent spots
(64; 69).

Based on experiments in boundary layer flow, Gad-El-Hak et al. (33) proposed
a mechanism called growth by destabilization. The spot was observed to travel
with a lower velocity than the surrounding flow. Hence it acts as a blockage and
the laminar flow field on the outskirts of this spot is accelerated. The base flow
as well as its linear stability property are modified and the growth of infinitesimal
perturbations occurs.

Dauchot & Daviaud (23) discussed this mechanism in an experimental study
of the pCf. Externally applied perturbations that trigger turbulent spots were
made by injecting turbulent jets into the laminar flow. They found velocity
profiles indicating that the flow is accelerated outside the spot, supporting the
mechanism of (33). But a direct demonstration of this mechanism has not yet
appeared.

Tillmark (99) experimentally analyzed the flow field in the vicinity of the spot
in the pCf. He found that, in the spanwise direction, the spot forces the fluid
outwards, giving rise to a spanwise outflow filling all the gap between the two
plates. The flow outside the spot is hence modified and he suggested that the
spanwise growth of turbulent spots can be due to the destabilization mechanism
of Gad-El-Hak et al. (33). In the numerical study of Schumacher & Eckhardt (91),
a more complete picture of the flow on the outskirts of the spot was given. In
addition to the spanwise outflow observed in (99), they found a streamwise inflow
towards the spot. They argued that the flow outside the spot plays an important
role in the spreading of the spot. They stressed the fact, however, that this
spreading is driven by a nonlinear mechanism.

In their experimental investigations of the dynamics of spots in the plane
Poiseuille flow, Carlson et al. (16) noted that the spots were accompagnied
by oblique waves at their leading edge (wingtips). It was difficult, however, to
find out whether the waves broke down and formed the new turbulence on the
wingtips, or whether they are overtaken by the existing turbulence.

The nature of these waves and their role in the spreading of the spot were
studied, using numerical simulations, by Henningson et al. (40). Due to the
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modification of its stability properties by the presence of the spot, the surrounding
flow is susceptible to unstable oblique Tollmien–Schlichting waves which may
grow and then break down into turbulence. However, the linear growth rate of
these waves calculated by Henningson (39) is too small compared to the observed
one. Therefore, he suggested that the waves attain their large growth rate by
some additional mechanisms.

Furthermore, Alavyoon et al. (1) compared spots in plane Poiseuille and
boundary layer flows and pointed out the absence of waves at the wingtips of
spots in the latter case. According to these authors, this indicates that if the same
spreading mechanism is at work in both cases, then the waves are of no importance
for the spreading itself. Whereas, if these waves play an important role in the
spreading of spots in plane Poiseuille flow, then the spreading mechanisms are
different and depend on the flow configurations. Hence, the role of the waves
in the breakdown process and in the spreading mechanism of turbulent domain
remains unclear and needs further study, as noted by Hennigson.

Therefore, the question of which mechanism is involved in the spreading of
spots in shear flows is to a large extent open and despite a large body of experi-
ments, a simple intuitive physical picture has been lacking.

An attempt to tackle such question led us to make use of our no-slip model.
The outline of this chapter is as follows. In §6.2, some numerical results on the
dynamics of turbulent spots are described. Then the structure of the flow at the
boundary between laminar and turbulent domains is analyzed and the spreading
mechanism is elucidated §6.3. This mechanism is further illustrated using a
simple one-dimensional model. The main results of this chapter are assessed in
the conclusion §6.4.

6.2 Growth of a turbulent spot

A standard Fourier pseudo-spectral method with periodic boundary conditions in
the streamwise and spanwise directions has been implemented for the integration
of the equations of the model (3.1-3.3). For details on the numerical method, see
chapter 3.

As initial condition we take localized functions Ψ0, Ψ1 and Φ1:

Ψ0(x, z, t = 0) = Ψ1(x, z, t = 0) = Φ1(x, z, t = 0) = A exp−(x2+z2)/σ,

where A is an amplitude and σ is related to the size of the initial turbulent
domain.

Tracking the growth of a turbulent spot can be done by using one component
of the velocity or vorticity fields at a given y-plane. Of particular benefit for our
present study is the wall-normal vorticity associated to the drift flow (U0,W0).
Figure 6.1 displays gray-level snapshots of ∆2Ψ0 = ∂xW0 − ∂zU0, where ∆2 =
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Figure 6.1: Growth of a turbulent spot with R = 200 in a domain with Lx×Lz =
32× 32. Wall-normal vorticity ∆2Ψ0 in gray levels. From left to right and top to
bottom: t=20, 70, 156, 210.

∂xx + ∂zz, at different times after initiation. The spot grows and contaminates
the laminar domain at t ∼ 210.

6.2.1 Coherent structures on the front

Flow structures at the boundaries between the laminar and turbulent domains
are the elements needed for understanding the spreading mechanism of the spots.
Arrows in Fig. 6.1 (at t = 156) show two adjacent patches with opposite signed
vorticity ∆2Ψ0 lying on the front propagating to the right. As shown in Fig. 6.2,
these patches correspond to two counterrotating vortices (U0,W0). First, stream-
wise streaks U0 are easily identified as regions where |U0| ≫ |W0|. The sign of U0

is alternating in the spanwise direction between positive and negative values, so
that when the centers of the vortices lie along the z-axis, the distance between
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Figure 6.2: The flow (U0,W0) represented by arrows. From left to right: t=154,
156, 160 and t = 162.

the centers corresponds roughly to the width of the streak. This distance varies
from 1h to 3h, as can be seen from Fig. 6.2. Second, as may be inferred from the
sense of rotation of both vortices, this dipole is propagating to the right. Before
studying the origin and the consequence of this motion, it is instructive to track
the expansion of the turbulent spot with the remaining flow velocity components.

Fig. 6.3 displays the spatial distribution of the wall-normal velocity V1 and the
flow field (U1,W1), corresponding to the region in Fig. 6.2. The reconstruction
of the total flow field ((U1,W1)R1(y), V1S1(y)) in this region reveals a crescent
vortex, studied in the previous chapters. Its legs are two streamwise vortices
which regenerate the streaks U0 through the lift-up.

As we have seen in Part II (Figure 15), there are two kinds of crescent vor-
tices. During the spreading of the spot, both kinds are present inside the tur-
bulent domain, but more interestingly, the crescent vortices present in the front
propagating to the right (in the streamwise direction or roughly in the oblique
direction) are of the first kind, as the one shown in Fig. 6.3, while the other kind
populates the front propagating to the left. This observation is explained later
on.

6.3 The spreading mechanism

The numerical simulations of the model have been used to identify elementary
processes involved in the spreading mechanism. The dipoles (U0,W0) carry, dur-
ing their propagation, the perturbation components (U1, V1, W1...) in the (x, z)-
plane. This spreading mechanism has two points to be examined. The first
concerns the origin of the motion of the dipoles while the second deals with the
consequence of such motion.

Elements of proof for both points can be given by studying the contribution
of the advective term U0∂xf + W0∂zf in the governing equation of f , where
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Figure 6.3: The isocontours of V1 (left) and the field (U1,W1) (right) at t = 156.
This flow distribution represents a crescent vortex.

the quantity f can be the wall-normal vorticities ∆2Ψ0, ∆2Ψ1, or the velocity
V1 or the streamwise vorticity etc. However, since this method produces data
sets requiring a lot of post-treatment, it will be used only in §6.3.1 to study the
origin of the motion of the dipoles (U0,W0) (first point). The entrainment of the
perturbation components by these dipoles (second point) is investigated using a
model in §6.3.2.

6.3.1 Origin of the dipole motion (U0,W0)

Let us consider the governing equation for the stream-function Ψ0 of the drift
flow (U0,W0) which can be rewritten as:

(∂t −R−1(∆2 − γ0))∆2Ψ0 = J0 + J1 + J2 + J3 + J4 + J5, (6.1)

where the wall-normal vorticity of the flow (U0,W0) is ∂xW0− ∂zU0 = ∆2Ψ0. On
the right hand side (r.h.s) we have:

J0 = −α1(U0∂x.+W0∂z.)∆2Ψ0,

J1 = −a1(Ub +
α2

a1
U1)∂x∆2Ψ1,

J2 = −α2(β
′ + β)V1∆2Ψ1,

J3 = α2
3
2
(U1∂z.−W1∂x.)∆2Φ1,

J4 = −α2W1∂z∆2Ψ1,

J5 = a1
3
2
Ub∂z∆2Φ1.
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Figure 6.4: Left: Distribution of the wall-normal vorticity ∆2Ψ0 at t = 156. The
two patches of ∆2Ψ0 with positive and negative values correspond to the dipole
depicted in Fig. 6.2. Right: the spatial distribution of J0 presents two patches of
positive and negative values in front of ∆2Ψ0.

The vorticity ∆2Ψ0 results from the projection over R0(y) of the three-
dimensional wall-normal vorticity ∂xw−∂zu. In the same way, both terms J0 and
J1 come from the projection over R0(y) of the term u∂x(∂xw− ∂zu) in the equa-
tion governing the vorticity ∂xw − ∂zu. The projection over R1(y) of ∂xw − ∂zu
gives the vorticity ∆2Ψ1 = ∂xW1 − ∂zU1.

Note that by setting the flow components V1, W1 and U1 to zero, all the terms
in the r.h.s of Eq. 6.1 vanish except J0. Hence, the equation governing the drift-
flow reduces to the two-dimensional Navier-Stokes equation, with an additional
viscous damping R−1γ0 induced by the friction of this flow on the plates. The
term J0 represents the advection of the two-dimensional flow (U0,W0)R0 for its
own vorticity ∆2Ψ0R0.

The second term J1 accounts for the generation of ∆2Ψ0R0 through the shear-
ing of the vorticity ∆2Ψ1R1 by the velocity component u′ = U(y) + U1R1(y). A
physical interpretation of this shearing mechanism can be found in chapter 4. In
regions where U1 is negative, U1R1 represents a correction to the base flow so
that this u′ has locally an S-shape, similar to the mean profile of the turbulent
plane Couette flow. In the following, the scalar Ũb = Ub +

α2

a1
U1 as well as u′ are

termed the corrected base flow.
Note finally that the lift-up effect is represented by the term J5. Further

interpretations of the terms in the r.h.s will be introduced on demand to analyze
their different roles.



100 Spreading mechanism

19 20 21 22 23
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

X

r.
h.

s

19 20 21 22 23
−3

−2

−1

0

1

2

3

4

5

6

X

r.
h.

s

Figure 6.5: Different quantities as functions of coordinate x along the red (left
panel) and green (right panel) line in Fig. 6.1. The values of ∆2Ψ0 at t = 156 (in
black dashed-line) and at t = 162 (in solid red line). The total r.h.s of Eq. 6.1
in dashed magenta. J0 in dash-dotted blue line and J1 in solid green line. The
arrows indicate the sense of propagation.

Consider now the dipole depicted at successive times in Fig. 6.2. Its wall-
normal vorticity ∆2Ψ0 consists of two adjacent patches with opposite signs as
shown in Fig. 6.4 (left). In front of each one, there is a same-signed patch of J0,
given in the right panel of this figure. This distribution of J0 is reminiscent of the
distribution of the nonlinear term, in two-dimensional Navier-Stokes equation, in
front of a propagating dipole. Hence, the origin of the motion of the considered
dipole would be the self-advection of the flow (U0,W0) if J0 is preponderant over
the other terms in the r.h.s of Eq. 6.1. This is indeed the case as attested to by
Figure 6.5 where we plotted ∆2Ψ0 between two successive instants as a function
of x along the streamwise red-line (for z ∼ 9) and the green-line (for z ∼ 10)
in Fig. 6.4 together with the whole r.h.s. of Eq. 6.1. The term J0 represents
the largest contribution to this r.h.s. which is negative (positive) in front of the
negative (positive) patch of ∆2Ψ0 so that this vorticity propagates to the right.
From a physical point of view, this propagation can be explained as the effect of
the induced velocity of one vortex on the other in accordance to the Biot–Savart
law.

In the following we study the contributions, albeit weaker, of the other terms.
Such study will give a clear picture of the roles of these terms. Since it involves
the interactions between the coherent structures previously studied in chapter ??,
a summary of the mechanisms at work is given here.

First, the term J1 acts against the propagation of the dipole by damping the
vorticity ∆2Ψ0. Indeed, this term is positive (negative) where ∆2Ψ0 is negative
(positive), as shown in Fig. 6.5. The origin of such behavior is as follows. Once
the streaks U0 are regenerated by the streamwise vortices, they are sheared by
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the base flow (linear transport) and induce the velocity component U1 according
to ∂tU1 ∼ −a1Ub∂xU0 (see previous chapters). Within the formulation of the
equations in terms of stream functions, this generation mechanism is represented
by the linear term −a1Ub∂x∆2Ψ0 in the equation governing ∆2Ψ1 (3.2). Hence,
the distribution of the induced vorticity ∆2Ψ1 through the shearing of the vor-
ticity ∆2Ψ0 by the base flow is roughly given by ∆2Ψ1 ∼ −a1Ub∂x∆2Ψ0 (with
Ub = 1). It follows that:

J1 = −a1Ũb∂x∆2Ψ1 ∼ Ũb∂xx∆2Ψ0,

showing that J1 behaves like a dissipative term (with Ũb ≥ 0).
Consider then the term J2, which involves the quantities V1 and ∆2Ψ1. On

the right of both patches of positive and negative values of ∆2Ψ0, the velocity
V1 remains positive (crescent contour) whereas ∆2Ψ1 (∼ −Ub∂x∆2Ψ0) changes
its sign. It follows that in front of the dipole, J2 and J0 have opposite-signed
distributions, thus, the former term acts against the progression of the dipole.

The remaining terms J3, J4 and J5 are now considered. As shown in chapter 5,
the head of the crescent vortex is a spanwise vortex, where the flow (U1,W1) is
dominated by |U1| ≫ |W1| and U1 ≤ 0 (although U1 ∼ 0 in the present case).
Hence, lumping the three terms and neglecting the contribution of W1 yield:

J3 + J4 + J5 ≈ a1
3
2
(Ub +

α2

a1
U1)∂z∆2Φ1,

which accounts for the lift-up effect, i.e. the extraction of the energy from the
corrected base flow (Ub +

α2

a1
U1) by the wall-normal velocity V1. Therefore, the

quantity J3+J4+J5 is a source term for the streaks and thus for their wall-normal
vorticity ∆2Ψ0.

As a conclusion, by analyzing the different terms in the r.h.s of Eq. 6.1, this
short study shows that (i) the dominant term is J0 and that (ii) the distributions
of the different remaining terms can be determined since the involved quantities
(U1, U0, V1,...) are correlated through the cycle of self-sustained mechanisms for
wall-bounded turbulence (Chap. 4). The propagation of the vortices (U0,W0)
is hence due to their self-advection (the term J0). While some of these terms
enhance the propagation, such as J3 + J4 + J5 which intensifies the vorticity of
the dipole, other terms act against this propagation by either weakening this
vorticity, such as J1, or by damping the contribution of J0, such as J2.

Note, however, that the preponderance of one term over the others is not
permanent. For example, it is clear that during the linear growth of the vorticity
∆2Ψ0 by the lift-up effect, the nonlinear contribution of J0 is negligible compared
to that of J5. In other words, arguing that a term dominates another one neces-
sitates the explicit reference to which mechanism in the cycle is occuring. In this
study we were only concerned about the origin of the propagation of the dipoles
once they are generated and about the roles of the different terms in the r.h.s of
Eq. 6.1 in this propagation.
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In the following, the consequence of the motion of the dipoles on the other per-
turbation components is studied using a set of 1-dimensional partial differential
equations.

6.3.2 Entrainment of the perturbations: an illustrative
model

A simple model is now derived to illustrate the entrainment of the perturbations
in the x-direction through the motion of the dipoles (U0,W0). The z-dependence
of the perturbations is frozen on some Fourier modes. The symmetries of the
problem are then used to simplify the expansions of the fields by choosing a set
of functions satisfying a particular symmetry. This choice is driven by the fact
that the wall-normal vorticity of a dipole propagating in the x-direction is odd
in z.

Hence, the fields Ψ0, Ψ1 and Φ1 for such a solution have these Fourier expan-
sions:

Ψ0 =
∑

n≥1

An(x, t) sin(nθz),

Ψ1 =
∑

n≥1

Bn(x, t) sin(nθz),

Φ1 =
∑

n≥0

Cn(x, t) cos(nθz),

where θ = 2π/Lz is the spanwise fundamental.
A stream-function of a dipole (U0,W0) can be represented by the first mode

Ψ0(x, z, t) = A1(x, t) sin(θz). However, due to the z-periodicity, this dipole can-
not propagate in the x-direction. To remedy this, it is sufficient to include the
second harmonic in this expansion, A2(x, t) sin(2θz). The superposition of these
two modes yields a modulated array of vortices in the spanwise direction.

Then for the stream-function Ψ1, we have to include the first two modes,
since the vorticity ∆2Ψ1 is linearly generated from ∆2Ψ0 through the linear term
−a1Ub∂x∆2Ψ0 (Eq. 3.2).

Last, the expansion of the potential velocity Φ1, which is related to the wall-
normal velocity V1 of the vortices (either spanwise or streamwise), is truncated.
The nonlinear interactions of the in-plane (x, z) flow components induce this V1

through the terms −U1∂zW0 andW0∂zU1 (Chap. 5). Accordingly, we have to keep
the Fourier modes generated by these terms with U1 = −∂zΨ1 and W0 = ∂xΨ0.
With the retained modes for Ψ0 and Ψ1, these modes are 1, cos(θz), cos(2θz) and
cos(3θz). Finally, the expansions read:

Ψ0 = A1(x, t) sin(θz) + A2(x, t) sin(2θz), (6.2)

Ψ1 = B1(x, t) sin(θz) + B2(x, t) sin(2θz), (6.3)

Φ1 = C0(x, t) + C1(x, t) cos(θz) + C2(x, t) cos(2θz) + C3(x, t) cos(3θz).(6.4)
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Figure 6.6: The propagating dipole depicted by the flow (U0,W0) at t = 0.1 (top)
and t = 5 (bottom). R = 200.

Numerical results

The numerical integration of the illustrative model can be easily done using the
code already developed for the no-slip model. Between two successive time steps,
all the Fourier modes of the three fields are set to zero except the retained modes
in the expansions above.

As an initial condition we take A1(x, 0) = − 4
5π2 e

−2(x−xC)
2

, A2(x, 0) =

−1
2
A1(x, 0), C0=C1=C2=C3=0, B1(x, 0) = − 4

9
√√

3π
e−(x−xC)

2/6 and B2(x, 0) =

−1
2
B1(x, 0). The streamwise length of the computational domain is Lx = 12.8

with xC = Lx/2 and the Reynolds number is R = 200. Choosing θ = 2π/Lz with
Lz = 3.2 yields a streak U0 with a spanwise width of about ≈ Lz/2 = 1.6. With
the retained value of θ, we have U0(x, z, 0) ≈ O(1) and U1(x, z, 0) ≈ O(1).

First, the dipole (U0,W0) depicted in Figure 6.6 is propagating to the left, as
could be inferred from the sense of rotation of both vortices. This propagation
is also tracked by its vorticity ∆2Ψ0 as shown in Fig. 6.7. Second, during its
propagation, this dipole carries the other flow components. Indeed, Figure 6.8
illustrates the generation and the entrainment of a crescent vortex to the left,
depicted by the wall-normal velocity V1. The corresponding flow field (U1,W1)
is given in Fig. 6.9. The legs of this crescent are two streamwise vortices char-
acterized by two patches of streamwise vorticity ωx = βW1 − ∂zV1, as shown
in Fig. 6.10. During their propagation to the left, they regenerate the streaks
and produce positive Reynolds stress −U0V1: positive (negative) patches of V1

correspond to the negative (positive) regions of U0. Hence during its motion,
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Figure 6.7: The wall-normal vorticity ∆2Ψ0 at t = 0.1 (top) and t = 5 (bottom).

the dipole (U0,W0) carries the crescent vortex, which continues to regenerate it
through the lift-up effect.

Afterwards, the wall-normal vorticity ∆2Ψ0 associated with these streaks is
sheared by the base flow and a vorticity ∆2Ψ1 is induced. Its distribution is
roughly given by ∆2Ψ1 ∼ −a1Ub∂x∆2Ψ0, as shown in Fig. 6.10 by the arrows. In
turn, this vorticity damps the progression of the dipole (the term J1).

Finally we have stated in §6.2 that, for a given spot, each front was populated
by a particular kind of the crescent vortices. The reason behind this distribution
is simple. Depending on the sense of rotation of the dipole (U0,W0), a spanwise
vortex is deformed by this dipole and gives a crescent vortex of the first or the
second kind. If it is of the first kind (as the one depicted in Fig. 6.8), it is advected
to the left whereas, if it is of the second kind, it is advected to the right (as the
one depicted in Fig. 6.3).

As a conclusion, this model illustrates well the entrainment of the flow quan-
tities by a propagating dipole (U0,W0). The interactions between the flow com-
ponents encountered in the previous section such as the lift-up effect, are well
captured by this model. Its natural limitation is that the dipole is allowed to
propagate only in the x-direction, since its z-dependence is frozen.

6.4 Discussion and conclusion

In this chapter, the spreading of a turbulent spot was investigated. The con-
tamination of the laminar domain by the turbulent domain is the consequence of
the motion in the horizontal-plane of wall-normal vortices spanning all the gap
between the two plates.

First, we have shown that the dynamic of these dipoles is governed by their
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self-advection. Second, during their motion, these dipoles carry the other pertur-
bation components and continue to interact with them. For instance, the carried
crescent vortex continues to regenerate the streaks by the lift-up mechanism. As
a consequence of this entrainment by the dipoles, the front propagating to the
right is populated by crescent vortices of the first kind, whereas the one propa-
gating to the left is populated by crescent vortices of the second kind. The core
of the spot, however, is filled with both kinds, as shown in Fig. 6.11.

Furthermore, our aim is to present the elementary building block of the
spreading mechanism which is the motion of the dipoles. For this reason, we
did not study the interactions of these blocks, for instance, when two dipoles
moving in opposite directions encounter one another and then propagate in the
spanwise direction, as shown in Fig. 6.11. Moreover, depending on the sense of
their rotation, the dipoles propagate in the (x, z)-plane towards the x-direction
but also towards the oblique direction, since they are not all symmetric in z.
Figure 6.2 (for t = 156) gives an example of such dipole (for z ≥ 11, x ≤ 21). Its
vorticity is shown in Fig. 6.1.

Furthermore, we have seen in Chap. 4 that on the outskirts of the turbulent
spot, there is a quadrupolar large-scale flow denoted by (U0,W0). Some possible
consequences of this flow on the spreading of the spot can be provided by the
present study. The large-scale streamwise inflow U0 could hinder this spreading
since it pushes the small-scale dipoles (U0,W0) towards the core of the spot,
thus acting against their progression in the streamwise direction, as illustrated
in Fig. 6.11.

In contrast, the large scale outflow W0 contributes to the spreading of the
spot in the spanwise direction by advecting the perturbations in the core of
the spot outwards. This outflow W0 acting in both spanwise directions would
explain the spot splitting phenomenon, occuring at Reynolds numbers close to
the transitional and observed in experimental studies (e.g. (23)) and in other
shear flows experiencing a transition to turbulence by nucleation of spots, as
plane Poiseuille flow (16).

Despite its limited cross-stream resolution, our model for pCf gives valuable
hints about the spreading mechanism of turbulent spots. First, the presented
mechanism still holds when we increase the wall-normal resolution. A glimpse on
the derivation of such higher order models is given in Chap. 5. Second, the models
derived in Chap. 2 for pCf with free-slip boundary conditions on the plates for
different resolutions in y, exhibit the same spreading mechanism as in the no-slip
case. Third, evidence of the presence of the dipoles on the front can be obtained
from laboratory experiments by measuring the wall-normal vorticity either at
the mid-plane or by averaging it over the gap. The experimental investigation of
Schröder & Kompenhaus (92) is an example of such studies but in other wall flow
of more practical interest than pCf. Their Figure 6 and Figure 13 describe the
result of an ensemble average of the wall-normal vorticity of spots in boundary
layer flow and show small adjacent regions of opposite-signed vorticity.
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Clearly, further studies investigating the internal structures of turbulent spots
and especially the substructures on the edge of the spot are needed to conclusively
comment on the spreading mechanism presented in this chapter and its occurence
in real turbulent spot. The experimental works of Perry (79) and of Sankaran et
al. (85; 86) who investigated the structure of a spot in boundary layer flow as
well as the numerical investigation of Singer (94) and the recent experiments of
Makita & Nishizawa (62), are examples of such studies.

Finally, the present discussion of the spreading mechanism and the flow pat-
terns at the boundaries could be a stepping stone for a quantitative estimation
and derivation of the front propagation speed vfr. The formula vfr ∝ Γ/2πr,
where Γ is the recirculation of the vortices (U0,W0) and r is related to the streak
spacing, could be a good starting point.
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Figure 6.8: Generation and entrainment of a crescent vortex, depicted by its
vertical velocity V1. From top to bottom, t = 0.1,1,3 and 5. The flow field
(U1,W1) is given below in Fig. 6.9.
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Figure 6.9: The flow field (U1,W1) at t = 5. This flow field together with the
corresponding V1, represents a crescent vortex.
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Figure 6.11: General view of the spreading mechanism, with the role of the large
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[11] Bottin, S. and Chaté, H. Statistical analysis of the transition to turbulence
in plane Couette flow. Eur. Phys. J. B., 6, (1998) 143–155.



110 BIBLIOGRAPHY

[12] Bottin, S. Daviaud F, Manneville P, Dauchot O. Discontinuous transition to
spatiotemporal intermittency in plane Couette flow. Europhys. Lett. 43 (1998)
171–176.

[13] Bottin S., Dauchot O. Daviaud F. Manneville P. Experimental evidence of
streamwise vortices as finite amplitude solutions in transitional plane Couette
flow, Phys. Fluids 10 (1998) 2597–2607.

[14] Brandt L, Cossu C, Chomaz L, Huerre P, Henningson D. On the convectively
unstable nature of optimal streaks in boundary layers, J. Fluid Mech. 485
(2003), 221-242.

[15] Brooke J.W, Hanratty T.J, Origin of turbulence-producing eddies in a chan-
nel flow. Phys. Fluids A (1993), 5,1011.

[16] Carlson, D.R. Widnall, S.E. Peeters, M.F. A flow visualization of transition
in plane Poiseuille flow, J. Fluid Mech. 121 (1982) 487–505.

[17] Corrsin S. Some current problems in turbulent shear flows (1955). In Panton
RL, editor. Self-sustaining mechanisms of wall turbulence. Boston: Computa-
tional Mechanics Publications, 1997.

[18] D. Coles, Transition in circular Couette flow, J. Fluid Mech. 21 (1965) 385–
425.

[19] Cros A. Le Gal, P. Spatiotemporal intermittency in the torsional Couette
flow between a rotating and a stationary disk. Physics of Fluids. 14, (2002)
3755–3765.

[20] Darbyshire, A.G. and Mullin, T. Transition to turbulence in constant-mass-
flux pipe flows. J. Fluid. Mech. 289, 83-114 (1995).

[21] Dauchot, O. Manneville, P. Local Versus Global Concepts in Hydrodynamic
Stability Theory. J. Phys. II 7 (1997) 371–389.

[22] Dauchot O. Daviaud F. Finite amplitude perturbation in plane Couette flow.
Europhysics letters. 28 (4), (1994) 225–230.

[23] Dauchot O. Daviaud F. Finite amplitude perturbation and spots growth-
mechanism in plane Couette flow Physics of Fluids. 7 (2), (1995) 335–343.
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Appendix A

The symmetries of the model

When a system is invariant under the action of a group of symmetries which
are spatial (e.g. reflections, translations, rotations), we may derive many conse-
quences on the evolution of particular initial conditions. For the plane Couette
flow, there are 3 symmetries. The first one is a reflection about the spanwise axis
z. The second one is a reflection about the streamwise axis x and the last one is a
central symmetry about the point x = z = 0. The translation is non important.
The basic profile is U(y) = Uby and we have the equations:

∂tu+ u∂xu+ v∂yu+ w∂zu = (A.1)

−∂xP − U∂xu− v∂yU +
1

R
∆u. (A.2)

∂tv + u∂xv + v∂yv + w∂zv = (A.3)

−∂yP − U∂xv +
1

R
∆v. (A.4)

∂tw + u∂xw + v∂yw + w∂zw = (A.5)

−∂zP − U∂xw +
1

R
∆w. (A.6)

∂xu+ ∂yv + ∂zw = 0. (A.7)

Those equations are invariant under the following transformations:

T Z : (x, y, z)→ (x, y,−z)
and w → −w, (u, v, p)→ (+u,+v,+p).

T X : (x, y, z)→ (−x,−y, z)
and (u, v)→ (−u,−v), (w, p)→ (+w,+p).

and
T R = T X ◦ T Z.

Each transformation corresponds to a physical symmetry: T X is a reflection
about the spanwise axis z, T Z is a reflection about the spanwise axis x and T R
is a central symmetry about the point x = z = 0.
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Since we have those expansions for the velocity components:

u = Uby + BU0(1− y2) + U1Cy(1− y2),

v = V1A(1− y2)2,

w = BW0(1− y2) +W1Cy(1− y2)

and those relation between the velocities and the fields:

U0 = −∂zΨ0, W0 = ∂xΨ0

U1 = ∂xΦ1 − ∂zΨ1, W1 = ∂zΦ1 + ∂xΨ1, βV1 = ∆2Φ1

the three transformations can be written:

T Z : (x, z)→ (x,−z) and :

Ψ0 → −Ψ0,

Ψ1 → −Ψ1 , Φ1 → Φ1,

U0 → U0 , W0 → −W0,

U1 → U1 , W1 → −W1, V1 → V1,

T X : (x, z)→ (−x, z) and :

Ψ0 → −Ψ0,

Ψ1 → Ψ1 , Φ1 → −Φ1,

U0 → −U0 , W0 → W0,

U1 → U1 , W1 → −W1, V1 → −V1,

T R = T X ◦ T Z : (x, z)→ (−x,−z) and :

Ψ0 → Ψ0,

Ψ1 → −Ψ1 , Φ1 → −Φ1,

U0 → −U0 , W0 → −W0,

U1 → U1 , W1 → W1, V1 → −V1,


