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Chapter 1

Introduction and Motivation

The objective of this work is to provide a contribution to the understanding of the broad physical problem
concerning the development of perturbations in the flow field around a swept wing.

The swept-wing problem is interesting from both a research and an industrial application perspective.
From a research perspective it is part of the large class of three-dimensional boundary-layer problems,

together with rotating disks, rotating cones and rotating spheres [53]. The flow around all these bodies is
characterized by a pressure gradient which is not locally aligned with the direction of the velocity vector,
as is instead the case, for example, in a pipe flow. As a consequence, the pressure gradient provides an
acceleration to only some components of the velocity while leaving others unchanged, thus rotating the
velocity vector. Streamlines are accordingly curved in the direction parallel to the gradient, if the flow is
accelerated (favorable pressure gradient), and in the direction perpendicular to the gradient, if the flow
is decelerated (adverse pressure gradient).

x

p

x

p

Figure 1.1: The effect of nonalignment of the pressure gradient. On the left: the velocity vector
at the inflow is parallel to the pressure gradient, and both are aligned with the horizontal axis.
The velocity of the fluid particle moving along the streamline (dashed blue line) increases and
decreases, accelerated and decelerated by the pressure gradient, but remains parallel to the
horizontal axis. The pressure distribution along the horizontal axis is represented below the
plates, as a continuous line. On the right, the velocity vector at the inflow has an angle with
the horizontal axis. The horizontal component of the velocity increases and decreases moving
along the streamlines, while the vertical component remains unchanged. The velocity vector
rotates and the streamlines are curved. The curvature is stronger in the boundary layer close
to the plate than in the free stream, because of the lower fluid-momentum there. This is the
situation in the boundary layer over a swept wing, if we neglect the curvature of the surface:
the pressure gradient is aligned with the chordwise direction, but there is a spanwise velocity
component due to the sweep. Streamlines are first curved in the chordwise direction until the
pressure minimum is reached, and then curved back into the spanwise direction in the pressure
recovery (adverse pressure gradient) region.

1



2 Chapter 1. Introduction and Motivation

This situation is exemplified in Figure 1.1 where we consider two flat plates, viewed from the top, and
a pressure distribution such that its gradient is always aligned with the horizontal direction. On the left
plate, the flow is aligned with the horizontal direction as well: while moving across the plate from left to
right, each fluid particle is first accelerated by a favorable pressure gradient and then decelerated by an
adverse pressure gradient, but the velocity vector remains parallel to the horizontal axis, and so do the
streamlines. In contrast, on the inflow for the right plate the velocity of our fluid particles has an angle
of 45◦ with the horizontal axis. In this case, the fluid particles moving along the streamline accelerate by
increasing their horizontal velocity component as in the previous case, but the vertical velocity component
remains unchanged. The velocity vector (hence the streamline) is rotated (curved) towards the horizontal
direction. The opposite happens in the presence of an adverse pressure gradient: the horizontal velocity
component is reduced while the vertical component remains unchanged. The velocity vectors (and the
streamlines) are deflected towards the original flow direction. This effect is stronger in the boundary
layer developing at the plate surface than in the free stream, because of the reduced momentum of the
fluid there, and the curvature of the streamlines is more pronounced.

At the origin of this nonalignment between the pressure gradient and the velocity vector there can
be different phenomena: the centrifugal — or centripetal, depending on the point of view — force in the
rotating disk case or the spanwise invariance assumption in the swept-wing case. Whichever the origin,
the consequence is the development of strongly three-dimensional boundary layers sharing a characteristic
stability behavior: streamwise vorticity is developed within the boundary layer in the form of vortices
nearly aligned with the streamlines, known as crossflow vortices. These streamwise structures can be the
source of secondary instabilities by lifting low-momentum fluid from the wall towards the free stream
and pushing higher-momentum fluid from the free stream towards the wall. Transition from laminar to
turbulent fluid motion can be triggered in this manner.

The stability properties of these three-dimensional boundary layers, including the development of
associated crossflow vortices and of other types of instabilities, are not yet fully understood, and the
contribution of this thesis aims at providing further insights in this direction.

From an industrial point of view, understanding the behavior and origins of disturbances over swept
wings is related to our interest in developing passive or active flow control strategies aimed at delaying
transition from laminar to turbulent flow to reduce skin-friction drag. Crossflow vortices are deemed
principally responsible for this transition for sweep angles greater than 30− 35◦. Joslin [34, 35] remarks
that skin-friction drag amounts to about 50% of the total drag on a subsonic transport aircraft, and
that laminar skin friction can be as low as 90% less than turbulent skin friction at the same Reynolds
number. Even a partial increase in the extent of the laminar flow can prove very beneficial to the aircraft’s
efficiency, both by reducing skin-friction drag and by allowing more compact aircraft designs, for example
by reducing the amount of fuel that is required to cover a given distance.

Various approaches have been proven effective in increasing the extent of the laminar flow region
[34, 35]: among them we mention natural laminar flow, which employs favorable pressure gradients to
delay transition, laminar flow control, which employs active blowing and suction through the wing surface,
and relaminarization of turbulent flow, again employing suction but at higher energetic cost than laminar
flow control. Nonetheless, the effectiveness of natural flow control is limited to small sweep angles (in
other words, it is limited to reducing the growth of streamwise Tollmien-Schlichting instabilities, typical
of two-dimensional boundary layers; see below).

Despite a large research effort, the cause of transition from laminar to turbulent flow in general and
the transition on swept wings in particular still has many unresolved features. The concept of receptivity
[47] is recognized to be at the origin of the transition process, and it will play a central role in this
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work: disturbances from the environment, e.g., small variations in the incoming free stream, enter the
boundary layer and trigger the development of perturbations which may then be amplified and eventually
cause transition. Different mechanisms have been proposed in order to describe this amplification and
the subsequent transition process. We mention here modal growth, non-normal (transient) growth, the
development of secondary instabilities and bypass transition. They are summarized in Figure 1.2, taken
from [40].1.2. LINEAR STABILITY THEORY 9
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Figure 1.5. Roadmap to transition as suggested by Morkovin et al. (1994) (see Reshotko, 1994).

1.1.3 The sweep Reynolds number Reθ

Experimentalists introduced the sweep Reynolds number Reθ (based on the momentum thickness
θ of the boundary layer) as the governing non-dimensional parameter for attachment-line flow.
As we have seen in section §1.1.1, a critical value of Reθ ≈ 100 has been found in several
experimental investigations, and, to this day, it is still common practice in aircraft design to
keep Reθ < 100 to ensure laminar flow along the attachment line of a swept wing (see, e.g.,
Joslin, 1996). Following Pfenninger (1977) and Poll (1985), an approximate relationship for Reθ

is given as (see Saric and Reed, 2003)

Reθ = 0.404

(
q∞R sin2 Λ

(1 + ε)ν cos Λ

)1/2

= 0.404

(
u∞R

(1 + ε)ν

)1/2

tan Λ, (1.1)

where u∞ = q∞ cos Λ denotes the normal velocity, ν represents the kinematic viscosity of the
fluid, and ε is the ellipticity of an equivalent ellipse1. Note that the factor of 0.404 in (1.1) was
evaluated for incompressible flow (see, e.g., Poll, 1979).

As we can see, the leading-edge geometry described by the radius R as well as the sweep
angle Λ has a strong influence on the stability behavior of leading-edge flow. Equation (1.1)
further demonstrates that in order to ensure low values of Reθ for certain flight conditions,
defined by q∞ and ν, it is necessary to have small values of R and/or Λ, as already discussed in
section §1.1.2, to prevent unstable flow in the vicinity of the attachment line.

1.2 Linear stability theory

In its most general definition, linear stability theory is concerned with quantifying the behavior
of infinitesimal perturbations about a finite-amplitude base state. If the small perturbations
diverge from the finite-amplitude state, the flow is considered unstable; if the perturbed flow
returns back to the base state, the flow is called stable. The stability property, of course, depends
on the governing flow parameters such as, in our case, the sweep Reynolds number and the sweep
Mach number, and their values at which the flow changes from stable to unstable are referred to
as the critical parameters. The decomposition (A), see figure 1.6, into a base state φ0(x, y, z, t)
and a perturbation εφ′(x, y, z, t) is rather impractical in all its generality.

A further simplifying, but reasonable assumption is given by considering a steady base flow
φ0(x, y, z). As a consequence, the coefficients in the linearized2 governing equations do no

1Increasing ε and thus changing the shape of the blunt body in the leading-edge region from cylindrical to
increasingly elliptical has essentially the same effect as decreasing R.

2As a consequence of the linearization step, any information about the amplitude of the (modal) structures
is lost.

Figure 1.2: Transition mechanisms. Different mechanisms can be responsible for transition
from laminar to turbulent flow, but at the origin there is the concept of receptivity: incoming
disturbances from the environment — e.g. variations in the incoming free stream — enter
the boundary layer and trigger the development of perturbations. These perturbations may
then be amplified by different mechanisms, like modal growth or transient growth, may lead to
secondary instabilities and/or cause transition to turbulence. A correct understanding of the
perturbation behavior and of the receptivity mechanism is essential for increasing the extent of
the laminar flow regime in boundary layers by applying control techniques.

Within the modal growth mechanisms only, four possible instabilities have been historically identified
that may play a role in the transition process on a swept wing: leading-edge instability and contamination,
streamwise (Tollmien–Schlichting) instabilities, centrifugal instabilities and crossflow instabilities [53, 34,
35]. Leading-edge instabilities and contamination are related to the two-dimensional boundary layer
developing at the attachment line and can cause the flow to be turbulent over the entire chordwise
extent of the wing. Disturbances, stemming from the turbulent boundary layer on the fuselage, can
enter the attachment-line boundary layer at the wing root and travel the whole spanwise extent of the
wing. Solutions to the contamination problem have been proposed [34, 35] in the form of strong suction
at the wing root in order to provide a new, laminar attachment-line boundary layer [51] or by adding
a turbulence diverter like the Gaster bump [17]. Streamwise Tollmien-Schlichting-like instabilities are
characteristic of the flow in the presence of mildly positive or adverse pressure gradients, i.e. in the
vicinity or downstream of the wing section’s pressure minimum. They are typical of two-dimensional
boundary layers and are the main candidate for causing transition at sweep angles less than 25◦ [34].
The already mentioned crossflow instabilities coexist with streamwise Tollmien-Schlichting instabilities
for sweep angles between 25◦ and 30 − 35◦ and, for larger sweep angles, overtake Tollmien-Schlichting
instabilities in the transition process. Crossflow instabilities are not related to adverse pressure gradients
in the same manner as streamwise Tollmien-Schlichting waves are: they can cause transition much closer
to the attachment-line, and natural laminar flow designs are not effective in suppressing them.

As suggested by Hall & Seddougui [26] and successively shown by Mack et al. [44], the distinction
in attachment-line, crossflow and Tollmien-Schlichting instabilities summarized in Figure 1.3 is to be
related to the local approach historically used in the analysis of boundary-layer stability rather than
to a real physical difference among the mechanisms. In this local approach, each region of the wing is
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Attachment line

Crossflow

Tollmien-Schlichting

Figure 1.3: Some of the instabilities characterizing the swept attachment-line boundary-layer
transition from laminar to turbulent flow and their respective localizations. The attachment-
line instabilities mainly occur in the red area, crossflow vortices in the blue area and Tollmien-
Schlichting waves in the dashed area. Whether crossflow or Tollmien-Schlichting instabilities
dominate the transition to turbulent flow depends on the sweep angle. For sweep angles greater
of 30 − 35◦ crossflow instabilities are known to be dominant, and the transition region moves
towards the attachment line, thus reducing the extent of the laminar flow regime.

characterized by a simplified flow model — Swept-Hiemenz flow for attachment line, a three-dimensional
velocity profile for the crossflow region and a two dimensional boundary layer for the Tollmien-Schlichting
region. Stability properties are then analyzed for each simplified flow model. Despite being unable to show
the connections among the different regions, the local approach is still useful in providing a first impression
of the complexity of the situation as well as an interesting interpretation of the various mechanisms at
play.

The Matrix

We have so far identified the interest in and introduced the main characteristics of the swept-wing problem.
Driven by a pressure gradient which is not locally aligned with the velocity vectors, the swept-wing flow
presents stability characteristics in common with other three-dimensional boundary-layer problems. The
development of crossflow vortices is one of these characteristics. The mechanism at the origin of transition
from laminar to turbulent flow in three-dimensional boundary layers is not fully understood and, as such,
it represents an interesting research subject. At the same time, there is a strong industrial interest in
understanding the stability properties of such flows in order to devise and apply passive or active control
strategies with the goal of extending the laminar flow regions on aircraft surfaces and, in the end, reduce
fuel consumption by reducing drag and allowing the design of more compact aircrafts.

In order to obtain useful insights into the disturbances behavior on a swept wing, we need to choose a
representation of the dynamical system underlying it. As a painter can choose among various techniques
and points of view to represent the reality surrounding him — oil, tempera, pastel — or a writer can
choose between a novel, a poem or a short story, we have to choose a description, or define an abstract
model of our dynamical system and select the mathematical and numerical tools we want to apply to it.

The choice of how to represent a dynamical system can be reduced to the choice of an appropriate
basis (or space) where this representation is projected onto, and different possibilities are available in this
sense. The most natural and obvious, but not necessarily the most useful, is to represent our problem in
physical space: in a discrete setting, our basis consists of all degrees of freedom of the problem at each
location in space x and at each time t we wish to represent, and a given state can be represented by a
vector in this space. Another approach that can be used in the case of periodic domains, is to choose a
Fourier space as a basis, so that wavenumbers replace the positions x and wave amplitudes replace the
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value of the unknown variable at each location x. Owing to the fact that moving from physical space
to Fourier space is computationally rather inexpensive, in some cases both representations are used, and
selected operations are performed in different spaces.

An alternative choice is to use a modal decomposition: in this case the spatial basis is no longer made
up of the single degrees of freedom of the problem but of a composition of them, the eigenvectors of the
linearized model (as we will see when presenting multigrid as our numerical method in chapter 4, the
eigenvectors can correspond to the Fourier modes in some cases). Eigenvectors represent structures that
are invariant in shape — but change in amplitude — during the time evolution of the linearized flow field.
The advantage of this representation becomes apparent if we consider that, as has been clearly stated by
Mack & Schmid [41], the goal of any scientific study of a fluid-dynamical process is not in the reproduction
of its physical features by direct numerical simulations but in the extraction of the governing underlying
mechanisms from the data the DNS produces. In other words, we are interested in the intrinsic flow
behavior captured by the dynamics of coherent structures. The eigenvectors as invariants of the linearized
dynamical system can then be interpreted as these coherent structures. This is the representation used
in this work to describe the perturbations. The amplitude of each eigenvector, instead of the value of the
variable at a location in space, becomes the new degree of freedom, and the dynamics of the system is
described by the time evolution of the amplitude associated with each eigenvector.

When all eigenvectors are available, the description of the system provided by the eigenvectors’ am-
plitude is equivalent to the one provided by the original degrees of freedom. Nonetheless, it is often the
case that not all the eigenvectors are required (or accessible), and particular features of the flow can be
accurately described by a subset of them. For example, when we are interested in the long-time behavior
of the perturbations, only the least stable (or the most unstable) eigenvector is of interest, as it is the
one that dominates the asymptotic dynamics of the system. More generally, a subset of the eigenvectors
can be used to describe the system dynamics, but the choice of which eigenvectors are to be retained or
discarded is not obvious a priori.

Other choices for a basis are available besides modal decomposition, for example, using a singular
value decomposition (SVD) or a proper orthogonal decomposition (POD), each one selecting a different
basis for and emphasizing different features of the representation of the space of solutions. Subspaces of
these bases can be selected for building reduced-order models of the dynamical system (see for example
[55, 60]), but these possibilities are beyond the scope of this work.

The magnifying glass

Once we have selected a representation, or a model, of our problem, we need to focus our attention on a
particular characteristic. From the point of view of the perturbations’ evolution, the emphasis can be put
on their short-time or their long-time behavior. When selecting the features we are more interested in,
we must also select the more convenient representation together with a particular numerical approach.

The most natural approach is to observe the system evolving in time, as if it were an experiment.
This can be accomplished using a direct numerical simulation (DNS): once an initial condition has been
chosen, the governing equations for the perturbations are advanced in time, and the evolution of the
flow in physical space can be observed. While this approach can be used for studying both the short-
time and the long-time evolution of the flow, it poses two problems: (i) the most obvious one is the
dependence of the solution on the initial condition which represents a somewhat arbitrary choice and
is of extreme importance for the short-time evolution of the perturbations; (ii) the second one is the
difficulty in extracting, from simple observation of the evolution of a particular initial condition, the
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coherent structures that represent the true interest of our study (but see [60] for a possible approach).
The short-time behavior is of particular interest for non-normal system and is usually approached

in physical space by non-modal analysis [61, 59, 12]. The eigenvalue/eigenvector description, while still
possible, is not convenient in analyzing the short-time response because the eigenvectors responsible for
the non-normal behavior can be difficult to obtain numerically (but see [49, 50], for a counterexample).
The main interest lies in the fact that non-normal systems can present transient growth effects which,
as shown in Figure 1.2, can lead to transition even in the case of asymptotically stable flows. The main
goal of non-modal analysis is then to investigate the possibility of transient growth and identify the
effects of the initial conditions on energy amplification. Of particular interest are the initial conditions
leading to the maximum possible transient growth, which are called optimal perturbations: they can be
identified by solving an optimization problem for the flow energy (or any equivalent scalar quantity we
choose to optimize) over all possible initial conditions. The optimization problem can be treated as a
constrained optimization, where the constraints are given by the governing equations and implemented
by adjoint fields (also called Lagrangian multipliers). The optimal condition satisfying the constraints
is found by identifying stationary points of the Lagrangian. Direct and adjoint equations are obtained
by this procedure and can be marched forward and backward in time in order to determine the optimal
initial condition. In this sense, non-modal analysis removes the arbitrariness of the initial condition by
identifying the most interesting one.

In contrast, the eigenvalue/eigenvector description is more often used in the description of the long-
time (asymptotic, or modal) behavior of the system. As we will see in detail, this description is used in
this work to identify the coherent structures underlying the flow as well as to identify how the behavior
of these structures is influenced by external disturbances. A Lagrangian approach similar to the one
just described is used to identify receptivity and sensitivity of an eigenvector (and its corresponding
eigenvalue) to forcing and structural modifications of the operator. The adjoint equations and their
solutions given by the adjoint fields will play a central role in this process.

Stato dell’arte

The swept-wing attachment-line boundary layer has been investigated from multiple points of view in the
past. References to most of the relevant work dating before 2003 can be found in the reviews by Reed
and Saric [53, 54, 57, 58].

Most of the research has been concentrated on local models: the swept Hiemenz flow, characterizing
the flow impinging on a flat plate with a sweep angle, has been extensively studied as a local approximation
of the flow close to the attachment line of a swept wing. DNS computations have been performed by
Joslin [32, 33] while the short-time optimal growth has been the subject of the work of Guégan et al.
[23, 22, 24] and Obrist & Schmid [49]. Comparison of theoretical and experimental results on crossflow
instabilities have been provided by Dagenhart & Saric [13].

In this work, the global modal approach for a realistic configuration of the swept wing is attempted.
The same approach has been applied to the swept Hiemenz flow starting from the work of Hall, Malik
& Poll [25] who studied the stability of the Görtler-Hämmerlin mode (i.e. a mode having the same
streamwise structure as the swept Hiemenz flow) and showed that this three-dimensional flow can, in
contrast to the two-dimensional (unswept) Hiemenz flow, become unstable above a critical Reynolds
number.

Lin & Malik [38] extended the work of Hall, Malik & Poll by computing several modes of the incom-
pressible swept Hiemenz flow using a Chebyshev spectral collocation method and regular polynomials
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{
P (x) = xn, n = 0, 1, 2, . . .

}
in order to discretize the normal- and chord-wise direction of their domain.

They identified a branch of eigenvalues, all moving at approximately the same phase speed of cr = 0.35 in
the spanwise direction — i.e. moving at a velocity equal to 0.35 times the spanwise free-stream velocity
component. It was shown that the most unstable mode was the symmetric Görtler-Hämmerlin mode
already found by Hall et al. [25]. Less unstable modes were shown to alternate between antisymmetric
and symmetric as one descends down the branch towards smaller growth rates.

In a subsequent study [39] they addressed the question of the leading-edge curvature by using a
second-order boundary-layer approximation in computing the base flow and showed that the flow was
stabilized by increasing the leading-edge curvature. For small distances in the chord-wise direction from
the attachment line, this effect was mainly related to the curvature terms appearing in the continuity
equation, while the centrifugal acceleration terms in the momentum equations have been found of less
importance.

With a similar approach, Obrist & Schmid [48] addressed the same problem by replacing the regular
polynomials used by Lin & Malik in the chord-wide discretization with Hermite polynomials. They
too found the most unstable mode to be the Görtler-Hämmerlin mode, showing an exponential decay
outside the boundary layer, and identified a richer spectrum composed of several branches, continuous
and discrete. The non-modal analysis previously mentioned [49] was part of the same work.

Almost all the investigations mentioned so far addressed the simplified model of swept Hiemenz flow.
The first global analysis of the leading-edge region was performed by Mack, Schmid & Sesterhenn [44] and
Mack & Schmid [42, 43]. They addressed the stability of a compressible flow impinging on a parabolic
body with a sweep angle. A high-order finite-difference discretization was used in both the normal and
chordwise direction. They showed a global spectrum consisting of different branches: boundary layer
modes, acoustic modes and wave-packet modes. Of these, the boundary layer and wave-packet branches
are of interest for the current, incompressible study. Additionally, they showed, for the first time, evidence
of a connection between attachment-line and crossflow instabilities, a feature already suggested but never
proven in previous works [26]. This result was made possible by considering a domain extending beyond
the attachment-line region.

Outline

The present work continues in the wake of the global modal approach used by Mack et al. [40], but
analyzes an incompressible flow instead of a compressible one and extends Mack’s results by includ-
ing a receptivity and sensitivity analysis. This work is organized in six chapters, the first being this
introduction.

In chapter 2 we define the swept-wing problem: governing equations for the base flow and the pertur-
bations are derived, and the dimensionless parameters governing the base flow and perturbation behavior
will be described. The adjoint equations for the perturbations are obtained starting from a Lagrangian
description of the flow and, building on that, receptivity to external forcing and sensitivity to struc-
tural modifications will be defined. The concept of the wavemaker in the context of global analysis, as
introduced by Giannetti & Luchini [19], will be presented.

Once the theoretical framework underlying the swept-wing flow analysis is presented, our numerical
approach is specified. Because numerical issues represent a large part of this work, it is split into two
parts. The first part, in chapter 3, includes details related to the discrete representation of our problem:
the pressure-form of the nonlinear and linear Navier-Stokes equations — where a Poisson equation for the
pressure replaces the mass-conservation equation — and their discretization, the boundary conditions,
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the grid generation process and the validation of the implemented discretization. A final section contains
some considerations on the required grid size. The second part, in chapter 4, is dedicated to the solver
used to compute the base flow, based on the multigrid framework. An analysis of the multigrid algorithm
from the point of view of an iterative solution process is performed, and the most important parts of the
algorithm are analyzed using Local Fourier Analysis (LFA), a useful tool providing theoretical estimates
on the convergence rates of iterative methods. The two available algorithmic choices are then introduced,
starting from the more well-known Correction Scheme and moving on to the less well-known but more
powerful Full Approximation Scheme. At the end of the chapter, some simple test cases are used to
identify and overcome possible problems leading to a loss of efficiency.

In chapter 5 we return to the theory covered in chapter 2 and present the results obtained for the swept-
wing configuration. A description of the main features of the base flow is followed by a presentation of
the results obtained by a global analysis of the linearized Navier-Stokes operator, including the computed
part of the spectrum and an in-depth analysis of the least stable eigenvector. The corresponding adjoint
field is then analyzed, and the significance of its distribution in the domain is clarified. The identification
of the wavemaker region concludes this chapter.

Finally, chapter 6 summarizes the main results of this work and describe some paths that can be
followed to build upon what has been accomplished here.

A short Matlab code is provided in Appendix A This is a demonstration code used in producing the
results for the test cases at the end of the chapter on multigrid (in section 4.6), but it is not the code
used in computing the main results of this work presented in chapter 5. It can nonetheless be useful in
providing an outline of how a real multigrid code can be structured.

I found Figure 1.4, from a lecture given by Peter Schmid at Institut Henri Poincaré in Paris, very
useful in outlining the main steps required in a receptivity and sensitivity analysis. While the chapters
in this work do not follow exactly the same outline, this flowchart can be helpful in maintaining a broad
view on this work and in avoiding getting lost in details. The unfilled boxes on the right briefly indicate
the numerical tools used at each step.

As a final note in this introduction, I would like to mention that in writing these pages I tried
as much as possible to follow and apply the suggestions given by McIntyre in his paper Lucidity and
science I: Writing skills and the pattern perception hypothesis [46]. Whether or not I accomplished this
task is another story, but McIntyre’s paper is nonetheless a very interesting reading that deserves to be
mentioned.
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Base Flow Calculation
multigrid with
grid stretching
and adaptive
refinement

LNS Adjoint LNS

Global Modes Adjoint Modes

SLEPc:
Krylov-Schur,
shift-invert,
GMRES, ILU
preconditioning

Sensitivity Receptivity

Figure 1.4: Receptivity and sensitivity analysis flow chart (courtesy of P.J. Schmid). The first
step of the analysis is the computation of a base flow, the stability properties of which we are
interested in. The governing equations for the perturbations can then be derived by linearizing
the Navier-Stokes equations around this base flow and are named the linearized Navier-Stokes
equations (LNS). Similarly, their adjoint counterpart can be obtained. Solution of the direct
and adjoint eigenvalue problems returns the direct and the adjoint modes (which can also be
seen as the right and left eigenvector of the direct problem). Receptivity analysis involves only
the adjoint modes, while sensitivity analysis involves both the direct and adjoint modes.
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Chapter 2

Problem Definition

The theoretical framework underlying our problem is presented in this chapter. The geometry of interest
is the leading-edge region of a swept wing and is described first. The equations governing incompressible,
viscous flow are then introduced by defining the nonlinear Navier-Stokes operator R (q), where q is the
state vector consisting of the three components of the velocity field {u, v, w} as well as the pressure p.
The reference scales for length, velocity and time are introduced, which make R (q) dimensionless. This
also yields dimensionless parameters governing the fluid motion — namely, the chord-based Reynolds
number ReC and the sweep angle Λ.

Our main interest lies in the evolution of small perturbations superimposed on a given stationary
flow, the receptivity of these perturbation to external forcing and their sensitivity to structural changes
in the governing equations. Receptivity and sensitivity form the foundation for the passive and active
manipulation of the flow by applying control-theoretic means.

The equations governing the evolution of infinitesimal perturbations are derived based on a lineariza-
tion of the Navier-Stokes operator R around a stationary flow Q with R (Q) = 0. The linearized Navier-
Stokes equations can then be represented by the application of a linear operator L to a perturbation field
δq, i.e. L δq =

(
∂R/∂q

)
δq.

The linear adjoint operator L+, which plays a central role in receptivity and sensitivity problems, is
then derived by defining a Lagrangian I for a generic objective functional obj. The governing equations,
boundary and initial conditions are implemented using adjoint fields (also known as Lagrange multipliers).
The search for a stationary point of the Lagrangian I as a point in state space representing a solution
of the dynamical problem corresponds to setting to zero the gradients (also known as variations) of the
Lagrangian with respect to all variables: the particular case of setting to zero the gradient with respect
to the direct variables q provides the adjoint equations.

We then consider the possibility of forcing the linearized Navier-Stokes equations by a generic force
f ′ such that Lδq = f ′ and proceed to assess the effects of this forcing. Receptivity and sensitivity
analyses address this configuration for the case of a small variation in the forcing. In order to show this
quantitatively, the Lagrangian functional I is redefined as a function of the state variables given by the
flow field, the perturbation field and the unknown forcing field. The gradient of the Lagrangian I with
respect to the forcing f ′ will provide us with a measure of receptivity of the objective functional to the
forcing.

As a last step, we consider the effect of a structural change in the governing equations on the spectrum.
The Lagrangian functional I is redefined again in order to take into account the operator representing
the governing equations and an eigenvalue as variables, and its variations are computed with respect to
the new variables, resulting in an equation for the change in a particular eigenvalue as a function of a
change in the operator.

11
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2.1 The governing equations for the base flow

The flow in the leading-edge region of an infinitely long swept wing is considered. The wing, as represented
in Figure 2.1, is subjected to a uniform flow U∗∞ = {U∗∞, 0,W ∗∞}, where U∗∞ and W ∗∞ are the chordwise
and spanwise components of the uniform velocity field. The sweep angle Λ then satisfies the relation
tan Λ = W ∗∞/U

∗
∞. Asterisks denote dimensional quantities.

Two reference systems are defined as shown in Figure 2.1, both centered at the leading edge: (i) a
Cartesian coordinate system, whose x-axis is parallel to the chord, whose y-axis points upwards and whose
z-axis is in the spanwise direction and (ii) a curvilinear coordinate system, with its s-axis running along
the profile, its n-axis normal to the profile surface and sharing its z-axis with the Cartesian coordinate
system.

C∗
x

y

z s

n
Λ

U∗∞
W ∗∞

U∗∞

Figure 2.1: Sketch of the geometry. The Cartesian reference system is displayed in red and the
curvilinear one in brown. The velocity components of the free-stream, uniform flow are shown
in blue. A zero angle of attack will be considered, i.e., V∞ will be set to zero throughout this
work.

The flow is governed by the incompressible Navier-Stokes equations (R), where a forcing term f is
accounted for explicitly.

R (q) ≡





∂tu +∇uu− ν∆u +∇p = f

∇ · u = 0

(R)

∆ denotes the Laplacian operator, and ν is the dimensionless viscosity taken as the inverse of the Reynolds
number. The quantity q = {u, p} = {u, v, w, p} is a vector containing all state variables.

The Navier-Stokes equations (R) are to be complemented by boundary conditions on the inflow Γin,
outflow Γout and on the solid boundary Γsb, as well as by initial conditions at t = 0.

As boundary conditions, a Dirichlet-type condition is specified on both the inflow and the solid
boundary for all components of velocity. No boundary condition is required for the pressure in this
formulation, but a global constraint

∫
Ω
p dΩ = c has to be specified, where c is an arbitrary constant

which can be set to zero without loss of generality. The situation will change in the pressure-equation
formulation that will be introduced in the next chapter, where a boundary condition for the pressure
will be required. At this stage, we neglect the global constraint on the pressure as well as the boundary
conditions for velocity at the outflow — they will be clarified in the next chapter. We can nonetheless
specify a generic boundary condition by means of applying an operator HR to the vector q. For the
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boundary conditions specified so far we can write

HR (q) ≡





u (x, t) − uΓ (x) = 0 for x on Γin,

u (x, t) = 0 for x on Γsb.
(2.1)

In a similar way, initial conditions on velocities can be specified by means of applying an operator GR to
the vector q as

GR (q) ≡ u (x, 0)− u0 (x) = 0. (2.2)

No initial condition is required for the pressure.
All quantities in the previous equations — (R), (2.1) and (2.2) — are rendered dimensionless by

choosing the chord C∗, defined perpendicular to the leading edge, as the reference length, the chordwise
velocity component U∗∞ as the reference velocity and T ∗ = C∗/U∗∞ as the reference time scale. The
reference pressure is taken as ρ∗U∗2∞ , where ρ∗ is the dimensional density of the fluid. A chord-based
Reynolds number can be defined as

ReC =
U∗∞ C∗

ν∗
(2.3)

where ν∗ is the dimensional kinematic viscosity of the fluid. The dimensionless viscosity ν in the governing
equations (R) is then taken as the inverse of ReC according to

ν =
1

ReC
=

ν∗

U∗∞C∗
.

Dimensional quantities can be recovered from solutions of R (q) as

u∗ = U∗∞u, v∗ = U∗∞v, w∗ = U∗∞w, p∗ = ρ∗U∗
2

∞ p

while dimensional time and lengths can be obtained by multiplying their dimensionless values by T ∗ and
C∗, respectively.

Once the equations are made dimensionless and for a given geometry, two governing parameters are
sufficient to completely define the problem: the Reynolds number ReC and the sweep angle Λ. The
dimensionless spanwise component of the uniform flow is obtained as W∞ = tan Λ.

Other dimensionless parameters

An alternative set of dimensionless parameters can be used in the context of swept-wing boundary-layer
analysis: (i) the Reynolds number Rer, based on the leading-edge radius r∗ and the chordwise velocity
U∗∞, and (ii) the viscous Reynolds number Res, based on the viscous length δ∗ and the spanwise velocity
W ∗∞. We have

Rer =
U∗∞r

∗

ν∗
, (2.4)

Res =
W ∗∞δ

∗

ν∗
. (2.5)

The viscous length scale δ∗ is defined as

δ∗ =

√
ν∗

S∗
(2.6)
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where S∗ = 2U∗∞/r
∗ is the strain rate at the attachment line for the inviscid flow around a cylinder with

radius equal to the leading-edge radius. This somewhat arbitrary choice for the strain rate S∗ is necessary
since the actual strain rate is not known in advance, and reflects the use of the asymptotic strain rate
in the closely related problem of swept Hiemenz flow [24, 48]. Substituting (2.6) into (2.5) and using
tan Λ = W ∗∞/U

∗
∞ it can be shown that the following relation holds:

Res =
√
Rer tan Λ (2.7)

such that specifying the two Reynolds numbers determines the sweep angle Λ. The relation between the
chord-based and the radius-based Reynolds number is

Rer =
r∗

C∗
ReC = rReC

where r is the dimensionless leading-edge radius.

Base flow computation

Obtaining a steady state solution of the Navier-Stokes equations (R) is a necessary step for studying the
stability of the perturbations. A possible exception is the stability analysis of a periodic, oscillatory base
flow by means of Floquet analysis, but this option will not be considered in this work.

For the case of a stable, steady state solution, two options are available from the computational point
of view: the first is to advance the system in time up until convergence to a flow state which remains
invariant in time is reached; the second is to directly tackle the steady-state equations with a Newton or
a Newton-like method. A Newton-like method is used in this work and will be introduced in chapter 4.

It is worth noting that a stable solution is not always available. In fact, it is often the case that the
properties of an unstable configuration are analyzed in order to understand the mechanisms underlying
the instability. In this case, direct time stepping is not an option as the computed field will diverge
from the one of interest towards another stable configuration. A possibility is then to employ a Newton
method and proceed by continuation.

2.2 The governing equations for the perturbations

We now suppose that a steady-state flow, represented by the state vector Q = {U, V,W,P}, has been
obtained by solving the Navier-Stokes equation R (Q) = 0 or their steady state equivalent. We can then
investigate the evolution of a small perturbation δq = {δu, δv, δw, δp} superimposed on the base state Q,
i.e. the evolution of q = Q + δq.

The perturbation field is governed by the linearized Navier-Stokes equations L which can be obtained
by computing the Jacobian of the Navier-Stokes operator R, evaluated at the given flow state Q,

L δq =
∂R
∂q

∣∣∣∣
Q

δq. (2.8)

In order to simplify notation for the remainder of this chapter, we omit the prefix δ for the perturbation
variables. The new perturbation variable is q = {u, v, w, p}, while a capital Q will be used to indicate
the solution of the nonlinear equations.
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The linearized equations read

L δq =







∂t

∂t

∂t

0




+




Q̄ν + Ux Uy Uz ∂x

Vx Q̄ν + Vy Vz ∂y

Wx Wy Q̄ν +Wz ∂z

∂x ∂y ∂z 0










u

v

w

p




=




f ′u
f ′v
f ′w
0




(L)

where
Q̄ν = U∂x + V ∂y +W∂z − ν

(
∂xx + ∂yy + ∂zz

)
(2.9)

is the convection-diffusion operator and the subscripts x, y, z represent partial derivatives with respect
to the corresponding coordinates. The time derivative has been kept separate to explicitly state that the
problem is a differential-algebraic system: no time derivative appears for the pressure. A forcing term
f ′ is introduced explicitly. The effect of the L operator — and in particular of the base flow velocity
U and its gradient — on the perturbation velocity field can be split in two parts: (i) a transport-
diffusion mechanism, summarized by the operator Qν , and (ii) a production mechanism, represented by
the gradients of the base flow [45].

Appropriate boundary and initial conditions are to be defined for the perturbation equations. As a
boundary condition, we force the perturbation velocity to zero at the inflow and at the solid boundary
(outflow boundary condition and pressure will be dealt with in the next chapter), i.e.,

HL (q) ≡ u (x, t) = 0 for x on Γ, (2.10)

and a given initial condition is imposed as

GL (q) ≡ u (x, 0)− u0 (x) = 0. (2.11)

Because all coefficients in the L operator are constant in time, a Laplace transform of the perturbation
variables can be performed and solutions to (L) can be sought as a linear combination of global modes,
each having the form

(u, v, w, p) = (û, v̂, ŵ, p̂) eσt (2.12)

where σ is a complex-valued number and û, v̂, ŵ, p̂ are complex-valued fields which depend on σ but not
on time. As a consequence, the L operator is transformed into the L̂ and the linearized Navier-Stokes
system (L) reads

L̂ q̂ =



σ




1

1

1

0




+




Q̄ν + Ux Uy Uz ∂x

Vx Q̄ν + Vy Vz ∂y

Wx Wy Q̄ν +Wz ∂z

∂x ∂y ∂z 0










û

v̂

ŵ

p̂




=




f̂ ′u
f̂ ′v
f̂ ′w
0




+




u0

v0

w0

0




(2.13)

where the right-hand side contains the Laplace transform of the right-hand side of (L) and the initial
conditions for the velocity field (u0, v0, w0).

The homogeneous equivalent of (2.13), i.e. when the right-hand side forcing term f ′ and the initial
condition u0 are zero, can be recast as a generalized eigenvalue problem in the form

(σB +A) q̂ = 0 (2.14)
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where B and A are the first and the second matrix in equation (2.13) — or an appropriate discretization.

2.3 The adjoint governing equations for the perturbations

The adjoint equations are a key tool in understanding the effects of the forcing term f ′ on the perturbations
q— or, as we will see later, of f̂ ′ on q̂. Adjoint equations can be obtained by starting from an optimization
problem: an objective functional, for example the energy of the perturbations

∫
Ω
u·u dΩ in the domain Ω,

is maximized under the constraints given by the perturbations’ governing equations (L) and corresponding
boundary conditions. The constraints can be implemented directly into the Lagrangian by means of
multipliers (also known as the adjoint fields)

I
(
q,q+,q0,q

+
0 ,qΓ,q

+
Γ

)
= obj −

〈
q+,L (Q)q− f ′

〉T
Ω
−
〈
q+

0 ,GLq0

〉
Ω
−
〈
q+

Γ ,HLqΓ

〉T
∂Ω

(2.15)

where the fact that the perturbation equation L (Q) and associated initial GL and boundaryHL conditions
are linear is made clear by using a matrix-vector product notation. The objective functional obj is left
unspecified for the time being.

The inner products are defined as integrals over time and the domain Ω for the perturbation equa-
tions, over the domain Ω for the initial condition and over time and the boundary δΩ for the boundary
conditions:

〈
a,b

〉T
Ω

=

∫ T

0

∫

Ω

aH b dΩ dt
〈
a,b

〉
Ω

=

∫

Ω

aH b dΩ
〈
a,b

〉T
∂Ω

=

∫ T

0

∫

∂Ω

aH b ds dt (2.16)

where ds represents a differential element of the domain boundary ∂Ω.
Once the Lagrangian functional is defined, the optimization problem is solved by searching for station-

ary points of the Lagrangian, which can be easily identified by setting its gradients (also called variations)
with respect to all independent variables — direct and adjoint — to zero. The gradient with respect to
a given variable a is defined as

∂I
∂a
δa = lim

s→0

I (a + sδa)− I (a)

s
(2.17)

which, in effect, recovers the same functional derivative used in the derivation of the governing equations
for the perturbations (L). The variable a can take the form of a scalar, a vector or a matrix.

Recalling that all operators involved in the inner products, as well as the inner products themselves,
are linear, the gradients can be readily obtained. Evaluation of the gradients with respect to the adjoint
variables q+,q+

0 ,q
+
Γ are immediate and recover the governing equations (L), boundary conditions (2.10)

and initial condition (2.11) operators. For example, the gradient with respect to q+ reads

∂I
∂q+

δq+ =

∫ T
0

∫
Ω

(
q+ + sδq+

)(
Lq− f

)
− q+

(
Lq− f

)
dΩ dt

s
=

∫ T

0

∫

Ω

δq+
(
Lq− f

)
dΩ dt = 0.

Requiring the equation to be satisfied for any δq+, any control volume Ω and any integration time T is
equivalent to imposing the perturbation equations Lq = f .

Computing gradients with respect to the direct variables is less straightforward, as these variables do
not appear explicitly in the inner product. Using integration by parts, the direct variables can be made
explicit and the gradients can be computed using the same approach as for the adjoint. The operation
can be performed term-by-term for the operator L. For example, integration by parts is applied to the
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operator ∂t + Q̄ν (2.9), which is the equivalent of a scalar convection-diffusion equation, to extract the
scalar velocity component u. We obtain

〈
u+,

[
∂t + Q̄ν

]
u
〉T

Ω
=
〈 [
−∂t + Q̄+

ν

]
u+, u

〉T
Ω

+ J (2.18)

where the linear adjoint convection-diffusion operator Q̄+
ν operating on the adjoint field reads

Q̄+
ν = −U∂x − V ∂y −W∂z − ν

(
∂xx + ∂yy + ∂zz

)
. (2.19)

Looking at the result of the integration by parts of the convection-diffusion equation (2.18) and at the
adjoint operator Q̄+

ν , we can interpret the adjoint operator −∂t+Q̄+
ν as another convection-diffusion equa-

tion which propagates the adjoint field backwards in time and where the convective flow field (U, V,W )

has opposite sign compared to the direct operator Q̄ν .
Boundary and initial conditions for this adjoint equation are obtained using the term J , which contains

the remainders of the integration by parts:

J =

∫ T

0

∫

Ω

∂t
(
uu+

)
︸ ︷︷ ︸

(a)

+ (U∂x + V ∂y +W∂z)
(
u+u

)
︸ ︷︷ ︸

(b)

+ ν
[
∂x
(
uxu

+
)

+ ∂y
(
uyu

+
)

+ ∂z
(
uzu

+
)]

︸ ︷︷ ︸
(c)

− ν
[
∂x
(
uu+

x

)
+ ∂y

(
uu+

y

)
+ ∂z

(
uu+

z

)]

︸ ︷︷ ︸
(d)

dΩ dt.

(2.20)

Four different terms can be identified in J with different origins: (a) from the integration of the time
derivative, (b) from the integration of the convective term, (c) and (d) from the integration of the diffusive
term.

A correct treatment of J requires the use of the boundary and initial conditions HL, GL, together
with their corresponding inner products. The inner products are defined in (2.16) and have been already
used in the definition of the Lagrangian I (2.15). For example, we consider the term (a): integration in
time results in two space integrals evaluated at t = 0 and t = T . Adding the inner product implementing
the initial condition we obtain

∫

Ω

uu+ dΩ

∣∣∣∣
t=T

−
∫

Ω

uu+ dΩ

∣∣∣∣
t=0

+

∫

Ω

(
u(t = 0)− u0

)
u+

0 dΩ.

Variation with respect to u is now straightforward and leaves only the first integral evaluated at t = T

which has the role — once matched with the variation of the objective functional with respect to u — of
defining the initial condition for the adjoint field u+ at time T . For example, if the objective functional
is taken as the energy at time T , i.e. obj = 0.5

∫
Ω
uHudΩ

∣∣
t=T

, the initial condition for the adjoint would
be

G+
L (q) ≡ u+ (T )− u (T ) = 0. (2.21)

The role of the adjoint field is then related to the enforcement of the optimality condition.

The treatment of the terms (b), (c), (d) of J (2.20), together with the enforcement of the boundary
conditions through the inner product

〈
q+

Γ ,HLqΓ

〉T
∂Ω

— see equation (2.15) — provides the boundary
conditions H+

L for the adjoint equation in a similar manner.

All other terms in the L operator defining the perturbation problem can be dealt with in a similar
way: the terms containing the gradients of the base flow remain unchanged while the gradient of the
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pressure and the divergence of the perturbations change sign when applied to the adjoint pressure and
perturbations, respectively, in a way similar to the change in sign of the time derivative.

The adjoint linearized Navier-Stokes equations for the perturbations then read

L+ δq =







−∂t
−∂t

−∂t
0




+




Q̄+
ν + Ux Uy Uz −∂x
Vx Q̄+

ν + Vy Vz −∂y
Wx Wy Q̄+

ν +Wz −∂z
−∂x −∂y −∂z 0










u+

v+

w+

p+




=




0

0

0

0




(L+)

where Q̄+
ν has been defined in equation (2.19). We describe initial and boundary conditions using the

operator H+
L and G+

L .

As is the case for the direct equations, all coefficients in the L+ operator are constant in time and a
Laplace transform of the perturbation variables can be performed. A solution of L+ can be sought as a
linear combination of global adjoint modes, each having the form

(
u+, v+, w+, p+

)
=
(
û+, v̂+, ŵ+, p̂+

)
eσ

+t (2.22)

where σ+ = σH is the complex conjugate of σ in (2.12) and û+, v̂+, ŵ+, p̂+ are complex-valued fields
which depend on σ+ but not on time. As a consequence, the L+ operator is transformed into L̂+, and
the adjoint linearized Navier-Stokes system can be rewritten as

L̂+ q̂+ =



−σ




1

1

1

0




+




Q̄+
ν + Ux Uy Uz −∂x
Vx Q̄+

ν + Vy Vz −∂y
Wx Wy Q̄+

ν +Wz −∂z
−∂x −∂y −∂z 0










û+

v̂+

ŵ+

p̂+




=




u+
T

v+
T

w+
T

0




(2.23)

where the right-hand side contains the initial conditions for the adjoint field.

The homogeneous equivalent of (L+), i.e. when the initial conditions u+
0 are zero, constitutes the

adjoint eigenvalue problem (
−σ+B+ +A+

)
q̂+ = 0 (2.24)

which can be solved for the adjoint global modes.

Adjoint equations as Hermitian transpose

Now that a physical interpretation of the adjoint field has been given by stating that the initial conditions
of the adjoint equations at time t = T are defined by the objective functional, another approach to the
computation of the adjoint shall be given. Keeping in mind that, ultimately, we will need to solve
our governing equations numerically, the two approaches are shown in Figure 2.2. The first option,
represented by continuous arrows, is to first derive the adjoint operator (L+) in the manner outlined
in the previous section, and then proceed to its discretization. This approach requires to compute the
adjoint system and to perform two different discretizations — of the direct and the adjoint system. The
second option, represented by dashed arrows, starts by implementing a discretization Lh of the linear
operator L, including all boundary conditions. The discrete adjoint operator L+

h can then be obtained as
the Hermitian transpose of the direct, thus bypassing the computation of the continuous adjoint equations
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Figure 2.2: Possible routes to obtain the adjoint equations. Continuous arrows: starting from
the direct linear problem (red), the adjoint equations can be computed by integration by parts
(blue) and can then be discretized (yellow). Alternatively, the dashed arrows show that if
discretization is performed on the linear problem first (green), the adjoint equations can be
obtained by simply computing the Hermitian transpose of the discrete problem.

and their discretization.
L+
h = LHh

The same relationship hold for the Laplace transformed operator

L̂+
h = L̂Hh .

As a consequence, we can reinterpret the adjoint eigenvectors as the left eigenvectors of the direct problem.

2.4 Receptivity and sensitivity

The linearized Navier-Stokes operator (L) is a non-normal operator, where the non-normality is mainly
the consequence of the streamwise advection term

(
U∂x + V ∂y +W∂z

)
in the Q̄ν operator acting in the

opposite direction on the adjoint field. For a comprehensive review of operator non-normality the reader
is referred to Schmid & Henningson [61].

Operator non-normality has three principal consequences [12]. First, the perturbation energy
∫

Ω
u·u dΩ

can exhibit transient growth, i.e. an increase — possibly of several orders of magnitude — in energy over
a short time even if the system is asymptotically stable. This mechanism can be at the origin of by-
pass transition, where transition from laminar to turbulent fluid motion is not related to the asymptotic
exponential growth of the perturbations but rather to the transient growth over a short time interval.
The amount of transient growth depends on the initial condition, and the search for the specific initial
condition maximizing growth over a certain time interval leads to the optimal perturbation problem. The
solution of the optimal perturbation problem is based on the maximization of a Lagrangian functional
similar to (2.15) where the objective functional obj is, in the simplest case, given by the energy amplifi-
cation of the perturbations at a given time or the integral of the energy within a given time interval. The
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optimal perturbation problem has been extensively studied for the case of swept Hiemenz flow, a flow
configuration closely related to ours, by Guégan, Schmid & Huerre [23, 22, 24] and will not be addressed
here. The potential of swept Hiemenz flow to support transient growth has been analyzed by Obrist &
Schmid [49].

The other two consequences of non-normality are related to the long time (or asymptotic) response:
a very strong receptivity/response to forcing and a marked sensitivity of the spectrum — which can be
obtained by solving the eigenvalue problem (2.14) — to perturbations of the operator (L). These two
problems will be addressed in the following sections employing the Lagrangian framework already used
in the derivation of the adjoint.

Receptivity to forcing

We start by slightly modifying the definition of the Lagrangian functional (2.15) by including the forcing of
the perturbation equations, which so far has been considered as user-specified, as a variable. Additionally,
the Laplace-transformed operator L̂ and state variables q̂ are used as constraints instead of the original
operator L and variables q. This is equivalent to taking the Laplace transform of I, provided that the
initial conditions are multiplied by a Dirac delta-function δ. We have

Î
(
q̂, q̂+, q̂0, q̂

+
0 , q̂Γ, q̂

+
Γ , f̂
′
)

= obj −
〈
q̂+, L̂ (Q) q̂− f̂ ′

〉
Ω
−
〈
q̂+

0 ,GLq̂0

〉
Ω
−
〈
q̂+

Γ , ĤLq̂Γ

〉
∂Ω
. (2.25)

Taking the first variation with respect to the adjoint and direct fields gives the direct (2.13) and adjoint
(2.23) governing equations respectively, together with boundary conditions. In addition, we must now
consider the variation of the Lagrangian with respect to the forcing itself, again using the definition of
the functional derivative given in (2.17). The only terms contributing to the variation are the objective
functional — which we assume depends on the forcing — and the first inner product. The change in
the objective functional associated with a change in the forcing δ (obj) = ∂ (obj) /∂ f̂ ′ δf̂ ′ is obtained by
setting this variation to zero. We obtain

∂Î
∂ f̂ ′

δf̂ ′ =
∂ (obj)

∂ f̂ ′
δf̂ ′ +

〈
q̂+, δf̂ ′

〉
Ω

= 0 =⇒ δ (obj) = −
〈
q̂+, δf̂ ′

〉
Ω

(2.26)

which states that the sensitivity to small changes in the external forcing f̂ ′ is simply given by the negative
of the adjoint field q̂+.

In order to exemplify the consequences of these results, we consider the case of the two-dimensional
wake developing downstream of a cylinder placed in a uniform flow, previously studied by Giannetti &
Luchini [18, 19].

The base flow for this configuration is shown in Figure 2.3, visualized by its U and V velocity com-
ponents. The flow is from left to right and is characterized by a recirculation bubble extending a few
cylinder diameters downstream of the cylinder, as shown by the blue area in the U velocity field. The û
(a and c) and v̂ (b and d) velocity components of the direct (a and b) and adjoint (c and d) most unstable
global modes are represented in Figure 2.4. The spatial separation of the direct and adjoint modes, which
is itself a consequence of the operator non-normality, is evident: the direct mode is concentrated in the
downstream part of the domain (for Reynolds numbers close to the critical, diameter-based Reynolds
number of ≈ 47, the direct mode represents the von Karman vortex street) while the adjoint mode is
mainly concentrated upstream and in the separation bubble developing just downstream of the cylinder.

Following the interpretation of the adjoint field as the gradient of the objective functional with respect
to the forcing, Figure 2.4 provides useful information on where in the domain it is most effective to apply
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(a) U (b) V

Figure 2.3: U, V velocity components for flow around a cylinder, courtesy of P.J. Schmid.

(a) û (b) v̂

(c) û+ — receptivity to stream-wise forcing (d) v̂+ — receptivity to cross-stream forcing

Figure 2.4: Direct and adjoint fields for a cylinder wake, courtesy of P.J. Schmid.

a forcing in order to modify the objective functional: a localized forcing in the stream-wise direction
will be most effective in changing the objective functional where the u+ adjoint eigenvector reaches its
maximum, while forcing in the y direction will be most effective where the v+ adjoint eigenvector reaches
its maximum. In both cases, the location is slightly downstream of the cylinder, close to the point where
the flow detaches from the cylinder’s surface forming the recirculation bubble.

The objective functional itself remains to be specified, and it can be shown [19] that in this case it
corresponds to the amplitude of the eigenvector.

Sensitivity of the spectrum to structural modifications

We now want to address the issue of sensitivity of the spectrum to a structural change in the operator.
This problem has been first addressed by Giannetti and Luchini [18, 19].

In order to understand how a given eigenvalue σ changes as the governing operator L̂ changes, we first
rewrite L̂ by separating the complex frequency σ from the spatial part, as already seen when we defined
the generalized eigenvalue problem (2.14)

L̂ = (σB +A) ,

and consider a variation δA in the spatial part A of the operator. Examples of the possible origin of such
a variation δA are a change in the Reynolds number, a change in the base flow field or, if the boundary



22 Chapter 2. Problem Definition

conditions are included in L, as is the case after the problem is discretized, a change in the boundary
conditions. Once again, we start with the definition of the Lagrangian I, with the difference that we now
include the operator A as a variable. Additionally, the objective functional is specified as the eigenvalue
σ, itself a function of A and the sensitivity of which we are interested in; the forcing in the perturbation
equations is set to zero. The new Lagrangian reads

Î
(
σ, q̂, q̂+, . . . , A

)
= σ −

〈
q̂+, (σB +A) q̂− f̂ ′

〉
Ω
− . . . (2.27)

where we have omitted the inner products related to the initial and boundary conditions as their ma-
nipulation is similar to what has been done before. Alternatively, we can assume the direct and adjoint
fields q̂ and q̂+ to be defined also on the boundaries and the A and B operator to take this fact into
account. This latter approach is natural when dealing with the discretized operator.

As already seen in the derivation of the adjoint perturbation equations, variations of the Lagrangian
functional with respect to its variables are obtained by applying the definition of the functional derivative
(2.17). The first variation with respect to the adjoint state variables ∂I/∂q̂+ returns the direct operator
L̂ = (σB +A) while the first variation with respect to the direct state variables ∂I/∂q̂ returns the adjoint
operator L̂+ =

(
−σB +AH

)
.

In addition, we have to compute variations with respect to the two new variables σ and δA. Computing
the variation with respect to σ is straightforward and setting it to zero provides the normalization
condition for the adjoint eigenvector according to

∂Î
∂σ

δσ = δσ −
〈
q̂+, Bq̂

〉
Ω
δσ = 0 =⇒

〈
q̂+, Bq̂

〉
Ω

= 1. (2.28)

It now remains to compute the variation with respect to the structural modification δA. In performing
this operation we have to take into account the fact that the eigenvalue σ is itself a function of the operator
A and has to be treated accordingly. The change of the eigenvalue associated with the change in the
operator δσ = ∂σ/∂A δA is obtained by setting this variation to zero.

∂Î
∂A

δA =
∂σ

∂A
δA−

〈
q̂+, δA q̂

〉
= 0 =⇒ δσ =

〈
q̂+, δA q̂

〉
Ω

(2.29)

The role of non-normality in increasing the sensitivity of the spectrum to structural modifications
δA can be further illustrated by considering the normalization condition (2.28): the spatial separation
between the direct and adjoint modes seen in Figure 2.4 requires large values of the adjoint eigenvector
for the integral over the area where the two coexist to be one.

The wavemaker

Once we have obtained the sensitivity of the spectrum to structural modifications δA of the operator,
we can consider a localized structural modification and determine where in the domain it would be most
effective.

The answer to this question has implications for the design of a control strategy and often represents
the first step of a control study by identifying the location where a localized feedback of the perturbations
onto themselves is most effective. An example of such a control strategy has been considered by Giannetti
& Luchini [19] for the case of a cylinder wake: they considered a feedback process in the form of a forcing
f ′ = C (x)u where the matrix C (x) identifies the linear dependence of the forcing f ′ on the perturbation
velocity field u. They additionally consider the feedback process to be localized at a given position x0 in
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the domain by envisaging the special case C (x) = C0δ (x− x0), where δ (x− x0) is the Kronecker delta
function.

The time independence of the matrix C (x) suggests a modal representation of both the forcing and
the perturbation field, similar to what has been done before: the application of the corresponding Laplace
transform allows us to consider C0 as the perturbation δA of the operator in (2.29), under the hypothesis
that C0 is small compared to A. As a consequence, we can rewrite the shift of the eigenvalue starting
from (2.29) as

δσ =
〈
q̂+,C0δ (x− x0) q̂

〉
Ω
. (2.30)

From an application point of view, this formulation can describe the placement of a small cylinder
some place in the domain exerting a forcing f ′ = −cdu on the perturbations, where cd is a drag coefficient.
It should be mentioned that this description limits us to a forcing described by Stokes flow, i.e. with a
linear dependence on the velocity and without any intrinsic dynamics, as it immediately responds to any
modification of the perturbation field u.

We can now answer the question asked at the beginning of this section: what is the position where a
small cylinder — that is, our localized structural modification — would be most effective? The answer
is provided by analyzing the shift of the eigenvalue δσ as a function of the location of the forcing x0 as
given by (2.30) and plotted for the case of the cylinder wake in Figure 2.5, where the point-wise product
of the adjoint and the direct field for the û and v̂ velocity components, as well as for the magnitude of
the velocity field, are displayed.

(a) û+û (b) v̂+v̂

(c) |û+û|

Figure 2.5: Contours of the wavemaker regions, courtesy of P.J. Schmid, based on the work of
Giannetti & Luchini [19]

A dual point of view interprets the same result as identifying the wavemaker of the global mode,
defined as the region where a modification in the structure of the problem is able to produce the greatest
drift of the eigenvalue [19]. From equation (2.30) it can be seen that changes in the operator have a
significant effect on the eigenvalues in regions where the direct and adjoint global modes substantially
overlap. Outside the region of marked overlap, a rather small effect on the position of the eigenvalue is
observed. As has been shown in the case of the cylinder wake [19] and as we will show for the case of
attachment-line flow, a consequence of this observation is that, in an eigenvalue computation, only the
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wavemaker region needs to be numerically represented in order to obtain the correct spectrum and the
representation of the operator outside this region is of less relevance.

As a last remark, we note that there is no need for a small cylinder in order to observe a feedback
process. A perturbation δA in the operator can be identified as a change in the base flow, itself associated
with the presence of the perturbation, as the perturbed flow is given by the sum Q + q. In this sense,
the wavemaker identifies the region where the coupled effect of perturbations and receptivity is strongest:
large perturbations where the receptivity is low do not affect the flow behavior, strong receptivity in
regions where perturbations are insignificant does not affect it either.
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Numerical Approach

A thorough investigation of the problem described in chapter 2 requires the computation of discrete
solutions of the nonlinear Navier-Stokes equations (R) and of the direct and adjoint eigenvalue problems
associated with the linearized Navier-Stokes equations (L). The present and the next chapter are devoted
to the numerical approach used in this work. In this chapter the discrete representation of the nonlinear
and linear governing equations is introduced and validated. In the next chapter we describe the multigrid
algorithm used in the solution of the discretized, nonlinear Navier-Stokes equations (R).

The formulation of the Navier-Stokes equations (R) given in chapter 2, which we refer to as the
divergence form of the Navier-Stokes equations, is not the most suitable from a computational point of
view. An alternative formulation, referred to as the pressure form, is presented in the first section of
this chapter [21, 20, 62, 56]. It is used in all computations performed in this work and can be obtained
by applying a projection operator P to the divergence form (R). The application of P can be related
to the computation of the divergence of the momentum equations. Provided that the correct boundary
conditions for the pressure field are used, the solutions based on the two formulations are identical: in the
remainder of this work we then simply refer to the solution of the Navier-Stokes equations, independently
of the formulation used to compute it.

We find it useful to specify from the start that the pressure form of the Navier-Stokes system must not
be confused with the projection/fractional-step approach often used in time-stepping algorithms, despite
some similarities like the introduction of a Laplacian operator applied to the pressure field.

In order to compute a discrete representation of our flow field, the pressure form of the Navier-
Stokes equations is discretized on a grid obtained by conformally mapping a rectangle of size lξ, lη to the
domain surrounding a Joukowsky profile. The domain used for the computation of the base flow covers
approximately 20% of the chord, while smaller domains are used for the computation of the eigenvalues
and eigenvectors. A second-order finite difference discretization of the governing equations is defined
on the conformally mapped grid. Upwinded stencils are used for the convective terms and centered
stencils for all other first-order derivatives The Laplacian operator is discretized using a finite-volume like
formulation. Additionally, the spanwise invariance of the base flow allows for some simplifications in the
governing equations and the application of a Fourier transform in the spanwise z-direction when dealing
with the governing equations for the perturbations (L).

The implemented discretization of both the nonlinear and the linear problem needs to be validated,
and a set of tests are performed in order to verify its correctness. Two tests are performed for the nonlinear
problem: (i) the computation of the discrete residual of the analytical solution for the inviscid flow around
a Joukowsky profile is used to verify that the discretization in the interior of the domain is second order
with respect to the mesh size h and (ii) the solution of the viscous flow field around a cylinder is used to
verify the implementation and discretization of the boundary conditions by comparing our results with
results from the literature and from an alternative, well-established numerical code. Validation of the
linearized equations is performed by comparing the implemented discretization of the operator L with a

25
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finite-difference approximation computed from the nonlinear equations R.
At the end of this chapter we discuss the issue related to the presence of different scales in the problem.

As a result, the discretized problem becomes very large when increasing the Reynolds number if a global
approach is pursued. Useful methods in overcoming this difficulty, including grid stretching and adaptive
refinement, will be introduced in the next chapter, but some considerations on the expected size of the
system will be presented as well.

3.1 The pressure form of the Navier-Stokes equations

The formulation of the Navier-Stokes equations (R) given in chapter 2, which we refer to as the divergence
form, is not the most appropriate formulation that can be used for the computation of a numerical solution.
Centered differencing of the continuity equation ∇ · u and the pressure gradient ∇p on a collocated grid
can result in spurious oscillations of the solution and can be a source of slow convergence rates in the
multigrid solver that will be described in chapter 4 [64].

Common approaches used to overcome these difficulties include staggered grid discretization, where
the momentum equations and the continuity equation are defined in different locations in a computational
cell, and projection/fractional step methods, where advancement in time of the momentum equations and
the enforcement of the continuity equation are treated in two separate steps. While both these approaches
are valid, they also come with their drawbacks: staggered grids are rarely used for complex geometries
as they require the handling of a rather complicated grid structure; fractional step methods require the
use of a time-stepping or pseudo-time-stepping algorithm whose convergence to a steady state solution
can be rather slow and, in the simplest case, requires multiple solutions of a Poisson equation — for the
velocity and the pressure — at each time step.

An alternative and more effective approach, in particular in the context of the multigrid framework,
is the use of a pressure formulation — or pressure Poisson formulation — of the Navier-Stokes equations
[21, 20, 62, 56] The pressure formulation can be obtained by left-multiplying both sides of the divergence
form of the Navier-Stokes system (R) by the operator

P =




1 0 0 0

0 1 0 0

0 0 1 0

∂x ∂y ∂z −Qν




(3.1)

where Qν = u∂x + v∂y + w∂z − ν
(
∂xx + ∂yy + ∂zz

)
is a nonlinear operator representing the advection

and diffusion terms [65]. This operation leaves the momentum equations unchanged and replaces the
continuity equation with a Poisson equation for the pressure in the form

∇ · (Qνu +∇p)−Qν (∇ · u) = ∇ · f (3.2)

where for simplicity we have used the steady-state version of the Navier-Stokes operator R. The first
term of the left-hand side represents the divergence of the momentum equations and the second term is
a convection-diffusion equation for the divergence field. The right-hand side is given as the divergence of
the forcing.

The resulting set of equations constitutes the pressure formulation of the Navier-Stokes system and
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has a Poisson equation for the pressure in lieu of the continuity equation:

R∆ (q) ≡





∂tu +∇uu− ν∆u +∇p = f

Qp + ∆p = m∆

(R∆)

where Qp = (ux)
2

+
(
vy
)2

+ (wz)
2

+ 2vxuy + 2uzwx + 2vzwy stands for the nonlinear term containing
gradients of the velocity field. The term m∆ = ∇ · f is the divergence of the forcing f .

The application of the operator P to the linearized Navier-Stokes system (L) — or, alternatively, the
linearization of the pressure Poisson formulation (R∆) — produces a linearized pressure Poisson equation;
the corresponding linearized Navier-Stokes equations read

L∆δq ≡







∂t

∂t

∂t

0




+




Q̄ν + Ux Uy Uz ∂x

Vx Q̄ν + Vy Vz ∂y

Wx Uy Q̄ν +Wz ∂z

Q1 Q2 Q3 ∆










u

v

w

p




=




f ′u
f ′v
f ′w
m′∆




(L∆)

where Q̄ν denotes the same expression as defined in equation (2.9):

Q̄ν = U∂x + V ∂y +W∂z − ν
(
∂xx + ∂yy + ∂zz

)
, (3.3a)

Q1 = −2
(
Vy +Wz

)
∂x + 2Vx∂y + 2Wx∂z, (3.3b)

Q2 = +2Uy∂x − 2 (Ux +Wz) ∂y + 2Wy∂z, (3.3c)

Q3 = +2Uz∂x + 2Vz∂y − 2
(
Ux + Vy

)
∂z. (3.3d)

As noted in the previous chapter, adjoint equations can be obtained by computing the complex
conjugate (Hermitian) transpose of the linearized system (L∆). Computation of the Laplace transform
and of the eigenvalue problems associated with the direct and adjoint operators in pressure form does
not differ substantially from the case of the operators in divergence form and is hence omitted here.

Boundary conditions for the pressure form

The use of the pressure equation in place of the continuity equation poses two problems. (i) Whether and
under which conditions are the two introduced formulations equivalent, i.e., will the pressure equation
correctly enforce continuity? And (ii) what is the additional boundary condition for the pressure, which
is now required along the entire boundary of the computational domain due to the introduction of a ∆p

term in the equations — see Sani et al. [56] for a case in which it is not required.
The problem posed by these two issues is still open, and we refer to the work of Gresho, Sani and

co-authors [21, 20, 56] for a discussion on the subject. Nonetheless, Swanson [64] successfully applied the
continuity equation as a boundary condition for the pressure in order to enforce a divergence-free flow
field in a geometry similar to ours. The two questions above seem to be related, and imposing the correct
boundary conditions results in the continuity equation being satisfied everywhere in the domain. This is
the approach used in this work.

We find it important to remark at this point that a homogeneous Neumann boundary condition
∂p/∂n = 0 is often applied to the pressure field in the context of fractional step methods. Our numerical
experiments have shown that this boundary condition fails to enforce continuity when a solution is
sought for the steady-state pressure form of the Navier-Stokes equations, resulting in unrealistically thick
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boundary layers where mass is generated or destroyed.

The implementation of the continuity equation as a boundary condition for the pressure relies on
reformulating the momentum equations projected in the direction normal to the boundary, such that a
finite-volume like formulation of the viscous terms can be used. To exemplify this procedure we consider

(i j)

d a

bc

Figure 3.1: Solid boundary control cell

a two-dimensional problem with a solid boundary aligned with the vertical y-axis as shown in Figure 3.1,
so that the normal momentum equation is the u-momentum equation. We can then express the normal
pressure gradient as

∂p

∂n
=
∂p

∂x
= −

(
uux + vuy

)
+ ν∆u. (3.4)

Because of the no-slip condition, the convective part uux + vuy is identically zero. After rewriting the
Laplacian operator using the divergence theorem as ∆u = 1/Ω

∫
∂Ω
∇u · nds, with the control cell Ω

outlined by dashed lines in Figure 3.1, we can write

∂p

∂n
= ν

∫

∂Ω

∇u · nds = ν

∫

∂Ω

uxdy − uydx (3.5)

where the integration is performed on abcd. On the solid boundary ab the continuity equation is applied
and ux is replaced by −vy, which is zero because of the no-slip condition. The normal pressure gradient
so obtained is used as a boundary condition for the pressure [64].

3.2 Computational domain and discretization

In order to compute a discrete representation of our flow field, the pressure form of the Navier-Stokes
equations is discretized on a grid obtained by conformally mapping a rectangle of size lξ, lη onto a domain
surrounding a Joukowsky profile. The domain used for the computation of the base flow covers roughly
20% of the chord and is shown on the right of Figure 3.2; smaller domains, whose extension will be specified
later, are used for the subsequent eigenvalue computations. Taking advantage of the spanwise invariance
hypothesis, a Fourier transform is applied in the spanwise z-direction: all first-order z-derivatives are
replaced by ikz and all second-order z-derivatives by −k2

z , where kz denotes the spanwise wave number.
For the base flow computation, we take kz = 0.

The conformal mapping is performed in two steps as shown in Figure 3.2: (i) the rectangular domain
is mapped onto a circular sector using the complex exponential function and (ii) the circular sector
is then mapped onto the leading-edge region of a Joukowsky profile. The conformal mapping is used
because it represents a straightforward and efficient way of obtaining an orthogonal, body-fitted grid.
The parameters that define the domain size and the airfoil shape are: the lξ and lη extension of the
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Figure 3.2: Conformal mapping from a rectangle to the Joukowsky profile: a rectangular domain
of size lξ, lη (a) is conformally mapped to a sector of a circle (b) using a complex exponential
function. As a consequence, the ξ coordinate becomes the angular coordinate and the η coordi-
nate becomes the radial coordinate. An additional conformal mapping is applied to transform
the circle sector into the leading edge of the profile (c). The exponential function alone is at
the origin of the exponential grid stretching in the normal (radial) coordinate in figure (b) and
(c). An additional stretching defined in equation (3.6) is applied before mapping the rectangle
to the circle. The parameters used in the mappings are listed in Table 3.1.

numerical domain, the chord C of the Joukowsky profile and a parameter ε governing the profile thickness.
The values of rmin and µ appearing in the mapping functions are computed as shown in Table 3.1. In
addition to the conformal mapping, a stretching function is applied in the η-direction before the first
transformation from the rectangular domain to the circular sector. This stretching function reads

η̄ =
kη

1− k + η (2k − 1)
. (3.6)

Depending on the value of k, the mesh spacing in the domain [0 : 1] is deformed such that half the points
are clustered within the interval [0 : k]. Thus, k = 0.5 corresponds to no stretching and k < 0.5 clusters
points towards the solid boundary. A value of k = 0.1 is used for the computations in this thesis.

Table 3.1: Parameters governing the dimension and shape of the numerical
domain used in the computation of the base flow. The corresponding domain
is visualized in Figure 3.2.

Parameter Value Meaning

lξ 2 length of the rectangular domain in the ξ direction
lη 2 length of the rectangular domain in the η direction
C 1 chord of the Joukowsky profile
ε 0.1 parameter governing the thickness of the Joukowsky profile

rmin − (1+ε)C
4 radius of the circle in Figure 3.2 (b)

µ − ε C4 parameter governing the shape of the Joukowsky profilea

k 0.1 parameter governing the stretching function (3.6)
a if µ has a nonzero complex part, camber is added to the Joukowsky profile

The three transformations — stretching, conformal mapping to a circle, and conformal mapping to
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the Joukowsky profile — are applied in a cascade and can be summarized as a single transformation
represented by the functions x = x (ξ, η) and y = y (ξ, η), mapping directly the equally spaced Cartesian
grid onto the Joukowsky domain. Once the ξ, η and x, y coordinates are known the corresponding
transformation matrix can be computed numerically and reads

[
ξx ηx

ξy ηy

]
=

1

J

[
yη −yξ
−xη xξ

]
(3.7)

where the metric tensor’s Jacobian is J = xξyη − xηyξ. The mapping derivatives are discretized using
centered second-order finite-difference stencils.

In the discretization process, all operators appearing in the Navier-Stokes equations (R∆) are ex-
pressed on the Cartesian, equispaced grid in Figure 3.2 (a) and the mapping is taken into account using
metric coefficients. Taking into account the Fourier transform in the spanwise z-direction, the convective
terms can be rewritten as

(
u∂x + v∂y + w∂z

)
u =

(
ũ∂ξ + ṽ∂η + w̃ikz

)
u (3.8)

where ũ = ξxu + ξyv, ṽ = ηxu + ηyv and w̃ = w are the contravariant velocity components [64]. The
derivatives ∂ξ and ∂η are discretized on the Cartesian, equispaced grid using a second-order upwinded
discretization, where upwinding is performed with respect to the contravariant velocity components. The
pressure gradient in the momentum equations and the velocity derivatives in the pressure equation are
rewritten in body-fitted coordinates as

∂x = ξx∂ξ + ηx∂η (3.9a)

∂y = ξy∂ξ + ηy∂η (3.9b)

and ∂z = ikz. ∂ξ and ∂η are discretized using centered second-order finite-difference stencils.

As previously mentioned, the Laplacian operator is reformulated using a finite-volume-like form

∆φ =
(
∂xx + ∂yy + ∂zz

)
φ =

1

A

∫

∂A

φxdy − φydx − k2
zφ (3.10)

where the integral is performed over the boundary ∂A of the control cell represented in Figure 3.3. On
a Cartesian grid, this formulation corresponds exactly to a finite-difference discretization. The vector
(dy,−dx) represents the normal to the boundary ∂A pointing outward of the cell. Both the derivatives
and the normal vector can be rewritten for the Cartesian grid and the Laplacian reads

1

A

∫

∂A

[
φξ φη

] [ξx ξy

ηx ηy

][
1 0

0 −1

][
yη yξ

xη xξ

]

︸ ︷︷ ︸

[
dη

dξ

]
− k2

zφ =

=
1

A

∫

∂A

[
φξ φη

] [
a11 a21

a12 a22

] [
dη

dξ

]
− k2

zφ =

=
1

A

∫

∂A

(
φξa21dξ + φηa22dξ + φξa11dη + φηa12dη

)
− k2

zφ

The coefficients aij are functions of the metric coefficients only and have to be computed on the boundary
of the control cell, not on the mesh points.
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When discretization is performed, the derivatives and the normals are considered constant on each
side of the rectangle abcd in Figure 3.3; the integral can be replaced with a summation on the four sides
of the rectangle abcd, and the expression for the Laplacian simplifies to

∆φ =
1

Jdξdη

( (
φξa21dξ + φηa22dξ

)
ab

+
(
φξa11dη + φηa12dη

)
bc

−
(
φξa21dξ + φηa22dξ

)
cd
−
(
φξa11dη + φηa12dη

)
da

)
.

(3.11)

(i j)

a b

cd

Figure 3.3: The control volume used for the finite-volume formulation of the Laplacian: using
the divergence theorem, the Laplacian operator is rewritten in a finite-volume-like fashion using
the rectangles abcd as the control volume.

Numerical boundary conditions

In addition to the previously mentioned boundary condition for the pressure (required due to the refor-
mulation of the Navier-Stokes equations in pressure form), we have to consider the outflow boundary
conditions for both the base flow and the eigenvalue computations, required because our domain is trun-
cated at approximately 20% of the chord. While at the inflow and on the wing surface boundary condition
can be defined based on physical arguments — velocities are given and the pressure is defined by the
pressure boundary condition — the outflow boundary conditions remain undefined and challenging. As
a consequence, a homogeneous Neumann boundary condition for the velocities and a Dirichlet boundary
condition for the pressure have somewhat arbitrarily been tested. For the base flow computation, the
pressure is taken as the inviscid solution at the outflow, which is expected to be a good approximation
for high Reynolds number flow. For the perturbations, the pressure is required to be zero at outflow.
In both cases, the Dirichlet boundary condition on the pressure gives rise to the development of rather
sharp numerical boundary layer close to outflow, in particular in the case of the eigenvector results that,
as we will see, are growing exponentially in the chordwise direction before reaching the outflow boundary.
Nonetheless, as we will see and as has been previously suggested by Giannetti & Luchini [19], the outflow
boundary condition have very little or no effect on the solution, provided that the outflow boundary is not
too close to the attachment line — ten δ99 boundary layer thicknesses seem to be more than sufficient.

3.3 Validation

The implemented discretization of both the nonlinear and the linear problem needs to be validated, and
a set of tests have to be performed in order to verify its correctness. Two tests are performed to validate
the implemented discretization of the Navier-Stokes operator R∆ and an additional one to validate its
linearization L∆.
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First, the second-order accuracy of the scheme with respect to the mesh size is verified by substituting
the analytical solution for the inviscid flow on grids with different mesh sizes h and computing the norm
of the discrete residual as a function of h. The norm of the residual is expected to converge towards zero
as h2. Results are shown in Figure 3.4: the Euclidean | · |2 and maximum | · |∞ norms of the residual are
plotted using double-logarithmic axes as a function of the mesh size for the u-, v- and p-equations. After
an initial transient, all norms show second-order convergence, represented by the black line. In this test,
Dirichlet boundary conditions are applied along all boundaries and for all variables. The diffusion term
in the momentum equations is indirectly validated since the same discretization is used for the Laplacian
of the pressure. The w-momentum equation is the same as the u- and v-momentum equation, with the
exception of the pressure spanwise derivative ∂zp which is zero for the base flow; it thus can be considered
validated by the present test.
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Figure 3.4: Norms of the numerical residual of the analytical solution for inviscid flow around a
Joukowsky profile. The residual is computed by using the analytical solution on a grid of mesh
size h and applying the corresponding discretization of the operator R∆. Both the Euclidean
| · |2 and the maximum | · |∞ norm converge to zero as h2: the discretization is validated as
second-order accurate.

As a second test the low Reynolds number flow around a circular cylinder is computed and compared
with data from the literature and with a solution from the well established finite-element code FreeFem++
[52]. The main objective of this test is to validate the boundary condition implementation, and in
particular the pressure boundary condition on the solid boundary. The domain used in this test is
obtained by a conformal mapping of the form x + iy = −e−i(ξ+iη), where π 6 ξ 6 π and 0 6 η. The
maximum value of η determines the radial extent of the domain. This procedure is the same as the
mapping from the rectangle to the circle in Figure 3.2. A representation of the generated grid is shown
in Figure 3.5. The flow field is computed for ReD = 20, 40 and 50, where ReD = U∗∞D∗/ν∗ is based on
the free-stream velocity U∗∞ and the cylinder diameter D∗. The grid used in the computation has 513

points in both the radial and azimuthal direction, and the ratio of the external boundary diameter to
the solid boundary diameter is approximately 22. Symmetry is imposed across the ad and bc boundaries,
so that only minimal modifications of the implementation that will be used in the computations of the
attachment-line flow are required. The multigrid solver described in chapter 4 is used for the computation
of the solution.
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Figure 3.5: Conformal mapping from the rectangle to the circle. The mapping is in the form
x+ iy = −e−i(ξ+iη).

Table 3.2 compares the wake length and the forward and rear stagnation-point pressure from our
solution with results previously computed by Fornberg [16] and Giannetti & Luchini [19] for Reynolds
Re = 20, 40, as well as with results computed using FreeFem++.

Table 3.2: Wake bubble length and forward and rear stagnation-point pressure for different
Reynolds numbers

Wake length† Pressure at forward
stagnation point

Pressure at rear
stagnation point

ReD
∗ 20 40 50 20 40 50 20 40 50

Fornberg [16] 2.82 5.48 — 0.64 0.57 — -0.27 -0.23 —
Giannetti [19] 2.84 5.48 — — — — — — —
FreeFem++ — — — 0.64 0.58 — -0.27 -0.24 —
Current 2.82 5.49 6.82 0.63 0.57 0.56 -0.27 -0.24 -0.23
† in cylinder radii and measured from the center of the cylinder.
∗ The Reynolds number ReD = U∞D/ν is based on the cylinder diameter D.

Additionally, Figure 3.6 compares the pressure distribution along the cylinder surface computed with
the current discretization (continuous red and blue lines) and the one computed with FreeFem++ (black
dashed lines) for the two Reynolds numbers ReD = 20, 40. For both Reynolds numbers the pressure
distribution is nearly indistinguishable over most of the cylinder surface. The small discrepancy at the
forward stagnation point θ = 0, visible also in the data in Table 3.2 is dependent on the domain size and
diminishes as the domain size used in the FreeFem++ computation is increased.

The discretization of the linearized equation (L∆) is validated by comparing a finite-difference ap-
proximation of the Jacobian with the implemented one and verifying that the difference is on the order
of roundoff errors. The finite-difference approximation is computed starting from the already validated
nonlinear discretization. The tools implemented in the PETSc suite [5] are used for this step of the
validation.
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Figure 3.6: Pressure coefficient cp =
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∞
on the cylinder surface as a function of the angle.

The forward stagnation point is at θ = 0. Continuous lines represent data obtained from the
current code, dashed black lines are data obtained with FreeFem++ [52].

3.4 Considerations on domain size and grid size

In order to get first approximations on the size of the computational problem that we are going to solve,
we will proceed to estimate the mesh size that will be used in chapter 5. As already noted, the problem
is characterized by two length scales. The larger scale, of O (1), is given by the length of the profile chord
and provides the characteristic length on which the inviscid flow and the pressure field vary. The smaller
scale is of size O

(
1/
√
ReC

)
and determines the characteristic length of the boundary layer. At a chord

based Reynolds number of ReC = 106, the scale separation is thus of order 103. Our global approach
requires to correctly represent both scales.

To correctly represent the inviscid scale, we select a domain extending roughly 1.5 chord lengths —
or a more reassuring 100 leading edge radii — in the direction normal to the profile. The extent in the
chordwise direction covers 20% of the chord, corresponding to an arc length of nearly 0.4 of the chord’s
length. The full domain is marked with a blue line in Figure 3.7, and its extent is deemed sufficient,
taking into account the fact that the inviscid solution around the Joukowsky profile, contrary to a uniform
flow, is used at the inflow boundary.

Within the boundary layer, we require the δ99 thickness to be discretized with nearly forty points and
the mesh spacing in the chordwise direction to be nearly double the mesh spacing in the normal direction.
Details of the grid close to the attachment line and the outflow boundary are shown in Figure 3.8. At first
sight, we may expect to be able to choose a much larger mesh spacing in the chordwise direction as the
boundary layer changes substantially faster in the normal direction than in the chordwise direction. We
do not follow this approach for two reasons: (i) close to the attachment line, changes in both directions
are of the same order of magnitude, and (ii) results from stability computations are expected to oscillate
in the chordwise direction on a length scale similar to the boundary layer thickness.

The boundary layer δ99 thickness varies from 0.35 · 10−3 at the attachment line to 1.5 · 10−3 at the
outflow, growing by a factor of four over the chordwise extent of the domain. If, for now, we consider an
average chordwise mesh size of 10−3/20, then 8000 mesh points are required to cover the full chordwise
extent. Grid stretching and adaptive grid refinement make any estimate of the number of grid points in
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Figure 3.7: Domain for base flow computations. One level of adaptive mesh refinement is used,
and the domain size is covered by two grids. The coarser of the two grids, whose extension is
marked in blue, covers the entire domain and consists of 4097 points in the chordwise direction
and 1025 points in the normal direction. Half of the points in the normal direction are contained
within the red line. The finer mesh, whose extension is marked in red, has half the mesh size of
the coarser grid and consists of 8193 points in the chordwise direction and 1025 points in the
normal direction. The equivalent combined grid consists of 10.5 millions points. The boundary
layer thickness at ReC = 106 is too thin to be visualized.

the normal direction more involved, and it suffices to say that we will be using the equivalent of 1537

mesh points. The resulting problem then consists of more than 42 millions degrees of freedom when the
four variables u, v, w, p are taken into account.

From a memory requirement point of view, this means nearly 350 MBytes to store a single vector and
nearly 7 GBytes to store a sparse representation of the discretized linearized problem when real, double
precision arithmetic is used.

High-performance solution algorithms are required to address the numerical problem. Considering
a Newton solver, direct LU decomposition of the Jacobian matrix is not feasible. Even an iterative
Krylov-subspace linear solver, coupled with ILU preconditioning with zero levels of fills, would require an
additional 9 GBytes to store 30 Krylov vectors and an additional 7 GBytes to store the ILU decomposition,
for a total of 23 GBytes without taking into account the working vectors.

In the next chapter we will introduce multigrid as a highly effective framework for computing discrete
solutions of the Navier-Stokes problem. Starting from a simple Poisson equation we will proceed to the
solution of the entire Navier-Stokes system in its steady-state form, thus avoiding the necessity of long-
time time-stepping to compute the base flow. Multigrid demonstrates its efficiency both in terms of CPU
time and memory — a few hours on a single processor and a few working vectors, respectively — required
to converge towards the solution.
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Figure 3.8: Zoom of the grid close to the attachment line (left) and close to the outflow boundary
(right) of the domain represented in Figure 3.7. The grid is shown in thin blue lines. The typical
structure of an eigenvector solution is represented in color and the δ99 boundary layer thickness
with a blue, thick line. Streamlines in the x, y plane are shown in black in the attachment-line
region — and close to outflow are parallel to the boundary. The two figures do not have the
same scale: δ99 at the outflow is four time bigger than at the inflow.



Chapter 4

Multigrid
A good carpenter does not blame his tools

In this chapter the multigrid framework used to compute the discrete solution of the steady-state Navier-
Stokes equations is presented. As has been briefly demonstrated at the end of the previous chapter, where
it was stated that solving the Navier-Stokes equations becomes exceedingly expensive in terms of CPU
time and memory requirements as the Reynolds number is increased: multigrid represents a far more
efficient framework for performing this task.

First developed in the late 1970s by Achi Brandt [7] in order to address the solution of elliptic
equations, multigrid is part of a class of iterative solution algorithms: the search for a solution to a
given discrete problem is performed by iteratively computing a series of approximations starting from
an initial guess, until a solution satisfying appropriate error criteria is found. This is in contrast to
computing a solution by a direct approach like Gaussian elimination (or LU decomposition). Iterative
solution methods include simple algorithms like Jacobi or Gauss-Seidel iterations as well as more complex
ones like conjugate gradient, GMRES or multigrid itself [66]. The main advantages of iterative methods
over direct methods are a more efficient use of memory and, in most cases, a reduced computational
cost, allowing for the solution of significantly larger problems. In order to exemplify this, Table 4.1 (from
[66]) presents the computational costs associated with the solution of the linear two-dimensional Poisson
equation using various common algorithms: multigrid is clearly the most efficient solver for this simple
case. As we will show later in this chapter, this is even more the case for more complex problems.

Table 4.1: Complexity of different solvers
for the two-dimensional Poisson problem
(from [66])

Method # operations∗

Gaussian elimination O
(
N2
)

Jacobi iteration O
(
N2 log ε

)

Gauss-Seidel iteration O
(
N2 log ε

)

Successive overrelaxation (SOR) O
(
N3/2 log ε

)

Conjugate gradient (CG) O
(
N3/2 log ε

)

Fast Fourier Transform (FFT) O (N log N)

Multigrid (iterative) O (N log ε)

Multigrid (FMG) O (N)
∗N denotes the total number of unknowns in the discretized
problem. The log ε term reflects the assumption that the
accuracy of the solution is in the range of the discretization
accuracy.

A generic iterative solver can be approached from two points of view. The first is what we can call a

37
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“global” point of view, where the solution process is seen as the iterative application of a given operator
M to an initial guess q0, until a satisfactory solution qm, whose error is sufficiently small, is found. The
second is what we can call a “local” point of view; it is used to describe the internal workings of the
operator M (or parts of it). Analysis of the operator M from a local point of view will provide us with
in-depth informations on the behavior of Fourier components — which are also the formal eigenfunctions
of M — under the repeated application of the operator M .

In section 4.1 we introduce a formal description of a generic operator-splitting-based iterative process.
It is well known that the asymptotic convergence rate of any iterative process is given by the spectral
radius of the operator M . In section 4.2 the main ingredients of a multigrid solver are introduced: these
are (i) a hierarchy of grids Gh characterized by different mesh sizes h; (ii) a relaxation method, which is
an iterative solver by itself, whose goal is to reduce the high wavenumber (short wavelength) components
of the error and (iii) an interpolation and a restriction operator, whose role is to transfer informations
between grids. The multigrid algorithm presented in this thesis is the Full Approximation Scheme (FAS),
perhaps the lesser known, but more powerful, of the two multigrid algorithms — the other being the
well-known Correction Scheme (CS). FAS has been chosen as the algorithm used in the code developed
for this work because of its capability of handling nonlinear equations and of handling adaptive grid
refinement. The main idea behind FAS is to drive the discrete equations on each grid (except the finest)
with a forcing term τHh , called the defect correction, in such a manner that the solutions on the coarse
grids are identical to the one on the finest. Its relation to the Correction Scheme (CS) will be clarified in
section 4.5.

In section 4.3 the relaxation method is introduced and analyzed by using Local Fourier Analysis
(LFA), a fundamental tool in the context of multigrid analysis. Relaxation being one of the more delicate
components of multigrid, we devote a significant portion of this chapter to it.

As a first step we consider one of the most commonly encountered problems in physics, the Poisson
problem. Gauss-Seidel iteration — or one of its variants — is often used to solve the Poisson equation,
mainly due to its simple implementation and memory efficiency. Despite these advantages, a quick look
at Table 4.1 seems to suggest that Gauss-Seidel iteration is among the algorithms requiring the largest
computational effort; however, this assessment is unfair. Looking at it in more detail, the description
of the Gauss-Seidel iteration from a local point of view shows that it is very efficient in reducing the
high-wavenumber components of the error em = q̄ − qm, with q̄ as the exact solution of the discrete
problem, but rather slow at reducing the low-wavenumber components. Together with the observation
that the term “high-wavenumber” is dependent on the mesh size h, this statement gives a first hint of
the underlying idea of the multigrid algorithm: by using a discretization of the same problem on grids of
different size, all error components can be reduced in an efficient way.

The performance of a Gauss-Seidel iteration — or, in the multigrid context, Gauss-Seidel relaxation —
as well as the performance of any other relaxation process can be described by its amplification factor ρ (θ),
measuring the amount of amplitude decay/growth over one relaxation sweep in a Fourier component of
wavenumber θ =

{
θx, θy

}
. The smaller the amplification factor, the faster the error amplitude is reduced.

An amplification factor greater than one denotes divergence of the iterative process. The relation to the
spectral radius is immediate: the spectral radius is defined as the maximum of the amplification factor
over all wavenumbers θ representable on the grid, i.e.,

ρ̄ = max
θ

ρ (θ) .

As a second step, we slightly increase the difficulty of the problem by considering the scalar, linear
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convection-diffusion equation. Local Fourier Analysis (LFA) suggests that the amplification factor of
the Gauss-Seidel relaxation changes with respect to the Poisson equation case. Simple considerations on
how and why the Gauss-Seidel relaxation properties — in particular its amplification factor ρ (θ) — are
modified by the addition of extra terms provides valuable information on how to avoid a deterioration
of the multigrid performances. We remark, for example, that a purely convective process can be solved
very efficiently by downstream marching.

As a third step, we return to the Poisson equation and introduce anisotropy to the problem. The
origin of such an anisotropy can be varied and can include physical characteristics of the problem or,
more interestingly in our case, grid stretching. The convergence properties of the standard pointwise
Gauss-Seidel iteration can be noticeably degraded by the presence of such an anisotropy. An efficient
remedy is identified in a variation of the Gauss-Seidel algorithm, known as the linewise Gauss-Seidel
iteration, where unknowns located on the same mesh line are solved collectively.

As a fourth and final step we consider the relaxation of a system of equations comprising both Poisson
and convective-diffusion-reaction equations, i.e., a system like the pressure form of the linearized Navier-
Stokes equations (L∆) described in section 3.1. A complete LFA analysis of the system of equations is
not necessary, and we will only show how the scalar analysis results can be used instead. The task of
devising a proper relaxation strategy for this system can readily be reduced to the adaptation of the
relaxation strategies used for the Poisson and the convection-diffusion equation.

Once we have the tools to analyze the relaxation process, i.e., the one-grid process that smoothes the
high-wavenumber components of the error, we can proceed to the analysis of the entire multigrid process.
Two different schemes are available.

In section 4.4 we consider the widely known Correction Scheme (CS) used for the solution of linear
equations, like the Poisson equation for the pressure in the fractional-step techniques. As noted, different
grids characterized by different mesh spacings are employed to obtain a small amplification factor for all
error components. In the CS scheme, the solution is represented only on the finest grid: coarser grids
are used to compute corrections to the information stored on the next finer grid. This approach limits
the applicability of CS to linear problems. At the end of this section possible multigrid strategies are
presented, such as the V-cycle, the FMG algorithm and the FV-cycle.

In section 4.5 we introduce the perhaps lesser-known Full Approximation Scheme (FAS). FAS is used in
the multigrid code developed in this work and can be obtained by taking a dual approach to the Correction
Scheme (CS). FAS has two main advantages over CS: (i) the ability of solving nonlinear equations without
the need of an outer Newton iteration, and (ii) a natural approach to the implementation of adaptive
grid refinement strategies. At the basis of the FAS scheme lies the idea of representing the full solution,
instead of corrections, on all grids; the discrete equations on each grid (except the finest) are forced
such that the solution on any grid corresponds to the solution on the finest grid. Loosely speaking, this
forcing can be related to the one used in deferred correction methods. Adaptive grid refinement will be
considered at the end of this section.

Despite their different approach, CS and FAS share nearly all ingredients of a general multigrid
strategy: a relaxation process, an interpolation strategy denoted by the operator I, a restriction strategy
denoted by the operator R and a grid traversal protocol, the latter including the number of relaxation
iterations (or sweeps) per grid and the order in which the different grids are processed.

Some real-life examples will be presented at the end of this chapter.
For the development of the present multigrid code, various data structures and routines from the

PETSc library [5, 4, 6] have been used, in particular, relating to vector and matrix representations
and for accessing direct, sparse solver for linear and nonlinear problems. The multigrid part has been
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appropriately adapted to incorporate these features. The designed code is more general than the PETSc-
internal multigrid code since it allows for adaptive mesh refinement and more sophisticated relaxation
algorithms.

4.1 A generic iterative solver

An iterative solver can be approached in two different ways. The first is what we can call a “global” point
of view, where the solution process will be considered as an iterative application of a given operator M
to an initial guess q0, until a sufficiently converged solution qm has been found. The second point of view
can be referred to as the “local” point of view; it is based on a description of the internal details of the
operator M.

We start by taking the global point of view and consider a generic linear problem given by the equation

Aq = f (4.1)

where A is an invertible matrix. A direct solution of the equation obtained by inverting the matrix A
can be formally written as

q = A−1f,

but the inversion of the matrix A (or the computation of its LU decomposition) is often too costly in
terms of memory and CPU time to be practically feasible.

An alternative approach is to consider an iterative scheme. In this case, we split the matrix A in two
parts, A+ and A−, such that

A = A+ +A−. (4.2)

We can then define an iterative algorithm as

A+qm+1 = −A−qm + f =⇒ qm+1 = Mqm + s (4.3)

where M = (A+)−1A and s = (A+)−1f , while qm+1 and qm are approximate solutions at the iteration
m+ 1 and m of the iterative process.

Starting from an initial guess q0, at each iteration of the solution process the operatorM = (A+)−1A−

is applied to the available approximate solution qm in order to reduce the error em = q̄− qm with respect
to the exact solution of the discrete problem q̄.

The design of the splitting A = A++A− — or equivalently of the operatorM — defines the properties
of the iterative algorithm. Of particular interest in the design process is to characterize how fast the error
em goes to zero. An equation for the evolution of em at each iteration can be readily obtained by
substitution of qm = q̄ − em and qm+1 = q̄ − em+1 in the iterative process (4.3), thus obtaining

Âem+1 = Rem =⇒ em+1 = Mem. (4.4)

Expansion of the error em into eigenfunctions of the operatorM helps in clarifying the error dynamics
by showing that the convergence rate of each eigenfunction is given by the corresponding eigenvalue. We
characterize each eigenfunction by its amplitude ε and its shape ψ such that an appropriately chosen
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norm of ψ is one. The error can then be written as

em =
∑

i

εmi ψi (4.5)

where i varies over all eigenfunctions. For each eigenfunction εiψi there is an associated eigenvalue λi,
and the effect of applying the operator M on the amplitude of the eigenfunction is given by the product
of the eigenvalue and the amplitude itself, so that

εm+1
i = λiε

m. (4.6)

If the absolute value of all eigenvalues is less than one, the iterative process converges, and its asymp-
totic convergence is given by the largest eigenvalue (or spectral radius) ρ̃ of the operator (M) defined as

ρ̃ (M) = max
{
|λ| : λ eigenvalue of M

}
, (4.7)

such that asymptotically we have ||em+1|| ≤ ρ̃ (M) ||em||. The eigenfunction corresponding to the spectral
radius is the slowest-decaying eigenfunction in the spectrum.

As the spectral radius approaches one, the error reduction process slows significantly, and more
iterations are required to converge to the solution. As we will see shortly, this is the case for “smooth”
eigenfunctions when a pure Gauss-Seidel iteration procedure is employed. The role of multigrid is to
improve this situation: to correctly design a multigrid algorithm we will have to consider not only the
largest eigenvalue of the Gauss-Seidel iteration but also the relationship between the eigenvalues and the
shape of the corresponding eigenvectors.

4.2 Ingredients of a multigrid solver

We use this section to present a brief introduction to the multigrid framework. It should be sufficient to
understand the ideas underlying the multigrid algorithm used in this work. In the subsequent sections
more details will be given on each building block of a generic multigrid algorithm, and the choices made
in this work will be justified. For the reader interested in an in-depth understanding of the multigrid
framework in general and its application to fluid dynamics in particular, Brandt’s Multigrid Techniques:
1984 Guide with Applications to Fluid Dynamics [8], the NASA technical reports by Diskin et al. [14]
and Swanson [64], and the 2003 Annual Review by Thomas et al. [65] are recommended.

The design of a multigrid solver has been visualized in Figure 4.1. A hierarchy of grids is defined
starting from a coarse grid which is refined by a factor of two (in each direction) at every successive grid
level. Thus, the mesh size of each finer level is half the mesh size of the previous one. The governing
equations are then discretized on each grid yielding a series of discrete operators Lkh (·) (k = 1 . . . n)

where n is the total number of grids employed. On a given grid the solution is relaxed to reduce the
high-wavenumber components of the error

eh = q̃h − qh (4.8)

where, as we will see in a moment, high wavenumbers are to be linked to the particular mesh size [66,
chapter 4]. The solution is then restricted onto a coarse grid of mesh size H = 2h, where low wavenumbers
of the finer grid are relaxed. This operation is applied recursively until the coarsest grid is reached; on
this final grid the equations are solved. Corrections for the solution on the finer grids are then computed
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L (q) = f

Lh (qh) = fh

LH (qH) = fH + τHh

qh = R (q)

qH = R (qh) qh = I (qH , qh)

Figure 4.1: The grid hierarchy used in the multigrid process. The surface on the top represents
the (unknown) analytical solution of the differential problem. R and I are the restriction and
interpolation operators, respectively, and τ is the defect correction, a forcing term for the coarse
grid equation with the role of equating the solution on all grids to the one on the finest grid. On
each grid, a finite-difference problem Lh is defined by discretizing the continuous equations. If
the Full Approximation Scheme (FAS) algorithm, that will be described in section 4.5, is used,
the grids do not need to be coextensive, and the finer grids can cover only part of the coarser
grids. This latter option allows the introduction of adaptive grid refinement.

and interpolated back. The restriction and interpolation operators are represented in Figure 4.1 by the
symbols ↓ and ↑, respectively.

To give a more precise meaning to the terms high and low wavenumber, we consider a finer and a
coarser grid of mesh size h and H = 2h, respectively, and a sinusoid sin (kx) with k as the wavenumber.
The highest wavenumber that can be represented on each grid is k = π/h and k = π/H = π/ (2h) for
the fine and coarse grid, respectively. We can then determine all wavenumbers that are representable on
the fine grid as

0 ≤ θlow ≤
π

2h
< θhigh ≤

π

h
(4.9)

where sinusoids with wavenumber θlow are correctly represented on both grids while sinusoids with
wavenumbers θhigh are represented only on the fine grid (and aliased on the coarse one).

An essential component in the FAS multigrid algorithm is the fine-to-coarse defect correction τHh . Its
role is to force the coarse-grid equations in such a way that their solutions correspond to the fine-grid
solution [8]. In this sense, on all grids, except the finest, a modified version of the discretized equations
is relaxed (or solved):

LHqH = fH + τHh (4.10)

where
τHh = LH (Rqh)−R (Lhqh) . (4.11)

How τHh is obtained and more insights into its role will be given in section 4.5. At this point it is
sufficient to state that τHh takes into account the use of the coarse grid operator LH instead of the fine
grid operator Lh.

Once the FAS scheme has been chosen, two other ingredients need to be defined: a relaxation process
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and the communication strategy between different grids.
Typically employed relaxation (or smoothing) algorithms for the Laplacian operator are the Jacobi

and Gauss-Seidel iterations where each equation of the discretized system is solved sequentially. More
complex relaxation strategies include line-Jacobi and line-Gauss-Seidel iterations — where the discrete
equations corresponding to a line of points are solved simultaneously — and incomplete LU decomposition
(ILU) iterations. For systems of equations the block Jacobi or block Gauss-Seidel iteration (or their
corresponding block-line versions) can be employed to simultaneously solve all equations in the system at
each mesh point. For equations that contain convective-type terms the direction in which the relaxation
process is performed has been shown to be critically important [36]. Examples are the convection-
diffusion equation and the momentum equations in the Navier-Stokes system. Further details will be
given in section 4.3, and the reader is also referred to [36] and [66] for a full discussion of the smoothing
properties of various relaxation schemes.

The goal of the communication strategy between two grids is (i) to provide an accurate representation
of the finer-grid solution (or of the finer-grid error for the CS scheme) on the coarser grid and (ii) to
interpolate the corrections computed on the coarser grid onto the finer grid. Two operators will be
defined: a restriction operator and an interpolation operator, represented by ↓ and ↑, respectively, in
Figure 4.1. The restriction operator can be chosen as a simple injection of the solution from the finer
grid to the corresponding points of the coarser grid. Better performing restrictions are the half-weighted
(HW) and full-weighted (FW) operators, which represent a weighted average of the five and nine mesh
points of the fine grid surrounding a given mesh point on the coarser grid. The FW operator is used in
the context of our code and is implemented as

qH =
1

16
( 1qi−1,j+1 + 2qi,j+1 + 1qi+1,j+1 +

2qi−1,j + 4qi,j + 2qi+1,j +

1qi−1,j−1 + 2qi,j−1 + 1qi+1,j−1 ) .

(4.12)

The interpolation operator can be a simple bilinear interpolation or a more complex second-order or
third-order interpolation. A bilinear interpolation is often sufficient for an iterative multigrid method
while a higher-order interpolation (usually at least of the order of the discretization scheme) is necessary
for FMG multigrid. A third-order interpolation is used in this work.

It is important to note that in order to avoid introducing the interpolation errors of the whole solution,
in the FAS scheme only the correction to the approximate solution computed at the previous iteration is
interpolated from the coarser to the finer grid (something that is obvious in the correction scheme given
that only the correction is represented on the coarser grid). In this way only the error related to the
interpolation is introduced and can be easily eliminated with an additional iteration of the relaxation
scheme [8]. The quantity to be interpolated is then

[
qH− ↓ (qh)

]
and the update to the previous iteration

reads
qnewh = qh+ ↑

[
qH− ↓ (qh)

]
. (4.13)

4.3 Relaxation

Despite the fact that we will use it as part of the multigrid solution process, Gauss-Seidel relaxation (or
smoothing) can be considered as an iterative algorithm by itself and analyzed accordingly. We do so in
order to uncover and overcome the problems associated with this most common — and extremely simple
— iterative algorithm, and we will show that, when coupled with a multigrid approach, it is the most
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efficient choice.

In the Gauss-Seidel relaxation, the discretized equation at each mesh point i, j, corresponding to a
single line of the discretized operator, is solved locally in order to compute an update of the unknown
qi,j . This operation is repeated for all mesh points in the grids, using updated information when available
and information from the previous iteration otherwise.

As we will see, the order in which the mesh points are addressed is not unimportant. The most simple
and common ordering is given by the lexicographic (LEX) ordering and consists of traversing the grid
with increasing values of the indices i, j. Another common ordering is the red-black (RB) ordering, where
mesh points are organized like a checkerboard (or using more complicated patterns), and a sweep over
the red mesh points is followed by a sweep over the black mesh points (yes, checkerboards are more often
black and white. . . ). We will also consider backward-lexicographic ordering, where one or both mesh
directions are traversed with decreasing values of the indices i, j, and will see in which cases they can
prove to be useful.

The Poisson equation and Local Fourier Analysis

We start by considering one of the most commonly encountered problems in physics, the scalar Poisson
equation:

∆q = f (4.14)

such that the operator A in equation (4.1) is now the Laplace operator. Our goal in this and the following
sections is to perform and generalize the analysis outlined in section 4.1.

The first step is to define a standard five-point discretization Lh of the Laplacian operator on a two-
dimensional grid with constant mesh size h. The discrete operator Lh can be represented locally — at
every point i, j — by the discrete equation

Lhqh =
qi+1,j − 2qi,j + qi−1,j

h2
+
qi,j+1 − 2qi,j + qi,j−1

h2
= fi,j . (4.15)

An alternative notation for describing the discretization of an operator that will prove very convenient
in the subsequent analysis is the stencil notation [66]. In such a notation, which provides a graphical
representation of the stencil used in the discretization, the discrete Poisson equation (4.15) is written as

Lhqh =
1

h2




1

1 −4 1

1



h

qh (x, y) = fh (x, y) . (4.16)

The application of the stencil Lh to the variable qh is defined by

Lhqh = [sκ]h qh =
∑

κ

sκqh (x + κh) (4.17)

where sκ is the set of coefficients of the discretization identified by the index sets κ, and the summation
is performed over the entire index sets κ belonging to the stencil. Taking the current case as an example,
we have sκ = −4/h2 for κ = (0, 0) and sκ = 1/h2 for κ = (±1, 0) and κ = (0,±1).

We can now apply the analysis outlined in the previous section to the operator Lh: we implement
the operator splitting corresponding to the Lexicographic Gauss-Seidel (GS-LEX) iteration, identify the
iteration operator M and perform the modal analysis in order to identify the spectral radius ρ̃ and the
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amplification factor ρ. This same analysis has been performed in multiple publications and in particular
we refer to the 1982 paper by Kettler [36] and to the book by Trottenberg et al. [66]. Kettler [36] analyzes
and summarizes results for a variety of model problems and relaxation methods, including point and line
Gauss-Seidel, incomplete LU decomposition (ILU) and their variants. Some of his results will be used
and extended in what follows.

The application of a GS-LEX iteration (or sweep) consists of successively solving each discrete equation
(4.15) defined at every mesh point i, j on the grid, such that at iteration m+ 1 we update the unknown
qi,j as

qm+1
i,j =

qm+1
i−1,j + qm+1

i,j−1 + qmi+1,j + qmi,j+1 + h2f

4
(4.18)

where the unknowns at the mesh points i− 1, j and i, j − 1 are available at the current iteration m + 1

while the others are at the previous iteration level m. This is a consequence of the lexicographic ordering
of the sweep. From an operator splitting point of view, we can define the splitting as Lh = L+

h + L−h
which, in stencil notation, reads

L+
h =

1

h2




0

1 −4 0

1



h

L−h =
1

h2




1

0 0 1

0



h

. (4.19)

In a more common matrix notation, if the discrete unknowns are ordered in lexicographic order, L+
h and

L−h would be the lower (including the main diagonal) and the upper triangular part of Lh, respectively.

The resulting equivalent of the operator splitting-based iterative process (4.3) is then

L+
h q

m+1 = −L−h qm + f =⇒ qm+1 = −
(
L+
h

)−1
L−h q

m +
(
L+
h

)−1
f, (4.20)

and the iteration operator M can be formally written as

Mh = −
(
L+
h

)−1
L−h . (4.21)

We already know that the asymptotic convergence rate of the operator Mh is given by its spectral
radius ρ̃ (Mh). We are now interested in gaining more insight into the properties of the operator Mh,
and we will do that by analyzing the operator’s eigenvalues and eigenfunctions. It is clear that the direct
computation of the eigenvalues and eigenvectors of the operator Mh — or even the computation of the
operator Mh itself — becomes unfeasible as the number of degrees of freedom of the discrete problem
increase; fortunately, such a computation also provides far more information than is necessary.

A common, lighter and in the end more useful approach used in the analysis of relaxation processes in
the multigrid framework is given by a Local Fourier Analysis (LFA). LFA provides a concise description
of the local — i.e. at a given mesh point i, j — effect of one step of the relaxation process by computing
an amplification factor

ρ (θ) = εm+1
θ /εmθ (4.22)

where εmθ is the amplitude of the error eigenfunction associated with a given wavenumber θ. In the case
of a complex εθ, its magnitude has to be considered instead. A full description of LFA is provided by
Brandt [7, 8] and reviewed by Trottenberg [66]. Here we will present the main ideas in order to explain
its use.

Local Fourier Analysis (LFA) starts by considering a constant coefficient discretized operator Lh
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defined on an infinite grid Gh of mesh spacing h = (h1, h2). The constant-coefficient and infinite-grid
hypothesis is less limiting than it may appear: LFA is intended to provide local information, and most
nonlinear, variable-coefficient operators can be linearized locally and replaced locally by an operator with
constant coefficients. We anticipate here that there are two important cases where linearization is not
meaningful: (i) at locations where the equation’s coefficients vary too strongly or even discontinuously
between mesh points and (ii) in the vicinity of boundaries.

An analytical expression for the eigenfunctions and eigenvalues can be obtained for any constant-
coefficient operator defined on an infinite grid, starting with a Fourier transform of the error em = q̄−qm
where we recall that q̄ is the exact solution to the discrete problem and qm is its computed approximation
at iteration m. In two dimensions, each Fourier component is described by the grid function ψh, which
is a function of the wavenumber θ = (θ1, θ2), of the position x = (x1, x2) and of the mesh spacing
h = (h1, h2) according to

ψh (θ,x) = εθe
iθx/h = εθe

iθ1x1/h1eiθ2x2/h2 . (4.23)

As we noted when defining high and low wavenumbers in section 4.2, the maximum wavenumber we can
represent on a grid of mesh size h is π/h, so that for our analysis it suffices to consider the interval
−π ≤ θ < π. On this interval all grid functions are linearly independent and represent the eigenfunctions
of any constant-coefficient discrete operator.

The complete spectrum can now be easily obtained by applying the discrete operator to the grid
function ψh. Taking as an example the operator Lh and starting from the definition given in equation
(4.17), which, we recall, arises naturally from the stencil notation in equation (4.16), the expression Lhψh
reads

Lhψh = [sκ]ψh =

(∑

κ

sκe
iθ·κ
)
εθe

iθx/h (4.24)

where the term between brackets represents the symbol of the operator

L̃h (θ) =
∑

κ

sκe
iθ·κ. (4.25)

We recall that sκ is the ensemble of coefficients of the discretization identified by the index sets κ and
the summation is performed over all index sets κ belonging to the stencil as we have seen in (4.16) and
(4.17). The symbol of the operator defines the location of the operator’s spectrum in the complex plane
as a function of the wavenumber θ, and in this sense it can be considered as the eigenvalue distribution
of the operator itself: we have now an eigenvalue L̃h and an eigenfuction ψh associated with every
wavenumber θ. In the case of our two-dimensional five-point discretization (4.16) of the Laplacian the
symbol/eigenvalue reads

L̃h (θ) =
1

h2

(
e−iθ1 + e−iθ2 + eiθ1 + eiθ2 − 4

)
=

2

h2

(
cos θ1 + cos θ2 − 2

)
. (4.26)

We can now consider the symbols of the two operators L+
h and L−h corresponding to the splitting

of the operator Lh and compute the symbol for the iteration operator Mh = − (Lh)
−1
L−h . With this

information available, we can determine how the error emh evolves during the iterative process. For
Lexicographic Gauss-Seidel relaxation, whose splitting is defined in stencil notation in (4.19), application
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of the discrete operator to the grid function results in

L̃+
h (θ) =

1

h2

(
e−iθ1 + e−iθ2 − 4

)
(4.27a)

L̃−h (θ) =
1

h2

(
eiθ1 + eiθ2

)
, (4.27b)

and the symbol for the iteration can be easily computed as

M̃h (θ) =
L̃−h
L̃+
h

=
eiθ1 + eiθ2

e−iθ1 + e−iθ2 − 4
. (4.28)

A clear description of the effect of the iteration can be obtained by recalling that the error behaves as
em+1 = Mhe

m — see (4.4) in section 4.1). Once the eigenvalues and eigenvectors of the operator Mh

have been computed, we can rewrite the same expression as

εm+1
θ eiθx/h = M̃h ε

m
θ eiθx/h =⇒ ρ =

∣∣∣∣∣
εm+1
θ

εmθ

∣∣∣∣∣ =
∣∣∣M̃h

∣∣∣ (4.29)

where all quantities depend on the wavenumber θ, and | · | denotes the magnitude of a complex value.

Figure 4.2 shows contour levels of the amplification factor ρ (θ) for the present case of Lexicographic
Gauss-Seidel iterations applied to the five-point discretization of the Laplacian operator. It can clearly be
seen that GS-LEX has very good amplification factors ρ� 1 for error components of a high wavenumber
(marked with a gray background), but that the amplification factor approaches one as the wavenumber
tends to zero. A direct consequence of this observation is that most of the O

(
N2 log ε

)
computational cost
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Figure 4.2: Contour plot of the amplification factor ρ (θ) = |εm+1
θ /εmθ | = |M̃h| for a single sweep

of Lexicographic Gauss-Seidel (GS-LEX) relaxation applied to the five-point discretization of
the Laplacian operator, as a function of the θ1 and θ2 wavenumbers. The corresponding symbol
is given by (4.28). The region of high wavenumbers which cannot be represented on a coarser
grid of mesh size H = 2h, as defined by (4.9), is indicated by a gray background. The spectral
radius ρ̄ tends to one for low wavenumbers while the maximum amplification factor in the high
wavenumber range is 0.5 and corresponds to the four wavenumbers marked with crossed circles.
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associated with Gauss-Seidel iterations is spent on the reduction of low-wavenumber error components.

In contrast, the amplification factor for high wavenumbers is at most 0.5, which is a good smoothing
factor: three Gauss-Seidel sweeps would reduce the amplitude of the high-wavenumber error component
by a factor of 0.53 = 0.125, or nearly an order of magnitude. We note here that the amplification factor
for red-black Gauss-Seidel relaxation, at 0.25 per sweep [66], is considerably better in the case of the
Poisson equation, but this is not true in the case of the convection-diffusion equation we will analyze in
the next section; for this reason, red-black Gauss-Seidel relaxation is not considered in this work.

An additional remark on Figure 4.2 is that the amplification factor is not independent of the wavevector
direction. This anisotropy is associated with the direction used during the sweep, i.e. the order in which
the grid points are treated: the splitting used so far implies a sweep starting from the lower left (South-
West) corner and ending in the upper right (North-East) corner. We can also consider the case when the
sweep starts in the bottom right (SE) corner and ends in the top left (NW) corner. The corresponding
amplification factor is displayed on the left of Figure 4.3: contours are mirrored about the vertical axis
θ1 = 0 with respect to the previous case. The effect of alternating sweeps, the first starting in the SW
corner, the second in the SE corner, are shown on the right of Figure 4.3: the isotropy is restored. The low
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Figure 4.3: Same problem as Figure 4.2, but the ordering of the mesh points in the sweep is
changed. For the left figure, the sweep proceeds towards decreasing i: the amplification factor
is mirrored about the vertical axis. For the right figure, two sweeps are performed, the first for
increasing i and the second for decreasing i. Better reduction factors are obtained (but at twice
the computational cost), and the contours are symmetric with respect to both the horizontal
and the vertical axis.

amplification factor of the high-wavenumber error components forms the basis of the multigrid design,
but before moving onto this topic, we will consider three slightly more difficult problems: (i) the scalar,
linear convection-diffusion equation, where the direction of the sweep will be much more important than
in the Poisson case, (ii) the anisotropic Poisson equation and (iii) a system of equations similar to the
linearized Navier-Stokes equations in pressure form.

The convection-diffusion equation

We will now consider a moderate increase in difficulty by addressing the scalar, linear convection-diffusion
equation. Local analysis suggests that the amplification factor of the Gauss-Seidel relaxation changes com-
pared to the Poisson equation case. Simple considerations on how and why the Gauss-Seidel relaxation’s
amplification factor ρ (θ), is modified will provide hints on how to avoid a deterioration of performance.
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We start with the observation that a purely convective equation — i.e. without the Laplacian operator
— can be solved very efficiently by a single pass of a downstream marching scheme.

We define the operator Q representing the two-dimensional, steady-state convection-diffusion equation
as

Q q = U · ∇q − ν∆q = f. (4.30)

This is a notation similar to the one used in the previous chapters, but simplified in anticipation of
investigating systems of equations in the next section.

A second-order discretization of the convection-diffusion equation can be obtained by using an up-
winded, three-point discretization of the convective term and the standard five-point discretization of the
Laplacian term. In stencil notation we can write




1

2h




0

0

U −2U 3 (U + V ) 0 0

−2V

V



h

− ν

h2




0

1

0 1 −2 1 0

1

0



h




qh (x, y) = fh(x, y). (4.31)

The first thing to be noted is that this discretization is valid only for U, V ≥ 0. The stencil representing
the convective term switches symmetrically about the central point and changes sign when the sign of
the velocity components changes.

Analogous to what has been done for the Poisson equation, the operator Lh is split into a L+
h and a

L−h part defining the Lexicographic Gauss-Seidel iteration:

L+
h =

1

2h




0

0

U −2U 3 (U + V ) 0 0

−2V

V



h

− ν

h2




0

0

0 1 −4 0 0

1

0



h

, (4.32a)

L−h =
1

2h




0

0

0 0 0 0 0

0

0



h

− ν

h2




0

1

0 0 0 1 0

0

0



h

. (4.32b)

The symbols associated with the splitting can then be computed as

L̃+
h =− ν

h2

(
e−iθ1 + e−iθ2 − 4

)
+
U

2h

(
e−2iθ1 − 2e−iθ1 + 3

)
+
V

2h

(
e−2iθ2 − 2e−iθ2 + 3

)
, (4.33a)

L̃−h =− ν

h2

(
eiθ1 + eiθ2

)
, (4.33b)



50 Chapter 4. Multigrid

while the symbol for the iteration operator is

M̃h (θ) =
L̃−h
L̃+
h

=
−ν/h2

(
eiθ1 + eiθ2

)

−ν/h2
(
e−iθ1 + e−iθ2 − 4

)
+ U/ (2h)

(
e−2iθ1 − 2e−iθ1 + 3

)
+ V/ (2h)

(
e−2iθ2 − 2e−iθ2 + 3

) .

(4.34)
In order to better understand this expression, it is convenient to multiply both the numerator and the
denominator by h/|U|. As a consequence, U and V in the denominator are replaced by sinα and cosα,

respectively, with α as the angle of the velocity vector with the horizontal axis. A Reynolds number
based on the mesh size h can now be defined as Reh = |U|h/ν and the symbol can be rewritten as

M̃h (θ) =
Re−1

h (Dn)

−Re−1
h (Dd) + cosα/2 (C1) + sinα/2 (C2)

(4.35)

where Dd, Dn, C1 and C2 are the terms in brackets in equation (4.34). The first two are related to the
diffusion term while the last two to the convection term in the x1 and x2 direction, respectively.

Two different asymptotic regimes can be considered depending on the value of the mesh-based
Reynolds number Reh: (i) for small Reh � 1 the Dn and Dd terms dominate, and the situation of
the pure Laplace operator treated in the previous section is recovered independently of the value Reh,
while (ii) for big Reh � 1 the C1 and C2 terms are dominant in the denominator, and the amplification
factor ρ (θ) tends to zero: indeed, for a purely convective equation, one single pass is enough to solve the
equation exactly, provided that the sweep is performed in the downstream direction.

As previously done for the Laplacian operator, we plot in Figure 4.4 the amplification factor as a
function of the wavenumbers. Contour levels of the amplification factor ρ (θ) are shown for Reynolds
numbers Reh = 10−1, 1, 101, 102 and for a velocity U with an angle α = 45 ◦ with respect to the
horizontal axis of the grid.

Inspection of these contours plots confirms what has been established by considering the asymptotic
regimes: an increase in Reynolds number Reh reduces the amplification factor ρ (θ), increasing the
convergence rate of the error at each Gauss-Seidel sweep. The error components characterized by a lower
wavenumber, corresponding to smooth error components, are always the slower to converge, but the
overall error reduction is greater than in the simple Poisson case.

We have already noted while investigating the relaxation of the Laplace operator that changes in the
sweep direction does affect the convergence properties of the Gauss-Seidel relaxation. This feature is
even more pronounced in the case of the convection-diffusion equation, due to the directionality of the
convection operator associated with the discrete upwinding. As an example, we consider the effect of
relaxation with the same splitting as (4.32) corresponding to a Lexicographic Gauss-Seidel sweep, but
rather applied to a negative velocity field U, V ≤ 0. Upwinding of the convective derivative results in a
stencil representation of the convection-diffusion equation given by




1

2h




|V |
−2|V |

0 0 3
(
|U |+ |V |

)
−2|U | |U |

0

0



h

− ν

h2




0

1

0 1 −2 1 0

1

0



h




qh (x, y) = fh(x, y) (4.36)

where the only difference with respect to the positive velocity case (4.31) is in the convective term. The
absolute value of the negative velocities U, V takes into account the change in sign of the stencil. The
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Figure 4.4: Contour plots of the amplification factor ρ (θ) = |εm+1
θ /εmθ | = |M̃h| for the

convection-diffusion equation. A constant flow field U = V = 1/
√

2 corresponding to α = 45◦

has been selected. Downstream marching is applied in all cases. Four mesh-based Reynolds
number are shown: Reh = 10−1, 1, 101, 102. For the lowest Reh = 10−1 the contours are very
close to the pure Poisson problem case, but the amplification factor improves when increasing
the Reynolds number Reh. Contours are rescaled in the two lower plots, as marked by the
coefficient on the top right corner of these plots. The corresponding symbol is given by (4.34).

GS-LEX splitting considered above (4.32) now reads

L+
h =

1

2h




0

0

0 0 3
(
|U |+ |V |

)
0 0

0

0



h

− ν

h2




0

0

0 1 −4 0 0

1

0



h

(4.37a)

L−h =
1

2h




|V |
−2|V |

0 0 0 −2|U | |U |
0

0



h

− ν

h2




0

1

0 0 0 1 0

0

0



h

. (4.37b)
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The symbols associated with the splitting can then be computed as

L̃+
h =− ν

h2

(
e−iθ1 + e−iθ2 − 4

)
+ 3
|U |
2h

+ 3
|V |
2h

, (4.38a)

L̃−h =− ν

h2

(
eiθ1 + eiθ2

)
+
|U |
2h

(
e2iθ1 − 2eiθ1

)
+
|V |
2h

(
e2iθ2 − 2eiθ2

)
(4.38b)

while the symbol for the iteration operator, using the mesh-based Reynolds number Reh, is

M̃h (θ) =
L̃−h
L̃+
h

=
−Re−1

h

(
eiθ1 + eiθ2

)
+ | cosα|/2

(
e2iθ1 − 2eiθ1

)
+ | sinα|/2

(
e2iθ2 − 2eiθ2

)

−Re−1
h

(
e−iθ1 + e−iθ2 − 4

)
+ 3| cosα|/2 + 3| sinα|/2 . (4.39)

We can again consider the two asymptotic regimes: (i) for small Reynolds numbers Reh � 1 the situation
is unchanged, as can be expected given that there are no changes in the diffusion term; (ii) in contrast,
for large Reynolds numbers Reh � 1, the situation is different: the numerator does not tend to zero as
Re−1

h , and optimal convergence rates — characteristic of the case with positive velocity components —
cannot be achieved. This effect has to be attributed to the fact that the relaxation process is sweeping
in the wrong direction, or upstream. Information cannot be transferred in the optimal way because the
stencils of the convective term use information from the old approximation instead of the new one, as is
the case when downstream marching is employed. From another point of view, we can state that when
downstream marching is employed, the convective term is solved implicitly, and the solution process is
“equivalent” to a direct solution of the convective term: if the correct ordering of the unknowns is chosen,
the matrix corresponding to the convective operator is already lower triangular and downstream marching
corresponds to forward substitution.

Figure 4.5 shows the corresponding reduction factors for α = 180 ◦ (U = −1) and α = 225 ◦ (U, V =

−1/
√

2). Amplification factors are very close to one for high wavenumbers indicating inefficiency of the
relaxation scheme based on upstream marching for high Reh grids.
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is paramount in regions of the computational domain with high mesh-based Reynolds numbers.
The corresponding symbol is given by (4.39).
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Line Gauss-Seidel relaxation

We now return our attention to the Poisson equation by considering the case of an anisotropic equation
in the form

εqxx + qyy = f. (4.40)

If we consider the same splitting previously used for the isotropic Poisson problem and corresponding to
a Lexicographic Gauss-Seidel iteration, the operators L+

h and L−h characterizing the relaxation scheme
read

L+
h =

1

h2




0

ε −2(1 + ε) 0

1



h

L−h =
1

h2




1

0 0 ε

0



h

. (4.41)

The anisotropy described by ε can represent a physical characteristic of the problem. Another more
common possibility is to include ε after the discretization representing an anisotropy due to a grid
stretching: in the present case we can set h = h2 and ε = (h2/h1)2.

The symbols associated with the pointwise Gauss-Seidel splitting are slightly modified with respect
to the isotropic case by the introduction of ε. They read

L̃+
h (θ) =

1

h2

(
εe−iθ1 + e−iθ2 − 2(1 + ε)

)
, (4.42a)

L̃−h (θ) =
1

h2

(
εeiθ1 + eiθ2

)
, (4.42b)

and the iteration operator Mh accordingly changes to

M̃h (θ) =
εeiθ1 + eiθ2

εe−iθ1 + e−iθ2 − 2(1 + ε)
. (4.43)

The associated amplification factors for ε = 1, 1/4, 1/9, 1/16 are depicted in Figure 4.6. From the figure
it is evident that the contours of the amplification factor ρ spread in the θ1 direction when reducing ε —
that is, the reduction factors for high-wavenumber θ1 deteriorate for increasing grid stretching.

A possible solution is to replace the pointwise relaxation of the Gauss-Seidel scheme — where the dis-
crete equation at each mesh point i, j is updated independently — with a linewise Gauss-Seidel relaxation
(LGS), where all unknowns on a mesh line are updated collectively. Line relaxation is somewhat more
expensive than pointwise relaxation because a tridiagonal or pentadiagonal system has to be solved, but
fast algorithms (with a computation cost that scales linearly with the number of unknowns) are readily
available [3], and the increase in computation cost is easily manageable. These systems correspond to the
one-dimensional discretization (along a mesh line) of the Laplacian or the convective-diffusion operator,
respectively.

In stencil notation, LGS corresponds to the splitting

L+
h =

1

h2




1

ε −2(1 + ε) 0

1



h

L−h =
1

h2




0

0 0 ε

0



h

, (4.44)



54 Chapter 4. Multigrid

0.9

0
.8

0.70.
6

0.6

0.
5

0
.5

0.4

0
.4

0
.4

0.
3

0
.3

0.
3

0
.3

0.
3

0
.3

0.
2

0.
2

0
.2

0.
2

0.
1

0.
1

0.
1

0.
1

−π

−π
2

π
2

π

θ 2

−π −π
2

π
2

π
−π

−π
2

π
2

π

θ1

θ 2

−π −π
2

π
2

π

θ1

ε = 1; h2/h1 = 1 ε = 1/4; h2/h1 = 1/2

ε = 1/9; h2/h1 = 1/3 ε = 1/16; h2/h1 = 1/4

Figure 4.6: Contour plots of the amplification factor for the anisotropic Poisson equation.
Increasing anisotropy leads to a spreading of the contours in the direction where the mesh size
is largest. Accordingly, amplification factors increase for higher wavenumbers resulting in a
decrease in the convergence rate. Values of the contours levels are marked only in the top left
figure for clarity (as for the case of the isotropic Poisson problem), but all figures are color-coded
in the same manner. The symbol for these plots is given by (4.43).

and the corresponding symbols are given by

L̃+
h (θ) =

1

h2

(
εe−iθ1 + e−iθ2 + eiθ2 − 2(1 + ε)

)
, (4.45a)

L̃−h (θ) =
1

h2

(
εeiθ1

)
. (4.45b)

The symbol for the operator Mh can be computed accordingly as

M̃h (θ) =
εeiθ1

εe−iθ1 + e−iθ2 + eiθ2 − 2(1 + ε)
. (4.46)

Figure 4.7 shows the convergence factors for the same cases of Figure 4.6 but using linewise relaxation
instead of pointwise relaxation. It is clear that the spread of the contours in the θ1 direction, characteristic
of pointwise relaxation, is no longer present. In spite, there appears a tightening of the contours in the
θ2 direction, with the consequence that high θ2 wavenumbers are damped even faster than before — in
essence, since the θ2 direction is solved implicitly.

The Line Gauss-Seidel scheme also partially solves the problem of switching stencils in the advection
discretization, as the direction of the stencil along the implicitly solved mesh line becomes irrelevant.
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Figure 4.7: Same as Figure 4.6, but using linewise Gauss-Seidel relaxation instead of pointwise
Gauss-Seidel relaxation. The spread of the contours in the horizontal direction, characteristic
of pointwise Gauss-Seidel, is eliminated and, in its place, there is a tightening of the contours in
the vertical direction, corresponding to better (smaller) amplification factors. Linewise Gauss-
Seidel relaxation is somewhat more expensive than its pointwise equivalent as it requires the
implicit solution of tri- or pentadiagonal systems: the reduction in amplification factor is not
worth the additional computation cost in the isotropic case, but becomes essential for the
anisotropic case. The symbol is given by (4.46).

It is important to remark that we have considered a local deformation, i.e., an anisotropy which is a
characteristic of a single mesh point. This analysis does not cover the case of conformal mapping, where
the stretched grid is still locally isotropic if an originally isotropic grid is used; this is the case for the
grids showed in Figure 3.2. In fact, Local Fourier Analysis (LFA) cannot identify the effects — if any —
of a conformal mapping on the convergence rate, which are related to coefficients varying between mesh
points. If the coefficients’ variation is too pronounced, other methods, which we will introduce in the
context of boundary relaxation, have to be employed.

Systems of equations

We have up to now considered only scalar equations: the Laplace equation and the convection-diffusion
equation form the building blocks of our formulation of the Navier-Stokes system.

As a final step, we consider the case of a system of equations. In this case, a full LFA analysis is still
feasible but impractical, and is not covered here. We will instead use some of the concepts introduced
in the previous sections to understand the principle underlying the relaxation of a linear system, as in
the pressure form of the linearized Navier-Stokes system (L∆) given in section 3.1. We will arrive at the
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conclusion that, in this particular case, a full LFA analysis is not strictly necessary and it is sufficient
to consider the analysis already performed for the scalar cases to gain information on the behavior of a
relaxation scheme applied to the full system.

We consider a linear system similar to the linearization of the two-dimensional Navier-Stokes equation
in the form

Lq =



Q+ a11 a12 ∂x

a21 Q+ a22 ∂y

b1 b2 ∆


 q = f (4.47)

where Q = U · ∇ − ν∆ is the linear convection-diffusion operator already presented in (4.30), and aij

and bj are scalar coefficients mimicking the base-flow velocity derivatives in the linearized Navier-Stokes
equations. Similar to the scalar case, we define a splitting but, because we are dealing with a system,
we have to consider two levels of splitting: (i) the splitting of the system and (ii) the splitting of the
operators appearing as elements of the system. We represent the splitting of the system as

L+
h =



Q+ + a11 0 ∂+

x

0 Q+ + a22 ∂+
y

0 0 ∆+



h

, (4.48a)

L−h =



Q− a12 ∂−x
a21 Q− ∂−y
b1 b2 ∆−



h

(4.48b)

where Q+, Q− etc. represent the splitting of the discretized operators previously seen for the scalar
analysis. Once the symbol of each scalar operator has been computed, we can analytically compute the
inverse

(
L̃+
h

)−1 and write the symbol M̃h of the iteration operator Mh = −
(
L+
h

)−1
L−h as

M̃h =




1

Q̃+ + a11

(
Q̃− − b1∂̃

+
x

∆̃+

)
1

Q̃+ + a11

(
a12 −

b2∂̃
+
x

∆̃+

)
1

Q̃+ + a11

(
∂̃−x −

∆̃−∂̃+
x

∆̃+

)

1

Q̃+ + a22

(
a21 −

b1∂̃
+
y

∆̃+

)
1

Q̃+ + a22

(
Q̃− − b2∂̃

+
y

∆̃+

)
1

Q̃+ + a22

(
∂̃−y −

∆̃−∂̃+
y

∆̃+

)

b1

∆̃+

b2

∆̃+

∆̃−

∆̃+




. (4.49)

In this expression, at first sight rather complicated, we have four types of terms: (i) the coefficients aij
and hj , which are independent of the mesh size h; (ii) the first-order derivatives ∂x and ∂y, whose symbol
scales as 1/h; (iii) the Laplacian operator, whose symbol scales like 1/h2 and (iv) the convection-diffusion
operator, whose symbol scales as 1/h or 1/h2 depending on the Reynolds number Reh.

As a consequence, if we consider again the limit of small mesh size h — equivalent to a small mesh-
based Reynolds number Reh — and recalling the results obtained for the convection-diffusion equations,
namely that for low Reh the dominant terms in the amplification factor are related to the diffusion term,
the symbol M̃h simplifies to a diagonal matrix containing only the terms Q−/Q+ on the first two lines
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and ∆−/∆+ on the last line:

lim
h→0

M̃h (θ) =




Q−

Q+
0 0

0
Q−

Q+
0

0 0
∆−

∆+




(4.50)

For a sufficiently small mesh size, the relaxation procedure defined by the splitting (4.48) behaves in the
same way as the scalar convection-diffusion equation for the first two unknowns and as the scalar Poisson
equation for the third. For even smaller Reh, the entire system behaves like the Poisson equation since
the amplification factor of the convection-diffusion equation tends to the one of the Poisson equation.

Boundary relaxation

As anticipated when the LFA analysis was introduced, there are two important cases where LFA analysis
cannot be applied because the linearization of the operator is not meaningful: where the equation’s
coefficients vary too strongly between mesh points — for example, on coarse grids where boundary layers
are poorly or not at all resolved — or in the vicinity of boundaries — where the discretization of boundary
conditions takes the place of the interior equations. The results obtained so far cannot be applied to
these regions: amplification factors closer to or even greater than one, denoting slow convergence or even
divergence, are obtained even in the simple case of the Poisson equation with homogeneous Neumann
boundary conditions if the pointwise Gauss-Seidel relaxation is used [14].

It has to be noted that while the slower error reduction in these region may affect the whole iterative
process and require additional sweeps, its origin is essentially local, as elsewhere in the domain LFA
analysis can be successfully applied. A possible solution is then to devise a special treatment, in the form
of a different relaxation procedure like incomplete LU decomposition, GMRES or even direct algorithms,
for the mesh points showing unacceptably slow error convergence. Because the number of degrees of
freedom involved in these regions is commonly low — LFA analysis is usually valid in most of the domain
— the extra computational cost is negligible when compared to the total cost. For the code used in this
work, sparse LU decomposition [1, 2] is used to collectively solve all unknowns within a band of four mesh
lines in the vicinity of the inflow and outflow boundaries and up to twenty mesh lines in the vicinity of
the solid boundary. The larger number of mesh lines collectively solved close to the solid boundary has
to be related to the strong variation of the equations’ coefficients across the boundary layer developing
there.

For a system of equations, boundary relaxation should include all unknowns (e.g. u, v, p for the two-
dimensional Navier-Stokes equations) as the splitting of the system described in the previous section is
not valid and the equations are different.

We will have a more detailed look at the effect of boundary relaxation when we consider some test
cases in section 4.6.

4.4 Correction scheme
the linear equation

The analysis of the relaxation scheme we have performed so far has identified the amplification factor
ρ (Mh) associated with the discrete iteration operator Mh as the fundamental quantity used in analyzing
the relaxation process. Mh is the result of a splitting Lh = L+

h + L−h of the discrete problem Lh, and
the correct design of this splitting is essential in order to obtain proper convergence rates for the error
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amplitude. We have seen how the splitting corresponding to pointwise Gauss-Seidel relaxation represents
a good choice for reducing the high-wavenumber error components for the Laplace equation and, provided
that downstream marching is used, for the scalar convection-diffusion equation. We have also considered
possible issues arising due to the presence of anisotropies in the problem, associated with both physical
properties or grid stretching. Amplification factors for waves aligned with the largest mesh direction
(wave vectors aligned with the finer) worsen with increasing anisotropy, but the original amplification
factors can be recovered by employing linewise relaxation, which requires the implicit solution of tri- or
pentadiagonal matrices. Finally, we have considered a particular system of equations similar in shape to
the pressure form of the linearized Navier-Stokes equations (L∆) and shown that, for sufficiently small
mesh size h — measured by the mesh-based Reynolds number Reh — the smoothing properties for a
given splitting of the system can be related to the scalar case. In addition, we remark that the low
Reh-limit corresponds to larger grids — and thus to larger numbers of degrees of freedom — and it is
the more important limit as it relates to the case where most of the computational cost is invested.

We now return to the observation that both the pointwise and linewise Gauss-Seidel relaxation have
very good amplification factors for high wavenumbers, but the amplification factor for low wavenumbers
is close to one. The only exception is for high Reynolds number Reh � 1 and downstream marching, but
for any physical problem with a boundary layer that needs to be resolved, there will be at least one area
of the domain where Reh = O (1). An interpretation for the inferior convergence of the low-wavenumber
error is linked to the idea that pointwise Gauss-Seidel iteration is a local process: at each iteration,
information from one mesh point is passed only to the one next to it. As a consequence, transfer of
information between two distant mesh points requires many iterations. While this is not an issue for
purely convective (hyperbolic) problems, where there is a natural direction of information propagation —
a property which is leveraged by downstream marching — it represents a bottleneck for elliptic problems,
where each point in the domain influences all other points and information must be propagated back
and forth until convergence. Linewise relaxation, despite the fact that it is global in the direction of
mesh-lines that are solved implicitly, remains a local relaxation in the other direction, as can be seen in
Figure 4.7, where contours are compressed in the vertical direction — corresponding to the direction of
implicit solution — but do not change in the horizontal direction.

Many physical problems of interest contain at least an elliptic term — in our case it is the Laplace
operator applied to the pressure in the pressure equation and to the velocities in the momentum equations.
In this work, multigrid is the chosen algorithm to deal with the problem of low-wavenumber components.
Alternative solutions would include more complicated relaxation methods like ILU decomposition [63, 36],
which can be considered as a partially global iteration method, and Krylov subspaces methods, which
change the basis on which the solution is searched in order to account for long-range interactions (small
wavenumbers).

As we have earlier remarked, there are two possible multigrid algorithms: the Correction Scheme (CS)
and the Full Approximation Scheme (FAS). Both are based on the idea of computing a correction to the
approximation qm of the exact, discrete solution q̄ on coarser grids and then interpolate it to finer grids.
They differ, however, in the way this correction is computed. In what follows, we start by introducing
the more widely known CS scheme, after which we will present the FAS scheme.

The idea behind the Correction Scheme (CS) is to compute a correction emh in order to obtain a
better approximate solution qm+1

h = qmh + emh at the next iteration of the iterative solver. By replacing
the expression for qm+1 in a generic discrete linear system Lhq

m+1
h = fh, it follows immediately that the
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correction emh satisfies the equation

Lhe
m
h = rmh , where rmh = fh − Lhqmh . (4.51)

In the above expression, rmh is the residual of the equation and is non-zero because qmh is merely an
approximation to the exact discrete solution. The term emh is an approximation of the error, given by
eh = q̄h − qmh .

If the high-wavenumber components of the error have been reduced by the application of some (usually
one or two) sweeps of a variant of the Gauss-Seidel relaxation process (described in section 4.3), the
correction emh can be approximated on a coarser grid by the function emH satisfying

LHeH = Rrh (4.52)

where R is the restriction operator used to transfer information from grid h to grid H, and the superscript
m has been omitted. The computational cost of solving this equation for the correction on the coarse
grid is clearly less than the cost of solving it on the finer. Once a solution eH to the coarse-grid equation
(4.52) is found, it can be interpolated back to the finer grid, and the approximate solution qmh is updated
as follows

qm+1
h = qmh + IemH . (4.53)

The interpolation process introduces some high-wavenumber error components which can be efficiently
reduced by one or more additional relaxation sweeps. This two-grid scheme can be implemented recur-
sively by repeating the same procedure on increasingly coarser grids, until a grid is reached on which the
direct solution of (4.51) is inexpensive.

The Correction Scheme can be visually summarized with the help of Figure 4.8, where four grid-levels
have been considered, as in Figure 4.1: the simplest multigrid algorithm starts from the finest grid (orange
dots), where one or two relaxation sweeps are applied to reduce the high-wavenumber error components.
The residual of the discrete equation is then restricted onto the coarser grid (green dots) where the
equation for the correction emH (4.52) is defined and relaxed. This procedure is repeated recursively until
the coarsest grid (red dots) is reached, where an exact discrete solution of the corresponding equation
for the correction can be obtained inexpensively. After that, corrections are interpolated back to finer
grids using equation (4.53). At every grid level in the upward, i.e., coarse-to-fine, leg the equation for
the correction is relaxed again with one sweep of the relaxation process to reduce the high-wavenumber
components introduced during the interpolation process. On the finer level, the solution is updated.
While it is possible to perform LFA analysis for the two-grid (and consequently for the multi-grid)
problem, it is not attempted here. Suffice it to remark that, on each grid, it is necessary to reduce
only the high-wavenumber error components since lower-wavenumber components will be reduced on
coarser grids. As a consequence, we can expect the limiting amplification factor of each application of
the multigrid V-cycle — i.e. one downward and one upward leg in Figure 4.8 — to be dependent on
the largest amplification factor ρ (θ) in the high-wavenumber range determined in section 4.3. For all
cases analyzed in section 4.3 the maximum amplification factor for the Gauss-Seidel iteration in the high-
wavenumber range is approximately 0.5, provided that downstream marching and linewise relaxation is
used if necessary (note that it is exactly 0.5 for pointwise Gauss-Seidel relaxation on an isotropic grid).
If, like in the case we just considered, we apply a total of three relaxation sweeps per grid level — two
on the downward leg and one on the upward leg — the upper limit for the amplification factor for each
V-cycle is 0.53 = 0.125, meaning that the magnitude of the error is expected to be reduced by nearly one
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Mh

Figure 4.8: The V-cycle is a main ingredient of the multigrid algorithm: on the downward leg,
some — usually one or two — relaxation sweeps are applied at each grid level (represented
by the colored circles) except the coarsest (red circle), and information is transferred from the
finer to the coarser grids by restriction. The equation defined on the coarsest grid is solved
exactly. Corrections are then interpolated back to finer grids on the upward leg, and additional
relaxation sweeps — usually only one — are applied to reduce the high-wavenumber error
introduced by the interpolation process. The whole process can be seen as the application of
an iteration operator Mh, and a spectral radius ρ̄ (Mh) can be computed.

order of magnitude for each V-cycle iteration.
The value of 0.125 is the same we have obtained during the analysis of the Lexicographic Gauss-Seidel

relaxation for the Poisson equation. The important difference is that, while in the former case it was the
worst amplification factor for high-wavenumber components — far worse amplification factors have been
obtained for lower wavenumbers — in the present multigrid case it is the worst amplification factor for
all wavenumbers.

We can then return to the global point of view and summarize all sequential operations in the V-cycle,
represented in Figure 4.8, by a single operatorMh acting on the error components in the same manner as
has been described when defining a generic iterative process at the beginning of this chapter (see equation
(4.4) in section 4.1). In the same way we can identify the asymptotic behavior of the iterative process
represented by the operator Mh with its spectral radius ρ̄, which is also the worst obtainable convergence
rate: for the multigrid process represented in Figure 4.8 the spectral radius is thus equal to 0.125.

Full multigrid (FMG) and Full V-cycle (FV)

The V-cycle represented in Figure 4.8 starts from an initial guess on the finest grid. A smart way of
computing this initial guess is by interpolating solutions previously obtained on coarser grids. This
procedure leads to the introduction of the Full Multigrid Algorithm (FMG), which differs from the
iterative algorithm presented above in the fact that the initial guess is inexpensively computed on the
coarsest grid instead of the finest grid. Once a solution is obtained on this grid, an initial guess for
the next finer grid can be obtained by interpolation, and a multigrid cycle is applied until a converged
solution is found on this finer grid. This process is then repeated with progressively finer grids until a
satisfactory mesh size is obtained.

The availability of a good approximation with which to start the V-cycle reduces the number of full V-
cycles required to converge to the required solution and, for simple problems like the Poisson equation —
or even more complex ones like the inviscid, incompressible Navier-Stokes equations — it has been shown
that one V-cycle is sufficient to obtain a solution whose algebraic error eh falls below the discretization
error [14].

Finally, a combination of the V-cycle with the FMG algorithm results in the definition of the FV-cycle
where, given an initial approximation on the finer grid — for example obtained when an additional grid
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Figure 4.9: In the FMG algorithm, the initial guess used at the finest level of a V-cycle is
computed by interpolating a solution previously computed on a coarser grid. Progressively
finer grids can be added until a satisfactory mesh size is obtained. The availability of a good
initial guess computed by interpolation reduces the number of V-cycles required to converge to
the solution: in many cases one V-cycle is sufficient to converge to algebraic error below the
discretization error. The full solution has to be interpolated when a new grid level is added
(thin, curved arrows), while we recall that only the corrections are interpolated inside each
V-cycle (thick, straight arrows).

is added in an FMG algorithm — a downward leg is applied to reach the coarsest grid used. After that,
an FMG algorithm can be used to get back to the finer grid, thus reducing the number of relaxation
sweeps required on the finest grid. The FV cycle is represented in Figure 4.10.

Figure 4.10: The FV-cycle can replace the V-cycle as a standalone algorithm or inside an
FMG algorithm. The initial guess on the finest grid (orange) is relaxed and restricted until the
coarsest grid (red) is reached, in the same way as in the downward leg of a V-cycle. A path
similar to the FMG algorithm is then used, with the difference that an approximation of the
solution is already available on all grids and only the corrections are interpolated in the upward
legs. The FV-cycle is intended to reduce the number of sweeps applied to the finest grid.

Both FMG and FV cycles are used in the code developed in the context of this work, but the Correction
Scheme is replaced with the Full Approximation Scheme to be able to accommodate equations — or a
system of equations — containing nonlinear terms and to include adaptive refinement procedures.

In the next section the FAS algorithm will be introduced. After that, the last section of this chapter
will provide some test cases with applications and demonstrations of the theoretical results obtained in
the previous sections.

4.5 Full Approximation scheme
the non-linear equation

The Full Approximation Scheme may be less known but is certainly the most powerful version of multigrid.
Its main advantages are the capability of directly addressing nonlinear problems and of providing a natural
approach to adaptive grid refinement.

The Full Approximation Scheme replaces the coarse grid equation (4.51) for the correction eh with a
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coarse grid equation for the unknown qH in the form

LHqH = fH + τHh (4.54)

where fH = Rfh is the restriction of the forcing from the fine to the coarse grid, and τHh is the defect
correction defined as

τHh = LH (Rqh)−R (Lhqh) . (4.55)

Once a solution qH is computed on the coarse grid, only the correction (and not the whole solution) is
interpolated back to update the fine grid solution according to

qnewh = qh + I (qH −Rqh) . (4.56)

Interpolation of the full solution by writing qnewh = IqH would introduce the interpolation error of the
whole solution instead of the interpolation error of only the correction and is thus not advised (but see
[8, section 8.5] for cases when this is not true).

To better understand the meaning of the defect correction, we start by considering the error introduced
by the discretization process, i.e. by moving from the continuous to a discrete formulation. This error
is in general unknown but is proportional to the order of the discretization. For example, a centered
second-order derivative can be written on a one-dimensional domain as

qx = f =⇒ qi+1 − qi−1

2h
+ f (x)h2 = fi. (4.57)

Let us suppose for a moment that the function f (x), representing the error introduced in the discretization
process and independent of the mesh size, is known: the discretized equation could then be written as

qi+1 − qi−1

2h
= fi − f (x)h2, (4.58)

and the discrete solution would correspond to the analytic one independently of the chosen mesh size.

While we cannot know a-priori the shape of the function f (x), the equivalent information is readily
available when considering two different discrete representations on two grids of different mesh size h and
H. To see this, we rewrite τHh (4.55) as

τHh = LH (Rqh)− fH︸ ︷︷ ︸
rH

−R (Lhqh − fh)︸ ︷︷ ︸
Rrh

(4.59)

where fH = Rfh by definition. The first term in this equation represents the residual stemming from the
application of the coarse grid operator LH on the (restricted) fine grid solution qh, while the second term
represents the restriction of the fine grid residual, thus providing the difference in the application of the
coarse grid operator LH and the fine grid operator Lh on the same fine grid solution qh. If this difference
is added to the coarse grid equation, the same solution is obtained on both grids.

We also mention the possibility, not used in the code developed for this work, of extrapolating the
value of τHh to compute a solution as close as possible to the solution of the continuous problem instead
of the one to the discrete problem. In other words, the defect correction τHh can be used to estimate
the unknown function f (x) — or its multi-dimensional equivalent — defining the truncation error of the
discretization process. This can be used to force the finest grid equation, for which the defect correction
τh· is not available. A concise description of this methodology can be found in [8, section 8.4].
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Nonlinear equations

The correction equation LHeH = rH (4.52) used in the definition of the Correction Scheme algorithm is
valid only for linear problems and, as a consequence, limits the applicability of the CS to linear problems.
This same limitation does not apply to the FAS algorithm, as the correction is computed for the equations
by means of the defect correction τHh and not for the solution. This is equivalent to writing the correction
equation in the form

Lh (umh + emh )− Lh (umh ) = rh

and replacing the fine grid operators Lh with their coarse grid counterparts LH . After umh , ehm and rh are
consistently multiplied by the restriction operator R, an equation equivalent to the FAS equation (4.54) is
obtained. Finally, it should be noted that the Correction Scheme can be used as the linear solver within
a Newton algorithm, but the FAS algorithm is more efficient as it does not require an external Newton
iteration on the finest grid.

Adaptive grid refinement in the context of multigrid

A possibly even more interesting feature of the FAS algorithm is its ability to naturally treat adaptive grid
refinement. Because the solution, in contrast to the correction, is represented on all grids, the finer grid
is not required to have the same extent of its next coarser grid, as shown on the finest grid of Figure 4.1.
In this case, the defect correction τHh will be defined on the coarse grid only in the areas where a finer
grid is defined and will be zero otherwise but will nonetheless affect the solution on the entire coarse grid.
Because τHh is an estimate of the truncation error, this is a natural approach: when a region of a given
grid does not need to be refined, it means that its truncation error is sufficiently small and can be taken
as zero.

A question arises on how to deal with inner boundaries, i.e., those boundaries of the finer grid that
do not correspond to the physical boundaries of the domain but lie in the interior of the coarser grid. A
simple and correct answer is to use Dirichlet conditions obtained by interpolating the coarse grid solution
with an interpolation operator of at least the order of the discretization. The reason for this approach
follows the same argument given above: when a region of a given grid does not need to be refined, it
means that the chosen discretization order represents the solution sufficiently well in that region. An
interpolation of the same order as the discretization will then satisfy the fine grid equations as well. For
example, when a second-order discretization is employed, we can stop further refining when, locally, the
solution is well approximated by a second-order polynomial (a parabola in one dimension or a paraboloid
in multiple dimensions). In this sense, a second-order interpolation of the solution would locally be an
exact solution of a finer grid and can be used as a Dirichlet condition for the refined region.

An additional remark has to be made on the use of the defect correction τHh as a refinement criterion,
taking advantage of the fact that it is an approximation of the truncation error. Under this criterion,
refinement is then required only where τHh is large, corresponding to the area where a stronger modification
of the coarse grid equations is induced by the presence of the finer grid. The defect correction refinement
criterion is both less expensive — as it is a byproduct of the FAS algorithm — and more appropriate
than many, more commonly used refinement criteria based on solution gradients or the vorticity field —
which requires the additional computation of the gradients and fails to identify regions of interest in very
simple cases. As an example where gradient-based adaptive grid refinement criteria would fail, we can
consider a problem with a solution given by a parabolic profile in the form

q = ay2 + by + c,
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and a second-order discretization of the problem. An example could be plane Poiseuille flow between two
stationary flat walls driven by an externally imposed pressure gradient, for which the velocity profile is

u = −y
ν
px

(
h− y

2

)
(4.60)

with h as the channel half-height. With the velocity gradient stronger close to the wall, a gradient-based
refinement criteria would suggest to concentrate mesh points in this region. In reality, this would be
ill-advised in terms of computational resources, as three mesh points is all that is needed to obtain an
exact solution to the problem: the second-order scheme describes parabolic solutions exactly. To see this
we define a second-order discretization of the u-momentum equation on a three-point mesh of size h = b

as
ν
ui+1 − 2ui + ui−1

h2
= px (4.61)

where the pressure gradient px is given. No-slip boundary conditions at the walls impose ui−1 = ui+1 = 0

and the equation reduces to

−2ν
ui
h2

= px =⇒ ui = −h
2px
ν

, (4.62)

which is exactly the velocity at the centerline obtained from (4.60) for y = h. The velocity at all other
locations can be computed exactly by second-order interpolation of ui at y = h and ui−1 = ui+1 = 0 at
y = 0 and y = 2h.

The most consistent criteria to be used is then to refine where the local solution to the problem is
farthest away from the shape implied by the discretization scheme — a parabola in the case of a second-
order scheme. In this sense, the defect correction gives an indication of how well the solution is locally
described by the discretization scheme.

4.6 Test cases

We will now investigate some applications of the computational tools presented so far. The multigrid
code used to produce the following examples is written in Matlab and listed in Appendix A. Both the
CS and the FAS scheme have been implemented, and results from the two schemes are the same up to
numerical precision. The equations are discretized using a standard five-point second-order Laplacian
and a first-order upwinded convective term. Pointwise Gauss-Seidel and linewise Gauss-Seidel iterations
are implemented by operator splitting to keep a compact notation. Full-weighted restriction and bilinear
interpolation are used for the communication between grids. For all test cases the finest grid has 129×129

mesh points, the coarsest one has 5× 5 mesh points.

In these tests, particular attention is directed towards the boundary treatment: this part of the
multigrid process cannot be analyzed by LFA and, as noted by Diskin [14], has been often overlooked.
Following Diskin’s steps, we will see how boundary relaxation restores the convergence rates predicted
by LFA analysis and extend his analysis of the inviscid equations to the case of the convection-diffusion
equation. This section contains four figures, representing the convergence history of both pure Gauss-
Seidel iterations (blue lines) and of Gauss-Seidel iteration as a relaxation method within multigrid (red
lines). Each line symbol corresponds to three iterations of the Gauss-Seidel algorithm (blue) or one V-
cycle of the multigrid algorithm (red), since three GS iterations are performed for each V-cycle on the
finest grid. Figure 4.11 shows results for the Poisson equation with Dirichlet boundary conditions on
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an isotropic grid. Figure 4.12 shows results for the Poisson equation with Dirichlet boundary conditions
on an anisotropic grid and the effect of linewise Gauss-Seidel relaxation. Figure 4.13 shows the effect
of changing the boundary condition from Dirichlet to Neumann and how boundary relaxation can be
used for recovering a satisfactory convergence rate. Finally, Figure 4.14 shows results for the convection-
diffusion equation. The obtained results match very well the theoretical estimates based on LFA analysis,
despite the fact that LFA relies on the hypothesis of an infinite grid and constant coefficients.
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Figure 4.11: Convergence history of the residual for Lexicographic Gauss-Seidel relaxation (GS-
LEX, blue circles) and multigrid cycles (MG, red squares), using semilogarithmic axes. Only
every third GS-LEX iterations is marked by a symbol along the blue line, and three GS-LEX
iteration per grid are applied for each V-cycle; this makes the two curves nearly comparable
in terms of computational cost. The Poisson equation with Dirichlet boundary conditions is
discretized on a uniformly spaced grid. The finest grid, on which the residual is computed, has
129× 129 mesh points, the coarsest grid has 5× 5 points. Three sweeps of GS-LEX relaxation
are used on each grid level, two during the downward leg and one during the upward leg.
The theoretical asymptotic convergence (spectral radius) of GS-LEX and MG are ρ̄GS = 1

and ρ̄MG = 0.53 = 0.125, respectively, and the theoretical convergence history for MG is
indicated by a black line (it is a horizontal line for GS-LEX). While the decrease in residual
norm associated with the first three GS-LEX and the first V-cycle iterations are comparable (at
n = 1 the curves coincide), the far superior convergence rate of MG is already evident starting
with the second iteration n = 2. Excellent agreement with the results from LFA analysis is
obtained.
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Figure 4.12: Same as Figure 4.11, but with an anisotropy of ε = 1/9, corresponding to a grid
stretching of h2/h1 = 1/3. Results for pointwise Gauss-Seidel (PGS-LEX) are shown with
empty symbols, results for linewise Gauss-Seidel (LGS-LEX) are indicated with filled symbols.
This small stretching ratio is sufficient to cause a severe degradation in the multigrid asymptotic
convergence rate of PGS-LEX: LFA analysis estimates a V-cycle convergence rate of 0.55, and
our results (red, empty squares) show excellent agreement with this estimate. The use of
linewise Gauss-Seidel as a relaxation method recovers — and improves — the convergence rate
obtained for the isotropic grid: the theoretical estimate for LGS-LEX, at 0.089 per V -cycle, is
sligthly better than the 0.125 of the PGS-LEX on an isotropic grid and, as in the previous figure,
there is excellent agreement between the theoretical estimate and the numerical experiments.
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Figure 4.13: Same as Figure 4.11, but with a homogeneous Neumann boundary condition on
the x = 0 boundary. Pointwise Gauss-Seidel relaxation is used for all curves. The replacement
of the Dirichlet with a Neumann boundary condition gives rise to a severe degradation in the
convergence rate of the multigrid V-cycle, whose converged history is showed in red, unfilled
squares. The addition of a boundary relaxation solving all points belonging to the first three
mesh lines close to the x = 0 boundary recovers the convergence rate of 0.125 per V-cycle
predicted by LFA analysis. The effect of boundary relaxation is clearly visible in the (a) and
(b) subfigures, showing the residual of the equations after the application of two V-cycles
without and with boundary relaxation, respectively. PGS-LEX performs poorly in reducing
the error on the boundary, and a spike in the error is clearly visible in the left subfigure (a).
The positive effect of boundary relaxation is evident in the right subfigure (b), where the spike
has disappeared and the residual on the first three mesh lines close to the boundary is at
machine precision: the direct (or iterative) solution of this region adds very little to the overall
cost of the solution procedure but allows us to restore the theoretical multigrid convergence
rate. It can also be noted that pure GS-LEX iteration are barely modified by the addition of
boundary relaxation: the filled blue and empty cyan circles are hardly distinguishable. This
suggests that boundary relaxation acts at the restriction and interpolation levels rather than
at the relaxation level, by removing the high-wavenumber components close to the boundary,
left behind by PGS-LEX.
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Figure 4.14: Convection-diffusion equation for Reh = 1. Streamlines of the velocity field are
plotted in the bottom figures: inflow and outflow are at the bottom right y = 0 and at the
top right x = 1 boundary, respectively, a stagnation point is located at (x, y) = (0, 1), and
the flow is symmetric with respect to the x = 0 axis. Lexicographic relaxation corresponds to
marching in the downstream direction. Convergence of the multigrid algorithm with pointwise
Gauss-Seidel relaxation and no boundary relaxation is shown in red, unfilled squares. Filled
squares correspond to multigrid with linewise Gauss-Seidel and boundary relaxation applied
to four mesh lines from all boundaries. Subfigures (a) and (b) show the residual after the
application of two V-cycles for PGS-LEX without boundary relaxation and LGS-LEX with
boundary relaxation; the situation is similar to the case with a Neumann boundary condition,
but the origin is different: larger residuals are found close to the solid boundary and at the
outflow where, as on the rest of the boundary, a Dirichlet condition is applied. The origin
of this larger residual can be found in the chosen discretization: the upwinded convective
term, propagating information only from upstream, conflicts with the centered diffusive term,
propagating information also from the boundary. Because the lexicographically ordered sweeps
naturally transfer information downstream, the residual is “accumulated” close to the solid
boundary and the outflow. In the case of the outflow, a better implementation of the boundary
condition can partly fix the problem but, in both cases, boundary relaxation can be used to
propagate the information from the boundary into the domain. Cases with both higher and
lower Reh do not show this problem, suggesting that it is associated with intermediate Reynolds
numbers only. As an example, the convergence histories of lexicographic pointwise Gauss-Seidel
and of the corresponding multigrid V-cycle are shown in blue and red dashed lines, respectively.



Chapter 5

Global Analysis of the Flow

Around a Leading Edge

In this chapter we will present results from the global analysis of the flow around a leading edge, based
on the theory outlined in chapter 2 and the numerical approach described in chapter 3 and chapter 4.

A brief recall of the governing equations and of the numerical algorithms will lead us to the description
of the main features of the base flow.

Our global analysis is performed at a chord-based Reynolds number ReC = 106, corresponding to a
radius-based Reynolds number Rer = r ReC = 16000 and a sweep Reynolds number Res =

√
Rer tan Λ =

126. The dimensionless leading-edge radius r and sweep angle Λ for our geometry are r = r∗/C∗ = 0.016

and Λ = 45◦ (tan Λ = 1), respectively. Small perturbations to a spanwise-independent solution to
the Navier-Stokes equations (R) for this set of parameters are known to decay asymptotically in time:
previous stability analyses on simplified geometries [38, 39, 48] or for the supersonic case [43] consistently
suggest a critical sweep Reynolds number Res of about 600 for attachment-line instabilities to develop.
Maintaining the current configuration, a sweep Reynolds number Res of 600 would correspond to a chord-
based Reynolds of ReC = Re2

s/r = 22.5 · 106, which is beyond our numerical capabilities for the time
being. We recall the definition of the various Reynolds numbers from section 2.1:

ReC =
U∗∞ C∗

ν∗
, Rer =

U∗∞r
∗

ν∗
, Res =

W ∗∞δ
∗

ν∗
.

Consequently, a stable spectrum is computed under the assumption that its main features will not
change qualitatively when crossing the critical Reynolds number. Comparison between our results and
the literature just cited corroborates this line of thought. In particular, the shape of the computed
eigenvectors recovers features already observed by Mack et al. [44], namely a connection between the
attachment-line instability and the crossflow instability. The modal structures at the attachment line
closely resembles the findings of Lin & Malik [38].

As outlined in chapter 2, we are interested in the receptivity of the spectrum to a forcing of the
perturbation equations, and this receptivity is related to the adjoint field. The adjoint spectrum is
computed and shown to be equivalent to the direct spectrum (up to complex conjugation), provided
some care is taken in dealing with the boundary conditions to avoid numerical difficulties. Analysis of
the adjoint modes shows major receptivity of the corresponding direct modes to be concentrated in the
upstream part of the domain, in particular, in the region close to the attachment line.

In the last section of this chapter, the wavemaker is described for our configuration, together with
some observations on the structural sensitivity including its consequence on the effective implementation
of active and passive control strategies.

69
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5.1 Base flow

The baseflow is computed as a steady-state solution of the unforced Navier-Stokes equations (L) around
the leading edge of a Joukowsky airfoil. The Navier-Stokes equations read

R (q) ≡





∂tu +∇uu− ν∆u +∇p = 0

∇ · u = 0

(R)

where the dimensionless kinematic viscosity ν is the inverse of the Reynolds number. Boundary conditions
are specified as the no-slip condition u = 0 on the solid boundary, the inviscid solution u = Uν=0 (x, y) at
the inflow and a homogeneous Neumann condition ∂u/∂n = 0 at the outflow. The shape of the airfoil is
defined by a complex mapping from a rectangular domain, and the inviscid solution Uν=0 can be obtained
accordingly. The configuration is shown in Figure 2.1. See chapter 3 for all details on the mapping and
the computation of the inviscid solution.

For numerical convenience, the mass conservation equation ∇·u = 0 is replaced by a Poisson equation
for the pressure [21, 56] obtained by the application of the projection operator to the Navier-Stokes
system (R) [65, 64, 14]. The application of the projection operator is equivalent to the computation of
the divergence of the momentum equations and the application of the divergence-free condition. A full
account of the projection and its consequences have been provided in chapter 3. We recall here that
equivalence between the original and the projected formulation is guaranteed only if the divergence-free
condition is used to obtain a non-homogeneous Neumann boundary condition for the pressure [64]. This
can be accomplished by manipulating the momentum equations in the direction normal to the boundary
in order to construct a Neumann boundary condition for the pressure: the divergence-free condition on
the boundary is then implemented by using a finite-volume-like formulation for the diffusive term, see
chapter 3 for details. Because the two formulations are equivalent and the Poisson equation is only a
numerical expedient, we will always refer to our solutions as the solutions of the system in divergence
form (R).

A spanwise invariant solution of (R) is sought by removing all the spanwise z-derivatives. Under
the hypothesis of spanwise invariance, the solution is known to be stable at all Reynolds numbers, and
a steady-state solution can easily be obtained. A consequence of the spanwise invariance is that u, v
and p are decoupled from the spanwise velocity component w and can be solved independently. The
w-component of velocity can be computed at a later stage and is governed by a scalar, linear convection-
diffusion equation.

Computation of the base flow

The governing equations (R) are discretized on a stretched grid covering approximately 20% of the
chordwise extent of the profile with a second-order finite-difference scheme. Upwinded stencils are used
for the convective terms U∂x + V ∂y — the term W∂z is zero because of the spanwise invariance — and
centered stencils for all other derivatives. The Laplacian operator is discretized using a finite-volume
formulation so that ∆u = A−1Σi∇u · nds, where the sum is over the boundary of the control cell Ω and
A is the surface of Ω. The gradients of the velocity components are evaluated on the boundary of the
control cell. Details of the discretization and its validation are given in chapter 3.

The discretized, unforced equations are solved using the iterative, multigrid-based DNS code intro-
duced in chapter 4. In order for the multigrid solver — or any Newton-type solver — to converge to a
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correct solution, a good initial guess has to be provided. Consequently, solutions to (R) are obtained by
continuation over a set of Reynolds numbers ranging from ReC = 103 to ReC = 106: all computations
except the first (ReC = 103) take the solution at the previous Reynolds number as an initial guess. A
third order interpolation is used when an additional, finer grid is added to the grids stack. The first com-
putation takes the inviscid solution as an initial guess. The increase in the Reynolds number is performed
manually to verify the convergence of the solver at each value of the Reynolds number.

A grid stretching is applied in the direction normal to the solid boundary to cluster more mesh points
into the boundary layer area. The number of mesh points on the finest grid is increased with the Reynolds
number to maintain a nearly constant number of points across the boundary layer thickness. The solution
at the highest Reynolds number of ReC = 106 (Rer = 16000, Res = 126) contains nearly 40 points across
the δ99-thickness at the attachment line.

In the following two section, the multigrid algorithm is characterized by specifying the choice of a
relaxation procedure and of a multigrid scheme.

Relaxation procedure

A linewise Gauss-Seidel relaxation procedure is employed: the linearized discretized equations belonging
to a given variable — say, the pressure p — and to a given line along the coordinate direction parallel
to the solid boundary are solved together, starting from the inflow boundary and marching downstream
towards the solid boundary. One or more sweeps are applied before moving to the other variables. The
same procedure is then applied for u, v, w.

For each line, the solution of a penta-diagonal linear system is required, and LAPACK [3] routines for
banded matrices are employed. The penta-diagonal system corresponds to the one-dimensional discretiza-
tion of the Laplacian operator in the case of the pressure equation and to the upwinded discretization of
the convection-diffusion operator Qν (2.9) in the case of the momentum equations. A collective solution
of all variables u, v, w, p is performed by employing an LU decomposition for mesh points within a range of
four mesh lines from the inflow and outflow boundaries and within 20 mesh lines from the solid boundary
to avoid difficulties in the convergence of the relaxation process due to the different discretization stencils
used at the boundaries and strongly varying coefficients in the boundary layer, in particular, on coarser
grids.

Multigrid scheme

A multigrid Full Approximation Scheme (FAS) multigrid scheme with adaptive grid refinement is em-
ployed. FAS differs from the more widely known Correction Scheme (CS) in storing the full solution on all
grid levels instead of the corrections to the solution on the finest grid. As has been shown in chapter 4, the
FAS algorithm has two main advantages over the CS: the capability of dealing with nonlinear equations
without the necessity of an outer Newton-like iteration and the possibility of handling adaptively refined
grids.

An initial guess for the solution is provided on each grid which is available from previous computations
— for the first computation, an initial guess is provided on the coarsest grid. Third-order interpolation
is used to provide an initial guess when a finer grid is introduced. A series of V-cycles is then applied,
with two sweeps of the relaxation procedure described in the previous section applied on each grid on the
downward leg and one sweep per grid on the upward leg. At the coarsest level, the discretized problem
is solved to numerical precision by means of a Newton method based on an LU decomposition of the
Jacobian matrix.
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Transfer of information between grids is performed using a full-weighting operator when moving from
a finer to a coarser grid (downward leg) and a third-order interpolation when interpolating corrections
from a coarser to a finer grid (upward leg).

The convergence behavior of the multigrid solver for a selection of Reynolds numbers and grid sizes
is shown in Figure 5.1 and compared with the theoretical convergence rate (black line) for the two-
dimensional, scalar, constant-coefficient Laplace equation on a uniformly spaced grid using a pointwise
lexicographic Gauss-Seidel relaxation as described in section 4.3. While the computational cost for the
two cases is not directly comparable due to the fact that the line Gauss-Seidel relaxation is somewhat
more expensive — the LU decomposition of the penta-diagonal system is not necessary in the point-
wise Gauss-Seidel relaxation — the comparison gives a good indication on the total number of iterations
that are required to reach a numerically converged solution. The actual convergence closely matches the
convergence for the scalar Laplace equation for most of the cases. The degradation in the convergence
rate when increasing the Reynolds number can be associated with the fact that the coarsest grid used in
the computation is no longer able to resolve the boundary layer, whose thickness becomes smaller than
the mesh size. When moving from ReC = 2 ·105 to ReC = 5 ·105 it was necessary to increase the number
of points on the coarsest grid from 129× 33 to 257× 65, as the multigrid algorithm would not converge
otherwise.

The last computation shown on the right of Figure 5.1, which provides the base flow used for the
stability analysis that will be presented later in this chapter, is an example of adaptive refinement. The
finest grid of size 8193 × 1025 covers only the half closest to the solid boundary of the next coarser
grid, as shown in Figure 3.7. The principles behind multigrid adaptive refinement have been outlined in
section 4.5.
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59
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1025 × 257
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Figure 5.1: Convergence behavior for the computation of base flows at different Reynolds num-
bers. Residuals are shown for the discrete u,v,w-momentum and pressure equations separately,
and the continuous black line represents the theoretical convergence estimate for the Poisson
equation of 0.125 per V-cycle. Each mark in the series represents a V-cycle of the multigrid
solver with two linewise Gauss-Seidel relaxation sweeps on the downward leg and one sweep
on the upward leg. The last computation on the right includes adaptive grid refinement: the
finest grid covers only part of the computational domain covered by the coarser one.
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Description of the baseflow

The steady-state flow around an infinite swept wing at Reynolds ReC = 106 and sweep angle Λ = 45◦ is
presented in Figure 5.2. In the front view, the flow is coming towards the page, while in the top view the
flow is moving from the bottom to the top. The pressure field in the (x, y)-plane is visualized using gray
contour levels at the end of the front view and using colors on the wing surface. The maximum pressure
of 0.5048 is obtained at the attachment line, while the minimum of −0.2401 is marked by the spanwise
white line located about half way on the wing surface in the chordwise direction. Two sets of streamlines
are shown, both originating upstream of the attachment line but with a small shift in the y-direction.
The red one enters the boundary layer at a distance in y slightly above the height of the attachment line
and stays at about one third of δ99 boundary-layer thickness. The gray one originates above the red and
does not enter the boundary layer.

The main feature characterizing this flow field is a freestream velocity field which is not aligned
with the pressure gradient: the velocity field has a non-zero spanwise z-component W while the pressure
gradient is constrained to the (x, y)-plane because of the spanwise invariance of the solution. As showed in
Figure 1.1 this misalignment results in curved streamlines, and the curvature is stronger in the boundary
layer due to lower fluid momentum but unchanged pressure gradient. The additional streamline curvature
in the boundary layer with respect to the inviscid flow results in a crossflow component illustrated in
Figure 5.3.

Following the path of a particle along streamlines in Figure 5.2, we can identify three areas charac-
terized by changing signs of the pressure gradient. When approaching the leading edge, the U -velocity
component of the flow — in the x-direction — is reduced by the adverse pressure gradient peaking at at-
tachment line and extending well beyond the boundary-layer thickness while the spanwise W -component
remains unchanged until the boundary layer effect becomes important. As a consequence, the streamlines
are deflected in the spanwise direction. In particular, a streamline arriving at a height y corresponding
to the leading edge will align itself with the leading edge and continue in the spanwise direction: a
two-dimensional boundary layer spanning the entire wing is developed along the attachment line.

When moving along the airfoil past the pressure maximum at the attachment line, the effect of
the pressure on the streamlines is opposite: a strong favorable pressure gradient — reflected in the
concentration of pressure contours — increases the velocity component parallel to the solid boundary. As
the spanwise component is not forced by any pressure gradient, it remains unchanged, and the streamlines
are curved in the chordwise direction.

A third zone can be identified past the pressure minimum, where the pressure gradient is again
adverse to the parallel velocity component. Accordingly, the streamlines are mildly curved back towards
the inviscid flow direction.

A grid whose vertical lines are aligned with the inviscid flow (U∞, 0,W∞) is shown in the top view to
mark more clearly the streamline curvature.

Historically, these areas have been studied by using two different simplified models: (i) the swept
Hiemenz flow [31, 15], describing flow impinging on an infinite plate at a given angle, has been used as a
model of the region close to the attachment line, where the surface curvature is negligible, and attachment-
line instabilities have been associated with viscous effects in the boundary layer; (ii) downstream of the
attachment-line region a three-dimensional boundary layer model, characterized by a crossflow velocity
component in the boundary layer as shown in Figure 5.3, has been used as a local model of the boundary
layer, and inviscid crossflow instabilities have been associated with the inflection point in the crossflow
velocity profile [58, and references therein].
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(b) Top View

Figure 5.2: Base flow streamlines. Both red and gray streamlines originate from the upstream
zone: the red lines enter the boundary layer close to the attachment line while the gray lines
cover the inviscid flow. The greater curvature of the boundary-layer streamline is due to the
different magnitude of the gradient of the pressure close to the boundary as well as to the greater
effect on the slow momentum fluid in the boundary layer. The solid boundary is colored with
pressure values, and pressure contours are shown in black at one end of the wing. The white
line parallel to the attachment line represents the position of the minimum of the pressure of
about −0.24. The flow enters the page perpendicularly in front view and flows from the bottom
to the top of the page in top view.
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Figure 1 Swept-wing boundary-layer profiles.

in the streamwise boundary-layer profile. This integrated effect and the resulting
local distortion of the mean boundary layer lead to the modification of the basic
state and the early development of nonlinear effects.
An interesting feature of the stationary crossflow waves is the creation of sec-

ondary instabilities. The u� distortions created by the stationary wave are time
independent, resulting in a spanwise modulation of the mean streamwise velocity
profile. As the distortions grow, the boundary layer develops an alternating pattern
of accelerated, decelerated, and doubly inflected profiles. The inflected profiles
are inviscidly unstable and, as such, are subject to a high-frequency secondary
instability (Kohama et al. 1991, Malik et al. 1994, Wassermann & Kloker 2002).
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Figure 5.3: Velocity field within the boundary layer of a swept wing, from [58]. The xt axis is
aligned with the inviscid velocity, not with the chord. The swept wing flow is characterized by
a freestream velocity field which is not aligned with the pressure gradient: the velocity field has
a non-zero spanwise z-component W while the pressure gradient is constrained to the (x, y)-
plane because of the spanwise invariance of the solution. This misalignment results in curved
streamlines, and the curvature is stronger in the boundary layer due to lower fluid momentum
but unchanged pressure gradient. The additional streamline curvature in the boundary layer
with respect to the inviscid flow results in a crossflow component.

In this work, following the path first outlined by Mack et al. [44, 42, 43, 40], we consider a flow
model including both the attachment-line boundary layer region as well as the boundary layer developing
further downstream along the wing. This will allow us to address the stability problem from a global
perspective.

To complete the description of the base flow, we present the δ99 boundary-layer thickness as a function
of the Reynolds number; in addition, we report the pressure distribution and the δ99 boundary-layer
thickness as a function of the chordwise coordinate s.

Figure 5.4 shows the boundary-layer thickness δ99, based on the spanwiseW -component of the velocity,
measured at the attachment line, as a function of the chord-based Reynolds number ReC for all the
computations performed during the continuation process. Starting from a Reynolds number of about
ReC = 105 the expected relationship δ99 ∝ Re−0.5

C is obtained, and the proportionality constant is
measured as 0.357.

In Figure 5.5 the computed pressure distribution at the solid boundary along the x-direction is plotted
for three values of the Reynolds number (continuous lines) as well as for the inviscid case (dashed line).
As noted at the beginning of the chapter, the computational domain for the base flow covers about 20%

of the chordwise extent. The red inset shows that the pressure minimum decreases and moves towards
the attachment line for increasing Reynolds numbers, and the solution for ReC = 106, in blue, is nearly
indistinguishable from the inviscid solution, represented by a black dashed line. The blue inset gives a
detailed view of the outflow end of the numerical domain: as explained in chapter 3, the pressure is set to
the inviscid solution at the outflow with a Dirichlet condition. The numerical boundary layer developed
there is clearly seen in the ReC = 104 curve which bends strongly over the last few mesh points.

Finally, Figure 5.6 shows the evolution of the boundary-layer thickness based on the spanwise W -
component (δ99, in blue) and the tangential component of velocity Us (δU99, in red) along the curvilinear
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Figure 5.4: Boundary-layer thickness δ99 at the attachment line as a function of the ReC
number. The thickness δ99 is defined as the distance, measured normal to the wing-section
profile, at which the spanwise velocity component w is 99% of its asymptotic value W∞.

coordinate s. The W -based δ99 is always the thicker one and increases more slowly, in particular, close
to the attachment-line region.

5.2 Global analysis of the direct operator

We now proceed to perform a global analysis of the perturbation problem (L) using a modal approach
to uncover the physical mechanisms governing the least stable mode.

The theoretical framework has been outlined in chapter 2. Appropriate use of the direct and adjoint
modes allows us to shed some light on the central features of the perturbations: their structure, recep-
tivity to forcing and sensitivity to modifications in the governing equations. Additionally, it is possible
to identify and isolate the spatial location which is responsible for the development of self-sustained
perturbations.

The numerical method employed is first introduced as a Krylov-subspace method with a shift-invert
spectral transformation. The associated algorithms are already implemented in the SLEPc suite [29, 27,
30, 28]. SLEPc is extensively used in the present work for the solution of the discretized equivalent of
both the direct and adjoint generalized eigenvalue problems defined in (2.14) and (2.24).

The computed part of the global spectrum is then presented. As already noted, it consists of eigen-
values with negative growth rates — corresponding to temporally decaying modes — as our numerical
capabilities do not allow us to cross the critical Reynolds number in the base flow computation. We
identify a branch of eigenvalues, composed of modes which are alternately symmetric and anti-symmetric
(starting from the least stable mode and progressing towards the most stable). The spectrum has been
recomputed for three domain sizes, characterized by different extents in the chordwise direction, which
is equivalent to changing the location of the outflow boundary along the profile. It is shown that this
change has no effect on the location of the spectrum. This result has previously been obtained in the
case of the cylinder wake by Giannetti & Luchini [19]. As Giannetti & Luchini noted, this property is
related to the fact that only the core, to be defined later, of the mode needs to be represented in the
computation. We can thus anticipate this core to be located close to the attachment line, which is the
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Figure 5.5: Pressure distribution at the wing surface for selected Reynolds numbers ReC =

104, 105, 106. The analytically computed inviscid solution is represented as a black, dashed line.
The pressure minimum moves upstream as the Reynolds number increases, and the solution
for ReC = 106 is nearly indistinguishable from the inviscid solution, as can be seen in the red
inset. The effects of the Dirichlet pressure condition at the outflow is clear on the ReC = 104

(brown) curve in the blue inset: the pressure is forced to be equal to the inviscid solution which
results in a thin numerical boundary layer in the pressure field at the outflow. This area of the
domain will be removed when the stability problem will be addressed.

only part consistently represented in all computations.
Next, the least stable direct eigenvector is analyzed. It is shown that it is consistent with both an

attachment line mode [38, 39, 48, 49] and a crossflow mode [13] This feature has also been shown by
Mack et al. [44] for the most unstable global mode of the compressible flow around a parabolic profile
and gives us confidence in the fact that the main results of our analysis can be carried on to the unstable
(supercritical) case. Again, the chordwise extension of the domain will be shown to be unimportant in
determining the shape of the eigenvectors, provided that a small area in the vicinity of the leading edge
is well represented.

Numerical procedure

A Krylov-Schur method with a shift-invert transformation is employed in order to numerically solve the
generalized, non-Hermitian eigenvalue problem (2.14) and its corresponding adjoint (2.24). The chosen
algorithm, among others, is implemented in SLEPc, “a software library for the solution of large scale
sparse eigenvalue problems on parallel computers” [29, 27, 30, 28]. MUMPS [1, 2] is employed to perform
the LU decomposition for the matrix inversion for the smaller of the three domains. Solution on the bigger
domains have more stringent memory requirements, and a GMRES solver with an ILU preconditioner is
employed in these cases. Both solvers (and many others) can be called from within the SLEPc library.

The complex plane is sampled by a series of different shifts for the shift-invert transformation. The
shifts are located on the imaginary (phase speed) axis in order to cover the area between a phase speed
of zero and one. The spanwise wavenumber selected for the following computations is kz = 4000, corre-
sponding to a wavelength which is about four times the boundary layer thickness close to the attachment
line. While the choice of the wavenumber is quite arbitrary, as no “most unstable wavenumber” exists for
our choice of Reynolds number and sweep angle, it corresponds to the dominant wavenumber observed
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Figure 5.6: Boundary-layer thickness as a function of the curvilinear coordinate s. Both the
spanwise-velocity-based δ99 and the tangential-velocity-based δU99 are shown.

in various experiments, as summarized by Dagenhart & Saric [13].

The development of the solver for the eigenvalue problem does not represent a major contribution of
this work, and the reader is referred to the work of Mack [40] or the SLEPc technical reports [29] for a
description of the employed algorithms.

Previous analyses

The modal approach to the investigation of the swept attachment-line boundary layer has previously been
addressed by Lin & Malik [38, 39], Obrist & Schmid [48, 49], Mack, Schmid & Sesterhenn [44, 42, 43]
and again by Obrist & Schmid [50].

Lin & Malik [38] used a Chebyshev spectral collocation method and regular polynomials to discretize
the normal- and chord-wise direction of their domain in order to study the stability of the incompressible
swept Hiemenez flow. They identified a branch of eigenvalues moving at approximately the same phase
speed in the spanwise direction and showed that the most unstable mode was the symmetric Görtler-
Hämmerlin mode, characterized by a linear dependence of the chordwise velocity component in the
chordwise coordinate and an exponential decay outside the boundary layer. Less unstable modes were
shown to alternate between antisymmetric and symmetric as one descends to smaller growth rates.

Obrist & Schmid [48] addressed the same problem by replacing the regular polynomials used by Lin
& Malik in the chord-wise discretization with Hermite polynomials. They confirmed that the Görtler-
Hämmerlin mode is the most unstable mode and identified a richer spectrum composed of several branches,
continuous and discrete. Additionally, an analysis of non-modal effects and receptivity has been performed
[49].

Mack, Schmid & Sesterhenn [44] and Mack & Schmid [40, 42, 43] addressed the stability of compress-
ible flow around a swept parabolic body using a high-order finite-difference discretization scheme in both
the normal and chordwise direction. They identified a global spectrum consisting of different branches:
boundary layer modes, acoustic modes and wave-packet modes. Of these, only the boundary layer and
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wave-packet branches are of interest for the current, incompressible study. Additionally, they showed, for
the first time, evidence of a connection between attachment-line and crossflow instabilities. This result
was made possible by considering a domain extending beyond the attachment-line region.

Global stability analysis

The computed spectrum of the linearized Navier-Stokes operator (L) for Reynolds number ReC = 106,
sweep angle Λ = 45◦ and spanwise wavenumber kz = 4000 — corresponding to Rer = 16000, Res =

126 and λ/δ99 ' 4 — is shown with black symbols in Figure 5.7. It is made of a single branch of
eigenvalues characterized by a nearly constant phase speed of 0.5, implying that the modes are travelling
in the spanwise z-direction at half the velocity of the free stream. Inspection of the eigenvectors shows
that symmetric (S1,S2,. . . ) and antisymmetric (A1,A2,. . . ) modes alternate when moving from the
least stable eigenvalue to more stable ones. This result is consistent with the findings of Lin & Malik
[38, 39] who, working in the unstable parameter range, identified a single branch at constant phase speed
consisting of symmetric and antisymmetric modes.
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Figure 5.7: Eigenvalues for ReC = 1 · 106, kz = 4000 (λ/δ99 ' 4). The computed spectrum
consists of a single branch — black, filled dots — of modes travelling at roughly the same phase
speed <

(
σ/kz

)
of 0.5 in the spanwise direction. Symmetric (S1, S2, . . . ) and antisymmetric

(A1, A2, . . . ) eigenvectors alternate when moving from the least stable to the most stable mode.
The eigenvalues have been computed for three different domain sizes. For the large domain,
only S1 and A1 are recovered. For the mid-sized domain the S1, A1, S2, A2 are recovered, and
for the small domain all seven black eigenvalues are recovered. The gray, unfilled dots represent
eigenvalues belonging to the pseudospectrum.

The spectrum has been computed for three domains differing in chordwise extent and is shown in
Figure 5.7. A comparison of the different domains with the domain used for the base-flow computation
and the full profile is displayed in Figure 5.8. The chordwise extent of the three domains is determined
in numerical coordinates — shown in the leftmost part of Figure 3.2 — by the ranges −0.75 6 ξ 6 0.75,
−0.5 6 ξ 6 0.5 and −0.25 6 ξ 6 0.25. The computation for the large domain returns only the S1 and A1

eigenvalues, together with the pseudospectrum represented by the curved branches in gray, unfilled dots
right below A1. The mid-sized domain returns all four eigenvalues from S1 to A2 and its corresponding
pseudospectrum is represented by the curved branches in gray, unfilled dots below A2. Finally, the
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Figure 5.8: The three domain sizes (red, brown and black) used in the solution of the eigenvalue
problem.

smallest domain returns all seven eigenvalues represented in Figure 5.7 and its pseudospectrum lies below
S4 and takes a more complicated shape.

For comparison, the eigenvalues computed in the three domains are reported in table Table 5.1 with
six decimal digits. The digits differing from the values obtained for the small domain are marked in red.
It can be seen that the least stable eigenvalue S1 is the same in all three domains. The A1-mode has the
same value for the small and mid-sized domain but the value obtained for the larger domain differs in the
last four significant digits. The same is repeated for the S2- and A2-modes when comparing the small and
the mid-sized domain: the S2-eigenvalue matches well while A2 differs in the last two significant digits.
Computations on bigger domains return less eigenvalues since the increase in the number of degrees
of freedom — required to mantain a constant mesh spacing — is not matched by an increase in the
dimensionality of the Krylov subspace used in the eigenvalue computation: 100 vectors have been used
for both the mid-sized and big domain despite the fact that the number of degrees of freedom increases by
a factor of 1.5. In the small domain, 200 vectors have been used. Even if it may appear counterintuitive,
the more precise results are expected to be the ones for the small domain where only a minor part of
the flow structure is resolved. It is important to remark again that the same mesh spacing is used on all
grids and the number of mesh points is increased when increasing the domain size.

We now move on to the description of the shape of the eigenvectors. The least stable mode S1 is
visualized in Figure 5.9 using isosurfaces of the chordwise u-velocity component

u (x, y, z) = <
(
û (x, y) eikzz

)
(5.1)

where < denotes the real part, and the isosurface is at 10−10 of the maximum of u. Such a low contour
level is required to visualize the eigenvector along the entire profile, as its magnitude changes over several
orders of magnitude in the chordwise s-direction. The black surface represents the extension of the
computational domain used in the base-flow computation corresponding to approximatively 20% of the
chord length. The evolution of the “energy” of the eigenvector along the chordwise direction is presented
in Figure 5.10. Three different regimes can be identified. Close to the attachment line, the isosurfaces
are aligned with the chordwise direction. The ûs-velocity component — tangential to the flow surface
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Figure 5.9: Eigenvector S1 represented by isocountour of the chordwise u-component of velocity
at a contour level of 10−8 of the maximum value of the eigenvector. Only the upper half is
represented. As already suggested by [26] and shown by Mack [44], the eigenvector displays
features of both attachment-line modes close to the attachment line and crossflow modes further
downstream. A more detailed view of the area where the “two modes” connect is provided in the
lower circle: the isosurfaces first bend upstream, are compressed into the boundary layer and
then realigned with the flow — the gray, transparent surface represents the δ99 boundary-layer
thickness. Half way in the zoomed area, two isosurfaces co-exist, one over the other. The one
on top, which lies at a height close to the δ99-thickness, develops further downstream into the
crossflow structures, whose maximum remains concentrated at the same height.
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— increases linearly as can be seen in Figure 5.11 (blue curve), consistent with a Görtler-Hämmerlin
mode which is known from swept Hiemenz flow studies to represent the most unstable global mode in
the attachment-line region [38, 48].
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Figure 5.10: Norm of the velocity components of the S1-eigenvectors as a function of
the curvilinear chordwise coordinate s. Semilogarithmic plot. The exponential growth of
the crossflow structures is marked by the red dashed line, corresponding to the function
6.424 · 10−16 exp (159x).

Downstream of this region, the isocontours bend and align themselves in the direction transverse to the
base flow. The energy of the mode along s decreases by more than ten orders of magnitudes with nearly
exponential decay. In this transitional region, where the boundary-layer thickness increases steadily, the
attachment-line structures transform into crossflow structures. The lower inset in Figure 5.9 shows this
transition: crossflow structures, aligned with the external flow at 45◦ with respect to the chord, start to
appear just below the δ99 boundary-layer thickness, represented by the semi-transparent surface. The
crossflow structures then grow exponentially in the s-direction with a growth rate of 159, obtained by
fitting the data of this area to an exponential curve (see the red dashed line in Figure 5.10).

Additionally, a section of the eigenvector in the (s, n)-plane at a fixed z-location is presented in
Figure 5.12 in order to better illustrate its global shape. The attachment-line structure is clearly visible
up to 3 ·10−2, peaking in the n-direction at about one third of δ99 and exponentially decaying outside the
boundary layer. The transitional region is between 3 · 10−2 and 6 · 10−2. Beyond this location, crossflow
structures develop and grow exponentially in the s-direction.

In Figure 5.14 the same section is showed for the A1, S2 and A2 eigenvectors and Figure 5.13 present
a comparison of the evolution of all eigenvectors in the chordwise direction.
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Figure 5.11: Velocity components of the S1-eigenvector at half the δ99 boundary-layer thickness
as a function of the curvilinear chordwise coordinate s.

Table 5.1: Computed Eigenvalues

Small domain Middle sized domain Large domain
2049× 513× 3† — 200‡ 4097× 513× 3† — 100‡ 6145× 513× 3† — 100‡

S1 −232.212795− 2012.093989 i −232.212795− 2012.093989 i −232.212795− 2012.093989 i

A1 −274.036727− 2003.162782 i −274.036727− 2003.162782 i −274.031158− 2003.163902 i

S2 −315.544891− 1994.259873 i −315.544891− 1994.259873 i —
A2 −356.710140− 1985.385797 i −356.710150− 1985.385780 i —
S3 −397.505318− 1976.541365 i — —
A3 −437.903326− 1967.724210 i — —
S4 −477.978550− 1958.896547 i — —
Marked in red are the digits that change with the domain size. For each eigenvalue, digits in black are the same
for all domain sizes.
†Degrees of freedom in the chordwise and normal direction and number of unknowns for each grid point;
‡ Size of the Krylov subspace used in the computation;
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Figure 5.12: Eigenvector S1 in the (s, n)-plane, visualized by the <(û)-velocity component,
logarithmic scale. The attachment-line structure is clearly visible up to 3 · 10−2, peaking in
the n-direction at about one third of δ99 and exponentially decaying outside the boundary
layer. The transitional region is between 3 · 10−2 and 6 · 10−2. Beyond this location, crossflow
structures develop and grow exponentially in the s-direction. Only positive values of s are
shown, and the s-axis is compressed to visualize the full chordwise extent. The δ99 boundary-
layer thickness is represented by a black line. The eigenvector is symmetric with respect to the
n-axis. The rectangle close to the n-axis will be later used to visualize the adjoint eigenvector
and the wavemaker.
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Figure 5.13: Norm of the in-plane velocity components (u, v) of the first six eigenvectors as a
function of the chordwise coordinate s. Eigenvectors in this figure are normalized such that their
magnitude is one at attachment line. The first four eigenvectors clearly show the attachment-
line structure and the exponentially growing crossflow structures. For the two more damped
eigenvectors (dotted lines) the computational domain is truncated before the beginning of the
crossflow structures. From this plot it is clear that the peak of the attachment-line structure
moves downstream when descending to smaller growth rates.
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Figure 5.14: Eigenvectors A1 (top), S2 (bottom left) and A2 (bottom right) in the (s, n)-plane,
visualized by the <(û)-velocity component, logarithmic scale. The computational domain used
for the S2 and the A2 eigenvectors has a chordwise extent equivalent to approximately half the
computational domain used for the S1 and A1 eigenvectors. In all eigenvectors, an attachment-
line structure is clearly visible, followed by a transition region and crossflow vortices structures
growing exponentially in the s-direction. The peak of the attachment-line structure moves
downstream when descending to smaller growth rates.
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5.3 Adjoint field

As has been shown in section 2.4, the adjoint field represents the receptivity of any scalar objective
functional to a forcing of the perturbation equations or to a structural modification of the operator L.
Recalling equations (2.26) and (2.29), we can write the variation of a generic objective functional obj as
a function of a variation in the forcing δf̂ ′ or in the operator δA as

δ (obj) =−
〈
q̂+, δf̂ ′

〉
Ω

(5.2)

δ (obj) =
〈
q+, δAq

〉
Ω

(5.3)

In a sense, the adjoint field projects a variation in the forcing or in the operator into the direction of the
objective functional.

The same procedure used in solving the direct eigenvalue problem is employed for the adjoint. The
discretization of the adjoint governing problem is obtained by computing the complex conjugate transpose
of the discretized direct problem, as we have seen at the end of section 2.3. Consequently, the adjoint
spectrum is the complex conjugate of the spectrum of the direct operator shown in Figure 5.7: the only
difference is in the sign of the phase speed. As is the case of the direct problem, the domain size does
not influence the results.

When computing the complex conjugate transpose, particular attention has to be paid to the boundary
conditions to limit the introduction of numerical errors. To demonstrate what kind of difficulties can arise,
we consider a discretization of the one-dimensional Laplacian operator on a five-point grid of mesh size
h. A Dirichlet boundary condition is implemented at the left edge of the domain by setting the diagonal
value of the first line of the matrix to one. A Neumann boundary condition is implemented at the right
edge and is discretized by a first-order finite-difference discretization in the last line of the matrix. The
discretized matrix and its adjoint read




1

1/h2 −2/h2 1/h2

1/h2 −2/h2 1/h2

1/h2 −2/h2 1/h2

1/h −1/h




H

=




1 1/h2

−2/h2 1/h2

1/h2 −2/h2 1/h2

1/h2 −2/h2 1/h

1/h2 −1/h




(5.4)

where marked in red are the only elements that change when the adjoint is computed. If we consider the
first and the last line of the adjoint matrix, it is clear that the value on the boundary will be scaled by a
factor 1/h2 and 1/h for the left and right edge of the domain, respectively, resulting in large values on the
boundary. This effect can be avoided by considering the fact that the eigenvalue system is homogeneous:
the boundary condition equations in the direct equations can be arbitrarily multiplied by a constant —
or the Laplacian operator can be rescaled by multiplying by h2 to have coefficients of O (1). Numerical
difficulties related to the eigenvector normalization during the solution process can thus be avoided, and
the equivalent two-dimensional approach is used in our computations. It should be noted that while we
can solve the numerical problem, the fact remains that the values of the discrete adjoint field on the
boundary are undetermined.

The least stable S1 adjoint eigenvector is visualized in Figure 5.15 using isosurfaces of the adjoint
u-field computed as in equation (5.1). As in the visualization of the direct eigenvector in Figure 5.9,
the black surface represents the extent of the computational domain used in the base-flow computation,
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corresponding to approximatively 20% of the chord length. The adjoint field covers an area close to
the attachment-line region and upstream of it, indicating that any forcing or structural modification (for
example a change in the base flow) outside this region has no or little influence on the objective functional
and is ineffective in trying to control the behavior of the S1-mode. The much larger contribution of the
adjoint field is located inside the boundary layer and extends only a few boundary-layer thicknesses δ99

in the chordwise direction across the attachment line, as can be seen in Figure 5.17. This spatial extent
corresponds to about one hundredth of the full s-extent of the computational domain used for the base
flow; it identifies the area of the domain in which forcing has to be applied in order to control the S1-mode
of the flow.

Comparison of the direct and the adjoint eigenvector clearly demonstrates the degree of the operators’
non-normality described in section 2.4: as is the case for the flow around a cylinder, the two eigenvectors
mostly cover different parts of the domain and overlap only in a small region which, for the wing profile,
is close to the attachment line.
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Figure 5.15: Adjoint eigenvector S1 represented by isocountour of the chordwise u-component
of velocity at a contour level of 10−6 of the maximum value of the eigenvector.
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Figure 5.16: Adjoint eigenvector S1 in the (s, n)-plane, visualized by means of the < (u)-
component, logarithmic scale. The adjoint eigenvector decays exponentially and monotonically
in the chordwise direction and its maximum is located close to attachment line.Only positive
values of s are shown, and the s-axis is compressed to visualize the full chordwise extent. The
extension of the computational domain is equivalent to the one used for the corresponding direct
eigenvector in Figure 5.12. The δ99 boundary-layer thickness is represented by a black line.
The black rectangle in the bottom-left corner marks the extension of the domain represented
in Figure 5.17.
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Figure 5.17: Adjoint field close to the attachment line. Significant contributions of the adjoint
field are located inside the boundary layer and extend only a few boundary-layer thicknesses
δ99 in the chordwise direction across the attachment line. This length corresponds to about one
hundredth of the full s-extent of the computational domain used for the base flow. It localizes
the region of the computational domain where forcing is most effective in controlling the flow.
The normalization condition for the adjoint field is given by equation (2.28).



90 Chapter 5. Global analysis

5.4 The wavemaker

The feedback mechanism of the perturbations described by Giannetti & Luchini and introduced at the
end of chapter 2 results in the identification of the area of localized, pointwise feedback as the pointwise
product of the direct and adjoint eigenvectors, described by equation

λ (x) = −q+ (x) C0 q (x) .

The wavemaker for the least stable S1 adjoint eigenvector is visualized in Figure 5.18 using isosur-
faces of the u-component of λ (x) . Isosurfaces are at 10−8 of the maximum of u. Analogous to the
visualization of the direct and adjoint eigenvector, the black surface represents the chordwise extent of
the computational domain used in the base-flow computation — see Figure 5.8 for a comparison with the
computational domains used for the eigenvalue problems.

As predicted by the previous analysis of the direct and adjoint eigenvectors, the maximum of λ (x) is
close to the attachment line. Figure 5.19 presents a detailed view of the same area, used for visualization
of the adjoint eigenvector in Figure 5.17. The fact that the direct S1-eigenvector varies very slowly in the
chordwise direction close to the attachment-line area results in the similarity between the adjoint field
and the λ (x)-function.

We now return to the previous observation on the invariance of the results with respect to the domain
size and, as noted by Giannetti & Luchini [19], define the region of the flow, which governs the behavior
of the S1-mode, as the region where λ (x) attains its maximum. We can then try to recompute the
spectrum on a domain including only the area represented in Figure 5.19, as λ is nearly zero anywhere
else. Maintaining the same mesh spacing used in the larger domains, this area corresponds to a 400×200

mesh-point domain, which is extremely small when compared to even the smaller domain previously
used at 2049 × 513 mesh points. The new eigenproblem becomes easily solvable using Matlab’s eigs-
function. The resulting spectrum is shown in Figure 5.20. Even with this small domain size, the first
four eigenvalues closely match the eigenvalues computed on larger domains. Additionally, a larger part
of the spectrum can be uncovered, first because of the reduced ratio between the number of degrees
of freedom and the number of vectors used in building the Krylov subspace and, second, due to the
reduced computational cost and the possibility of increasing the dimensionality of the Krylov subspace.
The spectrum is composed of various branches which will require further investigation to offer a physical
explanation. It should be noted that the fact that the wavemaker is concentrated in the attachment
line is a characteristic of the first eigenvector and of the other modes within the same branch; it must
not be taken as a general property of the complete spectrum, however. Nonetheless, branches similar in
shape and location to the ones showed in Figure 5.20 have been obtained for larger domains but lower
wavenumbers and are worth being investigated in a future effort.
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Figure 5.18: < (u)-component of λ (x) for the S1 mode.
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Figure 5.19: The function λ (x) for the S1-mode, visualized by means of the < (u)-component.
The size of the domain represented is the same as for the adjoint in Figure 5.17 and the λ-
function closely resembles the adjoint vector due to the very slow chordwise variation of the
associated direct S1-mode near the attachment line.
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Figure 5.20: Computed spectrum for a domain containing only the wavemaker. Circled in red
are the eigenvalues corresponding to the four least stable eigenvalues of Figure 5.7



Chapter 6

Conclusions and Perspectives

Two paths have been explored during the four years spent on this project. The first, mainly numerical,
resulted in the development of a multigrid solver capable of directly computing the steady-state solution of
the nonlinear Navier-Stokes equations. The second, more physical, is the determination of the receptivity
and sensitivity properties of the flow characterizing the three-dimensional boundary layer forming in the
attachment-line region of a swept wing.

The analysis of the multigrid framework performed in chapter 4 clarifies the main difficulties that had
to be overcome in order to obtain the multigrid efficiency predicted by theory. The analysis presented and
the code developed is heavily based on previous work and, in particular, on the results of Diskin [14] and
Swanson [64]. Their analysis has been fundamental in overcoming some of the difficulties encountered
during my work. Nonetheless, the development of a multigrid solver showing theoretical (or nearly theo-
retical) efficiency at such high-Reynolds-number viscous flow is, to my knowledge, novel. Grid stretching
and adaptive grid refinement are additional, useful features of the developed code. The multigrid solver
has been successfully used to compute the base flow around the leading-edge region of a swept wing.

Despite being the subject of much research, due to both its academic and industrial interest, the
swept-wing problem has not been completely solved, and the exact mechanisms governing the transition
from laminar to turbulent flow are still the subject of active research.

The focus of this work has been put on receptivity to forcing and sensitivity to structural perturbations
of the operator, and the identification of the most receptive and the most sensitive regions for the least
stable eigenvector is the main contribution of this work. An eigenvalue/eigenvector approach has been
used to describe the dynamical system governing the evolution of the perturbations in order to extract
the coherent structures describing the intrinsic flow behavior. As shown by Giannetti & Luchini [19] and
Marquet, Sipp & Jacquin [45] for the cylinder wake, in this approach receptivity provides the variation of
the amplitude of the eigenvectors as a function of the variation of the forcing, while sensitivity provides
the shift of the eigenvalues in the complex plane as a function of the changes in the governing operator.
The adjoint field has been shown to be at the center of the definition of both receptivity and sensitivity by
using a Lagrangian approach. In this approach the governing equations are implemented as constraints
by means of Lagrangian multipliers, and stationary points of the Lagrangian have been sought which
recover the governing equations and define an associated adjoint problem.

The least stable eigenvector, which is expected to resemble the most unstable mode as the critical
Reynolds number is crossed, shows structures characteristic of both attachment-line [25, 38, 39, 48, 49]
and crossflow [13] instabilities. This coexistence of different structures in the same eigenvector had been
already suggested by Hall [26] and lately observed by Mack et al. [44] for a compressible attachment-line
configuration in an unstable parameter range. It has been analyzed in more detail in this work. The
eigenvector shows a variation in magnitude of several order of magnitude along the chordwise direction:
an initial growth close to the attachment line, characteristic of the Görtler-Hämmerlin mode, is fol-
lowed by a drastic decrease of roughly ten orders of magnitude ultimately leading to the transition from
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attachment-line to crossflow structures. Downstream of the transition region, the crossflow structures
grow exponentially in the chordwise direction.

This direct eigenvector spans the entire chordwise extent of the domain and is still exponentially
growing as the domain’s outflow boundary, located close but upstream of the pressure minimum, is
reached. In contrast the adjoint eigenvector is localized in a rather small area extending only a few
boundary-layer thicknesses across the attachment line. Receptivity to forcing is accordingly localized
in the same area, providing a strong indication where in the flow it is most effective to apply a control
strategy. Forcing elsewhere in the domain would have very little effect on the amplitude of the eigenvector.

A similar observation holds for the sensitivity: the location of the wavemaker is mostly determined by
the location of the adjoint eigenvector, again identifying a region a few boundary-layer thicknesses across
the attachment line as most responsive for the structure and evolution of the least stable eigenvector. The
result already obtained by Giannetti & Luchini [19] for the cylinder wake is confirmed for the swept-wing
boundary layer: to identify the correct eigenvalue, only the area containing the corresponding wavemaker
needs to be represented in the computations. This suggests that results from previous analyses based on
swept Hiemenz flow should be essentially correct, as the wavemaker area is so confined that it can be
well approximated by this simplified Hiemenz flow model.

Perspectives and future work

Two paths have been explored in this work, and two paths are suggested for future efforts.

Multigrid has been proven to be a very effective approach in solving the numerical problem arising
from the discretization of the Navier-Stokes equations. The solution of the linearized Navier-Stokes
equations, not shown in this work, is even less expensive. Extension of the solver to complex-valued
problems would allow the efficient solution of the linear, complex problem involved in the construction
of the Krylov subspace during the eigenvalue computations.

A limitation of this work has been the inability of applying adaptive grid refinement in the eigenvalue
solver. As a consequence, stretched grids had to be introduced. Adaptive grid refinement itself had not
been used to its full power in the computation of the base flow. With a complex-valued multigrid solver
available, adaptive grid refinement could be easily implemented in the eigenvalue solver as well: the
Krylov subspace vectors would be defined on a single composite grid made of all mesh points that do not
have a finer-grid representation, and all standard routines used in a single-grid solver could be employed.
This composite grid would then be scattered to all grids used in the multigrid solver when a solution
of the linear solver is required, and the so-computed solution would be scattered back to the composite
grid to obtain the new vector of the Krylov subspace. A more intriguing, but possibly more complex,
possibility is to treat the eigenvalue problem as a nonlinear problem using the Full Approximation Scheme
(FAS). This latter idea dates back to 1983 [11] but to my knowledge few applications have been tested
[10]. Brandt (personal communication) suggested the work of Kushnir on Data Analysis [37] as a good
starting point for developing an eigenvalue multigrid solver for the linearized Navier-Stokes equations. A
review of the possibilities offered by multigrid, including in the field of control, is given by Brandt in [9].

More work has also to be done concerning the physics of swept attachment-line boundary layer. A
more in-depth analysis of the results obtained during this work is recommended to uncover the whole
significance of the adjoint field and of the wavemaker for the possibility of effectively controlling the flow.
The approach used by Marquet, Sipp & Jacquin [45] to study the cylinder wake is similar to what has
been outlined in this work and can be used as a starting point for a future analysis.

Almost overlooked in this work is the question of the meaning of boundary values of the adjoint field.
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As noted in section 5.3, obtaining the adjoint operator by computing the complex-conjugate (Hermitian)
transpose of the direct operator does not uniquely determine the magnitude of the adjoint field on
the boundary. More interestingly, Giannetti & Luchini [19, end of section 4] make a distinction between
receptivity to forcing and receptivity to initial conditions, thus justifying the fact that the left eigenvector
associated with the linearized Navier-Stokes operator is not zero on the boundary and that the pressure
component of the adjoint field is identically zero, however. This observation could have interesting
consequences on the analysis of the effect of forcing at the wall (in contrast to forcing very close to the
wall).

A parametric study is also suggested. First, the Reynolds number should be increased until an
unstable configuration is reached. This would be useful also in light of the observation on the small
extent of the wavemaker: a critical Reynolds number, matching the one computed for the swept Hiemenz
model [25, 38, 39, 48], would provide additional confirmation of the fact that even this simplified model
can correctly predict the stability behavior of most of the boundary layer on swept wings. Secondly,
the dependence of the critical Reynolds number on the spanwise wavenumber should to be assessed and
compared to previous results in the unstable regime. Third, an analysis of effects of sweep angle variations
could provide more insight into the coupled behavior of Tollmien-Schlichting waves and crossflow vortices.

Some thoughts against writing your own research code

During this work, a substantial effort has been put into developing the multigrid solver used to compute
the base flow. The original idea was to develop a pressure-correction based time-stepper solver, building
on previous work by Mack [41], and using a multigrid solver to compute solutions to the Poisson equation
for the pressure appearing in the context of fractional step methods. A dive into the literature showed that
much more powerful and promising multigrid algorithms were available, and the idea grew to address the
full, nonlinear steady-state Navier-Stokes equations with complex features like adaptive grid refinement
and, possibly, a solver for the eigenvalue problem associated with its linearization. In the end, that
same idea had to be scaled back a little and the multigrid eigenvalue solver had to be dropped, but the
Navier-Stokes solver has been successfully developed and applied to our problem.

Was the effort worth the result? There is no doubt I have learned a lot during this experience, both
on the subject of multigrid, on how to organize my own work and possibly on how to do research. Then,
the answer would look like a yes. But, as most things, what I have learned is relative to what I could
have learned. There is a non-negligible possibility that, by investing less in code development (a tedious
task indeed, in the end) and more in fluid dynamic analysis, which is the area of expertise of LadHyX,
the whole process would have been more effective for everybody involved.

Probably, gone are the romantic days in which the lone cowboy (ehm, researcher) was writing his own
code by punching cards. Writing good and, most important, reusable and well-documented code is now
a huge task, and it is fairly sure someone else can do it better (the code!). Proofs abound: there are
incredibly well-written and well-documented solvers and libraries for most computational tasks one can
think of. Many of these solvers and libraries run on parallel computers with very little, if any, intervention.
As a couple of examples, I would mention OpenFOAM as a well-established Navier-Stokes solver with
plenty of models already implemented (turbulence, combustion, etc.) and to PETSc, SLEPc and Trilinos
as general purpose libraries designed for scientific computation. And if you really “want to know what
the code is doing” — the best excuse for writing your own code — you can just look at it, since all the
mentioned libraries are open source. The investment in understanding how a well-documented (I repeat,
well-documented) code is written is for sure less than what is required to write a code yourself and much
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more useful from the learning point of view. If something needed is not there, it can be added, and it is
always useful to have a structure to take inspiration from.

At this point I guess I should rewrite my code in a more ordered way and provide documentation.

But that is another story.
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Luogo è là giù da Belzebù remoto
tanto quanto la tomba si distende,
che non per vista, ma per suono è noto

d’un ruscelletto che quivi discende
per la buca d’un sasso, ch’elli ha roso,
col corso ch’elli avvolge, e poco pende.

Lo duca e io per quel cammino ascoso
intrammo a ritornar nel chiaro mondo;
e sanza cura aver d’alcun riposo,

salimmo sù, el primo e io secondo,
tanto ch’i’ vidi de le cose belle
che porta ’l ciel, per un pertugio tondo.

E quindi uscimmo a riveder le stelle.

Dante Alighieri — Inferno, Canto XXXIV





Appendix A

Matlab multigrid code

1 % A basic implementation of a multigrid

2 % solver for the convection−diffusion
3 % equation on a unit square.

4 %

5 % INPUT:

6 % − n: the number of mesh point along a mesh

7 % direction (the total number of degrees of

8 % freedom is n^2);

9 % − nits: the number of V−cycle to be used

10 %

11 % Both the CS and the FAS aglorithm are

12 % avaiable, and the used algorithm can be

13 % selected by setting the variable

14 % cntrparams.algorithm to 'CS' and 'FAS'

15 % respectively. The Poisson equation can be

16 % obtained by setting cntrparams.adv −−−
17 % i.e. the coefficient of the convective

18 % term −−− to zero. A purely convective

19 % equation can be obtained by setting

20 % cntrparam.nu −−− i.e. the viscosity −−−
21 % to zero. Other input parameters are

22 % clarified in the code.

23 %

24 % OUTPUT:

25 % A single structure, named output, is

26 % provided as a result. Any quantity present

27 % in the main function can be easily added

28 % to the output structure. The default

29 % quatities in the output structure are:

30 %

31 % − its: the number of V−cycle iteration

32 % [0:nits]

33 % − rnormRelaxation: the L2 norm of the

34 % residual for the relaxation scheme, as a

35 % function of the iteration number.

36 % (without multigrid)

37 % − rnormTwoGrids: the L2 norm of the

38 % residual for the two grid scheme, as a

39 % function of the iteration number.

40 % − rnormMG: the L2 norm of the residual for

41 % the multigrid scheme, as a function of the

42 % iteration number

43 % − x,y,uh,rh,u0: the x,y coordinate, the

44 % computed solution, the corresponding

45 % residual and the exact solution on the

46 % finest grid

47 % − Reh: the mesh−based Reynold number on

48 % the finest grid

49 %

50 % As a usage example, a plot of the

51 % convergence history of the residual for

52 % the multigrid scheme can be obtained with

53 %

54 % plot(output.its,output.rnormMG)

55 %

56

57 %

58 % the full code is made of the following

59 % functions:

60 %

61 % === [output] = main(n,nits) ===

62 % the main function

63 %

64 % === [J] = jac(n) ===

65 % returs the discretization of the

66 % convection−diffusion operator on a grid

67 % with n mesh points on each direction

68 %

69 % === [Lp,Lm] = relaxationSetUp(J,n) ===

70 % sets up the relaxation algorithm by

71 % performing the operator splitting and, if

72 % required, implementing the boundary

73 % relaxation

74 %

75 % === [U] = RR(u) ===

76 % restrict the field u to the next coarser

77 % grid

78 %

79 % === [u] = II(U) ===

80 % interpolate the field U to the next finer

81 % grid

82 %

83 % == [R] = Rop(n,N) ===

84 % provides the restriction operator between

85 % a finer and a corser grid characterized by

86 % n and N mesh points in each direction

87 % respectively. Restriction can the be done

88 % as U = R*u and the result is the same as

99
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89 % using U = RR(u). The implementation of RR

90 % is much faster, but this function can be

91 % used to obtain an explicit description of

92 % the restriction operator

93 %

94 % === [I] = Iop(N,n) ===

95 % provides the interpolation operator

96 % between a coarser and a finer grid

97 % characterized by N and n mesh points in

98 % each directio respectively. The same

99 % observation made for Rop applies, with ...

u =

100 % II(U) being a much faster implenentation

101 %

102 % === [uh] = mg(uh,rhs,n) ===

103 % this function represents the application

104 % of a single V−cycle. Both the CS and the

105 % FAS algorithm are implemented and can be

106 % selected by setting the value of

107 % cntrparams.algorithm to 'CS' or 'FAS'

108 % respectively.

109 %

110 % === [uh] = twogrids(uh,rhs,n) ===

111 % the two grid algorithm −−− i.e. only two

112 % grids are used and the solution is

113 % computed on the coarses independently of

114 % its size. It can be used for comparison

115 % with mg.

116 %

117 % === [x,y,u0,rhs] = init(n) ===

118 % this function initialize the grid point

119 % coordinates, the exact solution and the

120 % corresponding right hand side. WARNING:

121 % some choices of boundary condition do not

122 % return a solution correspnding to the

123 % exact one.

124 %

125

126

127

128 function [output]= main(n,nits)

129

130 %%%%%%%%%%%%%%%%%%%%%%%%%%

131 %%%% PROBLEM CONTROL %%%%%

132 %%%%%%%%%%%%%%%%%%%%%%%%%%

133

134 global cntrparams

135 % the algorithm used, can be 'CS' or 'FAS'

136 cntrparams.algorithm = 'FAS';

137

138 % the anisotropy parameter (see the

139 % Relaxation section in the Multigrid

140 % chapter). A value of epsilon < 1 is

141 % correcly treated by the currect

142 % implementation of linewise Gauss−Seidel
143 % relaxation. A value of epsilon >1

144 % correspond to stretching in the wrong

145 % direction

146 cntrparams.epsilon = 1;

147

148 % control for the linewise Gauss−Seidel
149 % relaxation. A value of 0 corresponds to

150 % pointwise relaxation, a value of 1

151 % correspond to linewise relaxation.

152 cntrparams.LGS = 0;

153

154 % the sweep direction of the relaxation,

155 % can be 'F' (forward) or 'B' (backward).

156 % A value of 'F' corresponds to a sweep

157 % starting in the bottom left corner and

158 % ending in the top right corner. A value

159 % of 'B' correspond to a sweep in the

160 % opposite direction, i.e. starting in the

161 % top right corner and ending in the

162 % bottom−left corner.

163 cntrparams.sweepdirection = 'F';

164

165 % the convective field, can be 'const' or

166 % 'hiemenz'. The value 'const' correspond

167 % to a constant flow field, the value

168 % 'hiemenz' correspond to the (unswept)

169 % hiemenz flow field.

170 cntrparams.advfield = 'hiemenz';

171

172 % the angle of the (constant) velocity

173 % field with respect to the horizonal

174 % axis.

175 cntrparams.alph= 45*pi/180;

176

177 % coefficient for the convection term. For

178 % a value of zero the Poisson equation is

179 % obtained. For a value of one, the

180 % viscosity is the opposite of the

181 % Reynolds number.

182 cntrparams.adv = 0;

183

184 % the order of discretization of the

185 % advection term. Can be 1 or 2.

186 cntrparams.advorder = 1;

187

188 % the viscosity. It corresponds to the

189 % inverse of the Reynolds number if

190 % cntrparams.adv = 1. If one wants to

191 % control the mesh−based Reynolds on the

192 % finer grid, cntrparams.nu =

193 % 1./(n−1)/Re_h, where Re_h is the

194 % mesh−based Reynolds.

195 cntrparams.nu = 1./(n−1)/1;
196

197 % whether a Dirichlet (0) or a homogeneous

198 % Neuamnn (1) boundary condition is

199 % implemented on each boundary
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200 cntrparams.neumannS = 0;

201 cntrparams.neumannN = 0;

202 cntrparams.neumannE = 0;

203 cntrparams.neumannW = 0;

204

205 % the number of mesh−lines to be included

206 % in the boundary relaxation on each

207 % boundary

208 cntrparams.brkS = 0;

209 cntrparams.brkN = 0;

210 cntrparams.brkW = 0;

211 cntrparams.brkE = 0;

212 cntrparams

213

214 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

215 %%%% END OF PROBLEM CONTROL %%%%%

216 %%%% YOU SHOULD NOT MODIFY %%%%%

217 %%%% ANYTHING BELOW THIS LINE %%%%%

218 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

219

220

221 %%%%%%%%%%%%%%%%%%%%%%%%

222 %%%% INITIALIZATION %%%%

223 %%%%%%%%%%%%%%%%%%%%%%%%

224

225 % the total number of degrees of freeedom

226 nn = n*n;

227 % the discretized operator

228 Jh = jac(n);

229 % initialization of the rhs and exact

230 % solution

231 [x,y,u0,rhs] = init(n);

232

233 %%%%%%%%%%%%%%%%%%%%%%%%%

234 %%%% DIRECT SOLUTION %%%%

235 %%%%%%%%%%%%%%%%%%%%%%%%%

236 tic

237 disp('=== Direct solution ===')

238 u = u0;

239 u = Jh\rhs;

240 toc

241 output.u = reshape(u,n,n);

242

243 %%%%%%%%%%%%%%%%%%%%%%%%%%%

244 %%%% SIMPLE RELAXATION %%%%

245 %%%%%%%%%%%%%%%%%%%%%%%%%%%

246 tic

247 disp(['=== Simple relaxation ...

(',num2str(3*nits),' iterations) ==='])

248 [Lp,Lm] = relaxationSetUp(Jh,n);

249 u = u0;

250 r = Jh*u−rhs;
251 rnormRelaxation(1) = norm(r)/nn;

252 for cc = 2:3*nits+1

253 u = −Lp\(Lm*u−rhs);
254 r = Jh*u−rhs;

255 rnormRelaxation(cc) = norm(r)/nn;

256 end

257 toc

258

259 %%%%%%%%%%%%%%%%%%%%%%%%

260 %%%% TWO GRID CYCLE %%%%

261 %%%%%%%%%%%%%%%%%%%%%%%%

262 tic

263 disp(['=== Two grid cycle ...

(',num2str(nits),' iterations) ==='])

264 uh = u0;

265 rh = Jh*uh − rhs;

266 rnormTwoGrids(1) = norm(rh)/nn;

267 for cc = 2:nits+1

268 uh = twogrids(uh,rhs,n);

269 rh = Jh*uh − rhs;

270 rnormTwoGrids(cc) = norm(rh)/nn;

271 end

272 toc

273

274 %%%%%%%%%%%%%%%%%%%%%%%%%

275 %%%% MULTIGRID CYCLE %%%%

276 %%%%%%%%%%%%%%%%%%%%%%%%%

277 tic

278 disp(['=== Multigrid V−cycle ...

(',num2str(nits),' iterations) ==='])

279 uh = u0;

280 rh = Jh*uh − rhs;

281 rnormMG(1) = norm(rh)/nn;

282 for cc = 2:nits+1

283 uh = mg(uh,rhs,n);

284 rh = Jh*uh − rhs;

285 rnormMG(cc) = norm(rh)/nn;

286 disp(['V cycle # ', num2str(cc), ' ...

residual is ', ...

num2str(rnormMG(cc))]);

287 end

288 toc

289

290 %%%%%%%%%%%%%%%%

291 %%%% OUTPUT %%%%

292 %%%%%%%%%%%%%%%%

293 output.its = 0:3*nits

294 output.rnormRelaxation = rnormRelaxation;

295 output.rnormTwoGrids = [rnormTwoGrids ...

ones(1,nits*3−nits)*nan];
296 output.rnormMG = [rnormMG ...

ones(1,nits*3−nits)*nan];
297 output.x = x;

298 output.y = y;

299 output.uh = reshape(uh,n,n);

300 output.rh = reshape(rh,n,n);

301 output.u0 = reshape(u0,n,n);

302 output.Reh = 1./(n−1)/cntrparams.nu;
303 dlmwrite('norms.dat', [output.its', ...

output.rnormRelaxation', ...
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output.rnormTwoGrids', ...

output.rnormMG'], 'delimiter',' ');

304

305 end

306

307 % function [J] = jac(n) returs the

308 % discretization of the convection−diffusion
309 % operator on a grid with n mesh points on

310 % each direction

311 function [J] = jac(n)

312 global cntrparams

313

314 epsilon = cntrparams.epsilon;

315 alph = cntrparams.alph;

316 nu = cntrparams.nu;

317 adv = cntrparams.adv;

318 advfield = cntrparams.advfield;

319 advorder = cntrparams.advorder;

320 neumannS = cntrparams.neumannS;

321 neumannN = cntrparams.neumannN;

322 neumannE = cntrparams.neumannE;

323 neumannW = cntrparams.neumannW;

324

325 nn = n*n;

326 h = 1./(n−1);
327

328 % vectors containing the index of the

329 % boundary points

330 sb = 1:n;

331 nb = nn−n+1:nn;
332 wb = 1:n:nn;

333 eb = n:n:nn;

334 bb = [ sb,nb,wb,eb];

335 lbb = length(bb);

336

337 % the centered second order discretization

338 % of the Laplacian operator. epsilon

339 % represents the anisotropy. spdiags will

340 % be used to build the sparse matrix, look

341 % at 'help spdiags' on Matlab for

342 % information on the format used here.

343 d0 = 1/h^2*[zeros(nn,1) , ...

epsilon*ones(nn,1), zeros(nn,1), ...

ones(nn,1), ...

−2*(1+epsilon).*ones(nn,1), ...

ones(nn,1),zeros(nn,1),epsilon*ones(nn,1), ...

zeros(nn,1)];

344

345 % the convective the velocity field can be

346 % constant, with an angle alph with the

347 % horizontal axis, or (unswept) hiemenz.

348 if (strcmpi(advfield,'const'))

349 u = ones(nn,1).*cos(alph);

350 v = ones(nn,1).*sin(alph);

351 elseif (strcmpi(advfield,'hiemenz'))

352 x = linspace(0,1,n); y = ...

linspace(0,1,n); [x,y] = ...

meshgrid(x,y);

353 u = x; u = u(:);

354 v = 1−y; v = v(:);

355 clear x,y;

356 else

357 error('advfield can be const or ...

hiemenz');

358 end

359

360 % the upwinded first or second order

361 % discretization of the convective

362 % operator

363 up = .5*(u+abs(u)); um = −.5*(u−abs(u));
364 vp = .5*(v+abs(v)); vm = −.5*(v−abs(v));
365 d1 = zeros(nn,9);

366 if (advorder==1)

367 d1 = 1./(h)*[ 0*vp −1*vp 0*up −1*up ...

(up+vp+um+vm) −1*um 0*um −1*vm ...

0*vm ];

368 elseif (advorder==2)

369 d1 = 1./(2*h)*[ 1*vp −2*vp 1*up −2*up ...

3*(up+vp+um+vm) −2*um 1*um −2*vm ...

1*vm ];

370 else

371 error('The discretization order for ...

the convective term must be 1 or 2');

372 end

373

374 % the discretized operator, including the

375 % convective (d1) and diffusive (d0) terms

376 % is built using spdiags

377 J = spdiags(adv.*d1−nu*d0,[−2*n −n −2 ...

−1 0 1 2 n 2*n],nn,nn);

378

379 % enforce Dirichlet boundary conditions on

380 % all boundaries. The indexes of the

381 % boundary's points are contained in the

382 % vector bb

383 J(bb,:) = 0;

384 J(bb,bb) = spdiags(ones(lbb,1),0,lbb,lbb);

385

386 % enforce Neumann boundary condition where

387 % required

388 if (neumannS == 1)

389 J(sb,:) = 0;

390 for i = 1:n

391 J(sb(i),sb(i)+[0 n 2*n]) = −1/(2*h) ...

* [ 3 −2 1];

392 end

393 end

394

395 if (neumannE == 1)

396 J(eb,:) = 0;

397 for i = 1:n

398 J(eb(i),eb(i)−[0 1 2]) = +1/(2*h) * ...
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[ 3 −2 1];

399 end

400 end

401

402 if (neumannN == 1)

403 J(nb,:) = 0;

404 for i = 1:n

405 J(nb(i),nb(i)−[0 n 2*n]) = +1/(2*h) ...

* [ 3 −2 1];

406 end

407 end

408

409 if (neumannW == 1)

410 J(wb,:) = 0;

411 for i = 1:n

412 J(wb(i),wb(i)+[0 1 2]) = −1/(2*h) * ...

[ 3 −2 1];

413 end

414 end

415

416 end

417

418 % function [Lp,Lm] = relaxationSetUp(J,n);

419 % sets up the relaxation algorithm by

420 % performing the operator splitting and, if

421 % required, implementing the boundary

422 % relaxation

423 function [Lp,Lm] = relaxationSetUp(J,n);

424 global cntrparams;

425

426 LGS = cntrparams.LGS;

427

428 % perform operator splitting by selecting

429 % the upper and lower parts of the matrix.

430 % LGS diagonals above/below the main

431 % diagonal are included in the Lp operator

432 % in order to implenent linewise

433 % Gauss−Seidel, if required.

434 if (cntrparams.sweepdirection == 'F')

435 Lp = tril(J,+LGS);

436 Lm = triu(J,+1+LGS);

437 elseif (cntrparams.sweepdirection == 'B')

438 Lp = triu(J,−LGS);
439 Lm = tril(J,−1−LGS);
440 end

441

442 % boundary relaxation is obtained

443 % modifying the splitting. All discrete

444 % equations corredponding to the boundary

445 % points are included in the Lp operator

446 % and are solved implicitly.

447

448 % southern boundary

449 brkS = cntrparams.brkS;

450 Lp(1:brkS*n,:) = J(1:brkS*n,:);

451 Lm(1:brkS*n,:) = 0;

452

453 % northern boundary

454 brkN = cntrparams.brkN;

455 Lp(end−brkN*n+1:end,:) = ...

J(end−brkN*n+1:end,:);
456 Lm(end−brkN*n+1:end,:) = 0;

457

458 % western boundary

459 brkW = cntrparams.brkW;

460 brkpoints = zeros(brkW*n,1);

461 for i = 1:brkW

462 brkpoints((i−1)*n+1:i*n) = i:n:nn;

463 end

464 Lp(brkpoints,:) = J(brkpoints,:);

465 Lm(brkpoints,:) = 0;

466

467 % eastern boundary

468 brkE = cntrparams.brkE;

469 brkpoints = zeros(brkE*n,1);

470 for i = 1:brkE

471 brkpoints((i−1)*n+1:i*n) = n−i+1:n:nn;
472 end

473 Lp(brkpoints,:) = J(brkpoints,:);

474 Lm(brkpoints,:) = 0;

475

476 end

477

478 % function U = RR(u)

479 % restrict the field u to the next coarser

480 % grid

481 function U = RR(u)

482 n = sqrt(length(u));

483 N = ceil(n/2);

484 utmp = reshape(u,n,n);

485 Utmp = zeros(N,N);

486

487 Utmp(2:N−1,2:N−1) = ...

0.25*utmp(3:2:n−2,3:2:n−2) + ...

488 0.125*( utmp(2:2:n−3,3:2:n−2) + ...

utmp(4:2:n−1,3:2:n−2) ...

489 + utmp(3:2:n−2,2:2:n−3) + ...

utmp(3:2:n−2,4:2:n−1) ) + ...

490 0.0625*( utmp(2:2:n−3,2:2:n−3) + ...

utmp(2:2:n−3,4:2:n−1) ...

491 + utmp(4:2:n−1,2:2:n−3) + ...

utmp(4:2:n−1,4:2:n−1) );

492

493 Utmp(2:N−1,1) = 0.5*utmp(3:2:n−2,1) + ...

0.25*( utmp(2:2:n−3,1) + ...

utmp(4:2:n−1,1) );

494 Utmp(2:N−1,N) = 0.5*utmp(3:2:n−1,n) + ...

0.25*( utmp(2:2:n−3,n) + ...

utmp(4:2:n−1,n) );

495 Utmp(1,2:N−1) = 0.5*utmp(1,3:2:n−1) + ...

0.25*( utmp(1,2:2:n−3) + ...

utmp(1,4:2:n−1) );
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496 Utmp(N,2:N−1) = 0.5*utmp(n,3:2:n−1) + ...

0.25*( utmp(n,2:2:n−3) + ...

utmp(n,4:2:n−1) );

497

498 Utmp(1,1) = utmp(1,1);

499 Utmp(1,end) = utmp(1,end);

500 Utmp(end,1) = utmp(end,1);

501 Utmp(end,end) = utmp(end,end);

502

503 U = reshape(Utmp,N*N,1);

504

505 end

506

507 % function u = II(U)

508 % interpolate the field U to the next finer

509 % grid

510 function u = II(U)

511 N = sqrt(length(U));

512 n = 2*N−1;
513 Utmp = reshape(U,N,N);

514 utmp = zeros(n,n);

515

516 utmp(1:2:n,1:2:n) = Utmp(1:N,1:N);

517 utmp(2:2:n−1,1:2:n) = ( Utmp(1:N−1,1:N) ...

+ Utmp(2:N,1:N) ) / 2.;

518 utmp(1:2:n,2:2:n−1) = ( Utmp(1:N,1:N−1) ...

+ Utmp(1:N,2:N) ) / 2.;

519 utmp(2:2:n−1,2:2:n−1) = ( ...

Utmp(1:N−1,1:N−1) + Utmp(1:N−1,2:N) ...

+ Utmp(2:N,1:N−1) + Utmp(2:N,2:N) ) ...

/ 4.;

520 u = reshape(utmp,n*n,1);

521

522 end

523

524

525 % function [R] = Rop(n,N)

526 % provides the restriction operator between

527 % a finer and a corser grid characterized by

528 % n and N mesh points in each direction

529 % respectively. Restriction can the be done

530 % as U = R*u and the result is the same as

531 % using U = RR(u). The implementation of RR

532 % is much faster, but this function can be

533 % used to obtain an explicit description of

534 % the restriction operator

535 function [R] = Rop(n,N)

536 nn = n*n;

537 NN = N*N;

538

539 % SW S SE W C E NW N E

540 st = [−n−1 −n −n+1 −1 0 1 n−1 n n+1];

541

542 R = sparse([],[],[],NN,nn,nn*9);

543 di = 1/16*[ 1 , 2 , 1. , 2 , 4 , 2 , 1 ...

, 2 , 1] ; % interior

544 dh = 1/4*[ 0 , 0 , 0. , 1 , 2 , 1 , 0 , ...

0 , 0] ; % horizontal boundaries

545 dv = 1/4*[ 0 , 1 , 0. , 0 , 2 , 0 , 0 , ...

1 , 0] ; % vertical boundaries

546 dc = [ 0 , 0 , 0. , 0 , 1 , 0 , 0 , 0 , ...

0] ; % corners

547

548 for J = 2:N−1
549 for I = 2:N−1
550 j = 2*J−1;
551 i = 2*I−1;
552 CC = (J−1)*N+I;
553 cc = (j−1)*n+i;
554 R(CC,st+cc) = di;

555 end

556 end

557

558 for J = 1:N−1:N
559 for I = 2:N−1
560 j = 2*J−1;
561 i = 2*I−1;
562 CC = (J−1)*N+I;
563 cc = (j−1)*n+i;
564 R(CC,:) = spdiags(dh,st+cc−1,1,nn);
565 end

566 end

567

568 for J = 2:N−1
569 for I = 1:N−1:N
570 j = 2*J−1;
571 i = 2*I−1;
572 CC = (J−1)*N+I;
573 cc = (j−1)*n+i;
574 R(CC,:) = spdiags(dv,st+cc−1,1,nn);
575 end

576 end

577

578 for J = 1:N−1:N
579 for I = 1:N−1:N
580 j = 2*J−1;
581 i = 2*I−1;
582 CC = (J−1)*N+I;
583 cc = (j−1)*n+i;
584 R(CC,:) = spdiags(dc,st+cc−1,1,nn);
585 end

586 end

587

588 end

589

590

591 % function [Iout] = Iop(N,n)

592 % provides the interpolation operator

593 % between a coarser and a finer grid

594 % characterized by N and n mesh points in

595 % each directio respectively. The same

596 % observation made for Rop applies, with ...
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u =

597 % II(U) being a much faster implenentation

598 function [Iout] = Iop(N,n)

599 nn = n*n;

600 NN = N*N;

601

602 % SW S SE W C E NW N E

603 st = [−n−1 −n −n+1 −1 0 1 n−1 n n+1];

604

605 Iout = sparse([],[],[],nn,NN,nn.*9);

606 di = 1/4*[ 1 , 2 , 1. , 2 , 4 , 2 , 1 , ...

2 , 1] ; % interior

607 dh = 1/2*[ 0 , 0 , 0. , 1 , 2 , 1 , 0 , ...

0 , 0] ; % horizontal boundaries

608 dv = 1/2*[ 0 , 1 , 0. , 0 , 2 , 0 , 0 , ...

1 , 0] ; % vertical boundaries

609 dc = [ 0 , 0 , 0. , 0 , 1 , 0 , 0 , 0 , ...

0] ; % corners

610

611 % injection

612 for J = 1:N

613 for I = 1:N

614 j = 2*J−1;
615 i = 2*I−1;
616 CC = (J−1)*N+I;
617 cc = (j−1)*n+i;
618 Iout(cc,CC) = 1.;

619 end

620 end

621

622 % linear interpolation

623 for J = 1:N

624 for I = 1:N−1
625 j = 2*J−1;
626 i = 2*I;

627 CC = (J−1)*N+I;
628 cc = (j−1)*n+i;
629 Iout(cc,CC) = 0.5;

630 Iout(cc,CC+1) = 0.5;

631 end

632 end

633

634 for J = 1:N−1
635 for I = 1:N

636 j = 2*J;

637 i = 2*I−1;
638 CC = (J−1)*N+I;
639 cc = (j−1)*n+i;
640 Iout(cc,CC) = 0.5;

641 Iout(cc,CC+N) = 0.5;

642 end

643 end

644

645 % bilinear interpolation

646 for J = 1:N−1
647 for I = 1:N−1

648 j = 2*J;

649 i = 2*I;

650 CC = (J−1)*N+I;
651 cc = (j−1)*n+i;
652 Iout(cc,CC) = 0.25;

653 Iout(cc,CC+1) = 0.25;

654 Iout(cc,CC+N) = 0.25;

655 Iout(cc,CC+N+1) = 0.25;

656 end

657 end

658 end

659

660

661 function [uh] = mg(uh,rhs,n)

662

663 global cntrparams

664 nn = n*n;

665 LGS = cntrparams.LGS;

666 if (n ≤ 5)

667

668 Jh = jac(n);

669 uh = Jh\rhs;

670

671 else

672

673 N = (n−1)/2+1;
674 % the follwing two lines can be

675 % uncommented if an explicit

676 % representation of the restriction and

677 % iterpolation operator are required,

678 % but the implentation of the Rop and

679 % Iop functions is quite slow

680 %R = Rop(n,N);

681 %I = Iop(N,n);

682 Jh = jac(n);

683 JH = jac(N);

684

685 [Lp,Lm] = relaxationSetUp(Jh,n);

686

687 % relaxation: relaxation is peformed by

688 % "inverting" the Lp operator. This is

689 % more costly than a real Gauss−Seidel
690 % iteration, but clearer from a notation

691 % point of view and, for this reason, is

692 % used here.

693 uh = −Lp\(Lm*uh−rhs);
694 uh = −Lp\(Lm*uh−rhs);
695

696 if ( ...

strcmpi(cntrparams.algorithm,'FAS') ...

) % the FAS algorithm

697

698 % restriction

699 tau = JH*(RR(uh)) − RR(Jh*uh);

700 rhsH = RR(rhs) + tau;

701
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702 % multigrid on coarser grids

703 uHold = RR(uh);

704 uH = mg(uHold,rhsH,N);

705

706 % interpolation

707 corrH = uH − uHold;

708 uh = uh + II(corrH);

709

710 elseif ( ...

strcmpi(cntrparams.algorithm,'CS') ...

) % the CS algorithm

711

712 rh = rhs − Jh*uh;

713 rhsH = RR(rh);

714 corrH = mg(zeros(size(rhsH)),rhsH,N);

715 uh = uh + II(corrH);

716

717 else

718 error('cntrparams.algorithm must be ...

FAS or CS');

719 end

720

721 % relaxation

722 uh = −Lp\(Lm*uh−rhs);
723

724 end

725

726 end

727

728 function [uh] = twogrids(uh,rhs,n)

729

730 global cntrparams;

731 nn = n*n;

732 LGS = cntrparams.LGS;

733

734 N = (n−1)/2+1;
735

736 %R = Rop(n,N);

737 %I = Iop(N,n);

738 Jh = jac(n);

739 JH = jac(N);

740

741 [Lp,Lm] = relaxationSetUp(Jh,n);

742

743 % relaxation

744 uh = −Lp\(Lm*uh−rhs);
745 uh = −Lp\(Lm*uh−rhs);
746

747 if ( ...

strcmpi(cntrparams.algorithm,'FAS') ...

) % the FAS algorithm

748

749 % restriction

750 tau = JH*RR(uh) − RR(Jh*uh);

751 rhsH = RR(rhs) + tau;

752

753 % solve on coarse grid

754 uH = JH\rhsH;

755

756 % interpolation

757 corrH = uH − RR(uh);

758 uh = uh + II(corrH);

759

760 elseif ( ...

strcmpi(cntrparams.algorithm,'CS') ...

) % the CS algorithm

761

762 rh = rhs − Jh*uh;

763 corrH = JH\(RR(rh));

764 uh = uh + II(corrH);

765

766 else

767 error('cntrparams.algorithm must be ...

FAS or CS');

768 end

769

770 % relaxation

771 uh = −Lp\(Lm*uh−rhs);
772

773 end

774

775 function [x,y,u0,rhs] = init(n)

776 global cntrparams

777

778 x = linspace(0,1,n); y = ...

linspace(0,1,n); [x,y] = meshgrid(x,y);

779 nu = cntrparams.nu; adv = ...

cntrparams.adv; alph = cntrparams.alph;

780

781 u0 = (x.^2 − x.^4) .* (y.^4−y.^2); ...

u0(2:end−1,2:end−1) = ...

rand(n−2,n−2); u0 = u0(:);

782 %u0 = (x.^2 − x.^4) .* (y.^4−y.^2); ...

u0 = u0(:);

783

784 rhs = + adv.*( ...

cos(alph).*(2.*x−4.*x.^3).*(y.^4−y.^2) ...

+ ...

sin(alph).*(x.^2−x.^4).*(4.*y.^3−2.*y) ...

) − nu.*( ...

(2−12.*x.^2).*(y.^4−y.^2) + ...

(x.^2−x.^4).*(12.*y.^2−2) );

785 rhs(:,1) = 0; rhs(:,end)=0; rhs(1,:) = ...

0; rhs(end,:) = 0; rhs = rhs(:);

786 end
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