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Chapter 1

Introduction and Motivation

The objective of this work is to provide a contribution to the understanding of the broad physical problem

concerning the development of perturbations in the �ow �eld around a swept wing.

The swept-wing problem is interesting from both a research and an industrial application perspective.

From a research perspective it is part of the large class of three-dimensional boundary-layer problems,

together with rotating disks, rotating cones and rotating spheres [53]. The �ow around all these bodies is

characterized by a pressure gradient which is not locally aligned with the direction of the velocity vector,

as is instead the case, for example, in a pipe �ow. As a consequence, the pressure gradient provides an

acceleration to only some components of the velocity while leaving others unchanged, thus rotating the

velocity vector. Streamlines are accordingly curved in the direction parallel to the gradient, if the �ow is

accelerated (favorable pressure gradient), and in the direction perpendicular to the gradient, if the �ow

is decelerated (adverse pressure gradient).

x

p

x

p

Figure 1.1: The e�ect of nonalignment of the pressure gradient. On the left: the velocity vector
at the in�ow is parallel to the pressure gradient, and both are aligned with the horizontal axis.
The velocity of the �uid particle moving along the streamline (dashed blue line) increases and
decreases, accelerated and decelerated by the pressure gradient, but remains parallel to the
horizontal axis. The pressure distribution along the horizontal axis is represented below the
plates, as a continuous line. On the right, the velocity vector at the in�ow has an angle with
the horizontal axis. The horizontal component of the velocity increases and decreases moving
along the streamlines, while the vertical component remains unchanged. The velocity vector
rotates and the streamlines are curved. The curvature is stronger in the boundary layer close
to the plate than in the free stream, because of the lower �uid-momentum there. This is the
situation in the boundary layer over a swept wing, if we neglect the curvature of the surface:
the pressure gradient is aligned with the chordwise direction, but there is a spanwise velocity
component due to the sweep. Streamlines are �rst curved in the chordwise direction until the
pressure minimum is reached, and then curved back into the spanwise direction in the pressure
recovery (adverse pressure gradient) region.

1



2 Chapter 1. Introduction and Motivation

This situation is exempli�ed in Figure 1.1 where we consider two �at plates, viewed from the top, and

a pressure distribution such that its gradient is always aligned with the horizontal direction. On the left

plate, the �ow is aligned with the horizontal direction as well: while moving across the plate from left to

right, each �uid particle is �rst accelerated by a favorable pressure gradient and then decelerated by an

adverse pressure gradient, but the velocity vector remains parallel to the horizontal axis, and so do the

streamlines. In contrast, on the in�ow for the right plate the velocity of our �uid particles has an angle

of 45� with the horizontal axis. In this case, the �uid particles moving along the streamline accelerate by

increasing their horizontal velocity component as in the previous case, but the vertical velocity component

remains unchanged. The velocity vector (hence the streamline) is rotated (curved) towards the horizontal

direction. The opposite happens in the presence of an adverse pressure gradient: the horizontal velocity

component is reduced while the vertical component remains unchanged. The velocity vectors (and the

streamlines) are de�ected towards the original �ow direction. This e�ect is stronger in the boundary

layer developing at the plate surface than in the free stream, because of the reduced momentum of the

�uid there, and the curvature of the streamlines is more pronounced.

At the origin of this nonalignment between the pressure gradient and the velocity vector there can

be di�erent phenomena: the centrifugal � or centripetal, depending on the point of view � force in the

rotating disk case or the spanwise invariance assumption in the swept-wing case. Whichever the origin,

the consequence is the development of strongly three-dimensional boundary layers sharing a characteristic

stability behavior: streamwise vorticity is developed within the boundary layer in the form of vortices

nearly aligned with the streamlines, known as cross�ow vortices. These streamwise structures can be the

source of secondary instabilities by lifting low-momentum �uid from the wall towards the free stream

and pushing higher-momentum �uid from the free stream towards the wall. Transition from laminar to

turbulent �uid motion can be triggered in this manner.

The stability properties of these three-dimensional boundary layers, including the development of

associated cross�ow vortices and of other types of instabilities, are not yet fully understood, and the

contribution of this thesis aims at providing further insights in this direction.

From an industrial point of view, understanding the behavior and origins of disturbances over swept

wings is related to our interest in developing passive or active �ow control strategies aimed at delaying

transition from laminar to turbulent �ow to reduce skin-friction drag. Cross�ow vortices are deemed

principally responsible for this transition for sweep angles greater than30� 35� . Joslin [34, 35] remarks

that skin-friction drag amounts to about 50% of the total drag on a subsonic transport aircraft, and

that laminar skin friction can be as low as 90% less than turbulent skin friction at the same Reynolds

number. Even a partial increase in the extent of the laminar �ow can prove very bene�cial to the aircraft's

e�ciency, both by reducing skin-friction drag and by allowing more compact aircraft designs, for example

by reducing the amount of fuel that is required to cover a given distance.

Various approaches have been proven e�ective in increasing the extent of the laminar �ow region

[34, 35]: among them we mention natural laminar �ow, which employs favorable pressure gradients to

delay transition, laminar �ow control, which employs active blowing and suction through the wing surface,

and relaminarization of turbulent �ow, again employing suction but at higher energetic cost than laminar

�ow control. Nonetheless, the e�ectiveness of natural �ow control is limited to small sweep angles (in

other words, it is limited to reducing the growth of streamwise Tollmien-Schlichting instabilities, typical

of two-dimensional boundary layers; see below).

Despite a large research e�ort, the cause of transition from laminar to turbulent �ow in general and

the transition on swept wings in particular still has many unresolved features. The concept of receptivity

[47] is recognized to be at the origin of the transition process, and it will play a central role in this
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work: disturbances from the environment, e.g., small variations in the incoming free stream, enter the

boundary layer and trigger the development of perturbations which may then be ampli�ed and eventually

cause transition. Di�erent mechanisms have been proposed in order to describe this ampli�cation and

the subsequent transition process. We mention here modal growth, non-normal (transient) growth, the

development of secondary instabilities and bypass transition. They are summarized in Figure 1.2, taken

from [40].1.2. LINEAR STABILITY THEORY 9
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Figure 1.5. Roadmap to transition as suggested by Morkovin et al. (1994) (see Reshotko, 1994).

1.1.3 The sweep Reynolds number Re!

Experimentalists introduced the sweep Reynolds numberRe! (based on the momentum thickness
! of the boundary layer) as the governing non-dimensional parameter for attachment-line ßow.
As we have seen in section¤1.1.1, a critical value of Re! ! 100 has been found in several
experimental investigations, and, to this day, it is still common practice in aircraft design to
keep Re! < 100 to ensure laminar ßow along the attachment line of a sweptwing (see, e.g.,
Joslin, 1996). Following Pfenninger (1977) and Poll (1985), an approximate relationship for Re!

is given as (see Saric and Reed, 2003)

Re! = 0 .404
!

q! R sin2 !
(1 + ")# cos!

" 1/ 2

= 0 .404
!

u! R
(1 + ")#

" 1/ 2

tan ! , (1.1)

where u! = q! cos! denotes the normal velocity, # represents the kinematic viscosity of the
ßuid, and " is the ellipticity of an equivalent ellipse1. Note that the factor of 0.404 in (1.1) was
evaluated for incompressible ßow (see, e.g., Poll, 1979).

As we can see, the leading-edge geometry described by the radius R as well as the sweep
angle ! has a strong inßuence on the stability behavior of leading-edge ßow. Equation (1.1)
further demonstrates that in order to ensure low values ofRe! for certain ßight conditions,
deÞned byq! and #, it is necessary to have small values ofR and/or ! , as already discussed in
section ¤1.1.2, to prevent unstable ßow in the vicinity of the attachment line.

1.2 Linear stability theory

In its most general deÞnition, linear stability theory is concerned with quantifying the behavior
of inÞnitesimal perturbations about a Þnite-amplitude basestate. If the small perturbations
diverge from the Þnite-amplitude state, the ßow is considered unstable; if the perturbed ßow
returns back to the base state, the ßow is called stable. The stability property, of course, depends
on the governing ßow parameters such as, in our case, the sweep Reynolds number and the sweep
Mach number, and their values at which the ßow changes from stable to unstable are referred to
as the critical parameters. The decomposition (A), see Þgure 1.6, into a base state$0(x, y, z, t )
and a perturbation "$"(x, y, z, t ) is rather impractical in all its generality.

A further simplifying, but reasonable assumption is given by considering a steady base ßow
$0(x, y, z). As a consequence, the coe" cients in the linearized2 governing equations do no

1Increasing ! and thus changing the shape of the blunt body in the leading-edge region from cylindrical to
increasingly elliptical has essentially the same e! ect as decreasing R.

2As a consequence of the linearization step, any information about the ampl itude of the (modal) structures
is lost.

Figure 1.2: Transition mechanisms. Di�erent mechanisms can be responsible for transition
from laminar to turbulent �ow, but at the origin there is the concept of receptivity: incoming
disturbances from the environment � e.g. variations in the incoming free stream � enter
the boundary layer and trigger the development of perturbations. These perturbations may
then be ampli�ed by di�erent mechanisms, like modal growth or transient growth, may lead to
secondary instabilities and/or cause transition to turbulence. A correct understanding of the
perturbation behavior and of the receptivity mechanism is essential for increasing the extent of
the laminar �ow regime in boundary layers by applying control techniques.

Within the modal growth mechanisms only, four possible instabilities have been historically identi�ed

that may play a role in the transition process on a swept wing: leading-edge instability and contamination,

streamwise (Tollmien�Schlichting) instabilities, centrifugal instabilities and cross�ow instabilities [53, 34,

35]. Leading-edge instabilities and contamination are related to the two-dimensional boundary layer

developing at the attachment line and can cause the �ow to be turbulent over the entire chordwise

extent of the wing. Disturbances, stemming from the turbulent boundary layer on the fuselage, can

enter the attachment-line boundary layer at the wing root and travel the whole spanwise extent of the

wing. Solutions to the contamination problem have been proposed [34, 35] in the form of strong suction

at the wing root in order to provide a new, laminar attachment-line boundary layer [51] or by adding

a turbulence diverter like the Gaster bump [17]. Streamwise Tollmien-Schlichting-like instabilities are

characteristic of the �ow in the presence of mildly positive or adverse pressure gradients, i.e. in the

vicinity or downstream of the wing section's pressure minimum. They are typical of two-dimensional

boundary layers and are the main candidate for causing transition at sweep angles less than25� [34].

The already mentioned cross�ow instabilities coexist with streamwise Tollmien-Schlichting instabilities

for sweep angles between25� and 30 � 35� and, for larger sweep angles, overtake Tollmien-Schlichting

instabilities in the transition process. Cross�ow instabilities are not related to adverse pressure gradients

in the same manner as streamwise Tollmien-Schlichting waves are: they can cause transition much closer

to the attachment-line, and natural laminar �ow designs are not e�ective in suppressing them.

As suggested by Hall & Seddougui [26] and successively shown by Mack et al. [44], the distinction

in attachment-line, cross�ow and Tollmien-Schlichting instabilities summarized in Figure 1.3 is to be

related to the local approach historically used in the analysis of boundary-layer stability rather than

to a real physical di�erence among the mechanisms. In this local approach, each region of the wing is
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Attachment line

Cross�ow

Tollmien-Schlichting

Figure 1.3: Some of the instabilities characterizing the swept attachment-line boundary-layer
transition from laminar to turbulent �ow and their respective localizations. The attachment-
line instabilities mainly occur in the red area, cross�ow vortices in the blue area and Tollmien-
Schlichting waves in the dashed area. Whether cross�ow or Tollmien-Schlichting instabilities
dominate the transition to turbulent �ow depends on the sweep angle. For sweep angles greater
of 30 � 35� cross�ow instabilities are known to be dominant, and the transition region moves
towards the attachment line, thus reducing the extent of the laminar �ow regime.

characterized by a simpli�ed �ow model � Swept-Hiemenz �ow for attachment line, a three-dimensional

velocity pro�le for the cross�ow region and a two dimensional boundary layer for the Tollmien-Schlichting

region. Stability properties are then analyzed for each simpli�ed �ow model. Despite being unable to show

the connections among the di�erent regions, the local approach is still useful in providing a �rst impression

of the complexity of the situation as well as an interesting interpretation of the various mechanisms at

play.

The Matrix

We have so far identi�ed the interest in and introduced the main characteristics of the swept-wing problem.

Driven by a pressure gradient which is not locally aligned with the velocity vectors, the swept-wing �ow

presents stability characteristics in common with other three-dimensional boundary-layer problems. The

development of cross�ow vortices is one of these characteristics. The mechanism at the origin of transition

from laminar to turbulent �ow in three-dimensional boundary layers is not fully understood and, as such,

it represents an interesting research subject. At the same time, there is a strong industrial interest in

understanding the stability properties of such �ows in order to devise and apply passive or active control

strategies with the goal of extending the laminar �ow regions on aircraft surfaces and, in the end, reduce

fuel consumption by reducing drag and allowing the design of more compact aircrafts.

In order to obtain useful insights into the disturbances behavior on a swept wing, we need to choose a

representation of the dynamical system underlying it. As a painter can choose among various techniques

and points of view to represent the reality surrounding him � oil, tempera, pastel � or a writer can

choose between a novel, a poem or a short story, we have to choose a description, or de�ne an abstract

model of our dynamical system and select the mathematical and numerical tools we want to apply to it.

The choice of how to represent a dynamical system can be reduced to the choice of an appropriate

basis (or space) where this representation is projected onto, and di�erent possibilities are available in this

sense. The most natural and obvious, but not necessarily the most useful, is to represent our problem in

physical space: in a discrete setting, our basis consists of all degrees of freedom of the problem at each

location in spacex and at each time t we wish to represent, and a given state can be represented by a

vector in this space. Another approach that can be used in the case of periodic domains, is to choose a

Fourier space as a basis, so that wavenumbers replace the positionsx and wave amplitudes replace the
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value of the unknown variable at each locationx. Owing to the fact that moving from physical space

to Fourier space is computationally rather inexpensive, in some cases both representations are used, and

selected operations are performed in di�erent spaces.

An alternative choice is to use a modal decomposition: in this case the spatial basis is no longer made

up of the single degrees of freedom of the problem but of a composition of them, the eigenvectors of the

linearized model (as we will see when presenting multigrid as our numerical method in chapter 4, the

eigenvectors can correspond to the Fourier modes in some cases). Eigenvectors represent structures that

are invariant in shape � but change in amplitude � during the time evolution of the linearized �ow �eld.

The advantage of this representation becomes apparent if we consider that, as has been clearly stated by

Mack & Schmid [41], the goal of any scienti�c study of a �uid-dynamical process is not in the reproduction

of its physical features by direct numerical simulations but in the extraction of the governing underlying

mechanisms from the data the DNS produces. In other words, we are interested in the intrinsic �ow

behavior captured by the dynamics of coherent structures.The eigenvectors as invariants of the linearized

dynamical system can then be interpreted as these coherent structures. This is the representation used

in this work to describe the perturbations. The amplitude of each eigenvector, instead of the value of the

variable at a location in space, becomes the new degree of freedom, and the dynamics of the system is

described by the time evolution of the amplitude associated with each eigenvector.

When all eigenvectors are available, the description of the system provided by the eigenvectors' am-

plitude is equivalent to the one provided by the original degrees of freedom. Nonetheless, it is often the

case that not all the eigenvectors are required (or accessible), and particular features of the �ow can be

accurately described by a subset of them. For example, when we are interested in the long-time behavior

of the perturbations, only the least stable (or the most unstable) eigenvector is of interest, as it is the

one that dominates the asymptotic dynamics of the system. More generally, a subset of the eigenvectors

can be used to describe the system dynamics, but the choice of which eigenvectors are to be retained or

discarded is not obviousa priori .

Other choices for a basis are available besides modal decomposition, for example, using a singular

value decomposition (SVD) or a proper orthogonal decomposition (POD), each one selecting a di�erent

basis for and emphasizing di�erent features of the representation of the space of solutions. Subspaces of

these bases can be selected for building reduced-order models of the dynamical system (see for example

[55, 60]), but these possibilities are beyond the scope of this work.

The magnifying glass

Once we have selected a representation, or a model, of our problem, we need to focus our attention on a

particular characteristic. From the point of view of the perturbations' evolution, the emphasis can be put

on their short-time or their long-time behavior. When selecting the features we are more interested in,

we must also select the more convenient representation together with a particular numerical approach.

The most natural approach is to observe the system evolving in time, as if it were an experiment.

This can be accomplished using a direct numerical simulation (DNS): once an initial condition has been

chosen, the governing equations for the perturbations are advanced in time, and the evolution of the

�ow in physical space can be observed. While this approach can be used for studying both the short-

time and the long-time evolution of the �ow, it poses two problems: (i) the most obvious one is the

dependence of the solution on the initial condition which represents a somewhat arbitrary choice and

is of extreme importance for the short-time evolution of the perturbations; (ii) the second one is the

di�culty in extracting, from simple observation of the evolution of a particular initial condition, the
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coherent structures that represent the true interest of our study (but see [60] for a possible approach).

The short-time behavior is of particular interest for non-normal system and is usually approached

in physical space by non-modal analysis [61, 59, 12]. The eigenvalue/eigenvector description, while still

possible, is not convenient in analyzing the short-time response because the eigenvectors responsible for

the non-normal behavior can be di�cult to obtain numerically (but see [49, 50], for a counterexample).

The main interest lies in the fact that non-normal systems can present transient growth e�ects which,

as shown in Figure 1.2, can lead to transition even in the case of asymptotically stable �ows. The main

goal of non-modal analysis is then to investigate the possibility of transient growth and identify the

e�ects of the initial conditions on energy ampli�cation. Of particular interest are the initial conditions

leading to the maximum possible transient growth, which are called optimal perturbations: they can be

identi�ed by solving an optimization problem for the �ow energy (or any equivalent scalar quantity we

choose to optimize) over all possible initial conditions. The optimization problem can be treated as a

constrained optimization, where the constraints are given by the governing equations and implemented

by adjoint �elds (also called Lagrangian multipliers). The optimal condition satisfying the constraints

is found by identifying stationary points of the Lagrangian. Direct and adjoint equations are obtained

by this procedure and can be marched forward and backward in time in order to determine the optimal

initial condition. In this sense, non-modal analysis removes the arbitrariness of the initial condition by

identifying the most interesting one.

In contrast, the eigenvalue/eigenvector description is more often used in the description of the long-

time (asymptotic, or modal) behavior of the system. As we will see in detail, this description is used in

this work to identify the coherent structures underlying the �ow as well as to identify how the behavior

of these structures is in�uenced by external disturbances. A Lagrangian approach similar to the one

just described is used to identify receptivity and sensitivity of an eigenvector (and its corresponding

eigenvalue) to forcing and structural modi�cations of the operator. The adjoint equations and their

solutions given by the adjoint �elds will play a central role in this process.

Stato dell'arte

The swept-wing attachment-line boundary layer has been investigated from multiple points of view in the

past. References to most of the relevant work dating before 2003 can be found in the reviews by Reed

and Saric [53, 54, 57, 58].

Most of the research has been concentrated on local models: the swept Hiemenz �ow, characterizing

the �ow impinging on a �at plate with a sweep angle, has been extensively studied as a local approximation

of the �ow close to the attachment line of a swept wing. DNS computations have been performed by

Joslin [32, 33] while the short-time optimal growth has been the subject of the work of Guégan et al.

[23, 22, 24] and Obrist & Schmid [49]. Comparison of theoretical and experimental results on cross�ow

instabilities have been provided by Dagenhart & Saric [13].

In this work, the global modal approach for a realistic con�guration of the swept wing is attempted.

The same approach has been applied to the swept Hiemenz �ow starting from the work of Hall, Malik

& Poll [25] who studied the stability of the Görtler-Hämmerlin mode (i.e. a mode having the same

streamwise structure as the swept Hiemenz �ow) and showed that this three-dimensional �ow can, in

contrast to the two-dimensional (unswept) Hiemenz �ow, become unstable above a critical Reynolds

number.

Lin & Malik [38] extended the work of Hall, Malik & Poll by computing several modes of the incom-

pressible swept Hiemenz �ow using a Chebyshev spectral collocation method and regular polynomials
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�
P (x) = xn ; n = 0 ; 1; 2; : : :

	
in order to discretize the normal- and chord-wise direction of their domain.

They identi�ed a branch of eigenvalues, all moving at approximately the same phase speed ofcr = 0 :35 in

the spanwise direction � i.e. moving at a velocity equal to 0.35 times the spanwise free-stream velocity

component. It was shown that the most unstable mode was the symmetric Görtler-Hämmerlin mode

already found by Hall et al. [25]. Less unstable modes were shown to alternate between antisymmetric

and symmetric as one descends down the branch towards smaller growth rates.

In a subsequent study [39] they addressed the question of the leading-edge curvature by using a

second-order boundary-layer approximation in computing the base �ow and showed that the �ow was

stabilized by increasing the leading-edge curvature. For small distances in the chord-wise direction from

the attachment line, this e�ect was mainly related to the curvature terms appearing in the continuity

equation, while the centrifugal acceleration terms in the momentum equations have been found of less

importance.

With a similar approach, Obrist & Schmid [48] addressed the same problem by replacing the regular

polynomials used by Lin & Malik in the chord-wide discretization with Hermite polynomials. They

too found the most unstable mode to be the Görtler-Hämmerlin mode, showing an exponential decay

outside the boundary layer, and identi�ed a richer spectrum composed of several branches, continuous

and discrete. The non-modal analysis previously mentioned [49] was part of the same work.

Almost all the investigations mentioned so far addressed the simpli�ed model of swept Hiemenz �ow.

The �rst global analysis of the leading-edge region was performed by Mack, Schmid & Sesterhenn [44] and

Mack & Schmid [42, 43]. They addressed the stability of a compressible �ow impinging on a parabolic

body with a sweep angle. A high-order �nite-di�erence discretization was used in both the normal and

chordwise direction. They showed a global spectrum consisting of di�erent branches: boundary layer

modes, acoustic modes and wave-packet modes. Of these, the boundary layer and wave-packet branches

are of interest for the current, incompressible study. Additionally, they showed, for the �rst time, evidence

of a connection between attachment-line and cross�ow instabilities, a feature already suggested but never

proven in previous works [26]. This result was made possible by considering a domain extending beyond

the attachment-line region.

Outline

The present work continues in the wake of the global modal approach used by Mack et al. [40], but

analyzes an incompressible �ow instead of a compressible one and extends Mack's results by includ-

ing a receptivity and sensitivity analysis. This work is organized in six chapters, the �rst being this

introduction.

In chapter 2 we de�ne the swept-wing problem: governing equations for the base �ow and the pertur-

bations are derived, and the dimensionless parameters governing the base �ow and perturbation behavior

will be described. The adjoint equations for the perturbations are obtained starting from a Lagrangian

description of the �ow and, building on that, receptivity to external forcing and sensitivity to struc-

tural modi�cations will be de�ned. The concept of the wavemaker in the context of global analysis, as

introduced by Giannetti & Luchini [19], will be presented.

Once the theoretical framework underlying the swept-wing �ow analysis is presented, our numerical

approach is speci�ed. Because numerical issues represent a large part of this work, it is split into two

parts. The �rst part, in chapter 3, includes details related to the discrete representation of our problem:

the pressure-form of the nonlinear and linear Navier-Stokes equations � where a Poisson equation for the

pressure replaces the mass-conservation equation � and their discretization, the boundary conditions,
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the grid generation process and the validation of the implemented discretization. A �nal section contains

some considerations on the required grid size. The second part, in chapter 4, is dedicated to the solver

used to compute the base �ow, based on the multigrid framework. An analysis of the multigrid algorithm

from the point of view of an iterative solution process is performed, and the most important parts of the

algorithm are analyzed using Local Fourier Analysis (LFA), a useful tool providing theoretical estimates

on the convergence rates of iterative methods. The two available algorithmic choices are then introduced,

starting from the more well-known Correction Scheme and moving on to the less well-known but more

powerful Full Approximation Scheme. At the end of the chapter, some simple test cases are used to

identify and overcome possible problems leading to a loss of e�ciency.

In chapter 5 we return to the theory covered in chapter 2 and present the results obtained for the swept-

wing con�guration. A description of the main features of the base �ow is followed by a presentation of

the results obtained by a global analysis of the linearized Navier-Stokes operator, including the computed

part of the spectrum and an in-depth analysis of the least stable eigenvector. The corresponding adjoint

�eld is then analyzed, and the signi�cance of its distribution in the domain is clari�ed. The identi�cation

of the wavemaker region concludes this chapter.

Finally, chapter 6 summarizes the main results of this work and describe some paths that can be

followed to build upon what has been accomplished here.

A short Matlab code is provided in Appendix A This is a demonstration code used in producing the

results for the test cases at the end of the chapter on multigrid (in section 4.6), but it is not the code

used in computing the main results of this work presented in chapter 5. It can nonetheless be useful in

providing an outline of how a real multigrid code can be structured.

I found Figure 1.4, from a lecture given by Peter Schmid at Institut Henri Poincaré in Paris, very

useful in outlining the main steps required in a receptivity and sensitivity analysis. While the chapters

in this work do not follow exactly the same outline, this �owchart can be helpful in maintaining a broad

view on this work and in avoiding getting lost in details. The un�lled boxes on the right brie�y indicate

the numerical tools used at each step.

As a �nal note in this introduction, I would like to mention that in writing these pages I tried

as much as possible to follow and apply the suggestions given by McIntyre in his paperLucidity and

science I: Writing skills and the pattern perception hypothesis[46]. Whether or not I accomplished this

task is another story, but McIntyre's paper is nonetheless a very interesting reading that deserves to be

mentioned.
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Base Flow Calculation
multigrid with
grid stretching
and adaptive

re�nement

LNS Adjoint LNS

Global Modes Adjoint Modes

SLEPc:
Krylov-Schur,
shift-invert,

GMRES, ILU
preconditioning

Sensitivity Receptivity

Figure 1.4: Receptivity and sensitivity analysis �ow chart (courtesy of P.J. Schmid). The �rst
step of the analysis is the computation of a base �ow, the stability properties of which we are
interested in. The governing equations for the perturbations can then be derived by linearizing
the Navier-Stokes equations around this base �ow and are named the linearized Navier-Stokes
equations (LNS). Similarly, their adjoint counterpart can be obtained. Solution of the direct
and adjoint eigenvalue problems returns the direct and the adjoint modes (which can also be
seen as the right and left eigenvector of the direct problem). Receptivity analysis involves only
the adjoint modes, while sensitivity analysis involves both the direct and adjoint modes.
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Chapter 2

Problem De�nition

The theoretical framework underlying our problem is presented in this chapter. The geometry of interest

is the leading-edge region of a swept wing and is described �rst. The equations governing incompressible,

viscous �ow are then introduced by de�ning the nonlinear Navier-Stokes operatorR (q), where q is the

state vector consisting of the three components of the velocity �eldf u; v; wg as well as the pressurep.

The reference scales for length, velocity and time are introduced, which makeR (q) dimensionless. This

also yields dimensionless parameters governing the �uid motion � namely, the chord-based Reynolds

number ReC and the sweep angle� .

Our main interest lies in the evolution of small perturbations superimposed on a given stationary

�ow, the receptivity of these perturbation to external forcing and their sensitivity to structural changes

in the governing equations. Receptivity and sensitivity form the foundation for the passive and active

manipulation of the �ow by applying control-theoretic means.

The equations governing the evolution of in�nitesimal perturbations are derived based on a lineariza-

tion of the Navier-Stokes operatorR around a stationary �ow Q with R (Q) = 0 . The linearized Navier-

Stokes equations can then be represented by the application of a linear operatorL to a perturbation �eld

� q, i.e. L � q =
�
@R=@q

�
� q.

The linear adjoint operator L + , which plays a central role in receptivity and sensitivity problems, is

then derived by de�ning a Lagrangian I for a generic objective functionalobj. The governing equations,

boundary and initial conditions are implemented using adjoint �elds (also known as Lagrange multipliers).

The search for a stationary point of the Lagrangian I as a point in state space representing a solution

of the dynamical problem corresponds to setting to zero the gradients (also known as variations) of the

Lagrangian with respect to all variables: the particular case of setting to zero the gradient with respect

to the direct variables q provides the adjoint equations.

We then consider the possibility of forcing the linearized Navier-Stokes equations by a generic force

f 0 such that L � q = f 0 and proceed to assess the e�ects of this forcing. Receptivity and sensitivity

analyses address this con�guration for the case of a small variation in the forcing. In order to show this

quantitatively, the Lagrangian functional I is rede�ned as a function of the state variables given by the

�ow �eld, the perturbation �eld and the unknown forcing �eld. The gradient of the Lagrangian I with

respect to the forcing f 0 will provide us with a measure of receptivity of the objective functional to the

forcing.

As a last step, we consider the e�ect of a structural change in the governing equations on the spectrum.

The Lagrangian functional I is rede�ned again in order to take into account the operator representing

the governing equations and an eigenvalue as variables, and its variations are computed with respect to

the new variables, resulting in an equation for the change in a particular eigenvalue as a function of a

change in the operator.

11
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2.1 The governing equations for the base �ow

The �ow in the leading-edge region of an in�nitely long swept wing is considered. The wing, as represented

in Figure 2.1, is subjected to a uniform �ow U �
1 = f U �

1 ; 0; W �
1 g, where U �

1 and W �
1 are the chordwise

and spanwise components of the uniform velocity �eld. The sweep angle� then satis�es the relation

tan � = W �
1 =U�

1 . Asterisks denote dimensional quantities.

Two reference systems are de�ned as shown in Figure 2.1, both centered at the leading edge: (i) a

Cartesian coordinate system, whosex-axis is parallel to the chord, whosey-axis points upwards and whose

z-axis is in the spanwise direction and (ii) a curvilinear coordinate system, with itss-axis running along

the pro�le, its n-axis normal to the pro�le surface and sharing its z-axis with the Cartesian coordinate

system.

C �

x

y

z s

n
�

U �
1

W �
1

U �
1

Figure 2.1: Sketch of the geometry. The Cartesian reference system is displayed in red and the
curvilinear one in brown. The velocity components of the free-stream, uniform �ow are shown
in blue. A zero angle of attack will be considered, i.e., V1 will be set to zero throughout this
work.

The �ow is governed by the incompressible Navier-Stokes equations (R), where a forcing term f is

accounted for explicitly.

R (q) �

8
><

>:

@t u + r u u � � � u + r p = f

r � u = 0
(R)

� denotes the Laplacian operator, and� is the dimensionless viscosity taken as the inverse of the Reynolds

number. The quantity q = f u; pg = f u; v; w; pg is a vector containing all state variables.

The Navier-Stokes equations (R) are to be complemented by boundary conditions on the in�ow � in ,

out�ow � out and on the solid boundary � sb, as well as by initial conditions at t = 0 .

As boundary conditions, a Dirichlet-type condition is speci�ed on both the in�ow and the solid

boundary for all components of velocity. No boundary condition is required for the pressure in this

formulation, but a global constraint
R


 p d
 = c has to be speci�ed, wherec is an arbitrary constant

which can be set to zero without loss of generality. The situation will change in the pressure-equation

formulation that will be introduced in the next chapter, where a boundary condition for the pressure

will be required. At this stage, we neglect the global constraint on the pressure as well as the boundary

conditions for velocity at the out�ow � they will be clari�ed in the next chapter. We can nonetheless

specify a generic boundary condition by means of applying an operatorH R to the vector q. For the
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boundary conditions speci�ed so far we can write

H R (q) �

8
><

>:

u (x; t) � u � (x) = 0 for x on � in ,

u (x; t) = 0 for x on � sb.
(2.1)

In a similar way, initial conditions on velocities can be speci�ed by means of applying an operatorGR to

the vector q as

GR (q) � u (x; 0) � u0 (x) = 0 : (2.2)

No initial condition is required for the pressure.

All quantities in the previous equations � ( R), (2.1) and (2.2) � are rendered dimensionless by

choosing the chordC � , de�ned perpendicular to the leading edge, as the reference length, the chordwise

velocity component U �
1 as the reference velocity andT � = C � =U�

1 as the reference time scale. The

reference pressure is taken as� � U � 2
1 , where � � is the dimensional density of the �uid. A chord-based

Reynolds number can be de�ned as

ReC =
U �

1 C �

� � (2.3)

where� � is the dimensional kinematic viscosity of the �uid. The dimensionless viscosity� in the governing

equations (R) is then taken as the inverse ofReC according to

� =
1

ReC
=

� �

U �
1 C � :

Dimensional quantities can be recovered from solutions ofR (q) as

u� = U �
1 u; v� = U �

1 v; w� = U �
1 w; p� = � � U � 2

1 p

while dimensional time and lengths can be obtained by multiplying their dimensionless values byT � and

C � , respectively.

Once the equations are made dimensionless and for a given geometry, two governing parameters are

su�cient to completely de�ne the problem: the Reynolds number ReC and the sweep angle� . The

dimensionless spanwise component of the uniform �ow is obtained asW1 = tan � .

Other dimensionless parameters

An alternative set of dimensionless parameters can be used in the context of swept-wing boundary-layer

analysis: (i) the Reynolds numberRer , based on the leading-edge radiusr � and the chordwise velocity

U �
1 , and (ii) the viscous Reynolds numberRes, based on the viscous length� � and the spanwise velocity

W �
1 . We have

Rer =
U �

1 r �

� � ; (2.4)

Res =
W �

1 � �

� � : (2.5)

The viscous length scale� � is de�ned as

� � =

r
� �

S� (2.6)
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where S� = 2U �
1 =r � is the strain rate at the attachment line for the inviscid �ow around a cylinder with

radius equal to the leading-edge radius. This somewhat arbitrary choice for the strain rateS� is necessary

since the actual strain rate is not known in advance, and re�ects the use of the asymptotic strain rate

in the closely related problem of swept Hiemenz �ow [24, 48]. Substituting (2.6) into (2.5) and using

tan � = W �
1 =U�

1 it can be shown that the following relation holds:

Res =
p

Rer tan � (2.7)

such that specifying the two Reynolds numbers determines the sweep angle� . The relation between the

chord-based and the radius-based Reynolds number is

Rer =
r �

C � ReC = rReC

where r is the dimensionless leading-edge radius.

Base �ow computation

Obtaining a steady state solution of the Navier-Stokes equations (R) is a necessary step for studying the

stability of the perturbations. A possible exception is the stability analysis of a periodic, oscillatory base

�ow by means of Floquet analysis, but this option will not be considered in this work.

For the case of a stable, steady state solution, two options are available from the computational point

of view: the �rst is to advance the system in time up until convergence to a �ow state which remains

invariant in time is reached; the second is to directly tackle the steady-state equations with a Newton or

a Newton-like method. A Newton-like method is used in this work and will be introduced in chapter 4.

It is worth noting that a stable solution is not always available. In fact, it is often the case that the

properties of an unstable con�guration are analyzed in order to understand the mechanisms underlying

the instability. In this case, direct time stepping is not an option as the computed �eld will diverge

from the one of interest towards another stable con�guration. A possibility is then to employ a Newton

method and proceed by continuation.

2.2 The governing equations for the perturbations

We now suppose that a steady-state �ow, represented by the state vectorQ = f U; V; W; Pg, has been

obtained by solving the Navier-Stokes equationR (Q) = 0 or their steady state equivalent. We can then

investigate the evolution of a small perturbation � q = f �u; �v; �w; �p g superimposed on the base stateQ,

i.e. the evolution of q = Q + � q.

The perturbation �eld is governed by the linearized Navier-Stokes equationsL which can be obtained

by computing the Jacobian of the Navier-Stokes operatorR, evaluated at the given �ow state Q,

L � q =
@R
@q

�
�
�
�
Q

� q: (2.8)

In order to simplify notation for the remainder of this chapter, we omit the pre�x � for the perturbation

variables. The new perturbation variable is q = f u; v; w; pg, while a capital Q will be used to indicate

the solution of the nonlinear equations.
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The linearized equations read

L � q =

0

B
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@
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Vx �Q� + Vy Vz @y
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(L )

where
�Q� = U@x + V @y + W@z � �

�
@xx + @yy + @zz

�
(2.9)

is the convection-di�usion operator and the subscripts x; y; z represent partial derivatives with respect

to the corresponding coordinates. The time derivative has been kept separate to explicitly state that the

problem is a di�erential-algebraic system: no time derivative appears for the pressure. A forcing term

f 0 is introduced explicitly. The e�ect of the L operator � and in particular of the base �ow velocity

U and its gradient � on the perturbation velocity �eld can be split in two parts: (i) a transport-

di�usion mechanism, summarized by the operatorQ� , and (ii) a production mechanism, represented by

the gradients of the base �ow [45].

Appropriate boundary and initial conditions are to be de�ned for the perturbation equations. As a

boundary condition, we force the perturbation velocity to zero at the in�ow and at the solid boundary

(out�ow boundary condition and pressure will be dealt with in the next chapter), i.e.,

H L (q) � u (x; t) = 0 for x on � ; (2.10)

and a given initial condition is imposed as

GL (q) � u (x; 0) � u0 (x) = 0 : (2.11)

Because all coe�cients in the L operator are constant in time, a Laplace transform of the perturbation

variables can be performed and solutions to (L ) can be sought as a linear combination of global modes,

each having the form

(u; v; w; p) = ( û; v̂; ŵ; p̂) e�t (2.12)

where � is a complex-valued number andû; v̂; ŵ; p̂ are complex-valued �elds which depend on� but not

on time. As a consequence, theL operator is transformed into the L̂ and the linearized Navier-Stokes

system (L ) reads

L̂ q̂ =

0
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(2.13)

where the right-hand side contains the Laplace transform of the right-hand side of (L ) and the initial

conditions for the velocity �eld (u0; v0; w0).

The homogeneous equivalent of (2.13), i.e. when the right-hand side forcing termf 0 and the initial

condition u0 are zero, can be recast as a generalized eigenvalue problem in the form

(�B + A) q̂ = 0 (2.14)



16 Chapter 2. Problem De�nition

whereB and A are the �rst and the second matrix in equation (2.13) � or an appropriate discretization.

2.3 The adjoint governing equations for the perturbations

The adjoint equations are a key tool in understanding the e�ects of the forcing termf 0 on the perturbations

q � or, as we will see later, of f̂ 0 onq̂ . Adjoint equations can be obtained by starting from an optimization

problem: an objective functional, for example the energy of the perturbations
R


 u �u d
 in the domain 
 ,

is maximized under the constraints given by the perturbations' governing equations (L ) and corresponding

boundary conditions. The constraints can be implemented directly into the Lagrangian by means of

multipliers (also known as the adjoint �elds)

I
�

q; q+ ; q0; q+
0 ; q� ; q+

�

�
= obj �



q+ ; L (Q) q � f 0� T


 �


q+

0 ; GL q0
�


 �


q+

� ; H L q�
� T

@
 (2.15)

where the fact that the perturbation equation L (Q) and associated initialGL and boundary H L conditions

are linear is made clear by using a matrix-vector product notation. The objective functional obj is left

unspeci�ed for the time being.

The inner products are de�ned as integrals over time and the domain
 for the perturbation equa-

tions, over the domain 
 for the initial condition and over time and the boundary � 
 for the boundary

conditions:



a; b

� T

 =

Z T

0

Z



aH b d
 dt



a; b

�

 =

Z



aH b d




a; b

� T
@
 =

Z T

0

Z

@

aH b ds dt (2.16)

where ds represents a di�erential element of the domain boundary@
 .

Once the Lagrangian functional is de�ned, the optimization problem is solved by searching for station-

ary points of the Lagrangian, which can be easily identi�ed by setting its gradients (also called variations)

with respect to all independent variables � direct and adjoint � to zero. The gradient with respect to

a given variable a is de�ned as

@I
@a

� a = lim
s! 0

I (a + s� a) � I (a)
s

(2.17)

which, in e�ect, recovers the same functional derivative used in the derivation of the governing equations

for the perturbations ( L ). The variable a can take the form of a scalar, a vector or a matrix.

Recalling that all operators involved in the inner products, as well as the inner products themselves,

are linear, the gradients can be readily obtained. Evaluation of the gradients with respect to the adjoint

variables q+ ; q+
0 ; q+

� are immediate and recover the governing equations (L ), boundary conditions (2.10)

and initial condition (2.11) operators. For example, the gradient with respect to q+ reads

@I
@q+ � q+ =

RT
0

R



�
q+ + s� q+ ��

Lq � f
�

� q+
�
Lq � f

�
d
 dt

s
=

Z T

0

Z



� q+ �

Lq � f
�

d
 dt = 0 :

Requiring the equation to be satis�ed for any � q+ , any control volume 
 and any integration time T is

equivalent to imposing the perturbation equations Lq = f .

Computing gradients with respect to the direct variables is less straightforward, as these variables do

not appear explicitly in the inner product. Using integration by parts, the direct variables can be made

explicit and the gradients can be computed using the same approach as for the adjoint. The operation

can be performed term-by-term for the operatorL . For example, integration by parts is applied to the
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operator @t + �Q� (2.9), which is the equivalent of a scalar convection-di�usion equation, to extract the

scalar velocity componentu. We obtain



u+ ;

�
@t + �Q�

�
u

� T

 =


 �
� @t + �Q+

�

�
u+ ; u

� T

 + J (2.18)

where the linear adjoint convection-di�usion operator �Q+
� operating on the adjoint �eld reads

�Q+
� = � U@x � V @y � W@z � �

�
@xx + @yy + @zz

�
: (2.19)

Looking at the result of the integration by parts of the convection-di�usion equation (2.18) and at the

adjoint operator �Q+
� , we can interpret the adjoint operator � @t + �Q+

� as another convection-di�usion equa-

tion which propagates the adjoint �eld backwards in time and where the convective �ow �eld (U; V; W)

has opposite sign compared to the direct operator�Q� .

Boundary and initial conditions for this adjoint equation are obtained using the term J , which contains

the remainders of the integration by parts:

J =
Z T

0

Z



@t

�
uu+ �

| {z }
(a)

+ ( U@x + V @y + W@z )
�
u+ u

�

| {z }
(b)

+ �
h
@x

�
ux u+ �

+ @y
�
uy u+ �

+ @z
�
uzu+ � i

| {z }
(c)

� �
h
@x

�
uu+

x

�
+ @y

�
uu+

y

�
+ @z

�
uu+

z

� i

| {z }
(d)

d
 dt:

(2.20)

Four di�erent terms can be identi�ed in J with di�erent origins: (a) from the integration of the time

derivative, (b) from the integration of the convective term, (c) and (d) from the integration of the di�usive

term.

A correct treatment of J requires the use of the boundary and initial conditionsH L , GL , together

with their corresponding inner products. The inner products are de�ned in (2.16) and have been already

used in the de�nition of the Lagrangian I (2.15). For example, we consider the term(a): integration in

time results in two space integrals evaluated att = 0 and t = T. Adding the inner product implementing

the initial condition we obtain
Z



uu+ d


�
�
�
�
t = T

�
Z



uu+ d


�
�
�
�
t =0

+
Z




�
u(t = 0) � u0

�
u+

0 d 
 :

Variation with respect to u is now straightforward and leaves only the �rst integral evaluated at t = T

which has the role � once matched with the variation of the objective functional with respect to u � of

de�ning the initial condition for the adjoint �eld u+ at time T. For example, if the objective functional

is taken as the energy at timeT, i.e. obj = 0 :5
R


 uH ud

�
�
t = T , the initial condition for the adjoint would

be

G+
L (q) � u+ (T) � u (T) = 0 : (2.21)

The role of the adjoint �eld is then related to the enforcement of the optimality condition.

The treatment of the terms (b); (c); (d) of J (2.20), together with the enforcement of the boundary

conditions through the inner product


q+

� ; H L q�
� T

@
 � see equation (2.15) � provides the boundary

conditions H +
L for the adjoint equation in a similar manner.

All other terms in the L operator de�ning the perturbation problem can be dealt with in a similar

way: the terms containing the gradients of the base �ow remain unchanged while the gradient of the
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pressure and the divergence of the perturbations change sign when applied to the adjoint pressure and

perturbations, respectively, in a way similar to the change in sign of the time derivative.

The adjoint linearized Navier-Stokes equations for the perturbations then read

L + � q =

0

B
B
B
B
B
@
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0

3

7
7
7
7
5

+

2

6
6
6
6
4

�Q+
� + Ux Uy Uz � @x

Vx �Q+
� + Vy Vz � @y

Wx Wy �Q+
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=
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0

0

3

7
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5

(L + )

where �Q+
� has been de�ned in equation (2.19). We describe initial and boundary conditions using the

operator H +
L and G+

L .

As is the case for the direct equations, all coe�cients in the L + operator are constant in time and a

Laplace transform of the perturbation variables can be performed. A solution ofL + can be sought as a

linear combination of global adjoint modes, each having the form

�
u+ ; v+ ; w+ ; p+ �

=
�
û+ ; v̂+ ; ŵ+ ; p̂+ �

e� + t (2.22)

where � + = � H is the complex conjugate of� in (2.12) and û+ ; v̂+ ; ŵ+ ; p̂+ are complex-valued �elds

which depend on� + but not on time. As a consequence, theL + operator is transformed into L̂ + ; and

the adjoint linearized Navier-Stokes system can be rewritten as

L̂ + q̂+ =

0

B
B
B
B
B
@
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(2.23)

where the right-hand side contains the initial conditions for the adjoint �eld.

The homogeneous equivalent of (L + ), i.e. when the initial conditions u+
0 are zero, constitutes the

adjoint eigenvalue problem
�
� � + B + + A+ �

q̂ + = 0 (2.24)

which can be solved for the adjoint global modes.

Adjoint equations as Hermitian transpose

Now that a physical interpretation of the adjoint �eld has been given by stating that the initial conditions

of the adjoint equations at time t = T are de�ned by the objective functional, another approach to the

computation of the adjoint shall be given. Keeping in mind that, ultimately, we will need to solve

our governing equations numerically, the two approaches are shown in Figure 2.2. The �rst option,

represented by continuous arrows, is to �rst derive the adjoint operator (L + ) in the manner outlined

in the previous section, and then proceed to its discretization. This approach requires to compute the

adjoint system and to perform two di�erent discretizations � of the direct and the adjoint system. The

second option, represented by dashed arrows, starts by implementing a discretizationL h of the linear

operator L , including all boundary conditions. The discrete adjoint operator L +
h can then be obtained as

the Hermitian transpose of the direct, thus bypassing the computation of the continuous adjoint equations
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Figure 2.2: Possible routes to obtain the adjoint equations. Continuous arrows: starting from
the direct linear problem (red), the adjoint equations can be computed by integration by parts
(blue) and can then be discretized (yellow). Alternatively, the dashed arrows show that if
discretization is performed on the linear problem �rst (green), the adjoint equations can be
obtained by simply computing the Hermitian transpose of the discrete problem.

and their discretization.

L +
h = L H

h

The same relationship hold for the Laplace transformed operator

L̂ +
h = L̂ H

h :

As a consequence, we can reinterpret the adjoint eigenvectors as the left eigenvectors of the direct problem.

2.4 Receptivity and sensitivity

The linearized Navier-Stokes operator (L ) is a non-normal operator, where the non-normality is mainly

the consequence of the streamwise advection term
�
U@x + V @y + W@z

�
in the �Q� operator acting in the

opposite direction on the adjoint �eld. For a comprehensive review of operator non-normality the reader

is referred to Schmid & Henningson [61].

Operator non-normality has three principal consequences [12]. First, the perturbation energy
R


 u �u d


can exhibit transient growth, i.e. an increase � possibly of several orders of magnitude � in energy over

a short time even if the system is asymptotically stable. This mechanism can be at the origin of by-

pass transition, where transition from laminar to turbulent �uid motion is not related to the asymptotic

exponential growth of the perturbations but rather to the transient growth over a short time interval.

The amount of transient growth depends on the initial condition, and the search for the speci�c initial

condition maximizing growth over a certain time interval leads to the optimal perturbation problem. The

solution of the optimal perturbation problem is based on the maximization of a Lagrangian functional

similar to (2.15) where the objective functional obj is, in the simplest case, given by the energy ampli�-

cation of the perturbations at a given time or the integral of the energy within a given time interval. The
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optimal perturbation problem has been extensively studied for the case of swept Hiemenz �ow, a �ow

con�guration closely related to ours, by Guégan, Schmid & Huerre [23, 22, 24] and will not be addressed

here. The potential of swept Hiemenz �ow to support transient growth has been analyzed by Obrist &

Schmid [49].

The other two consequences of non-normality are related to the long time (or asymptotic) response:

a very strong receptivity/response to forcing and a marked sensitivity of the spectrum � which can be

obtained by solving the eigenvalue problem (2.14) � to perturbations of the operator ( L ). These two

problems will be addressed in the following sections employing the Lagrangian framework already used

in the derivation of the adjoint.

Receptivity to forcing

We start by slightly modifying the de�nition of the Lagrangian functional (2.15) by including the forcing of

the perturbation equations, which so far has been considered as user-speci�ed, as a variable. Additionally,

the Laplace-transformed operatorL̂ and state variablesq̂ are used as constraints instead of the original

operator L and variables q. This is equivalent to taking the Laplace transform of I , provided that the

initial conditions are multiplied by a Dirac delta-function � . We have

Î
�
q̂ ;q̂ + ;q̂ 0;q̂ +

0 ;q̂ � ;q̂ +
� ; f̂ 0

�
= obj �



q̂ + ; L̂ (Q) q̂ � f̂ 0�


 �


q̂ +

0 ; GL q̂ 0
�


 �


q̂ +

� ; Ĥ L q̂ �
�

@
 : (2.25)

Taking the �rst variation with respect to the adjoint and direct �elds gives the direct (2.13) and adjoint

(2.23) governing equations respectively, together with boundary conditions. In addition, we must now

consider the variation of the Lagrangian with respect to the forcing itself, again using the de�nition of

the functional derivative given in (2.17). The only terms contributing to the variation are the objective

functional � which we assume depends on the forcing � and the �rst inner product. The change in

the objective functional associated with a change in the forcing� (obj) = @(obj) =@̂f 0� f̂ 0 is obtained by

setting this variation to zero. We obtain

@̂I

@̂f 0
� f̂ 0 =

@(obj)

@̂f 0
� f̂ 0+



q̂ + ; � f̂ 0�


 = 0 = ) � (obj) = �


q̂ + ; � f̂ 0�


 (2.26)

which states that the sensitivity to small changes in the external forcingf̂ 0 is simply given by the negative

of the adjoint �eld q̂ + .

In order to exemplify the consequences of these results, we consider the case of the two-dimensional

wake developing downstream of a cylinder placed in a uniform �ow, previously studied by Giannetti &

Luchini [18, 19].

The base �ow for this con�guration is shown in Figure 2.3, visualized by its U and V velocity com-

ponents. The �ow is from left to right and is characterized by a recirculation bubble extending a few

cylinder diameters downstream of the cylinder, as shown by the blue area in theU velocity �eld. The û

(a and c) and v̂ (b and d) velocity components of the direct (a and b) and adjoint (c and d) most unstable

global modes are represented in Figure 2.4. The spatial separation of the direct and adjoint modes, which

is itself a consequence of the operator non-normality, is evident: the direct mode is concentrated in the

downstream part of the domain (for Reynolds numbers close to the critical, diameter-based Reynolds

number of � 47, the direct mode represents the von Karman vortex street) while the adjoint mode is

mainly concentrated upstream and in the separation bubble developing just downstream of the cylinder.

Following the interpretation of the adjoint �eld as the gradient of the objective functional with respect

to the forcing, Figure 2.4 provides useful information on where in the domain it is most e�ective to apply
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(a) U (b) V

Figure 2.3: U; V velocity components for �ow around a cylinder, courtesy of P.J. Schmid.

(a) û (b) v̂

(c) û+ � receptivity to stream-wise forcing (d) v̂+ � receptivity to cross-stream forcing

Figure 2.4: Direct and adjoint �elds for a cylinder wake, courtesy of P.J. Schmid.

a forcing in order to modify the objective functional: a localized forcing in the stream-wise direction

will be most e�ective in changing the objective functional where the u+ adjoint eigenvector reaches its

maximum, while forcing in the y direction will be most e�ective where the v+ adjoint eigenvector reaches

its maximum. In both cases, the location is slightly downstream of the cylinder, close to the point where

the �ow detaches from the cylinder's surface forming the recirculation bubble.

The objective functional itself remains to be speci�ed, and it can be shown [19] that in this case it

corresponds to the amplitude of the eigenvector.

Sensitivity of the spectrum to structural modi�cations

We now want to address the issue of sensitivity of the spectrum to a structural change in the operator.

This problem has been �rst addressed by Giannetti and Luchini [18, 19].

In order to understand how a given eigenvalue� changes as the governing operator̂L changes, we �rst

rewrite L̂ by separating the complex frequency� from the spatial part, as already seen when we de�ned

the generalized eigenvalue problem (2.14)

L̂ = ( �B + A) ;

and consider a variation�A in the spatial part A of the operator. Examples of the possible origin of such

a variation �A are a change in the Reynolds number, a change in the base �ow �eld or, if the boundary
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conditions are included in L ; as is the case after the problem is discretized, a change in the boundary

conditions. Once again, we start with the de�nition of the Lagrangian I , with the di�erence that we now

include the operator A as a variable. Additionally, the objective functional is speci�ed as the eigenvalue

� , itself a function of A and the sensitivity of which we are interested in; the forcing in the perturbation

equations is set to zero. The new Lagrangian reads

Î
�
�; q̂ ;q̂ + ; : : : ; A

�
= � �



q̂ + ; (�B + A) q̂ � f̂ 0�


 � : : : (2.27)

where we have omitted the inner products related to the initial and boundary conditions as their ma-

nipulation is similar to what has been done before. Alternatively, we can assume the direct and adjoint

�elds q̂ and q̂ + to be de�ned also on the boundaries and theA and B operator to take this fact into

account. This latter approach is natural when dealing with the discretized operator.

As already seen in the derivation of the adjoint perturbation equations, variations of the Lagrangian

functional with respect to its variables are obtained by applying the de�nition of the functional derivative

(2.17). The �rst variation with respect to the adjoint state variables @I =@̂q + returns the direct operator

L̂ = ( �B + A) while the �rst variation with respect to the direct state variables @I =@̂q returns the adjoint

operator L̂ + =
�
� �B + AH

�
.

In addition, we have to compute variations with respect to the two new variables� and �A . Computing

the variation with respect to � is straightforward and setting it to zero provides the normalization

condition for the adjoint eigenvector according to

@̂I
@�

�� = �� �


q̂ + ; Bq̂

�

 �� = 0 = )



q̂ + ; Bq̂

�

 = 1 : (2.28)

It now remains to compute the variation with respect to the structural modi�cation �A . In performing

this operation we have to take into account the fact that the eigenvalue� is itself a function of the operator

A and has to be treated accordingly. The change of the eigenvalue associated with the change in the

operator �� = @�=@A �Ais obtained by setting this variation to zero.

@̂I
@A

�A =
@�
@A

�A �


q̂ + ; �A q̂

�
= 0 = ) �� =



q̂ + ; �A q̂

�

 (2.29)

The role of non-normality in increasing the sensitivity of the spectrum to structural modi�cations

�A can be further illustrated by considering the normalization condition (2.28): the spatial separation

between the direct and adjoint modes seen in Figure 2.4 requires large values of the adjoint eigenvector

for the integral over the area where the two coexist to be one.

The wavemaker

Once we have obtained the sensitivity of the spectrum to structural modi�cations �A of the operator,

we can consider a localized structural modi�cation and determine where in the domain it would be most

e�ective.

The answer to this question has implications for the design of a control strategy and often represents

the �rst step of a control study by identifying the location where a localized feedback of the perturbations

onto themselves is most e�ective. An example of such a control strategy has been considered by Giannetti

& Luchini [19] for the case of a cylinder wake: they considered a feedback process in the form of a forcing

f 0 = C (x) u where the matrix C (x) identi�es the linear dependence of the forcingf 0 on the perturbation

velocity �eld u. They additionally consider the feedback process to be localized at a given positionx0 in
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the domain by envisaging the special caseC (x) = C0 � (x � x0 ), where � (x � x0 ) is the Kronecker delta

function.

The time independence of the matrixC (x) suggests a modal representation of both the forcing and

the perturbation �eld, similar to what has been done before: the application of the corresponding Laplace

transform allows us to considerC0 as the perturbation �A of the operator in (2.29), under the hypothesis

that C0 is small compared toA. As a consequence, we can rewrite the shift of the eigenvalue starting

from (2.29) as

�� =


q̂ + ; C0 � (x � x0 ) q̂

�

 : (2.30)

From an application point of view, this formulation can describe the placement of a small cylinder

some place in the domain exerting a forcingf 0 = � cdu on the perturbations, wherecd is a drag coe�cient.

It should be mentioned that this description limits us to a forcing described by Stokes �ow, i.e. with a

linear dependence on the velocity and without any intrinsic dynamics, as it immediately responds to any

modi�cation of the perturbation �eld u.

We can now answer the question asked at the beginning of this section: what is the position where a

small cylinder � that is, our localized structural modi�cation � would be most e�ective? The answer

is provided by analyzing the shift of the eigenvalue�� as a function of the location of the forcingx0 as

given by (2.30) and plotted for the case of the cylinder wake in Figure 2.5, where the point-wise product

of the adjoint and the direct �eld for the û and v̂ velocity components, as well as for the magnitude of

the velocity �eld, are displayed.

(a) û+ û (b) v̂+ v̂

(c) jû + û j

Figure 2.5: Contours of the wavemaker regions, courtesy of P.J. Schmid, based on the work of
Giannetti & Luchini [19]

A dual point of view interprets the same result as identifying the wavemaker of the global mode,

de�ned as the region wherea modi�cation in the structure of the problem is able to produce the greatest

drift of the eigenvalue [19]. From equation (2.30) it can be seen that changes in the operator have a

signi�cant e�ect on the eigenvalues in regions where the direct and adjoint global modes substantially

overlap. Outside the region of marked overlap, a rather small e�ect on the position of the eigenvalue is

observed. As has been shown in the case of the cylinder wake [19] and as we will show for the case of

attachment-line �ow, a consequence of this observation is that, in an eigenvalue computation, only the
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wavemaker region needs to be numerically represented in order to obtain the correct spectrum and the

representation of the operator outside this region is of less relevance.

As a last remark, we note that there is no need for a small cylinder in order to observe a feedback

process. A perturbation �A in the operator can be identi�ed as a change in the base �ow, itself associated

with the presence of the perturbation, as the perturbed �ow is given by the sumQ + q. In this sense,

the wavemaker identi�es the region where the coupled e�ect of perturbations and receptivity is strongest:

large perturbations where the receptivity is low do not a�ect the �ow behavior, strong receptivity in

regions where perturbations are insigni�cant does not a�ect it either.
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Numerical Approach

A thorough investigation of the problem described in chapter 2 requires the computation of discrete

solutions of the nonlinear Navier-Stokes equations (R) and of the direct and adjoint eigenvalue problems

associated with the linearized Navier-Stokes equations (L ). The present and the next chapter are devoted

to the numerical approach used in this work. In this chapter the discrete representation of the nonlinear

and linear governing equations is introduced and validated. In the next chapter we describe the multigrid

algorithm used in the solution of the discretized, nonlinear Navier-Stokes equations (R).

The formulation of the Navier-Stokes equations (R) given in chapter 2, which we refer to as the

divergence form of the Navier-Stokes equations, is not the most suitable from a computational point of

view. An alternative formulation, referred to as the pressure form, is presented in the �rst section of

this chapter [21, 20, 62, 56]. It is used in all computations performed in this work and can be obtained

by applying a projection operator P to the divergence form (R). The application of P can be related

to the computation of the divergence of the momentum equations. Provided that the correct boundary

conditions for the pressure �eld are used, the solutions based on the two formulations are identical: in the

remainder of this work we then simply refer to the solution of the Navier-Stokes equations, independently

of the formulation used to compute it.

We �nd it useful to specify from the start that the pressure form of the Navier-Stokes system must not

be confused with the projection/fractional-step approach often used in time-stepping algorithms, despite

some similarities like the introduction of a Laplacian operator applied to the pressure �eld.

In order to compute a discrete representation of our �ow �eld, the pressure form of the Navier-

Stokes equations is discretized on a grid obtained by conformally mapping a rectangle of sizel � ; l � to the

domain surrounding a Joukowsky pro�le. The domain used for the computation of the base �ow covers

approximately 20% of the chord, while smaller domains are used for the computation of the eigenvalues

and eigenvectors. A second-order �nite di�erence discretization of the governing equations is de�ned

on the conformally mapped grid. Upwinded stencils are used for the convective terms and centered

stencils for all other �rst-order derivatives The Laplacian operator is discretized using a �nite-volume like

formulation. Additionally, the spanwise invariance of the base �ow allows for some simpli�cations in the

governing equations and the application of a Fourier transform in the spanwisez-direction when dealing

with the governing equations for the perturbations (L ).

The implemented discretization of both the nonlinear and the linear problem needs to be validated,

and a set of tests are performed in order to verify its correctness. Two tests are performed for the nonlinear

problem: (i) the computation of the discrete residual of the analytical solution for the inviscid �ow around

a Joukowsky pro�le is used to verify that the discretization in the interior of the domain is second order

with respect to the mesh sizeh and (ii) the solution of the viscous �ow �eld around a cylinder is used to

verify the implementation and discretization of the boundary conditions by comparing our results with

results from the literature and from an alternative, well-established numerical code. Validation of the

linearized equations is performed by comparing the implemented discretization of the operatorL with a

25
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�nite-di�erence approximation computed from the nonlinear equations R.

At the end of this chapter we discuss the issue related to the presence of di�erent scales in the problem.

As a result, the discretized problem becomes very large when increasing the Reynolds number if a global

approach is pursued. Useful methods in overcoming this di�culty, including grid stretching and adaptive

re�nement, will be introduced in the next chapter, but some considerations on the expected size of the

system will be presented as well.

3.1 The pressure form of the Navier-Stokes equations

The formulation of the Navier-Stokes equations (R) given in chapter 2, which we refer to as the divergence

form, is not the most appropriate formulation that can be used for the computation of a numerical solution.

Centered di�erencing of the continuity equation r � u and the pressure gradientr p on a collocated grid

can result in spurious oscillations of the solution and can be a source of slow convergence rates in the

multigrid solver that will be described in chapter 4 [64].

Common approaches used to overcome these di�culties include staggered grid discretization, where

the momentum equations and the continuity equation are de�ned in di�erent locations in a computational

cell, and projection/fractional step methods, where advancement in time of the momentum equations and

the enforcement of the continuity equation are treated in two separate steps. While both these approaches

are valid, they also come with their drawbacks: staggered grids are rarely used for complex geometries

as they require the handling of a rather complicated grid structure; fractional step methods require the

use of a time-stepping or pseudo-time-stepping algorithm whose convergence to a steady state solution

can be rather slow and, in the simplest case, requires multiple solutions of a Poisson equation � for the

velocity and the pressure � at each time step.

An alternative and more e�ective approach, in particular in the context of the multigrid framework,

is the use of a pressure formulation � or pressure Poisson formulation � of the Navier-Stokes equations

[21, 20, 62, 56] The pressure formulation can be obtained by left-multiplying both sides of the divergence

form of the Navier-Stokes system (R) by the operator

P =

2

6
6
6
6
4

1 0 0 0

0 1 0 0

0 0 1 0

@x @y @z �Q �

3

7
7
7
7
5

(3.1)

where Q� = u@x + v@y + w@z � �
�
@xx + @yy + @zz

�
is a nonlinear operator representing the advection

and di�usion terms [65]. This operation leaves the momentum equations unchanged and replaces the

continuity equation with a Poisson equation for the pressure in the form

r � (Q� u + r p) � Q � (r � u) = r � f (3.2)

where for simplicity we have used the steady-state version of the Navier-Stokes operatorR. The �rst

term of the left-hand side represents the divergence of the momentum equations and the second term is

a convection-di�usion equation for the divergence �eld. The right-hand side is given as the divergence of

the forcing.

The resulting set of equations constitutes the pressure formulation of the Navier-Stokes system and
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has a Poisson equation for the pressure in lieu of the continuity equation:

R � (q) �

8
><

>:

@t u + r u u � � � u + r p = f

Qp + � p = m�

(R � )

where Qp = ( ux )2 +
�
vy

� 2
+ ( wz )2 + 2vx uy + 2uzwx + 2vzwy stands for the nonlinear term containing

gradients of the velocity �eld. The term m� = r � f is the divergence of the forcingf .

The application of the operator P to the linearized Navier-Stokes system (L ) � or, alternatively, the

linearization of the pressure Poisson formulation (R � ) � produces a linearized pressure Poisson equation;

the corresponding linearized Navier-Stokes equations read
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where �Q� denotes the same expression as de�ned in equation (2.9):

�Q� = U@x + V @y + W@z � �
�
@xx + @yy + @zz

�
; (3.3a)

Q1 = � 2
�
Vy + Wz

�
@x + 2Vx @y + 2Wx @z ; (3.3b)

Q2 = +2 Uy @x � 2 (Ux + Wz ) @y + 2Wy @z ; (3.3c)

Q3 = +2 Uz@x + 2Vz@y � 2
�
Ux + Vy

�
@z : (3.3d)

As noted in the previous chapter, adjoint equations can be obtained by computing the complex

conjugate (Hermitian) transpose of the linearized system (L � ). Computation of the Laplace transform

and of the eigenvalue problems associated with the direct and adjoint operators in pressure form does

not di�er substantially from the case of the operators in divergence form and is hence omitted here.

Boundary conditions for the pressure form

The use of the pressure equation in place of the continuity equation poses two problems. (i) Whether and

under which conditions are the two introduced formulations equivalent, i.e., will the pressure equation

correctly enforce continuity? And (ii) what is the additional boundary condition for the pressure, which

is now required along the entire boundary of the computational domain due to the introduction of a� p

term in the equations � see Sani et al. [56] for a case in which it is not required.

The problem posed by these two issues is still open, and we refer to the work of Gresho, Sani and

co-authors [21, 20, 56] for a discussion on the subject. Nonetheless, Swanson [64] successfully applied the

continuity equation as a boundary condition for the pressure in order to enforce a divergence-free �ow

�eld in a geometry similar to ours. The two questions above seem to be related, and imposing the correct

boundary conditions results in the continuity equation being satis�ed everywhere in the domain. This is

the approach used in this work.

We �nd it important to remark at this point that a homogeneous Neumann boundary condition

@p=@n= 0 is often applied to the pressure �eld in the context of fractional step methods. Our numerical

experiments have shown that this boundary condition fails to enforce continuity when a solution is

sought for the steady-state pressure form of the Navier-Stokes equations, resulting in unrealistically thick
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boundary layers where mass is generated or destroyed.

The implementation of the continuity equation as a boundary condition for the pressure relies on

reformulating the momentum equations projected in the direction normal to the boundary, such that a

�nite-volume like formulation of the viscous terms can be used. To exemplify this procedure we consider

Figure 3.1: Solid boundary control cell

a two-dimensional problem with a solid boundary aligned with the vertical y-axis as shown in Figure 3.1,

so that the normal momentum equation is the u-momentum equation. We can then express the normal

pressure gradient as
@p
@n

=
@p
@x

= �
�
uux + vuy

�
+ � � u: (3.4)

Because of the no-slip condition, the convective partuux + vuy is identically zero. After rewriting the

Laplacian operator using the divergence theorem as� u = 1=

R

@
 r u � nds, with the control cell 


outlined by dashed lines in Figure 3.1, we can write

@p
@n

= �
Z

@

r u � nds = �

Z

@

ux dy � uy dx (3.5)

where the integration is performed onabcd. On the solid boundary ab the continuity equation is applied

and ux is replaced by� vy , which is zero because of the no-slip condition. The normal pressure gradient

so obtained is used as a boundary condition for the pressure [64].

3.2 Computational domain and discretization

In order to compute a discrete representation of our �ow �eld, the pressure form of the Navier-Stokes

equations is discretized on a grid obtained by conformally mapping a rectangle of sizel � ; l � onto a domain

surrounding a Joukowsky pro�le. The domain used for the computation of the base �ow covers roughly

20%of the chord and is shown on the right of Figure 3.2; smaller domains, whose extension will be speci�ed

later, are used for the subsequent eigenvalue computations. Taking advantage of the spanwise invariance

hypothesis, a Fourier transform is applied in the spanwisez-direction: all �rst-order z-derivatives are

replaced by ik z and all second-orderz-derivatives by � k2
z , where kz denotes the spanwise wave number.

For the base �ow computation, we take kz = 0 .

The conformal mapping is performed in two steps as shown in Figure 3.2: (i) the rectangular domain

is mapped onto a circular sector using the complex exponential function and (ii) the circular sector

is then mapped onto the leading-edge region of a Joukowsky pro�le. The conformal mapping is used

because it represents a straightforward and e�cient way of obtaining an orthogonal, body-�tted grid.

The parameters that de�ne the domain size and the airfoil shape are: thel � and l � extension of the
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Figure 3.2: Conformal mapping from a rectangle to the Joukowsky pro�le: a rectangular domain
of size l � ; l � (a) is conformally mapped to a sector of a circle (b) using a complex exponential
function. As a consequence, the� coordinate becomes the angular coordinate and the� coordi-
nate becomes the radial coordinate. An additional conformal mapping is applied to transform
the circle sector into the leading edge of the pro�le (c). The exponential function alone is at
the origin of the exponential grid stretching in the normal (radial) coordinate in �gure (b) and
(c). An additional stretching de�ned in equation (3.6) is applied before mapping the rectangle
to the circle. The parameters used in the mappings are listed in Table 3.1.

numerical domain, the chordC of the Joukowsky pro�le and a parameter � governing the pro�le thickness.

The values of r min and � appearing in the mapping functions are computed as shown in Table 3.1. In

addition to the conformal mapping, a stretching function is applied in the � -direction before the �rst

transformation from the rectangular domain to the circular sector. This stretching function reads

�� =
k�

1 � k + � (2k � 1)
: (3.6)

Depending on the value ofk, the mesh spacing in the domain[0 : 1] is deformed such that half the points

are clustered within the interval [0 : k]. Thus, k = 0 :5 corresponds to no stretching andk < 0:5 clusters

points towards the solid boundary. A value of k = 0 :1 is used for the computations in this thesis.

Table 3.1: Parameters governing the dimension and shape of the numerical
domain used in the computation of the base �ow. The corresponding domain
is visualized in Figure 3.2.

Parameter Value Meaning

l � 2 length of the rectangular domain in the � direction

l � 2 length of the rectangular domain in the � direction

C 1 chord of the Joukowsky pro�le

� 0.1 parameter governing the thickness of the Joukowsky pro�le

r min � (1+ � )C
4 radius of the circle in Figure 3.2 (b)

� � � C
4 parameter governing the shape of the Joukowsky pro�lea

k 0.1 parameter governing the stretching function (3.6)
a if � has a nonzero complex part, camber is added to the Joukowsky pro�le

The three transformations � stretching, conformal mapping to a circle, and conformal mapping to



30 Chapter 3. Numerical Approach

the Joukowsky pro�le � are applied in a cascade and can be summarized as a single transformation

represented by the functionsx = x (�; � ) and y = y (�; � ), mapping directly the equally spaced Cartesian

grid onto the Joukowsky domain. Once the �; � and x; y coordinates are known the corresponding

transformation matrix can be computed numerically and reads

"
� x � x

� y � y

#

=
1
J

"
y� � y�

� x � x �

#

(3.7)

where the metric tensor's Jacobian isJ = x � y� � x � y� . The mapping derivatives are discretized using

centered second-order �nite-di�erence stencils.

In the discretization process, all operators appearing in the Navier-Stokes equations (R � ) are ex-

pressed on the Cartesian, equispaced grid in Figure 3.2 (a) and the mapping is taken into account using

metric coe�cients. Taking into account the Fourier transform in the spanwise z-direction, the convective

terms can be rewritten as

�
u@x + v@y + w@z

�
u =

�
~u@� + ~v@� + ~wik z

�
u (3.8)

where ~u = � x u + � y v, ~v = � x u + � y v and ~w = w are the contravariant velocity components [64]. The

derivatives @� and @� are discretized on the Cartesian, equispaced grid using a second-order upwinded

discretization, where upwinding is performed with respect to the contravariant velocity components. The

pressure gradient in the momentum equations and the velocity derivatives in the pressure equation are

rewritten in body-�tted coordinates as

@x = � x @� + � x @� (3.9a)

@y = � y @� + � y @� (3.9b)

and @z = ik z . @� and @� are discretized using centered second-order �nite-di�erence stencils.

As previously mentioned, the Laplacian operator is reformulated using a �nite-volume-like form

� � =
�
@xx + @yy + @zz

�
� =

1
A

Z

@A
� x dy � � y dx � k2

z � (3.10)

where the integral is performed over the boundary@Aof the control cell represented in Figure 3.3. On

a Cartesian grid, this formulation corresponds exactly to a �nite-di�erence discretization. The vector

(dy; � dx) represents the normal to the boundary@Apointing outward of the cell. Both the derivatives

and the normal vector can be rewritten for the Cartesian grid and the Laplacian reads

1
A

Z

@A

h
� � � �

i
"

� x � y

� x � y

# "
1 0
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�
� � a21d� + � � a22d� + � � a11d� + � � a12d�

�
� k2

z �

The coe�cients aij are functions of the metric coe�cients only and have to be computed on the boundary

of the control cell, not on the mesh points.
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When discretization is performed, the derivatives and the normals are considered constant on each

side of the rectangleabcdin Figure 3.3; the integral can be replaced with a summation on the four sides

of the rectangleabcd;and the expression for the Laplacian simpli�es to

� � =
1

Jd�d�

� �
� � a21d� + � � a22d�

�
ab +

�
� � a11d� + � � a12d�

�
bc

�
�
� � a21d� + � � a22d�

�
cd �

�
� � a11d� + � � a12d�

�
da

�
:

(3.11)

Figure 3.3: The control volume used for the �nite-volume formulation of the Laplacian: using
the divergence theorem, the Laplacian operator is rewritten in a �nite-volume-like fashion using
the rectangles abcdas the control volume.

Numerical boundary conditions

In addition to the previously mentioned boundary condition for the pressure (required due to the refor-

mulation of the Navier-Stokes equations in pressure form), we have to consider the out�ow boundary

conditions for both the base �ow and the eigenvalue computations, required because our domain is trun-

cated at approximately 20%of the chord. While at the in�ow and on the wing surface boundary condition

can be de�ned based on physical arguments � velocities are given and the pressure is de�ned by the

pressure boundary condition � the out�ow boundary conditions remain unde�ned and challenging. As

a consequence, a homogeneous Neumann boundary condition for the velocities and a Dirichlet boundary

condition for the pressure have somewhat arbitrarily been tested. For the base �ow computation, the

pressure is taken as the inviscid solution at the out�ow, which is expected to be a good approximation

for high Reynolds number �ow. For the perturbations, the pressure is required to be zero at out�ow.

In both cases, the Dirichlet boundary condition on the pressure gives rise to the development of rather

sharp numerical boundary layer close to out�ow, in particular in the case of the eigenvector results that,

as we will see, are growing exponentially in the chordwise direction before reaching the out�ow boundary.

Nonetheless, as we will see and as has been previously suggested by Giannetti & Luchini [19], the out�ow

boundary condition have very little or no e�ect on the solution, provided that the out�ow boundary is not

too close to the attachment line � ten � 99 boundary layer thicknesses seem to be more than su�cient.

3.3 Validation

The implemented discretization of both the nonlinear and the linear problem needs to be validated, and

a set of tests have to be performed in order to verify its correctness. Two tests are performed to validate

the implemented discretization of the Navier-Stokes operatorR � and an additional one to validate its

linearization L � .
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First, the second-order accuracy of the scheme with respect to the mesh size is veri�ed by substituting

the analytical solution for the inviscid �ow on grids with di�erent mesh sizes h and computing the norm

of the discrete residual as a function ofh. The norm of the residual is expected to converge towards zero

as h2. Results are shown in Figure 3.4: the Euclideanj � j 2 and maximum j � j 1 norms of the residual are

plotted using double-logarithmic axes as a function of the mesh size for theu-, v- and p-equations. After

an initial transient, all norms show second-order convergence, represented by the black line. In this test,

Dirichlet boundary conditions are applied along all boundaries and for all variables. The di�usion term

in the momentum equations is indirectly validated since the same discretization is used for the Laplacian

of the pressure. Thew-momentum equation is the same as theu- and v-momentum equation, with the

exception of the pressure spanwise derivative@zp which is zero for the base �ow; it thus can be considered

validated by the present test.

Figure 3.4: Norms of the numerical residual of the analytical solution for inviscid �ow around a
Joukowsky pro�le. The residual is computed by using the analytical solution on a grid of mesh
size h and applying the corresponding discretization of the operator R � . Both the Euclidean
j � j 2 and the maximum j � j 1 norm converge to zero ash2 : the discretization is validated as
second-order accurate.

As a second test the low Reynolds number �ow around a circular cylinder is computed and compared

with data from the literature and with a solution from the well established �nite-element code FreeFem++

[52]. The main objective of this test is to validate the boundary condition implementation, and in

particular the pressure boundary condition on the solid boundary. The domain used in this test is

obtained by a conformal mapping of the form x + iy = � e� i ( � + i� ) , where � 6 � 6 � and 0 6 � . The

maximum value of � determines the radial extent of the domain. This procedure is the same as the

mapping from the rectangle to the circle in Figure 3.2. A representation of the generated grid is shown

in Figure 3.5. The �ow �eld is computed for ReD = 20; 40 and 50, where ReD = U �
1 D � =� � is based on

the free-stream velocity U �
1 and the cylinder diameter D � . The grid used in the computation has 513

points in both the radial and azimuthal direction, and the ratio of the external boundary diameter to

the solid boundary diameter is approximately 22: Symmetry is imposed across thead and bcboundaries,

so that only minimal modi�cations of the implementation that will be used in the computations of the

attachment-line �ow are required. The multigrid solver described in chapter 4 is used for the computation

of the solution.
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Figure 3.5: Conformal mapping from the rectangle to the circle. The mapping is in the form
x + iy = � e� i ( � + i� ) :

Table 3.2 compares the wake length and the forward and rear stagnation-point pressure from our

solution with results previously computed by Fornberg [16] and Giannetti & Luchini [19] for Reynolds

Re = 20; 40, as well as with results computed using FreeFem++.

Table 3.2: Wake bubble length and forward and rear stagnation-point pressure for di�erent
Reynolds numbers

Wake lengthy Pressure at forward

stagnation point

Pressure at rear

stagnation point

ReD
� 20 40 50 20 40 50 20 40 50

Fornberg [16] 2.82 5.48 � 0.64 0.57 � -0.27 -0.23 �

Giannetti [19] 2.84 5.48 � � � � � � �

FreeFem++ � � � 0.64 0.58 � -0.27 -0.24 �

Current 2.82 5.49 6.82 0.63 0.57 0.56 -0.27 -0.24 -0.23
y in cylinder radii and measured from the center of the cylinder.
� The Reynolds number ReD = U1 D=� is based on the cylinder diameter D:

Additionally, Figure 3.6 compares the pressure distribution along the cylinder surface computed with

the current discretization (continuous red and blue lines) and the one computed with FreeFem++ (black

dashed lines) for the two Reynolds numbersReD = 20; 40. For both Reynolds numbers the pressure

distribution is nearly indistinguishable over most of the cylinder surface. The small discrepancy at the

forward stagnation point � = 0 , visible also in the data in Table 3.2 is dependent on the domain size and

diminishes as the domain size used in the FreeFem++ computation is increased.

The discretization of the linearized equation (L � ) is validated by comparing a �nite-di�erence ap-

proximation of the Jacobian with the implemented one and verifying that the di�erence is on the order

of roundo� errors. The �nite-di�erence approximation is computed starting from the already validated

nonlinear discretization. The tools implemented in the PETSc suite [5] are used for this step of the

validation.
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Figure 3.6: Pressure coe�cient cp =
p � p1

0:5�U 2
1

on the cylinder surface as a function of the angle.

The forward stagnation point is at � = 0 . Continuous lines represent data obtained from the
current code, dashed black lines are data obtained with FreeFem++ [52].

3.4 Considerations on domain size and grid size

In order to get �rst approximations on the size of the computational problem that we are going to solve,

we will proceed to estimate the mesh size that will be used in chapter 5. As already noted, the problem

is characterized by two length scales. The larger scale, ofO (1), is given by the length of the pro�le chord

and provides the characteristic length on which the inviscid �ow and the pressure �eld vary. The smaller

scale is of sizeO
�

1=
p

ReC

�
and determines the characteristic length of the boundary layer. At a chord

based Reynolds number ofReC = 106, the scale separation is thus of order103: Our global approach

requires to correctly represent both scales.

To correctly represent the inviscid scale, we select a domain extending roughly1:5 chord lengths �

or a more reassuring100 leading edge radii � in the direction normal to the pro�le. The extent in the

chordwise direction covers20% of the chord, corresponding to an arc length of nearly0:4 of the chord's

length. The full domain is marked with a blue line in Figure 3.7, and its extent is deemed su�cient,

taking into account the fact that the inviscid solution around the Joukowsky pro�le, contrary to a uniform

�ow, is used at the in�ow boundary.

Within the boundary layer, we require the � 99 thickness to be discretized with nearly forty points and

the mesh spacing in the chordwise direction to be nearly double the mesh spacing in the normal direction.

Details of the grid close to the attachment line and the out�ow boundary are shown in Figure 3.8. At �rst

sight, we may expect to be able to choose a much larger mesh spacing in the chordwise direction as the

boundary layer changes substantially faster in the normal direction than in the chordwise direction. We

do not follow this approach for two reasons: (i) close to the attachment line, changes in both directions

are of the same order of magnitude, and (ii) results from stability computations are expected to oscillate

in the chordwise direction on a length scale similar to the boundary layer thickness.

The boundary layer � 99 thickness varies from0:35 � 10� 3 at the attachment line to 1:5 � 10� 3 at the

out�ow, growing by a factor of four over the chordwise extent of the domain. If, for now, we consider an

average chordwise mesh size of10� 3=20, then 8000mesh points are required to cover the full chordwise

extent. Grid stretching and adaptive grid re�nement make any estimate of the number of grid points in
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Figure 3.7: Domain for base �ow computations. One level of adaptive mesh re�nement is used,
and the domain size is covered by two grids. The coarser of the two grids, whose extension is
marked in blue, covers the entire domain and consists of 4097 points in the chordwise direction
and 1025points in the normal direction. Half of the points in the normal direction are contained
within the red line. The �ner mesh, whose extension is marked in red, has half the mesh size of
the coarser grid and consists of 8193 points in the chordwise direction and 1025 points in the
normal direction. The equivalent combined grid consists of 10:5 millions points. The boundary
layer thickness at ReC = 10 6 is too thin to be visualized.

the normal direction more involved, and it su�ces to say that we will be using the equivalent of 1537

mesh points. The resulting problem then consists of more than42 millions degrees of freedom when the

four variables u; v; w; p are taken into account.

From a memory requirement point of view, this means nearly350MBytes to store a single vector and

nearly 7 GBytes to store a sparse representation of the discretized linearized problem when real, double

precision arithmetic is used.

High-performance solution algorithms are required to address the numerical problem. Considering

a Newton solver, direct LU decomposition of the Jacobian matrix is not feasible. Even an iterative

Krylov-subspace linear solver, coupled with ILU preconditioning with zero levels of �lls, would require an

additional 9 GBytes to store 30Krylov vectors and an additional 7 GBytes to store the ILU decomposition,

for a total of 23 GBytes without taking into account the working vectors.

In the next chapter we will introduce multigrid as a highly e�ective framework for computing discrete

solutions of the Navier-Stokes problem. Starting from a simple Poisson equation we will proceed to the

solution of the entire Navier-Stokes system in its steady-state form, thus avoiding the necessity of long-

time time-stepping to compute the base �ow. Multigrid demonstrates its e�ciency both in terms of CPU

time and memory � a few hours on a single processor and a few working vectors, respectively � required

to converge towards the solution.
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Figure 3.8: Zoom of the grid close to the attachment line (left) and close to the out�ow boundary
(right) of the domain represented in Figure 3.7. The grid is shown in thin blue lines. The typical
structure of an eigenvector solution is represented in color and the � 99 boundary layer thickness
with a blue, thick line. Streamlines in the x; y plane are shown in black in the attachment-line
region � and close to out�ow are parallel to the boundary. The two �gures do not have the
same scale:� 99 at the out�ow is four time bigger than at the in�ow.



Chapter 4

Multigrid
A good carpenter does not blame his tools

In this chapter the multigrid framework used to compute the discrete solution of the steady-state Navier-

Stokes equations is presented. As has been brie�y demonstrated at the end of the previous chapter, where

it was stated that solving the Navier-Stokes equations becomes exceedingly expensive in terms of CPU

time and memory requirements as the Reynolds number is increased: multigrid represents a far more

e�cient framework for performing this task.

First developed in the late 1970s by Achi Brandt [7] in order to address the solution of elliptic

equations, multigrid is part of a class of iterative solution algorithms: the search for a solution to a

given discrete problem is performed by iteratively computing a series of approximations starting from

an initial guess, until a solution satisfying appropriate error criteria is found. This is in contrast to

computing a solution by a direct approach like Gaussian elimination (or LU decomposition). Iterative

solution methods include simple algorithms like Jacobi or Gauss-Seidel iterations as well as more complex

ones like conjugate gradient, GMRES or multigrid itself [66]. The main advantages of iterative methods

over direct methods are a more e�cient use of memory and, in most cases, a reduced computational

cost, allowing for the solution of signi�cantly larger problems. In order to exemplify this, Table 4.1 (from

[66]) presents the computational costs associated with the solution of the linear two-dimensional Poisson

equation using various common algorithms: multigrid is clearly the most e�cient solver for this simple

case. As we will show later in this chapter, this is even more the case for more complex problems.

Table 4.1: Complexity of di�erent solvers
for the two-dimensional Poisson problem
(from [66])

Method # operations �

Gaussian elimination O
�
N 2

�

Jacobi iteration O
�
N 2 log "

�

Gauss-Seidel iteration O
�
N 2 log "

�

Successive overrelaxation (SOR) O
�

N 3=2 log "
�

Conjugate gradient (CG) O
�

N 3=2 log "
�

Fast Fourier Transform (FFT) O (N log N )

Multigrid (iterative) O (N log " )

Multigrid (FMG) O (N )
� N denotes the total number of unknowns in the discretized

problem. The log " term re�ects the assumption that the
accuracy of the solution is in the range of the discretization
accuracy.

A generic iterative solver can be approached from two points of view. The �rst is what we can call a

37
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�global� point of view, where the solution process is seen as the iterative application of a given operator

M to an initial guess q0, until a satisfactory solution qm ; whose error is su�ciently small, is found. The

second is what we can call a �local� point of view; it is used to describe the internal workings of the

operator M (or parts of it). Analysis of the operator M from a local point of view will provide us with

in-depth informations on the behavior of Fourier components � which are also the formal eigenfunctions

of M � under the repeated application of the operator M .

In section 4.1 we introduce a formal description of a generic operator-splitting-based iterative process.

It is well known that the asymptotic convergence rate of any iterative process is given by the spectral

radius of the operator M . In section 4.2 the main ingredients of a multigrid solver are introduced: these

are (i) a hierarchy of grids Gh characterized by di�erent mesh sizesh; (ii) a relaxation method, which is

an iterative solver by itself, whose goal is to reduce the high wavenumber (short wavelength) components

of the error and (iii) an interpolation and a restriction operator, whose role is to transfer informations

between grids. The multigrid algorithm presented in this thesis is the Full Approximation Scheme (FAS),

perhaps the lesser known, but more powerful, of the two multigrid algorithms � the other being the

well-known Correction Scheme (CS). FAS has been chosen as the algorithm used in the code developed

for this work because of its capability of handling nonlinear equations and of handling adaptive grid

re�nement. The main idea behind FAS is to drive the discrete equations on each grid (except the �nest)

with a forcing term � H
h , called the defect correction, in such a manner that the solutions on the coarse

grids are identical to the one on the �nest. Its relation to the Correction Scheme (CS) will be clari�ed in

section 4.5.

In section 4.3 the relaxation method is introduced and analyzed by using Local Fourier Analysis

(LFA), a fundamental tool in the context of multigrid analysis. Relaxation being one of the more delicate

components of multigrid, we devote a signi�cant portion of this chapter to it.

As a �rst step we consider one of the most commonly encountered problems in physics, the Poisson

problem. Gauss-Seidel iteration � or one of its variants � is often used to solve the Poisson equation,

mainly due to its simple implementation and memory e�ciency. Despite these advantages, a quick look

at Table 4.1 seems to suggest that Gauss-Seidel iteration is among the algorithms requiring the largest

computational e�ort; however, this assessment is unfair. Looking at it in more detail, the description

of the Gauss-Seidel iteration from a local point of view shows that it is very e�cient in reducing the

high-wavenumber components of the errorem = �q � qm , with �q as the exact solution of the discrete

problem, but rather slow at reducing the low-wavenumber components. Together with the observation

that the term �high-wavenumber� is dependent on the mesh sizeh, this statement gives a �rst hint of

the underlying idea of the multigrid algorithm: by using a discretization of the same problem on grids of

di�erent size, all error components can be reduced in an e�cient way.

The performance of a Gauss-Seidel iteration � or, in the multigrid context, Gauss-Seidel relaxation �

as well as the performance of any other relaxation process can be described by its ampli�cation factor� (� ),

measuring the amount of amplitude decay/growth over one relaxation sweep in a Fourier component of

wavenumber� =
�

� x ; � y
	

: The smaller the ampli�cation factor, the faster the error amplitude is reduced.

An ampli�cation factor greater than one denotes divergence of the iterative process. The relation to the

spectral radius is immediate: the spectral radius is de�ned as the maximum of the ampli�cation factor

over all wavenumbers� representable on the grid, i.e.,

�� = max
�

� (� ) :

As a second step, we slightly increase the di�culty of the problem by considering the scalar, linear
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convection-di�usion equation. Local Fourier Analysis (LFA) suggests that the ampli�cation factor of

the Gauss-Seidel relaxation changes with respect to the Poisson equation case. Simple considerations on

how and why the Gauss-Seidel relaxation properties � in particular its ampli�cation factor � (� ) � are

modi�ed by the addition of extra terms provides valuable information on how to avoid a deterioration

of the multigrid performances. We remark, for example, that a purely convective process can be solved

very e�ciently by downstream marching.

As a third step, we return to the Poisson equation and introduce anisotropy to the problem. The

origin of such an anisotropy can be varied and can include physical characteristics of the problem or,

more interestingly in our case, grid stretching. The convergence properties of the standard pointwise

Gauss-Seidel iteration can be noticeably degraded by the presence of such an anisotropy. An e�cient

remedy is identi�ed in a variation of the Gauss-Seidel algorithm, known as the linewise Gauss-Seidel

iteration, where unknowns located on the same mesh line are solved collectively.

As a fourth and �nal step we consider the relaxation of a system of equations comprising both Poisson

and convective-di�usion-reaction equations, i.e., a system like the pressure form of the linearized Navier-

Stokes equations (L � ) described in section 3.1. A complete LFA analysis of the system of equations is

not necessary, and we will only show how the scalar analysis results can be used instead. The task of

devising a proper relaxation strategy for this system can readily be reduced to the adaptation of the

relaxation strategies used for the Poisson and the convection-di�usion equation.

Once we have the tools to analyze the relaxation process, i.e., the one-grid process that smoothes the

high-wavenumber components of the error, we can proceed to the analysis of the entire multigrid process.

Two di�erent schemes are available.

In section 4.4 we consider the widely known Correction Scheme (CS) used for the solution of linear

equations, like the Poisson equation for the pressure in the fractional-step techniques. As noted, di�erent

grids characterized by di�erent mesh spacings are employed to obtain a small ampli�cation factor for all

error components. In the CS scheme, the solution is represented only on the �nest grid: coarser grids

are used to compute corrections to the information stored on the next �ner grid. This approach limits

the applicability of CS to linear problems. At the end of this section possible multigrid strategies are

presented, such as the V-cycle, the FMG algorithm and the FV-cycle.

In section 4.5 we introduce the perhaps lesser-known Full Approximation Scheme (FAS). FAS is used in

the multigrid code developed in this work and can be obtained by taking a dual approach to the Correction

Scheme (CS). FAS has two main advantages over CS: (i) the ability of solving nonlinear equations without

the need of an outer Newton iteration, and (ii) a natural approach to the implementation of adaptive

grid re�nement strategies. At the basis of the FAS scheme lies the idea of representing the full solution,

instead of corrections, on all grids; the discrete equations on each grid (except the �nest) are forced

such that the solution on any grid corresponds to the solution on the �nest grid. Loosely speaking, this

forcing can be related to the one used in deferred correction methods. Adaptive grid re�nement will be

considered at the end of this section.

Despite their di�erent approach, CS and FAS share nearly all ingredients of a general multigrid

strategy: a relaxation process, an interpolation strategy denoted by the operatorI , a restriction strategy

denoted by the operator R and a grid traversal protocol, the latter including the number of relaxation

iterations (or sweeps) per grid and the order in which the di�erent grids are processed.

Some real-life examples will be presented at the end of this chapter.

For the development of the present multigrid code, various data structures and routines from the

PETSc library [5, 4, 6] have been used, in particular, relating to vector and matrix representations

and for accessing direct, sparse solver for linear and nonlinear problems. The multigrid part has been
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appropriately adapted to incorporate these features. The designed code is more general than the PETSc-

internal multigrid code since it allows for adaptive mesh re�nement and more sophisticated relaxation

algorithms.

4.1 A generic iterative solver

An iterative solver can be approached in two di�erent ways. The �rst is what we can call a �global� point

of view, where the solution process will be considered as an iterative application of a given operatorM

to an initial guess q0, until a su�ciently converged solution qm has been found. The second point of view

can be referred to as the �local� point of view; it is based on a description of the internal details of the

operator M:

We start by taking the global point of view and consider a generic linear problem given by the equation

Aq = f (4.1)

where A is an invertible matrix. A direct solution of the equation obtained by inverting the matrix A

can be formally written as

q = A � 1f;

but the inversion of the matrix A (or the computation of its LU decomposition) is often too costly in

terms of memory and CPU time to be practically feasible.

An alternative approach is to consider an iterative scheme. In this case, we split the matrixA in two

parts, A+ and A � , such that

A = A+ + A � : (4.2)

We can then de�ne an iterative algorithm as

A+ qm +1 = � A � qm + f =) qm +1 = Mqm + s (4.3)

where M = ( A+ ) � 1A and s = ( A+ ) � 1f , while qm +1 and qm are approximate solutions at the iteration

m + 1 and m of the iterative process.

Starting from an initial guess q0, at each iteration of the solution process the operatorM = ( A+ ) � 1A �

is applied to the available approximate solutionqm in order to reduce the error em = �q� qm with respect

to the exact solution of the discrete problem�q.

The design of the splitting A = A+ + A � � or equivalently of the operator M � de�nes the properties

of the iterative algorithm. Of particular interest in the design process is to characterize how fast the error

em goes to zero. An equation for the evolution ofem at each iteration can be readily obtained by

substitution of qm = �q � em and qm +1 = �q � em +1 in the iterative process (4.3), thus obtaining

Âem +1 = Rem =) em +1 = Mem : (4.4)

Expansion of the errorem into eigenfunctions of the operatorM helps in clarifying the error dynamics

by showing that the convergence rate of each eigenfunction is given by the corresponding eigenvalue. We

characterize each eigenfunction by its amplitude" and its shape  such that an appropriately chosen



4.2. Ingredients of a multigrid solver 41

norm of  is one. The error can then be written as

em =
X

i

"m
i  i (4.5)

where i varies over all eigenfunctions. For each eigenfunction" i  i there is an associated eigenvalue� i ;

and the e�ect of applying the operator M on the amplitude of the eigenfunction is given by the product

of the eigenvalue and the amplitude itself, so that

"m +1
i = � i "m : (4.6)

If the absolute value of all eigenvalues is less than one, the iterative process converges, and its asymp-

totic convergence is given by the largest eigenvalue (or spectral radius)~� of the operator (M ) de�ned as

~� (M ) = max
�

j� j : � eigenvalue ofM
	

; (4.7)

such that asymptotically we have jjem +1 jj � ~� (M ) jjem jj . The eigenfunction corresponding to the spectral

radius is the slowest-decaying eigenfunction in the spectrum.

As the spectral radius approaches one, the error reduction process slows signi�cantly, and more

iterations are required to converge to the solution. As we will see shortly, this is the case for �smooth�

eigenfunctions when a pure Gauss-Seidel iteration procedure is employed. The role of multigrid is to

improve this situation: to correctly design a multigrid algorithm we will have to consider not only the

largest eigenvalue of the Gauss-Seidel iteration but also the relationship between the eigenvalues and the

shape of the corresponding eigenvectors.

4.2 Ingredients of a multigrid solver

We use this section to present a brief introduction to the multigrid framework. It should be su�cient to

understand the ideas underlying the multigrid algorithm used in this work. In the subsequent sections

more details will be given on each building block of a generic multigrid algorithm, and the choices made

in this work will be justi�ed. For the reader interested in an in-depth understanding of the multigrid

framework in general and its application to �uid dynamics in particular, Brandt's Multigrid Techniques:

1984 Guide with Applications to Fluid Dynamics [8], the NASA technical reports by Diskin et al. [14]

and Swanson [64], and the 2003 Annual Review by Thomas et al. [65] are recommended.

The design of a multigrid solver has been visualized in Figure 4.1. A hierarchy of grids is de�ned

starting from a coarse grid which is re�ned by a factor of two (in each direction) at every successive grid

level. Thus, the mesh size of each �ner level is half the mesh size of the previous one. The governing

equations are then discretized on each grid yielding a series of discrete operatorsL k
h (�) (k = 1 : : : n)

where n is the total number of grids employed. On a given grid the solution isrelaxed to reduce the

high-wavenumber components of the error

eh = ~qh � qh (4.8)

where, as we will see in a moment, high wavenumbers are to be linked to the particular mesh size [66,

chapter 4]. The solution is thenrestricted onto a coarse grid of mesh sizeH = 2h, where low wavenumbers

of the �ner grid are relaxed. This operation is applied recursively until the coarsest grid is reached; on

this �nal grid the equations are solved. Corrections for the solution on the �ner grids are then computed
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Figure 4.1: The grid hierarchy used in the multigrid process. The surface on the top represents
the (unknown) analytical solution of the di�erential problem. R and I are the restriction and
interpolation operators, respectively, and � is the defect correction, a forcing term for the coarse
grid equation with the role of equating the solution on all grids to the one on the �nest grid. On
each grid, a �nite-di�erence problem L h is de�ned by discretizing the continuous equations. If
the Full Approximation Scheme (FAS) algorithm, that will be described in section 4.5, is used,
the grids do not need to be coextensive, and the �ner grids can cover only part of the coarser
grids. This latter option allows the introduction of adaptive grid re�nement.

and interpolated back. The restriction and interpolation operators are represented in Figure 4.1 by the

symbols # and " ; respectively.

To give a more precise meaning to the termshigh and low wavenumber, we consider a �ner and a

coarser grid of mesh sizeh and H = 2h; respectively, and a sinusoidsin (kx) with k as the wavenumber.

The highest wavenumber that can be represented on each grid isk = �=h and k = �=H = �= (2h) for

the �ne and coarse grid, respectively. We can then determine all wavenumbers that are representable on

the �ne grid as

0 � � low �
�
2h

< � high �
�
h

(4.9)

where sinusoids with wavenumber� low are correctly represented on both grids while sinusoids with

wavenumbers� high are represented only on the �ne grid (and aliased on the coarse one).

An essential component in the FAS multigrid algorithm is the �ne-to-coarse defect correction� H
h . Its

role is to force the coarse-grid equations in such a way that their solutions correspond to the �ne-grid

solution [8]. In this sense, on all grids, except the �nest, a modi�ed version of the discretized equations

is relaxed (or solved):

L H qH = f H + � H
h (4.10)

where

� H
h = L H (Rqh ) � R (L h qh ) : (4.11)

How � H
h is obtained and more insights into its role will be given in section 4.5. At this point it is

su�cient to state that � H
h takes into account the use of the coarse grid operatorL H instead of the �ne

grid operator L h .

Once the FAS scheme has been chosen, two other ingredients need to be de�ned: a relaxation process
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and the communication strategy between di�erent grids.

Typically employed relaxation (or smoothing) algorithms for the Laplacian operator are the Jacobi

and Gauss-Seidel iterations where each equation of the discretized system is solved sequentially. More

complex relaxation strategies include line-Jacobi and line-Gauss-Seidel iterations � where the discrete

equations corresponding to a line of points are solved simultaneously � and incomplete LU decomposition

(ILU) iterations. For systems of equations the block Jacobi or block Gauss-Seidel iteration (or their

corresponding block-line versions) can be employed to simultaneously solve all equations in the system at

each mesh point. For equations that contain convective-type terms the direction in which the relaxation

process is performed has been shown to be critically important [36]. Examples are the convection-

di�usion equation and the momentum equations in the Navier-Stokes system. Further details will be

given in section 4.3, and the reader is also referred to [36] and [66] for a full discussion of the smoothing

properties of various relaxation schemes.

The goal of the communication strategy between two grids is (i) to provide an accurate representation

of the �ner-grid solution (or of the �ner-grid error for the CS scheme) on the coarser grid and (ii) to

interpolate the corrections computed on the coarser grid onto the �ner grid. Two operators will be

de�ned: a restriction operator and an interpolation operator, represented by # and " ; respectively, in

Figure 4.1. The restriction operator can be chosen as a simple injection of the solution from the �ner

grid to the corresponding points of the coarser grid. Better performing restrictions are the half-weighted

(HW) and full-weighted (FW) operators, which represent a weighted average of the �ve and nine mesh

points of the �ne grid surrounding a given mesh point on the coarser grid. The FW operator is used in

the context of our code and is implemented as

qH =
1
16

( 1qi � 1;j +1 + 2qi;j +1 + 1qi +1 ;j +1 +

2qi � 1;j + 4qi;j + 2qi +1 ;j +

1qi � 1;j � 1 + 2qi;j � 1 + 1qi +1 ;j � 1 ) :

(4.12)

The interpolation operator can be a simple bilinear interpolation or a more complex second-order or

third-order interpolation. A bilinear interpolation is often su�cient for an iterative multigrid method

while a higher-order interpolation (usually at least of the order of the discretization scheme) is necessary

for FMG multigrid. A third-order interpolation is used in this work.

It is important to note that in order to avoid introducing the interpolation errors of the whole solution,

in the FAS scheme only the correction to the approximate solution computed at the previous iteration is

interpolated from the coarser to the �ner grid (something that is obvious in the correction scheme given

that only the correction is represented on the coarser grid). In this way only the error related to the

interpolation is introduced and can be easily eliminated with an additional iteration of the relaxation

scheme [8]. The quantity to be interpolated is then
�
qH � # (qh )

�
and the update to the previous iteration

reads

qnew
h = qh + "

�
qH � # (qh )

�
: (4.13)

4.3 Relaxation

Despite the fact that we will use it as part of the multigrid solution process, Gauss-Seidel relaxation (or

smoothing) can be considered as an iterative algorithm by itself and analyzed accordingly. We do so in

order to uncover and overcome the problems associated with this most common � and extremely simple

� iterative algorithm, and we will show that, when coupled with a multigrid approach, it is the most
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e�cient choice.

In the Gauss-Seidel relaxation, the discretized equation at each mesh pointi; j , corresponding to a

single line of the discretized operator, is solved locally in order to compute an update of the unknown

qi;j . This operation is repeated for all mesh points in the grids, using updated information when available

and information from the previous iteration otherwise.

As we will see, the order in which the mesh points are addressed is not unimportant. The most simple

and common ordering is given by the lexicographic (LEX) ordering and consists of traversing the grid

with increasing values of the indicesi; j . Another common ordering is the red-black (RB) ordering, where

mesh points are organized like a checkerboard (or using more complicated patterns), and a sweep over

the red mesh points is followed by a sweep over the black mesh points (yes, checkerboards are more often

black and white. . . ). We will also consider backward-lexicographic ordering, where one or both mesh

directions are traversed with decreasing values of the indicesi; j , and will see in which cases they can

prove to be useful.

The Poisson equation and Local Fourier Analysis

We start by considering one of the most commonly encountered problems in physics, the scalar Poisson

equation:

� q = f (4.14)

such that the operator A in equation (4.1) is now the Laplace operator. Our goal in this and the following

sections is to perform and generalize the analysis outlined in section 4.1.

The �rst step is to de�ne a standard �ve-point discretization L h of the Laplacian operator on a two-

dimensional grid with constant mesh sizeh. The discrete operator L h can be represented locally � at

every point i; j � by the discrete equation

L h qh =
qi +1 ;j � 2qi;j + qi � 1;j

h2 +
qi;j +1 � 2qi;j + qi;j � 1

h2 = f i;j : (4.15)

An alternative notation for describing the discretization of an operator that will prove very convenient

in the subsequent analysis is the stencil notation [66]. In such a notation, which provides a graphical

representation of the stencil used in the discretization, the discrete Poisson equation (4.15) is written as

L h qh =
1
h2

2

6
6
4

1

1 � 4 1

1

3

7
7
5

h

qh (x; y) = f h (x; y) : (4.16)

The application of the stencil L h to the variable qh is de�ned by

L h qh = [ s� ]h qh =
X

�

s� qh (x + � h) (4.17)

where s� is the set of coe�cients of the discretization identi�ed by the index sets � ; and the summation

is performed over the entire index sets� belonging to the stencil. Taking the current case as an example,

we haves� = � 4=h2 for � = (0 ; 0) and s� = 1=h2 for � = ( � 1; 0) and � = (0 ; � 1).

We can now apply the analysis outlined in the previous section to the operatorL h : we implement

the operator splitting corresponding to the Lexicographic Gauss-Seidel (GS-LEX) iteration, identify the

iteration operator M and perform the modal analysis in order to identify the spectral radius ~� and the
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ampli�cation factor � . This same analysis has been performed in multiple publications and in particular

we refer to the 1982 paper by Kettler [36] and to the book by Trottenberg et al. [66]. Kettler [36] analyzes

and summarizes results for a variety of model problems and relaxation methods, including point and line

Gauss-Seidel, incomplete LU decomposition (ILU) and their variants. Some of his results will be used

and extended in what follows.

The application of a GS-LEX iteration (or sweep) consists of successively solving each discrete equation

(4.15) de�ned at every mesh point i; j on the grid, such that at iteration m + 1 we update the unknown

qi;j as

qm +1
i;j =

qm +1
i � 1;j + qm +1

i;j � 1 + qm
i +1 ;j + qm

i;j +1 + h2f

4
(4.18)

where the unknowns at the mesh pointsi � 1; j and i; j � 1 are available at the current iteration m + 1

while the others are at the previous iteration levelm. This is a consequence of the lexicographic ordering

of the sweep. From an operator splitting point of view, we can de�ne the splitting as L h = L +
h + L �

h

which, in stencil notation, reads

L +
h =

1
h2

2

6
6
4

0

1 � 4 0

1

3

7
7
5

h

L �
h =

1
h2

2

6
6
4

1

0 0 1

0

3

7
7
5

h

: (4.19)

In a more common matrix notation, if the discrete unknowns are ordered in lexicographic order,L +
h and

L �
h would be the lower (including the main diagonal) and the upper triangular part of L h , respectively.

The resulting equivalent of the operator splitting-based iterative process (4.3) is then

L +
h qm +1 = � L �

h qm + f =) qm +1 = �
�
L +

h

� � 1
L �

h qm +
�
L +

h

� � 1
f; (4.20)

and the iteration operator M can be formally written as

M h = �
�
L +

h

� � 1
L �

h : (4.21)

We already know that the asymptotic convergence rate of the operatorM h is given by its spectral

radius ~� (M h ). We are now interested in gaining more insight into the properties of the operatorM h ,

and we will do that by analyzing the operator's eigenvalues and eigenfunctions. It is clear that the direct

computation of the eigenvalues and eigenvectors of the operatorM h � or even the computation of the

operator M h itself � becomes unfeasible as the number of degrees of freedom of the discrete problem

increase; fortunately, such a computation also provides far more information than is necessary.

A common, lighter and in the end more useful approach used in the analysis of relaxation processes in

the multigrid framework is given by a Local Fourier Analysis (LFA). LFA provides a concise description

of the local � i.e. at a given mesh point i; j � e�ect of one step of the relaxation process by computing

an ampli�cation factor

� (� ) = "m +1
� ="m

� (4.22)

where "m
� is the amplitude of the error eigenfunction associated with a given wavenumber� . In the case

of a complex " � ; its magnitude has to be considered instead. A full description of LFA is provided by

Brandt [7, 8] and reviewed by Trottenberg [66]. Here we will present the main ideas in order to explain

its use.

Local Fourier Analysis (LFA) starts by considering a constant coe�cient discretized operator L h
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de�ned on an in�nite grid G h of mesh spacingh = ( h1; h2). The constant-coe�cient and in�nite-grid

hypothesis is less limiting than it may appear: LFA is intended to provide local information, and most

nonlinear, variable-coe�cient operators can be linearized locally and replaced locally by an operator with

constant coe�cients. We anticipate here that there are two important cases where linearization is not

meaningful: (i) at locations where the equation's coe�cients vary too strongly or even discontinuously

between mesh points and (ii) in the vicinity of boundaries.

An analytical expression for the eigenfunctions and eigenvalues can be obtained for any constant-

coe�cient operator de�ned on an in�nite grid, starting with a Fourier transform of the error em = �q� qm

where we recall that �q is the exact solution to the discrete problem andqm is its computed approximation

at iteration m. In two dimensions, each Fourier component is described by the grid function h , which

is a function of the wavenumber � = ( � 1; � 2), of the position x = ( x1; x2) and of the mesh spacing

h = ( h1; h2) according to

 h (� ; x) = " � ei � x =h = " � ei� 1 x 1 =h1 ei� 2 x 2 =h2 : (4.23)

As we noted when de�ning high and low wavenumbers in section 4.2, the maximum wavenumber we can

represent on a grid of mesh sizeh is �=h , so that for our analysis it su�ces to consider the interval

� � � � < � . On this interval all grid functions are linearly independent and represent the eigenfunctions

of any constant-coe�cient discrete operator.

The complete spectrum can now be easily obtained by applying the discrete operator to the grid

function  h . Taking as an example the operatorL h and starting from the de�nition given in equation

(4.17), which, we recall, arises naturally from the stencil notation in equation (4.16), the expressionL h  h

reads

L h  h = [ s� ]  h =

 
X

�

s� ei � � �

!

" � ei � x =h (4.24)

where the term between brackets represents the symbol of the operator

~L h (� ) =
X

�

s� ei � � � : (4.25)

We recall that s� is the ensemble of coe�cients of the discretization identi�ed by the index sets � and

the summation is performed over all index sets� belonging to the stencil as we have seen in (4.16) and

(4.17). The symbol of the operator de�nes the location of the operator's spectrum in the complex plane

as a function of the wavenumber� , and in this sense it can be considered as the eigenvalue distribution

of the operator itself: we have now an eigenvalue~L h and an eigenfuction  h associated with every

wavenumber � . In the case of our two-dimensional �ve-point discretization (4.16) of the Laplacian the

symbol/eigenvalue reads

~L h (� ) =
1
h2

�
e� i� 1 + e� i� 2 + ei� 1 + ei� 2 � 4

�
=

2
h2

�
cos� 1 + cos � 2 � 2

�
: (4.26)

We can now consider the symbols of the two operatorsL +
h and L �

h corresponding to the splitting

of the operator L h and compute the symbol for the iteration operator M h = � (L h ) � 1 L �
h . With this

information available, we can determine how the error em
h evolves during the iterative process. For

Lexicographic Gauss-Seidel relaxation, whose splitting is de�ned in stencil notation in (4.19), application
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of the discrete operator to the grid function results in

~L +
h (� ) =

1
h2

�
e� i� 1 + e� i� 2 � 4

�
(4.27a)

~L �
h (� ) =

1
h2

�
ei� 1 + ei� 2

�
; (4.27b)

and the symbol for the iteration can be easily computed as

~M h (� ) =
~L �

h
~L +

h

=
ei� 1 + ei� 2

e� i� 1 + e� i� 2 � 4
: (4.28)

A clear description of the e�ect of the iteration can be obtained by recalling that the error behaves as

em +1 = M h em � see (4.4) in section 4.1). Once the eigenvalues and eigenvectors of the operatorM h

have been computed, we can rewrite the same expression as

"m +1
� ei � x=h = ~M h "m

� ei � x=h =) � =

�
�
�
�
�
"m +1

�

"m
�

�
�
�
�
�

=
�
�
� ~M h

�
�
� (4.29)

where all quantities depend on the wavenumber� , and j � j denotes the magnitude of a complex value.

Figure 4.2 shows contour levels of the ampli�cation factor � (� ) for the present case of Lexicographic

Gauss-Seidel iterations applied to the �ve-point discretization of the Laplacian operator. It can clearly be

seen that GS-LEX has very good ampli�cation factors � � 1 for error components of a high wavenumber

(marked with a gray background), but that the ampli�cation factor approaches one as the wavenumber

tends to zero. A direct consequence of this observation is that most of theO
�
N 2 log "

�
computational cost

Figure 4.2: Contour plot of the ampli�cation factor � (� ) = j" m +1
� ="m

� j = j ~M h j for a single sweep
of Lexicographic Gauss-Seidel (GS-LEX) relaxation applied to the �ve-point discretization of
the Laplacian operator, as a function of the � 1 and � 2 wavenumbers. The corresponding symbol
is given by (4.28). The region of high wavenumbers which cannot be represented on a coarser
grid of mesh sizeH = 2 h, as de�ned by (4.9), is indicated by a gray background. The spectral
radius �� tends to one for low wavenumbers while the maximum ampli�cation factor in the high
wavenumber range is 0.5 and corresponds to the four wavenumbers marked with crossed circles.
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associated with Gauss-Seidel iterations is spent on the reduction of low-wavenumber error components.

In contrast, the ampli�cation factor for high wavenumbers is at most 0:5; which is a good smoothing

factor: three Gauss-Seidel sweeps would reduce the amplitude of the high-wavenumber error component

by a factor of 0:53 = 0 :125, or nearly an order of magnitude. We note here that the ampli�cation factor

for red-black Gauss-Seidel relaxation, at0:25 per sweep [66], is considerably better in the case of the

Poisson equation, but this is not true in the case of the convection-di�usion equation we will analyze in

the next section; for this reason, red-black Gauss-Seidel relaxation is not considered in this work.

An additional remark on Figure 4.2 is that the ampli�cation factor is not independent of the wavevector

direction. This anisotropy is associated with the direction used during the sweep, i.e. the order in which

the grid points are treated: the splitting used so far implies a sweep starting from the lower left (South-

West) corner and ending in the upper right (North-East) corner. We can also consider the case when the

sweep starts in the bottom right (SE) corner and ends in the top left (NW) corner. The corresponding

ampli�cation factor is displayed on the left of Figure 4.3: contours are mirrored about the vertical axis

� 1 = 0 with respect to the previous case. The e�ect of alternating sweeps, the �rst starting in the SW

corner, the second in the SE corner, are shown on the right of Figure 4.3: the isotropy is restored. The low

Figure 4.3: Same problem as Figure 4.2, but the ordering of the mesh points in the sweep is
changed. For the left �gure, the sweep proceeds towards decreasingi : the ampli�cation factor
is mirrored about the vertical axis. For the right �gure, two sweeps are performed, the �rst for
increasing i and the second for decreasingi . Better reduction factors are obtained (but at twice
the computational cost), and the contours are symmetric with respect to both the horizontal
and the vertical axis.

ampli�cation factor of the high-wavenumber error components forms the basis of the multigrid design,

but before moving onto this topic, we will consider three slightly more di�cult problems: (i) the scalar,

linear convection-di�usion equation, where the direction of the sweep will be much more important than

in the Poisson case, (ii) the anisotropic Poisson equation and (iii) a system of equations similar to the

linearized Navier-Stokes equations in pressure form.

The convection-di�usion equation

We will now consider a moderate increase in di�culty by addressing the scalar, linear convection-di�usion

equation. Local analysis suggests that the ampli�cation factor of the Gauss-Seidel relaxation changes com-

pared to the Poisson equation case. Simple considerations on how and why the Gauss-Seidel relaxation's

ampli�cation factor � (� ), is modi�ed will provide hints on how to avoid a deterioration of performance.
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We start with the observation that a purely convective equation � i.e. without the Laplacian operator

� can be solved very e�ciently by a single pass of a downstream marching scheme.

We de�ne the operator Q representing the two-dimensional, steady-state convection-di�usion equation

as

Q q = U � r q � � � q = f: (4.30)

This is a notation similar to the one used in the previous chapters, but simpli�ed in anticipation of

investigating systems of equations in the next section.

A second-order discretization of the convection-di�usion equation can be obtained by using an up-

winded, three-point discretization of the convective term and the standard �ve-point discretization of the

Laplacian term. In stencil notation we can write
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qh (x; y) = f h (x; y): (4.31)

The �rst thing to be noted is that this discretization is valid only for U; V � 0. The stencil representing

the convective term switches symmetrically about the central point and changes sign when the sign of

the velocity components changes.

Analogous to what has been done for the Poisson equation, the operatorL h is split into a L +
h and a

L �
h part de�ning the Lexicographic Gauss-Seidel iteration:
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The symbols associated with the splitting can then be computed as

~L +
h = �

�
h2

�
e� i� 1 + e� i� 2 � 4

�
+

U
2h

�
e� 2i� 1 � 2e� i� 1 + 3

�
+

V
2h

�
e� 2i� 2 � 2e� i� 2 + 3

�
; (4.33a)

~L �
h = �

�
h2

�
ei� 1 + ei� 2

�
; (4.33b)
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while the symbol for the iteration operator is

~M h (� ) =
~L �

h
~L +

h

=
� �=h 2

�
ei� 1 + ei� 2

�

� �=h 2
�
e� i� 1 + e� i� 2 � 4

�
+ U=(2h)

�
e� 2i� 1 � 2e� i� 1 + 3

�
+ V=(2h)

�
e� 2i� 2 � 2e� i� 2 + 3

� :

(4.34)

In order to better understand this expression, it is convenient to multiply both the numerator and the

denominator by h=jU j. As a consequence,U and V in the denominator are replaced bysin � and cos�;

respectively, with � as the angle of the velocity vector with the horizontal axis. A Reynolds number

based on the mesh sizeh can now be de�ned asReh = jU jh=� and the symbol can be rewritten as

~M h (� ) =
Re� 1

h (Dn )

� Re� 1
h (Dd) + cos �= 2 (C1) + sin �= 2 (C2)

(4.35)

where Dd, Dn , C1 and C2 are the terms in brackets in equation (4.34). The �rst two are related to the

di�usion term while the last two to the convection term in the x1 and x2 direction, respectively.

Two di�erent asymptotic regimes can be considered depending on the value of the mesh-based

Reynolds number Reh : (i) for small Reh � 1 the Dn and Dd terms dominate, and the situation of

the pure Laplace operator treated in the previous section is recovered independently of the valueReh ;

while (ii) for big Reh � 1 the C1 and C2 terms are dominant in the denominator, and the ampli�cation

factor � (� ) tends to zero: indeed, for a purely convective equation, one single pass is enough to solve the

equation exactly, provided that the sweep is performed in the downstream direction.

As previously done for the Laplacian operator, we plot in Figure 4.4 the ampli�cation factor as a

function of the wavenumbers. Contour levels of the ampli�cation factor � (� ) are shown for Reynolds

numbers Reh = 10 � 1; 1; 101; 102 and for a velocity U with an angle � = 45 � with respect to the

horizontal axis of the grid.

Inspection of these contours plots con�rms what has been established by considering the asymptotic

regimes: an increase in Reynolds numberReh reduces the ampli�cation factor � (� ), increasing the

convergence rate of the error at each Gauss-Seidel sweep. The error components characterized by a lower

wavenumber, corresponding to smooth error components, are always the slower to converge, but the

overall error reduction is greater than in the simple Poisson case.

We have already noted while investigating the relaxation of the Laplace operator that changes in the

sweep direction does a�ect the convergence properties of the Gauss-Seidel relaxation. This feature is

even more pronounced in the case of the convection-di�usion equation, due to the directionality of the

convection operator associated with the discrete upwinding. As an example, we consider the e�ect of

relaxation with the same splitting as (4.32) corresponding to a Lexicographic Gauss-Seidel sweep, but

rather applied to a negative velocity �eld U; V � 0. Upwinding of the convective derivative results in a

stencil representation of the convection-di�usion equation given by
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qh (x; y) = f h (x; y) (4.36)

where the only di�erence with respect to the positive velocity case (4.31) is in the convective term. The

absolute value of the negative velocitiesU; V takes into account the change in sign of the stencil. The
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Figure 4.4: Contour plots of the ampli�cation factor � (� ) = j" m +1
� ="m

� j = j ~M h j for the
convection-di�usion equation. A constant �ow �eld U = V = 1 =

p
2 corresponding to � = 45 �

has been selected. Downstream marching is applied in all cases. Four mesh-based Reynolds
number are shown: Reh = 10 � 1 ; 1; 101 ; 102 . For the lowest Reh = 10 � 1 the contours are very
close to the pure Poisson problem case, but the ampli�cation factor improves when increasing
the Reynolds number Reh . Contours are rescaled in the two lower plots, as marked by the
coe�cient on the top right corner of these plots. The corresponding symbol is given by (4.34).

GS-LEX splitting considered above (4.32) now reads
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The symbols associated with the splitting can then be computed as

~L +
h = �

�
h2

�
e� i� 1 + e� i� 2 � 4

�
+ 3

jUj
2h

+ 3
jV j
2h

; (4.38a)
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�
ei� 1 + ei� 2

�
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jUj
2h

�
e2i� 1 � 2ei� 1

�
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jV j
2h

�
e2i� 2 � 2ei� 2

�
(4.38b)

while the symbol for the iteration operator, using the mesh-based Reynolds numberReh , is

~M h (� ) =
~L �

h
~L +

h

=
� Re� 1

h

�
ei� 1 + ei� 2

�
+ j cos� j=2

�
e2i� 1 � 2ei� 1

�
+ j sin � j=2

�
e2i� 2 � 2ei� 2

�

� Re� 1
h

�
e� i� 1 + e� i� 2 � 4

�
+ 3 j cos� j=2 + 3j sin � j=2

: (4.39)

We can again consider the two asymptotic regimes: (i) for small Reynolds numbersReh � 1 the situation

is unchanged, as can be expected given that there are no changes in the di�usion term; (ii) in contrast,

for large Reynolds numbersReh � 1; the situation is di�erent: the numerator does not tend to zero as

Re� 1
h ; and optimal convergence rates � characteristic of the case with positive velocity components �

cannot be achieved. This e�ect has to be attributed to the fact that the relaxation process is sweeping

in the wrong direction, or upstream. Information cannot be transferred in the optimal way because the

stencils of the convective term use information from the old approximation instead of the new one, as is

the case when downstream marching is employed. From another point of view, we can state that when

downstream marching is employed, the convective term is solved implicitly, and the solution process is

�equivalent� to a direct solution of the convective term: if the correct ordering of the unknowns is chosen,

the matrix corresponding to the convective operator is already lower triangular and downstream marching

corresponds to forward substitution.

Figure 4.5 shows the corresponding reduction factors for� = 180 � (U = � 1) and � = 225 � (U; V =

� 1=
p

2). Ampli�cation factors are very close to one for high wavenumbers indicating ine�ciency of the

relaxation scheme based on upstream marching for highReh grids.

Figure 4.5: Contours of the ampli�cation factor for the convection-di�usion problem, for a
mesh-based Reynolds number ofReh = 10 2 . Upstream marching is used. Comparison with the
bottom right plot in Figure 4.4, where downstream marching has been used, shows a strong
degradation, by two orders of magnitude, in the ampli�cation factor for both U = � 1; V = 0
(� = � 180� , left plot) and for U = V = � 1=

p
(2) (� = � 135� , right plot). The sweep direction

is paramount in regions of the computational domain with high mesh-based Reynolds numbers.
The corresponding symbol is given by (4.39).
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Line Gauss-Seidel relaxation

We now return our attention to the Poisson equation by considering the case of an anisotropic equation

in the form

"qxx + qyy = f: (4.40)

If we consider the same splitting previously used for the isotropic Poisson problem and corresponding to

a Lexicographic Gauss-Seidel iteration, the operatorsL +
h and L �

h characterizing the relaxation scheme

read
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The anisotropy described by " can represent a physical characteristic of the problem. Another more

common possibility is to include " after the discretization representing an anisotropy due to a grid

stretching: in the present case we can seth = h2 and " = ( h2=h1)2.

The symbols associated with the pointwise Gauss-Seidel splitting are slightly modi�ed with respect

to the isotropic case by the introduction of ": They read

~L +
h (� ) =

1
h2

�
"e� i� 1 + e� i� 2 � 2(1 + ")

�
; (4.42a)

~L �
h (� ) =

1
h2

�
"ei� 1 + ei� 2

�
; (4.42b)

and the iteration operator M h accordingly changes to

~M h (� ) =
"ei� 1 + ei� 2

"e� i� 1 + e� i� 2 � 2(1 + ")
: (4.43)

The associated ampli�cation factors for " = 1 ; 1=4; 1=9; 1=16 are depicted in Figure 4.6. From the �gure

it is evident that the contours of the ampli�cation factor � spread in the � 1 direction when reducing " �

that is, the reduction factors for high-wavenumber � 1 deteriorate for increasing grid stretching.

A possible solution is to replace the pointwise relaxation of the Gauss-Seidel scheme � where the dis-

crete equation at each mesh pointi; j is updated independently � with a linewise Gauss-Seidel relaxation

(LGS), where all unknowns on a mesh line are updated collectively. Line relaxation is somewhat more

expensive than pointwise relaxation because a tridiagonal or pentadiagonal system has to be solved, but

fast algorithms (with a computation cost that scales linearly with the number of unknowns) are readily

available [3], and the increase in computation cost is easily manageable. These systems correspond to the

one-dimensional discretization (along a mesh line) of the Laplacian or the convective-di�usion operator,

respectively.

In stencil notation, LGS corresponds to the splitting
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Figure 4.6: Contour plots of the ampli�cation factor for the anisotropic Poisson equation.
Increasing anisotropy leads to a spreading of the contours in the direction where the mesh size
is largest. Accordingly, ampli�cation factors increase for higher wavenumbers resulting in a
decrease in the convergence rate. Values of the contours levels are marked only in the top left
�gure for clarity (as for the case of the isotropic Poisson problem), but all �gures are color-coded
in the same manner. The symbol for these plots is given by (4.43).

and the corresponding symbols are given by

~L +
h (� ) =

1
h2

�
"e� i� 1 + e� i� 2 + ei� 2 � 2(1 + ")

�
; (4.45a)

~L �
h (� ) =

1
h2

�
"ei� 1

�
: (4.45b)

The symbol for the operator M h can be computed accordingly as

~M h (� ) =
"ei� 1

"e� i� 1 + e� i� 2 + ei� 2 � 2(1 + ")
: (4.46)

Figure 4.7 shows the convergence factors for the same cases of Figure 4.6 but using linewise relaxation

instead of pointwise relaxation. It is clear that the spread of the contours in the� 1 direction, characteristic

of pointwise relaxation, is no longer present. In spite, there appears a tightening of the contours in the

� 2 direction, with the consequence that high� 2 wavenumbers are damped even faster than before � in

essence, since the� 2 direction is solved implicitly.

The Line Gauss-Seidel scheme also partially solves the problem of switching stencils in the advection

discretization, as the direction of the stencil along the implicitly solved mesh line becomes irrelevant.
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Figure 4.7: Same as Figure 4.6, but using linewise Gauss-Seidel relaxation instead of pointwise
Gauss-Seidel relaxation. The spread of the contours in the horizontal direction, characteristic
of pointwise Gauss-Seidel, is eliminated and, in its place, there is a tightening of the contours in
the vertical direction, corresponding to better (smaller) ampli�cation factors. Linewise Gauss-
Seidel relaxation is somewhat more expensive than its pointwise equivalent as it requires the
implicit solution of tri- or pentadiagonal systems: the reduction in ampli�cation factor is not
worth the additional computation cost in the isotropic case, but becomes essential for the
anisotropic case. The symbol is given by (4.46).

It is important to remark that we have considered a local deformation, i.e., an anisotropy which is a

characteristic of a single mesh point. This analysis does not cover the case of conformal mapping, where

the stretched grid is still locally isotropic if an originally isotropic grid is used; this is the case for the

grids showed in Figure 3.2. In fact, Local Fourier Analysis (LFA) cannot identify the e�ects � if any �

of a conformal mapping on the convergence rate, which are related to coe�cients varying between mesh

points. If the coe�cients' variation is too pronounced, other methods, which we will introduce in the

context of boundary relaxation, have to be employed.

Systems of equations

We have up to now considered only scalar equations: the Laplace equation and the convection-di�usion

equation form the building blocks of our formulation of the Navier-Stokes system.

As a �nal step, we consider the case of a system of equations. In this case, a full LFA analysis is still

feasible but impractical, and is not covered here. We will instead use some of the concepts introduced

in the previous sections to understand the principle underlying the relaxation of a linear system, as in

the pressure form of the linearized Navier-Stokes system (L � ) given in section 3.1. We will arrive at the
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conclusion that, in this particular case, a full LFA analysis is not strictly necessary and it is su�cient

to consider the analysis already performed for the scalar cases to gain information on the behavior of a

relaxation scheme applied to the full system.

We consider a linear system similar to the linearization of the two-dimensional Navier-Stokes equation

in the form

L q =

2

6
6
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Q + a11 a12 @x

a21 Q + a22 @y

b1 b2 �

3

7
7
5 q = f (4.47)

where Q = U � r � � � is the linear convection-di�usion operator already presented in (4.30), andaij

and bj are scalar coe�cients mimicking the base-�ow velocity derivatives in the linearized Navier-Stokes

equations. Similar to the scalar case, we de�ne a splitting but, because we are dealing with a system,

we have to consider two levels of splitting: (i) the splitting of the system and (ii) the splitting of the

operators appearing as elements of the system. We represent the splitting of the system as
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where Q+ , Q� etc. represent the splitting of the discretized operators previously seen for the scalar

analysis. Once the symbol of each scalar operator has been computed, we can analytically compute the

inverse
� ~L +

h

� � 1
and write the symbol ~M h of the iteration operator M h = �

�
L +

h
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L �

h as

~M h =

2

6
6
6
6
6
6
6
6
6
4

1
~Q+ + a11

 

~Q� �
b1

~@+
x

~� +

!
1

~Q+ + a11

 

a12 �
b2

~@+
x

~� +

!
1

~Q+ + a11

 

~@�
x �

~� � ~@+
x

~� +

!

1
~Q+ + a22

 

a21 �
b1

~@+
y

~� +

!
1

~Q+ + a22

 

~Q� �
b2

~@+
y

~� +

!
1

~Q+ + a22

 

~@�
y �

~� � ~@+
y

~� +

!

b1

~� +

b2

~� +

~� �

~� +

3

7
7
7
7
7
7
7
7
7
5

: (4.49)

In this expression, at �rst sight rather complicated, we have four types of terms: (i) the coe�cients aij

and hj , which are independent of the mesh sizeh; (ii) the �rst-order derivatives @x and @y , whose symbol

scales as1=h; (iii) the Laplacian operator, whose symbol scales like1=h2 and (iv) the convection-di�usion

operator, whose symbol scales as1=h or 1=h2 depending on the Reynolds numberReh .

As a consequence, if we consider again the limit of small mesh sizeh � equivalent to a small mesh-

based Reynolds numberReh � and recalling the results obtained for the convection-di�usion equations,

namely that for low Reh the dominant terms in the ampli�cation factor are related to the di�usion term,

the symbol ~M h simpli�es to a diagonal matrix containing only the terms Q� =Q+ on the �rst two lines
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and � � =� + on the last line:

lim
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For a su�ciently small mesh size, the relaxation procedure de�ned by the splitting (4.48) behaves in the

same way as the scalar convection-di�usion equation for the �rst two unknowns and as the scalar Poisson

equation for the third. For even smaller Reh , the entire system behaves like the Poisson equation since

the ampli�cation factor of the convection-di�usion equation tends to the one of the Poisson equation.

Boundary relaxation

As anticipated when the LFA analysis was introduced, there are two important cases where LFA analysis

cannot be applied because the linearization of the operator is not meaningful: where the equation's

coe�cients vary too strongly between mesh points � for example, on coarse grids where boundary layers

are poorly or not at all resolved � or in the vicinity of boundaries � where the discretization of boundary

conditions takes the place of the interior equations. The results obtained so far cannot be applied to

these regions: ampli�cation factors closer to or even greater than one, denoting slow convergence or even

divergence, are obtained even in the simple case of the Poisson equation with homogeneous Neumann

boundary conditions if the pointwise Gauss-Seidel relaxation is used [14].

It has to be noted that while the slower error reduction in these region may a�ect the whole iterative

process and require additional sweeps, its origin is essentially local, as elsewhere in the domain LFA

analysis can be successfully applied. A possible solution is then to devise a special treatment, in the form

of a di�erent relaxation procedure like incomplete LU decomposition, GMRES or even direct algorithms,

for the mesh points showing unacceptably slow error convergence. Because the number of degrees of

freedom involved in these regions is commonly low � LFA analysis is usually valid in most of the domain

� the extra computational cost is negligible when compared to the total cost. For the code used in this

work, sparse LU decomposition [1, 2] is used to collectively solve all unknowns within a band of four mesh

lines in the vicinity of the in�ow and out�ow boundaries and up to twenty mesh lines in the vicinity of

the solid boundary. The larger number of mesh lines collectively solved close to the solid boundary has

to be related to the strong variation of the equations' coe�cients across the boundary layer developing

there.

For a system of equations, boundary relaxation should include all unknowns (e.g.u; v; p for the two-

dimensional Navier-Stokes equations) as the splitting of the system described in the previous section is

not valid and the equations are di�erent.

We will have a more detailed look at the e�ect of boundary relaxation when we consider some test

cases in section 4.6.

4.4 Correction scheme
the linear equation

The analysis of the relaxation scheme we have performed so far has identi�ed the ampli�cation factor

� (M h ) associated with the discrete iteration operatorM h as the fundamental quantity used in analyzing

the relaxation process. M h is the result of a splitting L h = L +
h + L �

h of the discrete problem L h ; and

the correct design of this splitting is essential in order to obtain proper convergence rates for the error
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amplitude. We have seen how the splitting corresponding to pointwise Gauss-Seidel relaxation represents

a good choice for reducing the high-wavenumber error components for the Laplace equation and, provided

that downstream marching is used, for the scalar convection-di�usion equation. We have also considered

possible issues arising due to the presence of anisotropies in the problem, associated with both physical

properties or grid stretching. Ampli�cation factors for waves aligned with the largest mesh direction

(wave vectors aligned with the �ner) worsen with increasing anisotropy, but the original ampli�cation

factors can be recovered by employing linewise relaxation, which requires the implicit solution of tri- or

pentadiagonal matrices. Finally, we have considered a particular system of equations similar in shape to

the pressure form of the linearized Navier-Stokes equations (L � ) and shown that, for su�ciently small

mesh sizeh � measured by the mesh-based Reynolds numberReh � the smoothing properties for a

given splitting of the system can be related to the scalar case. In addition, we remark that the low

Reh -limit corresponds to larger grids � and thus to larger numbers of degrees of freedom � and it is

the more important limit as it relates to the case where most of the computational cost is invested.

We now return to the observation that both the pointwise and linewise Gauss-Seidel relaxation have

very good ampli�cation factors for high wavenumbers, but the ampli�cation factor for low wavenumbers

is close to one. The only exception is for high Reynolds numberReh � 1 and downstream marching, but

for any physical problem with a boundary layer that needs to be resolved, there will be at least one area

of the domain whereReh = O (1). An interpretation for the inferior convergence of the low-wavenumber

error is linked to the idea that pointwise Gauss-Seidel iteration is alocal process: at each iteration,

information from one mesh point is passed only to the one next to it. As a consequence, transfer of

information between two distant mesh points requires many iterations. While this is not an issue for

purely convective (hyperbolic) problems, where there is a natural direction of information propagation �

a property which is leveraged by downstream marching � it represents a bottleneck for elliptic problems,

where each point in the domain in�uences all other points and information must be propagated back

and forth until convergence. Linewise relaxation, despite the fact that it is global in the direction of

mesh-lines that are solved implicitly, remains a local relaxation in the other direction, as can be seen in

Figure 4.7, where contours are compressed in the vertical direction � corresponding to the direction of

implicit solution � but do not change in the horizontal direction.

Many physical problems of interest contain at least an elliptic term � in our case it is the Laplace

operator applied to the pressure in the pressure equation and to the velocities in the momentum equations.

In this work, multigrid is the chosen algorithm to deal with the problem of low-wavenumber components.

Alternative solutions would include more complicated relaxation methods like ILU decomposition [63, 36],

which can be considered as a partially global iteration method, and Krylov subspaces methods, which

change the basis on which the solution is searched in order to account for long-range interactions (small

wavenumbers).

As we have earlier remarked, there are two possible multigrid algorithms: the Correction Scheme (CS)

and the Full Approximation Scheme (FAS). Both are based on the idea of computing a correction to the

approximation qm of the exact, discrete solution �q on coarser grids and then interpolate it to �ner grids.

They di�er, however, in the way this correction is computed. In what follows, we start by introducing

the more widely known CS scheme, after which we will present the FAS scheme.

The idea behind the Correction Scheme (CS) is to compute a correctionem
h in order to obtain a

better approximate solution qm +1
h = qm

h + em
h at the next iteration of the iterative solver. By replacing

the expression forqm +1 in a generic discrete linear systemL h qm +1
h = f h ; it follows immediately that the
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correction em
h satis�es the equation

L h em
h = r m

h ; where r m
h = f h � L h qm

h : (4.51)

In the above expression,r m
h is the residual of the equation and is non-zero becauseqm

h is merely an

approximation to the exact discrete solution. The term em
h is an approximation of the error, given by

eh = �qh � qm
h .

If the high-wavenumber components of the error have been reduced by the application of some (usually

one or two) sweeps of a variant of the Gauss-Seidel relaxation process (described in section 4.3), the

correction em
h can be approximated on a coarser grid by the functionem

H satisfying

L H eH = Rr h (4.52)

whereR is the restriction operator used to transfer information from grid h to grid H; and the superscript
m has been omitted. The computational cost of solving this equation for the correction on the coarse

grid is clearly less than the cost of solving it on the �ner. Once a solutioneH to the coarse-grid equation

(4.52) is found, it can be interpolated back to the �ner grid, and the approximate solution qm
h is updated

as follows

qm +1
h = qm

h + Iem
H : (4.53)

The interpolation process introduces some high-wavenumber error components which can be e�ciently

reduced by one or more additional relaxation sweeps. This two-grid scheme can be implemented recur-

sively by repeating the same procedure on increasingly coarser grids, until a grid is reached on which the

direct solution of (4.51) is inexpensive.

The Correction Scheme can be visually summarized with the help of Figure 4.8, where four grid-levels

have been considered, as in Figure 4.1: the simplest multigrid algorithm starts from the �nest grid (orange

dots), where one or two relaxation sweeps are applied to reduce the high-wavenumber error components.

The residual of the discrete equation is then restricted onto the coarser grid (green dots) where the

equation for the correction em
H (4.52) is de�ned and relaxed. This procedure is repeated recursively until

the coarsest grid (red dots) is reached, where an exact discrete solution of the corresponding equation

for the correction can be obtained inexpensively. After that, corrections are interpolated back to �ner

grids using equation (4.53). At every grid level in the upward, i.e., coarse-to-�ne, leg the equation for

the correction is relaxed again with one sweep of the relaxation process to reduce the high-wavenumber

components introduced during the interpolation process. On the �ner level, the solution is updated.

While it is possible to perform LFA analysis for the two-grid (and consequently for the multi-grid)

problem, it is not attempted here. Su�ce it to remark that, on each grid, it is necessary to reduce

only the high-wavenumber error components since lower-wavenumber components will be reduced on

coarser grids. As a consequence, we can expect the limiting ampli�cation factor of each application of

the multigrid V-cycle � i.e. one downward and one upward leg in Figure 4.8 � to be dependent on

the largest ampli�cation factor � (� ) in the high-wavenumber range determined in section 4.3. For all

cases analyzed in section 4.3 the maximum ampli�cation factor for the Gauss-Seidel iteration in the high-

wavenumber range is approximately0:5; provided that downstream marching and linewise relaxation is

used if necessary (note that it is exactly0:5 for pointwise Gauss-Seidel relaxation on an isotropic grid).

If, like in the case we just considered, we apply a total of three relaxation sweeps per grid level � two

on the downward leg and one on the upward leg � the upper limit for the ampli�cation factor for each

V-cycle is 0:53 = 0 :125, meaning that the magnitude of the error is expected to be reduced by nearly one
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Figure 4.8: The V-cycle is a main ingredient of the multigrid algorithm: on the downward leg,
some � usually one or two � relaxation sweeps are applied at each grid level (represented
by the colored circles) except the coarsest (red circle), and information is transferred from the
�ner to the coarser grids by restriction. The equation de�ned on the coarsest grid is solved
exactly. Corrections are then interpolated back to �ner grids on the upward leg, and additional
relaxation sweeps � usually only one � are applied to reduce the high-wavenumber error
introduced by the interpolation process. The whole process can be seen as the application of
an iteration operator M h ; and a spectral radius �� (M h ) can be computed.

order of magnitude for each V-cycle iteration.

The value of 0:125is the same we have obtained during the analysis of the Lexicographic Gauss-Seidel

relaxation for the Poisson equation. The important di�erence is that, while in the former case it was the

worst ampli�cation factor for high-wavenumber components � far worse ampli�cation factors have been

obtained for lower wavenumbers � in the present multigrid case it is the worst ampli�cation factor for

all wavenumbers.

We can then return to the global point of view and summarize all sequential operations in the V-cycle,

represented in Figure 4.8, by a single operatorM h acting on the error components in the same manner as

has been described when de�ning a generic iterative process at the beginning of this chapter (see equation

(4.4) in section 4.1). In the same way we can identify the asymptotic behavior of the iterative process

represented by the operatorM h with its spectral radius �� , which is also the worst obtainable convergence

rate: for the multigrid process represented in Figure 4.8 the spectral radius is thus equal to0:125:

Full multigrid (FMG) and Full V-cycle (FV)

The V-cycle represented in Figure 4.8 starts from an initial guess on the �nest grid. A smart way of

computing this initial guess is by interpolating solutions previously obtained on coarser grids. This

procedure leads to the introduction of the Full Multigrid Algorithm (FMG), which di�ers from the

iterative algorithm presented above in the fact that the initial guess is inexpensively computed on the

coarsest grid instead of the �nest grid. Once a solution is obtained on this grid, an initial guess for

the next �ner grid can be obtained by interpolation, and a multigrid cycle is applied until a converged

solution is found on this �ner grid. This process is then repeated with progressively �ner grids until a

satisfactory mesh size is obtained.

The availability of a good approximation with which to start the V-cycle reduces the number of full V-

cycles required to converge to the required solution and, for simple problems like the Poisson equation �

or even more complex ones like the inviscid, incompressible Navier-Stokes equations � it has been shown

that one V-cycle is su�cient to obtain a solution whose algebraic error eh falls below the discretization

error [14].

Finally, a combination of the V-cycle with the FMG algorithm results in the de�nition of the FV-cycle

where, given an initial approximation on the �ner grid � for example obtained when an additional grid
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Figure 4.9: In the FMG algorithm, the initial guess used at the �nest level of a V-cycle is
computed by interpolating a solution previously computed on a coarser grid. Progressively
�ner grids can be added until a satisfactory mesh size is obtained. The availability of a good
initial guess computed by interpolation reduces the number of V-cycles required to converge to
the solution: in many cases one V-cycle is su�cient to converge to algebraic error below the
discretization error. The full solution has to be interpolated when a new grid level is added
(thin, curved arrows), while we recall that only the corrections are interpolated inside each
V-cycle (thick, straight arrows).

is added in an FMG algorithm � a downward leg is applied to reach the coarsest grid used. After that,

an FMG algorithm can be used to get back to the �ner grid, thus reducing the number of relaxation

sweeps required on the �nest grid. The FV cycle is represented in Figure 4.10.

Figure 4.10: The FV-cycle can replace the V-cycle as a standalone algorithm or inside an
FMG algorithm. The initial guess on the �nest grid (orange) is relaxed and restricted until the
coarsest grid (red) is reached, in the same way as in the downward leg of a V-cycle. A path
similar to the FMG algorithm is then used, with the di�erence that an approximation of the
solution is already available on all grids and only the corrections are interpolated in the upward
legs. The FV-cycle is intended to reduce the number of sweeps applied to the �nest grid.

Both FMG and FV cycles are used in the code developed in the context of this work, but the Correction

Scheme is replaced with the Full Approximation Scheme to be able to accommodate equations � or a

system of equations � containing nonlinear terms and to include adaptive re�nement procedures.

In the next section the FAS algorithm will be introduced. After that, the last section of this chapter

will provide some test cases with applications and demonstrations of the theoretical results obtained in

the previous sections.

4.5 Full Approximation scheme
the non-linear equation

The Full Approximation Scheme may be less known but is certainly the most powerful version of multigrid.

Its main advantages are the capability of directly addressing nonlinear problems and of providing a natural

approach to adaptive grid re�nement.

The Full Approximation Scheme replaces the coarse grid equation (4.51) for the correctioneh with a
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coarse grid equation for the unknownqH in the form

L H qH = f H + � H
h (4.54)

where f H = Rf h is the restriction of the forcing from the �ne to the coarse grid, and � H
h is the defect

correction de�ned as

� H
h = L H (Rqh ) � R (L h qh ) : (4.55)

Once a solution qH is computed on the coarse grid, only the correction (and not the whole solution) is

interpolated back to update the �ne grid solution according to

qnew
h = qh + I (qH � Rqh ) : (4.56)

Interpolation of the full solution by writing qnew
h = IqH would introduce the interpolation error of the

whole solution instead of the interpolation error of only the correction and is thus not advised (but see

[8, section 8.5] for cases when this is not true).

To better understand the meaning of the defect correction, we start by considering the error introduced

by the discretization process, i.e. by moving from the continuous to a discrete formulation. This error

is in general unknown but is proportional to the order of the discretization. For example, a centered

second-order derivative can be written on a one-dimensional domain as

qx = f =)
qi +1 � qi � 1

2h
+ f (x) h2 = f i : (4.57)

Let us suppose for a moment that the functionf (x), representing the error introduced in the discretization

process and independent of the mesh size, is known: the discretized equation could then be written as

qi +1 � qi � 1

2h
= f i � f (x) h2; (4.58)

and the discrete solution would correspond to the analytic one independently of the chosen mesh size.

While we cannot know a-priori the shape of the function f (x), the equivalent information is readily

available when considering two di�erent discrete representations on two grids of di�erent mesh sizeh and

H . To see this, we rewrite� H
h (4.55) as

� H
h = L H (Rqh ) � f H| {z }

r H

� R (L h qh � f h )
| {z }

Rr h

(4.59)

where f H = Rf h by de�nition. The �rst term in this equation represents the residual stemming from the

application of the coarse grid operatorL H on the (restricted) �ne grid solution qh , while the second term

represents the restriction of the �ne grid residual, thus providing the di�erence in the application of the

coarse grid operatorL H and the �ne grid operator L h on the same �ne grid solution qh . If this di�erence

is added to the coarse grid equation, the same solution is obtained on both grids.

We also mention the possibility, not used in the code developed for this work, of extrapolating the

value of � H
h to compute a solution as close as possible to the solution of the continuous problem instead

of the one to the discrete problem. In other words, the defect correction� H
h can be used to estimate

the unknown function f (x) � or its multi-dimensional equivalent � de�ning the truncation error of the

discretization process. This can be used to force the �nest grid equation, for which the defect correction

� h
� is not available. A concise description of this methodology can be found in [8, section 8.4].
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Nonlinear equations

The correction equation L H eH = r H (4.52) used in the de�nition of the Correction Scheme algorithm is

valid only for linear problems and, as a consequence, limits the applicability of the CS to linear problems.

This same limitation does not apply to the FAS algorithm, as the correction is computed for the equations

by means of the defect correction� H
h and not for the solution. This is equivalent to writing the correction

equation in the form

L h (um
h + em

h ) � L h (um
h ) = r h

and replacing the �ne grid operators L h with their coarse grid counterparts L H . After um
h , eh

m and r h are

consistently multiplied by the restriction operator R, an equation equivalent to the FAS equation (4.54) is

obtained. Finally, it should be noted that the Correction Scheme can be used as the linear solver within

a Newton algorithm, but the FAS algorithm is more e�cient as it does not require an external Newton

iteration on the �nest grid.

Adaptive grid re�nement in the context of multigrid

A possibly even more interesting feature of the FAS algorithm is its ability to naturally treat adaptive grid

re�nement. Because the solution, in contrast to the correction, is represented on all grids, the �ner grid

is not required to have the same extent of its next coarser grid, as shown on the �nest grid of Figure 4.1.

In this case, the defect correction� H
h will be de�ned on the coarse grid only in the areas where a �ner

grid is de�ned and will be zero otherwise but will nonetheless a�ect the solution on the entire coarse grid.

Because� H
h is an estimate of the truncation error, this is a natural approach: when a region of a given

grid does not need to be re�ned, it means that its truncation error is su�ciently small and can be taken

as zero.

A question arises on how to deal with inner boundaries, i.e., those boundaries of the �ner grid that

do not correspond to the physical boundaries of the domain but lie in the interior of the coarser grid. A

simple and correct answer is to use Dirichlet conditions obtained by interpolating the coarse grid solution

with an interpolation operator of at least the order of the discretization. The reason for this approach

follows the same argument given above: when a region of a given grid does not need to be re�ned, it

means that the chosen discretization order represents the solution su�ciently well in that region. An

interpolation of the same order as the discretization will then satisfy the �ne grid equations as well. For

example, when a second-order discretization is employed, we can stop further re�ning when, locally, the

solution is well approximated by a second-order polynomial (a parabola in one dimension or a paraboloid

in multiple dimensions). In this sense, a second-order interpolation of the solution would locally be an

exact solution of a �ner grid and can be used as a Dirichlet condition for the re�ned region.

An additional remark has to be made on the use of the defect correction� H
h as a re�nement criterion,

taking advantage of the fact that it is an approximation of the truncation error. Under this criterion,

re�nement is then required only where� H
h is large, corresponding to the area where a stronger modi�cation

of the coarse grid equations is induced by the presence of the �ner grid. The defect correction re�nement

criterion is both less expensive � as it is a byproduct of the FAS algorithm � and more appropriate

than many, more commonly used re�nement criteria based on solution gradients or the vorticity �eld �

which requires the additional computation of the gradients and fails to identify regions of interest in very

simple cases. As an example where gradient-based adaptive grid re�nement criteria would fail, we can

consider a problem with a solution given by a parabolic pro�le in the form

q = ay2 + by+ c;
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and a second-order discretization of the problem. An example could be plane Poiseuille �ow between two

stationary �at walls driven by an externally imposed pressure gradient, for which the velocity pro�le is

u = �
y
�

px

�
h �

y
2

�
(4.60)

with h as the channel half-height. With the velocity gradient stronger close to the wall, a gradient-based

re�nement criteria would suggest to concentrate mesh points in this region. In reality, this would be

ill-advised in terms of computational resources, as three mesh points is all that is needed to obtain an

exact solution to the problem: the second-order scheme describes parabolic solutions exactly. To see this

we de�ne a second-order discretization of theu-momentum equation on a three-point mesh of sizeh = b

as

�
ui +1 � 2ui + ui � 1

h2 = px (4.61)

where the pressure gradientpx is given. No-slip boundary conditions at the walls imposeui � 1 = ui +1 = 0

and the equation reduces to

� 2�
ui

h2 = px =) ui = �
h2px

�
; (4.62)

which is exactly the velocity at the centerline obtained from (4.60) for y = h. The velocity at all other

locations can be computed exactly by second-order interpolation ofui at y = h and ui � 1 = ui +1 = 0 at

y = 0 and y = 2h.

The most consistent criteria to be used is then to re�ne where the local solution to the problem is

farthest away from the shape implied by the discretization scheme � a parabola in the case of a second-

order scheme. In this sense, the defect correction gives an indication of how well the solution is locally

described by the discretization scheme.

4.6 Test cases

We will now investigate some applications of the computational tools presented so far. The multigrid

code used to produce the following examples is written in Matlab and listed in Appendix A. Both the

CS and the FAS scheme have been implemented, and results from the two schemes are the same up to

numerical precision. The equations are discretized using a standard �ve-point second-order Laplacian

and a �rst-order upwinded convective term. Pointwise Gauss-Seidel and linewise Gauss-Seidel iterations

are implemented by operator splitting to keep a compact notation. Full-weighted restriction and bilinear

interpolation are used for the communication between grids. For all test cases the �nest grid has129� 129

mesh points, the coarsest one has5 � 5 mesh points.

In these tests, particular attention is directed towards the boundary treatment: this part of the

multigrid process cannot be analyzed by LFA and, as noted by Diskin [14], has been often overlooked.

Following Diskin's steps, we will see how boundary relaxation restores the convergence rates predicted

by LFA analysis and extend his analysis of the inviscid equations to the case of the convection-di�usion

equation. This section contains four �gures, representing the convergence history of both pure Gauss-

Seidel iterations (blue lines) and of Gauss-Seidel iteration as a relaxation method within multigrid (red

lines). Each line symbol corresponds to three iterations of the Gauss-Seidel algorithm (blue) or one V-

cycle of the multigrid algorithm (red), since three GS iterations are performed for each V-cycle on the

�nest grid. Figure 4.11 shows results for the Poisson equation with Dirichlet boundary conditions on
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an isotropic grid. Figure 4.12 shows results for the Poisson equation with Dirichlet boundary conditions

on an anisotropic grid and the e�ect of linewise Gauss-Seidel relaxation. Figure 4.13 shows the e�ect

of changing the boundary condition from Dirichlet to Neumann and how boundary relaxation can be

used for recovering a satisfactory convergence rate. Finally, Figure 4.14 shows results for the convection-

di�usion equation. The obtained results match very well the theoretical estimates based on LFA analysis,

despite the fact that LFA relies on the hypothesis of an in�nite grid and constant coe�cients.

Figure 4.11: Convergence history of the residual for Lexicographic Gauss-Seidel relaxation (GS-
LEX, blue circles) and multigrid cycles (MG, red squares), using semilogarithmic axes. Only
every third GS-LEX iterations is marked by a symbol along the blue line, and three GS-LEX
iteration per grid are applied for each V-cycle; this makes the two curves nearly comparable
in terms of computational cost. The Poisson equation with Dirichlet boundary conditions is
discretized on a uniformly spaced grid. The �nest grid, on which the residual is computed, has
129� 129 mesh points, the coarsest grid has5 � 5 points. Three sweeps of GS-LEX relaxation
are used on each grid level, two during the downward leg and one during the upward leg.
The theoretical asymptotic convergence (spectral radius) of GS-LEX and MG are �� GS = 1
and �� MG = 0 :53 = 0 :125; respectively, and the theoretical convergence history for MG is
indicated by a black line (it is a horizontal line for GS-LEX). While the decrease in residual
norm associated with the �rst three GS-LEX and the �rst V-cycle iterations are comparable (at
n = 1 the curves coincide), the far superior convergence rate of MG is already evident starting
with the second iteration n = 2 . Excellent agreement with the results from LFA analysis is
obtained.
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Figure 4.12: Same as Figure 4.11, but with an anisotropy of " = 1 =9, corresponding to a grid
stretching of h2=h1 = 1 =3. Results for pointwise Gauss-Seidel (PGS-LEX) are shown with
empty symbols, results for linewise Gauss-Seidel (LGS-LEX) are indicated with �lled symbols.
This small stretching ratio is su�cient to cause a severe degradation in the multigrid asymptotic
convergence rate of PGS-LEX: LFA analysis estimates a V-cycle convergence rate of0:55; and
our results (red, empty squares) show excellent agreement with this estimate. The use of
linewise Gauss-Seidel as a relaxation method recovers � and improves � the convergence rate
obtained for the isotropic grid: the theoretical estimate for LGS-LEX, at 0:089 per V -cycle, is
sligthly better than the 0:125of the PGS-LEX on an isotropic grid and, as in the previous �gure,
there is excellent agreement between the theoretical estimate and the numerical experiments.
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(a) without boundary relaxation (b) with boundary relaxation

Figure 4.13: Same as Figure 4.11, but with a homogeneous Neumann boundary condition on
the x = 0 boundary. Pointwise Gauss-Seidel relaxation is used for all curves. The replacement
of the Dirichlet with a Neumann boundary condition gives rise to a severe degradation in the
convergence rate of the multigrid V-cycle, whose converged history is showed in red, un�lled
squares. The addition of a boundary relaxation solving all points belonging to the �rst three
mesh lines close to the x = 0 boundary recovers the convergence rate of0:125 per V-cycle
predicted by LFA analysis. The e�ect of boundary relaxation is clearly visible in the (a) and
(b) sub�gures, showing the residual of the equations after the application of two V-cycles
without and with boundary relaxation, respectively. PGS-LEX performs poorly in reducing
the error on the boundary, and a spike in the error is clearly visible in the left sub�gure (a).
The positive e�ect of boundary relaxation is evident in the right sub�gure (b), where the spike
has disappeared and the residual on the �rst three mesh lines close to the boundary is at
machine precision: the direct (or iterative) solution of this region adds very little to the overall
cost of the solution procedure but allows us to restore the theoretical multigrid convergence
rate. It can also be noted that pure GS-LEX iteration are barely modi�ed by the addition of
boundary relaxation: the �lled blue and empty cyan circles are hardly distinguishable. This
suggests that boundary relaxation acts at the restriction and interpolation levels rather than
at the relaxation level, by removing the high-wavenumber components close to the boundary,
left behind by PGS-LEX.
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(a) without boundary relaxation (b) with boundary relaxation

Figure 4.14: Convection-di�usion equation for Reh = 1 . Streamlines of the velocity �eld are
plotted in the bottom �gures: in�ow and out�ow are at the bottom right y = 0 and at the
top right x = 1 boundary, respectively, a stagnation point is located at (x; y ) = (0 ; 1); and
the �ow is symmetric with respect to the x = 0 axis. Lexicographic relaxation corresponds to
marching in the downstream direction. Convergence of the multigrid algorithm with pointwise
Gauss-Seidel relaxation and no boundary relaxation is shown in red, un�lled squares. Filled
squares correspond to multigrid with linewise Gauss-Seidel and boundary relaxation applied
to four mesh lines from all boundaries. Sub�gures (a) and (b) show the residual after the
application of two V-cycles for PGS-LEX without boundary relaxation and LGS-LEX with
boundary relaxation; the situation is similar to the case with a Neumann boundary condition,
but the origin is di�erent: larger residuals are found close to the solid boundary and at the
out�ow where, as on the rest of the boundary, a Dirichlet condition is applied. The origin
of this larger residual can be found in the chosen discretization: the upwinded convective
term, propagating information only from upstream, con�icts with the centered di�usive term,
propagating information also from the boundary. Because the lexicographically ordered sweeps
naturally transfer information downstream, the residual is �accumulated� close to the solid
boundary and the out�ow. In the case of the out�ow, a better implementation of the boundary
condition can partly �x the problem but, in both cases, boundary relaxation can be used to
propagate the information from the boundary into the domain. Cases with both higher and
lower Reh do not show this problem, suggesting that it is associated with intermediate Reynolds
numbers only. As an example, the convergence histories of lexicographic pointwise Gauss-Seidel
and of the corresponding multigrid V-cycle are shown in blue and red dashed lines, respectively.



Chapter 5

Global Analysis of the Flow

Around a Leading Edge

In this chapter we will present results from the global analysis of the �ow around a leading edge, based

on the theory outlined in chapter 2 and the numerical approach described in chapter 3 and chapter 4.

A brief recall of the governing equations and of the numerical algorithms will lead us to the description

of the main features of the base �ow.

Our global analysis is performed at a chord-based Reynolds numberReC = 106, corresponding to a

radius-based Reynolds numberRer = r ReC = 16000 and a sweep Reynolds numberRes =
p

Rer tan � =

126: The dimensionless leading-edge radiusr and sweep angle� for our geometry arer = r � =C� = 0 :016

and � = 45 � (tan � = 1 ), respectively. Small perturbations to a spanwise-independent solution to

the Navier-Stokes equations (R) for this set of parameters are known to decay asymptotically in time:

previous stability analyses on simpli�ed geometries [38, 39, 48] or for the supersonic case [43] consistently

suggest a critical sweep Reynolds numberRes of about 600 for attachment-line instabilities to develop.

Maintaining the current con�guration, a sweep Reynolds number Res of 600would correspond to a chord-

based Reynolds ofReC = Re2
s=r = 22:5 � 106, which is beyond our numerical capabilities for the time

being. We recall the de�nition of the various Reynolds numbers from section 2.1:

ReC =
U �

1 C �

� � ; Rer =
U �

1 r �

� � ; Res =
W �

1 � �

� � :

Consequently, a stable spectrum is computed under the assumption that its main features will not

change qualitatively when crossing the critical Reynolds number. Comparison between our results and

the literature just cited corroborates this line of thought. In particular, the shape of the computed

eigenvectors recovers features already observed by Mack et al. [44], namely a connection between the

attachment-line instability and the cross�ow instability. The modal structures at the attachment line

closely resembles the �ndings of Lin & Malik [38].

As outlined in chapter 2, we are interested in the receptivity of the spectrum to a forcing of the

perturbation equations, and this receptivity is related to the adjoint �eld. The adjoint spectrum is

computed and shown to be equivalent to the direct spectrum (up to complex conjugation), provided

some care is taken in dealing with the boundary conditions to avoid numerical di�culties. Analysis of

the adjoint modes shows major receptivity of the corresponding direct modes to be concentrated in the

upstream part of the domain, in particular, in the region close to the attachment line.

In the last section of this chapter, the wavemaker is described for our con�guration, together with

some observations on the structural sensitivity including its consequence on the e�ective implementation

of active and passive control strategies.

69
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5.1 Base �ow

The base�ow is computed as a steady-state solution of the unforced Navier-Stokes equations (L ) around

the leading edge of a Joukowsky airfoil. The Navier-Stokes equations read

R (q) �

8
><

>:

@t u + r u u � � � u + r p = 0

r � u = 0
(R)

where the dimensionless kinematic viscosity� is the inverse of the Reynolds number. Boundary conditions

are speci�ed as the no-slip conditionu = 0 on the solid boundary, the inviscid solution u = U � =0 (x; y) at

the in�ow and a homogeneous Neumann condition@u=@n= 0 at the out�ow. The shape of the airfoil is

de�ned by a complex mapping from a rectangular domain, and the inviscid solutionU � =0 can be obtained

accordingly. The con�guration is shown in Figure 2.1. See chapter 3 for all details on the mapping and

the computation of the inviscid solution.

For numerical convenience, the mass conservation equationr � u = 0 is replaced by a Poisson equation

for the pressure [21, 56] obtained by the application of the projection operator to the Navier-Stokes

system (R) [65, 64, 14]. The application of the projection operator is equivalent to the computation of

the divergence of the momentum equations and the application of the divergence-free condition. A full

account of the projection and its consequences have been provided in chapter 3. We recall here that

equivalence between the original and the projected formulation is guaranteed only if the divergence-free

condition is used to obtain a non-homogeneous Neumann boundary condition for the pressure [64]. This

can be accomplished by manipulating the momentum equations in the direction normal to the boundary

in order to construct a Neumann boundary condition for the pressure: the divergence-free condition on

the boundary is then implemented by using a �nite-volume-like formulation for the di�usive term, see

chapter 3 for details. Because the two formulations are equivalent and the Poisson equation is only a

numerical expedient, we will always refer to our solutions as the solutions of the system in divergence

form (R).

A spanwise invariant solution of (R) is sought by removing all the spanwisez-derivatives. Under

the hypothesis of spanwise invariance, the solution is known to be stable at all Reynolds numbers, and

a steady-state solution can easily be obtained. A consequence of the spanwise invariance is thatu; v

and p are decoupled from the spanwise velocity componentw and can be solved independently. The

w-component of velocity can be computed at a later stage and is governed by a scalar, linear convection-

di�usion equation.

Computation of the base �ow

The governing equations (R) are discretized on a stretched grid covering approximately20% of the

chordwise extent of the pro�le with a second-order �nite-di�erence scheme. Upwinded stencils are used

for the convective terms U@x + V @y � the term W@z is zero because of the spanwise invariance � and

centered stencils for all other derivatives. The Laplacian operator is discretized using a �nite-volume

formulation so that � u = A � 1� i r u � nds, where the sum is over the boundary of the control cell
 and

A is the surface of
 . The gradients of the velocity components are evaluated on the boundary of the

control cell. Details of the discretization and its validation are given in chapter 3.

The discretized, unforced equations are solved using the iterative, multigrid-based DNS code intro-

duced in chapter 4. In order for the multigrid solver � or any Newton-type solver � to converge to a
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correct solution, a good initial guess has to be provided. Consequently, solutions to (R) are obtained by

continuation over a set of Reynolds numbers ranging fromReC = 103 to ReC = 106: all computations

except the �rst ( ReC = 103) take the solution at the previous Reynolds number as an initial guess. A

third order interpolation is used when an additional, �ner grid is added to the grids stack. The �rst com-

putation takes the inviscid solution as an initial guess. The increase in the Reynolds number is performed

manually to verify the convergence of the solver at each value of the Reynolds number.

A grid stretching is applied in the direction normal to the solid boundary to cluster more mesh points

into the boundary layer area. The number of mesh points on the �nest grid is increased with the Reynolds

number to maintain a nearly constant number of points across the boundary layer thickness. The solution

at the highest Reynolds number ofReC = 106 (Rer = 16000, Res = 126) contains nearly 40 points across

the � 99-thickness at the attachment line.

In the following two section, the multigrid algorithm is characterized by specifying the choice of a

relaxation procedure and of a multigrid scheme.

Relaxation procedure

A linewise Gauss-Seidel relaxation procedure is employed: the linearized discretized equations belonging

to a given variable � say, the pressure p � and to a given line along the coordinate direction parallel

to the solid boundary are solved together, starting from the in�ow boundary and marching downstream

towards the solid boundary. One or more sweeps are applied before moving to the other variables. The

same procedure is then applied foru; v; w.

For each line, the solution of a penta-diagonal linear system is required, and LAPACK [3] routines for

banded matrices are employed. The penta-diagonal system corresponds to the one-dimensional discretiza-

tion of the Laplacian operator in the case of the pressure equation and to the upwinded discretization of

the convection-di�usion operator Q� (2.9) in the case of the momentum equations. A collective solution

of all variables u; v; w; p is performed by employing an LU decomposition for mesh points within a range of

four mesh lines from the in�ow and out�ow boundaries and within 20 mesh lines from the solid boundary

to avoid di�culties in the convergence of the relaxation process due to the di�erent discretization stencils

used at the boundaries and strongly varying coe�cients in the boundary layer, in particular, on coarser

grids.

Multigrid scheme

A multigrid Full Approximation Scheme (FAS) multigrid scheme with adaptive grid re�nement is em-

ployed. FAS di�ers from the more widely known Correction Scheme (CS) in storing the full solution on all

grid levels instead of the corrections to the solution on the �nest grid. As has been shown in chapter 4, the

FAS algorithm has two main advantages over the CS: the capability of dealing with nonlinear equations

without the necessity of an outer Newton-like iteration and the possibility of handling adaptively re�ned

grids.

An initial guess for the solution is provided on each grid which is available from previous computations

� for the �rst computation, an initial guess is provided on the coarsest grid. Third-order interpolation

is used to provide an initial guess when a �ner grid is introduced. A series of V-cycles is then applied,

with two sweeps of the relaxation procedure described in the previous section applied on each grid on the

downward leg and one sweep per grid on the upward leg. At the coarsest level, the discretized problem

is solved to numerical precision by means of a Newton method based on an LU decomposition of the

Jacobian matrix.



72 Chapter 5. Global analysis

Transfer of information between grids is performed using a full-weighting operator when moving from

a �ner to a coarser grid (downward leg) and a third-order interpolation when interpolating corrections

from a coarser to a �ner grid (upward leg).

The convergence behavior of the multigrid solver for a selection of Reynolds numbers and grid sizes

is shown in Figure 5.1 and compared with the theoretical convergence rate (black line) for the two-

dimensional, scalar, constant-coe�cient Laplace equation on a uniformly spaced grid using a pointwise

lexicographic Gauss-Seidel relaxation as described in section 4.3. While the computational cost for the

two cases is not directly comparable due to the fact that the line Gauss-Seidel relaxation is somewhat

more expensive � the LU decomposition of the penta-diagonal system is not necessary in the point-

wise Gauss-Seidel relaxation � the comparison gives a good indication on the total number of iterations

that are required to reach a numerically converged solution. The actual convergence closely matches the

convergence for the scalar Laplace equation for most of the cases. The degradation in the convergence

rate when increasing the Reynolds number can be associated with the fact that the coarsest grid used in

the computation is no longer able to resolve the boundary layer, whose thickness becomes smaller than

the mesh size. When moving fromReC = 2 � 105 to ReC = 5 � 105 it was necessary to increase the number

of points on the coarsest grid from129� 33 to 257� 65; as the multigrid algorithm would not converge

otherwise.

The last computation shown on the right of Figure 5.1, which provides the base �ow used for the

stability analysis that will be presented later in this chapter, is an example of adaptive re�nement. The

�nest grid of size 8193� 1025 covers only the half closest to the solid boundary of the next coarser

grid, as shown in Figure 3.7. The principles behind multigrid adaptive re�nement have been outlined in

section 4.5.

Figure 5.1: Convergence behavior for the computation of base �ows at di�erent Reynolds num-
bers. Residuals are shown for the discreteu,v,w-momentum and pressure equations separately,
and the continuous black line represents the theoretical convergence estimate for the Poisson
equation of 0:125 per V-cycle. Each mark in the series represents a V-cycle of the multigrid
solver with two linewise Gauss-Seidel relaxation sweeps on the downward leg and one sweep
on the upward leg. The last computation on the right includes adaptive grid re�nement: the
�nest grid covers only part of the computational domain covered by the coarser one.
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Description of the base�ow

The steady-state �ow around an in�nite swept wing at Reynolds ReC = 106 and sweep angle� = 45 � is

presented in Figure 5.2. In the front view, the �ow is coming towards the page, while in the top view the

�ow is moving from the bottom to the top. The pressure �eld in the (x; y)-plane is visualized using gray

contour levels at the end of the front view and using colors on the wing surface. The maximum pressure

of 0:5048 is obtained at the attachment line, while the minimum of � 0:2401 is marked by the spanwise

white line located about half way on the wing surface in the chordwise direction. Two sets of streamlines

are shown, both originating upstream of the attachment line but with a small shift in the y-direction.

The red one enters the boundary layer at a distance iny slightly above the height of the attachment line

and stays at about one third of � 99 boundary-layer thickness. The gray one originates above the red and

does not enter the boundary layer.

The main feature characterizing this �ow �eld is a freestream velocity �eld which is not aligned

with the pressure gradient: the velocity �eld has a non-zero spanwisez-componentW while the pressure

gradient is constrained to the(x; y)-plane because of the spanwise invariance of the solution. As showed in

Figure 1.1 this misalignment results in curved streamlines, and the curvature is stronger in the boundary

layer due to lower �uid momentum but unchanged pressure gradient. The additional streamline curvature

in the boundary layer with respect to the inviscid �ow results in a cross�ow component illustrated in

Figure 5.3.

Following the path of a particle along streamlines in Figure 5.2, we can identify three areas charac-

terized by changing signs of the pressure gradient. When approaching the leading edge, theU-velocity

component of the �ow � in the x-direction � is reduced by the adverse pressure gradient peaking at at-

tachment line and extending well beyond the boundary-layer thickness while the spanwiseW -component

remains unchanged until the boundary layer e�ect becomes important. As a consequence, the streamlines

are de�ected in the spanwise direction. In particular, a streamline arriving at a height y corresponding

to the leading edge will align itself with the leading edge and continue in the spanwise direction: a

two-dimensional boundary layer spanning the entire wing is developed along the attachment line.

When moving along the airfoil past the pressure maximum at the attachment line, the e�ect of

the pressure on the streamlines is opposite: a strong favorable pressure gradient � re�ected in the

concentration of pressure contours � increases the velocity component parallel to the solid boundary. As

the spanwise component is not forced by any pressure gradient, it remains unchanged, and the streamlines

are curved in the chordwise direction.

A third zone can be identi�ed past the pressure minimum, where the pressure gradient is again

adverse to the parallel velocity component. Accordingly, the streamlines are mildly curved back towards

the inviscid �ow direction.

A grid whose vertical lines are aligned with the inviscid �ow (U1 ; 0; W1 ) is shown in the top view to

mark more clearly the streamline curvature.

Historically, these areas have been studied by using two di�erent simpli�ed models: (i) the swept

Hiemenz �ow [31, 15], describing �ow impinging on an in�nite plate at a given angle, has been used as a

model of the region close to the attachment line, where the surface curvature is negligible, and attachment-

line instabilities have been associated with viscous e�ects in the boundary layer; (ii) downstream of the

attachment-line region a three-dimensional boundary layer model, characterized by a cross�ow velocity

component in the boundary layer as shown in Figure 5.3, has been used as a local model of the boundary

layer, and inviscid cross�ow instabilities have been associated with the in�ection point in the cross�ow

velocity pro�le [58, and references therein].
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(a) Front View

(b) Top View

Figure 5.2: Base �ow streamlines. Both red and gray streamlines originate from the upstream
zone: the red lines enter the boundary layer close to the attachment line while the gray lines
cover the inviscid �ow. The greater curvature of the boundary-layer streamline is due to the
di�erent magnitude of the gradient of the pressure close to the boundary as well as to the greater
e�ect on the slow momentum �uid in the boundary layer. The solid boundary is colored with
pressure values, and pressure contours are shown in black at one end of the wing. The white
line parallel to the attachment line represents the position of the minimum of the pressure of
about � 0:24: The �ow enters the page perpendicularly in front view and �ows from the bottom
to the top of the page in top view.
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Figure 5.3: Velocity �eld within the boundary layer of a swept wing, from [58]. The x t axis is
aligned with the inviscid velocity, not with the chord. The swept wing �ow is characterized by
a freestream velocity �eld which is not aligned with the pressure gradient: the velocity �eld has
a non-zero spanwisez-component W while the pressure gradient is constrained to the (x; y )-
plane because of the spanwise invariance of the solution. This misalignment results in curved
streamlines, and the curvature is stronger in the boundary layer due to lower �uid momentum
but unchanged pressure gradient. The additional streamline curvature in the boundary layer
with respect to the inviscid �ow results in a cross�ow component.

In this work, following the path �rst outlined by Mack et al. [44, 42, 43, 40], we consider a �ow

model including both the attachment-line boundary layer region as well as the boundary layer developing

further downstream along the wing. This will allow us to address the stability problem from a global

perspective.

To complete the description of the base �ow, we present the� 99 boundary-layer thickness as a function

of the Reynolds number; in addition, we report the pressure distribution and the � 99 boundary-layer

thickness as a function of the chordwise coordinates.

Figure 5.4 shows the boundary-layer thickness� 99, based on the spanwiseW -component of the velocity,

measured at the attachment line, as a function of the chord-based Reynolds numberReC for all the

computations performed during the continuation process. Starting from a Reynolds number of about

ReC = 105 the expected relationship � 99 / Re� 0:5
C is obtained, and the proportionality constant is

measured as0:357:

In Figure 5.5 the computed pressure distribution at the solid boundary along thex-direction is plotted

for three values of the Reynolds number (continuous lines) as well as for the inviscid case (dashed line).

As noted at the beginning of the chapter, the computational domain for the base �ow covers about20%

of the chordwise extent. The red inset shows that the pressure minimum decreases and moves towards

the attachment line for increasing Reynolds numbers, and the solution forReC = 106, in blue, is nearly

indistinguishable from the inviscid solution, represented by a black dashed line. The blue inset gives a

detailed view of the out�ow end of the numerical domain: as explained in chapter 3, the pressure is set to

the inviscid solution at the out�ow with a Dirichlet condition. The numerical boundary layer developed

there is clearly seen in theReC = 104 curve which bends strongly over the last few mesh points.

Finally, Figure 5.6 shows the evolution of the boundary-layer thickness based on the spanwiseW -

component (� 99, in blue) and the tangential component of velocity Us (� U
99, in red) along the curvilinear
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Figure 5.4: Boundary-layer thickness � 99 at the attachment line as a function of the ReC

number. The thickness � 99 is de�ned as the distance, measured normal to the wing-section
pro�le, at which the spanwise velocity component w is 99% of its asymptotic value W1 .

coordinate s. The W -based� 99 is always the thicker one and increases more slowly, in particular, close

to the attachment-line region.

5.2 Global analysis of the direct operator

We now proceed to perform a global analysis of the perturbation problem (L ) using a modal approach

to uncover the physical mechanisms governing the least stable mode.

The theoretical framework has been outlined in chapter 2. Appropriate use of the direct and adjoint

modes allows us to shed some light on the central features of the perturbations: their structure, recep-

tivity to forcing and sensitivity to modi�cations in the governing equations. Additionally, it is possible

to identify and isolate the spatial location which is responsible for the development of self-sustained

perturbations.

The numerical method employed is �rst introduced as a Krylov-subspace method with a shift-invert

spectral transformation. The associated algorithms are already implemented in the SLEPc suite [29, 27,

30, 28]. SLEPc is extensively used in the present work for the solution of the discretized equivalent of

both the direct and adjoint generalized eigenvalue problems de�ned in (2.14) and (2.24).

The computed part of the global spectrum is then presented. As already noted, it consists of eigen-

values with negative growth rates � corresponding to temporally decaying modes � as our numerical

capabilities do not allow us to cross the critical Reynolds number in the base �ow computation. We

identify a branch of eigenvalues, composed of modes which are alternately symmetric and anti-symmetric

(starting from the least stable mode and progressing towards the most stable). The spectrum has been

recomputed for three domain sizes, characterized by di�erent extents in the chordwise direction, which

is equivalent to changing the location of the out�ow boundary along the pro�le. It is shown that this

change has no e�ect on the location of the spectrum. This result has previously been obtained in the

case of the cylinder wake by Giannetti & Luchini [19]. As Giannetti & Luchini noted, this property is

related to the fact that only the core, to be de�ned later, of the mode needs to be represented in the

computation. We can thus anticipate this core to be located close to the attachment line, which is the
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Figure 5.5: Pressure distribution at the wing surface for selected Reynolds numbers ReC =
104 ; 105 ; 106 . The analytically computed inviscid solution is represented as a black, dashed line.
The pressure minimum moves upstream as the Reynolds number increases, and the solution
for ReC = 10 6 is nearly indistinguishable from the inviscid solution, as can be seen in the red
inset. The e�ects of the Dirichlet pressure condition at the out�ow is clear on the ReC = 10 4

(brown) curve in the blue inset: the pressure is forced to be equal to the inviscid solution which
results in a thin numerical boundary layer in the pressure �eld at the out�ow. This area of the
domain will be removed when the stability problem will be addressed.

only part consistently represented in all computations.

Next, the least stable direct eigenvector is analyzed. It is shown that it is consistent with both an

attachment line mode [38, 39, 48, 49] and a cross�ow mode [13] This feature has also been shown by

Mack et al. [44] for the most unstable global mode of the compressible �ow around a parabolic pro�le

and gives us con�dence in the fact that the main results of our analysis can be carried on to the unstable

(supercritical) case. Again, the chordwise extension of the domain will be shown to be unimportant in

determining the shape of the eigenvectors, provided that a small area in the vicinity of the leading edge

is well represented.

Numerical procedure

A Krylov-Schur method with a shift-invert transformation is employed in order to numerically solve the

generalized, non-Hermitian eigenvalue problem (2.14) and its corresponding adjoint (2.24). The chosen

algorithm, among others, is implemented in SLEPc, �a software library for the solution of large scale

sparse eigenvalue problems on parallel computers� [29, 27, 30, 28]. MUMPS [1, 2] is employed to perform

the LU decomposition for the matrix inversion for the smaller of the three domains. Solution on the bigger

domains have more stringent memory requirements, and a GMRES solver with an ILU preconditioner is

employed in these cases. Both solvers (and many others) can be called from within the SLEPc library.

The complex plane is sampled by a series of di�erent shifts for the shift-invert transformation. The

shifts are located on the imaginary (phase speed) axis in order to cover the area between a phase speed

of zero and one. The spanwise wavenumber selected for the following computations iskz = 4000, corre-

sponding to a wavelength which is about four times the boundary layer thickness close to the attachment

line. While the choice of the wavenumber is quite arbitrary, as no �most unstable wavenumber� exists for

our choice of Reynolds number and sweep angle, it corresponds to the dominant wavenumber observed
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Figure 5.6: Boundary-layer thickness as a function of the curvilinear coordinate s. Both the
spanwise-velocity-based� 99 and the tangential-velocity-based � U

99 are shown.

in various experiments, as summarized by Dagenhart & Saric [13].

The development of the solver for the eigenvalue problem does not represent a major contribution of

this work, and the reader is referred to the work of Mack [40] or the SLEPc technical reports [29] for a

description of the employed algorithms.

Previous analyses

The modal approach to the investigation of the swept attachment-line boundary layer has previously been

addressed by Lin & Malik [38, 39], Obrist & Schmid [48, 49], Mack, Schmid & Sesterhenn [44, 42, 43]

and again by Obrist & Schmid [50].

Lin & Malik [38] used a Chebyshev spectral collocation method and regular polynomials to discretize

the normal- and chord-wise direction of their domain in order to study the stability of the incompressible

swept Hiemenez �ow. They identi�ed a branch of eigenvalues moving at approximately the same phase

speed in the spanwise direction and showed that the most unstable mode was the symmetric Görtler-

Hämmerlin mode, characterized by a linear dependence of the chordwise velocity component in the

chordwise coordinate and an exponential decay outside the boundary layer. Less unstable modes were

shown to alternate between antisymmetric and symmetric as one descends to smaller growth rates.

Obrist & Schmid [48] addressed the same problem by replacing the regular polynomials used by Lin

& Malik in the chord-wise discretization with Hermite polynomials. They con�rmed that the Görtler-

Hämmerlin mode is the most unstable mode and identi�ed a richer spectrum composed of several branches,

continuous and discrete. Additionally, an analysis of non-modal e�ects and receptivity has been performed

[49].

Mack, Schmid & Sesterhenn [44] and Mack & Schmid [40, 42, 43] addressed the stability of compress-

ible �ow around a swept parabolic body using a high-order �nite-di�erence discretization scheme in both

the normal and chordwise direction. They identi�ed a global spectrum consisting of di�erent branches:

boundary layer modes, acoustic modes and wave-packet modes. Of these, only the boundary layer and
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wave-packet branches are of interest for the current, incompressible study. Additionally, they showed, for

the �rst time, evidence of a connection between attachment-line and cross�ow instabilities. This result

was made possible by considering a domain extending beyond the attachment-line region.

Global stability analysis

The computed spectrum of the linearized Navier-Stokes operator (L ) for Reynolds number ReC = 106,

sweep angle� = 45 � and spanwise wavenumberkz = 4000 � corresponding to Rer = 16000, Res =

126 and �=� 99 ' 4 � is shown with black symbols in Figure 5.7. It is made of a single branch of

eigenvalues characterized by a nearly constant phase speed of0:5; implying that the modes are travelling

in the spanwisez-direction at half the velocity of the free stream. Inspection of the eigenvectors shows

that symmetric ( S1,S2,. . . ) and antisymmetric ( A1,A2,. . . ) modes alternate when moving from the

least stable eigenvalue to more stable ones. This result is consistent with the �ndings of Lin & Malik

[38, 39] who, working in the unstable parameter range, identi�ed a single branch at constant phase speed

consisting of symmetric and antisymmetric modes.

Figure 5.7: Eigenvalues for ReC = 1 � 106 , kz = 4000 (�=� 99 ' 4). The computed spectrum
consists of a single branch � black, �lled dots � of modes travelling at roughly the same phase
speed<

�
�=k z

�
of 0:5 in the spanwise direction. Symmetric ( S1, S2, . . . ) and antisymmetric

(A1, A2, . . . ) eigenvectors alternate when moving from the least stable to the most stable mode.
The eigenvalues have been computed for three di�erent domain sizes. For the large domain,
only S1 and A1 are recovered. For the mid-sized domain the S1; A1; S2; A2 are recovered, and
for the small domain all seven black eigenvalues are recovered. The gray, un�lled dots represent
eigenvalues belonging to the pseudospectrum.

The spectrum has been computed for three domains di�ering in chordwise extent and is shown in

Figure 5.7. A comparison of the di�erent domains with the domain used for the base-�ow computation

and the full pro�le is displayed in Figure 5.8. The chordwise extent of the three domains is determined

in numerical coordinates � shown in the leftmost part of Figure 3.2 � by the ranges � 0:75 6 � 6 0:75,

� 0:5 6 � 6 0:5 and � 0:25 6 � 6 0:25. The computation for the large domain returns only the S1 and A1

eigenvalues, together with the pseudospectrum represented by the curved branches in gray, un�lled dots

right below A1. The mid-sized domain returns all four eigenvalues fromS1 to A2 and its corresponding

pseudospectrum is represented by the curved branches in gray, un�lled dots belowA2. Finally, the
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Figure 5.8: The three domain sizes (red, brown and black) used in the solution of the eigenvalue
problem.

smallest domain returns all seven eigenvalues represented in Figure 5.7 and its pseudospectrum lies below

S4 and takes a more complicated shape.

For comparison, the eigenvalues computed in the three domains are reported in table Table 5.1 with

six decimal digits. The digits di�ering from the values obtained for the small domain are marked in red.

It can be seen that the least stable eigenvalueS1 is the same in all three domains. TheA1-mode has the

same value for the small and mid-sized domain but the value obtained for the larger domain di�ers in the

last four signi�cant digits. The same is repeated for theS2- and A2-modes when comparing the small and

the mid-sized domain: theS2-eigenvalue matches well whileA2 di�ers in the last two signi�cant digits.

Computations on bigger domains return less eigenvalues since the increase in the number of degrees

of freedom � required to mantain a constant mesh spacing � is not matched by an increase in the

dimensionality of the Krylov subspace used in the eigenvalue computation:100 vectors have been used

for both the mid-sized and big domain despite the fact that the number of degrees of freedom increases by

a factor of 1:5: In the small domain, 200 vectors have been used. Even if it may appear counterintuitive,

the more precise results are expected to be the ones for the small domain where only a minor part of

the �ow structure is resolved. It is important to remark again that the same mesh spacing is used on all

grids and the number of mesh points is increased when increasing the domain size.

We now move on to the description of the shape of the eigenvectors. The least stable modeS1 is

visualized in Figure 5.9 using isosurfaces of the chordwiseu-velocity component

u (x; y; z) = <
�

û (x; y) eik z z
�

(5.1)

where < denotes the real part, and the isosurface is at10� 10 of the maximum of u. Such a low contour

level is required to visualize the eigenvector along the entire pro�le, as its magnitude changes over several

orders of magnitude in the chordwises-direction. The black surface represents the extension of the

computational domain used in the base-�ow computation corresponding to approximatively 20% of the

chord length. The evolution of the �energy� of the eigenvector along the chordwise direction is presented

in Figure 5.10. Three di�erent regimes can be identi�ed. Close to the attachment line, the isosurfaces

are aligned with the chordwise direction. The ûs-velocity component � tangential to the �ow surface
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Figure 5.9: Eigenvector S1 represented by isocountour of the chordwiseu-component of velocity
at a contour level of 10� 8 of the maximum value of the eigenvector. Only the upper half is
represented. As already suggested by [26] and shown by Mack [44], the eigenvector displays
features of both attachment-line modes close to the attachment line and cross�ow modes further
downstream. A more detailed view of the area where the �two modes� connect is provided in the
lower circle: the isosurfaces �rst bend upstream, are compressed into the boundary layer and
then realigned with the �ow � the gray, transparent surface represents the � 99 boundary-layer
thickness. Half way in the zoomed area, two isosurfaces co-exist, one over the other. The one
on top, which lies at a height close to the � 99 -thickness, develops further downstream into the
cross�ow structures, whose maximum remains concentrated at the same height.
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� increases linearly as can be seen in Figure 5.11 (blue curve), consistent with a Görtler-Hämmerlin

mode which is known from swept Hiemenz �ow studies to represent the most unstable global mode in

the attachment-line region [38, 48].

Figure 5.10: Norm of the velocity components of the S1-eigenvectors as a function of
the curvilinear chordwise coordinate s. Semilogarithmic plot. The exponential growth of
the cross�ow structures is marked by the red dashed line, corresponding to the function
6:424� 10� 16 exp (159x).

Downstream of this region, the isocontours bend and align themselves in the direction transverse to the

base �ow. The energy of the mode alongs decreases by more than ten orders of magnitudes with nearly

exponential decay. In this transitional region, where the boundary-layer thickness increases steadily, the

attachment-line structures transform into cross�ow structures. The lower inset in Figure 5.9 shows this

transition: cross�ow structures, aligned with the external �ow at 45� with respect to the chord, start to

appear just below the � 99 boundary-layer thickness, represented by the semi-transparent surface. The

cross�ow structures then grow exponentially in the s-direction with a growth rate of 159; obtained by

�tting the data of this area to an exponential curve (see the red dashed line in Figure 5.10).

Additionally, a section of the eigenvector in the (s; n)-plane at a �xed z-location is presented in

Figure 5.12 in order to better illustrate its global shape. The attachment-line structure is clearly visible

up to 3� 10� 2, peaking in the n-direction at about one third of � 99 and exponentially decaying outside the

boundary layer. The transitional region is between3 � 10� 2 and 6 � 10� 2. Beyond this location, cross�ow

structures develop and grow exponentially in thes-direction.

In Figure 5.14 the same section is showed for theA1, S2 and A2 eigenvectors and Figure 5.13 present

a comparison of the evolution of all eigenvectors in the chordwise direction.
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Figure 5.11: Velocity components of the S1-eigenvector at half the � 99 boundary-layer thickness
as a function of the curvilinear chordwise coordinate s.

Table 5.1: Computed Eigenvalues

Small domain Middle sized domain Large domain

2049 � 513 � 3y � 200z 4097 � 513 � 3y � 100z 6145 � 513 � 3y � 100z

S1 � 232:212795� 2012:093989i � 232:212795� 2012:093989i � 232:212795� 2012:093989i

A1 � 274:036727� 2003:162782i � 274:036727� 2003:162782i � 274:031158� 2003:163902i

S2 � 315:544891� 1994:259873i � 315:544891� 1994:259873i �

A2 � 356:710140� 1985:385797i � 356:710150� 1985:385780i �

S3 � 397:505318� 1976:541365i � �

A3 � 437:903326� 1967:724210i � �

S4 � 477:978550� 1958:896547i � �

Marked in red are the digits that change with the domain size. For each eigenvalue, digits in black are the same
for all domain sizes.

y Degrees of freedom in the chordwise and normal direction and number of unknowns for each grid point;
z Size of the Krylov subspace used in the computation;
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Figure 5.12: Eigenvector S1 in the (s; n)-plane, visualized by the < (û)-velocity component,
logarithmic scale. The attachment-line structure is clearly visible up to 3 � 10� 2 , peaking in
the n-direction at about one third of � 99 and exponentially decaying outside the boundary
layer. The transitional region is between 3 � 10� 2 and 6 � 10� 2 . Beyond this location, cross�ow
structures develop and grow exponentially in the s-direction. Only positive values of s are
shown, and the s-axis is compressed to visualize the full chordwise extent. The � 99 boundary-
layer thickness is represented by a black line. The eigenvector is symmetric with respect to the
n-axis. The rectangle close to the n-axis will be later used to visualize the adjoint eigenvector
and the wavemaker.

Figure 5.13: Norm of the in-plane velocity components (u; v) of the �rst six eigenvectors as a
function of the chordwise coordinate s. Eigenvectors in this �gure are normalized such that their
magnitude is one at attachment line. The �rst four eigenvectors clearly show the attachment-
line structure and the exponentially growing cross�ow structures. For the two more damped
eigenvectors (dotted lines) the computational domain is truncated before the beginning of the
cross�ow structures. From this plot it is clear that the peak of the attachment-line structure
moves downstream when descending to smaller growth rates.



5.2. Global analysis of the direct operator 85

Figure 5.14: Eigenvectors A1 (top), S2 (bottom left) and A2 (bottom right) in the (s; n)-plane,
visualized by the < (û)-velocity component, logarithmic scale. The computational domain used
for the S2 and the A2 eigenvectors has a chordwise extent equivalent to approximately half the
computational domain used for the S1 and A1 eigenvectors. In all eigenvectors, an attachment-
line structure is clearly visible, followed by a transition region and cross�ow vortices structures
growing exponentially in the s-direction. The peak of the attachment-line structure moves
downstream when descending to smaller growth rates.
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5.3 Adjoint �eld

As has been shown in section 2.4, the adjoint �eld represents the receptivity of any scalar objective

functional to a forcing of the perturbation equations or to a structural modi�cation of the operator L .

Recalling equations (2.26) and (2.29), we can write the variation of a generic objective functionalobj as

a function of a variation in the forcing � f̂ 0 or in the operator �A as

� (obj) = �


q̂ + ; � f̂ 0�


 (5.2)

� (obj) =


q+ ; �A q

�

 (5.3)

In a sense, the adjoint �eld projects a variation in the forcing or in the operator into the direction of the

objective functional.

The same procedure used in solving the direct eigenvalue problem is employed for the adjoint. The

discretization of the adjoint governing problem is obtained by computing the complex conjugate transpose

of the discretized direct problem, as we have seen at the end of section 2.3. Consequently, the adjoint

spectrum is the complex conjugate of the spectrum of the direct operator shown in Figure 5.7: the only

di�erence is in the sign of the phase speed. As is the case of the direct problem, the domain size does

not in�uence the results.

When computing the complex conjugate transpose, particular attention has to be paid to the boundary

conditions to limit the introduction of numerical errors. To demonstrate what kind of di�culties can arise,

we consider a discretization of the one-dimensional Laplacian operator on a �ve-point grid of mesh size

h. A Dirichlet boundary condition is implemented at the left edge of the domain by setting the diagonal

value of the �rst line of the matrix to one. A Neumann boundary condition is implemented at the right

edge and is discretized by a �rst-order �nite-di�erence discretization in the last line of the matrix. The

discretized matrix and its adjoint read

2

6
6
6
6
6
6
6
4

1

1=h2 � 2=h2 1=h2

1=h2 � 2=h2 1=h2

1=h2 � 2=h2 1=h2

1=h � 1=h

3

7
7
7
7
7
7
7
5

H

=

2

6
6
6
6
6
6
6
4

1 1=h2

� 2=h2 1=h2

1=h2 � 2=h2 1=h2

1=h2 � 2=h2 1=h

1=h2 � 1=h

3

7
7
7
7
7
7
7
5

(5.4)

where marked in red are the only elements that change when the adjoint is computed. If we consider the

�rst and the last line of the adjoint matrix, it is clear that the value on the boundary will be scaled by a

factor 1=h2 and 1=h for the left and right edge of the domain, respectively, resulting in large values on the

boundary. This e�ect can be avoided by considering the fact that the eigenvalue system is homogeneous:

the boundary condition equations in the direct equations can be arbitrarily multiplied by a constant �

or the Laplacian operator can be rescaled by multiplying byh2 to have coe�cients of O (1). Numerical

di�culties related to the eigenvector normalization during the solution process can thus be avoided, and

the equivalent two-dimensional approach is used in our computations. It should be noted that while we

can solve the numerical problem, the fact remains that the values of the discrete adjoint �eld on the

boundary are undetermined.

The least stable S1 adjoint eigenvector is visualized in Figure 5.15 using isosurfaces of the adjoint

u-�eld computed as in equation (5.1). As in the visualization of the direct eigenvector in Figure 5.9,

the black surface represents the extent of the computational domain used in the base-�ow computation,
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corresponding to approximatively 20% of the chord length. The adjoint �eld covers an area close to

the attachment-line region and upstream of it, indicating that any forcing or structural modi�cation (for

example a change in the base �ow) outside this region has no or little in�uence on the objective functional

and is ine�ective in trying to control the behavior of the S1-mode. The much larger contribution of the

adjoint �eld is located inside the boundary layer and extends only a few boundary-layer thicknesses� 99

in the chordwise direction across the attachment line, as can be seen in Figure 5.17. This spatial extent

corresponds to about one hundredth of the fulls-extent of the computational domain used for the base

�ow; it identi�es the area of the domain in which forcing has to be applied in order to control the S1-mode

of the �ow.

Comparison of the direct and the adjoint eigenvector clearly demonstrates the degree of the operators'

non-normality described in section 2.4: as is the case for the �ow around a cylinder, the two eigenvectors

mostly cover di�erent parts of the domain and overlap only in a small region which, for the wing pro�le,

is close to the attachment line.
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Figure 5.15: Adjoint eigenvector S1 represented by isocountour of the chordwise u-component
of velocity at a contour level of 10� 6 of the maximum value of the eigenvector.
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5.4 The wavemaker

The feedback mechanism of the perturbations described by Giannetti & Luchini and introduced at the

end of chapter 2 results in the identi�cation of the area of localized, pointwise feedback as the pointwise

product of the direct and adjoint eigenvectors, described by equation

� (x) = � q+ (x) C0 q (x) :

The wavemaker for the least stableS1 adjoint eigenvector is visualized in Figure 5.18 using isosur-

faces of theu-component of � (x) : Isosurfaces are at10� 8 of the maximum of u. Analogous to the

visualization of the direct and adjoint eigenvector, the black surface represents the chordwise extent of

the computational domain used in the base-�ow computation � see Figure 5.8 for a comparison with the

computational domains used for the eigenvalue problems.

As predicted by the previous analysis of the direct and adjoint eigenvectors, the maximum of� (x) is

close to the attachment line. Figure 5.19 presents a detailed view of the same area, used for visualization

of the adjoint eigenvector in Figure 5.17. The fact that the direct S1-eigenvector varies very slowly in the

chordwise direction close to the attachment-line area results in the similarity between the adjoint �eld

and the � (x)-function.

We now return to the previous observation on the invariance of the results with respect to the domain

size and, as noted by Giannetti & Luchini [19], de�ne the region of the �ow, which governs the behavior

of the S1-mode, as the region where� (x) attains its maximum. We can then try to recompute the

spectrum on a domain including only the area represented in Figure 5.19, as� is nearly zero anywhere

else. Maintaining the same mesh spacing used in the larger domains, this area corresponds to a400� 200

mesh-point domain, which is extremely small when compared to even the smaller domain previously

used at 2049� 513 mesh points. The new eigenproblem becomes easily solvable using Matlab'seigs -

function. The resulting spectrum is shown in Figure 5.20. Even with this small domain size, the �rst

four eigenvalues closely match the eigenvalues computed on larger domains. Additionally, a larger part

of the spectrum can be uncovered, �rst because of the reduced ratio between the number of degrees

of freedom and the number of vectors used in building the Krylov subspace and, second, due to the

reduced computational cost and the possibility of increasing the dimensionality of the Krylov subspace.

The spectrum is composed of various branches which will require further investigation to o�er a physical

explanation. It should be noted that the fact that the wavemaker is concentrated in the attachment

line is a characteristic of the �rst eigenvector and of the other modes within the same branch; it must

not be taken as a general property of the complete spectrum, however. Nonetheless, branches similar in

shape and location to the ones showed in Figure 5.20 have been obtained for larger domains but lower

wavenumbers and are worth being investigated in a future e�ort.
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Figure 5.18: < (u)-component of � (x ) for the S1 mode.
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Figure 5.19: The function � (x ) for the S1-mode, visualized by means of the< (u)-component.
The size of the domain represented is the same as for the adjoint in Figure 5.17 and the � -
function closely resembles the adjoint vector due to the very slow chordwise variation of the
associated direct S1-mode near the attachment line.

Figure 5.20: Computed spectrum for a domain containing only the wavemaker. Circled in red
are the eigenvalues corresponding to the four least stable eigenvalues of Figure 5.7
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Conclusions and Perspectives

Two paths have been explored during the four years spent on this project. The �rst, mainly numerical,

resulted in the development of a multigrid solver capable of directly computing the steady-state solution of

the nonlinear Navier-Stokes equations. The second, more physical, is the determination of the receptivity

and sensitivity properties of the �ow characterizing the three-dimensional boundary layer forming in the

attachment-line region of a swept wing.

The analysis of the multigrid framework performed in chapter 4 clari�es the main di�culties that had

to be overcome in order to obtain the multigrid e�ciency predicted by theory. The analysis presented and

the code developed is heavily based on previous work and, in particular, on the results of Diskin [14] and

Swanson [64]. Their analysis has been fundamental in overcoming some of the di�culties encountered

during my work. Nonetheless, the development of a multigrid solver showing theoretical (or nearly theo-

retical) e�ciency at such high-Reynolds-number viscous �ow is, to my knowledge, novel. Grid stretching

and adaptive grid re�nement are additional, useful features of the developed code. The multigrid solver

has been successfully used to compute the base �ow around the leading-edge region of a swept wing.

Despite being the subject of much research, due to both its academic and industrial interest, the

swept-wing problem has not been completely solved, and the exact mechanisms governing the transition

from laminar to turbulent �ow are still the subject of active research.

The focus of this work has been put on receptivity to forcing and sensitivity to structural perturbations

of the operator, and the identi�cation of the most receptive and the most sensitive regions for the least

stable eigenvector is the main contribution of this work. An eigenvalue/eigenvector approach has been

used to describe the dynamical system governing the evolution of the perturbations in order to extract

the coherent structures describing the intrinsic �ow behavior. As shown by Giannetti & Luchini [19] and

Marquet, Sipp & Jacquin [45] for the cylinder wake, in this approach receptivity provides the variation of

the amplitude of the eigenvectors as a function of the variation of the forcing, while sensitivity provides

the shift of the eigenvalues in the complex plane as a function of the changes in the governing operator.

The adjoint �eld has been shown to be at the center of the de�nition of both receptivity and sensitivity by

using a Lagrangian approach. In this approach the governing equations are implemented as constraints

by means of Lagrangian multipliers, and stationary points of the Lagrangian have been sought which

recover the governing equations and de�ne an associated adjoint problem.

The least stable eigenvector, which is expected to resemble the most unstable mode as the critical

Reynolds number is crossed, shows structures characteristic of both attachment-line [25, 38, 39, 48, 49]

and cross�ow [13] instabilities. This coexistence of di�erent structures in the same eigenvector had been

already suggested by Hall [26] and lately observed by Mack et al. [44] for a compressible attachment-line

con�guration in an unstable parameter range. It has been analyzed in more detail in this work. The

eigenvector shows a variation in magnitude of several order of magnitude along the chordwise direction:

an initial growth close to the attachment line, characteristic of the Görtler-Hämmerlin mode, is fol-

lowed by a drastic decrease of roughly ten orders of magnitude ultimately leading to the transition from

93
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attachment-line to cross�ow structures. Downstream of the transition region, the cross�ow structures

grow exponentially in the chordwise direction.

This direct eigenvector spans the entire chordwise extent of the domain and is still exponentially

growing as the domain's out�ow boundary, located close but upstream of the pressure minimum, is

reached. In contrast the adjoint eigenvector is localized in a rather small area extending only a few

boundary-layer thicknesses across the attachment line. Receptivity to forcing is accordingly localized

in the same area, providing a strong indication where in the �ow it is most e�ective to apply a control

strategy. Forcing elsewhere in the domain would have very little e�ect on the amplitude of the eigenvector.

A similar observation holds for the sensitivity: the location of the wavemaker is mostly determined by

the location of the adjoint eigenvector, again identifying a region a few boundary-layer thicknesses across

the attachment line as most responsive for the structure and evolution of the least stable eigenvector. The

result already obtained by Giannetti & Luchini [19] for the cylinder wake is con�rmed for the swept-wing

boundary layer: to identify the correct eigenvalue, only the area containing the corresponding wavemaker

needs to be represented in the computations. This suggests that results from previous analyses based on

swept Hiemenz �ow should be essentially correct, as the wavemaker area is so con�ned that it can be

well approximated by this simpli�ed Hiemenz �ow model.

Perspectives and future work

Two paths have been explored in this work, and two paths are suggested for future e�orts.

Multigrid has been proven to be a very e�ective approach in solving the numerical problem arising

from the discretization of the Navier-Stokes equations. The solution of the linearized Navier-Stokes

equations, not shown in this work, is even less expensive. Extension of the solver to complex-valued

problems would allow the e�cient solution of the linear, complex problem involved in the construction

of the Krylov subspace during the eigenvalue computations.

A limitation of this work has been the inability of applying adaptive grid re�nement in the eigenvalue

solver. As a consequence, stretched grids had to be introduced. Adaptive grid re�nement itself had not

been used to its full power in the computation of the base �ow. With a complex-valued multigrid solver

available, adaptive grid re�nement could be easily implemented in the eigenvalue solver as well: the

Krylov subspace vectors would be de�ned on a single composite grid made of all mesh points that do not

have a �ner-grid representation, and all standard routines used in a single-grid solver could be employed.

This composite grid would then be scattered to all grids used in the multigrid solver when a solution

of the linear solver is required, and the so-computed solution would be scattered back to the composite

grid to obtain the new vector of the Krylov subspace. A more intriguing, but possibly more complex,

possibility is to treat the eigenvalue problem as a nonlinear problem using the Full Approximation Scheme

(FAS). This latter idea dates back to 1983 [11] but to my knowledge few applications have been tested

[10]. Brandt (personal communication) suggested the work of Kushnir on Data Analysis [37] as a good

starting point for developing an eigenvalue multigrid solver for the linearized Navier-Stokes equations. A

review of the possibilities o�ered by multigrid, including in the �eld of control, is given by Brandt in [9].

More work has also to be done concerning the physics of swept attachment-line boundary layer. A

more in-depth analysis of the results obtained during this work is recommended to uncover the whole

signi�cance of the adjoint �eld and of the wavemaker for the possibility of e�ectively controlling the �ow.

The approach used by Marquet, Sipp & Jacquin [45] to study the cylinder wake is similar to what has

been outlined in this work and can be used as a starting point for a future analysis.

Almost overlooked in this work is the question of the meaning of boundary values of the adjoint �eld.
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As noted in section 5.3, obtaining the adjoint operator by computing the complex-conjugate (Hermitian)

transpose of the direct operator does not uniquely determine the magnitude of the adjoint �eld on

the boundary. More interestingly, Giannetti & Luchini [19, end of section 4] make a distinction between

receptivity to forcing and receptivity to initial conditions, thus justifying the fact that the left eigenvector

associated with the linearized Navier-Stokes operator is not zero on the boundary and that the pressure

component of the adjoint �eld is identically zero, however. This observation could have interesting

consequences on the analysis of the e�ect of forcing at the wall (in contrast to forcing very close to the

wall).

A parametric study is also suggested. First, the Reynolds number should be increased until an

unstable con�guration is reached. This would be useful also in light of the observation on the small

extent of the wavemaker: a critical Reynolds number, matching the one computed for the swept Hiemenz

model [25, 38, 39, 48], would provide additional con�rmation of the fact that even this simpli�ed model

can correctly predict the stability behavior of most of the boundary layer on swept wings. Secondly,

the dependence of the critical Reynolds number on the spanwise wavenumber should to be assessed and

compared to previous results in the unstable regime. Third, an analysis of e�ects of sweep angle variations

could provide more insight into the coupled behavior of Tollmien-Schlichting waves and cross�ow vortices.

Some thoughts against writing your own research code

During this work, a substantial e�ort has been put into developing the multigrid solver used to compute

the base �ow. The original idea was to develop a pressure-correction based time-stepper solver, building

on previous work by Mack [41], and using a multigrid solver to compute solutions to the Poisson equation

for the pressure appearing in the context of fractional step methods. A dive into the literature showed that

much more powerful and promising multigrid algorithms were available, and the idea grew to address the

full, nonlinear steady-state Navier-Stokes equations with complex features like adaptive grid re�nement

and, possibly, a solver for the eigenvalue problem associated with its linearization. In the end, that

same idea had to be scaled back a little and the multigrid eigenvalue solver had to be dropped, but the

Navier-Stokes solver has been successfully developed and applied to our problem.

Was the e�ort worth the result? There is no doubt I have learned a lot during this experience, both

on the subject of multigrid, on how to organize my own work and possibly on how to do research. Then,

the answer would look like a yes. But, as most things, what I have learned is relative to what I could

have learned. There is a non-negligible possibility that, by investing less in code development (a tedious

task indeed, in the end) and more in �uid dynamic analysis, which is the area of expertise of LadHyX,

the whole process would have been more e�ective for everybody involved.

Probably, gone are the romantic days in which the lone cowboy (ehm, researcher) was writing his own

code by punching cards. Writing good and, most important, reusable and well-documented code is now

a huge task, and it is fairly sure someone else can do it better (the code!). Proofs abound: there are

incredibly well-written and well-documented solvers and libraries for most computational tasks one can

think of. Many of these solvers and libraries run on parallel computers with very little, if any, intervention.

As a couple of examples, I would mention OpenFOAM as a well-established Navier-Stokes solver with

plenty of models already implemented (turbulence, combustion, etc.) and to PETSc, SLEPc and Trilinos

as general purpose libraries designed for scienti�c computation. And if you really �want to know what

the code is doing� � the best excuse for writing your own code � you can just look at it, since all the

mentioned libraries are open source. The investment in understanding how a well-documented (I repeat,

well-documented) code is written is for sure less than what is required to write a code yourself and much
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more useful from the learning point of view. If something needed is not there, it can be added, and it is

always useful to have a structure to take inspiration from.

At this point I guess I should rewrite my code in a more ordered way and provide documentation.

But that is another story.
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Luogo è là giù da Belzebù remoto

tanto quanto la tomba si distende,

che non per vista, ma per suono è noto

d'un ruscelletto che quivi discende

per la buca d'un sasso, ch'elli ha roso,

col corso ch'elli avvolge, e poco pende.

Lo duca e io per quel cammino ascoso

intrammo a ritornar nel chiaro mondo;

e sanza cura aver d'alcun riposo,

salimmo sù, el primo e io secondo,

tanto ch'i' vidi de le cose belle

che porta 'l ciel, per un pertugio tondo.

E quindi uscimmo a riveder le stelle.

Dante Alighieri � Inferno, Canto XXXIV





Appendix A

Matlab multigrid code

1 % A basic implementation of a multigrid

2 % solver for the convection � diffusion

3 % equation on a unit square.

4 %

5 % INPUT:

6 % � n: the number of mesh point along a mesh

7 % direction (the total number of degrees of

8 % freedom is n^2);

9 % � nits: the number of V � cycle to be used

10 %

11 % Both the CS and the FAS aglorithm are

12 % avaiable, and the used algorithm can be

13 % selected by setting the variable

14 % cntrparams.algorithm to �CS� and �FAS�

15 % respectively. The Poisson equation can be

16 % obtained by setting cntrparams.adv ���

17 % i.e. the coefficient of the convective

18 % term ��� to zero. A purely convective

19 % equation can be obtained by setting

20 % cntrparam.nu ��� i.e. the viscosity ���

21 % to zero. Other input parameters are

22 % clarified in the code.

23 %

24 % OUTPUT:

25 % A single structure, named output, is

26 % provided as a result. Any quantity present

27 % in the main function can be easily added

28 % to the output structure. The default

29 % quatities in the output structure are:

30 %

31 % � its: the number of V � cycle iteration

32 % [0:nits]

33 % � rnormRelaxation: the L2 norm of the

34 % residual for the relaxation scheme, as a

35 % function of the iteration number.

36 % (without multigrid)

37 % � rnormTwoGrids: the L2 norm of the

38 % residual for the two grid scheme, as a

39 % function of the iteration number.

40 % � rnormMG: the L2 norm of the residual for

41 % the multigrid scheme, as a function of the

42 % iteration number

43 % � x,y,uh,rh,u0: the x,y coordinate, the

44 % computed solution, the corresponding

45 % residual and the exact solution on the

46 % finest grid

47 % � Reh: the mesh � based Reynold number on

48 % the finest grid

49 %

50 % As a usage example, a plot of the

51 % convergence history of the residual for

52 % the multigrid scheme can be obtained with

53 %

54 % plot(output.its,output.rnormMG)

55 %

56

57 %

58 % the full code is made of the following

59 % functions:

60 %

61 % === [output] = main(n,nits) ===

62 % the main function

63 %

64 % === [J] = jac(n) ===

65 % returs the discretization of the

66 % convection � diffusion operator on a grid

67 % with n mesh points on each direction

68 %

69 % === [Lp,Lm] = relaxationSetUp(J,n) ===

70 % sets up the relaxation algorithm by

71 % performing the operator splitting and, if

72 % required, implementing the boundary

73 % relaxation

74 %

75 % === [U] = RR(u) ===

76 % restrict the field u to the next coarser

77 % grid

78 %

79 % === [u] = II(U) ===

80 % interpolate the field U to the next finer

81 % grid

82 %

83 % == [R] = Rop(n,N) ===

84 % provides the restriction operator between

85 % a finer and a corser grid characterized by

86 % n and N mesh points in each direction

87 % respectively. Restriction can the be done

88 % as U = R* u and the result is the same as

99
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89 % using U = RR(u). The implementation of RR

90 % is much faster, but this function can be

91 % used to obtain an explicit description of

92 % the restriction operator

93 %

94 % === [I] = Iop(N,n) ===

95 % provides the interpolation operator

96 % between a coarser and a finer grid

97 % characterized by N and n mesh points in

98 % each directio respectively. The same

99 % observation made for Rop applies, with ...

u =

100 % II(U) being a much faster implenentation

101 %

102 % === [uh] = mg(uh,rhs,n) ===

103 % this function represents the application

104 % of a single V � cycle. Both the CS and the

105 % FAS algorithm are implemented and can be

106 % selected by setting the value of

107 % cntrparams.algorithm to �CS� or �FAS�

108 % respectively.

109 %

110 % === [uh] = twogrids(uh,rhs,n) ===

111 % the two grid algorithm ��� i.e. only two

112 % grids are used and the solution is

113 % computed on the coarses independently of

114 % its size. It can be used for comparison

115 % with mg.

116 %

117 % === [x,y,u0,rhs] = init(n) ===

118 % this function initialize the grid point

119 % coordinates, the exact solution and the

120 % corresponding right hand side. WARNING:

121 % some choices of boundary condition do not

122 % return a solution correspnding to the

123 % exact one.

124 %

125

126

127

128 function [output]= main(n,nits)

129

130 %%%%%%%%%%%%%%%%%%%%%%%%%%

131 %%%% PROBLEM CONTROL %%%%%

132 %%%%%%%%%%%%%%%%%%%%%%%%%%

133

134 global cntrparams

135 % the algorithm used, can be �CS� or �FAS�

136 cntrparams.algorithm = �FAS�;

137

138 % the anisotropy parameter (see the

139 % Relaxation section in the Multigrid

140 % chapter). A value of epsilon < 1 is

141 % correcly treated by the currect

142 % implementation of linewise Gauss � Seidel

143 % relaxation. A value of epsilon >1

144 % correspond to stretching in the wrong

145 % direction

146 cntrparams.epsilon = 1;

147

148 % control for the linewise Gauss � Seidel

149 % relaxation. A value of 0 corresponds to

150 % pointwise relaxation, a value of 1

151 % correspond to linewise relaxation.

152 cntrparams.LGS = 0;

153

154 % the sweep direction of the relaxation,

155 % can be �F� (forward) or �B� (backward).

156 % A value of �F� corresponds to a sweep

157 % starting in the bottom left corner and

158 % ending in the top right corner. A value

159 % of �B� correspond to a sweep in the

160 % opposite direction, i.e. starting in the

161 % top right corner and ending in the

162 % bottom � left corner.

163 cntrparams.sweepdirection = �F�;

164

165 % the convective field, can be �const� or

166 % �hiemenz�. The value �const� correspond

167 % to a constant flow field, the value

168 % �hiemenz� correspond to the (unswept)

169 % hiemenz flow field.

170 cntrparams.advfield = �hiemenz�;

171

172 % the angle of the (constant) velocity

173 % field with respect to the horizonal

174 % axis.

175 cntrparams.alph= 45 * pi/180;

176

177 % coefficient for the convection term. For

178 % a value of zero the Poisson equation is

179 % obtained. For a value of one, the

180 % viscosity is the opposite of the

181 % Reynolds number.

182 cntrparams.adv = 0;

183

184 % the order of discretization of the

185 % advection term. Can be 1 or 2.

186 cntrparams.advorder = 1;

187

188 % the viscosity. It corresponds to the

189 % inverse of the Reynolds number if

190 % cntrparams.adv = 1. If one wants to

191 % control the mesh � based Reynolds on the

192 % finer grid, cntrparams.nu =

193 % 1./(n � 1)/Re_h, where Re_h is the

194 % mesh� based Reynolds.

195 cntrparams.nu = 1./(n � 1)/1;

196

197 % whether a Dirichlet (0) or a homogeneous

198 % Neuamnn (1) boundary condition is

199 % implemented on each boundary
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200 cntrparams.neumannS = 0;

201 cntrparams.neumannN = 0;

202 cntrparams.neumannE = 0;

203 cntrparams.neumannW = 0;

204

205 % the number of mesh � lines to be included

206 % in the boundary relaxation on each

207 % boundary

208 cntrparams.brkS = 0;

209 cntrparams.brkN = 0;

210 cntrparams.brkW = 0;

211 cntrparams.brkE = 0;

212 cntrparams

213

214 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

215 %%%% END OF PROBLEM CONTROL %%%%%

216 %%%% YOU SHOULD NOT MODIFY %%%%%

217 %%%% ANYTHING BELOW THIS LINE %%%%%

218 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

219

220

221 %%%%%%%%%%%%%%%%%%%%%%%%

222 %%%% INITIALIZATION %%%%

223 %%%%%%%%%%%%%%%%%%%%%%%%

224

225 % the total number of degrees of freeedom

226 nn = n * n;

227 % the discretized operator

228 Jh = jac(n);

229 % initialization of the rhs and exact

230 % solution

231 [x,y,u0,rhs] = init(n);

232

233 %%%%%%%%%%%%%%%%%%%%%%%%%

234 %%%% DIRECT SOLUTION %%%%

235 %%%%%%%%%%%%%%%%%%%%%%%%%

236 tic

237 disp(�=== Direct solution ===�)

238 u = u0;

239 u = Jh\rhs;

240 toc

241 output.u = reshape(u,n,n);

242

243 %%%%%%%%%%%%%%%%%%%%%%%%%%%

244 %%%% SIMPLE RELAXATION %%%%

245 %%%%%%%%%%%%%%%%%%%%%%%%%%%

246 tic

247 disp([�=== Simple relaxation ...

(�,num2str(3 * nits),� iterations) ===�])

248 [Lp,Lm] = relaxationSetUp(Jh,n);

249 u = u0;

250 r = Jh * u� rhs;

251 rnormRelaxation(1) = norm(r)/nn;

252 for cc = 2:3 * nits+1

253 u = � Lp\(Lm * u� rhs);

254 r = Jh * u� rhs;

255 rnormRelaxation(cc) = norm(r)/nn;

256 end

257 toc

258

259 %%%%%%%%%%%%%%%%%%%%%%%%

260 %%%% TWO GRID CYCLE %%%%

261 %%%%%%%%%%%%%%%%%%%%%%%%

262 tic

263 disp([�=== Two grid cycle ...

(�,num2str(nits),� iterations) ===�])

264 uh = u0;

265 rh = Jh * uh � rhs;

266 rnormTwoGrids(1) = norm(rh)/nn;

267 for cc = 2:nits+1

268 uh = twogrids(uh,rhs,n);

269 rh = Jh * uh � rhs;

270 rnormTwoGrids(cc) = norm(rh)/nn;

271 end

272 toc

273

274 %%%%%%%%%%%%%%%%%%%%%%%%%

275 %%%% MULTIGRID CYCLE %%%%

276 %%%%%%%%%%%%%%%%%%%%%%%%%

277 tic

278 disp([�=== Multigrid V � cycle ...

(�,num2str(nits),� iterations) ===�])

279 uh = u0;

280 rh = Jh * uh � rhs;

281 rnormMG(1) = norm(rh)/nn;

282 for cc = 2:nits+1

283 uh = mg(uh,rhs,n);

284 rh = Jh * uh � rhs;

285 rnormMG(cc) = norm(rh)/nn;

286 disp([�V cycle # �, num2str(cc), � ...

residual is �, ...

num2str(rnormMG(cc))]);

287 end

288 toc

289

290 %%%%%%%%%%%%%%%%

291 %%%% OUTPUT %%%%

292 %%%%%%%%%%%%%%%%

293 output.its = 0:3 * nits

294 output.rnormRelaxation = rnormRelaxation;

295 output.rnormTwoGrids = [rnormTwoGrids ...

ones(1,nits * 3� nits) * nan];

296 output.rnormMG = [rnormMG ...

ones(1,nits * 3� nits) * nan];

297 output.x = x;

298 output.y = y;

299 output.uh = reshape(uh,n,n);

300 output.rh = reshape(rh,n,n);

301 output.u0 = reshape(u0,n,n);

302 output.Reh = 1./(n � 1)/cntrparams.nu;

303 dlmwrite(�norms.dat�, [output.its�, ...

output.rnormRelaxation�, ...
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output.rnormTwoGrids�, ...

output.rnormMG�], �delimiter�,� �);

304

305 end

306

307 % function [J] = jac(n) returs the

308 % discretization of the convection � diffusion

309 % operator on a grid with n mesh points on

310 % each direction

311 function [J] = jac(n)

312 global cntrparams

313

314 epsilon = cntrparams.epsilon;

315 alph = cntrparams.alph;

316 nu = cntrparams.nu;

317 adv = cntrparams.adv;

318 advfield = cntrparams.advfield;

319 advorder = cntrparams.advorder;

320 neumannS = cntrparams.neumannS;

321 neumannN = cntrparams.neumannN;

322 neumannE = cntrparams.neumannE;

323 neumannW = cntrparams.neumannW;

324

325 nn = n * n;

326 h = 1./(n � 1);

327

328 % vectors containing the index of the

329 % boundary points

330 sb = 1:n;

331 nb = nn� n+1:nn;

332 wb = 1:n:nn;

333 eb = n:n:nn;

334 bb = [ sb,nb,wb,eb];

335 lbb = length(bb);

336

337 % the centered second order discretization

338 % of the Laplacian operator. epsilon

339 % represents the anisotropy. spdiags will

340 % be used to build the sparse matrix, look

341 % at �help spdiags� on Matlab for

342 % information on the format used here.

343 d0 = 1/h^2 * [zeros(nn,1) , ...

epsilon * ones(nn,1), zeros(nn,1), ...

ones(nn,1), ...

� 2* (1+epsilon). * ones(nn,1), ...

ones(nn,1),zeros(nn,1),epsilon * ones(nn,1), ...

zeros(nn,1)];

344

345 % the convective the velocity field can be

346 % constant, with an angle alph with the

347 % horizontal axis, or (unswept) hiemenz.

348 if (strcmpi(advfield,�const�))

349 u = ones(nn,1). * cos(alph);

350 v = ones(nn,1). * sin(alph);

351 elseif (strcmpi(advfield,�hiemenz�))

352 x = linspace(0,1,n); y = ...

linspace(0,1,n); [x,y] = ...

meshgrid(x,y);

353 u = x; u = u(:);

354 v = 1� y; v = v(:);

355 clear x,y;

356 else

357 error(�advfield can be const or ...

hiemenz�);

358 end

359

360 % the upwinded first or second order

361 % discretization of the convective

362 % operator

363 up = .5 * (u+abs(u)); um = � .5 * (u � abs(u));

364 vp = .5 * (v+abs(v)); vm = � .5 * (v � abs(v));

365 d1 = zeros(nn,9);

366 if (advorder==1)

367 d1 = 1./(h) * [ 0 * vp � 1* vp 0 * up � 1* up ...

(up+vp+um+vm) � 1* um 0* um � 1* vm ...

0* vm ];

368 elseif (advorder==2)

369 d1 = 1./(2 * h) * [ 1 * vp � 2* vp 1 * up � 2* up ...

3* (up+vp+um+vm) � 2* um 1* um � 2* vm ...

1* vm ];

370 else

371 error(�The discretization order for ...

the convective term must be 1 or 2�);

372 end

373

374 % the discretized operator, including the

375 % convective (d1) and diffusive (d0) terms

376 % is built using spdiags

377 J = spdiags(adv. * d1� nu* d0,[ � 2* n � n � 2 ...

� 1 0 1 2 n 2 * n],nn,nn);

378

379 % enforce Dirichlet boundary conditions on

380 % all boundaries. The indexes of the

381 % boundary�s points are contained in the

382 % vector bb

383 J(bb,:) = 0;

384 J(bb,bb) = spdiags(ones(lbb,1),0,lbb,lbb);

385

386 % enforce Neumann boundary condition where

387 % required

388 if (neumannS == 1)

389 J(sb,:) = 0;

390 for i = 1:n

391 J(sb(i),sb(i)+[0 n 2 * n]) = � 1/(2 * h) ...

* [ 3 � 2 1];

392 end

393 end

394

395 if (neumannE == 1)

396 J(eb,:) = 0;

397 for i = 1:n

398 J(eb(i),eb(i) � [0 1 2]) = +1/(2 * h) * ...
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[ 3 � 2 1];

399 end

400 end

401

402 if (neumannN == 1)

403 J(nb,:) = 0;

404 for i = 1:n

405 J(nb(i),nb(i) � [0 n 2 * n]) = +1/(2 * h) ...

* [ 3 � 2 1];

406 end

407 end

408

409 if (neumannW == 1)

410 J(wb,:) = 0;

411 for i = 1:n

412 J(wb(i),wb(i)+[0 1 2]) = � 1/(2 * h) * ...

[ 3 � 2 1];

413 end

414 end

415

416 end

417

418 % function [Lp,Lm] = relaxationSetUp(J,n);

419 % sets up the relaxation algorithm by

420 % performing the operator splitting and, if

421 % required, implementing the boundary

422 % relaxation

423 function [Lp,Lm] = relaxationSetUp(J,n);

424 global cntrparams;

425

426 LGS = cntrparams.LGS;

427

428 % perform operator splitting by selecting

429 % the upper and lower parts of the matrix.

430 % LGS diagonals above/below the main

431 % diagonal are included in the Lp operator

432 % in order to implenent linewise

433 % Gauss� Seidel, if required.

434 if (cntrparams.sweepdirection == �F�)

435 Lp = tril(J,+LGS);

436 Lm = triu(J,+1+LGS);

437 elseif (cntrparams.sweepdirection == �B�)

438 Lp = triu(J, � LGS);

439 Lm = tril(J, � 1� LGS);

440 end

441

442 % boundary relaxation is obtained

443 % modifying the splitting. All discrete

444 % equations corredponding to the boundary

445 % points are included in the Lp operator

446 % and are solved implicitly.

447

448 % southern boundary

449 brkS = cntrparams.brkS;

450 Lp(1:brkS * n,:) = J(1:brkS * n,:);

451 Lm(1:brkS * n,:) = 0;

452

453 % northern boundary

454 brkN = cntrparams.brkN;

455 Lp(end � brkN * n+1:end,:) = ...

J(end � brkN * n+1:end,:);

456 Lm(end� brkN * n+1:end,:) = 0;

457

458 % western boundary

459 brkW = cntrparams.brkW;

460 brkpoints = zeros(brkW * n,1);

461 for i = 1:brkW

462 brkpoints((i � 1) * n+1:i * n) = i:n:nn;

463 end

464 Lp(brkpoints,:) = J(brkpoints,:);

465 Lm(brkpoints,:) = 0;

466

467 % eastern boundary

468 brkE = cntrparams.brkE;

469 brkpoints = zeros(brkE * n,1);

470 for i = 1:brkE

471 brkpoints((i � 1) * n+1:i * n) = n � i+1:n:nn;

472 end

473 Lp(brkpoints,:) = J(brkpoints,:);

474 Lm(brkpoints,:) = 0;

475

476 end

477

478 % function U = RR(u)

479 % restrict the field u to the next coarser

480 % grid

481 function U = RR(u)

482 n = sqrt(length(u));

483 N = ceil(n/2);

484 utmp = reshape(u,n,n);

485 Utmp = zeros(N,N);

486

487 Utmp(2:N � 1,2:N � 1) = ...

0.25 * utmp(3:2:n � 2,3:2:n � 2) + ...

488 0.125 * ( utmp(2:2:n � 3,3:2:n � 2) + ...

utmp(4:2:n � 1,3:2:n � 2) ...

489 + utmp(3:2:n � 2,2:2:n � 3) + ...

utmp(3:2:n � 2,4:2:n � 1) ) + ...

490 0.0625 * ( utmp(2:2:n � 3,2:2:n � 3) + ...

utmp(2:2:n � 3,4:2:n � 1) ...

491 + utmp(4:2:n � 1,2:2:n � 3) + ...

utmp(4:2:n � 1,4:2:n � 1) );

492

493 Utmp(2:N � 1,1) = 0.5 * utmp(3:2:n � 2,1) + ...

0.25 * ( utmp(2:2:n � 3,1) + ...

utmp(4:2:n � 1,1) );

494 Utmp(2:N � 1,N) = 0.5 * utmp(3:2:n � 1,n) + ...

0.25 * ( utmp(2:2:n � 3,n) + ...

utmp(4:2:n � 1,n) );

495 Utmp(1,2:N � 1) = 0.5 * utmp(1,3:2:n � 1) + ...

0.25 * ( utmp(1,2:2:n � 3) + ...

utmp(1,4:2:n � 1) );
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496 Utmp(N,2:N � 1) = 0.5 * utmp(n,3:2:n � 1) + ...

0.25 * ( utmp(n,2:2:n � 3) + ...

utmp(n,4:2:n � 1) );

497

498 Utmp(1,1) = utmp(1,1);

499 Utmp(1,end) = utmp(1,end);

500 Utmp(end,1) = utmp(end,1);

501 Utmp(end,end) = utmp(end,end);

502

503 U = reshape(Utmp,N * N,1);

504

505 end

506

507 % function u = II(U)

508 % interpolate the field U to the next finer

509 % grid

510 function u = II(U)

511 N = sqrt(length(U));

512 n = 2* N� 1;

513 Utmp = reshape(U,N,N);

514 utmp = zeros(n,n);

515

516 utmp(1:2:n,1:2:n) = Utmp(1:N,1:N);

517 utmp(2:2:n � 1,1:2:n) = ( Utmp(1:N � 1,1:N) ...

+ Utmp(2:N,1:N) ) / 2.;

518 utmp(1:2:n,2:2:n � 1) = ( Utmp(1:N,1:N � 1) ...

+ Utmp(1:N,2:N) ) / 2.;

519 utmp(2:2:n � 1,2:2:n � 1) = ( ...

Utmp(1:N � 1,1:N � 1) + Utmp(1:N � 1,2:N) ...

+ Utmp(2:N,1:N � 1) + Utmp(2:N,2:N) ) ...

/ 4.;

520 u = reshape(utmp,n * n,1);

521

522 end

523

524

525 % function [R] = Rop(n,N)

526 % provides the restriction operator between

527 % a finer and a corser grid characterized by

528 % n and N mesh points in each direction

529 % respectively. Restriction can the be done

530 % as U = R* u and the result is the same as

531 % using U = RR(u). The implementation of RR

532 % is much faster, but this function can be

533 % used to obtain an explicit description of

534 % the restriction operator

535 function [R] = Rop(n,N)

536 nn = n * n;

537 NN = N* N;

538

539 % SW S SE W C E NW N E

540 st = [ � n� 1 � n � n+1 � 1 0 1 n� 1 n n+1];

541

542 R = sparse([],[],[],NN,nn,nn * 9);

543 di = 1/16 * [ 1 , 2 , 1. , 2 , 4 , 2 , 1 ...

, 2 , 1] ; % interior

544 dh = 1/4 * [ 0 , 0 , 0. , 1 , 2 , 1 , 0 , ...

0 , 0] ; % horizontal boundaries

545 dv = 1/4 * [ 0 , 1 , 0. , 0 , 2 , 0 , 0 , ...

1 , 0] ; % vertical boundaries

546 dc = [ 0 , 0 , 0. , 0 , 1 , 0 , 0 , 0 , ...

0] ; % corners

547

548 for J = 2:N � 1

549 for I = 2:N � 1

550 j = 2 * J� 1;

551 i = 2 * I � 1;

552 CC = (J� 1) * N+I;

553 cc = (j � 1) * n+i;

554 R(CC,st+cc) = di;

555 end

556 end

557

558 for J = 1:N � 1:N

559 for I = 2:N � 1

560 j = 2 * J� 1;

561 i = 2 * I � 1;

562 CC = (J� 1) * N+I;

563 cc = (j � 1) * n+i;

564 R(CC,:) = spdiags(dh,st+cc � 1,1,nn);

565 end

566 end

567

568 for J = 2:N � 1

569 for I = 1:N � 1:N

570 j = 2 * J� 1;

571 i = 2 * I � 1;

572 CC = (J� 1) * N+I;

573 cc = (j � 1) * n+i;

574 R(CC,:) = spdiags(dv,st+cc � 1,1,nn);

575 end

576 end

577

578 for J = 1:N � 1:N

579 for I = 1:N � 1:N

580 j = 2 * J� 1;

581 i = 2 * I � 1;

582 CC = (J� 1) * N+I;

583 cc = (j � 1) * n+i;

584 R(CC,:) = spdiags(dc,st+cc � 1,1,nn);

585 end

586 end

587

588 end

589

590

591 % function [Iout] = Iop(N,n)

592 % provides the interpolation operator

593 % between a coarser and a finer grid

594 % characterized by N and n mesh points in

595 % each directio respectively. The same

596 % observation made for Rop applies, with ...
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u =

597 % II(U) being a much faster implenentation

598 function [Iout] = Iop(N,n)

599 nn = n * n;

600 NN = N* N;

601

602 % SW S SE W C E NW N E

603 st = [ � n� 1 � n � n+1 � 1 0 1 n� 1 n n+1];

604

605 Iout = sparse([],[],[],nn,NN,nn. * 9);

606 di = 1/4 * [ 1 , 2 , 1. , 2 , 4 , 2 , 1 , ...

2 , 1] ; % interior

607 dh = 1/2 * [ 0 , 0 , 0. , 1 , 2 , 1 , 0 , ...

0 , 0] ; % horizontal boundaries

608 dv = 1/2 * [ 0 , 1 , 0. , 0 , 2 , 0 , 0 , ...

1 , 0] ; % vertical boundaries

609 dc = [ 0 , 0 , 0. , 0 , 1 , 0 , 0 , 0 , ...

0] ; % corners

610

611 % injection

612 for J = 1:N

613 for I = 1:N

614 j = 2 * J� 1;

615 i = 2 * I � 1;

616 CC = (J� 1) * N+I;

617 cc = (j � 1) * n+i;

618 Iout(cc,CC) = 1.;

619 end

620 end

621

622 % linear interpolation

623 for J = 1:N

624 for I = 1:N � 1

625 j = 2 * J� 1;

626 i = 2 * I;

627 CC = (J� 1) * N+I;

628 cc = (j � 1) * n+i;

629 Iout(cc,CC) = 0.5;

630 Iout(cc,CC+1) = 0.5;

631 end

632 end

633

634 for J = 1:N � 1

635 for I = 1:N

636 j = 2 * J;

637 i = 2 * I � 1;

638 CC = (J� 1) * N+I;

639 cc = (j � 1) * n+i;

640 Iout(cc,CC) = 0.5;

641 Iout(cc,CC+N) = 0.5;

642 end

643 end

644

645 % bilinear interpolation

646 for J = 1:N � 1

647 for I = 1:N � 1

648 j = 2 * J;

649 i = 2 * I;

650 CC = (J� 1) * N+I;

651 cc = (j � 1) * n+i;

652 Iout(cc,CC) = 0.25;

653 Iout(cc,CC+1) = 0.25;

654 Iout(cc,CC+N) = 0.25;

655 Iout(cc,CC+N+1) = 0.25;

656 end

657 end

658 end

659

660

661 function [uh] = mg(uh,rhs,n)

662

663 global cntrparams

664 nn = n * n;

665 LGS = cntrparams.LGS;

666 if (n � 5)

667

668 Jh = jac(n);

669 uh = Jh\rhs;

670

671 else

672

673 N = (n � 1)/2+1;

674 % the follwing two lines can be

675 % uncommented if an explicit

676 % representation of the restriction and

677 % iterpolation operator are required,

678 % but the implentation of the Rop and

679 % Iop functions is quite slow

680 %R = Rop(n,N);

681 %I = Iop(N,n);

682 Jh = jac(n);

683 JH = jac(N);

684

685 [Lp,Lm] = relaxationSetUp(Jh,n);

686

687 % relaxation: relaxation is peformed by

688 % "inverting" the Lp operator. This is

689 % more costly than a real Gauss � Seidel

690 % iteration, but clearer from a notation

691 % point of view and, for this reason, is

692 % used here.

693 uh = � Lp\(Lm * uh� rhs);

694 uh = � Lp\(Lm * uh� rhs);

695

696 if ( ...

strcmpi(cntrparams.algorithm,�FAS�) ...

) % the FAS algorithm

697

698 % restriction

699 tau = JH * (RR(uh)) � RR(Jh * uh);

700 rhsH = RR(rhs) + tau;

701
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702 % multigrid on coarser grids

703 uHold = RR(uh);

704 uH = mg(uHold,rhsH,N);

705

706 % interpolation

707 corrH = uH � uHold;

708 uh = uh + II(corrH);

709

710 elseif ( ...

strcmpi(cntrparams.algorithm,�CS�) ...

) % the CS algorithm

711

712 rh = rhs � Jh * uh;

713 rhsH = RR(rh);

714 corrH = mg(zeros(size(rhsH)),rhsH,N);

715 uh = uh + II(corrH);

716

717 else

718 error(�cntrparams.algorithm must be ...

FAS or CS�);

719 end

720

721 % relaxation

722 uh = � Lp\(Lm * uh� rhs);

723

724 end

725

726 end

727

728 function [uh] = twogrids(uh,rhs,n)

729

730 global cntrparams;

731 nn = n * n;

732 LGS = cntrparams.LGS;

733

734 N = (n � 1)/2+1;

735

736 %R = Rop(n,N);

737 %I = Iop(N,n);

738 Jh = jac(n);

739 JH = jac(N);

740

741 [Lp,Lm] = relaxationSetUp(Jh,n);

742

743 % relaxation

744 uh = � Lp\(Lm * uh� rhs);

745 uh = � Lp\(Lm * uh� rhs);

746

747 if ( ...

strcmpi(cntrparams.algorithm,�FAS�) ...

) % the FAS algorithm

748

749 % restriction

750 tau = JH * RR(uh) � RR(Jh * uh);

751 rhsH = RR(rhs) + tau;

752

753 % solve on coarse grid

754 uH = JH\rhsH;

755

756 % interpolation

757 corrH = uH � RR(uh);

758 uh = uh + II(corrH);

759

760 elseif ( ...

strcmpi(cntrparams.algorithm,�CS�) ...

) % the CS algorithm

761

762 rh = rhs � Jh * uh;

763 corrH = JH\(RR(rh));

764 uh = uh + II(corrH);

765

766 else

767 error(�cntrparams.algorithm must be ...

FAS or CS�);

768 end

769

770 % relaxation

771 uh = � Lp\(Lm * uh� rhs);

772

773 end

774

775 function [x,y,u0,rhs] = init(n)

776 global cntrparams

777

778 x = linspace(0,1,n); y = ...

linspace(0,1,n); [x,y] = meshgrid(x,y);

779 nu = cntrparams.nu; adv = ...

cntrparams.adv; alph = cntrparams.alph;

780

781 u0 = (x.^2 � x.^4) . * (y.̂ 4 � y.^2); ...

u0(2:end � 1,2:end � 1) = ...

rand(n � 2,n � 2); u0 = u0(:);

782 %u0 = (x.^2 � x.^4) . * (y.̂ 4 � y.^2); ...

u0 = u0(:);

783

784 rhs = + adv. * ( ...

cos(alph). * (2. * x� 4. * x.^3). * (y.̂ 4 � y.^2) ...

+ ...

sin(alph). * (x.̂ 2 � x.^4). * (4. * y.^3 � 2. * y) ...

) � nu. * ( ...

(2 � 12. * x.^2). * (y.̂ 4 � y.^2) + ...

(x.̂ 2 � x.^4). * (12. * y.^2 � 2) );

785 rhs(:,1) = 0; rhs(:,end)=0; rhs(1,:) = ...

0; rhs(end,:) = 0; rhs = rhs(:);

786 end
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