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R. Friedrich rapporteur TU München, Germany

P. Huerre président du jury École Polytechnique, France
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Chapter 1

Introduction

Flow about a blunt body is frequently encountered in aeronautical, vehicle or marine applica-
tions. The swept wings of civil aircraft, the spoilers on race cars and the control surfaces of
submarines display only a few of many examples. They share the requirement that the flow near
the stagnation or attachment line, the location where the fluid comes to rest, and its develop-
ment farther downstream from the stagnation line have to be fully understood for an efficient
design and a proper performance. It is the topic of the present thesis to investigate the stability
behavior of compressible leading-edge flow with respect to small perturbations by performing a
global stability analysis.

For this analysis, flow in the leading-edge region of a yawed blunt body is modeled by
compressible flow about a swept parabolic body. This flow model treats the movement of air
in the vicinity of the attachment line and the region farther downstream as one entity. This is
in contrast to previous theoretical and numerical studies where both regions have been studied
separately — a necessary approach to apply standard numerical algorithms — using distinct
simplified local flow models. Results from these local investigations still constitute most of our
current understanding of swept leading-edge flow despite a number of unanswered but practically
relevant questions. In this sense, this thesis attempts to answer some of these questions by
studying a flow model that represents a closer approximation to realistic flow situations.

Soon after the invention of aircraft in the beginning of the twentieth century it was realized
that the aerodynamic design of high-performance aircraft crucially depends on a profound under-
standing of compressible flow around wings. In particular, the details of the transition process
from laminar to turbulent fluid motion, yielding increased drag and a loss of flight performance,
play a dominant role in the description of this flow. Two-dimensional hydrodynamic instabilities
of the Tollmien–Schlichting type have been found to trigger this transition process and to initi-
ate the breakdown into turbulence in a region rather far downstream of the attachment line for
unswept wings, the standard design concept for low-speed aircraft in the early twentieth century.
With the advent of high-speed aircraft in the 1940s, for instance, the jet-engined Messerschmitt
ME 262, the introduction of swept wings became necessary in order to overcome serious design
problems emanating from compressibility effects, notably the shock stall phenomenon. Sweep,
however, considerably alters the stability properties and thus the transition process of the flow
in the wing’s leading-edge region, and “a truly optimum system can only be achieved through a
complete understanding of the laminar to turbulent transition process” (Poll, 1984).

The present thesis is concerned with the stability behavior of compressible flow in the leading-
edge region of yawed blunt bodies such as swept air- and spacecraft wings or blended wing-body
configurations (see figure 1.1). In particular, we will focus on the flow near and downstream
of the attachment line. Such an attachment line is formed on the windward surface of any
convex-curved object — which will be modeled by a swept parabolic body — immersed in fluid
flow. A sound understanding of the flow stability and the laminar-turbulent transition process

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1. Typical examples of compressible flow about a yawed blunt body: subsonic flow about the swept
wings of a civil aircraft (left), swept leading-edge flow about a blended wing-body (BWB) aircraft, a concept for
future aircraft (top right), and hypersonic flow about the swept wings of a space shuttle (bottom right).

in this region is important from several points of view: (i) to improve the performance and
fuel efficiency of current civil aircraft, (ii) to allow the optimal aerodynamic design of future
high-performance aircraft such as blended wing-body configurations, and (iii) to predict and
manipulate the thermal loads that exist for the swept wings (as well as the lower side) of
spacecraft. In the latter application, a thermal protection system (TPS) is used to protect the
space vehicle from temperatures up to 1650 ◦ C. Moreover, as pointed out in a review article
by Reed et al. (1996), understanding the laminar to turbulent transition process is necessary
for the accurate prediction of hydro- and aerodynamic forces and the temperature field on the
surface of transport vehicles in general.

1.1 Flow situation

The flow situation in the leading-edge region of a swept blunt body is sketched in figure 1.2.
In it, the flow impinges onto a convex-curved body — whose leading-edge curvature is given by
the leading-edge radius R — with a freestream velocity q∞ under a sweep angle Λ yielding a
velocity component normal, u∞, and a component parallel to the leading-edge, w∞. The latter
velocity component points along the spanwise z-direction and is denoted as the sweep velocity.
The resulting flow forms a local stagnation-point flow near the attachment line, the point where
the fluid comes to rest, which turns into a highly three-dimensional flow downstream of the
attachment line. To indicate the three-dimensional character of the flow, the streamline pattern
of the inviscid outer flow in the leading-edge region is depicted by curved lines in figure 1.2.
Furthermore, as a result of viscous effects in the flow, a thin three-dimensional boundary layer
exists between the body and the surface of the external streamlines. This boundary layer fully
covers the surface of the body as it grows in the chordwise x-direction, and its thickness is
denoted by δ99 (see figure 1.2). In summary, the flow situation displayed in figure 1.2 features
a large number of independent variables which “produces a problem of great complexity” (Poll,
1978). The degree of complexity can be reduced by assuming a body of infinite span; practical
experience with high aspect ratio untapered swept cylinders has shown that in those regions
where the external flow is effectively independent of the spanwise coordinate, z, the boundary
layer is also approximately independent of z (see Poll, 1978).

Boundary-layer flows such as swept leading-edge flow (see figure 1.2) feature velocity gradi-
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Figure 1.2. Sketch of viscous flow in the leading-edge region of a swept blunt body of infinite span (adapted from
Poll, 1978).

ents inside the viscous boundary layer, and these gradients result in diffusive effects. For civil
aircraft traveling at several hundreds of kilometer per hour, for instance, the velocity of the outer
flow drops to zero at the surface of the wing, in the wing’s leading-edge region, over vertical dis-
tances on the order of millimeters. The resulting diffusive effects are responsible for skin friction
(drag) and heat transfer (thermal load), and they highly depend on the state of the bound-
ary layer; if the boundary layer undergoes a transition from laminar to turbulent fluid motion,
drastic increases in drag and thermal load result. The Reynolds number Re which describes
the ratio of inertial to viscous forces governs this transition process and thus characterizes the
stability of the boundary-layer flow.

1.1.1 Early experiments

The desire to suppress laminar-turbulent transition on swept wings and to maintain laminar flow
over a whole aircraft wing dates back to the 1940s. At this time, experimental investigations
on swept wings suggested that the presence of sweep does not affect the stability of the flow.
However, in later flight tests on swept wing aircraft, Gray (1952) noticed that beyond a critical
speed q∞, the laminar-turbulent transition front moved toward the leading edge of the wing, and
transition could occur at, or very close to, the attachment line. This feature could not be ex-
plained by existing two-dimensional arguments, i.e., by instabilities of the Tollmien–Schlichting
type. Gray further observed that the critical speed q∞ for early transition depends on the sweep
angle Λ as well as the leading-edge radius R of the wing.

Crossflow instabilities

Theoretical and experimental investigations followed and revealed a new type of instability,
the crossflow instability, which is due to a velocity component inside the boundary layer that
is transverse to external streamlines. The presence of sweep (and curvature) gives rise to a
highly three-dimensional boundary-layer flow in the leading-edge region of a swept wing — as
sketched in figure 1.2 — and thus fundamentally alters its inherent stability properties; the
initially two-dimensional boundary-layer flow along the attachment line gradually merges into
a three-dimensional boundary-layer flow as it develops downstream of the attachment line. The
crossflow instability exhibits coherent co-rotating vortices whose axes are almost aligned with
the streamlines of the external flow (see, e.g., Bippes, 1999, for details). As an example, Poll
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Figure 1.3. Results from wind-tunnel experiments on a swept wing configuration with a semi-circular leading edge
for a sweep angle Λ = 63 ◦ and a freestream velocity q∞ = 28 [m/s] (taken from Poll, 1978, 1979); the flow (in
white) is visualized using oil: (left) streaky structures in form of co-rotating vortices produced by the crossflow
instability; (right) phenomenon of leading-edge contamination as a result of large-scale perturbations caused by
a trip wire of a diameter d = 0.34 [mm] mounted across the attachment line.

(1978, 1979) reported their presence in form of oil-film streaks in his wind-tunnel experiments
(see figure 1.3 left); the same characteristic pattern had been observed in Gray’s (1952) flight
tests. The prevalence of crossflow vortices led, in the mid-1950s, to the hypothesis of a crossflow-
vortex induced transition, and experiments had been designed to eliminate the vortices using
suction systems and thus render the flow in the vicinity of the leading edge laminar.

Leading-edge (attachment-line) contamination

Contrary to the hypothesis of a crossflow-induced transition, tests in 1963 revealed that at de-
sign conditions laminar flow was restricted to small regions near the wing tips, and that the
source of the transition problem was turbulent flow from the wing-fuselage junction traveling
along the attachment line and contaminating the wing’s leading edge. If the governing Reynolds
number Re was sufficiently high, the large-scale perturbations produced and sustained a turbu-
lent boundary layer not only along the attachment line but also at all chordwise locations of the
swept wing (see figure 1.3 right).

In an early attempt to gather detailed information on leading-edge contamination, Pfenninger
and Gaster independently conducted a number of wind-tunnel investigations in the 1963s. In
his experiments on a swept X-21 wing, Pfenninger observed that unexpectedly high suction
rates had to be applied to achieve laminar flow over the outer part of the wing (see Reed and
Saric, 1989, for details). This strong suction was required particularly in the wing’s leading-
edge region which indicated that rather strong disturbances had to be present in the laminar
boundary layer originating near the upstream part of the wing. Evaluating his database and
summarizing his findings (in Pfenninger, 1965), he was able to establish a criterion for the
existence of spanwise contamination in the presence of an initially turbulent attachment-line
boundary layer emanating from the wing-fuselage junction. He further realized that maintaining
a full-chord laminar flow on an X-21 wing critically depended on the existence of an undisturbed
laminar attachment-line boundary layer, thus stressing the importance of flow instabilities in
the vicinity of the attachment line. Pfenninger’s criterion is expressed as a critical Reynolds
number of Reθ = w∞θ/ν ≈ 100 based on the momentum thickness θ (with the sweep velocity
w∞ = q∞ sin Λ and the kinematic viscosity ν), and to this day this value still guides state-of-the-
art design efforts for swept wings. A theoretical foundation for this critical value, however, is
still missing. To avoid leading-edge contamination and create an undisturbed laminar boundary
layer along the attachment line Gaster (1965) proposed a bump on the wing’s leading edge.

These early flight tests initiated a great many experimental investigations on leading-edge
(attachment-line) contamination and leading-edge instabilities. Analyzing the results from these
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in-flight tests as well as a number of wind-tunnel experiments, Joslin (1996) concluded that
large roughness elements or trip wires mounted across the attachment line have an effect on the
stability of the leading-edge boundary layer similar to that of contamination. His evaluation of
previous data again yields Pfenninger’s criterion, namely, disturbance decay for Reθ < 100 and
unstable flow for Reθ > 100.

Attachment-line instabilities

Further attempts to better understand the stability of flow in the attachment-line region followed
(e.g., Cumpsty and Head, 1969; Pfenninger and Bacon, 1969), and the flow was found to also
be susceptible to instabilities close to the attachment line. However, it was Poll (1979) a decade
later who established attachment-line instabilities as a viable alternative governing the stability
of leading-edge flow. He conducted wind-tunnel experiments on a swept wing configuration with
a semi-circular leading edge (the same swept wing model as used by Cumpsty and Head, 1969)
and determined, in contrast to the above flight tests, a critical Reynolds number of Reθ,crit ≈ 230
for infinitesimal perturbations. As a consequence of the findings for leading-edge contamination
and attachment-line instabilities, Reed and Saric (1989) stated in their review article that, since
the characteristic critical Reynolds number Reθ,crit ≈ 230 for attachment-line instabilities is
higher than the leading-edge contamination limit (Reθ ≈ 100), “the contamination problem
should be solved first”.

The gathered experimental results as well as the need to fully understand the flow near the
attachment line have fueled a substantial effort to investigate the flow behavior governed by
the two identified and distinct instability mechanisms: while attachment-line instabilities are
predominantly of a viscous nature, crossflow instabilities are based on an inflection point in the
three-dimensional velocity profile and operate off the attachment line. For a recent overview of
experiments and theory on the stability and transition of three-dimensional boundary layers the
reader is referred to Bippes (1999) and Saric et al. (2003).

Experiments in compressible flow

The literature on studies of sub-, super- and hypersonic flow about blunt bodies such as swept
wings and swept cylinders is relatively sparse. In Poll (1983), he extends his incompressible
investigations (Poll, 1978, 1979) and discusses the influence of compressibility on the stability of
swept leading-edge flow. Analyzing the available results from experiments with large-amplitude
perturbations, he was able to determine a unique critical Reynolds number of 245 for sweep
Mach numbers Me up to 6.

A recent and comprehensive overview of existing studies for small-amplitude perturbations
(for 1.53 ≤ Me ≤ 8.06) is given by Gaillard et al. (1999). In their article, they present a figure
displaying the critical value of the Reynolds number for the onset of transition as a function of
the sweep Mach number Me. In the same figure, they mark a range of 0 ≤ Me ≤ 5, denoted as
Creel’s critical range (Creel et al., 1987), where the critical Reynolds number (650-700) for the
onset of transition is nearly independent of the sweep Mach number; they further report that
their results suggest a strong destabilizing influence of the sweep Mach number for values larger
than approximately 5.

1.1.2 Laminar-turbulent transition on swept wings

Now, that we have revisited important literature about experimental studies on swept wings
and swept wing models, we briefly summarize the instability mechanisms (and their governing
parameters) that have been suggested to cause the transition from laminar to turbulent fluid
motion on swept wings. In the past, it has been found that this laminar-turbulent transition
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(a) (b)

Figure 1.4. Sketch indicating the relevant instability mechanisms and the resulting transition regions on a swept
wing depending on the sweep angle Λ (adapted from Oertel, Jr. and Stank, 1999): (a) transition in the mid-chord
region of the wing due to Tollmien–Schlichting (TS) waves for rather small values of Λ and (b) crossflow-induced
(CF) transition in the wing’s leading-edge region for rather large Λ. The latter type of transition is caused by
crossflow instabilities resulting from a sufficiently large crossflow velocity component (indicated in blue) inside
the boundary layer. (WI stands for wake instabilities.)

process highly depends on the particular flow configuration: for rather small values of the sweep
angle Λ, streamwise instabilities in form of Tollmien–Schlichting (TS) waves typically occur in the
mid-chord region of a wing as sketched in figure 1.4(a). These instabilities are the consequence
of an adverse pressure gradient in the downstream direction, and a favorable pressure gradient
can be used to control them and thus delay transition considerably (see, e.g., Saric and Reed,
2003).

When changing the flow configuration, notably by increasing the sweep angle Λ, the laminar-
turbulent transition process changes from a Tollmien–Schlichting (TS) to a crossflow-dominated
(CF) transition due to crossflow instabilities as indicated in figure 1.4(b). As a consequence, the
transition front moves toward the leading edge of the wing as, for instance, reported by Gray
(1952). Furthermore, the favorable pressure gradient that stabilized the Tollmien–Schlichting
waves now destabilize the crossflow vortices which leads to a laminar-turbulent transition farther
upstream. Moreover, leading-edge curvature and sweep give rise to leading-edge contamination
and attachment-line instabilities for large values of the leading-edge radius R and/or the sweep
angle Λ. In summary, these features clearly demonstrate the delicate balancing act for the
design of, for instance, advanced swept wings for high-performance aircraft. Since a profound
understanding of compressible flow about swept wings in general, and of flow in the wing’s
leading-edge region in particular, is crucial for their optimal aerodynamic design, we focus our
studies on attachment-line and crossflow instabilities.

In low-disturbance environments such as flight, boundary-layer transition to turbulence gen-
erally occurs through the growth of linear instabilities. As guidance for our investigation we
rely on the roadmap suggested by Morkovin et al. (1994) (see figure 1.5) which has been de-
duced from an abundance of experiments and numerical simulations (see Reshotko, 1994, and
references therein). It consists of a conceptual link between environmental disturbances and
the onset of breakdown to turbulent fluid motion via five distinct paths. Even though for com-
pressible flow about a swept blunt body multiple instability scenarios or a combination thereof
are conceivable, we will concentrate on the low disturbance environment case given by path
A (see figure 1.5 in grey). This path is characterized by (i) receptivity of the laminar flow to
external perturbations, (ii) linear modal growth of boundary-layer-type instabilities, followed by
(iii) non-linear breakdown into turbulence.
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Figure 1.5. Roadmap to transition as suggested by Morkovin et al. (1994) (see Reshotko, 1994).

1.1.3 The sweep Reynolds number Reθ

Experimentalists introduced the sweep Reynolds number Reθ (based on the momentum thickness
θ of the boundary layer) as the governing non-dimensional parameter for attachment-line flow.
As we have seen in section §1.1.1, a critical value of Reθ ≈ 100 has been found in several
experimental investigations, and, to this day, it is still common practice in aircraft design to
keep Reθ < 100 to ensure laminar flow along the attachment line of a swept wing (see, e.g.,
Joslin, 1996). Following Pfenninger (1977) and Poll (1985), an approximate relationship for Reθ

is given as (see Saric and Reed, 2003)

Reθ = 0.404

(
q∞R sin2 Λ

(1 + ǫ)ν cosΛ

)1/2

= 0.404

(
u∞R

(1 + ǫ)ν

)1/2

tan Λ, (1.1)

where u∞ = q∞ cosΛ denotes the normal velocity, ν represents the kinematic viscosity of the
fluid, and ǫ is the ellipticity of an equivalent ellipse1. Note that the factor of 0.404 in (1.1) was
evaluated for incompressible flow (see, e.g., Poll, 1979).

As we can see, the leading-edge geometry described by the radius R as well as the sweep
angle Λ has a strong influence on the stability behavior of leading-edge flow. Equation (1.1)
further demonstrates that in order to ensure low values of Reθ for certain flight conditions,
defined by q∞ and ν, it is necessary to have small values of R and/or Λ, as already discussed in
section §1.1.2, to prevent unstable flow in the vicinity of the attachment line.

1.2 Linear stability theory

In its most general definition, linear stability theory is concerned with quantifying the behavior
of infinitesimal perturbations about a finite-amplitude base state. If the small perturbations
diverge from the finite-amplitude state, the flow is considered unstable; if the perturbed flow
returns back to the base state, the flow is called stable. The stability property, of course, depends
on the governing flow parameters such as, in our case, the sweep Reynolds number and the sweep
Mach number, and their values at which the flow changes from stable to unstable are referred to
as the critical parameters. The decomposition (A), see figure 1.6, into a base state φ0(x, y, z, t)
and a perturbation ǫφ′(x, y, z, t) is rather impractical in all its generality.

A further simplifying, but reasonable assumption is given by considering a steady base flow
φ0(x, y, z). As a consequence, the coefficients in the linearized2 governing equations do no

1Increasing ǫ and thus changing the shape of the blunt body in the leading-edge region from cylindrical to
increasingly elliptical has essentially the same effect as decreasing R.

2As a consequence of the linearization step, any information about the amplitude of the (modal) structures
is lost.
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(A) φ(x, y, z, t) = φ0(x, y, z, t) + ǫφ′(x, y, z, t) (general decomposition)

(B) φ(x, y, z, t) = φ0(x, y, z) + ǫφ̃(x, y, z) e−iωt (steady base flow)

(C) φ(x, y, z, t) = φ0(x, y) + ǫφ̃(x, y) eiβze−iωt (global approach)

(D) φ(x, y, z, t) = f(x)φ0(y) + ǫφ̃(y) g(x)eiβze−iωt (semi-local approach)

(E) φ(x, y, z, t) = φ0(y) + ǫφ̃(y) eiαxeiβze−iωt (local approach)

Figure 1.6. Hierarchy of decompositions for linear stability theory: (A) general decomposition of the flow into
a base state and a small-amplitude perturbation; (B) assumption of a steady base flow leading to a three-
dimensional global stability problem (see, e.g., Bagheri et al., 2009); (C) global temporal stability problem with
one homogeneous direction (our case); (D) semi-local approach taking advantage of the separability of the base
flow; the x-dependence of the base flow, f(x), yields an x-dependence of the perturbation g(x) (e.g., f(x) = x
and g(x) = Hen(x), as applied in Obrist and Schmid, 2003, for Hiemenz flow); (E) classical stability theory based
on a local approach with one inhomogeneous direction y.

longer depend on time t, and a separation-of-variables approach can be applied which results in
an exponential time behavior of the form e−iωt for the perturbations, see (B) in figure 1.6. The
parameter ω which replaces the time dependence in the perturbation appears as an eigenvalue
in the governing system of equations.

ω φ̃ = L(φ0) φ̃ (1.2)

In this equation the linearized stability operator is denoted by L(φ0), and the eigenfunctions φ̃
describe the spatial shape of the modal structures.

If the specific flow configuration allows for further simplifications such as a homogeneous
coordinate direction we can apply a separation-of-variables approach again in this direction.
This step will eliminate the dependence on this specific coordinate direction at the expense of
introducing an additional parameter. In this sense, our stability problem is reduced in size,
but our parameter space has increased. For example in our case, we are justified in assuming a
homogeneous spanwise z-direction (infinite span assumption) which results in a decomposition
of type (C) and introduces a spanwise wavenumber β.

A common approach to linear stability theory (Mack, 1984) is the continued reduction of
the stability problem to only one remaining inhomogeneous direction (usually taken as the
transverse y-direction). The necessary assumptions for this approach, see (E) in figure 1.6, are
often justifiable for generic and simple geometries but remain questionable for even moderately
complex flow configurations.

It is noteworthy that an independence of the base flow on a particular coordinate direction is
not the only possibility for a separation approach. As long as the base flow is generally separable,
e.g., as is the case for Hiemenz flow with φ0(x, y) = xϕ0(y), the perturbation can be separated
as well, sometimes using analytical functions, sometimes using numerical solutions, see (D) in
figure 1.6.

Local vs. global approach

It is evident from figure 1.6 that the natural progression from a general decomposition to a
stability problem follows from (A) to (E). While the first simplifying steps may have been based
on valid assumptions, the drastic step down to a local approach, level (E), has been necessary
due to limited computer resources and a lack of powerful algorithms for large-scale eigenvalue
problems. For this reason, there exists a large body of literature that applies local stability theory
based on approach (E). However, with increasing availability of supercomputers as well as recent
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advances in iterative algorithms we are now in a position to progressively drop unnecessarily
simplifying assumptions, to return to more general global approaches and thus to investigate
the stability properties of more realistic flow configurations.

Temporal vs. spatial framework

In the global stability approach considered in this thesis, see (C) in figure 1.6, we assume real
wavenumbers β and complex frequencies ω = ωr +iωi. The real part of ω describes the frequency
ωr of the perturbations while its imaginary part represents the corresponding temporal growth
rate ωi. This assumption constitutes a temporal stability problem, where the eigenvalues ω de-
scribe the temporal long-term evolution of small-amplitude perturbations. For eigenvalues with
negative imaginary parts (ωi < 0) the corresponding modal structures decay in time whereas
eigenvalues with positive imaginary part (ωi > 0) grow without bounds within the linear frame-
work and render the underlying base flow unstable.

On the other hand, if we assume a real temporal frequency ω but a complex spanwise
wavenumber β = βr + iβi, we arrive at the spatial stability problem, where βr describes the
spanwise disturbance wavenumber and βi its corresponding spatial growth rate in the spanwise
direction. This spatial approach has the advantage of more closely matching the conditions of an
experimental setup but the disadvantage of leading to a more complicated numerical problem.
While the (more commonly applied) temporal stability problem requires us to solve a linear
eigenvalue problem for ω, the spatial stability problem yields a polynomial eigenvalue problem
in β which is far more challenging to solve.

Both approaches have been used in the literature, and as recent examples, Robitaillié-
Montané (2005) and Heeg (1998) studied the global stability of incompressible and compressible
attachment-line flow in the temporal and the spatial framework, respectively, using a local flow
model. In the present thesis, we will study a more comprehensive flow model employing the
temporal stability framework. This provides the theoretical counterpart to the experimental
studies discussed in section §1.1.1, namely, flight tests in a low-disturbance environment and
wind-tunnel experiments with small-amplitude perturbations.

1.3 Outline of the thesis

The present thesis consists of two parts. In part I “Global stability of compressible flow about a
swept parabolic body” an overview of the topic including the numerical tools employed in this
work is presented, whereas part II “Articles” contains articles that appeared, are under review
or in preparation. A short description of each article is given at the beginning of part II.

In the next chapter §2, we present our flow model for compressible flow in the leading-
edge region of a swept blunt body. This flow model as well as the direct numerical simulation
(DNS) code to compute flow fields, described in chapter §3, have been published in “Article
1”. The DNS-based global stability solver, which has been developed in “Article 2”, is outlined
in chapter §4. Our results from a global stability analysis of compressible flow about a swept
parabolic body are given in chapter §5, and these results are published in “Article 3 to 5”. We
conclude the thesis and present an outlook in chapter §6.





Chapter 2

Flow Model: from physics to
mathematics

As outlined in the previous chapter, the present thesis is concerned with the stability of com-
pressible flow in the leading-edge region of a swept blunt body. Since we aim at studying a
flow configuration that approximates, as closely as possible, the realistic flow situation in size
and complexity, a flow model satisfying these requirements has to be defined first. This flow
model consists of an approximation of the geometry, a suitable domain of investigation as well
as a valid mathematical model, in form of governing equations and appropriate boundary con-
ditions, in order to describe the flow physics inside the domain. Before presenting our flow
model in section §2.2, we briefly revisit the existing literature on theoretical and numerical stud-
ies on the stability of swept leading-edge flow and discuss remaining questions. These studies
have been motivated by a number of early experiments on crossflow instabilities, leading-edge
contamination and attachment-line instabilities as summarized in section §1.1.1.

2.1 Previous theoretical and numerical studies

2.1.1 Attachment-line instabilities

First efforts to theoretically assess the stability of flow along the attachment line of a swept
blunt body (see figure 2.1a) were made by Poll (1978, 1979). He studied the linear stability of
incompressible attachment-line flow based on the Orr–Sommerfeld system using a quasi-parallel
flow assumption by setting u = 0 for the wall-normal velocity. As a result, Poll demonstrated
that the flow becomes linearly unstable to wave-like disturbances propagating along the attach-
ment line for Reynolds numbers Reθ > 270. However, it was soon realized that non-parallel
effects play an important role for the linear stability of this flow, and, as a consequence, the
parallel flow assumption has been discarded.

In the following, a simplified model of the attachment-line boundary layer was studied by Hall
et al. (1984). This model was based on swept Hiemenz flow (see figure 2.1c) — which represents
a similarity solution of the incompressible three-dimensional Navier–Stokes equations for flow in
the attachment-line region — and the Görtler–Hämmerlin assumption. This assumption takes
the same linear x-dependence (chordwise direction) for the perturbation and the base flow. As
a result, their neutral curve shows good agreement with the experimental findings for small-
amplitude perturbations (Reθ,crit ≈ 230, see section §1.1.1), and they report a critical Reynolds
number Recrit = 583 (Reθ,crit = 235)1. Subsequently, Spalart (1988) and Joslin (1995) —
among others — confirmed the above results by investigating the swept Hiemenz flow model

1For incompressible flows Reθ = 0.404Re (see section §1.1.3)
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Figure 2.1. In early theoretical and numerical studies, viscous flow near the attachment line of a swept blunt
body (a) was investigated using a local flow model for incompressible stagnation-point flow. This flow model is
given by swept Hiemenz flow (c), where curvature and compressibility effects have been neglected (taken from
Guégan et al., 2006). (b) Schematic of the three-dimensional boundary layer at a position (on the lower surface of
the swept blunt body) downstream of the attachment line; xs and zs denote the local streamwise and transverse
direction, respectively.

using direct numerical simulations (DNS) and thus helped to establish the critical Reynolds
number Recrit = 583 for attachment-line instabilities in incompressible flow.

In a subsequent study, Lin and Malik (1996) discarded the restrictive Görtler–Hämmerlin
assumption and uncovered additional linearly unstable modes. They extended their analysis to
compressible flows (Lin and Malik, 1995) and also assessed the stabilizing effect of leading-edge
curvature on the stability of incompressible attachment-line flow (Lin and Malik, 1997). The
swept Hiemenz flow model has further been studied by global stability theory for incompressible
(Theofilis et al., 2003) and compressible flow (Heeg, 1998; Robitaillié-Montané, 2005). The latter
investigations are complemented by DNS studies of Le Duc et al. (2006) who report a stabilizing
effect of compressibility in the moderate Mach regime.

Subcritical instabilities

Flight tests as well as wind-tunnel experiments revealed that the value of the Reynolds number
Re needs to be kept below 245 (Reθ = 0.404Re < 100) to ensure laminar flow along the
attachment line if large-amplitude perturbations are present (see section §1.1.1). This raised
the question of possible subcritical instabilities. In a first attempt to close the gap between
the critical Reynolds number based on non-parallel linear stability theory (Recrit = 583) and
the critical value of Re ≈ 245 from experiments, Hall and Malik (1986) studied large-amplitude
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disturbances using weakly nonlinear theory and temporal DNS (direct numerical solutions to
the initial value problem). As a result, they obtained a subcritical value of Re ≈ 535. In a
further attempt a decade later, Balakumar and Trivedi (1998) computed and followed nonlinear
steady states for swept Hiemenz flow and found a minimum critical value of Re ≈ 511.

2.1.2 Crossflow instabilities

Farther downstream of the attachment line (see figure 2.1b), another type of instability, known as
crossflow instabilities, have been experimentally observed as already mentioned in section §1.1.1.
An imbalance between centrifugal forces and the streamwise pressure gradient induces curved
streamlines throughout the boundary layer, and the resulting crossflow velocity gives rise to
stationary or traveling crossflow vortices (Reed and Saric, 1989). In contrast to the viscous
attachment-line instability, the crossflow instability is of inviscid type caused by an inflection
point in the crossflow component of the three-dimensional base velocity profile (see figure 2.1b).
Since the crossflow instability was observed to play a key factor for the design of laminar airfoils
(see Saric and Reed, 2003), numerous theoretical and numerical efforts have been undertaken to
study the stability of compressible crossflow vortices.

These studies used again local flow models — three-dimensional boundary-layer flow over
planar geometries —, and they were mainly based on the parabolized stability equations (e.g.
Herbert, 1997) or direct numerical simulations (e.g. Bonfigli and Kloker, 2007). For an overview
of the current state-of-the-art the reader is referred to Saric et al. (2003); Bonfigli and Kloker
(2007) and references therein.

Connecting attachment-line and crossflow instabilities

Similar to the question about the existence of subcritical instabilities, a possible connection of
attachment-line and crossflow instabilities was discussed since the experimental findings of Poll
(1979). In particular, the results of Spalart (1989) who obtained solutions off the attachment
line that are strongly reminiscent of crossflow vortices have to be mentioned (his incompressible
studies were based on direct numerical simulations and the swept Hiemenz flow model).

More recently, an attempt to establish a link between the two mechanisms has been under-
taken by Bertolotti (1999). In his investigations, he continued the spatial evolution of higher-
order attachment-line modes — which are distinct from the polynomial modes — in the chord-
wise direction using the parabolized stability equations (PSE). As a result, Bertolotti found
that the continued attachment-line modes closely resemble the features and scales of crossflow
instabilities.

2.1.3 Remaining questions

Despite these great efforts, a list of questions still remains: (a) can stability theory confirm the
critical value of the Reynolds number Re ≈ 245 (Reθ ≈ 100), (b) what is the exact nature
of the connection between attachment-line and crossflow instabilities, (c) what is the influence
of acoustic instabilities which are known to exist for flat plate boundary-layer flows (see Mack,
1984), and (d) can we extract the global spectrum and gain a complete picture of the perturbation
dynamics of the flow?

The list of remaining questions suggests that local flow models may have reached their limit,
and, in order to extend our knowledge of flow stability and laminar-turbulent transition in the
leading-edge region of a swept blunt body, it seems timely to base further investigations on a
flow configuration that includes a substantially larger range of physical phenomena and that
closer represents the realistic flow situation.
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Figure 2.2. From the realistic flow situation to the flow model: compressible flow in the leading-edge region of a
swept blunt body (a) is modeled by supersonic flow about a swept parabolic body (c). This flow model exhibits a
detached bow shock at the inflow boundary, and a schematic of this bow shock with the relevant flow parameters
upstream and downstream of the shock is displayed in (b).

2.2 Our flow model

In our flow model, compressible flow in the leading-edge region of a swept blunt body as marked
in dark grey in figure 2.2(a) is modeled by supersonic flow about a swept parabolic body (see
figure 2.2c). This parabolic body is assumed to be a rigid wall of infinite span in the spanwise
z-direction, and its surface is given by

x(y) =
1

2R
y2 with −

√
2RLs ≤ y ≤

√
2RLs, (2.1)

where R denotes the leading-edge radius of the body and Ls determines the size of the domain
in the chordwise s-direction. Open outflow boundaries limit the domain in the latter direction.
We further consider flow cases where the oncoming uniform flow is supersonic

M1 = M∞ cosΛ > 1, (2.2)

where M∞ and M1 denote the freestream Mach number and its component normal to the shock;
as a consequence, the inflow boundary of the computational domain is defined by a detached
unsteady bow shock, assumed to be an infinitely-thin moving discontinuity, in the wall-normal
n-direction. The presence of such a detached bow shock allows the formulation of physically
correct inflow boundary conditions.

The supersonic flow state upstream of the detached bow shock, denoted by the subscript ∞,
is obtained as a function of the freestream Mach number M∞ and the freestream angle Λ, where
the freestream pressure, p∞, and temperature, T∞, are computed using a given reference state.
The Rankine–Hugoniot relations are then employed to calculate the flow quantities downstream
of the shock, denoted by the subscript 2; figure 2.2(b) shows a schematic of the flow state
upstream and downstream of the shock above the stagnation line (s = 0). The shock constitutes
a sudden decrease in speed for the normal velocity u2 < u∞, and, since the sweep velocity
w2 = w∞ remains unchanged, the flow angle downstream of the bow shock (the sweep angle
Λ2) is larger than the angle Λ of the freestream velocity q∞. Additionally, the thermodynamic
quantities, such as pressure p and temperature T , strongly increase across the shock. Both
effects are stronger for larger values of M1.
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2.2.1 Features of our flow model

The generic flow model presented in figure 2.2(c) allows us to study the influence of leading-edge
curvature, sweep and angle of attack — even though a zero angle of attack and thus symmetric
flow is considered throughout the thesis — as well as compressibility, wall temperature and
bow shock-interaction effects on the flow. This model thus comprises a multitude of geometric
and physical features. Furthermore, our flow model represents a more realistic configuration
that covers simultaneously attachment-line and crossflow vortex instabilities. Both types of
instabilities are accommodated inside a very thin three-dimensional boundary layer which grows
towards the outflow boundaries. Moreover, a curved bow shock leads to curved streamlines
downstream of the shock resulting in a rotational inviscid flow field; in the presence of a bow
shock, vorticity, acoustic and entropy waves are known to exist as well.

In summary, our flow model exhibits a rich perturbation dynamics on different spatial and
temporal scales, and this fact is, as we will see, also reflected in the global spectrum.

2.2.2 Governing parameters

Compressible swept leading-edge flow is described by several physical and geometrical param-
eters such as sweep velocity, sweep angle and leading-edge radius, and these parameters can
be combined to derive a set of non-dimensional numbers. The following six non-dimensional
parameters govern our flow model: the leading-edge Reynolds number ReR, the sweep Reynolds
number Res, the sweep Mach number Mas, the wall temperature ratio θw, the Prandtl number
Pr and the specific heat ratio γ. In what follows, these numbers are defined and their physical
relevance is briefly discussed.

Sweep and curvature effects

As already discussed in section §1.1.3, the influence of sweep and curvature on the flow is
governed by two Reynolds numbers2, the leading-edge Reynolds number ReR and the sweep
Reynolds number Res. These non-dimensional numbers describe the outer flow and the flow
inside the boundary layer, respectively, and we define them as

ReR =
u2R

νr
, Res =

w2δ

νr
. (2.3)

Herein, the leading-edge radius R is used as the length scale for the outer flow, while δ represents
a viscous length scale for the flow inside the boundary layer. This viscous length scale is obtained
using the strain rate Sth at the wall, at the attachment line,

δ =

(
νr

Sth

)1/2

, (2.4)

where νr denotes the kinematic viscosity evaluated at recovery temperature Tr and stagnation
pressure ps. Since Sth is not known a priori for our flow model, we resort to the solution of
potential flow around a circular cylinder with radius R (see figure 2.2c in black) and derive Sth

by evaluating the chordwise derivative at the stagnation point.

v(x, y) = −2u2R
2 y(x − R)

(y2 + (x − R)2)2
, (2.5)

Sth =

(
∂v

∂y

)

w

=
2u2

R
. (2.6)

2Note that these two Reynolds numbers fully govern the incompressible case.



18 CHAPTER 2. FLOW MODEL: FROM PHYSICS TO MATHEMATICS

It is important to note that the sweep Reynolds number Res can be reformulated to display
an explicit dependence on the leading-edge Reynolds number ReR and the sweep angle Λ2 as
well as the leading-edge radius R. We have

Res =

(
u2R

2νr

)1/2

tan Λ2 =

(
ReR

2

)1/2

tan Λ2 =
R

2δ
tan Λ2 . (2.7)

As we can see, the sweep Reynolds number describes both the influence of sweep and leading-
edge curvature. A similar dependence has already been discussed for the Reynolds number Reθ,
which is based on the momentum thickness θ, in section §1.1.3.

Compressibility effects

In the presence of compressibility, acoustic as well as wall temperature effects have to be ac-
counted for, and these effects will be described by the sweep Mach number Mas and the wall
temperature ratio θw. To this end, we define

Mas =
w2

c2
, θw =

Tw

Tr
, (2.8)

where c2 stands for the speed of sound downstream of the shock, and the non-dimensional
number θw represents the ratio of the temperature Tw at the wall and the recovery temperature
Tr evaluated at the stagnation point. The remaining two non-dimensional numbers, the Prandtl
number Pr and the specific heat ratio γ, govern the properties of the compressible fluid.

Pr =
Cpµ

k
, γ =

Cp

Cv
(2.9)

Herein, µ is the dynamic viscosity, k denotes the thermal conductivity, and Cp and Cv stand
for the specific heat ratio at constant pressure and constant volume, respectively. The fluid is
assumed to be dry air (with a gas constant Rc = Cp − Cv = 287 [Jkg−1K−1]) modeled as a
perfect gas with constant specific heat ratio γ = 1.4 and constant Prandtl number Pr = 0.71.

Kinematic viscosity νr at recovery temperature Tr and stagnation pressure ps

As was the case for the strain rate Sth at the wall, the recovery temperature Tr, which is required
to compute νr and to define θw, is not known in advance. Instead, we resort to results from
Reshotko and Beckwith (1958) who theoretically investigated various flow properties of subsonic
and supersonic flow about a yawed infinite cylinder. They give the following relation

Tr = T∞ + RF · (T0 − T∞), (2.10)

where RF = 1 − (1 − ζw) sin2 Λ denotes the stagnation-line recovery factor, and T0 and T∞

stand for the total and freestream temperature, respectively; they further provide a table (see
table 2.1) with values of the local recovery factor ζw for selected freestream conditions (M∞ and
Λ) described by the ratio of T0 and its component in the wall-normal direction T0,N

T0

T0,N
=

1 + γ−1
2 M2

∞

1 + γ−1
2 M2

∞ cos2 Λ
(2.11)

and a Prandtl number of Pr = 0.7. In our simulations, these values have been linearly interpo-
lated to compute Tr for selected freestream conditions.

The (total) pressure ps at the stagnation point is determined from

ps

p∞
=

p2

p∞

ps

p2
=

(
γ + 1

2
M2

1

)γ/(γ−1) (
γ + 1

2γM2
1 − (γ − 1)

)1/(γ−1)

, (2.12)
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Table 2.1. Values of the local recovery factor ζw as a function of the temperature ratio T0/T0,N for yawed
stagnation-line flow at Pr = 0.7 (from Reshotko and Beckwith, 1958).

T0/T0,N 1.0 1.6 3.0 6.5

ζw 0.8485 0.8518 0.8567 0.8627

where M1 = M∞ cosΛ and p∞ is the freestream pressure. This relation (2.12) follows from the
Rankine–Hugoniot relation for pressure across a normal shock

p2

p∞
= 1 +

2γ

γ + 1

(
M2

1 − 1
)

(2.13)

and from the subsequent isentropic deceleration of the flow of an inviscid perfect gas into the
stagnation point

ps

p2
=

(
1 +

γ − 1

2
M2

2

)γ/(γ−1)

(2.14)

with

M2
2 =

(γ − 1)M2
1 + 2

2γM2
1 − (γ − 1)

, (2.15)

where M2 denotes the shock-normal Mach number downstream of the bow shock.

Nonlinear dependence of the governing parameters on the freestream conditions

In section §2.2.2, the governing parameters have been defined using the flow state downstream of
the detached bow shock (see figure 2.2b), and this flow state depends, as we will see, nonlinearly
on the freestream conditions, notably the freestream Mach number M∞ and the freestream angle
Λ. As an example, the sweep Mach number Mas as a function of M∞ and Λ is obtained by
using the definition of the sweep Mach number in (2.3) and the thermodynamic relation for the
speed of sound for a perfect gas c2 = γRT .

Mas =
w2

c2
=

w∞

c2
=

u∞ tan Λ

c2
=

c∞M1 tan Λ

c2
=

(
T∞

T2

)1/2

M1 tan Λ (2.16)

Furthermore, employing the Rankine–Hugoniot relation for the temperature ratio T2/T∞, the
sweep Mach number can be computed via

Mas =
γ + 1

2
M2

1 tan Λ

(
1 − γ

2
+ γM2

1

)−1/2 (
1 +

γ − 1

2
M2

1

)−1/2

, (2.17)

where, again, M1 = M∞ cosΛ denotes the shock-normal component of M∞ (see figure 2.2b).
For a shock-free configuration, this relation can be written as

Mas = M1 tan Λ

(
1 +

γ − 1

2
M2

1

)−1/2

. (2.18)

Both equations (2.17) and (2.18) reveal a nonlinear dependence of Mas on the freestream
conditions, and this dependence is given in figure 2.3. In figure 2.3(a), we show Mas as a function
of M1 and Λ, where the solid blue and the dashed black lines represent constant values of Λ
and M∞, respectively. The freestream conditions of the present study are marked by the red
cross at M∞ = 8.15 and Λ = 30 ◦ yielding a shock-normal Mach number M1 = 7.06 and a sweep
Mach number Mas = 1.25. Furthermore, figure 2.3(b) demonstrates the evolution of the sweep
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Figure 2.3. (a) Sweep Mach number Mas and (b) sweep angle Λ2 as a function of the shock-normal Mach number
M1 = M∞ cosΛ and the freestream angle Λ. The region in grey denotes the case where the oncoming flow is
subsonic, i.e., M1 < 1 (note that in this case Λ2 = Λ), and blue lines represent constant values of Λ while dashed
black lines depict constant values of M∞. The red cross marks the freestream conditions of the present study,
and the green and blue cross represent the flow conditions which have been used in previous investigations3.

angle Λ2 as a function of Λ and M∞; since the sweep Reynolds number Res is a function of Λ2

(see equation (2.7)), Res also depends on the freestream conditions in a nonlinear manner.
Consequently, if one seeks to perform simulations for a selected value of the sweep Mach

number Mas, a nonlinear system has to be solved to compute M1 as function of Λ and Mas.
This task is accomplished employing a (standard) Newton method. Alternatively, equation
(2.17) can be reformulated using tan Λ = u2/u∞ tan Λ2 and the Rankine–Hugoniot relation for
the velocity ratio u2/u∞ in order to obtain a dependence of Mas on M1 and Λ2. This dependence
might be useful for a comparison of results with previous studies, when the sweep angle instead
of the freestream angle is given.

2.3 Governing equations

In section §2.2, we presented our flow model with its geometry and governing parameters. Now,
we have to specify mathematical models to describe the behavior of the flow as well as the
properties of the fluid, i.e., dry air, within the considered domain. In this thesis, we will remain
in the moderate Mach regime and thus only consider cases where air is known to behave as a
continuum. All of the required equations can be found in a standard fluid-mechanical textbook
such as the work of Kundu and Cohen (2002), but for completeness’ sake we briefly state in
what follows the equations used in our study.

2.3.1 The compressible Navier–Stokes equations

The dynamics of compressible viscous flow about a swept parabolic body as shown in figure 2.2(c)
is governed by the compressible Navier–Stokes equations which describe the conservation of
mass, momentum and energy for Newtonian fluids. These equations have been formulated for
the pressure p, the velocities (u, v, w) and the entropy s, and, using Cartesian tensor notation,
they read as follows:

3 Lin and Malik (1995) investigated the linear stability of supersonic flow about a swept circular cylinder, and
Semisynov et al. (2003) performed experimental and theoretical studies of compressible flow about a 68 ◦ swept
circular cylinder.
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∂p

∂t
+ uj

∂p

∂xj
+ γp

∂uj

∂xj
= (γ − 1)

(
Φ +

∂

∂xj

(
k

∂T

∂xj

))
, (2.19a)
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with

Φ ≡ 1

2
µ

(
∂ui

∂xj
+

∂uj

∂xi

)2

− 2

3
µ

(
∂uk

∂xk

)2

.

Herein, the variables ̺ and T denote the density and the temperature, and, as before, Rc, µ and
k stand for the gas constant, the dynamic viscosity and the thermal conductivity, respectively;
δij represents the Kronecker delta. In a more compact form, this system of nonlinear partial
differential equations can formally be written as

∂φ

∂t
= F(φ) (2.20)

with φ = (p, u, v, w, s)T and the nonlinear operator F(φ) representing the spatial terms of the
compressible Navier–Stokes equations. For the curvi-linear formulation of the above system of
equations (2.19a–c), which will be used in our numerical implementation, the reader is referred
to Mack and Schmid (2009). A set of consistent boundary and initial conditions will be discussed
in chapter §3 when their implementation is described.

Thermodynamic relations

We further consider the motion of dry air modeled as a calorically perfect gas, and, employing
Gibbs fundamental relation dh = Tds + dp/̺ with dh = CpdT as well as the equation of state
for a perfect gas p = ̺RcT , the thermodynamic density ̺ and temperature T are found via the
following equations of state

̺ = p
1/γ exp

(
− s

Cp

)
, (2.21)

T =
1

Rc
p

γ−1/γ exp

(
s

Cp

)
. (2.22)

Material laws

At this point, we are left with an open system of seven equations where two properties of the
fluid, i.e., the dynamic viscosity µ and the thermal conductivity k, remain unknown. These
properties will depend on the temperature T , and this dependence is modeled by Sutherland’s
and Fourier’s law, respectively. We have

µ = µ0

(
T

T0

) 3
2 T0 + S

T + S
, (2.23)

k =
Cp

Pr
µ . (2.24)

In the former equation, S = 110.4 [K] denotes the Sutherland temperature (for air at ambient
conditions), T0 is the reference temperature (chosen as the total temperature), and µ0 represents
the reference viscosity for the latter temperature.
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# equation/relation

(1–5) compressible Navier–Stokes equations

(6) ̺ = ̺(p, s) = pRcT = p1/γ exp

(
− s

Cp

)

(7) T = T (p, s) =
1

Rc
pγ−1/γ exp

(
s

Cp

)

(8) µ = µ(T ) = µ0

(
T

T0

) 3

2 T0 + S

T + S

(9) k = k(T ) =
Cp

Pr
µ(T )

Table 2.2. Governing equations and relations for the nine unknowns.

2.3.2 The linearized Navier–Stokes equations

The evolution of small disturbances as studied in a linear stability analysis is governed by the
equations for the perturbations. These equations are derived by linearizing the compressible
Navier–Stokes equations, the thermodynamic relations and the material laws; for the sake of
clarity, these equations and relations are summarized in table 2.2. To this end, we decompose a
flow field φ = (p, u, v, w, s)T into a (steady) base state4 φ0 and a fluctuation state φ′.

φ(x, y, z, t) = φ0(x, y, z) + ǫφ′(x, y, z, t) with ǫ ≪ 1 (2.25)

By inserting (2.25) into the nonlinear Navier–Stokes equations and by keeping only terms of
O(ǫ) one arrives at the equations for the perturbations. As an example, the Euler part of these
equations, i.e., the left-hand side in (2.19a–c), reads as

∂p′

∂t
+ u0,j

∂p′

∂xj
+ u′

j

∂p0

∂xj
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∂u′
j

∂xj
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∂u0,j

∂xj
= 0, (2.26a)
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∂xi
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∂p0

∂xi
̺′ = 0, (2.26b)

∂s′

∂t
+ u0,j

∂s′

∂xj
+ u′

j

∂s0

∂xj
= 0. (2.26c)

The linearized right-hand side of the Navier–Stokes equations and the linearized form of the
material laws (2.23) and (2.24) can be found in a similarly straight-forward manner. Further-
more, using Gibbs fundamental relations, the perturbation quantities for the density and the
temperature are obtained as

̺′ =
̺0

κp0
p′ − ̺0

Cp
s′, (2.27)

T ′ =
1

̺0Cp
p′ +

T0

Cp
s′. (2.28)

In addition, we are required to specify physically consistent boundary conditions for the
perturbation quantities at the boundary points in our flow model (see figure 2.2c). At the wall
we employ the no-slip conditions which set all velocity components to zero, i.e, u′ = v′ = w′ = 0,
and, since this wall is assumed adiabatic, the heat-flux normal to it is zero as well.

4The base flow might also be time dependent, but here we concentrate on steady states.
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∂T ′

∂n
=

1

̺0

∂p′

∂n
− 1

̺2
0

∂̺0

∂n
p′ + T0

∂s′

∂n
+

∂T0

∂n
s′ = 0 (2.29)

This equation (2.29) follows from the wall-normal derivative of (2.28); furthermore, the
pressure p′ has to satisfy the compatibility condition which is ensured using the momentum
equation in the wall-normal direction as described in Robitaillié-Montané (2005). Away from
the wall all perturbation quantities are assumed to decay to zero in the freestream. The outflow
boundaries as well as the periodic direction will be incorporated in the spatial discretization
schemes, where one-sided stencils are employed for the outflow boundaries (as suggested by
Heeg, 1998). An initial condition is not required since no time marching will be performed.

Finally, the linearized Navier–Stokes equations for the perturbations, the relations for the
remaining disturbance quantities and the boundary conditions can be combined to obtain the
more compact form

∂φ′

∂t
= L(φ0)φ

′, (2.30)

where L(φ0) denotes the linear stability operator. We will later come back to this equation.





Chapter 3

Direct Numerical Simulations:
computing flow fields

Now, that we have defined our flow model to study flow in the leading-edge region of a swept
blunt body, we introduce our direct numerical simulation (DNS) code to compute flow fields.
Over the past decades direct numerical simulation (DNS) has established itself as a widely
used tool in computational fluid dynamics to address and study complex flow problems. It
represents an approach to compute flow fields by approximating the exact solutions of the
continuous Navier–Stokes equations at discrete points in space and discrete instances in time.
The spatial discretization results in a computational grid, and direct numerical simulations aim
at capturing all relevant physical features of the flow by spatially resolving all dynamic scales on
this grid. Consequently, direct numerical simulations limit modeling efforts to a minimum and
thus represent our method of choice for producing high-quality flow fields which will later be used
to extract stability information. In what follows, we start with an overview of implementation
details of our direct numerical simulations in section §3.1, show computed (steady) flow fields
in section §3.2 and present results from a long-term integration of the initial value problem in
section §3.3.

3.1 Overview of the numerical implementation

3.1.1 Grid generation

In our direct numerical simulations (DNS), flow fields are computed by solving the nonlinear com-
pressible Navier–Stokes equations (2.19a–c) in a curvi-linear formulation on a three-dimensional,
time-dependent grid shown in figure 3.1(a). The time dependence of the grid stems from the
fact that the detached bow shock, modeled as a discontinuity surface, defines the moving grid
line at the inflow boundary (see figure 3.1b in blue).

This non-uniformly distributed, body-fitted grid is generated via a three-step process as
illustrated in figure 3.2. This process consists of (a) the formation of a unit cube with uniformly-
distributed grid points in the normal ξ-, the chordwise η- and the spanwise ζ-direction1, (b) the
redistribution of these grid points in ξ and η in order to sufficiently resolve physically relevant
regions in our flow model, i.e., the region near the stagnation line (ξ = 1, η = 0.5) as well as
close to the wall (ξ = 1), and (c) the parabolic mapping of the redistributed unit cube. In the
latter step, the unit cube is mapped onto the physical domain, in which the detached bow shock
and the surface of the parabolic body define the limiting grid lines in the n-direction, using a
conformal mapping. Finally, the metric coefficients ξx, ξy, ξz, ηx, etc., which need to be specified

1Note that the domain is inhomogeneous in the ξ- and η-direction, but homogenous in the spanwise ζ-direction
which is a consequence of the infinite span assumption in z.

25
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Figure 3.1. (a) Sketch of our three-dimensional flow model showing the parabolic body (in grey), the employed
coordinate systems and the body-fitted computational grid with its grid-point distribution (in blue). (b) Schematic
of the physical domain in the s-η-plane, its boundary conditions and the relevant geometric parameters; the
detached bow shock is depicted in blue.
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Figure 3.2. Steps of the grid generation process: (a) uniformly-distributed unit cube in the computational domain
(ξ, η, ζ, t), (b) unit cube with redistributed grid points and (c) upper half of the body-fitted grid in the physical
domain (x, y, z, t); for sake of clarity only every fourth and eight grid point are shown in the ξ- and η-direction,
respectively, and Ls = 0.4 [m] and R = 0.1 [m] have been used in the parabolic mapping.

in the curvi-linear formulation of the Navier–Stokes equations, are obtained by differentiating
the body-fitted grid (x, y, z) with respect to (ξ, η, ζ) and inverting the resulting Jacobian matrix.
This is accomplished numerically using the same higher-order central schemes as for the spatial
derivatives of the dependent variables.
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Figure 3.3. Evolution of the normalized shock detachment distance ∆/R as a function of M1: empirical correlation
(3.1) as proposed by Ambrosio and Wortman (1962), and numerically obtained values for cylindrical (x) and
parabolic bodies (+)2; subsonic region in grey. The circled plus marks the value of M1 for the present studies.

3.1.2 Domain size

The parabolic mapping requires us to specify the leading-edge radius R of the parabolic body,
the (initial) shock detachment distance ∆ (at s = 0) of the bow shock, and the size of the domain
in the chordwise direction, Ls, (see figure 3.1b). In addition, the extension of the domain in
the spanwise direction, Lz, has to be chosen. The first parameter, the leading-edge radius R,
describes the geometry of the parabolic body, and this parameter is chosen as constant; i.e.,
R = 0.1 [m] in the present thesis. Experimentalists would set this parameter by choosing a
certain leading-edge geometry for their experimental model.

The second parameter, the shock detachment distance ∆, defines the position of the detached
bow shock. Since this bow shock is modeled as a moving discontinuity surface whose physically
correct position and shape is not known in advance and furthermore changes in time, an initial
guess for the position and shape of the corresponding grid line is required. We already assumed
this grid line to be parabolic in the grid generation process in section §3.1.1; to further specify
its initial position, we resort to the following empirical correlation (Ambrosio and Wortman,
1962)

∆

R
= 0.386 exp

(
4.67

M2
1

)
, (3.1)

where M1 denotes the shock-normal Mach number at s = 0 (see figure 3.1b), to compute ∆. This
expression results from a correlation of experimental data for supersonic and hypersonic flow
around circular cylinders with radius R (see Billig, 1967), and a comparison of values for ∆/R
calculated using (3.1) with numerically obtained values (evaluated for steady state solutions) for
cylindrical and parabolic bodies is given in figure 3.3. It can be seen that, for both body shapes,
(3.1) provides a good estimate as an initial guess for ∆; however, this estimate deteriorates for
parabolic bodies as M1 is decreased. We can also see that the extent of the domain in the normal
n-direction (see figure 3.1) largely depends on the shock-normal Mach number; for smaller values
of M1 the domain is enlarged and thus an increasing number of grid points will be required in
the n-direction.

We are left with specifying the proper limit of the domain at the outflow boundaries by
choosing the third parameter Ls. As discussed in section §2.2.1, our flow model comprises a
multitude of dynamical structures; in particular, three-dimensional boundary-layer instabilities
which appear in form of vortical structures downstream of the stagnation line are expected

2 Lin and Malik (1995) investigated the linear stability of supersonic flow about a swept circular cylinder,
Piquemal et al. (2004) computed supersonic viscous flow about a circular cylinder using a Brinkman-penalization
method, and Zhong and Tatineni (2003) performed receptivity studies on hypersonic flow about a parabolic body.
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to dominate the flow situation for a large parameter range. To accommodate these vortical
structures the physical domain has to extend sufficiently far in the chordwise s-direction, and a
value of Ls = 0.4 has been found to satisfy this requirement. The last parameter which is given
by the size of the domain in the periodic z-direction, Lz, will be considered when it is needed.

3.1.3 Spatial resolution

The quality and accuracy of flow simulations and flow analyses not only depend on the proper size
of the domain but also on the resolution in space. This resolution has to be sufficient to capture
all relevant physical features of the flow, and, in our case, three types of computations, each
with its specific requirement, can be distinguished: (i) computations of steady state solutions,
(ii) stability studies of coherent structures and (iii) simulations of transition and turbulence.
The latter case, which requires us to resolve all spatial scales down to the Kolmogorov length,
is beyond the scope of the present work.

The computation of steady state solutions as well as the investigation of boundary-layer
instabilities, which are the focus of the present work, requires us to cluster grid points toward the
wall to sufficiently resolve the boundary layer. Furthermore, the resolution of vortical structures
inside the boundary layer necessitates a grid-point clustering in the leading-edge region of the
parabolic body, and for guidance we can rely on the results of Sesterhenn (2004). The chosen
grid-point distribution is indicated in figure 3.1(a). The former grid stretching (Anderson et al.,
1988) clusters grid points towards the parabolic body. It amounts to computing

ξ̄ =
κξ

1 − κ + ξ(2κ − 1)
, (3.2)

where ξ ∈ [0, 1] and ξ̄ ∈ [0, 1] denote the uniformly-spaced and stretched grid points, respectively,
and κ is the stretching parameter. As a result, this function maps the interval [1/2, 1] to [κ, 1]
and thus clusters half the grid points in the latter interval. The values of n1 and κ for the
present study are given in table 3.1.

Table 3.1. Grid stretching in n

n1 κ

128 0.95

256 0.92

To further cluster grid points in the leading-edge region of the parabolic body, a semi-
analytical technique based on several error functions is employed in the η-direction. In this
technique the redistribution of the grid points is described by a second-order ordinary differential
equation

d2η̄

dη2
− fgsr(η)

∆η

dη̄

dη
= 0, (3.3)

where ∆η denotes the grid spacing of the equi-spaced grid with η ∈ [0, 1], and fgsr(η) = (∆η̄i+1−
∆η̄i)/∆η̄i represents the relative grid stretching ratio at the location η̄i+1 of the stretched grid.
This grid stretching ratio function fgsr(η) is constructed using a linear combination of m error
functions, each with its own control parameters (aj , σj , bj , ej).

fgsr(η) =
1

2

m∑

j=1

aj (erf (σj(η − bj)) + (−1)ej ) (3.4)
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In order to obtain the grid points η̄ of the stretched grid equation (3.3) has to be integrated
twice; the first integration can be performed analytically, whereas the second integration was
done numerically using Simpson’s rule. This grid stretching technique was chosen due to its
flexibility in locally refining the grid in the leading-edge region, and, in this work, four error
functions are employed to redistribute n2 grid points in the chordwise direction. Furthermore,
pairs of error functions have been chosen to obtain a symmetric grid distribution with respect
to the stagnation line, and their control parameters are given in table 3.2.

Table 3.2. Grid stretching in s; control parameters of the four error functions.

n2 a1,2 a3,4 σ1,2 σ3,4 b1,2 b3,4 e1,3 e2,4

255 0.085 -0.025 7 15 0.21 0.45 2 1

511 0.085 -0.022 5 10 0.14 0.40 2 1

3.1.4 Details of the numerical scheme

To finally solve the governing equations on the body-fitted grid displayed in figure 3.1(a), nu-
merical schemes for the discretization in space and time together with the previously described
boundary conditions have to be implemented. As sketched in figure 3.1(b), the physical do-
main is limited by a detached unsteady bow shock in the normal direction, and this bow shock
serves as a distinct inflow boundary condition which is incorporated via a shock-fitting technique
(Moretti, 1987). In this technique the local shock-normal velocity is determined by a character-
istic compatibility equation downstream of the shock, and the flow variables across the shock are
governed by the Rankine–Hugoniot relations. Along the surface of the body no-slip boundary
conditions in conjunction with an adiabatic wall3 are employed. At the chordwise edges of the
computational domain characteristic non-reflecting boundary conditions are imposed, and pe-
riodic spatial differentiation schemes are applied in the homogeneous z-direction (infinite span
assumption).

For the discretization in space we resort to higher-order compact finite-difference schemes
with symmetric stencils (Lele, 1992; Adams and Shariff, 1996). Due to the spectral-like resolution
of these schemes as well as their narrow finite-difference stencils — which is necessary to obtain
stable boundary closures for high-order schemes — , compact schemes have become popular
for direct numerical simulations (DNS), and today they are widely used in computational fluid
dynamics (CFD) and computational aero-acoustics (CAA). However, compact schemes with
symmetric stencils are known to be sensitive to boundary condition formulation and aliasing
errors, and consequently they are susceptible to numerical instabilities. Inherently dissipative
numerical schemes can be used to cope with this problem, and among these techniques we resort
to CULD, a fifth-order compact upwind low-dissipation scheme as designed by Adams and Shariff
(1996). To take further advantage of the CULD scheme, the governing equations have been recast
in a characteristic-type formulation (Sesterhenn, 2001), where the Euler part, i.e., the left-hand
side in (2.19a–c), is decomposed into plane acoustic, shear and entropy waves. As a consequence,
the propagation of these waves can be computed depending on their propagation direction using
an upwind scheme such as CULD. The dissipative and diffusive terms, i.e., the right-hand side
in (2.19a–c), are discretized using a sixth-order central compact scheme in conjunction with a
fourth- and third-order scheme for boundary closure (Lele, 1992).

3Note that this implies a wall temperature ratio of θw = 1.
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The semi-discretized system of equations

dφ

dt
= F(φ), (3.5)

where F represents the discretized right-hand side of the nonlinear Navier–Stokes equations, is
integrated in time via an explicit fourth-order low-storage Runge–Kutta scheme (Kennedy et al.,
2000). To ensure the numerical stability of the time integration, a stability condition proposed
by Müller (1990) is employed to control the time step. For further details of the numerical
scheme as well as the direct numerical simulations (DNS) in general the reader is referred to
Mack and Schmid (2009).

3.2 Base flow

A linear stability analysis amounts to computing and classifying the various types of instability
mechanisms, their modal structure in space and their temporal behavior characterized by the
disturbance growth and frequency. In a first step towards such an analysis we need to compute
a steady base flow. In what follows, we first motivate our choice of the governing parameters
and then present the computed steady state solutions.

3.2.1 Choice of the governing parameters

The present investigations are based on the direct numerical studies of Sesterhenn (2004) who
considered flow situations where the oncoming flow is hypersonic, i.e., the shock-normal Mach
number is M1 > 3. As freestream conditions he chose a Mach number of M∞ = 8.15 and an
angle of Λ = 30 ◦ yielding a sweep Mach number of Mas = 1.25; the resulting values for the
shock-normal Mach number upstream, M1, and downstream, M2, of the bow shock and the
sweep angle Λ2 are given in table 3.3. We will use the same freestream conditions to compare
the present results with the findings of Sesterhenn (2004).

Table 3.3 also shows the computed values of the freestream pressure p∞, the freestream
temperature T∞ and the freestream Reynolds number Re∞, where a total temperature T0 =
728 [K] and a total pressure p0 = 1.55 · 106 [Pa] have been used as a reference state. These
freestream conditions result in a value of Sth = 3704 [1/s] for the strain rate at the wall (see
equation (2.6)), and this value will be used later to normalize the frequency and the associated
growth rate of the computed instabilities. The freestream Reynolds number is defined as Re∞ =
2q∞Rρ∞/µ∞, where a leading-edge radius R = 0.1 [m] is used as the reference length scale; the
value displayed in table 3.3 has been computed for a sweep Reynolds number of Res = 800. For
the definition of the governing parameters the reader is referred to section §2.2.2.

Table 3.3. Overview of the flow quantities and parameters for our choice of the governing parameters: Res = 800,
ReR = 129136, Mas = 1.25 and θw = 1.

M∞ Λ p∞ [in Pa] T∞ [in K] M1 M2 Λ2 Re∞

8.15 30 ◦ 140.38 50.93 7.06 0.397 72.4 ◦ 3.53 · 106

This choice for the governing parameters leads to a supersonic flow in the spanwise z-
direction, and, based on the existing literature for compressible stagnation-point and boundary-
layer flow, appreciable compressibility effects are expected. Furthermore, the compressibility
effects in the normal and the spanwise direction crucially depend on the position in the domain,
and, as we will see in the next section, subsonic as well as supersonic flow regimes are present.
Moreover, according to the findings of Sesterhenn (2004) this flow configuration will be unstable
to boundary-layer instabilities.
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3.2.2 Computation of steady states

Steady state solutions φ0(x, y, z) = (p0, u0, v0, w0, s0)
T are reached by integrating the discretized

governing equations in time using direct numerical simulations. This procedure is possible since
the flow problem is stable with respect to two-dimensional perturbations thus allowing a simple
time-integration toward a steady state solution. As a consequence, more sophisticated techniques
such as (Jacobian-free) Newton–Krylov techniques (Knoll and Keyes, 2004) or selective frequency
damping (Åkervik et al., 2006) can be avoided. Nevertheless, even in our case these techniques
may substantially reduce the computational time to reach a steady state solution.

Furthermore, the assumption of infinite span permits us to eliminate the z-dependence, but
not the w-component, from φ0(x, y, z) and to reduce the computations to a problem with only
two independent variables x and y. From this solution the full three-dimensional base flow can
be recovered.

Initial condition

As an initial condition in (3.5) we extend the values p2, u2, v2, w2, s2 of the pressure, the velocities
and the entropy along the grid line downstream of the bow shock, in the normal direction toward
the wall. To this end, the pressure is chosen as constant, and a potential mapping is employed
to calculate the remaining flow quantities such that they satisfy the boundary conditions at
the wall. This choice was tested for a number of freestream conditions (see green symbols in
figure 3.3) and was found to give robust direct numerical simulations.

It is worth mentioning that initial conditions which better approximate the solution can
be found. However, these conditions require in general a rather large effort concerning the
implementation, but do not show a significant computational benefit for our flow model.

Base flow

The converged three-dimensional base flow for Res = 800, ReR = 129136, Mas = 1.25 and
θw = 1 is visualized in figure 3.4. In figure 3.4(a) and (b) we display the temperature T and
pressure field p, and for the present choice of flow parameters we obtain a maximum temperature
T = 703 [K] and a maximum pressure p = 9076 [Pa] at the stagnation point. The values of
these quantities decrease toward the outflow boundaries. The (previously discussed) subsonic
and supersonic regions of the flow in a plane normal to the parabolic body are indicated in
figure 3.4(a), where the distribution of the Mach number based on the u- and v-velocity is shown;
the iso-contour line in red represents the sonic line. It can be seen that the flow is subsonic near
the attachment line, and thus acoustic waves may lead to a strong interaction between the
boundary layer and the detached bow shock. This is in contrast to the flow situation further
downstream of the attachment line where the flow exhibits an increasingly supersonic character.

In figure 3.4(b), we further visualize the three-dimensional velocity field in terms of stream-
lines. The typical curvature of these streamlines in the inviscid outer flow region, near the
attachment line and inside the boundary layer reveals a highly three-dimensional boundary
layer flow, in particular, downstream of the stagnation line. In addition, the streamlines de-
scribe a local and nearly two-dimensional flow field in the vicinity of the attachment line, and,
as this flow field evolves in the chordwise direction, the thickness of the boundary layer δ99 grows
by about a factor of 6 from 2.38δ (at sw = 0) to 14.5δ (at sw = 2604δ); the variable sw denotes
the surface arclength along the parabolic body4. This boundary-layer growth is illustrated in
figure 3.4(c), where we plot the spanwise w-velocity at selected positions in the s-direction (see
legend). As already mentioned before, as a consequence of the infinite span assumption, no
boundary-layer growth exists in the spanwise direction.

4sw(x) =
√

x
p

x + R/2 + R/2 ln((
√

x +
p

x + R/2)/
p

R/2)
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Figure 3.4. Computed steady base flow for Res = 800, ReR = 129136, Mas = 1.25 and θw = 1: (a) temperature
field T [in K] and iso-contour lines of the Mach number in the s-n-plane (sonic line in red); (b) streamlines (in
blue) and pressure field p [in Pa]. The resolution is 128×511 points in the normal n- and the chordwise s-direction,
respectively. (c) Spanwise velocity w [in m/s] at selected positions [in δ] (see legend) in the positive s-direction;
δ99 ≈ 2.38δ indicates the thickness of the boundary layer along the attachment line; δ ≈ 1.968 · 10−4 [m] for the
present choice of parameters.

In the previous computations, a value κ = 0.95 was used to cluster the n1 = 128 grid points
in the wall-normal direction. In order to assess the quality of the computational grid and to gain
some information about the boundary-layer scales, a number of quantities for sweep Reynolds
numbers of 400, 600 and 800 are displayed in table 3.4. This table shows that the number of
grid points inside the boundary layer increases, since δ99 increases, as the Reynolds number is
decreased, and that a value of n1 = 128 appears sufficient to resolve the boundary layer. Note
that the viscous length scale satisfies δ ∼ √

νr ∼ 1/Res; for the definition of δ the reader is
referred to equation (2.4). Due to the smoothness of the steady base flow in the chordwise
s-direction, the base flow is well resolved in s.

Table 3.4. Boundary-layer thickness δ99 and number of grid points inside the boundary layer along the stagnation
line for selected values of Res and n1.

Res = 400 Res = 600 Res = 800

(δ = 3.935·10−4 m) (δ = 2.624·10−4 m) (δ = 1.968·10−4 m)

n1 128 256 128 256 128 256

# of points in δ99 33 44 24 31 19 24

δ99 [in 10−4 m] 9.404 9.402 6.264 6.256 4.698 4.690

δ99/δ 2.390 2.389 2.388 2.385 2.386 2.383

Comparison of theoretical and numerically obtained stagnation quantities

For the definition of the governing parameters in section §2.2.2, the value of the kinematic
viscosity νr, and thus the sweep Reynolds number Res, has been based on theoretical results
from Reshotko and Beckwith (1958) for the value of the recovery temperature Tr (see equation



3.3. LONG-TIME INTEGRATION OF THE INITIAL VALUE PROBLEM 33

Table 3.5. Comparison of theoretical and numerically obtained values for the stagnation quantities.

Tr [in K] ps [in Pa] νr [in m2/s] Res

theoretical 702.71 9075.35 1.434 · 10−4 800

simulation 703.37 9075.68 1.436 · 10−4 800

(2.10)) and on the theoretical value of the stagnation pressure ps (see equation (2.12)). Table 3.5
displays a comparison of the theoretical and the numerically obtained values for the recovery
temperature Tr and the stagnation pressure ps, with good agreement. As a consequence, the
value of the sweep Reynolds number Res remains unchanged.

3.3 Long-time integration of the initial value problem

After discussing the computation of steady state solutions in the previous section we proceed with
stability investigations of the base flow. To this end, we perturb the steady base flow φ0(x, y, z)
with an arbitrary, three-dimensional perturbation field of small amplitude ǫφ(x, y, z, t)′, such
that nonlinear effects can be neglected,

dφ

dt
= F(φ0 + ǫφ′

︸ ︷︷ ︸
φ

), (3.6)

and perform direct numerical simulations (DNS) to follow the evolution of the small-amplitude
perturbation in time. As time progresses the solution of the initial value problem (3.6) converges
toward the least stable global mode before it saturates due to nonlinearities (since the nonlinear
Navier–Stokes equations have been implemented).

As an initial perturbation field we take

ǫφ′ = ǫ(p2, u2, v2, w2, s2)
T f (3.7)

with ǫ = 10−8. The vector (p2, u2, v2, w2, s2)
T represents the flow quantities downstream of the

detached bow shock (see section §2.2), and f denotes a field of random numbers (white noise).
This approach closely follows previous investigations on the linear stability of stagnation-point
flow where, for instance, incompressible swept Hiemenz flow (Spalart, 1988; Theofilis, 1998)
and compressible stagnation-point flow over a swept flat plate (Le Duc et al., 2006) as well as
compressible flow about a swept parabolic body (Sesterhenn, 2004) were studied.

Results

In our three-dimensional direct numerical studies, the extension of the domain in the spanwise
periodic z-direction, given by the parameter Lz, defines the fundamental length of wave-like
disturbances traveling in z. As fundamental length, we chose a value of Lz = 2π/β̄ = 28δ,
and for this choice5 of Lz, boundary-layer instabilities in form of co-rotating vortices inside the
boundary layer, a typical feature of the crossflow instability, are expected to destabilize the flow
(see Sesterhenn, 2004). Furthermore, a resolution of 128 × 511 × 8 points in the normal n-, the
chordwise s- and the spanwise z-direction are used (n3 = 8 grid points in z have been found to
be sufficient to resolve the modal structures).

5Lz = 28δ corresponds to a value of β = β̄ δ = 0.224 for the non-dimensional wavenumber.
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Figure 3.5. (a) Total E(t) and modal energy Em(t) and (b) total w(t) and modal growth rate wm(t) of the first
three modal structures as a function of time t. The growth rate is normalized using the strain rate at the wall:
Sth = 2u2/R = 3704 [1/m] for the present freestream conditions. The dashed lines represent the positions in time
at which the flow field is visualized in figure 3.6.

As a result, the temporal evolution of the kinetic energy and the corresponding growth rate
of the disturbed (steady) base flow are presented in figure 3.5. In figure 3.5(a), we show the
evolution of the total E(t) and the modal energy Em(t) for the fundamental and two higher-
order modal structures as time progresses. The modal energy has been found using a Fourier
transformation in the homogeneous z-direction. It can be seen that both the total and the
modal energy grow exponentially over a distinct time period before they saturate in a nonlinear
manner. The corresponding values of the total, w(t), and the modal energy growth rate, wm(t),
of the these structures — computed via

w(t) =
1

2

log E(t + ∆t) − log E(t)

∆t
, (3.8)

wm(t) =
1

2

log Em(t + ∆t) − log Em(t)

∆t
, (3.9)

where ∆t denotes the temporal difference between two consecutive flow fields — is presented
in figure 3.5(b). In this figure, the plateau with w/Sth ≈ 11.3 represents the exponentially
growing regime in figure 3.5(a), and the growth of the fundamental modal structure confirms
a linear instability (red line). The first higher-order mode exhibits the same modal growth
before it becomes unstable to secondary instabilities (green line). Only three spanwise harmonic
structures have been plotted in figure 3.5(b) as a consequence of the spatial resolution, n3 = 8,
in this direction. The same modal growth of all three structures can be interpreted as a phase
locking of harmonics whose superposition produces steeper gradients in the spanwise direction.

The spatial distribution of the exponentially growing modal structures at t = 2.91 · 10−4 [s]
and t = 3.63 · 10−4 [s] (see dashed lines in figure 3.5) is plotted in figure 3.6. The application of
the Q-criterion reveals co-rotating vortical structures, visualized by iso-surfaces, which display
typical features of crossflow instabilities (figure 3.6a). Cross-cuts of these vortices are given
in figure 3.6(c,d), and the results indicate that the vortical structures first appear close to the
edge of the boundary layer and that these structures become increasingly pronounced inside the
boundary layer as they evolve in the chordwise s-direction; farther downstream they disappear
again. It is also found that the dominant part of the vortices lies farther downstream as time
progresses and eventually breaks down. To indicate the associated acoustic field, we also show
the divergence of the velocity field in figure 3.6(b).
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Figure 3.6. Results from a long-term integration of the initial value problem displayed at t1 = 2.91 · 10−4 [s] (top)
and t2 = 3.63 · 10−4 [s] (bottom): (a,e) vortical structures visualized by iso-surfaces of the Q-criterion (in blue);
the surface of the upper half of the parabolic body is displayed in light grey (attachment line in black). (b,f)
Divergence of the velocity field in the s-n-plane. (c,g) Distribution of the vortical structures using a cross-cut in
the s-n-plane; the black lines denote one representative iso-line of the Q-criterion. (d,h) Cross-cuts of the vortical
structures in the n-z-plane at selected positions in the chordwise s-direction; see dashed lines in (c,g).





Chapter 4

Global Stability Solver: decomposing
flow fields

The direct numerical simulations in the previous chapter demonstrated that our flow is unstable
to three-dimensional perturbations. We will now apply hydrodynamic stability theory and
use the concept of eigenvalues to study the asymptotic behavior of these instabilities. In a
temporal framework, this behavior is described by the linearized Navier–Stokes equations, and
a corresponding eigenvalue problem ωφ̃ = L(φ0)φ̃ has to be solved (see section §1.2). The
characteristic stability information is then contained in the eigenfunctions φ̃, which present
the spatial shape of the instabilities, and the corresponding eigenvalues ω, which describe the
associated temporal dynamics of the instabilities. Adopting a linear algebra notation with the
matrix A ≡ L(φ0), the vector x ≡ φ̃ and the eigenvalue λ ≡ ω the discrete form of this
eigenvalue problem reads

λx = Ax, λ ∈ C, x ∈ C
n, A ∈ C

n×n, (4.1)

where C denotes the set of scalar complex numbers, C
n the set of n-dimensional complex-valued

vectors and C
n×n the set of complex-valued matrices of size n × n with n as the size of the

eigenvalue problem.
The standard algorithm to solve (4.1) is based on the QR method, a quasi-direct technique

which dates back to the 1960s. This method reduces a matrix A to Schur form and thus com-
putes all of its eigenvalues by performing O(n3) operations. However, in most fluid-dynamical
applications only the least stable eigenvalues are required to answer questions of interest, and
more efficient iterative methods, performing O(n2) operations, are favored. If, in addition, the
structure of the matrix A can be further exploited, an even more efficient implementation of a
hydrodynamic stability solver is feasible. Moreover, in these techniques eigen-information can
be extracted directly from computed flow fields, for instance, without forming and storing the
large-scale linear stability matrix L(φ0). The Arnoldi method and its variants are among such
iterative techniques; they will be introduced in section §4.2 and §4.3.

4.1 The QR method

The standard technique to solve the eigenvalue problem (4.1) is given by the implicitly shifted
QR method (see Trefethen and Bau, 1997). This method constitutes the second phase in a
two-step decomposition process, where, in a first step, A is brought to upper Hessenberg form
using a unitary matrix V

AV = VH, V ∈ C
n×n, H ∈ C

n×n (4.2)

37
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Figure 4.1. Sketch of the Hessenberg reduction of a matrix A: (top) full reduction as performed in the first step
in the QR method, and (bottom) partial reduction as obtained by using the Arnoldi method.

with H denoting a Hessenberg matrix, i.e., a matrix with zeros below the first subdiagonal.
This direct step is commonly achieved either by Householder reduction or by the numerically
less stable modified Gram–Schmidt (MGS) algorithm. The latter technique, however, has the
added benefit that it can be stopped at any point of the reduction process thus resulting in a
partial reduction to Hessenberg form. We will later come back to this advantage.

In a second step, QR iterations are performed to reduce the subdiagonal elements of H to
zero until the system is eventually converged to Schur form

AQ = QU, Q ∈ C
n×n, U ∈ C

n×n. (4.3)

As a result, the matrix A is decomposed into a unitary matrix Q and an upper triangular matrix
U whose diagonal contains the eigenvalues of A; the associated eigenvectors can be found in a
straight-forward manner.

The QR method requires a total work of O(n3) flops, and for matrices A of moderate size,
e.g., of dimension n ∼ O(105), the reduction to Schur form and the quasi-direct solution of
the eigenvalue problem (4.1) are still feasible. However, as the size of our problem increases,
(4.1) results in a large-scale eigenvalue problem, and its direct solution becomes prohibitively
expensive; in this case, iterative techniques such as the Arnoldi method represent the algorithms
of choice.

4.2 The Arnoldi method

Instead of performing a complete reduction of the matrix A to Hessenberg form (see equation
(4.2)), we take advantage of the Gram–Schmidt procedure and stop the process after m iterations
with m ≪ n. This results in a partial reduction to Hessenberg form

AVm = VmHm + fmeT
m, Vm ∈ C

n×m, Hm ∈ C
m×m, fm ∈ C

n×1, (4.4)

where Vm = [v1,v2, . . . ,vm] represents an m-dimensional orthonormal basis, Hm denotes an
upper Hessenberg matrix, fm = hm+1vm+1 is the residual vector orthogonal to the basis Vm, and
em stands for a unit-vector in the m-th component. For small values of hm+1, the eigenvalues
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{θj} of Hm, the so-called Ritz values, are approximations to the eigenvalues {λj} of A, and the
associated eigenvectors x̃j of A, the so-called Ritz vectors, are obtained as

x̃j = Vmyj , yj ∈ C
m×1, (4.5)

where yj denotes the eigenvector of Hm associated with the eigenvalue θj . In general, some of
the Ritz pairs (x̃j ,θj) closely approximate associated eigenpairs (xj ,λj) of A, and the accuracy
of each approximation is measured by

‖Ax̃j − θjx̃j‖ = |βmeT
myj | (4.6)

with βm = ‖fm‖.
The method based on the Gram–Schmidt decomposition in (4.4) is known as the Arnoldi

method (see Sorensen, 2002). This method constructs an orthonormal basis Vm of the Krylov
subspace sequence

Km(A,v1) = span{v1,Av1,A
2v1, . . . ,A

m−1v1} (4.7)

which consists of repeated applications of a matrix A to an initial vector v1, and this basis Vm

is used to perform a partial reduction to Hessenberg form. In other words, the application of
the Arnoldi method results in a projection of the full stability problem given by the matrix A
onto a lower m-dimensional vector space

V∗

mAVm = Hm, (4.8)

where the basis vectors in Vm decide which eigenpairs (xj ,λj) of A are approximated; the
superscript ∗ in (4.8) denotes the Hermitian conjugate.

After performing QR iterations of the small Hessenberg matrix Hm and thus driving the
subdiagonal elements of Hm to zero, the method results in an approximation to a partial Schur
decomposition of A. We have

AQm = QmUm, Qm ∈ C
n×m, Um ∈ C

m×m. (4.9)

This decomposition always exists, and the diagonal elements of Um represent a specific subset
of k eigenvalues of the full decomposition (4.3) of the matrix A. Thus, the Arnoldi method
produces an approximation of a specific subset of k eigenvalues of A.

4.2.1 Implicit restarting

The quality of the approximation usually improves as the dimension m of the Krylov subspace
sequence Km increases. In practice, however, the dimension of this subspace is limited by
memory restrictions, and its ortho-normalization is progressively affected by numerical errors as
m increases1. The latter problem can be accounted for by explicitly re-orthogonalizing the basis
vectors and a common way is using the DGKS method (Daniel et al., 1976).

To limit the dimension m of the Krylov subspace, the Arnoldi factorization (4.4) needs to be
periodically restarted with a new starting vector v+. Explicit and implicit restarting techniques
exist, and from these techniques we choose the Implicitly Restarted Arnoldi Method (IRAM) as
proposed by Sorensen (1992). This implicit restarting strategy computes the new starting vector
v+ by a polynomial approximation of Krylov vectors that favors k desired Ritz pairs (x̃j ,θj)
while damping p = m − k undesired ones. As a result, desired eigen-information is continually
compressed into a k-dimensional subspace.

1Note that for m = n the Arnoldi method performs a full Hessenberg reduction of A just as the Householder
reduction in the QR method.
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Favoring a certain set of Ritz pairs furthermore implies that implicit restarting can be used
as a simple means of convergence control. The (un-restarted) Arnoldi method converges — just
like the power iteration as the simplest iterative method to approximate one eigenpair (x1,λ1) of
A (see Trefethen and Bau, 1997) — to eigenvalues of largest modulus. In most cases, however,
these eigenvalues are not the physically relevant ones, and implicit restarting allows us to direct
the convergence of the Arnoldi method toward, for instance, eigenvalues with largest real or
imaginary part (see, e.g., Lehoucq et al., 1998).

4.2.2 Matrix-free implementation

Apart from avoiding a complete Schur decomposition of A, the Arnoldi method, as well as
Krylov subspace methods in general, has a further advantage. The form of the Krylov subspace
sequence (4.7) indicates that the linear stability matrix A does not need to be formed explicitly;
rather, only matrix-vector products are necessary to perform the Arnoldi decomposition. These
matrix-vector products are readily obtained from numerical simulations via

Avi =
F(φ0 + ǫvi) − F(φ0) + O((ǫvi)

2)

ǫ

≈ F(φ0 + ǫvi) − F(φ0)

ǫ
with i = 1, 2, . . . , m − 1, (4.10)

where ǫ is a user-specified parameter, φ0 stands for the (discrete) base flow, vi denotes the
i-th Krylov vector (as the disturbance field), and F represents the discretized right-hand side
of the nonlinear Navier–Stokes equations (see equation (3.5)). This first-order finite-difference
approximation of the linear stability (Jacobian) matrix A allows a matrix-free framework where
right-hand side evaluations from direct numerical simulations (DNS) provide the input for the
iterative global stability solver, i.e., the matrix-vector products Avi for a given input vector vi

(see figure 4.2). Such a matrix-free approach further reduces memory requirements considerably
and removes the problem of explicitly forming and storing the Jacobian matrix A.

DNS (4.10)

vi Avi

Figure 4.2. DNS-based matrix-free implementation as a block box to compute Avi.

The choice of ǫ is, however, not obvious (see Knoll and Keyes, 2004): if ǫ is too large, the
derivative will be poorly approximated and if ǫ is too small, the result will be contaminated by
roundoff errors. A widely used choice is given by

ǫ =
‖φ0‖
‖vi‖

ǫ0, (4.11)

where ǫ0 is a small parameter, and ‖ · ‖ denotes the 2-norm. For this parameter, a value of
ǫ0 = 10−8 has been found to be optimal for the extraction of global modes for a compressible
mixing layer in Mack and Schmid (2010), and the independence of the results for compressible
flow about a swept body with respect to ǫ has also been corroborated over a range of many
decades of the value of ǫ0.

4.3 The Cayley-transformed Arnoldi method

As discussed in section §4.2.1, implicitly restarting the Arnoldi method already allows us to
direct the convergence toward a distinct region of the eigenvalue spectrum such as the least-
stable part. However, any thorough investigation of complex fluid flow behavior requires us
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Figure 4.3. Typical spectrum of a compressible mixing layer at a Mach number of 0.5; the eigenvalues (λ ≡ ω)
depicted in circles belong to the unstable shear mode (in red), to a damped shear-layer mode (in orange) and a
fast-moving weakly-damped acoustic mode (in blue). The unstable half-plane is shown in grey. Note that only
the physically most relevant part of the spectrum is displayed.

to focus on specific parts of the global spectrum, and these parts might not contain the least-
stable eigenvalues. To illustrate this problem we consider the (full) spectrum of a compressible
mixing layer, shown in figure 4.3, which was obtained using the local stability approach (see
section §1.2). This spectrum consists of an unstable (discrete) shear mode (red circle), two
(continuous) shear-layer branches at a frequency λr ≈ ±0.4 as well as two acoustic branches
with weakly-damped but fast-moving acoustic modes. It thus possesses all the relevant physical
features of our full problem. For spectra of such type, the implicitly restarted Arnoldi method
(IRAM) converges toward the unstable shear mode as well as modes which are weakly damped,
i.e., modes with λi ≈ 0. This implies that stronger-damped modes such as the acoustic mode
circled in blue or the shear-layer mode circled in orange cannot be computed (except for a rather
large dimension m of the Krylov subspace). To extract selected modes from the acoustic and
the shear-layer branch and to direct the convergence of the Arnoldi method toward these modes
a transformation of the complex eigenvalue plane can be used.

Such a transformation also has the advantage of accelerating convergence. This benefit
arises from the fact that high resolution simulations of complex fluid flow physics (with, e.g., the
coexistence of shear and acoustic modes as illustrated in our example spectrum, see figure 4.3)
may lead to an unpredictable and erratic convergence behavior of the Arnoldi method. In short,
both convergence control and convergence acceleration are needed for an effective and powerful
DNS-based global stability solver.

4.3.1 Cayley transformation

To control and accelerate the convergence behavior of the Arnoldi method the Cayley trans-
formation (Garratt et al., 1993) is applied. This transformation consists of a two-parameter
conformal mapping of the complex plane and, for standard eigenvalue problems λx = Ax, it is
defined as

TC(σ, µ) = (A − σI)−1(A − µI), TC ∈ C
n×n, σ, µ ∈ C, (4.12)

where σ and µ are the mapping or Cayley parameters, and I denotes the identity matrix2. The
eigenvalues λ of A are then recovered from the eigenvalues ξ of the transformed problem via

λ =
σξ − µ

ξ − 1
, ξ ∈ C, (4.13)

while the eigenvectors x are not affected by the transformation. This is a consequence of the
invariance properties of linear transformations such as the Cayley transformation; the Arnoldi
method preserves these properties when computing Ritz pairs (x̃j , ξj) of TC .

2Note that for generalized eigenvalue problems λBx = Ax the identity matrix I has to be replaced by the
mass matrix B.
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The first Cayley parameter in (4.12), the complex parameter σ, acts as a shift parameter,
and for Imag{λ} < Imag{σ} < Imag{µ} eigenvalues close to it are mapped far into the right-half
plane while eigenvalues far from it are mapped close to one. The second complex parameter µ
introduces an additional stretching-and-rotation effect on the transformed spectrum. Its major
role, however, consists in controlling the condition number of the linear transformation, and, for
this reason, the Cayley transformation generally yields a better-conditioned linear system than
the more commonly applied shift-invert transformation (see Lehoucq and Salinger, 2001). This
is an important advantage for an iterative solution — recall that a matrix-free implementation
prohibits a direct solution since only matrix-vector products are available (see figure 4.2). An
iterative solution, however, restricts the choice of Cayley parameters, and the resulting linear
system yields solutions only if the shift parameter σ is chosen sufficiently far from an eigenvalue,
thus avoiding an ill-conditioned matrix3 (see, e.g, Burroughs et al., 2004).

Figure 4.4 demonstrates the Cayley transformation for our example spectrum presented in
figure 4.3. At the top of figure 4.4(a), four parameter settings from σ1 to σ4 (with µr = σr

and µi/σi = 5) are marked in red. For these choices of parameters the Cayley transformation
maps the neutral line λi = 0 of the original spectrum onto a circle with diameter µi/σi, and, by
moving the shift parameter σ from σ1 to σ4, this circle is rotated in the complex plane. As a
consequence, selected modes can be rotated into the green region which depicts the area accessi-
ble to the Arnoldi method (implicit restarting which favors eigenvalues with largest real part is
employed). Thus, by using the implicitly restarted Arnoldi method (IRAM) in conjunction with
a spectral transformation such as the Cayley transformation a large set of unstable and stable
modes traveling with different frequencies λr can be computed. The general mapping between
the complex λ- and the complex ξ-plane is further visualized by the dashed Cartesian grid in
figure 4.4(a) and its mapped counterparts in figure 4.4(b–e).

The possibility of computing eigenvalues from selected regions of the global spectrum can be
explained by looking at the Krylov subspace sequence for the Cayley-transformed problem

Km(TC ,v1) = span{v1,TCv1,T
2
Cv1, . . . ,T

m−1
C v1}. (4.14)

By ortho-normalizing this subspace, the Arnoldi method constructs an ortho-normal basis Vm

which is used to project a matrix A onto a lower m-dimensional subspace V∗
mAVm = Hm. It is

the set of basis vectors in Vm that decides which eigenpairs (xj ,λj) of A are approximated, and
the Cayley transformation as well as implicit restarting allows us to control the Arnoldi method
while constructing Vm.

Inexact solutions of the Cayley transformation

The Cayley transformation (4.12) requires the solution of the following large-scale non-Hermitian
linear system

(A − σI)vj+1 = (A − µI)vj (4.15)

for each outer step of the Arnoldi method to construct the (j +1)-th Krylov vector in (4.14). To
accomplish this task, we resort to the BiCGStab algorithm (van der Vorst, 1992), a stabilized
variant of the Bi-Conjugate Gradient Iteration, since it results in low memory requirements
owing to its three-term recurrence relation.

However, the solution of the linear system (4.15) by iterative means can only be obtained
approximately; as a consequence, the Cayley transformation (4.12) is necessarily inexact, and
sufficiently accurate and robust solutions of (4.15) have to be attempted in order to obtain a
suitable Krylov subspace sequence (4.14). For a discussion on inexact transformations the reader
is referred to Meerbergen and Roose (1997).

3Considerations like this can be ignored when a direct inversion is attempted.
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Figure 4.4. Demonstration of the Cayley transformation: as marked by red crosses on the top of the untransformed
spectrum (a) four shifts (σ1–σ4) have been chosen, and the associated Cayley-transformed spectra are shown in (b–
e). The rotation of these spectra is the result of the devision of two complex numbers in the Cayley transformation,
and the wanted eigenvalues are the right-most ones; accessible region of IRAM in green. A dashed Cartesian grid
and the unstable half-plane (in grey) as well as their mapped counterparts are also displayed.

4.3.2 ILU-based preconditioning

An efficient iterative solution of the linear system (4.15) requires a reliable and robust precon-
ditioning technique. This has also been stated by Benzi (2002) who considers preconditioning
as the “most critical ingredient in the development of efficient solvers for challenging problems
in scientific computation”. For this reason, there exists a large body of literature on precon-
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ditioning strategies, and for an overview the reader is referred to Benzi (2002). Furthermore,
state-of-the-art preconditioning techniques require in general a preconditioning matrix in ex-
plicit form, as reported by Knoll and Keyes (2004). These authors also discuss matrix-free
preconditioning strategies for linear systems and conclude that “the only iterative method that
can be implemented in a fashion that is literally matrix-free is a Krylov method”.

With this in mind, we maintain a matrix-free implementation via direct numerical simulations
(see section §4.2.2) but assume the preconditioning matrix P in explicit form. Applying this
(shifted) preconditioning matrix Pσ = P− σI from the right, the preconditioned version of the
linear system (4.15) reads

(A − σI)P−1
σ Pσvj+1 = (A − µI)vj . (4.16)

As we can see, preconditioning comes at the expense of solving an additional linear system
in order to invert Pσ, and this system has to be solved each time a matrix-vector product
is required in the BiCGStab algorithm. Note that the Arnoldi iteration and thus the Krylov
subspace sequence (4.14) are not affected by Pσ.

Ideal preconditioning would result in eigenvalues of AσP
−1
σ = (A − σI)(P − σI)−1 at one.

In practice, however, one has to be content with a clustering of the eigenvalues of AσP
−1
σ about

one. These eigenvalues depend on four factors: (i) the discretization used to form A, (ii) the
choice of P (discretization, formulation, etc.), (iii) the technique employed to efficiently invert
Pσ and (iv) the choice of the shift parameter σ.

Concerning the discretization used to obtain the (linear stability) matrix A, the action of
A on a given flow field vi is approximated using a matrix-free implementation (4.10) where
evaluations from direct numerical simulations (DNS) provide the input. Our DNS is based on
fifth- and sixth-order compact schemes (see section §3.1.4) and this implies the same discretiza-
tion in A. For the preconditioning matrix P we choose an explicit second-order finite-difference
approximation of the linear stability matrix L(φ0). This matrix is formed explicitly using the
linearized Navier–Stokes equations (see section §2.3.2) and stored using the compact sparse row
(CSR) format as supported by the open-source package SPARSKIT (Saad, 1994).

Furthermore, owing to the sparsity of P we can take advantage of efficient incomplete decom-
position techniques. The degree of “incompleteness” is given by the chosen sparsity structure of
the decomposition. For general matrices, the LU-decomposition results in upper/lower triangu-
lar matrices that are dense. Incomplete decompositions, on the other hand, yield matrices that
have a characteristic sparsity pattern and can be inverted efficiently by standard algorithms.
In our case we choose an incomplete LU-decomposition, i.e., the dual truncation technique
ILUT(p,τ) in which dropping values during the factorization is based on two user-specified pa-
rameters: the fill level p and the drop tolerance τ (Saad, 2003). As a dropping rule for a given
fill level, maximally p super-diagonal and p sub-diagonal elements are kept in each row of the
incomplete decomposition of P.

Choice of the fill level p and the drop tolerance τ

The size of the fill level p, at least for values within a range that still optimizes memory require-
ments, does not substantially influence the convergence behavior, and Osei-Kuffuor and Saad
(2007) report that “the rule of thumb is to take a large [p] value, and use [τ ] to control the
amount of fill-in.” Using this suggestion, ILUT-based preconditioning has been tested for two
flow cases, a compressible mixing layer and compressible flow about a swept parabolic body, and
it was found to be capable of dramatically improving the convergence rate for BiCGStab. For
the former (simple) flow case, we have identified a fill level p = 10 as satisfying this requirement,
and we found a drop tolerance τ = 0.01 − 0.005 to be an optimal choice for ILUT(10,τ) in
terms of cost-efficiency of our DNS-based global stability solver. The results for the second,
more complicated flow case indicate, however, that this time a larger value of the fill level, e.g.,
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Figure 4.5. Sketch of a (compact) form of our proposed DNS-based global stability solver (abbreviated as PCI-
RAM) as presented in Mack and Schmid (2010). The dashed boxes represent different components of the algorithm
which could be replaced in a modular manner, e.g., instead of direct numerical simulations (DNS), Large-Eddy
simulations (LES) could be used to provide the required input for the matrix-free implementation.

p = 40, is required to obtain a robust preconditioner4; again, a drop tolerance τ = 0.01 − 0.005
seems to be an appropriate choice. For details the reader is referred to the results in Mack and
Schmid (2010).

4.3.3 Proposed DNS-based global stability solver

A sketch that illustrates the basic parts of our proposed DNS-based global stability solver is
given in figure 4.5 — a more detailed sketch can be found in Mack and Schmid (2010). The
program is written based on the Fortran 90/95 standard and features real as well as complex
arithmetic. It is furthermore written in a modular manner where each block in figure 4.5 could
be replaced by an alternative technique. The upper block represents the preconditioned Cayley-
transformed implicitly restarted Arnoldi method (PCIRAM), the block in the middle illustrates
the matrix-free implementation where direct numerical simulations (lower block) provide the
required input. Starting with an initial guess v1, approximations to the eigenpairs in form of
Ritz pairs (x̃j , θj) are computed. Their convergence is checked using the Ritz estimate

|βmeT
myj | ≤ max(ǫM‖Hm‖ , tolA · |θj |),

where βm = ‖fm‖, ǫM stands for machine epsilon and tolA denotes a user-specified tolerance
parameter. The convergence of the ILU-preconditioned BiCGStab is checked via

‖ri‖ ≤ tolB · ‖b‖,

where ri denotes the current residual error, tolB is a user-specified tolerance parameter and b
denotes the right-hand side of the linear system. In summary, our DNS-based global stability
solver requires the user to specify a list of parameters which are related to the implicitly restarted
Arnoldi method (m, k, tolA), the matrix-free implementation (ǫ0), the Cayley transformation
(σ, µ), the iterative linear solver (tolB) and the ILUT-preconditioner (p,τ). Additionally, the
starting vectors v1 and vj+1,0 for the Arnoldi method and the iterative linear solver need to be
chosen.

4It it also worth mentioning that among the common incomplete decomposition techniques such as ILU(k),
ILU(τ) and ILUT(p,τ) (Saad, 2003), the latter technique has been found to perform by far superior.
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The solver shown in figure 4.5 was designed and its various components were assessed in Mack
and Schmid (2010) using a simple test case, a compressible mixing layer. This way, valuable
insight and experience in using the solver parameters to influence convergence properties and
solution quality could be gained. A parameter choice that has been found to perform “optimal”
consists of tolA = 10−4 and tolB = 10−5 (see Lehoucq and Salinger, 2001, for a discussion on this
issue). As we will see, the most sensitive “parameter” in our DNS-based global stability solver
is the spatial resolution of the computed flow fields and thus the quality of the direct numerical
simulations.

4.4 Note on alternative methods

In the existing literature, a large variety of iterative global stability solvers have been used
to study fluid-dynamical problems, and from a conceptual point of view virtually all of these
techniques can be described by the modular concept shown in figure 4.5. In what follows, we
briefly discuss some of these alternative methods.

Matrix-based techniques I

Krylov subspace methods for hydrodynamic stability analysis of the incompressible Navier–
Stokes equations were first introduced by Edwards et al. (1994). They employed the implicitly
restarted Arnoldi method (IRAM), and their investigation of moderately complex flow situations
allowed a matrix-based implementation and did not require any type of spectral transformation.
In the following years, IRAM in conjunction with a shift-invert transformation became a popular
tool to address larger and more complex flow problems. A state-of-the-art review of this tool,
as well as Krylov subspace techniques in general, applied to a wide range of fluid flows of
aerodynamical interest is given by Theofilis (2003) with special emphasis on the global linear
stability of non-parallel and three-dimensional flow configurations. In general, the investigations
involved a dense linear stability matrix A — as a result of a spectral discretization of the
governing equations — , and the matrix A is inverted using direct methods. The shift-invert
technique has also been compiled into the open-source package ARPACK (Lehoucq et al., 1998)
which today is widely used for a range of stability problems. The direct inversion of a dense
matrix, however, still restricts the method to moderately-sized problems.

This restriction can be overcome if the linear stability matrix A is designed to be sparse —
i.e., by employing finite-difference or finite-element methods for the spatial discretization — ;
this sparsity can then be exploited by powerful direct sparse solvers (Davis and Duff, 1997;
Amestoy et al., 2007) as, e.g., recently demonstrated by Marquet et al. (2008).

Matrix-based techniques II

The situation completely changes, however, if iterative solutions of the linear system are at-
tempted. First, the Cayley transformation rather than the more commonly applied shift-invert
transformation has to be employed, since the Cayley transformation in general yields a better-
conditioned linear system than the shift-invert transformation (see Lehoucq and Salinger, 2001).
Furthermore, Lehoucq and Meerbergen (1998) report “the superior numerical performance of a
Cayley transformation over that of a shift-invert transformation within an Arnoldi method when
using an iterative linear solver”. Second, and even more important, preconditioning the linear
system solver becomes a crucial component of the Cayley-transformed Arnoldi method. This is-
sue was stressed by Zhang (2000) who performed a comparative study of the ILU-preconditioned
Krylov subspace solvers BiCGStab, GMRES and TFQMR applied to a variety of problems from
academic and industrial computational fluid dynamics (CFD). This author concludes that “the
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quality of the preconditioner is more critical than the choice of the Krylov subspace accelerator
in designing a preconditioned iterative solver for large scale CFD applications”.

For the sake of completeness, a further class of Krylov subspace methods known as sub-
space iteration techniques is worth mentioning. As an example, Heeg and Geurts (1998)
successfully applied the Jacobi–Davidson method (Sleijpen et al., 1996) in conjunction with
ILU-preconditioned BiCGStab in their studies on spatial instabilities on the incompressible
attachment-line flow.

Matrix-free techniques

Despite the popularity of matrix-based techniques only matrix-free methods introduce a max-
imum amount of flexibility in extracting linear stability information: direct numerical simula-
tions (DNS) can provide Jacobian information via (4.10), as can Large-Eddy simulations (LES),
Detached-Eddy simulations (DES), vortex-particle methods and even commercial codes. In con-
clusion, if the linear stability matrix is available in explicit form, and if this matrix exhibits a
large degree of sparsity, the shift-invert Arnoldi method with a direct inversion of the linear
system displays the method of choice (owing to the recent progress of powerful direct solvers
and their parallel variants). However, if we cannot rely on such a (sparse) matrix, and if we
wish to keep a large degree of flexibility, matrix-free solvers are the preferred algorithms.





Chapter 5

Global Stability Analysis: extracting
physical mechanisms

In the previous chapter §4 we developed a DNS-based global stability solver to extract stability
information directly from numerical simulations. A direct numerical simulation (DNS) code has
been implemented in chapter §3, and this code is used to compute flow fields for compressible
flow about a swept parabolic body, our flow model for compressible flow about a swept blunt
body which has been presented in chapter §2.

In what follows, the DNS-based global stability solver is applied to study the temporal sta-
bility of small-amplitude perturbations in order to extract the underlying physical mechanisms
present in our flow model. As the Krylov subspace is augmented by subsequent calls to the
direct simulation code, the Cayley-transformed Arnoldi method provides an approximate spec-
trum that increases in complexity but also in accuracy. This spectrum will reflect the rich and
complex perturbation dynamics of our flow situation.

5.1 The global spectrum

The iteratively computed global spectrum is shown in figure 5.1. This global spectrum reflects
the richness of physical processes present in the flow configuration under investigation. It consists
of (mostly unstable) discrete boundary-layer modes (region I, in red) that express the flow
characteristics inside the boundary layer, of acoustic modes that describe the presence of (stable
and unstable) sound waves (region I, II and III, in blue) and of (stable) wave packet modes
(region IV, in green) that represent the dynamics of general perturbations in the freestream.
The latter type of modes is complemented by the partial spectrum (region IV, in grey) obtained
by directly solving for the eigenvalues of the Jacobian matrix — i.e., the discretized linear
stability operator in equation (2.30) — for an embedded and significantly smaller sub-domain
located near the attachment line. Furthermore, modes that account for the interaction of the
detached bow shock with the parabolic body exist as well (see region V, in black).

For the current parameter choice — i.e., a sweep Reynolds number of Res = 800, a leading-
edge Reynolds number of ReR = 129136, a sweep Mach number of Mas = 1.25, an adiabatic wall
(θw = 1) and a disturbance wavenumber β = 0.314 = 2π/Lz (with Lz as the fundamental length
scale of the perturbations, nondimensionalized by the viscous length scale δ, in the spanwise
z-direction) —, the discrete boundary-layer branch (in red) features the most unstable global
modes.

The global spectrum (see figure 5.1) also shows that the physical processes described by
different types of global modes exhibit a distinct but characteristic frequency ωr. The boundary-
layer modes (in red), for instance, prevail inside the boundary layer, and the modes displayed
in figure 5.1 travel with a phase speed of approximately 12% to 37% of the (mean) spanwise
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Figure 5.1. Global spectrum showing the frequency ωr and the corresponding growth rate ωi of the iteratively
computed modal structures (Res = 800, ReR = 129136, Mas = 1.25, θw = 1 and β = 0.314); the eigenvalues ω
have been nondimensionalized using the strain rate Sth = 2u2/R = 3704 [1/m]. Each region shows the least-stable
eigenvalues belonging to boundary-layer modes (region I), acoustic modes (region I, II and III), wave packet modes
(region IV) and shock-interaction modes (region V); unstable-half plane in grey.
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Table 5.1. Overview of base flow and perturbation quantities for Res = 800 and β = 0.314 (Sth = 3704 [1/s],
δ = 1.968 · 10−4 [m]). The (normalized) frequency ωr associated with the spanwise velocity w is found as
ωr = fr/Sth = wβ/(Sthδ).

w2 − c2 12% w2 37% w2 w2 w2 + c2

base flow: speed w [m/s] 116.6 70.0 215.7 583.1 1049.6

w/w2 0.2 - - 1 1.8

fr/Sth 50.24 30.1 92.9 251.20 452.16

spectrum: ωr 54.95 31.1 92.8 251.26 447.68

type of mode: acoustic boundary-layer wave packet acoustic

velocity (wmean ≈ w2) in the z-direction; the frequency ωr corresponding to the (mean) spanwise
velocity is obtained via

ωr,mean ≈ w2β

Sthδ
(5.1)

with w2 = 583.1 [m/s], δ = 1.968 · 10−4 [m] and Sth = 3704 [1/s] (see table 5.1 for further
details). The acoustic modes (in blue), on the other hand, move downstream and upstream
in z with a phase speed of approximately w2 ± c2, respectively, where c2 stands for the speed
of sound in the freestream. This speed of w2 ± c2 corresponds to frequencies ωr = fr/Sth of
452.16 and 50.24 (see table 5.1). Last but not least, the wave packet modes (in green) move
with approximately the (mean) velocity w2, which corresponds to ωr = fr/Sth = 251.20 (see
table 5.1), since they mainly capture the dynamics of perturbations in the freestream.

In the following sections, we will present more details about each identified type of instability,
marked as region I to V in the global spectrum (see figure 5.1).

5.2 Boundary-layer modes – region I

Concentrating on boundary-layer modes (see red dots in region I in figure 5.1), the employed
global stability solver identified, for our flow parameters, an eigenvalue branch of typical parabolic
shape. This branch consists of stable and unstable discrete modes whose frequency ωr ranges
from 31.1 to 92.8 (see figure 5.2b); the maximum growth rate ωi = 2.64 is achieved for ωr = 60.1.
Owing to the inherent symmetry properties of the flow the eigenvalues appear double at closer
inspection, and the associated modes exhibit characteristic symmetry properties with respect to
the attachment line.

The same figure 5.2(a) further displays four global modes, denoted by B1–B4, from the
boundary-layer branch in figure 5.2(b). The modes are visualized by iso-surfaces of the (nor-
malized) velocity u(x, y, z) = Real{ũ(x, y) (cos βz + i sinβz)}, and they belong to a slow-moving
mode (B1), a slightly faster-moving mode (B2), the most unstable mode (B3) and a representa-
tive fast-moving mode (B4); the associated eigenvalues are depicted by circles in figure 5.1(b).
The amplitude distribution of the mode B1 displays typical features of both attachment-line
instabilities and crossflow vortices and thus clearly demonstrates a link between the attachment-
line and the crossflow dynamics. It convincingly shows that the global modes of the boundary-
layer branch depicted in figure 5.2(b) have typical attachment-line properties while still connect-
ing to the familiar crossflow pattern farther downstream from the attachment line.

The faster-moving global modes (modes with a higher phase velocity ωr) show a substantially
stronger component of the crossflow instability, and its maximum amplitude is located farther
downstream from the attachment line. This property is more evident in figure 5.3(a) where we
present body-fitted cross-cuts of the four global modes displayed in figure 5.2(b) at a distance
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Figure 5.2. (a) Four representative global modes (B1–B4) from the boundary-layer branch. The relevant region
I of the global spectrum (see figure 5.1) is shown in (b), where the eigenvalues corresponding to the four global
modes are depicted by circles. The modes are further visualized by iso-surfaces of the normal velocity u(x, y, z) =
Real{eu(x, y) (cos βz + i sin βz)}, and eight wavelengths, stretched by a factor of two, in the spanwise z-direction
are used to display each mode (attachment line in black). Contours of the weak pressure field (in the s-n-plane)
associated with the mode B1 are shown in the background.

of half the boundary-layer thickness from the wall. These cross-cuts again demonstrate the
two-dimensional character of the global modes near the attachment line and the typical curved
shape of crossflow instabilities further downstream. With the spanwise wavenumber β = 2π/Lz

held constant for the modes, the clearly visible difference in the spatial orientation of the cross-
flow vortices is a consequence of a corresponding difference in the equivalent “local chordwise
wavenumber”. This same “local chordwise wavenumber” parameterizes the parabolic eigenvalue
branch of the associated global boundary-layer modes in figure 5.2(b). An equivalent parabolic
shape would be obtained in local stability analyses as the least-stable eigenvalue is traced as a
function of the chordwise wavenumber.

Comparison with existing results

The spatial shape of the global modes presented in figure 5.3(a), i.e., a two-dimensional character
near the attachment line and the curved shape of crossflow vortices farther downstream have
been studied locally in the past. The former feature is reminiscent of results from stability
computations by Joslin (1995) who observed a similar spatial evolution of three-dimensional
disturbances in an incompressible attachment-line boundary layer (see figure 5.4a); curved co-
rotating vortical structures nearly aligned with the external streamlines are typical for crossflow
instabilities as, for instance, shown by Bonfigli and Kloker (2007) (see figure 5.4b). Further
evidence linking the local behavior of the global modes near the attachment line to a typical
local attachment-line mode is given in figure 5.3(b) where the characteristic linear dependence
in the chordwise s-direction of the velocity component v(x, y, z) is visible over a significant range
in s before it saturates to connect to the crossflow behavior further downstream. Figure 5.3(c)
shows the symmetric shape of the corresponding normal velocity component u(x, y, z).
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Figure 5.3. (a) Top view of the spatial distribution of the four global modes (B1–B4) shown in figure 5.2 in the
s-n-plane using cross-cuts at approximately half the boundary-layer thickness δ99. A log-scale is used to visualize
the positive values of u (largest amplitude in red), and eight wavelengths in the spanwise z-direction are used
to visualize each mode (attachment line in black). (b,c) Spatial shape of the mode B1 (see figure 5.2a) near the
attachment line.
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Figure 5.4. (a) Top view of the spatial distribution of a traveling mode (normal velocity) as presented by Joslin
(1995); attachment line in black, relabeled coordinate system. He performed direct numerical simulations (DNS)
to study the linear stability of an incompressible attachment-line boundary layer (swept Hiemenz flow model)
for the (sweep) Reynolds number Re = 570 and the perturbation frequency ω = 0.1249. (b) Large-amplitude
traveling vortices visualized using λ2-isosurfaces (taken from DNS of Bonfigli and Kloker, 2007); arrows indicate
the rotation direction of the crossflow vortices. In both figures, the flow direction is from the left to the right.

5.3 Acoustic modes – region I, II and III

5.3.1 Acoustic instabilities (type A)

Due to the presence of compressibility, the global spectrum also features distinct sets of slow-
and fast-moving acoustic global modes (see blue dots in region I and II in figure 5.1, respectively)
which describe the presence of sound waves. These modes travel with approximately w2 ± c2

in the spanwise z-direction (see table 5.1) as already discussed in section §5.1. In figure 5.5(a),
we display region II of the global spectrum (see figure 5.1) which contains the fast-moving set
of acoustic modes. It is found that these modes can be divided into symmetric S-modes — the
spatial distribution of all disturbance quantities except for the chordwise velocity v is symmetric
with respect to the attachment line — and antisymmetric A-modes. Furthermore, each S-mode



54 CHAPTER 5. GLOBAL STABILITY ANALYSIS: EXTRACTING PHYSICAL MECHANISMS

S1

S2

S3

S4

S5

S6

A1

A2
A3

A4

A5

ω
r

ω
i

400 420 440 460 480 500
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5(a) (b)

(c)

Figure 5.5. (a) Computed region of the global spectrum containing the fast-moving set of acoustic modes (see
region II and III in figure 5.1). (b) Spatial structure of a sample of associated global acoustic modes belonging
to the eigenvalues S1–S6 from the S-branch depicted by red circles in (a). The modes are visualized by the
chordwise velocity v in the x-y-plane (the green hue corresponds to vanishing amplitudes, large amplitudes in
red). (c) Body-fitted cut of the acoustic modes S3, S4 and S5 in a plane parallel to the wall at a location close to
the boundary layer (≈ 4δ99); attachment line in black.

is found to pair with an A-mode at the same frequency ωr, e.g., ωr,S2 = ωr,A2 (see dashed line
in figure 5.5a). Moreover, either type of modes describes a distinct branch in the eigenvalue
spectrum, indicated by the grey line in figure 5.5(a), where the modes on the A-branch are
always more stable than the modes on the S-branch.

The spatial structure of a representative sample of acoustic modes from the S-branch is
presented in figure 5.5(b); the corresponding eigenvalues of these modes are circled in red in
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Figure 5.6. Sign of the pressure distribution sign(p) of selected global acoustic modes in the x-y-plane: (a) S-mode
(S3) and (b) A-mode (A3) from the fast-moving set of acoustic modes (see figure 5.5a); (c) mode corresponding
to S3, from the slow-moving set of acoustic modes denoted by S3− (see blue dots in region I in figure 5.1). (d)
Body-fitted cut of the acoustic modes S3− and S3 in a wall-parallel plane at ≈ 4δ99.

figure 5.5(a) and denoted by S1–S6. All modes are visualized by the amplitude distribution
of the chordwise velocity v in the x-y-plane. The unstable (S1) and the marginally stable
mode (S2) reveal a dominant spatial structure downstream of the detached bow shock, and this
structure decays toward the surface of the body; the bow shock acts as a flexible “wall” which
prevents sound waves from traveling upstream of the shock. More stable modes (S3–S6) are
more pronounced in the half of the physical domain which is adjacent to the body, and they
exhibit smaller spatial structures as they are increasingly tilted and damped; the smaller the
spatial structures, the larger is the (local) chordwise “wavenumber” α and thus the propagation
angle of the oblique traveling acoustic waves. This feature is clearly visible in figure 5.5(c), where
we present a body-fitted cut of the modes S3, S4 and S5 at a plane parallel to the parabolic
body.

The unstable mode S1 exhibits a small value of α and thus displays an approximately two-
dimensional wave traveling in the spanwise z-direction. This mode further shows no strong
interaction with the shock; rather, the bow shock reacts to the structure of the mode by adjusting
its spatial shape. However, for larger values of α, the oblique traveling acoustic waves strongly
interact with the bow shock resulting in a small energy loss (S2, S3). Finally, for even larger α
structures close to the parabolic body prevail (S4, S5 and S6). To aid the reader in comparing
the different coordinates of figure 5.5(b) and (c) we provide a table showing the equivalence
of the Cartesian x-coordinate and the body-fitted arclength sw(x) for selected values of x (see
table 5.2).

In figure 5.6, we present a comparison of three acoustic global modes belonging to the S-
and A-branch of the fast-moving set of acoustic modes (see region II in figure 5.1) as well as an
acoustic mode from the corresponding slow-moving symmetric branch (marked by blue dots in
region I in figure 5.1). As an example we concentrate on the mode S3 and its associated mode
A3 (see dashed line in figure 5.5a). From the slow-moving set of acoustic modes we choose the

Table 5.2. Values of the body-fitted arclength coordinate sw(x) as a function of the Cartesian x-coordinate
for 0 ≤ x ≤ Lx: sw(x) =

√
x

p
x + R/2 + R/2 ln((

√
x +

p
x + R/2)/

p
R/2) along the wall. For the present

investigation we have R = 0.1 [m], Lx = 0.4 [m] and δ = 1.9677 · 10−4 [m].

x/R 0 0.5 1 1.5 2 2.5 3 3.5 4

sw/δ 0 583 914 1215 1503 1784 2061 2334 2604
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image mode (denoted by S3−) to S3, i.e., the mode with the identical decay rate ωi as S3 but
with a frequency ωr corresponding to a spanwise velocity of w ≈ w2 − c2. Regarding the spatial
shape of these three modes it is found that the sign of the pressure distribution sign(p) is nearly
identical (see figure 5.6). Besides the above-mentioned chordwise symmetric/anti-symmetric
structure of these modes the two fast-moving modes exhibit a characteristic wall layer that
decreases as we proceed downstream from the attachment line (figure 5.6a,b); this feature is
absent for the slow-moving mode S3− (figure 5.6c). Furthermore, the body-fitted cuts of S3−

and S3 in figure 5.6(d) show the upstream (≈ w2 − c2) and downstream (≈ w2 + c2) moving
character of the acoustic modes.

5.3.2 Acoustic instabilities (type B)

In addition to the acoustic modes presented in section §5.3.1, another type of global acoustic
modes exists. The dominant part of these modes lies in the freestream, and they display a
characteristic structure in a local region between the detached bow shock and the attachment
line (see figure 5.7). Starting with the global mode in figure 5.7(a), which represents the first
mode A1 of the A-branch shown in the previous section §5.3.1, we again observe a symmetric
spatial distribution for the chordwise velocity component v in the freestream (visualized by the
sign of v). As we proceed along the eigenvalue branch marked in black in figure 5.7(g), an
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Figure 5.7. (a)–(f) Sample of a further type of global acoustic modes visualized by the sign of the chordwise
velocity, sign(v), in the x-y-plane; sonic line, i.e., Ma = (u2 + v2)1/2/c = 1, in red. (g) The black dots display
the corresponding eigenvalues in the global spectrum (see region III in figure 5.1); the eigenvalues circled in green
belong to the global modes (a)–(f).
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interesting behavior emerges. It appears that a localized region between the bow shock and
the attachment line decouples itself — in terms of distinct spatial scales — from the regions
downstream from the attachment line. This decoupling is already visible, even though barely, in
figure 5.7(a) directly behind the bow shock at x = 0. Progressing further along the eigenvalue
branch this feature becomes more pronounced as the localized region further extends in a semi-
circular fashion from its point of origin towards the body, and as the structure within shows
increasingly finer scales (see figure 5.7b–f). It appears that the symmetry properties of the
structures inside and outside the localized region are uninfluenced by each other. The range
of scales, on the other hand, indicates a link between the two regions: generally speaking, the
smaller the scales inside the localized region, the coarser the structures on the outside (see
figure 5.7d–f).

This type of modes is believed to account for the interaction of a moving flexible shock
and a rigid curved surface, and these modes are reminiscent of localized standing waves. The
increasingly finer spatial scales of the higher-order modes are linked to higher damping rates.
The localized spatial shape of the modes is also influenced by the different reflective behavior
(impedance) of acoustic waves by the curved solid surface (perfect reflection) and the curved
flexible shock (imperfect reflection).

5.4 Wave packet modes – region IV

Returning to the global spectrum in figure 5.1 a distinct set of eigenvalues centered around
the mean spanwise velocity is clearly visible. This region IV is again plotted in figure 5.8(a),
and it shows a dense clustering of damped eigenvalues confined to a triangular-shaped region.
The exact location of individual eigenvalues within this region is highly sensitive to numerical
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Figure 5.8. (a) Computed region of the global spectrum containing the eigenvalues belonging to wave packet modes
(see region IV in figure 5.1). (b) Three representative wave packet modes (W1, W2 and W3) are visualized by
the (normalized) chordwise velocity v; attachment line in black.
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Figure 5.9. Amplitude distribution of the three wave packet modes shown in figure 5.8: (a) W1, (b) W2 and (c)
W3. The modes are visualized using cross-cut profiles at the attachment line (in black) and at selected positions
near the attachment line.

details. For this reason, it can be assumed, and will be later argued, that this part of the
spectrum consists of an area which is progressively filled by the discrete eigenvalues as the
numerical parameters (resolution, starting vector, Cayley parameters, convergence tolerances,
etc.) but not the physical parameters are varied.

The location and distribution of the eigenvalues in region IV suggest a link to the continuous
spectrum, familiar from boundary layers (Grosch and Salwen, 1978; Balakumar and Malik,
1992) and other semi-infinite and bi-infinite viscous shear flows. In the boundary-layer case, the
continuous spectrum can be determined by a constant coefficient Orr–Sommerfeld equation for
the freestream. Its solutions are given by bounded exponential and trigonometric functions; the
location of the spectrum is defined by a line parameterized by a wall-normal wavenumber.

In contrast, our governing equations evaluated in the freestream still retain a dependence on
the wall-normal coordinate via the non-uniform base velocity. As a consequence, the solutions
in the freestream are no longer wave trains (as, for instance, in the boundary layer) but rather
localized wave packets. As an example, three representative modes (W1, W2 and W3) from
region IV are displayed in figure 5.8(b) which show the spatial distribution of v in the normal
direction in form of a wave packet; this property is even more visible in figure 5.9 where we
present cross-cut profiles of W1, W2 and W3 in the normal direction near the attachment
line. These cross-cuts also demonstrate that the wave packet modes extend into the boundary
layer (see figure 5.9, on the right) and thus establish a connection between boundary-layer and
exterior perturbation dynamics. They are thus certain to play a critical role in the receptivity of
boundary-layer instabilities to the external disturbance environment (see, e.g., Zaki and Durbin,
2005).

A consequence of the wave packet shape is its parameterization by two variables, a wall-
normal local wavenumber and the location of the wave packet peak (Trefethen, 2005; Obrist
and Schmid, 2009). For this reason, the associated continuous spectrum is area-filling as the
continuous spectrum for the boundary layer was line-filling due to only one variable, the wall-
normal local wavenumber.
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Figure 5.10. (a) Computed region of the global spectrum containing the shock-related modes (see region V in
figure 5.1). (b) Spatial structure of a sample of associated global modes belonging to the eigenvalues M1, M2 and
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Figure 5.11. Three-dimensional visualization of the three shock-related global modes M1, M2 and M3 displayed
in figure 5.10.

5.5 Shock-related modes – region V

The DNS-based global stability solver uncovered a fourth type of global modes. These modes
appear to be always unstable and to feature near zero frequency (ωr ≈ 0). The relevant region V
in the global spectrum (see figure 5.1) is shown in figure 5.10(a). The spatial structure of three
representative modes (M1, M2 and M3), visualized by the pressure, is displayed in figure 5.10(b).
These modes are found (i) to be symmetric with respect to the attachment line, (ii) to exhibit
their largest amplitude — which is rather erratic in the downstream direction — at the grid
line defining the inflow boundary, and (iii) to feature small and oscillating structures near the
attachment line; the latter structures are more pronounced for less amplified modes. The listed
features are more evident in figure 5.11. Furthermore, the particular spatial distribution of the
global modes indicates a strong interaction between the detached moving bow shock and the
surface of the body; hence, the notion shock-related global modes. Moreover, the observation
that these modes disappear if the shock-fitting technique is replaced by a non-reflecting boundary
condition at the inflow boundary confirms this conjecture.

However, even though these global modes exhibit a characteristic and mostly smooth spa-
tial shape, the corresponding eigenvalues, in particular the growth rate ωi, are not converged.
Instead, the growth rate varies randomly between 0 . ωi . 5 when changing the parameters
of the DNS-based global stability solver1 (m, k and ǫ0; not tolA), the grid resolution (n1, n2)

1The untransformed Arnoldi method was used to delineate the effects of the parameters m, k, tolA and ǫ0
from those of the Cayley transformation.
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as well as the physical parameters (β, Res and Mas). Thus, further investigations are required.
Moreover, the presence of these modes leads to serious convergence problems for the Arnoldi
method, in particular, if no transformation is applied.

5.6 Parameter studies

Compressible flow around a swept parabolic body is governed by a large number of parame-
ters (see section §2.2.2) describing various flow quantities, fluid properties and geometric char-
acteristics of the flow configuration. For a particular choice of parameters, i.e., Res = 800,
ReR = 129136, Mas = 1.25, θw = 1 and β = 0.314, the global spectrum (see figure 5.1) revealed
that the only temporal instabilities arise from boundary-layer and/or acoustic modes. To gain
further insight into the global stability properties of both types of instabilities, we present a
parametric study of their stability behavior by varying the spanwise disturbance wavenumber
β = 2π/Lz and the leading-edge Reynolds number ReR. In particular, we focus on the stability
of the global modes in region I and II in figure 5.1.

The first parametric study allows us to investigate the linear stability of a computed base
flow with respect to spanwise-propagating perturbations with a fundamental length scale Lz.
The second parametric study assesses the influence of the leading-edge Reynolds number ReR,
via the leading-edge radius R, on the stability of the flow. This influence is particularly impor-
tant for the global stability of the boundary-layer modes since curvature effects have a strong
impact on the stability of boundary-layer modes as discussed in section §1.1.2 and §1.1.3. Such
a study requires, for each value of ReR, the computation of a steady base flow, even though
the freestream conditions remain fixed. While for these two parameter studies the freestream
conditions remain unchanged, investigating the influence of additional parameters (sweep an-
gle, sweep Mach number, wall temperature ratio, etc.) requires a substantial effort owing to
the added complication of a nonlinear dependence of the these parameters on the freestream
conditions (see section §2.2.2 for details).

Influence of the spanwise disturbance wavenumber β

The computed temporal spectra of the (most unstable) boundary-layer modes for selected span-
wise wavenumbers 0.071 ≤ β ≤ 0.349 are shown in figure 5.12(a). For a given value of β, the
frequency ωr and its corresponding growth rate ωi reveal an unstable discrete branch as dis-
cussed in section §5.2. Each branch displays a maximum value of the growth rate ωi, and this
value appears to grow steadily up to a wavenumber β = 0.213 before decaying again (see cross-
flow branch in figure 5.13a); the same figure 5.13(a) indicates that the boundary-layer modes
are unstable for 0.061 ≤ β ≤ 0.363. Such a dependence of ωi on the spanwise disturbance
wavenumber β is typical for boundary-layer instabilities and, for instance, has been reported by
Lin and Malik (1996) for attachment-line instabilities.

By adjusting the parameters in the Cayley transformation of our DNS-based global stability
solver, we are also able to focus on the computation of fast-moving acoustic modes (see region
II in figure 5.1). In figure 5.12(b), we present the influence of β on the stability of these modes.
We observe clusters of discrete acoustic eigenvalues where the least-stable mode belongs to the
S-branch (see section §5.3.1 for details). This mode is, similar to the most unstable boundary-
layer mode, unstable for a specific range of spanwise wavenumbers 0.118 ≤ β ≤ 0.585 (see
acoustic branch in figure 5.13a). It is furthermore evident from the same figure 5.13(a) that the
overall prevailing instability can come from either branch depending on the spanwise scale of
the perturbation.
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Figure 5.13. Influence of β on the maximum growth rate ωi,max for boundary-layer (in red) and acoustic insta-
bilities (in blue) for selected values of the leading-edge Reynolds number ReR; unstable half-plane in grey.

Influence of the leading-edge Reynolds number ReR

The influence of the leading-edge Reynolds number ReR on the global stability of the flow
is demonstrated in figure 5.13. As expected, a stabilizing effect due to a convex curvature
parameterized by the leading-edge radius R has been found as ReR is decreased from 129136
(see figure 5.13a) to 18160 (see figure 5.13f)2. This observation is in accordance with wind-tunnel

2As mentioned in section §2.2.2, variations in the leading-edge Reynolds number ReR cause a proportional
change in the leading-edge radius R (as well as in the sweep Reynolds number Res) — see equation (2.7) — and,
as a consequence, Res decreases from 800 to 300 (with a step size of 100) as ReR is decreased from 129136 to
18160 (see table 5.3).

ReR =
1

2

„
R

δ

«2

= 2

„
Res

tan Λ2

«2
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Table 5.3. Overview showing the values for the sweep Reynolds number Res, the leading-edge Reynolds number
ReR, the non-dimensionalized leading-edge radius R/δ and the viscous length δ for selected parameter choices.
The parameters R̄∗ and ReD,∞ represent alternative definitions for the Reynolds number.

Res ReR R/δ δ in 10−4 [m] R̄∗ ReD,∞ × 105

800 129136 508 1.968 840 35.3
700 98870 445 2.249 735 27.0
600 72639 381 2.624 630 19.6
500 50444 318 3.148 525 13.8
400 32284 254 3.935 420 8.8
300 18160 191 5.247 315 5.0
200 8071 127 7.871 210 2.2

experiments on a swept wing as reported in Bippes (1999) and with theoretical studies on the
effect of leading-edge curvature using local models of the attachment-line boundary layer (Lin
and Malik, 1997).

Furthermore, the results in figure 5.13 show that the boundary-layer modes (denoted by
crossflow branch) exhibit significantly larger growth rates ωi than the acoustic modes for large
values of ReR. These growth rates decay linearly with ReR, and the maximum growth rate
ωi,max is always found at a critical spanwise wavenumber of β = 0.213 (see dashed lines in
figure 5.13). The acoustic modes, on the other hand, show rather weak growth rates, do not
scale linearly with ReR and do not show a Reynolds number independent critical value of β.

To aid the reader in comparing the present findings with results from the literature we given
an overview showing the values for the present definition of the sweep Reynolds number Res

and the leading-edge Reynolds number ReR as well as the corresponding values from alternative
definitions of the Reynolds number in table 5.3. In this table, R̄∗ denotes the sweep Reynolds
number

R̄∗ =

(
u2R

2ν∗

)1/2

tan Λ2, (5.2)

where the kinematic viscosity ν∗ is evaluated at a reference temperature T ∗ as proposed by Poll
(1984) (reference temperature concept for compressible flows). This reference temperature is
obtained by

T ∗ = Te + 0.1(Tw − Te) + 0.6(Tr − Te) (5.3)

with the Te, Tw and Tr as the temperature at the boundary-layer edge, the temperature at the
wall and the recovery temperature, respectively. The freestream Reynolds number ReD,∞ is
defined as

ReD,∞ =
q∞D

ν∞
, (5.4)

where D denotes the length scale (the diameter of a circular cylinder) and ν∞ stands for the
kinematic viscosity in the freestream.

The neutral curve

The neutral curve for supersonic flow about a swept parabolic body is presented in figure 5.14.
In this figure, we display contours of constant growth rate ωi for the boundary-layer modes (red
lines) and the acoustic modes (blue lines). The presence of unstable global modes of boundary-
layer as well as acoustic type yields a composite neutral stability curve delineating parameter
regimes across which either boundary-layer or acoustic modes change from stable to unstable —
this feature was already discussed in figure 5.13 which shows cross-cut profiles of the neutral curve
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Figure 5.14. Neutral curve for supersonic flow about a swept parabolic body for a sweep Mach number Mas = 1.25
and an adiabatic wall (boundary-layer modes in red, acoustic modes in blue); the thick contour lines represent
zero growth (ωi = 0); contour spacing for the boundary-layer modes ∆ωi = 1, contour spacing for the acoustic
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for selected values of Res. Boundary-layer instabilities prevail for small spanwise wavenumbers
β and cease to exist below a critical Reynolds number of Res,crit ≈ 377 (for β = 0.213). For
rather large values of the spanwise disturbance wavenumber β acoustic instabilities dominate
the linear stability of the flow even for sweep Reynolds numbers Res,crit < 377. However, for
Res < 195 acoustic instabilities cease to exist as well.





Chapter 6

Conclusions and outlook

The present thesis attempts, for the first time, a global stability analysis of compressible flow
about a swept parabolic body. What has initially been motivated by the goal to extent our
current knowledge of swept leading-edge flow in general and our still incomplete understanding
of boundary-layer transition on blunt bodies in particular, not only led to new insight into
boundary-layer instabilities but also revealed a number of new types of instabilities. A profound
understanding of all involved instability mechanisms is crucial for an efficient design and a
proper performance of, for instance, high-performance aircraft. A necessary prerequisite to
perform such a comprehensive study of swept leading-edge flow was the extension of available
numerical techniques and the development of an advanced and powerful simulation-based global
stability solver.

Considerable progress in computational resources and the invention of high-performance
iterative techniques for the efficient solution of large-scale eigenvalue problems allowed us to
develop such a technique in this thesis in form of a DNS-based global stability solver. This
solver represents a robust and powerful numerical tool to extract stability information directly
from numerical simulations. It features a matrix-free implementation, a spectral transformation
to access selected parts of the global spectrum as well as preconditioning techniques in order
to robustify the solver and to enhance its performance. Even though the complexity of a DNS-
based global stability analysis goes far beyond the complexity of direct numerical simulations
(DNS), the limitations and shortcomings of local or simplified flow models and the promise of
obtaining new results call for the combination of these two techniques; in other words, such a
tool can produce quantitative flow characteristics whose contribution to our understanding of
fluid behavior far surpasses existing ones.

In our studies, flow in the leading-edge region of a yawed blunt body is modeled by com-
pressible flow about a swept parabolic body. This flow model treats the flow in the vicinity
of the stagnation line and the region further downstream as one entity. This is in contrast to
previous theoretical and numerical studies where both regions have been studied separately —
a necessary approach to apply standard techniques — using distinct simplifying local flow mod-
els. Results from these local investigations still constitute most of our current understanding of
swept leading-edge flow despite a number of unanswered but practically relevant questions. In
this sense, this thesis attempts to address some of these questions using a flow model that closer
approximates a realistic flow situation. To compute the flow fields direct numerical simulations
of the nonlinear governing equations are performed using shock-fitting, moving curvilinear grids
and higher-order compact schemes.

The global stability solver has then been applied to explore different regions of the global
spectrum and to compute the associated instabilities. This spectrum provides a complete picture
of the temporal perturbation dynamics of the flow, and a wide and rich variety of modes has been
uncovered: boundary-layer modes, different types of acoustic modes, wave packet modes and

65
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shock-acoustic interaction modes. Each type of these modes has been cataloged and analyzed as
to their symmetry, spatial location and physical significance. For instance, the spatial structure
of the boundary-layer modes demonstrated, for the first time in a definitive manner, a connection
between instabilities in the vicinity of the stagnation line and the crossflow vortices further
downstream. This finding was a direct consequence of using a more comprehensive model for
swept leading-edge flow and studying its stability by applying a global stability approach.

A parameter study varying the spanwise wavenumber and the sweep Reynolds number re-
produced a preferred spanwise length-scale and a critical Reynolds number for a boundary-layer
or acoustic instability. For certain parameter choices, the acoustic modes have been found to
dominate the boundary-layer modes. Finally, the critical sweep Reynolds number for boundary-
layer instabilities was found to lie in the subcritical regime and to approach the measured critical
value for large-amplitude perturbations. This finding strongly suggests that the for decades un-
explained gap between theory and experiments can now be closed by investigations based on a
proper global stability analysis.

Outlook

The results presented in this thesis amply demonstrate that a global stability approach combined
with a proper flow model is the method of choice for analyzing the stability behavior of complex
flows in complex geometries. In particular, the novel findings in this thesis should provide enough
motivation for further studies on flow about a swept parabolic body. As an example, two specific
issues would be worth investigating: the temporal evolution of a superposition of boundary-layer
modes to assess non-modal effects and localized convective behavior, and the influence of an angle
of attack on the stability behavior of the flow. It is known from experimental and numerical
studies that the properties of the flow are altered appreciably if a non-zero angle of attack α is
considered and that beyond a certain value of α, the flow exhibits a separation bubble in a region
downstream from the stagnation line. This separation bubble is a consequence of changes in
the chordwise pressure gradient, and it is known from boundary-layer flows that it significantly
affects the inherent stability properties of the flow. Such a study is also very important from
an engineering point of view since virtually any flow situation encountered for aerodynamically
loaded bodies, such as wings or blades, features a non-symmetric flow configuration.

The specific example of compressible flow about a swept parabolic body, as presented in this
thesis, clearly demonstrates the feasibility and potential of a DNS-based global stability concept.
From an even more general point of view, simulation-based flow analysis is expected to evolve
into a powerful and important tool to investigate fluid behavior. Receptivity, sensitivity and
input-output behavior are among these analyses where a simulation-based approach would open
the range of applications. In this case, flow fields from simulations will provide the input data
for the analysis, and consequently we may be able to analyze complex flows that we can simulate
with a sufficient degree of accuracy and fidelity. This same general concept of simulation-based
analysis can easily be extended to process flow fields from other simulation techniques, such
as large-eddy simulations (LES) or detached-eddy simulations (DES). It is thus necessary to
advance simulation techniques as well as efficient algorithms for large-scale linear systems. As a
final statement, it is hoped that simulation-based flow analysis, as demonstrated in this thesis,
will mature into a valuable tool and will have a significant impact on complex flow applications
of academic and industrial interest alike.
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would like to deeply thank the directors of that institution, Patrick Huerre and Jean-Marc
Chomaz, for their warm hospitality and support. Large parts of the research have also been
conducted during stays at the University of Washington (UW), Seattle, the Technische Uni-
versität München (TUM) and the Universität der Bundeswehr München (UniBwM), and all
institutions as well as their directors are thanked for welcoming and supporting me. Financial
support from the Deutsche Forschungsgemeinschaft (DFG) and the German National Academic
Foundation (Studienstiftung des Deutschen Volkes) is gratefully acknowledged.

A number of people have vitally contributed to this project, and, first of all, I want to express
my deep gratitude to Prof. Peter Schmid. Peter, it want to say “Thank you very much!” for the
continuous support and the patient way you were guiding me throughout my doctoral thesis.
It has always been strongly motivating and stimulating to see your thoroughgoing attitude and
enthusiasm about teaching and scientific research, and it was an honor and pleasure for me to
discuss scientific and everyday matters alike.

I am also very thankful to Prof. Rainer Friedrich for the personal and professional support
I received at the “Fluid Dynamics Group” (TUM). I would furthermore like to express my
appreciations to Prof. Jörn Sesterhenn for his support while I was staying at the “Institute of
Numerical Mathematics” (UniBwM) and for providing information and suggestions regarding
the numerical simulations as well as the vast body of literature on the stability of swept leading-
edge flow. In addition, I want to express my gratitude to Prof. Jean-Paul Bonnet, Prof. Patrick
Huerre, Dr. Dominik Obrist and Prof. Nigel Peake for being part of my jury.

My research activities at several universities not only allowed me to experience different
cultures and various academic institutions but also to get to know a large number of people.
At this point I have to mention my dear friend and officemate Jan Schulze (le bird). Thanks
a lot for the enriching discussions and the generous support no matter if it was about research
or teaching. It was great to hang out with you. I further want to thank the former colleagues
from the TUM: Christoph, Inga, Aaron and Somnath, as well as my fellows from the UniBwM:
Gisela, Olivier and Alex, for their kind support and for sharing knowledge. To this day, I still
very much appreciate the time I could spent at the “Department of Applied Mathematics” (UW)
in Seattle, and I want say “Thanks guys!” for your kindness and hospitality during my stays.
Special greetings go to my bodies Jon, Damon, Rafa and master Will.

“Cher labo”, it was a great pleasure for me to be part of the LadHyX team. It is a wonderful
place to study the fundamentals of fluid mechanics, to meet open-minded people and to discuss
the particularities of the French way of life (“Le trafic du RER B est fortement perturbé”). In a
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68



69

Short-term stays and the need for housing in Paris appeared to be as challenging as solving
global stability problems, and I want to express my sincere thanks to all of those who gave me
shelter while I was a SDF: Joe, Beatrix and Hagay, Karin, Rémi, Mat, Ben, Cristóbal, Olivier,
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Summary of Articles

Article 1: Direct numerical simulations of hypersonic flow about
a swept parabolic body

C. J. Mack and P. J. Schmid

A three-dimensional model for compressible flow in the leading-edge region of a swept blunt
body is presented. Direct numerical simulations (DNS) are then performed to compute the
flow fields by resolving all spatial scales. The implemented DNS-code solves the compressible
Navier–Stokes equations and features a body-fitted moving grid, a shock-fitting technique as
well as high-order compact schemes. Results from flow simulations and stability analyses are
presented.

Article 2: A preconditioned Krylov technique for global
hydrodynamic stability analysis of large-scale compressible flows

C. J. Mack and P. J. Schmid

A robust and effective DNS-based global stability solver is developed to investigate the lin-
ear temporal stability of large-scale compressible flows. This solver combines iterative Krylov-
subspace methods and direct numerical simulations (DNS) — using a matrix-free implementation
— and additionally features a spectral transformation of the complex eigenvalue plane as well
as preconditioning techniques. Such a transformation adds the required flexibility to our global
stability algorithm and thus allows access to specific parts of the full global spectrum. The
performance of the algorithm is demonstrated on two flow cases, a compressible mixing layer
and compressible flow about a swept parabolic body.

Article 3: Global stability of swept flow around a parabolic
body: connecting attachment-line and crossflow modes

C. J. Mack, P. J. Schmid and J. L. Sesterhenn

The global linear stability of compressible flow about a swept parabolic body of infinite span
— the flow model presented in “Article 1” — is investigated using the DNS-based iterative
eigenvalue method developed in “Article 2”. The computed global spectrum shows an unstable
eigenvalue branch consisting of boundary-layer modes whose amplitude distributions exhibit
typical characteristics of both attachment-line and crossflow instabilities. The presented results
furthermore establish a link between these two instability mechanisms which, so far, have only
been studied separately and locally.
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Article 4: Global stability of swept flow around a parabolic
body: features of the global spectrum

C. J. Mack and P. J. Schmid

The computed global spectrum provides a comprehensive picture of the temporal perturbation
dynamics of the flow and, as a result, a wide and rich variety of modes has been uncovered:
stable and unstable boundary-layer modes, different types of stable and unstable acoustic modes
and stable wave packet modes have been found. A parameter study varying the spanwise
perturbation wavenumber and the sweep Reynolds number reproduced a preferred spanwise
length-scale and a critical Reynolds number for a boundary-layer or acoustic instability. Convex
leading-edge curvature has been found to have a strongly stabilizing effect on boundary-layer
modes but only a weakly stabilizing effect on acoustic modes. Furthermore, for certain parameter
choices, the acoustic modes have been found to dominate the boundary-layer modes.

Article 5: Global stability of swept flow around a parabolic
body: the neutral curve

C. J. Mack and P. J. Schmid

The onset of transition in the leading-edge region of a swept blunt body such as a swept aircraft
wing crucially depends on the stability characteristics of the flow. For this reason, the parameter
study in “Article 4” has been extended. The resulting neutral curve displays two overlapping
regions of exponential growth and two critical Reynolds numbers, one for boundary-layer insta-
bilities and one for acoustic instabilities. Furthermore, global modes combining features from
both boundary-layer and acoustic instabilities are presented and discussed. In conclusion, the
employed global stability approach is expected to shed more light on the rich perturbation
dynamics of swept leading-edge flow, particularly, in the subcritical regime.
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Direct numerical simulations of hypersonic flow

about a swept parabolic body

By C. J. Mack1,2 and P. J. Schmid1

1Laboratoire d’Hydrodynamique (LadHyX), CNRS-École Polytechnique,
F-91128 Palaiseau, France

2Department of Numerical Mathematics, Universität der Bundeswehr (UniBw),

D-85577 Munich, Germany

Published in Comput. Fluids (2009), submitted

Direct numerical simulations (DNS) of hypersonic flow about a swept parabolic body have been
performed to compute flow in the leading-edge region of a swept blunt body. The implemented
direct numerical simulation code solves the compressible Navier–Stokes equations and features
a body-fitted moving grid, a shock-fitting technique as well as high-order compact schemes to
spatially resolve all dynamic scales. Flow simulations have been conducted, and it has been
shown that results from direct numerical simulations can provide the required input for various
types of flow analyses such as studies of flow stability and receptivity. The accuracy of these
types of analysis, however, critically depends on the quality of the simulations, and special
care has to be taken to capture the relevant physical features. In our case, three-dimensional
direct numerical simulations have been performed to compute the unsteady flow about a swept
parabolic body, and the obtained results provided the motivation and guidance for a DNS-based
linear stability analysis. This investigation is only one of many examples where (direct) numerical
simulations combined with quantitative flow analysis techniques provide a more comprehensive
insight into the governing physical processes of a complex flow.

1 Introduction

Over the past decades direct numerical simulations (DNS) have established themselves as a
widely used tool in computational fluid dynamics to address and study complex flow problems.
They aim at capturing all relevant physical features of the flow by spatially resolving all dy-
namic scales and thus limiting modeling efforts to a minimum. Owing to progress both in terms
of hardware, notably with the availability of supercomputers, and software, such as fast and
efficient algorithms, the solution of large-scale flow problems has become feasible. Consequently,
the applications of state-of-the-art direct numerical simulations are truly impressive in scope
and complexity, ranging from flows in complex three-dimensional geometries to flows which
are governed by multiple spatio-temporal scales, from reactive to acoustically-dominated flows,
from particle-laden flows to flows with complex material properties. The numerical techniques
to treat such a variety of flow problems are equally impressive. Moving grids and adaptive
mesh refinement, higher-order compact schemes, shock-capturing and shock-fitting techniques
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and efficient time-advancement methods are nowadays commonplace in computational fluid dy-
namics. Fast elliptic and iterative solvers, and their parallel implementations, even taking into
account specific hardware architectures, are part of a sophisticated, comprehensive, but readily
accessible toolbox to consider the even most challenging flow applications. It should not come
as a surprise then that high-quality data produced by direct numerical simulations is available
for a large number of flow cases of academic and industrial interest. However, it has to be
acknowledged that data of such amount and detail contains far more useful information than
can be obtained by inspection alone. In this sense, a successful direct numerical simulation of a
complex flow problem should less be a result by itself but rather provide the starting point for
a quantitative analysis.

The goal of any scientific study of a fluid-dynamical process is not in the reproduction of
its physical features by direct numerical simulations but in the extraction of the governing
underlying mechanisms from the data the DNS produces. In other words, we are interested in
the intrinsic flow behavior captured by the dynamics of coherent structures. Traditionally, flow
behavior has been described by its response to initial conditions and external excitation, leading
to stability and receptivity analysis, respectively. In recent years, the manipulation of fluid flow
by passive or active means has joined these more traditional approaches and introduced concepts
of sensitivity, optimization, control and model reduction to yield a more encompassing definition
of flow behavior. In this article, we will concentrate on the stability behavior of hypersonic flow
about a swept parabolic body and demonstrate the concept of DNS-based stability analysis. In
its simplest form DNS-based stability analysis consists of the long-term evolution of a small-
amplitude initial perturbation which in general converges toward the least-stable eigenfunction.
Mathematically, this procedure corresponds to a power iteration based on the linear (Jacobian)
stability matrix. If more information about the modal structure of the flow is required or
desirable, an iterative Krylov technique such as the Arnoldi method (Edwards et al., 1994;
Mack and Schmid, 2010) has to be applied. In this technique, repeated application of the
linear stability matrix to selected flow fields produces a low-dimensional representation of the
full stability matrix whose eigenvalues can then be evaluated by direct means. Again, this is
an example of combining DNS with a quantitative flow analysis technique. In our case, the
direct numerical simulation provides the product of the Jacobian matrix and specific flow fields
via a matrix-free implementation (Mack and Schmid, 2010). Our specific flow configuration
is governed by a rich perturbation dynamics consisting of multiple instabilities at a variety of
temporal and spatial scales (Mack, 1984; Bippes, 1999) and thus requires both a flexible and
robust (global) stability solver and high-quality flow fields from simulations that capture all
relevant physical features.

Hydrodynamic stability theory plays a central role especially in transition research of open
and wall-bounded shear flows. Our understanding of hydrodynamic instabilities and transition
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scenarios is mainly based on a remarkable body of literature for local flow models and simpli-
fying assumptions, such as swept Hiemenz flow for flow near the attachment line of a swept
blunt body or three-dimensional boundary-layers for flow over swept wings. Nevertheless, for
even moderately complex flow configurations these (local) models are often not sufficient to fully
describe or capture the global flow behavior. The rationale for using local models — the con-
straints imposed by a lack of computer resources and algorithms to treat high-dimensional and
multi-physics flows — is no longer a valid argument, as high-performance computers and fast
algorithms are readily available. It is thus timely to extend our knowledge of transition scenarios
for simple generic geometries (e.g., boundary layers, channel flows, open shear flows) to config-
urations that include a substantially larger range of physical phenomena and that represent a
closer approximation to realistic flow situations. As guidance for such an investigation we rely
on the roadmap suggested by Morkovin et al. (1994) (see figure 1) which has been deduced from
an abundance of experiments and numerical simulations (see Reshotko, 1994, and references
therein). It consists of a conceptual link between environmental disturbances and the onset of
breakdown to turbulent fluid motion via five distinct paths. Even though, for hypersonic flow
about a swept blunt body multiple instability scenarios or a combination thereof are conceivable,
we will concentrate on the low disturbance environment case given by path A (see figure 1 in
grey). This path is characterized by (i) receptivity of the laminar flow to external perturba-
tions, (ii) linear modal growth of boundary-layer-type instabilities, followed by (iii) nonlinear
breakdown into turbulence.

In our analysis, we can rely on a vast body of literature on the receptivity (see, e.g., Zhong
and Tatineni, 2003; Haddad et al., 2005, for an overview) as well as on the stability of swept
attachment-line and boundary-layer flows (see, e.g., Joslin, 1996; Saric et al., 2003; Le Duc et al.,
2006, in references therein). In particular, stability investigations using results from direct nu-
merical simulations consist of the work by Spalart (1988) who was the first to perform direct
numerical simulations (DNS) of the incompressible attachment-line boundary-layer flow (swept
Hiemenz flow model) in order to confirm the findings of theoretical studies for the temporal
framework, i.e., the existence of attachment-line instabilities. This was followed by a study of
crossflow instabilities (Spalart, 1990) using a rather large computational domain in the chord-
wise direction to accommodate the developing crossflow vortices. The spatial framework was
addressed by Joslin (1995) who obtained, similar to Spalart (1988), the results found by linear
stability theory based on a similarity solution. In a subsequent DNS study, Joslin (1996) con-
firmed the existence of higher-order polynomial modes. The linear as well as nonlinear regime for
perturbations in incompressible attachment-line boundary layers has been treated by Theofilis
(1998). Theofilis et al. (2003) used direct numerical simulations to confirm theoretical results
for higher-order modes, i.e., an extention of the common Görtler–Hämmerlin model (Hall et al.,
1984). Compressibility effects on the attachment-line boundary-layer flow have been addressed
recently by Le Duc et al. (2006) for the temporal setting. The majority of the direct numerical
simulations mentioned above was motivated by a desire to verify local modal stability results,
and for this reason local models have also been adopted for the numerical simulations. Attempts
to incorporate compressibility, wall temperature effects as well as curvature into stability calcu-
lations of swept blunt bodies were undertaken by, e.g., Kazakov (1990) and Lin and Malik (1995,
1997), but despite significant efforts a uniform generic model is still missing. In summary, it
can be stated that investigations of the stability behavior of flow about swept blunt bodies have
mainly used two local models: the flow near the attachment line and the crossflow-dominated
three-dimensional boundary-layer flow further downstream from the attachment line (see Saric
et al., 2003; Bonfigli and Kloker, 2007, and references therein).

The availability of the necessary tools for a global approach to flow around swept blunt bodies
as well as the shortcomings of the two local models in providing global information about the
flow behavior (Mack et al., 2008) motivates and suggests a DNS-based global stability analysis
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Figure 2. (a) Sketch of a swept blunt body showing the attachment line (in black), the leading-edge region (in
dark grey), the oncoming velocity q∞ and the freestream angle Λ (yielding a sweep velocity w∞) as well as the
local Cartesian coordinate system. (b) Sketch of the three-dimensional flow model showing the parabolic body (in
grey), the employed coordinate systems and the body-fitted computational grid with its grid-point distribution
(in blue). (c) Schematic of the physical domain, its boundary conditions and the relevant geometric parameters.

as already outlined above. For a successful analysis of this type three requirements have to
be satisfied: (i) the flow fields from direct numerical simulations have to be of sufficiently high
quality to capture all relevant physical scales and phenomena, (ii) the algorithms processing
these flow fields to extract stability information have to be flexible, efficient and robust (Mack
and Schmid, 2010), and (iii) a flow model (geometric configuration, governing equations, material
properties, etc.) has to be chosen that approximates, as closely as possible, the realistic flow
situation in size and complexity. Our flow model for hypersonic flow about a swept blunt body,
together with the governing parameters and equations, is presented in section §2. This is followed
by a description of the implementation of our direct numerical simulation (section §3), and we
show results of flow simulations as well as stability computations in section §4.

2 Flow model - hypersonic flow about a swept parabolic body

For the present investigations we consider hypersonic flow about a swept parabolic body of
infinite span (see figure 2b) to model flow in the leading-edge region of a swept blunt body (see
figure 2a). Such flows form a local stagnation flow near the attachment line, and the presence
of sweep considerably alters the flow as it leads to a three-dimensional highly-curved boundary-
layer flow further downstream. In this model, the oncoming flow impinges onto the body with a
velocity q∞ and a sweep angle Λ yielding a sweep velocity w∞. The local Cartesian coordinate
system (in red) is given by the x-, y- and spanwise z-direction pointing along the attachment
line. The local parabolic coordinate system (in orange) consists of the chordwise s-direction
and the normal n-direction pointing along grid lines in the downstream direction and along grid
lines normal to the wall, respectively (see figure 2b).

The surface of the parabolic body is given by

x(y) =
1

2R
y2 with −

√
2RLs ≤ y ≤

√
2RLs, (2.1)

where R denotes the leading-edge radius of the body and Ls sets the size of the domain in the
chordwise s-direction (see figure 2c). The domain is defined by a rigid wall and open outflow
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boundaries. We further consider flow cases where the oncoming flow is supersonic

M1 = M∞ cosΛ > 1, (2.2)

where M∞ and M1 denote the freestream Mach number and its component normal to the shock;
thus, the computational domain is limited by a detached unsteady bow shock in the wall-normal
n-direction (see figure 2c), and this shock is assumed to be an infinitely thin moving discontinuity.
The hypersonic flow state upstream of the detached bow shock, denoted by the subscript ∞, is
obtained as a function of the freestream Mach number M∞ and the freestream angle Λ using the
total temperature T0 = 728 [K] and the total pressure p0 = 1.55 · 106 [Pa] as a reference state.
The Rankine–Hugoniot relations are then employed to calculate the flow quantities downstream
of the bow shock, denoted by the subscript 2, which will be used in the following section to
define the governing parameters.

This three-dimensional flow model comprises a multitude of geometric and physical features
and, thus, allows us to study the influence of leading-edge curvature, sweep angle and angle
of attack as well as compressibility, wall temperature and bow shock-interaction effects on the
flow. Furthermore, swept leading-edge flow is known to be susceptible to several instability
mechanisms (see, e.g., Bippes, 1999, for an overview) which will lead to transitional features
as well as turbulence. Consequently, the physical domain has to extend sufficiently far in the
chordwise direction (downstream of the attachment line) and the computational grid has to
be locally refined to cover these features. Finally, we do not take advantage of the symmetry
properties of the flow even though we consider a zero angle of attack in the present investigations.

2.1. Governing parameters

The flow model depicted in figure 2(b) is governed by a number of non-dimensional param-
eters. We define a sweep Reynolds number Res, a leading-edge parameter Rδ, a sweep Mach
number Mas, and a wall temperature ratio θw as

Res =
w2δ

νr
, Rδ =

R

δ
, Mas =

w2

c2
, θw =

Tw

Tr
, (2.3)

where w2 and c2 are the sweep velocity and the speed of sound downstream of the bow shock
(at y = 0), respectively, δ represents a viscous length scale, and νr denotes the kinematic
viscosity evaluated at recovery temperature Tr and stagnation pressure ps. In the present work
we consider an adiabatic wall, and thus the ratio of the temperature Tw at the wall and Tr is
θw = 1. The viscous length scale in (2.3) is obtained using the strain rate S at the wall, at the
attachment line, which follows from the chordwise derivative of the potential solution of flow
around a circular cylinder with radius R evaluated at the stagnation point.

δ =
(νr

S

)1/2
with S =

(
∂v

∂y

)

w

=
2u2

R
(2.4)

Herein, u2 denotes the wall-normal velocity downstream of the shock.
In order to compute the kinematic viscosity νr at Tr and ps we resort to Reshotko and

Beckwith (1958) who theoretically investigated supersonic flow about a yawed infinite cylinder.
They give the following relation

Tr = T∞ + RF · (T0 − T∞), (2.5)

where RF = 1− (1−ξw) sin2 Λ denotes the stagnation-line recovery factor, and T0 and T∞ stand
for the total and freestream temperature, respectively; they further provide a table with values
of ξw for selected freestream conditions (M∞ and Λ) and a Prandtl number of Pr = 0.7. In our
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simulations, these values have been linearly interpolated to compute Tr for selected freestream
conditions. The total pressure ps at the stagnation point is determined from

ps

p∞
=

(
γ + 1

2
M2

1

)γ/(γ−1) (
γ + 1

2γM2
1 − (γ − 1)

)1/(γ−1)

, (2.6)

where M1 = M∞ cosΛ, p∞ is the freestream pressure and γ denotes the specific heat ratio. This
relation (2.6) follows from the Rankine–Hugoniot relation for pressure across a normal shock
and from the subsequent isentropic deceleration of the flow of an inviscid perfect gas into the
stagnation point.

2.2. Governing equations

2.2.1 Cartesian formulation

The dynamics of hypersonic viscous flow about a swept parabolic body as shown in figure 2(b)
is governed by the unsteady three-dimensional compressible Navier-Stokes equations which have
been formulated for the pressure p, the velocities (u, v, w) and the entropy s. Using Cartesian
tensor notation, these equations read as follows:

∂p

∂t
+ uj

∂p

∂xj
+ γp

∂uj

∂xj
= (γ − 1)

(
Φ +

∂

∂xj

(
k

∂T

∂xj

))
, (2.7a)

∂ui

∂t
+ uj

∂ui

∂xj
+

1

̺

∂p

∂xi
=

1

̺

∂

∂xj

(
µ

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
µ

∂uk

∂xk
δij

)
, (2.7b)

∂s

∂t
+ uj

∂s

∂xj
=

Rc

p

(
Φ +

∂

∂xj

(
k

∂T

∂xj

))
(2.7c)

with

Φ ≡ 1

2
µ

(
∂ui

∂xj
+

∂uj

∂xi

)2

− 2

3
µ

(
∂uk

∂xk

)2

.

Herein, the variables ̺, T , µ and k denote, respectively, the density, the temperature, the
dynamic viscosity and the thermal conductivity, and Rc = 287 [Jkg−1K−1] represents the gas
constant for dry air and δij the Kronecker delta.

We further consider the motion of a compressible fluid modeled as a calorically perfect gas,
and employing Gibbs fundamental relation as well as the equation of state for a perfect gas
p = ̺RcT the temperature T and the density ̺ are obtained via the following equations of state

T =
1

Rc
p

γ−1/γ exp

(
s

Cp

)
, (2.8)

̺ = p
1/γ exp

(
− s

Cp

)
(2.9)

with Cp as the specific heat ratio at constant pressure.
The system of equations is closed by applying Sutherland’s and Fourier’s law to model the

dynamic viscosity µ and the thermal conductivity k, respectively,

µ = µ0

(
T

T0

) 3
2 T0 + S

T + S
, (2.10)

k =
Cp

Pr
µ, (2.11)
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where S = 110.4 [K] denotes the Sutherland temperature, T0 is the reference temperature (chosen
as the total temperature), and µ0 represents the reference viscosity for the latter temperature;
a constant specific heat ratio γ = 1.4 and a constant Prandtl number of Pr = 0.71 are assumed.

2.2.2 Curvi-linear formulation

In order to solve the compressible Navier–Stokes equations (2.7a–c) on a time-dependent,
curvi-linear and non-uniformly distributed grid, new (spatial) coordinates are defined

ξl = ξl(xj , t) with j, l = 1, 2, 3 (2.12)

to rewrite these equations; the first derivative then reads

∂

∂xj
=

∂ξl

∂xj

∂

∂ξl
= ξl

,j

∂

∂ξl
, (2.13)

where the subscript ,j denotes partial derivatives with respect to the physical coordinates
(x, y, z, t) in the curvi-linear domain. Using these expressions and introducing contravariant
velocity components ul = ξl

,t + ξl
,juj , where ξl

,t stems from the time dependency of the grid, the
governing equations (2.7a–c) have been reformulated for curvi-linear grids in index notation.
These equations read as follows in the computational domain (ξ, η, ζ, t):

∂p

∂t
+ ul ∂p

∂ξl
+ γpξl

,j

∂uj

∂ξl
= (γ − 1)

(
Φ + ξk

,j

∂

∂ξk

(
kξl

,j

∂T

∂ξl

))
, (2.14a)

∂ui

∂t
+ ul ∂ui

∂ξl
+

1

̺
ξl
,i

∂p

∂ξl
=

1

̺
ξl
,j

∂

∂ξl

(
µ

(
ξl
,j

∂ui

∂ξl
+ ξl

,i

∂uj

∂ξl

)
− 2

3
µξl

,k

∂uk

∂ξl
δij

)
, (2.14b)

∂s

∂t
+ ul ∂s

∂ξl
=

Rc

p

(
Φ + ξk

,j

∂

∂ξk

(
kξl

,j

∂T

∂ξl

))
, (2.14c)

where Φ is obtained in a straight-forward manner. This system of nonlinear equations can
formally be written as

∂φ

∂t
= F(φ) (2.15)

with φ = (p, u, v, w, s)T , and F represents the right-hand side of the nonlinear compressible
Navier–Stokes equations.

3 Direct numerical simulations

As already mentioned in the introduction, over the past decades direct numerical simulations
(DNS) based on higher-order discretization schemes have established themselves as a widely used
tool to investigate complex flow problems. For these simulations, the solution of the governing
equations is directly obtained by solving a system of nonlinear partial differential equations in
space and time. In what follows, we describe details of the implementation of the present direct
numerical simulation to solve (2.15) for hypersonic flow about a swept parabolic body of infinite
span as displayed in figure 2(b).

3.1. Grid generation

The flow is computed using a three-dimensional, non-uniformly distributed, body-fitted grid
(see figure 2b) which is generated via a three-step process as displayed in figure 3. This process
consists of (a) the computation of a uniformly-distributed unit cube which is non-periodic in the
(wall-normal) ξ- as well as the (chordwise) η-direction and periodic, due to the assumption of
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Figure 3. Various steps of the grid generation process: (a) uniformly-distributed unit cube in the computational
domain (ξ, η, ζ, t), (b) stretched unit cube (ξ̄, η̄, ζ̄, t) and (c) upper half of the body-fitted grid in the physical
domain (x, y, z, t), where the size of the domain in the chordwise direction has been chosen as Ls = 0.4 [m];
every fourth and eight grid point are shown in the ξ- and η-direction, respectively, and a leading-edge radius of
R = 0.1 [m] has been used.

infinite span, in the (spanwise) ζ-direction, (b) an appropriate grid stretching in the ξ- and η-
direction in order to sufficiently resolve physically relevant regions and (c) the parabolic mapping
of the stretched unit cube. Consequently, the combined transformation maps the computational
domain (ξ, η, ζ, t) into the physical domain (x, y, z, t) between a detached bow shock and the
parabolic body (see figure 2c for a schematic of the physical domain). Finally, the metric
coefficients ξx, ξy, ξz, ηx, etc. in (2.14a–c) are obtained by differentiating the body-fitted grid
(x, y, z) with respect to (ξ, η, ζ) and inverting the resulting Jacobian matrix. This is accomplished
numerically using the same higher-order central schemes as for the spatial derivatives of the
dependent variables (see section §3.3).

3.1.1 Grid stretching

A grid stretching is applied in the wall-normal ξ- as well as in the chordwise η-direction
to cluster the grid points in the physically relevant regions, i.e., the viscous three-dimensional
boundary layer and the leading-edge region, respectively. The former grid stretching (Anderson
et al., 1988) clusters the grid points towards the parabolic body in order to sufficiently resolve
the boundary layer. It amounts to computing

ξ̄ =
κξ

1 − κ + ξ(2κ − 1)
, (3.1)

where ξ ∈ [0, 1] and ξ̄ ∈ [0, 1] denote the uniformly-spaced and stretched grid points, respectively,
and κ is the stretching parameter. As a result, this function maps the interval [1/2, 1] to [κ, 1]
and thus clusters half of the grid points in the latter interval. In the present study, a value
κ = 0.95 is used to cluster the n1 = 128 grid points in the wall-normal direction and thus resolve
the viscous boundary layer with at least 20 grid points.

To further cluster the grid points in the leading-edge region of the parabolic body, a semi-
analytical technique based on several error functions is employed in the η-direction. Within this
technique the redistribution of the grid points is described by a second-order ordinary differential
equation

d2η̄

dη2
− fgsr(η)

∆η

dη̄

dη
= 0, (3.2)
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where ∆η denotes the grid spacing of the equi-spaced grid with η ∈ [0, 1], and fgsr(η) = (∆η̄i+1−
∆η̄i)/∆η̄i represents the relative grid stretching ratio at the location η̄i+1 of the stretched grid.
This grid stretching ratio function fgsr(η) is constructed using a linear combination of m error
functions, each having its own control parameters (aj , σj , bj , ej).

fgsr(η) =
1

2

m∑

j=1

aj (erf (σj(η − bj)) + (−1)ej ) (3.3)

In order to obtain the grid points η̄ of the stretched grid equation (3.2) has to be integrated
twice; the first integration can be performed analytically, whereas the second integration was
done numerically using the Simpson’s rule (see Schaupp et al., 2008, and references therein
for further details). This grid stretching technique was chosen owing to its flexibility in locally
refining the grid in the leading-edge region, and, in this work, four error functions are employed to
redistribute n2 = 511 grid points in the chordwise direction. Furthermore, pairs of error functions
have been chosen to obtain a symmetric grid distribution with respect to the attachment line,
and their control parameters are given in table 1.

Table 1. Control parameters of the four error functions for n2 = 511.

a1,2 a3,4 σ1,2 σ3,4 b1,2 b3,4 e1,3 e2,4

0.085 -0.022 5 10 0.14 0.4 2 1

3.1.2 Parabolic mapping

In a final step, the stretched unit cube is mapped into the physical domain (x, y, z, t) between
a detached bow shock and the parabolic body using a conformal mapping. This results in an
analytic, orthogonal grid, where the grid lines at ξmin = ξ̄min = 0 and ξmax = ξ̄max = 1 define
the detached bow shock and the surface of the parabolic body, respectively (see figure 3). Since
the bow shock represents a moving discontinuity whose position and shape is not known in
advance and furthermore changes in time, an initial guess for the corresponding grid line is
required. To this end, we assume this (initial) grid line to be parabolic with a shock detachment
distance ∆0 (at s = 0). The parabolic mapping is then given by the following relations to obtain
a three-dimensional, body-fitted grid about a parabolic body.

x(ξ̄, η̄, 0) =
∆0

3
− ∆0

3

(
ξ̄ − 2

)2
+ 4Ls

(
η̄ − 1

2

)2

, (3.4a)

y(ξ̄, η̄, 0) = −2
√

2RLs

(
ξ̄ − 2

) (
η̄ − 1

2

)
, (3.4b)

z(ζ) = ζLz (3.4c)

Herein, Ls and Lz define the size of the physical domain in the chordwise (see Eq. 2.1) and the
spanwise direction, respectively, and ∆0 is found by applying the following empirical correlation
(Ambrosio and Wortman, 1962)

∆0

R
= 0.386 exp

(
4.67

M2
1

)
, (3.5)

where M1 denotes the shock-normal Mach number at s = 0 (see figure 2c). This expression
results from a correlation of experimental data for supersonic and hypersonic flow around circular
cylinders with radius R (see Billig, 1967). A comparison of values for ∆0/R calculated using
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Figure 4. (a) Normalized shock detachment distance ∆0/R as a function of M1: empirical correlation (3.5) as
proposed by Ambrosio and Wortman (1962); numerically obtained values for cylindrical (x) and parabolic bodies
(+). (b) Effect of grid stretching and parabolic mapping on the grid distribution sw of the physical grid along the
surface of the upper half of the parabolic body (Ls = 0.4 [m], R = 0.1 [m]; every eight grid point is shown). The
control parameters of the grid stretching are given in table 1, and η denotes the equi-spaced grid as displayed in
figure 3(a).

(3.5) with numerically obtained values (evaluated for steady state solutions) for cylindrical and
parabolic bodies is given in figure 4(a). It is found that, for both body shapes, (3.5) provides a
good estimate as an initial guess for ∆0; however, this estimate deteriorates for parabolic bodies
for decreasing values of M1.

It has to be mentioned that the parabolic mapping has an additional stretching effect on
the grid-point distribution in the chordwise direction. Consequently, the control parameters
in (3.3) are rather difficult to tune and the quality of the grid needs to be discussed for the
final grid, e.g., by looking at the grid-point distribution along the surface arclength sw(x) =√

x
√

x + R/2 + R/2 ln((
√

x +
√

x + R/2)/
√

R/2) along the parabolic body. The grid-point
distribution of the present computations is displayed in figure 4(b), where sw is shown as a
function of the equi-spaced grid η in the chordwise direction. The employed grid stretching
leads to a clustering of the grid points in the leading-edge region (e.g., 0 ≤ sw/R . 1.4), and
these grid points are substantially stretched towards the outflow boundaries.

3.2. Boundary and initial conditions

In the wall-normal direction, the computational domain is limited by a detached unsteady
bow shock assumed as an infinitely thin moving discontinuity as sketched in figure 2(c). Conse-
quently, this bow shock serves as a distinct inflow boundary condition which is incorporated via
a shock-fitting technique. In this technique the local shock-normal velocity is determined by a
characteristic compatibility equation downstream of the shock, and the flow variables across the
shock are governed by the Rankine–Hugoniot relations. This technique allows the use of a coarse
mesh downstream of the shock; it further exhibits the advantage that the jump conditions can
be satisfied exactly without introducing errors into the computational domain. For a description
of the shock-fitting technique (Moretti, 1987) the reader is referred to, e.g., Fabre et al. (2001).
Along the surface of the body no-slip boundary conditions in conjunction with an adiabatic wall
are employed. At the chordwise edges of the computational domain characteristic non-reflecting
boundary conditions are imposed, and periodic spatial differentiation schemes are applied in the
homogeneous z-direction (see infinite span assumption). For details on handling the boundary
conditions the reader is referred to Sesterhenn (2001) and the references therein.
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As an initial condition in (2.15) we extend the values of the pressure, the velocities and the
entropy downstream of the bow shock p2, u2, v2, w2 and s2, respectively, in the wall-normal
direction. To this end, the pressure is chosen as constant, and a potential mapping is employed
to calculate the remaining flow quantities such that they satisfy the boundary conditions at the
wall. This choice was found to give robust direct numerical simulations. It is worth mentioning
that initial conditions which better approximate the solution can be found. However, these
conditions require in general a rather large effort for the implementation and do not show a
significant computational benefit for our flow model.

3.3. Discretization in space and time

The governing equations, i.e., the compressible Navier–Stokes equations (2.14a–c), are then
solved on the body-fitted grid displayed in figure 3(c). For the spatial discretization we resort
to higher-order compact finite-difference schemes (Lele, 1992; Adams and Shariff, 1996). Due
to the spectral-like resolution of these schemes as well as their narrow finite-difference stencils
— which is necessary to obtain stable boundary closures for high-order schemes — , compact
schemes have become popular for direct numerical simulations (DNS), and today they are widely
used in computational fluid dynamics (CFD) as well as computational aero-acoustics (CAA).

A commonly used family of such compact schemes can be written as

β−f ′

i−2 + α−f ′

i−1 + f ′

i + α+f ′

i+1 + β+f ′

i+2 =
1

h

νr∑

ν=−νl

aνfi+ν , (3.6)

where β±, α± and aν denote the coefficients, h is the uniform grid spacing, and fi and f ′
i

represent a discretized function and its first derivative at the grid point i, respectively. By
choosing these coefficients, schemes of various order of spatial accuracy and spectral resolution
can be designed. In order to compute the first derivative vector f ′ in (3.6), a sparse linear system
has to be solved.

Af ′ = Bf (3.7)

Herein, A and B represent the banded coefficient matrices and f denotes the input vector.
For tri-diagonal matrices A, such linear systems can be efficiently inverted using the Thomas
algorithm; for cyclic tri-diagonal or penta-diagonal A a modified version has to be used.

However, compact schemes with symmetric stencils are known be sensitive to boundary
condition formulation and aliasing errors, and consequently they are susceptible to numerical
instabilities. To cope with this problem explicit filters, artifical damping terms or inherently
dissipative numerical schemes can be used (see, e.g., Kloker, 1998, for an overview). In the
present studies, we resort to the latter technique and employ the compact upwind scheme CULD
as designed by Adams and Shariff (1996). This fifth-order scheme features an upwind biased
stencil which adds a certain amount of numerical dissipation to the spatial discretization and thus
damps poorly resolved waves (see figure 5b). It also includes (stable) boundary closures, and its
coefficients can be found in Adams and Shariff (1996). To take advantage of the CULD scheme,
the governing equations have been recast in a characteristic-type formulation (Sesterhenn, 2001),
where the Euler part, i.e., the left-hand side in (2.14a–c), is decomposed into plane acoustic,
shear and entropy waves. As a consequence, the propagation of these waves can be computed
depending on their propagation direction using an upwind scheme such as CULD.

Furthermore, the dissipative and diffusive terms, i.e., the right-hand side in (2.14a–c), are
discretized using a sixth-order central compact scheme with α± = 1/3 and β± = 0 (Lele,
1992); the purely dispersive character of this scheme for inner grid points is demonstrated in
figure 5(b). Boundary closure in the non-periodic ξ- and η-direction is achieved using a third-
order one-sided (α+ = 3, α− = 0, β± = 0) and a fourth-order central scheme (α± = 1/4, β± = 0)
at the boundary grid points and the points next to them, respectively (Carpenter et al., 1993,
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Figure 5. Dispersion (a) and dissipation (b) of the employed central and upwind compact scheme for a non-
periodic domain; CD6 and CULD denote the sixth-order compact and the compact upwind scheme, respectively,
and FD2 stands for a (standard) second-order finite difference scheme. We show the modified wavenumber (kh)′

vs. the wavenumber kh for the first derivatives as obtained by a matrix analysis of an harmonic function, where
the solid and the dashed lines display the transfer behavior of the schemes at an inner and the (n1 − 2)-th grid
point, respectively.

have shown that a stable boundary closure for a sixth-order central compact scheme can only
be found for a third-order boundary scheme; this leads to a stable scheme which is globally of
fourth order). For performance reasons as well as for the ease of implementation, this scheme
is applied twice to compute the second derivatives. Boundary closure, however, modifies the
dispersion and dissipation properties of compact schemes (see figure 5 dashed lines), and the
central scheme becomes dissipative even for grid points other than the boundary points; this
is a consequence of their global character. For considerations regarding boundary treatment
and grid non-uniformity for higher-order finite-difference schemes see, e.g., Adams and Shariff
(1996); Chung and Tucker (2003).

The semi-discretized system of equations

dφ

dt
= F(φ) (3.8)

is integrated in time via an explicit fourth-order low-storage Runge–Kutta scheme (Kennedy
et al., 2000); F represents the discretized right-hand side of the nonlinear Navier–Stokes equa-
tions. In all simulations we use a stability parameter of Cs = 0.9, based on the definition
proposed by Müller (1990), to control the time step dt = min(dtξ, dtη, dtζ). For instance, the
time step dtξ in the ξ-direction is obtained via the expression

dtξ = Cs
2.5

(kh)′max

(
∆ξ2

|u1 + c
√

gξ|∆ξ + 4gξν/Pr

)

min

, (3.9)

where the factor 2.5 stems from the stability region of the employed fourth-order Runge–Kutta
method, and (kh)′max is the maximum value of the real part of the modified wavenumber of
CULD (see figure 5a); ∆ξ, u1, c and ν denote the grid spacing of the equi-spaced grid, the
contravariant velocity in ξ (see section 2), the speed of sound and the kinematic viscosity,
respectively, and gξ = ξ2

x+ξ2
y +ξ2

z . The time step dtη and dtζ are found in a similar manner. The
time-step criterion (3.9) incorporates convection and diffusion, and for convectively-dominated
flows it represents the well-known CFL condition. Furthermore, it is found that the applied
compact spatial schemes in conjunction with a Runge–Kutta method lead to a stable and robust
direct numerical simulation (see Sesterhenn, 2001, for an analysis of the numerical stability).
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4 Results

The above-described direct numerical simulation is employed to compute hypersonic flow about
a swept parabolic body (see figure 2b) and to study its behavior. As already mentioned in the
introduction, this flow configuration is characterized by a rich perturbation dynamics featuring
a wealth of hydrodynamic instabilities. These instabilities are described by the dynamics of
coherent structures at a variety of spatial and temporal scales, and we are interested in their
spatial distribution as well as their temporal behavior. To resolve all spatial scales, a resolution
of 128 × 511 × 8 grid points in the normal n-, the chordwise s- and the spanwise z-direction,
respectively, has been used in what follows.

4.1. Flow simulations

In a first attempt, direct numerical simulations are conducted to follow the spatio-temporal
evolution of the flow. To this end, we choose the governing parameters as Res = 800, Rδ = 508
and Mas = 1.25 (Re∞ = 2q∞Rρ∞/µ∞ = 3.53 · 106 with R = 0.1 [m], M∞ = 8.15, Λ =
30 ◦), consider an adiabatic wall (θw = 1) and further use a domain size Lz = 2π/β = 28δ,
where the parameter Lz defines the fundamental length of the wave-like disturbance traveling
in the periodic z-direction; a value of Lz = 28δ corresponds to a non-dimensional wavenumber
β⋆ = β δ = 0.224. For this parameter choice the flow configuration, in particular the existing
three-dimensional boundary layer, is known to be highly unstable to crossflow instabilities (see
Mack et al., 2008), characterized by co-rotating vortices, and we expect to identify this type of
instability in form of coherent structures inside the boundary layer by inspection only.

As a result, the flow field at time t = 1.10 · 10−3 [s] is presented in figure 6. In figure 6(a),
we visualize the spatial distribution of coherent structures by iso-surfaces of the Q-criterion; the
identified structures are a consequence of the well-known crossflow instability (Bippes, 1999).
They align with an angle of approximately 61 ◦ (with respect to the attachment line) in the
chordwise direction, become unstable to secondary instabilities and eventually break down as
they evolve downstream (see figure 6a,c); this transition scenario is sketched in figure 1. Cross-
cuts of the coherent structures at two selected positions in the chordwise s-direction (see figure 6c
dashed lines) are shown in figure 6(d). Furthermore, as a consequence of the instability and
breakdown, acoustic waves are generated and are radiated into the far-field (see figure 6a,b).

To briefly summarize, these results clearly demonstrate the fluid-dynamical complexity of the
flow configuration under investigation and reveal at the same time its interesting and challenging
flow physics. The displayed coherent structures undergo a multi-stage transition process, and
several features of this process can already be observed. However, the involved structures can
only be discussed from a phenomenological point of view, and a sound understanding of the
transition process as well as its governing mechanisms requires a more comprehensive analysis
of the flow. Among the common concepts of receptivity, stability and sensitivity we resort, in
what follows, to a linear stability analysis to study the inherent perturbation dynamics of the
flow within a temporal framework.

4.2. Linear stability analysis

A linear stability analysis amounts to computing and classifying the various types of instabil-
ity mechanisms, their modal structure in space as well as their temporal behavior characterized
by the disturbance growth and frequency. In a first step towards such an analysis a steady
base flow has to be computed. The temporal stability of this base flow to three-dimensional
perturbations can then be investigated by the long-term solution of an initial value problem or
by solving a large-scale eigenvalue problem for the underlying stability matrix (global stability
analysis). In this article, we will first resort to the former method for reasons of simplicity; a
full global stability analysis calls for more sophisticated techniques, such as Krylov subspace
methods, and will be attempted later.
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Figure 6. Results from flow simulations: (a) visualization of vortical structures by iso-surfaces of the Q-criterion
(positive and negative values are displayed in red and blue, respectively, and eight wavelengths in z are used to
visualize the structures); upper half of the parabolic body in light grey. Furthermore, the divergence of the velocity
field (−600 in black, −1800 in white) in the s-n-plane is shown in the back as well as in (b). (c) Distribution
of the vortical structures, stretched by a factor of ten in n, using a cross-cut in the s-n-plane; the black lines
denote one representative iso-line of the Q-criterion. (d) Cross-cuts in the n-z-plane at selected positions in the
chordwise s-direction; see dashed lines in (c).

4.2.1 Steady state solution

The governing equations are integrated in time until a steady base flow φ0 = (p0, u0, v0, w0, s0)
T

is reached. The assumption of infinite span permits us to eliminate the z-dependence, but not
the w-component, from φ0(x, y, z) and to reduce the computations to a problem with only two
independent variables x and y. From this solution the full three-dimensional base flow can be
recovered. This procedure is possible since the two-dimensional problem is stable with respect to
two-dimensional perturbations thus allowing a simple time-integration toward a steady state so-
lution. As a consequence, more sophisticated techniques such as (Jacobian-free) Newton–Krylov
techniques (Knoll and Keyes, 2004) or selective frequency damping (Åkervik et al., 2006) can
be avoided. Nevertheless, even in our case these techniques may substantially reduce the com-
putational time to reach a steady state solution.

The converged three-dimensional base flow for Res = 800, Rδ = 508, Mas = 1.25 and θw = 1
is visualized in figure 7. In figure 7(a) and (b) we display the temperature T and pressure field
p, and for the present choice of flow parameters we obtain a recovery temperature Tr = 703 [K]
and a (total) pressure ps = 9076 [Pa] at the stagnation point. The values of these quantities
decrease toward the outflow boundaries. The subsonic and supersonic region of the flow in a
plane normal to the parabolic body are indicated in figure 7(a), where the distribution of the
Mach number based on the u- and v-velocity is shown; the iso-contour line in red represents the
sonic line. It can be seen that the flow is subsonic near the attachment line, and thus acoustic
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Figure 7. Computed steady base flow for Res = 800, Rδ = 508, Mas = 1.25 and θw = 1: (a) temperature field
T [in K] and iso-contour lines of the Mach number in the s-n-plane (sonic line in red); (b) streamlines (in blue)
and pressure field p [in Pa]. The resolution is 128 × 511 points in the normal n- and the chordwise s-direction,
respectively. (c) Spanwise velocity w [in m/s] at selected positions [in δ] (see legend) in the positive s-direction;
δ99 ≈ 2.38δ indicates the thickness of the boundary layer along the attachment line; δ ≈ 1.97 · 10−4 [m] for the
present choice of parameters.

waves may lead to a strong interaction between the boundary layer and the detached bow shock.
In figure 7(b), we further visualize the three-dimensional velocity field in terms of streamlines.
The typical curvature of these streamlines in the inviscid outer flow region as well as near the
attachment line and inside the boundary layer reveals a highly three-dimensional boundary layer
flow, in particular, downstream of the attachment line. In addition, the streamlines describe a
local and nearly two-dimensional flow field in the vicinity of the attachment line, and, as this flow
field evolves in the chordwise direction, the thickness of the boundary layer δ99 grows about a
factor of approximately 6 from 2.38δ (at sw = 0) to 14.5δ (at sw = 2604δ). This boundary-layer
growth is illustrated in figure 7(c), where we plot the spanwise w-velocity at selected positions
in the s-direction (see legend). It has to be mentioned that, as a consequence of the infinite
span assumption, no boundary-layer growth exists in the spanwise direction.

The computation of steady state solutions φ0(x, y, z) via time-stepping techniques raises
the question about the point in time at which the time advancement is stopped. A steady-
state solution which is sufficiently resolved in space and sufficiently converged in time must be
attempted prior to a stability analysis. Therefore, we consider a base flow as converged when
the residual error ‖r‖, i.e., norm of the difference between two subsequent flow fields normalized
with the number of unknowns, does not change significantly. As a result, the evolution of this
residual error ‖r‖ as a function of the number of time steps as well as the sweep Reynolds
number Res is displayed in figure 8(a), where a value Cs = 0.9 has been used in (3.9) to
ensure the stability of our time integration. In criterion (3.9), the time step dt is limited by a
combination of convective dt ∼ 1/|u+c| and diffusive effects dt ∼ 1/ν; in the present simulations,
dt is dominated by viscous effects. As the sweep Reynolds number Res = w2δ/νr = w2/(νrS)1/2

(see section §2.1) is decreased from 800 to 200, the kinematic viscosity νr ∼ 1/Re2
s increases. As

a consequence, the time step decreases from dt = 3.63 · 10−8 [s] to dt = 1.90 · 10−8 [s], and, thus,
more evaluations of the right-hand side are required to reach the steady state (see figure 8a). In
all cases, the minimum value of ‖r‖ is reached after time t ≈ 1.4 ·10−2 [s]. It deserves mentioning
that the employed fourth-order Runge–Kutta method was found to be more efficient in terms of
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Figure 8. (a) Evolution of the residual error ‖r‖ as a function of the number of time steps for selected sweep
Reynolds numbers Res = 200, 300, . . . , 800; the time advancement was accomplished by a fourth-order Runge–
Kutta method, and Cs = 0.9 has been used. (b) Spatial distribution of the velocity component u(s, n, z) of the
most unstable modal structure along a grid line in the s-direction at half the boundary-layer thickness.

computational time than a third-order low-storage Runge–Kutta method (Williamson, 1980).
Before proceeding with stability investigations of the converged base flow, the required reso-

lution of the computational grid is discussed. As already mentioned above, the accuracy of flow
simulations and flow analyses depends on the resolution in space which has to be sufficient to
capture all relevant physical features. In our case, three types of flow computations, each with
its specific requirement, can be distinguished: (i) computations of steady state solutions, (ii)
stability studies and (iii) simulations of transition as well as turbulence. The steady base flow
features a thin boundary layer in the wall-normal direction, and n1 = 128 grid points have been
found to ensure a grid-independent solution for the used grid stretching (see section §3.1.1).
Furthermore, as the sweep Reynolds number Res is decreased from 800 to 200 the thickness of
the boundary layer δ99 ≈ 2.38δ along the attachment line grows by a factor of 4 from δ = R/508
to δ = R/127 (see table 2 for the linear dependence of δ = R/Rδ and Res). As a consequence,
the number of grid points inside the boundary layer grows from 20 to 52. In addition, the base
flow is smooth in the chordwise s-direction and n2 = 127 grid points have been found to be
sufficient to compute the flow field.

This is in contrast to subsequent stability analyses, where, e.g., small structures are known
to exist inside the boundary layer as demonstrated in figure 6. The size of these structures, in
particular in the chordwise direction, mainly depends on the spanwise wave length Lz = 2π/β,
and the shorter the wave-like perturbations in z, the higher the required resolution in space.
For instance, at least 9 grid points were used to properly resolve the most unstable structures
for Res = 800 and Lz = 28δ in the region −711 ≤ s/δ ≤ 711 (see figure 8b for a body-fitted
cut in the chordwise s-direction at half the boundary-layer thickness, and see figure 4b for the
grid-point distribution for 0 ≤ sw/R . 1.4). Spatially over resolving the problem should be
avoided since the subsequent flow analyses will become increasingly expensive.

Finally, transitional and turbulent simulations demand an even higher resolution such that
the dynamics at all spatial scales down to the Kolmogorov length are captured. For these

Table 2. Linear dependence of the leading-edge parameter Rδ and the sweep Reynolds number Res.

Rδ 127 191 254 318 381 445 508

Res 200 300 400 500 600 700 800
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Figure 9. (a) Total E(t) and modal energy Em(t) and (b) total w(t) and modal growth rate wm(t) of the first
three modal structures as a function of time t; S = 2u2/R denotes the inverse time scale, i.e., the strain rate at
the wall as defined in (2.4). The dashed line represents the position in time at which the flow is visualized in
figure 10.

type of simulations, a very high resolution would be mandatory for our Reynolds number of
Re∞ = 2q∞Rρ∞/µ∞ = 3.53 · 106; however, such turbulent flow simulations are not the scope of
the present article.

4.2.2 Long-time integration of the initial value problem

After discussing the computation of steady state solutions in the previous section we proceed
with stability investigations of the base flow displayed in figure 7. To this end, the steady base
flow φ0(x, y, z) is perturbed with an arbitrary, three-dimensional perturbation field of small
amplitude ǫφ(x, y, z, t)′ (such that nonlinear effects can be neglected).

∂φ

∂t
= F(φ0 + ǫφ′

︸ ︷︷ ︸
φ

) (4.1)

The solution of this initial value problem (4.1) converges toward the least stable global mode
as time progresses before it saturates due to nonlinearities. As perturbation field we take
ǫφ′ = ǫ(p2, u2, v2, w2, s2)

T f , where ǫ = 10−8, the vector (p2, u2, v2, w2, s2)
T represents the flow

quantities downstream of the detached bow shock (see section §2), and f denotes a field of
random numbers. The solution of (4.1) is obtained from direct numerical simulations (DNS).

As a result, the temporal evolution of the kinetic energy as well as the corresponding growth
rate of the disturbed (steady) base flow is presented in figure 9. In figure 9(a), we show the
evolution of the total E(t) and the modal energy Em(t) for the fundamental and two higher-
order modal structures as time progresses. The modal energy has been found using a Fourier
transformation in the homogeneous z-direction. It can be seen that both the total and the
modal energy grow exponentially over a distinct time period before they saturate nonlinearly.
The corresponding values of the total, w(t), and the modal energy growth rate, wm(t), of the
modal structures — computed via

w(t) =
1

2

log E(t + ∆t) − log E(t)

∆t
, (4.2)

wm(t) =
1

2

log Em(t + ∆t) − log Em(t)

∆t
, (4.3)

where ∆t denotes the temporal difference between two flow fields — is presented in figure 9(b).
In this figure, the plateau with w/S ≈ 11.3 represents the exponentially growing regime in
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Figure 10. Results from a long-term integration of the initial value problem: (a) visualization of vortical structures
by iso-surfaces of the Q-criterion (in blue); the surface of the upper half of the parabolic body is displayed in light
grey (attachment line in black). The divergence of the velocity field (-1300 in black, -1800 in white, stretched by a
factor of ten in n) in the s-n-plane is shown in (b). (c) Distribution of the vortical structures using a cross-cut in
the s-n-plane; the black lines denote one representative iso-line of the Q-criterion. (d) Cross-cuts in the n-z-plane
at selected positions in the chordwise s-direction; see dashed lines in (c).

figure 9(a), and the growth of the fundamental modal structure confirms a linear instability (red
line). The first higher-order mode exhibits the same modal growth before it becomes unstable
to secondary instabilities (green line). Only three spanwise harmonic structures have been
plotted in figure 9(b) as a consequence of the spatial resolution, n3 = 8, in this direction. The
same modal growth of all three structures can be interpreted as a phase locking of harmonics
producing steeper gradients in the spanwise direction. This phenomenon is also evident in
figure 6(d), where a spanwise cross-cut at two positions in the chordwise s-direction shows the
formation of approximately rectangular structures, starting from a sinusoidal shape, as the flow
evolves downstream.

The spatial distribution of the exponentially growing modal structures at t = 3.63 · 10−4 [s]
(see dashed lines in figure 9) is plotted in figure 10. The application of the Q-criterion reveals co-
rotating vortical structures, visualized by iso-surfaces, which display typical features of crossflow
instabilities. Cross-cuts of these vortices are given in figure 10(c,d), and the results indicate
that the vortical structures first appear close to the edge of the boundary layer and that these
structures become more and more pronounced inside the boundary layer as they evolve in
the chordwise s-direction; further downstream they disappear again. It is also found that the
dominant part of the vortices lies further downstream as time progresses and eventually breaks
down. To indicate the acoustic field, we additionally show the divergence of the velocity field in
figure 10(a,b).
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Figure 11. Results from a global stability analysis showing the most unstable eigenvalues of the temporal global
spectrum for a disturbance wavenumber β = 2π/28δ (β⋆ = βδ = 0.224); ωr describes the frequency and ωi the
corresponding growth rate of the global modes; unstable half-plane in grey. The shown eigenvalues belonging to
boundary-layer modes of the crossflow type (see Mack et al., 2008).

4.2.3 Global stability analysis

The above long-term integration of the initial value problem (4.1) uncovered a linear insta-
bility mechanism, where the most unstable coherent structures are characterized by co-rotating
vortices. To obtain more information about these vortices and to gain further insight into the
inherent modal structures of the flow we perform a global stability analysis. To this end, we
superimpose a disturbance field φ′(x, y, z, t) on the steady base flow φ0(x, y, z) and assume the
perturbations of the following traveling wave form.

φ′(x, y, z, t) = φ̃(x, y)ei(βz−ωt) (4.4)

Herein, φ̃(x, y) denotes the complex amplitude and β the real spanwise wavenumber of the
perturbation, and the temporal long-term evolution of the perturbation is given by ω whose real
part ωr describes the frequency and whose imaginary part ωi represents the growth. This (global)
stability approach results in a large-scale eigenvalue problem, and, for its solution, iterative
techniques have to be employed. These techniques allow us to compute a given number of
approximations to some eigenpairs of the stability (Jacobian) matrix, and, as already mentioned
in the introduction, they use the flow fields produced by direct numerical simulations (DNS)
as their input. Such a DNS-based global stability analysis has been attempted in Mack et al.
(2008) for the present flow configuration, and a detailed description of the DNS-based global
stability solver can be found in Mack and Schmid (2010).

The results in figure 11 represent an iteratively computed subset of the full global spectrum
for β = 2π/28δ (β⋆ = 0.224), and the depicted eigenvalues belong to unstable global boundary-
layer modes of the crossflow type (see Mack et al., 2008). These (discrete) eigenvalues lie on
a distinct branch, and, in the present global stability analysis, eigenvalues with ωr/S ranging
from 19.7 to 53.9 have been computed. Furthermore, the growth rate of the most unstable
global mode of this branch is ωi,max/S = 40.2 (see circle in figure 11). The spatial distribution
of the associated global mode is given in figure 12(a), where we display the distribution of the
u-velocity using iso-surfaces. Cross-cuts in the s-n- and the n-z-plane of this mode can be seen
in figure 12(b) and (c), respectively, and the pressure field is visualized in figure 12(a). It should
be mentioned that, in their parametric study, Mack et al. (2008) obtained a maximum modal
growth rate ωi,max for β⋆ = 0.213 and the same choice of the governing parameters.

In general, the rather large growth rates of the boundary-layer modes can be explained by
the inflectional nature of the crossflow instability, since instabilities based on inflectional profiles
can be inviscidly unstable. These modes describe the dominant instability mechanism for the
present flow configuration (and choice of parameters), and this instability could also be observed
by computing the long-term evolution of the perturbed steady state. However, only the most
unstable vortical structure could be obtained. Furthermore, the rich perturbation dynamics of
hypersonic flow about a swept parabolic body gives rise to further types of instabilities such as,
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Figure 12. Results from a global stability analysis: (a) visualization of the most unstable global mode, depicted
by a circle in figure 11, using the u-velocity (positive and negative values of iso-surfaces are displayed in red and
blue, respectively, and eight wavelengths in z are used to visualize the mode). (b) Spatial shape of the pressure
p in the s-n-plane. (c) Distribution of the global modes using a cross-cut in the s-n-plane; the structures were
stretched by a factor of five in the normal n-direction. (d) Cross-cuts in the n-z-plane at selected positions in the
chordwise s-direction; see dashed lines in (c).

e.g., acoustic global modes (see Mack and Schmid, 2010). Only a global stability analysis is able
to provide a complete picture of the perturbation dynamics of the flow.

5 Discussion and Conclusions

Over the past decades, direct numerical simulations (DNS) have a reached a level of maturity
which allows the computation of a wide range of complex flows characterized by multi-physics
phenomena. At the same time, powerful algorithms for the iterative solution of large-scale eigen-
value problems have shown remarkable progress. The need and promise of stability information
for complex flow configurations, such as hypersonic flow about a swept blunt body, as well as
the limitations and shortcomings of local or simplified flow models calls for the combination of
these two techniques to obtain quantitative flow measures that far surpass the existing ones.

In this article, a flow model for three-dimensional hypersonic flow about a swept blunt body
has been presented and direct numerical simulations of the nonlinear governing equations using
shock-fitting, moving curvilinear grids and higher-order compact schemes have been conducted.
Based on experimental evidence, crossflow-dominated structures are expected and have been
observed in our flow simulations. Subsequently, the most dominant of these structures has been
confirmed by a long-time integration of small-amplitude perturbations superimposed on a steady
state solution. Finally, a proper global stability analysis combining direct numerical simulations
and iterative eigenvalue techniques produced multiple crossflow-dominated structures together
with the temporal global spectrum. This specific example clearly demonstrates the feasibility
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of a DNS-based global stability concept.
In summary, DNS-based flow analysis, such as the one presented above, is expected to evolve

into a powerful and important tool to investigate fluid behavior. In this manner, such tools are
hoped to have a significant impact on flow applications of academic and industrial interest
alike. Since direct numerical simulations will have to furnish high-quality data for DNS-based
analysis tools, continued efforts for the advancement of DNS techniques are imperative. At the
same time, the development of efficient iterative algorithms and their combination into a robust
DNS-based flow analysis tool is equally important.
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The combination of iterative Krylov-based eigenvalue algorithms and direct numerical simu-
lations (DNS) has proven itself an effective and robust tool in solving complex global stability
problems of compressible flows. A Cayley transformation is required to add flexibility to our sta-
bility solver and to allow access to specific parts of the full global spectrum which would be out of
reach without such a transformation. In order to robustify the overall global stability solver an
efficient ILU-based preconditioner has been implemented. With this Cayley-transformed DNS-
based Krylov method two flow cases were successfully investigated: (i) a compressible mixing
layer, a rather simple but well-known problem, which served as a test case and (ii) a supersonic
flow about a swept parabolic body, a challenging large-scale flow configuration.

1 Introduction

Linear hydrodynamic stability analysis plays a central role in identifying the dynamic behavior
of infinitesimal perturbations superimposed on a steady base flow. It is a crucial component for
understanding the underlying mechanisms in a large variety of fluid-dynamical applications. A
sound understanding of the prevailing instability mechanisms for general shear layers is, in turn,
required to optimize and manipulate the inherent flow properties.

A classical tool to study the temporal instability of such flows is given by local stability
theory, which in general relies on the existence of two homogeneous and one inhomogeneous
spatial coordinate direction. This approach dates back nearly a hundred years and leads to
an eigenvalue problems of moderate size which can be solved by standard direct techniques.
The assumption of two homogeneous directions, however, restricts local stability theory to flows
with simple geometries and simple flow physics. More complex and technologically relevant
flow situations with several inhomogeneous directions and/or complicated flow physics such as
supersonic flow about blunt bodies, are beyond its reach. Instead, this type of flow situations
requires a global rather than a local approach.

Over the past decades direct numerical simulations (DNS) based on high-order spatial dis-
cretization schemes have established themselves as a widely used tool to study complex flow
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problems. They aim at capturing all relevant physical features of the flow by spatially resolving
all dynamic scales; thus, no modeling efforts are required. The range of applications of state-
of-the-art direct numerical simulations is truly impressive in scope and complexity, and it is the
aim of global hydrodynamic stability analysis — and the objective of this article — to harness
these strengths and capabilities.

Even though the global stability problem can be mathematically formulated, the lack of
multiple homogeneous directions yields a linear stability matrix whose sheer size makes a direct
solution prohibitively expensive (Theofilis, 2003). Limited computational resources call for iter-
ative eigenvalue methods (see, e.g., Edwards et al., 1994, for applications of iterative techniques
in fluid mechanics) that extract stability information from the linearized flow in an approximate
manner. Among these iterative solution techniques Krylov subspace methods (Sorensen, 2002)
are particular popular for fluid-dynamical applications. Even though an explicit formulation
and storage of the stability matrix is a feasible alternative when combined with parallelization
efforts (Kitsios et al., 2009), we will focus on a Jacobian- or matrix-free environment where the
necessary information for the global stability problem is directly extracted from direct numerical
simulations.

Compressible global stability problems have only recently been tackled (see, e.g., Crouch
et al., 2007, 2009, for a study of the onset of transonic shock buffeting). Large-scale complex
flow problems featuring multiple (temporal/spatial) scales and multi-physics (shear and com-
pressibility effects, acoustic waves, etc.) exhibit a complicated spectrum which requires special
means to extract the relevant flow behavior. In addition, an erratic convergence history of stan-
dard iterative techniques is observed which calls for additional physics-based measures, such
as spectral transformations and preconditioning, to improve their convergence towards specific
global modes. Spectral transformations deform the complex eigenvalue plane in order to make
specific parts of the global spectrum accessible to iterative eigenvalue methods (an approach of
this type has been proposed by Morzynski et al., 1999). However, these transformations come
at the expense of solving a large-scale linear system which, in accordance with the above proce-
dures, has to be accomplished using a preconditioned iterative method based on a matrix-free
approach.

Krylov subspace methods for hydrodynamic stability analysis of the incompressible Navier–
Stokes equations were first introduced by Edwards et al. (1994). Their investigation of mod-
erately complex flow situations allowed a simpler Jacobian-based implementation and did not
require any type of spectral transformation. In the following years similar techniques have been
compiled into the open-source package ARPACK (Lehoucq et al., 1998). A comparative study of
transformed Krylov subspace techniques applied to problems from computational fluid dynamics
can be found in, e.g., Morzynski et al. (1999), Tuckerman et al. (2000) and Zhang (2000), and
further large-scale stability calculations have been performed by Lehoucq and Salinger (2001)
and Burroughs et al. (2004). The above studies, however, take advantage of the explicit pres-
ence of the linear stability matrix. More recently, Arbenz et al. (2005) compared eigensolvers for
large-scale three-dimensional modal analysis using AMG-preconditioned iterative techniques; all
matrices are semi-positive definite and are, again, available explicitly. A state-of-the-art review
of Krylov subspace techniques applied to a wide range of fluid flows of aerodynamical interest
is given by Theofilis (2003) with special emphasis on the global linear stability of non-parallel
and three-dimensional flow configurations. Based on his encompassing study we conclude that
further progress in the field of global stability analysis has to involve a purely iterative and
matrix-free approach which provides the starting point of this article.

Preconditioning techniques (see, e.g., Knoll and Keyes (2004); Nejat and Ollivier-Gooch
(2008) for a recent overview) help improve the convergence of the linear system solver. In a
survey article, Benzi (2002) provides a detailed overview of recent preconditioning strategies for
large linear systems mainly focusing on incomplete factorization techniques (ILU) and sparse
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approximate inverses (SPAI). A general discussion on algebraic multigrid (AMG) as a precondi-
tioner can be found in Trottenberg et al. (2000), and a specific application to AMG-accelerated
BiCGStab is given in Füllenbach and Stüben (2002). While these references concentrate on pre-
conditioning strategies for linear systems arising in Newton–Krylov methods, the literature on
transformation and preconditioning techniques for large-scale eigenvalue problems is relatively
sparse.

In this article we combine preconditioned Krylov-based techniques and direct numerical
simulations (DNS) to obtain a robust DNS-based Jacobian-free global stability solver for com-
pressible flows. In this manner, our contribution represents, on one hand, a generalization of the
work of Edwards et al. (1994) towards compressible flows and, on the other hand, provides an
extension of current tools for the global stability analysis of non-parallel and three-dimensional
flows, as alluded to by Theofilis (2003). It builds on previous global stability studies of com-
pressible flow such as the work of Theofilis and Colonius (2004) who investigate the behavior
of cavity flows for a wide range of Mach numbers, the study of Robinet (2007) who treats the
interaction of a shock with a laminar boundary layer within a global stability framework and
the investigations of Crouch et al. (2007, 2009) who treat the onset of transonic shock buffeting
as a global stability problem. Even though these studies are based on compressible governing
equations they do not follow the approach taken in this article where an iterative stability solver
is coupled to a direct numerical simulation code, thus performing a DNS-based (matrix-free)
global stability analysis.

In a historical and methodological context the linear stability of compressible flows can be
studied by the following approaches: (a) the direct solution of a one-dimensional local stability
problem, (b) the long-time integration of a direct numerical simulation (DNS) starting with
small-amplitude perturbations, (c) the direct or iterative solution of the global linear stability
matrix, and (d) the preconditioned iterative solution of a global linear stability problem. In
this article we develop the methodology for the latter approach (d) based on direct numerical
simulations. In section §2 we present our test case, a compressible mixing layer, formulate the
governing equations, briefly describe the linear stability theory for approaches (a), (c) and (d)
and display our reference spectrum. This is followed by the description of the DNS-based global
stability solver for approach (c) (section §3) and our Cayley-transformed version (section §4).
We conclude with results in section §5.

2 Compressible mixing layer: reference spectrum and DNS

It will be useful and instructive to demonstrate the global stability analysis of complex flows with
the help of a somewhat simplified flow configuration that possesses all the relevant physical and
numerical features of the full problem while still allowing a comparison with reference solutions
or analytical results. This way, we can design and assess the important components of the DNS-
based global stability solver and gain valuable insight and experience in using the governing
parameters to influence convergence properties and solution quality.

In view of the desired fields of application we consider a fully compressible flow that is domi-
nated by advective, diffusive and wave-propagation phenomena. These features will be reflected
in the associated global spectrum in form of shear modes, acoustic modes and combinations
thereof which displays the typical features of many high-speed flows arising in aeronautical ap-
plications. The chosen reference flow configuration, however, should be sufficiently simple to
still allow a solution by direct means; this point will particularly aid in the quality assessment
of each approximate step taken in the overall global stability algorithm.

A flow configuration that satisfies most, if not all, of the above described prerequisites is
the compressible mixing layer. A hyperbolic-tangent base velocity profile is assumed, and the
flow field is subsequently linearized about this analytic base state resulting in the linearized
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compressible Navier–Stokes equations governing the perturbation field. The stability of this
flow has been studied extensively, and the two landmark papers on this subject have been
published by Michalke (1964) and Blumen (1970).

2.1. Governing equations

The dynamics of the mixing layer is governed by the compressible Navier–Stokes equations
which have been formulated, using Cartesian tensor notation, for the pressure p, the velocities
(u, v, w) and the entropy s. We define a viscous length scale δ (shear layer thickness), a Reynolds
number Re, a Mach number Ma and a Prandtl number Pr as

δ =
2u∞

ωδ
, Re =

u∞δ

ν
, Ma =

u∞

c∞
, P r =

Cpµ

k
, (2.1)

where ωδ = (du/dy)y=0 and the subscript ∞ stands for the freestream quantities. The remaining
variables ν, µ, c∞, Cp and k denote, respectively, the kinematic and dynamic viscosity, the
speed of sound, the specific heat at constant pressure and the thermal conductivity. Using
these expressions, the compressible Navier–Stokes equations can be rewritten in the following
non-dimensionalized form:
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Herein, a freestream entropy s∞ = Rc was assumed, where Rc denotes the gas constant. The
variables γ, ̺ and T represent the specific heat ratio, the density and the temperature, respec-
tively.

The non-dimensionalized base flow in the streamwise x-direction is given by

u0(x, y, z) = tanh(y) −∞ < y < +∞ , (2.3)

where the subscript 0 stands for base flow quantities; y and z represent the normal and the
spanwise coordinate direction, respectively (see figure 1). The base pressure p0(x, y, z) = 1 and
the base entropy s0(x, y, z) = 1 are assumed to be constant.

The compressible Navier–Stokes equations, the equation of state, Fourier’s law for the ther-
mal conductivity and Sutherland’s law, where ambient conditions are used as a reference state,
for the viscosity fully describe the flow. For all simulations shown in this article, we consider the
motion of a compressible fluid modeled as a perfect gas with constant specific heat ratio γ = 1.4
and constant Prandtl number Pr = 0.71.
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Figure 1. Sketch of a mixing layer showing the base velocity profile (in blue), some of the relevant flow parameters
and the Cartesian coordinate system (in red).

2.2. Linear stability analysis

In a next step towards a linear stability analysis we assume a three-dimensional small-
amplitude perturbation field ǫφ′ = ǫ(p′, u′, v′, w′, s′)T superimposed on a steady base flow φ0.

φ(x, y, z, t) = φ0(x, y, z) + ǫφ′(x, y, z, t) (2.4)

From this the linearized Navier–Stokes equations for the perturbations

∂φ′

∂t
= J (φ0)φ

′ (2.5)

are obtained, where J (φ0) denotes the linear stability operator. The compressible mixing layer
(see figure 1) is then assumed to be homogeneous in the x- and the z-direction, and periodic
boundary conditions are applied in these directions. In the remaining inhomogeneous y-direction,
all disturbance quantities are assumed to decay exponentially in the freestream.

2.2.1 Local stability approach

Referring back to approach (a), mentioned at the end of the introduction, and taking advan-
tage of the separability of the governing equations in the two homogeneous coordinate directions,
the disturbance field φ′(x, y, z, t) can be taken of the following traveling-wave form

φ′(x, y, z, t) = φ̃(y)ei(αx+βz−ωt), (2.6)

where φ̃(y) denotes the complex amplitude, and α and β are the real wavenumbers of the
perturbation in the streamwise and the spanwise direction, respectively. The temporal long-
term evolution of this type of disturbance is characterized by ω whose real part describes the
frequency ωr and whose imaginary part the corresponding growth rate ωi. Upon substitution of
the above expression (2.6) into the perturbation equations (2.5) we obtain a one-dimensional
eigenvalue problem ω φ̃ = J (φ0) φ̃ for ω and φ̃. Once the dependence on the inhomogeneous
y-direction is eliminated by a sixth-order compact finite difference scheme (Lele, 1992) using ny

grid points, we arrive at an eigenvalue problem for the linear stability matrix, i.e., the 5ny ×5ny

Jacobian matrix, which can be solved numerically by direct means for each wavenumber pair
(α,β) and for each value of the remaining parameters.
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2.2.2 Global stability approach

Many flow problems are characterized by a complex geometry or complex flow physics which
no longer permits an assumption of the form (2.6), e.g., owing to several inhomogeneous coor-
dinate directions. Supersonic flow about a swept parabolic body, which will be considered later
in this article (see section §5), represents an example of this type. In this case, a global rather
than a local stability approach has to be considered which forms the basis for approach (c) and
(d) as mentioned at the end of the introduction.

For the global approach the disturbance field φ′(x, y, z, t) is assumed to satisfy

φ′(x, y, z, t) = φ̃(x, y)ei(βz−ωt), (2.7)

where, as before, φ̃(x, y) denotes the complex amplitude and β the real spanwise wavenumber
of the perturbation. This formulation is referred to as BiGlobal in Theofilis (2003). The long-
term temporal stability of the perturbation is given by the global eigenvalue ω. Under these
assumptions and an appropriate discretization of the x- and y-dependence, the two-dimensional
(global) stability problem can formally be written as

ω φ̃(x, y) = J(φ0) φ̃(x, y), (2.8)

where J(φ0) represents the n × n linear stability matrix (the Jacobian), i.e., the discretized
Navier–Stokes equations linearized about the base state φ0, with n = 5nxny as the dimension
of this (complex-valued) eigenvalue problem; nx and ny denote the number of grid points in the
x- and y-direction, respectively.

For linear stability matrices of moderate size, e.g., a dimension n ∼ O(105), this eigenvalue
problem can still be solved directly (see, e.g., Theofilis (2003) for a discussion on the solution of
global eigenvalue problems). For more complex flow configurations which require a large domain
as well as a high spatial resolution, however, the direct solution of the (global) eigenvalue problem
(2.8) is prohibitively expensive. Instead, iterative solution techniques have to be employed to
extract pertinent stability information.

2.3. Long-time integration of the initial value problem

An alternative approach to address the stability of complex flows is given by the long-time
solution of a linearized initial value problem

∂φ

∂t
= F(φ0 + ǫφ′

︸ ︷︷ ︸
φ

), (2.9)

where F represents the right-hand side of the nonlinear Navier–Stokes equations. The solution
of (2.9) could be obtained from direct numerical simulations (see, e.g., Theofilis, 2003; Le Duc
et al., 2006, for applications in fluid dynamics). This technique corresponds to approach (b) as
mentioned at the end of the introduction. Starting with an arbitrary initial condition of small
amplitude ǫφ′ (such that nonlinear effects can be neglected) superimposed on a steady base flow
φ0, the solution of the initial value problem converges towards the least-stable global mode as
time progresses. The corresponding global eigenvalue can be computed from this global mode
in a straightforward manner.

2.4. Reference spectrum

A typical spectrum of the compressible mixing layer is displayed in figure 2(a), and the values
of the four eigenvalues depicted in circles are shown in table 3. This multi-branch spectrum was
obtained using the local stability approach (see section §2.2.1), and it reveals characteristic
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Figure 2. (a) Directly computed reference spectrum of a compressible mixing layer for Re = 1000, Ma = 0.5,
α = 0.397 and β = 0 (see table 4, ConfigIV); ny = 201 grid points were used to resolve the inhomogeneous y-
direction; unstable half-plane in grey. The spatial structure of two (local) modes is visualized by the (normalized)
disturbance pressure using three periods in the periodic x-direction: (b) unstable (discrete) shear mode (LM1),
(c) faster-moving acoustic mode (LM4) from the acoustic branch.

features such as (i) acoustic modes with very small damping but rather high phase velocities
(which reflects the fact that sound waves propagate quickly and without significant attenuation
in their amplitude), (ii) shear-layer modes displaying small phase velocities (which reflects the
fact that shear instabilities propagate with the local base velocity which is rather small inside
the shear layer), and (iii) a continuous spectrum of modes that describes the perturbation
dynamics in the freestream and ensures the completeness of the eigenfunction basis (Schmid
and Henningson, 2001). Instabilities (with ωi > 0) are observed only on the shear-layer branch.
The spatial structure of two representative eigenfunctions, one from the shear-layer branch
(LM1) and one from the acoustic branch (LM4) are shown in figure 2(b,c).

Table 3. Values of the four eigenvalues ω = ωr + iωi marked by circles in figure 2(a); they belong to the unstable
shear mode (LM1), a representative weakly-damped mode from the continuous shear-layer branch (LM2) and a
slow-moving (LM3) as well as a faster-moving mode (LM4) from the acoustic branch.

Mode LM1 LM2 LM3 LM4

ωr 0 0.395973 0.459261 1.478955

ωi 0.127146 -0.040255 -0.010807 -0.027631
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This spectrum which displays many features of more complex spectra for compressible flows
will serve as a reference spectrum on which we will develop, test and validate iterative solution
techniques for the global hydrodynamic stability problem.

2.5. Direct numerical simulations and validation of the code

The direct numerical simulations (DNS) are performed on a non-uniformly distributed grid
using nx and ny grid points in the x- and y-direction with a clustering of the ny grid points near
y = 0 to better resolve the shear layer. The governing equations are solved using a characteristic-
type formulation (Sesterhenn, 2001) and discretized employing fifth- and sixth-order compact
difference schemes for the inviscid and viscous terms, respectively (Adams and Shariff, 1996;
Lele, 1992). For the initial value problem the temporal discretization is accomplished by a
fourth-order Runge–Kutta scheme (see Mack and Schmid, 2009, for details).

In what follows, all numerical investigations will focus on four selected flow configurations
(Config I–IV) that represent a range of physical and numerical features. The governing param-
eters for these examples are given in table 4.

To validate the code direct solutions of the one-dimensional eigenvalue problem (section §2.2.1)
as well as solutions of the two-dimensional initial value problem (2.9) via direct numerical simu-
lations are performed. In table 5 these results are compared with Blumen’s findings for selected
parameter combinations (Config I–III), and the results for the parameter choice of our reference
case (Config IV) are shown too. In this manner, the Jacobian (used as a preconditioner) and the
DNS-code are validated. In addition, results from the solution of the two-dimensional (global)
eigenvalue problem (2.8) obtained from a DNS-based iterative stability solver (without trans-
formation) are included as well. The used Krylov subspace method that generated the latter
results is described in section §3, its spectrally (Cayley-) transformed version is developed in
section §4 and evaluated using the given reference spectrum (see figure 2).

Table 4. Governing parameters of the four selected flow configurations (Config I–IV) which are defined by the
shear-layer thickness δ, the Reynolds number Re, the Mach number Ma as well as the disturbance wavenumbers
α and β.

Config # δ Re Ma α β

I 0.1 → ∞ 0.1 0.433 0

II 0.1 → ∞ 0.5 0.397 0

III 0.1 → ∞ 0.9 0.208 0

IV 0.1 1000 0.5 0.397 0

Table 5. Growth rate ωi of the unstable shear mode as obtained by using the approaches (a)–(c) described at
the end of the introduction; a resolution of nx = 32 and ny = 201 grid points is used; Blumen’s results are also
included. For Config IV the unstable shear mode could not be computed via approach (b).

Config # Blumen (1970) approach (a) approach (b) approach (c)

matrix-based DNS-based DNS-based

I 0.187 0.187521 0.1875 0.187521

II 0.141 0.141161 0.1412 0.141167

III 0.055 0.054731 0.0547 0.054723

IV - 0.127146 - 0.127155
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3 Iterative stability analysis

The global linear stability analysis of complex fluid flows leads to a non-Hermitian eigenvalue
problem (2.8) whose solution requires iterative algorithms such as Krylov subspace methods.
In many fluid-dynamical applications only a few eigenvalues are needed to answer questions of
interest, a requirement that also favors iterative techniques. In what follows, we adopt a linear
algebra notation with the matrix A ≡ J(φ0), the vector x ≡ φ̃ and the eigenvalue λ ≡ ω,
yielding a standard eigenvalue problem given as λx = Ax.

3.1. Krylov subspace methods

A common class of iterative eigenvalue algorithms is based on the premise that the full
stability problem can be projected onto a lower m-dimensional vector space given by an m-
dimensional Krylov subspace sequence

Km(A,v1) = span{v1,Av1,A
2v1, . . . ,A

m−1v1}. (3.1)

This sequence consists of repeated applications of a matrix A to an initial vector v1. The
spectrum of the subsequent projected system then approximates the spectrum of the full stability
problem given by A.

Among the general class of Krylov subspace methods, we choose the Implicitly Restarted
Arnoldi Method (IRAM) proposed by Sorensen (1992). This method is briefly described as
follows (for a more complete discussion the reader is referred to the cited author): The Arnoldi
method constructs an orthonormal basis Vm = [v1,v2, . . . ,vm] of the Krylov subspace Km

which is then used to decompose a matrix A in the following way:

AVm = VmHm + fmeT
m. (3.2)

Hm denotes an m-dimensional upper Hessenberg matrix (with m ≪ n), fm is the residual vector
orthogonal to the basis Vm, and em represents a unit-vector in the m-th component. Multiplying
both sides of (3.2) from the left by V∗

m and using the fact that Vm is unitary, we obtain

V∗

mAVm = Hm, (3.3)

where the superscript ∗ denotes the Hermitian conjugate. The eigenvalues {θj} of the Hessenberg
matrix Hm, the so-called Ritz values, are approximations of the eigenvalues {λj} of the matrix
A, and the associated eigenvectors x̃j of A, the so-called Ritz vectors, can be calculated using
the orthonormal basis Vm as

x̃j = Vmyj , (3.4)

where yj denotes the eigenvector of Hm associated with the eigenvalue θj . In general, some
of the Ritz pairs (x̃j ,θj) closely approximate the eigenpairs (xj ,λj) of A, and the quality of
this approximation usually improves as the dimension m of the Krylov subspace sequence Km

increases. In practice, however, the dimension of this subspace is limited by memory restrictions,
and its ortho-normalization is progressively affected by numerical errors as m increases. For this
reason, the Arnoldi factorization (3.2) needs to be periodically restarted with a new starting
vector v+.

Sorensen’s implicit restarting strategy (Sorensen, 1992) computes this new starting vector
v+ by a polynomial approximation of Krylov vectors that damps p = m−k undesired Ritz pairs,
where k denotes the number of desired Ritz pairs. Lehoucq and Scott (1996) and Morgan (1996)
studied the issue of restarting and compared implicit restarting with other schemes; furthermore,
Morgan (1996) and Sorensen (2002) concluded that using implicit restarting and applying exact
shifts in connection with the Arnoldi method is optimal. For details, including a discussion on
the convergence behavior, we refer the reader to the above-mentioned literature.
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For the sake of completeness, a further class of Krylov subspace methods known as subspace
iteration techniques (see, e.g., Sorensen, 2002) is worth mentioning. As an example, Heeg and
Geurts (1998) successfully applied these techniques in their studies on spatial instabilities of the
incompressible attachment-line flow.

3.2. Jacobian-free framework

The form of the Krylov subspace sequence (3.1) indicates that the Jacobian matrix A ≡
J(φ0) does not need to be formed explicitly; rather, only matrix-vector products are necessary
to perform the Arnoldi decomposition. These matrix-vector products are readily obtained from
direct numerical simulations (DNS) via

Avi ≈
F(φ0 + ǫvi) − F(φ0)

ǫ
=

∂F(φ)

∂φ

∣∣∣∣
φ=φ0

vi + O(ǫ) with i = 1, 2, . . . , m − 1, (3.5)

where ǫ is a user-specified parameter, φ0 and vi ≡ φ′ denote, as before, the base flow and a
disturbance field, respectively, and F represents the discretized right-hand side of the nonlinear
Navier–Stokes equations. This first-order finite difference approximation of the Jacobian matrix
J(φ0) allows a Jacobian-free framework where right-hand side evaluations from direct numer-
ical simulations provide the input for the iterative stability solver. Consequently, an explicit
linearization of the governing equations (2.2) is no longer required. A matrix-free approach
reduces memory requirements considerably and removes the problem of explicitly forming and
storing the high-order Jacobian matrix. This advantage significantly simplifies the overall global
stability method.

The choice of ǫ is, however, not obvious: if ǫ is too large, the derivative will be poorly
approximated and if ǫ is too small, the result will be contaminated by roundoff errors. A widely
used choice represents

ǫ =
‖φ0‖2

‖vi‖2
ǫ0, (3.6)

where ǫ0 is a small parameter which is typically chosen somewhat larger than the square root of
machine epsilon. For a discussion on common choices for ǫ as well as higher-order approximations
for equation (3.5) the reader is referred to Knoll and Keyes (2004) and the references therein.

It should be mentioned though, that this matrix-free formulation further introduces a consid-
erable amount of flexibility in forming the linear stability matrix. The call to the right-hand side
F in equation (3.5), which in our case consists of a direct numerical simulation code for the com-
pressible Navier–Stokes equations, can easily be substituted by other numerical discretizations
of the corresponding governing equations. In particular, the entire hierarchy of common models
for high-Reynolds number flows in complex geometries (such as, e.g., Large-Eddy simulations
(LES), Detached-Eddy simulations (DES), vortex-particle methods and even commercial codes)
can be treated within the same framework. Stability results using this Jacobian-free framework
can thus be obtained for any flow whose main features can be captured to a sufficient degree of
accuracy by appropriate numerical simulations.

4 Convergence acceleration and control

The need for convergence acceleration arises from the fact that high resolution simulations of
complex fluid flow physics (with, e.g., the coexistence of shear and acoustic modes as illus-
trated in our reference spectrum, see figure 2a) lead to an unpredictable and erratic convergence
behavior of the simple Arnoldi method (without transformation). In addition, any thorough
investigation of complex fluid flow behavior requires us to focus on specific parts of the global
spectrum. For example, to investigate the acoustic near- and far-field as to its structure and
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directivity it is necessary to extract global modes from the acoustic branch. To direct the con-
vergence of the Arnoldi method towards these modes a transformation of the complex eigenvalue
plane can be used. In short, both convergence acceleration and convergence control are desired
for an effective DNS-based global stability solver. It must be stressed, however, that any tech-
nique employed to accelerate or control the convergence of the global stability solver has to be of
an iterative and matrix-free nature to preserve the applicability of the method to a wide range
of complex fluid-dynamical problems.

4.1. Inexact Cayley transformation

To accelerate and control the convergence behavior of the global stability algorithm the
Cayley transformation (Garratt et al., 1993) is applied. This transformation consists of a two-
parameter conformal mapping of the complex plane and, for generalized eigenvalue problems of
the form λBx = Ax, is defined as

TC(σ, µ) ≡ (A − σB)−1(A − µB), (4.1)

where σ and µ are the mapping parameters. For standard eigenvalue problems, as it is the
case for our problem, we have B = I where I denotes the identity matrix. This transformation
represents a more general mapping than the more commonly applied shift-invert technique (see,
e.g., Ericsson and Ruhe, 1980; Theofilis, 2003).

The complex parameter σ acts as a shift parameter, and eigenvalues close to it are mapped
far into the right-half plane for Imag{λ} < Imag{σ} < Imag{µ} while eigenvalues far from it are
mapped close to one (see figure 3). The second complex parameter µ introduces an additional
stretching-and-rotation effect on the transformed spectrum. Its major role, however, consists
in controlling the condition number of the linear transformation. For this reason, the Cayley
transformation in general yields a better-conditioned linear system than the shift-invert trans-
formation (see Lehoucq and Salinger, 2001), an important advantage for its iterative solution.
In addition, Lehoucq and Meerbergen (1998) report “the superior numerical performance of a
Cayley transformation over that of a shift-invert transformation within an Arnoldi method when
using an iterative linear solver”.

The eigenvalues λ of (A,B) are then recovered from the eigenvalues ξ of the transformed
problem via

λ =
σξ − µ

ξ − 1
, (4.2)

while the eigenvectors x are not affected by the transformation.
Figure 3 demonstrates the Cayley transformation for our reference spectrum (see figure 2a).

Two parameter settings for σ and µ are displayed: the first parameter combination focuses on
the unstable shear mode LM1 (see table 3) whereas the second parameter combination aims at
extracting a specific mode LM4 from the acoustic branch. The first configuration illustrates the
possibility of convergence acceleration of the Arnoldi method, while the second configuration
demonstrates the Cayley transformation as a convergence control tool. The general mapping
between the complex λ- and the complex ξ-plane is further visualized by the dashed Cartesian
grid in figure 3(a) and its mapped counterparts in figure 3(b,c). For an overview of available
acceleration techniques we refer the reader to Bai (1992).

The Cayley transformation (4.1) requires the solution of the following generally non-Hermitian
linear system

(A − σI)vj+1 = (A − µI)vj (4.3)

for each outer step of the Arnoldi method to construct the (j + 1)-th Krylov vector in (3.1).
This is accomplished by using a Krylov-based iterative linear solver. From the commonly ap-
plied techniques of Generalized Minimum Residual (GMRES) method (Saad and Schultz, 1986),
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Figure 3. (a) Relabeled reference spectrum (λ ≡ ω) as presented in figure 2(a); the two eigenvalues marked by
circles belong to ωLM1 (in red) and ωLM4 (in blue); (b) and (c) display Cayley-transformed spectra for the mapping
parameters σ = Real{ωLM1}+ 2i and µ = Real{ωLM1}+ 8i and σ = Real{ωLM4}+ 2i and µ = Real{ωLM4}+ 8i,
respectively. A dashed Cartesian grid as well as the unstable half-plane (in grey) and their mapped counterparts
are also shown. The green line indicates the region of convergence of the Cayley-transformed Arnoldi method.

stabilized Bi-Conjugate Gradient Iteration (BiCGStab) (van der Vorst, 1992) and transpose-free
quasi minimum residual (TFQMR) method (Freund, 1993), we choose the BiCGStab algorithm
since its three-term recurrence relation results in low memory requirements. The solution of
the linear system (4.3) by an iterative method can only be approximate; as a consequence, the
Cayley transformation (4.1) is necessarily inexact (see, e.g., Meerbergen and Roose, 1997, for a
discussion on inexact transformations).

The necessity of an iterative solution technique for solving (4.3), however, restricts the choice
of Cayley parameters, and the resulting linear system yields solutions only if the shift parameter
σ is chosen sufficiently far from an eigenvalue, thus avoiding an ill-conditioned matrix. Consid-
erations like this can be ignored when a direct inversion is attempted. For a discussion of the
choice of the Cayley parameters the reader is referred to, e.g., Burroughs et al. (2004) and the
references therein.

4.2. Preconditioning

An efficient iterative solution of (4.3) requires a reliable and robust preconditioning tech-
nique. This has also been stated by Benzi (2002) who considers preconditioning as the “most
critical ingredient in the development of efficient solvers for challenging problems in scientific
computation”. For this reason, there exists a large body of literature on preconditioning strate-
gies, and the reader is referred to, e.g., Benzi (2002), Osei-Kuffuor and Saad (2007) and Nejat
and Ollivier-Gooch (2008) for an overview.
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State-of-the-art preconditioning techniques require in general a preconditioning matrix in
explicit form, as reported by Knoll and Keyes (2004). These authors also discuss Jacobian-free
preconditioning strategies for linear systems and conclude that “the only iterative method that
can be implemented in a fashion that is literally matrix-free is a Krylov method”.

In our global stability algorithm we maintain a Jacobian-free implementation via direct
numerical simulations but assume the preconditioning matrix in explicit form. Applying this
(shifted) preconditioning matrix Pσ = P − σI from the right, the modified expression of the
finite difference approximation (3.5) reads

AP−1
σ p︸ ︷︷ ︸
bp

≈ F(φ0 + ǫP−1
σ p) − F(φ0)

ǫ
, (4.4)

where p denotes an iteration vector in the BiCGStab algorithm (see van der Vorst (1992) for
details). This expression has to be evaluated each time a matrix-vector product is required in
the inner iteration, the solution of equation (4.3), of the Krylov-based linear solver. The outer
Arnoldi iteration is not affected by Pσ.

Preconditioning the inner iterations raises two important questions related to the choice of
P and the manner of solving the required linear system Pσp̂ = p. For P we choose a second-
order finite difference approximation of the Jacobian matrix. Owing to the sparsity of P we
can take advantage of efficient incomplete decomposition techniques. The degree of “incom-
pleteness” is given by the chosen sparsity structure of the decomposition. For general matrices,
the LU-decomposition results in upper/lower triangular matrices that are dense. Incomplete
decompositions, on the other hand, yield matrices that have a characteristic sparsity pattern
and can be inverted efficiently by standard algorithms. In our case we choose an incomplete
LU-decomposition, i.e., the dual truncation technique ILUT(p,τ) in which dropping during the
factorization is based on two user-specified parameters: the fill level p and the drop tolerance
τ (Saad, 2003). This strategy was successfully applied by Osei-Kuffuor and Saad (2007) to
precondition complex-valued matrices, and as a dropping rule for a given fill level maximally p
super-diagonal and p sub-diagonal elements are kept in each row of LU.

Denoting our low-order approximation of the Jacobian matrix by Plow we can recast equation
(4.4) as follows

AhighP
−1
low,σp ≈

Fhigh(φ0 + ǫP−1
low,σp) − Fhigh(φ0)

ǫ
, (4.5)

which illustrates the combination of high-order Jacobian evaluation with low-order precondi-
tioning, denoted by the subscripts high and low, respectively. For the sake of simplicity, these
subscripts are omitted for A and P in the following.

Ideal preconditioning would result in eigenvalues of AσP
−1
σ = (A − σI)(P − σI)−1 at one.

In practice, however, one has to be content with a clustering of the eigenvalues of AσP
−1
σ about

one. The quality of a preconditioner can thus be measured by the distance of these eigenvalues
from one but also by their distance from the origin which is necessary to avoid ill-conditioning.
These eigenvalues depend on four factors: (i) the discretization in A ≡ J(φ0), (ii) the choice
of P (discretization, formulation, etc.), (iii) the technique employed to efficiently invert Pσ and
(iv) the choice of the shift parameter σ.

4.3. Proposed global stability algorithm (PCIRAM)

In summary, our proposed DNS-based global stability solver consists of the five steps (S1–
S5) shown below (a sketch that illustrates the algorithm can be found in figure 4). This solver
requires the user to specify several parameters which are related to the implicitly restarted
Arnoldi method (m, k, tolA), the Jacobian-free implementation (ǫ0), the Cayley transformation
(σ, µ), the iterative linear solver (tolB) and the ILUT-preconditioner (p,τ). Additionally, the
starting vectors v1 and vj+1,0 for the Arnoldi method and the iterative linear solver are required.
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S1. Compute the base flow φ0 (if not available in analytic form)

S2. Compute and save Fhigh(φ0) (required for the Jacobian-free framework)

=⇒ Call right-hand side in DNS to compute Fhigh(φ0)

S3. Setup the preconditioning matrix P by a low-order approximation of the high-order Jacobian
matrix A, and compute the incomplete LU-decomposition of Pσ = P − σI.

S4. Perform outer Arnoldi iterations to solve the (global) eigenvalue problem

λ x = A x

(A) Choose initial condition v1

(B) Iterate until convergence: for j = 1, 2, . . .

B.1 Apply Cayley transformation and compute vj+1

(A − σI)vj+1 = (A − µI)vj︸ ︷︷ ︸
b

(a) Obtain the matrix-vector product in b using

Avj ≈ Fhigh(φ0 + ǫvj) − Fhigh(φ0)

ǫ

=⇒ Call right-hand side in DNS to compute Fhigh(φ0 + ǫvj)

(b) Perform inner iterations of ILU-preconditioned BiCGStab to solve

(A − σI)P−1
σ Pσvj+1 = b

(b.1) Choose initial condition vj+1,0

(b.2) Iterate until convergence: for i = 1, 2, . . .

a) Incomplete solution of Pσp̂ = p

b) Obtain the matrix-vector product via

Ap̂ ≈ Fhigh(φ0 + ǫp̂) − Fhigh(φ0)

ǫ

=⇒ Call right-hand side in DNS to compute Fhigh(φ0 + ǫp̂)

c) Check for convergence of vj+1,i via

‖ri‖/‖b‖ ≤ tolB,

where ri denotes the current residual error and tolB is a user-specified tolerance
parameter.

B.2 Check for convergence of the desired Ritz pairs (x̃j ,θj) using the Ritz estimate

|βmeT
myj | ≤ max(ǫM‖Hm‖ , tolA · |θj |),

where βm = ‖fm‖, ǫM stands for machine epsilon and tolA denotes a user-specified
tolerance parameter.

S5. Finally, recover eigenvalues λ of A via

λ =
σθ − µ

θ − 1
,

while the eigenvectors x follow from x̃.
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(x, λ)v1 for j = 1, 2, . . .

(A − σI)vj+1 = (A − µI)vj

vj+1 vj

vj+1,0 for i = 1, 2, . . .

Pσ

Ap̂i

≈
Fhigh(φ0 + ǫp̂i) − Fhigh(φ0)

ǫ

Fhigh(φ0) Fhigh(φ0 + ǫp̂i)

Iterative eigensolver
(IRAM)

Outer iterations

Inexact Cayley
transformation

via

ILU-preconditioned
iterative linear solver

(BiCGStab)

Inner iterations

Jacobian-vector product

Jacobian-free
implementation

via

DNS

vjvj+1

p̂ip̂i+1
vjAvj

Figure 4. Sketch of our proposed DNS-based global stability algorithm (abbreviated as PCIRAM). The left
column shows the required input such as the starting vectors v1 and vj+1,0, and, as a result, approximations
to the eigenpairs (x, λ) are obtained; A denotes the high-order Jacobian matrix. The dashed boxes represent
different components of the algorithm which could be replaced in a modular manner, e.g., instead of direct
numerical simulations (DNS), Large-Eddy simulations (LES) could be used to provide the required input for the
Jacobian-free implementation.

5 Results

After having established and analyzed the components of an iterative global stability solver
based on direct numerical simulations (DNS), we now demonstrate its effectiveness in extracting
information of the perturbation dynamics on two examples. The first example continues our test
case of the compressible mixing layer introduced in section §2. The second example concerns
supersonic flow about a swept parabolic body where the global treatment of the associated
stability problem will yield new physical results and provide a significant numerical challenge to
our global stability algorithm.

All numerical simulations shown in this article have been performed on an SGI Altix 4700
with a clock rate of 1.6 GHz. For all cases considered in the next sections, the initial condition
v1 for the implicitly restarted Arnoldi method (IRAM) has been taken as a field of randomly
distributed values, localized in space in order to satisfy the appropriate boundary conditions.
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Figure 5. (a) Two spectra (in red and blue) which have been computed via our DNS-based global stability
solver PCIRAM using the Cayley transformations displayed in figure 3(b) and (c), respectively. The eigenvalues
belonging to ωLM1 and ωLM4 (see table 3) are indicated by circles; the directly obtained spectrum (in dark grey)
as well as the unstable half-plane (in light grey) are also shown. The associated global modes GM1 (b) and
GM4 (c) are visualized by the real part of the (normalized) pressure. Parameters given in table 4 (Config. IV)
have been chosen, and 32 × 201 grid points have been used to resolve the x- and the inhomogeneous y-direction,
respectively.

5.1. Example 1: compressible mixing layer

The compressible mixing layer, introduced earlier, represents a generic flow configuration
that can be observed, at least locally, in many technological and industrial applications. In
our investigation we will focus on the unstable shear mode (LM1) and a specific mode from the
acoustic branch (LM4) as depicted in figure 2 as well as on some selected parameter settings (see
table 4 for details); we will discuss flexibility, accuracy, robustness and efficiency of our global
stability solver employing three methods: (i) the (simple) implicitly restarted Arnoldi method
(IRAM), (ii) its Cayley-transformed but unpreconditioned version (abbreviated as CIRAM)
and (iii) its Cayley-transformed and ILU-preconditioned variant (abbreviated as PCIRAM). As
parameters for the Arnoldi method we set m = 80, k = 32 and tolA = 10−4, and we choose
ǫ0 = 10−8 for the Jacobian-free implementation.

5.1.1 Increasing flexibility: the Cayley-transformed IRAM

We start by studying the Cayley-transformed implicitly restarted Arnoldi method (PCI-
RAM) as our proposed global stability algorithm (see section §4) and demonstrate its flexibility
in computing specified regions of the global spectrum (related to shear modes or acoustic modes)
by adjusting the Cayley parameters. For this purpose, the two configurations displayed in fig-
ure 3(b,c), the first for the Cayley parameters σ = Real{ωLM1}+ 5i and µ = Real{ωLM1}+ 20i
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and the second applying σ = Real{ωLM4} + 5i and µ = Real{ωLM4} + 20i have been chosen,
and the global spectra (a) and associated global modes (b,c) are visualized by the disturbance
pressure p̃(x, y) in figure 5. Guess values for the Cayley parameters have to be taken when no
prior information or estimates of the flow behavior are available; an iterative adapting of these
parameters is conceivable. The real part of each (normalized) mode is plotted using three periods
in the periodic x-direction. A clear distinction between global modes with support in the areas
of highest shear (GM1) and acoustic modes with non-zero amplitudes in the freestream (GM4)
can be made. The successful extraction of these modes from the general spectrum demonstrates
the increase in flexibility of the DNS-based global stability solver as the Cayley transformation
is added. As expected, the two-dimensional global spectrum is far more complex due to a su-
perposition of modes with multiple streamwise scales as a consequence of a discretization in the
streamwise x-direction. Therefore, it should not come as a surprise that the Arnoldi method
does not necessarily converge to the global acoustic mode shown in figure 2(c). Instead, the
PCIRAM extracts the least-stable global modes with respect to the chosen Cayley parameters.

The possibility of the Cayley-transformed IRAM of exploring desired parts of the full global
spectrum represents at the same time a significant drawback of the Arnoldi method without
such a transformation which, applied to the same choice of flow parameters, converges to only
the unstable mode and a random sample of other modes, such as fast-traveling acoustic modes
(see figure 5a black dots). No influence over the convergence towards specific modes, however,
can be exerted.

5.1.2 Increasing accuracy: the influence of the parameter ǫ0
An important component of our global stability solver contains the replacement of the exact

Jacobian matrix J(φ0) by a first-order finite-difference approximation (see equation (3.5)). This
approximation crucially depends on a user-defined parameter ǫ0. In particular, we are interested
in the influence of ǫ, computed via equation (3.6), on the accuracy of the Ritz values as well as
the Ritz pairs.

For this analysis, we resort to the (simple) implicitly restarted Arnoldi method (IRAM) to
delineate the effects of ǫ0 from those introduced by the inexact Cayley transformation and by
the preconditioner. The influence of ǫ0 on our solution is measured by two quantities, namely,
the relative error and the direct residual.

The first quantity, the relative error e1, is defined as

e1(ǫ0) =
|ω2D,DNS(ǫ0) − ω1D|

|ω1D| , (5.1)

where ω2D,DNS ≡ θ1 denotes the least-stable Ritz value of the global DNS-based calculation and
ω1D represents the least-stable eigenvalue of the one-dimensional eigenvalue problem obtained
by direct means (as shown in table 5).

The second quantity, the direct residual ‖r1‖ (see Lehoucq et al., 1998), provides a measure
of the accuracy of the computed least-stable Ritz pair (x̃1, θ1); it is defined as

‖r1(ǫ0)‖ =
‖J(φ0)x̃1 − x̃1θ1‖

|θ1|
. (5.2)

To cover a range of parameters, the following four flow configurations have been investigated
(see table 4 for details about Config I and III): (i) a low Mach-number case with a rather low
resolution (Config I, nx = 16, ny = 101), (ii) the same low Mach-number case but with a higher
resolution (Config I, nx = 32, ny = 201), (iii) a high-Mach number case with the previous high
resolution (Config III, nx = 32, ny = 201) and, finally, (iv) a high-Mach number case with a low
Reynolds number (Config III with Re = 1000, nx = 32, ny = 201). The results are summarized
in figure 6 where the evolution of the relative error e1 and the norm of the direct residual ‖r1‖
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Figure 6. (a) Relative error e1 and (b) direct residual ‖r1‖ as a function of the user-specified parameter ǫ0 for
four selected flow configurations (i)–(iv); see text for details. The (simple) implicitly restarted Arnoldi method
(IRAM) was applied.

are displayed versus ǫ0 (with ǫ0 ranging from 10−2 to 10−15 as a consequence of the double
precision arithmetic).

In the case of the relative error e1 (see figure 6a), the curves for each of the four cases show
a similar shape: a rather small relative error plateau for a moderate range of ǫ0 (10−6 to 10−11)
and a rapidly increasing relative error as we tend towards larger (10−2) and smaller (10−15)
values of ǫ0. The range of values where e1 is nearly independent of the parameter ǫ0, however,
depends itself on the value of e1; this means that the more accurate the least-stable Ritz value is
determined — resulting in a smaller value of e1, — the more narrow is its range of independence
from ǫ0.

Different results are found for the direct residual ‖r1‖ (see figure 6b): instead of a plateau
suggesting a range of optimal values for ǫ0, a distinct choice of ǫ0 ≈ 10−8 yields the lowest
residual norm; for values larger or smaller than this critical value, the residual norm increases
substantially.

It is important to keep in mind, though, that for non-Hermitian matrices A ≡ J(φ0) a
low direct residual does not necessarily imply an equivalent low error, and that the converged
Ritz pair (x̃, θ) may not represent an accurate approximation of the corresponding eigenpair
(x, λ) ≡ (φ̃, ω). Direct residual and error are linked via the condition number of the system
matrix A, and an ill-conditioned system may yield inaccurate solutions. For precisely this
reason do we observe a distinct plateau in the error (see figure 6a) but a lack thereof in the
direct residual (see figure 6b). As far as the user is concerned the precise choice of ǫ0 is not
critical as long as it falls within the range of values defined by the plateau.

5.1.3 Increasing robustness: an analysis of the growth rate and the direct residual

The results of our investigation into robustness of the proposed methods are demonstrated
and summarized in table 6. In it we compare findings obtained by applying (i) the simple un-
transformed, (ii) the Cayley-transformed but unpreconditioned and (iii) the Cayley-transformed
and ILUT-preconditioned Arnoldi method. Only the convergence to the least-stable shear mode
ω1, with Real{ω1} = 0, and its dependence on a representative choice for the governing param-
eters are considered here. We observe that for the low-Mach number case (see table 4, Config
I) the Cayley-transformed but unpreconditioned Arnoldi method failed to produce accurate re-
sults (see CIRAM in table 6). The ILUT-preconditioned version, on the other hand, converged
towards the least-stable Ritz pair. With the exception of the failed computation employing the
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Table 6. Growth rates Imag{ω1} and associated direct residuals ‖r1‖ applying the simple (IRAM), the Cayley-
transformed but unpreconditioned (CIRAM) and the Cayley-transformed and ILUT-preconditioned Arnoldi
method (PCIRAM) for the four flow configurations defined in table 4 and a resolution 32 × 201. For the inexact
Cayley-transformation we set σ = 5i, µ = 20i and tolB = 10−5 and as preconditioner we used ILUT(10,10−2).

IRAM CIRAM PCIRAM

Config # Imag{ω1} ‖r1‖ Imag{ω1} ‖r1‖ Imag{ω1} ‖r1‖
I 0.187521 3.3e-5 (0.114675) 2.0e1 0.187520 7.5e-4

II 0.141167 5.1e-6 0.141167 4.4e-4 0.141165 6.3e-5

III 0.054723 2.6e-5 0.054723 1.1e-4 0.054723 5.4e-5

IV 0.127155 6.2e-6 0.127154 5.7e-5 0.127154 4.4e-5

(unpreconditioned) CIRAM for the low-Mach number case (Config I) the accuracy of the results
listed in table 6 are satisfactory.

5.1.4 Increasing efficiency: the performance of the proposed stability solver

The application of a preconditioner P in the solution of equation (4.3) has proven imperative
for the extraction of the least-stable mode for low-Mach numbers (see table 6). Even for con-
verging cases the preconditioner plays a secondary role as it dramatically improves the efficiency
of the Cayley-transformed Arnoldi method (see table 7). With this in mind, we compare the
convergence behavior of our solver by applying various preconditioner matrices from the class
of incomplete LU decomposition techniques denoted by ILUT(p,τ).

The results of our numerical experiments are shown in figure 7(a) displaying the relative
residual ‖r‖/‖b‖ as a function of the number of BiCGStab iterations. Best results are obtained
— not surprisingly — by applying the complete LU-preconditioner, since no approximations
(other than the low-accuracy discretization in P) have been made, resulting in a true inverse
of the linear system Pσp̂ = p (see section §4). To reach the same relative residual level of
‖r‖/‖b‖ ≤ tolB = 10−5 the LU-preconditioned BiCGStab required 12 instead of 122 iterations
(unpreconditioned). The impressive convergence acceleration, however, hides the fact that com-
puting the full LU-decomposition as well as the solution of Pσp̂ = p is, due to the number
of non-zero entries nnz of P−1

σ (see table 7), excessively costly for general matrices and thus
unattractive for our application. Preconditioners based on the incomplete LU-decomposition
also show a dramatic increase in convergence speed but do not incur the cost of a full LU-
decomposition; ILUT(10,10−2) and ILUT(10,10−3) require 21 and 24 iterations, respectively,
to reach a relative residual level of ‖r‖/‖b‖ ≤ tolB = 10−5. Therefore, ILUT-preconditioners
represent a class of effective and efficient convergence acceleration techniques.

The size of the fill level p, at least for values within a range that still optimizes memory
requirements, does not substantially influence the convergence behavior. Osei-Kuffuor and Saad
(2007) report that “the rule of thumb is to take a large [p] value, and use [τ ] to control the
amount of fill-in. This generally yields good results without compromising memory efficiency.”
We have identified a fill level p = 10 as satisfying this requirement, and we found a drop tolerance
τ = 0.01−0.005 to be an optimal choice for ILUT(10,τ) in terms of cost-efficiency of our iterative
linear solver. The reader is referred to the latter authors as well as to Benzi et al. (2000) for a
discussion on tuning ILUT-type preconditioners and on enhancing their performance by using
techniques such as reordering.

Results from numerical experiments for supersonic flow about a swept parabolic body (see
figure 9) are presented in figure 7(b). As before, ILUT-based preconditioning is found to be
capable of dramatically improving the speed of convergence for BiCGStab. The results indi-
cate, however, that this time a larger value of the fill level p is required to obtain a robust
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Figure 7. Relative residual as a function of the number of BiCGStab iterations for unpreconditioned (noP stands
for “no preconditioner P”) and selected preconditioned computations: (a) Config IV with a resolution of 32×201
grid points and (b) convergence results for a more challenging flow case given by supersonic flow about a swept
parabolic body (see section §5).

Table 7. Results from performance tests for the simple and the Cayley-preconditioned Arnoldi method showing
the number of non-zero entries nnz of P

−1
σ , the total number of required matrix-vector multiplications (# of

matvec), the number of outer iterations of the Arnoldi method (# of outer iterations) and the CPU time; Config
IV with a resolution of 32×201 grid points is used (see table 4). For the inexact Cayley-transformation we choose
σ = 5i, µ = 20i and tolB = 10−5.

Method Ptype nnz # of matvec # of outer iterations CPU time (h)

IRAM - - 338245 13548 13.28

CIRAM - - 6252 211 6.65

PCIRAM ILUT(10,10−1) 159263 6909 218 4.10

PCIRAM ILUT(10,10−2) 219977 5777 172 3.58

PCIRAM ILUT(10,10−3) 331412 6286 192 3.89

PCIRAM ILUK(0) 674532 5242 153 4.06

PCIRAM ILUK(1) 1891106 5587 175 5.60

preconditioner; again, a drop tolerance τ = 0.01 − 0.005 seems to be an appropriate choice.
In table 7 we provide details on the performance tests for the (simple) implicitly restarted

Arnoldi method (IRAM) as well as variants of the Cayley-transformed IRAM. This table contains
the number of non-zero entries nnz of P−1

σ , the total number of matrix-vector multiplications (#
of matvec), the number of outer iterations of the Arnoldi method (# of outer iterations) and the
CPU time. It is found that ILU-based preconditioning techniques can be successfully applied
to increase the efficiency of the global stability solver and that PCIRAM with ILUT-based
preconditioning performs best in terms of CPU time.

5.1.5 Preconditioned spectra

Finally, to judge the effectiveness of the applied preconditioners we extract the product of
P−1

σ and the high-order system matrix A using the finite difference approximation

M(:, i) = AP−1
σ ei ≈

Fhigh(φ0 + ǫP−1
σ ei) − Fhigh(φ0)

ǫ
with i = 1, 2, . . . , n, (5.3)
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Figure 8. Spectra of Mσ for selected ILU-based preconditioning techniques. The spectrum in black denotes the
LU-preconditioned case.

and compute the eigenvalues λM of Mσ = M − σP−1
σ . The notation M(:, i) stands for the i-th

column of the matrix M ∈ C
n×n, and the above expression is analogous to equation (4.5). The

asymptotic convergence behavior of the preconditioned system can then be deduced from how
closely the eigenvalues of Mσ cluster about one — the ideal spectrum.

In figure 8 we present the spectra of Mσ for four preconditioners employed in the previous
subsection (see table 7), where a parameter value of ǫ0 = 10−8 and a shift parameter σ = 5i have
been used. The resolution was decreased to 8 × 201 grid points in order to be able to perform
a (complete) eigenvalue decomposition. The spectrum based on a complete LU decomposition
(in black) is used as a reference to assess the quality of four ILU-based preconditioners. It is
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Figure 9. (a) Sketch of the three-dimensional flow configuration showing the relevant flow parameters, the used
coordinate systems and the grid-point distribution. The quantities R, q∞, Λ and w∞ denote respectively the
leading-edge radius of the parabolic body, the freestream velocity, the sweep angle and the resulting sweep velocity.
(b) Streamlines (in blue) and pressure field in [Pa] of the computed steady base flow for a sweep Reynolds number
Res = w∞δ/νr = 800 and a sweep Mach number Mas = w∞/c∞ = 1.25. The resolution is 128× 255 points in the
normal η-direction and the chordwise ξ-direction. The spanwise z-direction is assumed periodic.

found that decreasing the drop tolerance in ILUT(p,τ) from τ = 10−1 to 10−3 (see figure 8a–c)
leads to more spectral clustering about one and, as a consequence, to an increase in convergence
speed of the preconditioned BiCGStab (see figure 7a). The configuration ILUK(1) displays the
best spectral properties (see figure 8d). This preconditioning technique comes, however, at the
expense of more floating-point operations (represented by a larger computational time) due to
a larger number of non-zero entries nnz of P−1

σ (see table 7).

5.2. Example 2: supersonic flow about a swept parabolic body

We will now turn our attention to the second example which describes supersonic flow about
a swept parabolic body. In this configuration the flow impinges through a bow shock onto the
body forming a local stagnation flow near the attachment line which further downstream turns
into a three-dimensional curved boundary-layer flow. It thus should not come as a surprise
that this flow comprises a multitude of instability features that will also be reflected in the full
global spectrum. There exists an abundance of literature (e.g. Spalart, 1988; Balakumar and
Malik, 1992; Joslin, 1995; Saric et al., 2003; Mack et al., 2008) that provides evidence for the
following characteristic properties regarding the perturbation dynamics: (i) inside the boundary
layer boundary-layer modes are present which can be divided into distinct structures near the
stagnation line and a region further downstream; (ii) as a result of compressibility acoustic
modes will appear; (iii) the interaction between the moving bow shock and the boundary layer
might give rise to a special type of instabilities; (iv) finally, wave packet modes propagating near
the edge of the boundary layer describe the convective nature of the flow. As we have previously
seen for the compressible mixing layer, the mere existence of acoustic modes has put considerable
strain on the global stability analysis which necessitated the use of additional tools such as a
Cayley transformation and preconditioning to extract pertinent stability information from the
direct numerical simulations (DNS). With its even more complex stability features, supersonic
flow about a swept parabolic body requires to an even greater extent the incorporation of such
tools into an effective, robust and efficient DNS-based global stability solver. Without these
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Figure 10. Subsets of the full global spectrum (for β = 0.314) computed with our proposed global stability solver
(m = 80, k = 32, tolA = 10−4, ǫ0 = 10−8; the linear solver tolerance was chosen as tolB = 10−5 and BiCGStab
was preconditioned using ILUT(40,10−2)): (a) most unstable boundary-layer modes and (b) eigenvalues belonging
to acoustic modes.
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Figure 11. Spatial structure of a sample of associated global boundary-layer modes: (a,b) shape of the chordwise
and the normal velocity component u and v, respectively, of a slow-moving boundary-layer mode (B1) in the
x-y-plane near the attachment line; (c) shape of two faster-moving modes (B2, B3) displayed by iso-surfaces of
the normal velocity v.

tools certain parts of the global spectrum will simply not be accessible, and a complete picture
of the full perturbation dynamics of this flow would be out of reach.

Our direct numerical simulations are based on the same implementation as used before for the
compressible mixing layer; in addition, a moving curvi-linear grid and shock-fitting techniques
have been incorporated (for the details the reader is referred to, Mack et al., 2008). The geometric
configuration, the computational grid and some of the relevant flow parameters (see caption) are
displayed in figure 9(a); the computed base flow is illustrated in figure 9(b). This steady base
flow φ0 is used in equation (3.5) to compute the approximate action of the linearized operator
onto a perturbation field φ′ within our Jacobian-free framework.

The results from a global linear stability analysis of the above-described flow are presented
in figure 10. It shows two subsets of the global spectrum corresponding to (a) slow-moving
boundary-layer modes (30 . ωr . 90) and to (b) fast-moving acoustic modes (445 . ωr . 480).
The associated global modes displaying the spatial structure of the modal perturbation are shown
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Figure 12. Spatial structure of a sample of associated global acoustic modes visualized by the pressure p in the
x-y-plane: (a) unstable mode (A1) and (b) faster-moving stable modes (A2, A3).

in figure 11 and 12 for a representative sample of eigenvalues from each of the two instability
mechanisms mentioned above. Global modes belonging to unstable boundary-layer modes are
plotted in figure 11, and in (a,b) we display the spatial structure of a slow-moving boundary-
layer mode near the attachment line. A typical polynomial dependence of the chordwise velocity
u can clearly be detected in the vicinity of the attachment line, which agrees with results from
local stability theory reported, e.g., in Theofilis et al. (2003) and Obrist and Schmid (2003).
This initially two-dimensional mode gradually merges into a three-dimensional one until the
vortical structures nearly align with the external streamlines resulting in co-rotating vortices
(see figure 11c). Stable and unstable acoustic global modes are presented in figure 12. The
unstable mode (A1) shows a dominant spatial structure downstream of the bow shock (a),
while the more stable modes (A2, A3) exhibit smaller spatial structures which extend into the
boundary layer (c).

These results clearly demonstrate that our DNS-based global stability solver is capable of
producing hydrodynamic stability information for flow configurations as complicated as the
above. It further instills confidence that similar findings can be obtained for flow situations
that are dominated by a wide range of spatial and temporal scales as well as multi-physics
phenomena.

6 Discussion and Conclusions

A DNS-based iterative stability solver has been developed and successfully applied to study
the hydrodynamic global stability of a compressible mixing layer and a supersonic flow about a
swept parabolic body. In general, this combination of modern iterative techniques such as the
implicitly restarted Arnoldi method (IRAM) and direct numerical simulations (DNS) using a
Jacobian-free formulation readily enables global stability analyses of complex flows for which the
underlying computations faithfully and accurately capture the dominant physical processes. For
flows that are characterized by multi-physics features or a wide range of temporal and spatial
scales a mapping such as the Cayley transformation is required to access specific parts of the full
global spectrum and to ensure the convergence of the global stability solver. Preconditioning is
further mandatory to robustify the stability solver and to enhance its performance. Among the
class of ILU-based techniques, ILUT was found to perform best.

For large-scale applications where a parallel computing approach is necessary or desirable the
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proposed global stability solver can be parallelized in a straightforward manner. For a successful
application of a parallel version of the underlying DNS-code the reader is referred to Schulze
et al. (2009); for a parallel implementation of the employed implicitly restarted Arnoldi method
(IRAM), the publically available software package PARPACK (Maschhoff and Sorensen, 1996)
provides parallelization details. Only the ILU-based preconditioning technique might be difficult
to optimize for parallel environments.

Even though, the presented hydrodynamic global stability solver has been designed to treat
complex stability problems it should be kept in mind that the interaction of multi-physical
processes and numerical convergence behavior leads to a complicated dynamics which requires
the careful adjustment of the governing parameters to obtain robust solutions. The appropri-
ate choice of parameters has to be equally based on a physical understanding of the flow and
a familiarity with the convergence behavior of the iterative methods. For this reason, each
flow configuration under investigation has its inherent dynamical properties, and the question
of proper parameter choices for a robust convergence of the global stability solver has to be
answered anew.
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The global linear stability of a three-dimensional compressible flow around a yawed parabolic
body of infinite span is investigated using an iterative eigenvalue method in conjunction with di-
rect numerical simulations. The computed global spectrum shows an unstable branch consisting
of three-dimensional boundary layer modes whose amplitude distributions exhibit typical charac-
teristics of both attachment-line and crossflow modes. In particular, global eigenfunctions with
smaller phase velocities display a more pronounced structure near the stagnation line, reminis-
cent of attachment-line modes while still featuring strong crossflow vortices further downstream.
This analysis establishes a link between the two prevailing instability mechanisms on a swept
parabolic body which, so far, have only been studied separately and locally. A parameter study
shows maximum modal growth for a spanwise wavenumber of β = 0.213, suggesting a preferred
disturbance length scale in the sweep direction.

1 Introduction

The aerodynamic design of high-performance aircraft crucially depends on a sound understand-
ing of the compressible flow around swept wings. The details of the transition process from
laminar to turbulent fluid motion play a dominant role in the description of this flow. Two insta-
bility mechanisms have been suggested to trigger transition: the amplification of perturbations
in the swept attachment-line boundary layer and of crossflow vortices in the three-dimensional
boundary layer further downstream. These two instability mechanisms have been studied sep-
arately, despite a general acknowledgment that they coexist under realistic conditions. The
subdivision of the flow configuration and the resulting separate treatment of these two insta-
bility mechanisms has been a necessary simplification of the complex flow problem in order to
treat it with classical tools of hydrodynamic stability theory. Owing to the recent progress in
computational resources and in global stability analysis, however, we are now able to address
a more realistic configuration that covers simultaneously attachment-line and crossflow vortex
instabilities. Note, however, that the notion of two independent instability mechanisms has
more of an historical than a physical origin.
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First evidence for the interaction of instabilities near the leading edge with the crossflow
vortices further downstream came from the experiments of Gray (1952). He found that by
increasing the sweep angle, the location where the onset of transition was observed moved toward
the attachment line. In following decades a great number of experimental efforts addressed
instability issues for both the attachment-line boundary layer and, even more so, the three-
dimensional boundary layer (see Bippes 1999; Saric et al. 2003 for a recent review). Among
this body of literature, Poll (1979) was the first to establish a distinction between crossflow-
induced transition and transition initiated by leading-edge instabilities. His measurements on
an immersed swept cylinder provided motivation for theoretical investigations.

A simplified model of the attachment-line boundary layer was studied by Hall et al. (1984)
who demonstrated that this flow becomes linearly unstable to wave-like disturbances propa-
gating along the attachment line. This model was based on swept Hiemenz flow, which rep-
resents a similarity solution of the incompressible three-dimensional Navier–Stokes equations
for swept attachment-line flow, and the Görtler–Hämmerlin assumption, which takes the same
linear x-dependence for the perturbation and the base flow. Subsequently, Lin and Malik (1996)
discarded the restrictive Görtler–Hämmerlin assumption and uncovered additional linearly un-
stable modes. They extended their analysis to compressible flows (Lin and Malik, 1995) and
also assessed the influence of the leading-edge curvature on flow stability (Lin and Malik, 1997).
A recent overview of attachment-line instabilities is given in Le Duc et al. (2006).

Further downstream, the presence of sweep and curvature significantly modifies the flow.
An imbalance between centrifugal forces and the streamwise pressure gradient induces curved
streamlines throughout the boundary layer, and the resulting crossflow velocity gives rise to
stationary or traveling crossflow vortices (Reed and Saric, 1989). In contrast to the attachment-
line instability, the crossflow instability is of inviscid type caused by an inflection point in the
three-dimensional base velocity profile. Numerous theoretical and numerical efforts have studied
the stability of compressible crossflow vortices for planar geometries, based on the parabolized
stability equations (e.g. Herbert, 1997) or direct numerical simulations (e.g. Joslin, 1995); for
an overview of the relevant literature see Saric et al. (2003) and the references therein.

Despite many studies of each instability, little is known to date about a connection between
the two. Starting from incompressible swept Hiemenz flow, Spalart (1988) obtained solutions off
the attachment line that are strongly reminiscent of crossflow vortices and thus provide a first
indication of a link between them. Bertolotti (1999), using the parabolized stability equations,
furnishes strong evidence for a connection between attachment-line instabilities and crossflow
vortices. By continuing an attachment-line mode significantly far downstream, he finds a close
match – both in terms of growth rate and modal shape – with the least-stable crossflow mode.
The structure of the entire mode connecting the attachment line and the crossflow neutral point,
however, was not examined.

This lack of a connecting mode as well as the findings above strongly suggest a global treat-
ment of the stability problem without limiting assumptions regarding the geometrical domain of
interest. Such an investigation allows the simultaneous treatment of the attachment-line insta-
bility and crossflow vortices. Modern techniques such as iterative eigenvalue methods (Edwards
et al., 1994) in conjunction with direct numerical simulations based on higher-order spatial dis-
cretization schemes provide the necessary tools to address the global stability problem. In this
article, we present results from a global stability analysis of compressible flow around a swept
parabolic body which demonstrate a connection between the two prevailing local instability
mechanisms.

2 Flow configuration, governing parameters and numerical method

The flow configuration, as displayed in figure 1, consists of a parabolic body (in grey) about
which a three-dimensional body-fitted grid (in blue) is mapped. The local Cartesian coordinate
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Figure 1. Sketch of the three-dimensional flow configuration showing the relevant flow parameters, the coordinate
systems and the grid-point distribution.

system (in red) is given by the x-direction, the y-direction and the spanwise z-direction pointing
along the attachment line (in black), and the local parabolic coordinate system (in orange)
consists of the chordwise ξ-direction and the normal η-direction pointing along grid lines in
the downstream direction and normal to the wall, respectively. The leading-edge radius of the
parabolic body is denoted by R. The incoming flow impinges on the body with a velocity q∞ and
a sweep angle Λ yielding a sweep velocity w∞ and a wall-normal velocity v∞. The subscript ∞

refers to the flow state downstream of a detached bow shock which acts as the inflow boundary.
We define a viscous length scale δ, a sweep Reynolds number Res and a sweep Mach number

Mas as

δ =
(νr

S

)1/2
, Res =

w∞δ

νr
, Mas =

w∞

c∞
, (2.1)

respectively, where νr denotes the kinematic viscosity evaluated at recovery temperature, S is
the strain rate at the wall, at the attachment line (x = 0), and c∞ is the speed of sound.
Alternatively, the Reynolds number Res can be reformulated to display an explicit dependence
on the leading-edge radius R and the sweep angle Λ. We obtain (in accordance with Lin and
Malik, 1997, up to a scaling factor)

Res =

(
v∞R

2νr

)1/2

tan Λ. (2.2)

We consider the motion of a compressible fluid modeled as a perfect gas with constant specific
heat ratio γ = 1.4 and constant Prandtl number Pr = 0.71. The compressible Navier–Stokes
equations, the equation of state, Fourier’s law for the thermal conductivity and Sutherland’s law
(at ambient conditions) for the viscosity fully describe the flow. The equations are formulated
based on pressure p, Cartesian velocities (u, v, w) and entropy s and are solved on a time-
dependent, curvilinear and non-uniformly distributed grid, with a clustering of the grid points
towards the wall as well as in the leading-edge region, as shown in figure 1. The governing
equations are discretized using fifth- and fourth-order compact difference schemes for the inviscid
and viscous terms, respectively, and a resolution of 128 × 255 points was used to resolve the
characteristic length scales of the eigenmodes with more than six points in the normal η-direction
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and approximately four points in the chordwise ξ-direction. The temporal discretization is
accomplished by a fourth-order Runge–Kutta scheme (see Sesterhenn, 2001; Le Duc et al., 2006,
for details).

In the wall-normal direction, the computational domain is limited by a detached unsteady
bow shock which is incorporated through a shock-fitting mechanism (Fabre et al., 2001) and
provides the inflow conditions via the Rankine–Hugoniot relations (see Oswatitsch, 1956). Along
the surface of the body no-slip boundary conditions and adiabatic wall conditions are applied.
At the chordwise edges of the computational domain, non-reflecting outflow boundary conditions
are imposed and, under the assumption of infinite span, periodic boundary conditions are used
in the z-direction.

3 Global stability analysis

The two-dimensional base flow φ0(x, y) is stable to two-dimensional perturbations, which allows
a simple time-integration toward a steady state and avoids more sophisticated methods such
as Newton iteration, arclength continuation or selective filter techniques to compute the steady
state. The obtained base flow forms the foundation for the subsequent global stability analysis
and is displayed, in terms of streamlines and pressure field, in figure 2. The complexity of the base
flow requires a global stability approach since the x- and y-coordinate directions can no longer
be separated. For this reason, a three-dimensional small-amplitude perturbation φ′(x, y, z, t) is
superimposed on the base flow, and the traveling-wave form

φ′(x, y, z, t) = φ̃(x, y)ei(βz−ωt) (3.3)

is assumed. In this expression, φ̃(x, y) denotes the complex amplitude and β the real span-
wise wavenumber of the perturbation. The temporal long-term evolution of this disturbance is
characterized by ω whose real part describes the frequency ωr with the imaginary part as the
corresponding growth rate ωi.

Under these assumptions, the global stability problem can formally be written as

ω φ̃ = J (φ0) φ̃, (3.4)

where J (φ0) represents the linear stability operator (the Jacobian), i.e. the Navier–Stokes
equations linearized about the base state φ0. The direct solution of this eigenvalue problem
is prohibitively expensive, and iterative solution techniques have to be employed to extract
pertinent stability information. To this end, an m-dimensional Krylov subspace sequence

Km{φ,J (φ0)} = span{φ, J (φ0)φ, J (φ0)
2φ, . . . ,J (φ0)

m−1φ}, (3.5)

consisting of repeated applications of the Jacobian matrix to a given initial flow field φ is used
in connection with the Arnoldi method (see Edwards et al. 1994 for applications of iterative
techniques in fluid mechanics) to project the full stability problem onto a lower-dimensional
system. The resulting lower-dimensional Hessenberg matrix together with an orthonormalized
basis of the Krylov subspace Km can then be used to approximate the spectrum of the linearized
compressible Navier-Stokes equations.

The form of the Krylov sequence (3.5) indicates that the Jacobian matrix does not need to
be formed explicitly; rather, only matrix–vector products are necessary to build the reduced
system. Such products are readily obtained from direct numerical simulations via

J (φ0)φ ≈ F(φ0 + ǫφ) −F(φ0)

ǫ
, (3.6)

where ǫ is a small parameter, chosen as ||ǫφ||/||φ0|| = 10−8, and F represents the nonlinear
Navier–Stokes equations. The independence of the results with respect to the choice of the
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Figure 2. Streamlines (in blue) and pressure field of the computed steady base flow for Res = 800 and Mas = 1.25.
The pressure has been non-dimensionalized by the stagnation pressure, and a leading-edge radius of R = 0.1 =
508δ has been used. The resolution is 128 × 255 points in the normal η-direction and the chordwise ξ-direction,
respectively.

parameter ǫ has been corroborated over a range of many decades of the value of ǫ. This approx-
imation allows a Jacobian-free framework where the direct numerical simulation provides the
input for the iterative stability solver.

4 Results

The above iterative scheme is applied to simulations of the compressible flow about the parabolic
body depicted in figure 1. As the Krylov subspace is augmented by subsequent calls to the
direct simulation code, the Arnoldi method provides an approximate spectrum that consequently
increases in complexity but also in accuracy.

4.1. Spectrum and global modes

The global spectrum reflects the richness of physical processes present in the flow configuration
under investigation. It consists of acoustic branches that describe the presence of sound waves,
of wavepacket modes that capture the dynamics of perturbations at the edge of the boundary
layer, of continuous modes that represent disturbances in the freestream, of modes that account
for the interaction of the bow shock with the body’s leading-edge region, and of shear modes
that express the flow characteristics in the boundary layer. These latter modes are the most
unstable ones for the present flow configuration and are the focus of this study.

Concentrating on boundary layer modes, the global stability analysis reveals that, for our flow
parameters (Res = 800, Mas = 1.25, β = 0.314 = 2π/Lz, with Lz as the fundamental length
scale, non-dimensionalized by δ, in the spanwise z-direction), a three-dimensionally unstable
discrete branch is present whose disturbance frequencies ωr range from 41.1 to 81.2 (see figure 3c).
The maximum growth rate ωi = 2.64 is achieved for a frequency ωr = 60.1. Though barely visible
in the figure, the eigenvalues appear double – a consequence of the symmetry properties of the
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Figure 3. Global stability results of compressible swept flow around a parabolic body (Res = 800, Mas = 1.25,
β = 0.314 = 2π/Lz): (c) most unstable branch of the temporal spectrum and (a,b) four associated global modes
displaying the velocity distribution v(x, y, z) = Real{ev(x, y) (cos βz + i sin βz)} of four eigenvalues depicted by
circles in (c). The normalized eigenfunctions are plotted using iso-surfaces with a value of 10−2 vmax (a) and
5 × 10−5 vmax (b), and eight wavelengths, stretched by a factor of two, in the spanwise direction are used to
visualize each mode (attachment line in black). See text for color coding.

flow. The associated global eigenmodes divide into symmetric and antisymmetric functions with
respect to the attachment line.

Figure 3(a,b) displays four global eigenmodes from this branch, visualized by iso-surfaces,
with iso-values of 10−2 vmax (a) and 5 × 10−5 vmax (b), of the normalized velocity v(x, y, z) =
Real{ṽ(x, y) (cos βz + i sinβz)}. They belong to the slowest moving mode (in red), the second
slowest moving mode (in orange), the most unstable mode (in green) and the fastest moving mode
(in blue). The amplitude distribution of the slowest moving global mode clearly demonstrates
a link between the attachment-line and the crossflow dynamics (figure 3b). It convincingly
shows that the global modes of the branch depicted in figure 3(c) have typical attachment-line
properties while still connecting to the familiar crossflow pattern further downstream from the
stagnation line.

For faster moving global eigenfunctions (modes with a higher phase velocity ωr) the cross-
flow component is more pronounced and the dominant part of the global mode lies further
downstream from the leading edge. At the same time, owing to the increasing base velocity
in the boundary layer, global modes with higher phase velocities prevail downstream from the
attachment line.

Near the attachment line the global modes display the well-known and well-studied two-
dimensional structure consisting of chordwise vortices with a specific spanwise scale. This struc-
ture is more pronounced for slower moving modes (see figure 3c). As an example, the spatial
shape of the velocity component v(x, y, z) of the slowest moving global mode (see figure 3b in
red) is presented in figure 4(a). This mode travels along the attachment line without significant
three-dimensional features. It is reminiscent of results from stability computations by Joslin
(1995) (see figure 4b) who computed the spatial evolution of three-dimensional disturbances
in an incompressible attachment-line boundary layer by direct numerical simulations for the
Reynolds number Re = 570 and the disturbance frequency ω = 0.1249. The same types of
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Figure 4. Spatial shape of the slowest moving global mode: (a) top view of the velocity component v(ξ, η, z)
near the attachment line in the chordwise ξ-direction at half the boundary-layer thickness (R = 0.1 = 508δ); (b)
top view of three-dimensional traveling mode v(x, y, z) in an incompressible attachment-line boundary layer as
presented by Joslin (1995) for Re = 570 and ω = 0.1249 (attachment line in black, relabelled coordinate system).
(c) Shape of the velocity component u(x, y, z) in the (x, y)-plane near the attachment line and (d) equispaced
cross-cut profiles of u(ξ, η, z) at six selected positions in the positive ξ-direction.

structure has been determined by Guégan et al. (2006) in studies of optimal temporal distur-
bances in swept Hiemenz flow. However, the similarity between these two incompressible results
and our compressible result is only of a qualitative nature. Further evidence linking the local
behavior of the global mode near the stagnation line to a typical local attachment-line mode
is given in figure 4(c) where the characteristic linear dependence in the chordwise direction of
the velocity component u(x, y, z) is visible over a significant range along the attachment line
before it saturates to connect to the crossflow behavior further downstream. In addition, fig-
ure 4(d) displays equispaced cross-cut profiles of u(ξ, η, z) at six selected positions in the positive
ξ-direction, which closely resemble the corresponding eigenfunction shapes from a solution of a
modal stability problem for swept Hiemenz flow.

Further downstream in the chordwise direction, the initially two-dimensional structure of the
global mode near the attachment line (see figure 4a) gradually merges into a three-dimensional
one (see figure 5a) until the vortical structures nearly align with the external streamlines, re-
sulting in co-rotating vortices (see figure 5b), a feature that is specific to crossflow vortices as
described by Reed and Saric (1989).
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(a) (b)

Figure 5. Spatial shape of the velocity component v(ξ, η, z) of the slowest moving global mode in a body-fitted cut
at half the boundary-layer thickness: (a) structure in the connection region and (b) structure further downstream
in the positive ξ-direction (iso-contour lines of zero amplitude in black).
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Figure 6. (a) Temporal spectra from global stability calculations for selected spanwise disturbance wavenumbers
β; (b) temporal growth rate ωi as a function of β.

As detailed above, the compressible flow around a swept parabolic body is governed by a
large number of parameters describing various flow quantities, fluid properties and geometric
characteristics. Even though the above observations are expected to hold for a wide range of
parameters, we chose to present a parametric study of the global stability properties with respect
to the spanwise wavenumber β. The computed temporal global spectrum consisting of growth
rate ωi and frequency ωr is shown in figure 6(a) for selected spanwise wavenumbers ranging from
0.090 to 0.314. The typical parabolic shapes of the unstable boundary layer branch are clearly
visible where smaller phase velocities are observed for smaller spanwise wavenumbers. The
growth rates ωi appear to grow steadily up to a specific spanwise wavenumber before decaying
again. The spanwise wavenumber at which a maximum modal growth is observed has been
determined to be β = 0.213 (see figure 6b), thereby pointing toward a preferred disturbance
length scale (or scale selection mechanism) in the spanwise direction.
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Parenthetically, one can see more clearly in figure 6(a) that the boundary layer branch
consists of double eigenvalues. For some parameter combinations, the eigenvalue pairs at the
edge of the parabola separate slightly, which is a typical aliasing phenomenon caused by a
marginal numerical resolution of the corresponding global eigenfunctions.

5 Discussion and conclusions

A global stability analysis of compressible flow around a yawed parabolic body has numerically
established a link between attachment-line modes and crossflow modes. Though for the param-
eters studied in this article the crossflow vortices represent the largest amplitude component
of the global boundary layer mode, eigenfunctions from the slower part of the unstable branch
displayed the characteristic two-dimensionality and linear chordwise dependence (in the chord-
wise velocity) of a typical attachment-line mode. We thus conclude that the global spectrum of
flow around a swept parabolic body contains combination modes that display typical features of
both local crossflow vortices and local attachment-line instabilities. In this sense, the study of
attachment-line or crossflow instabilities in a separate and local setting is simply the respective
local approximation of one of these global combination modes. Consequently, this investigation
adds to the previous study by Bertolotti (1999) in establishing a link between attachment-line
and crossflow modes. In addition, it provides numerical evidence for the experimental obser-
vations of Gray (1952). A most preferred spanwise scale has been found; since it is given by
global modes with a dominant crossflow component, it is expected that the crossflow vortices
will imprint their favored spanwise length scale onto the entire flow.

Besides the stability characteristics of the attachment-line and crossflow modes presented
in this article, the receptivity of the global modes to external excitations or wall roughness
distributions is important for industrial applications. An analysis of this type (which is beyond
the scope of this investigation) will reveal the mechanisms that excite dominant structures in
the flow about a blunt body, be it by direct excitation of the crossflow modes or by forcing of
structures near the attachment line that, in turn, initiate the growth of crossflow vortices via
the connection demonstrated in this study.

On a more methodological point, the combination of iterative eigenvalue algorithms and
direct numerical simulations has proved to be an effective tool in addressing complex stability
problems in their entirety instead of via piecewise local approximations. Many more flow con-
figurations of academic or technological interest await analysis in the manner described in this
article.
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The global temporal stability of three-dimensional compressible flow about a yawed parabolic
body of infinite span is investigated using an iterative eigenvalue technique in combination
with direct numerical simulations. The computed global spectrum provides a comprehensive
picture of the temporal perturbation dynamics of the flow, and a wide and rich variety of modes
has been uncovered for the investigated parameter choices: stable and unstable boundary-layer
modes, different types of stable and unstable acoustic modes and stable wave packet modes have
been found. A parameter study varying the spanwise perturbation wavenumber and the sweep
Reynolds number reproduced a preferred spanwise length-scale and a critical Reynolds number
for a boundary-layer or acoustic instability. Convex leading-edge curvature has been found to
have a strongly stabilizing effect on boundary-layer modes but only a weakly stabilizing effect
on acoustic modes. Furthermore, for certain parameter choices, the acoustic modes have been
found to dominate the boundary-layer modes.

1 Introduction

Soon after the invention of the aircraft in the beginning of the twentieth century it was real-
ized that the aerodynamic design of high-performance aircraft crucially depends on a profound
understanding of compressible flow around wings. In particular, the details of the transition
process from laminar to turbulent fluid motion, yielding increased drag and a loss of flight per-
formance, play a dominant role in the description of this flow. Two-dimensional hydrodynamic
instabilities of the Tollmien–Schlichting type have been found to trigger this transition process
and to initiate the breakdown into turbulence further downstream for unswept wings.

With the advent of high-speed aircraft in the 1940s, for instance, the jet-engined Messer-
schmitt ME 262, the introduction of swept wings became necessary in order to overcome serious
design problems emanating from compressibility effects, notably the shock stall phenomenon.
The immediately following theoretical and experimental investigations on swept wings suggested
that the presence of sweep does not affect the stability of the flow. However, in later flight tests
on swept wing aircraft, Gray (1952) found that beyond a critical freestream velocity q∞, the
transition front moved towards the attachment line of the wing; this phenomenon could not

151



152 C. J. Mack and P. J. Schmid

be explained by existing two-dimensional arguments. He further observed that this critical
freestream velocity depends on the sweep angle Λ as well as the leading-edge radius R of the
wing.

The theoretical and experimental investigations that followed revealed a new type of in-
stability, the crossflow instability, which is due to a velocity component inside the boundary
layer that is transverse to external streamlines (Bippes, 1999). The presence of sweep (and
curvature) leads to a highly three-dimensional boundary-layer flow in the leading-edge region
of a swept wing and, thus, fundamentally alters its inherent stability properties; the initially
two-dimensional boundary-layer flow along the attachment line gradually develops into a three-
dimensional boundary-layer flow downstream of the stagnation line (see, e.g., Bippes, 1999; Saric
et al., 2003, for a detailed description of the flow). The crossflow instability exhibits coherent
co-rotating vortices whose axes are aligned with the streamlines of the external flow. As an
example, Poll (1978) reported their presence in form of oil-film streaks in his wind-tunnel exper-
iments; the same characteristic pattern has been observed in flight tests by Gray (1952). The
prevalence of crossflow vortices led to the hypothesis of a crossflow-vortex induced transition,
and experiments have been designed to eliminate the vortices by suction and thus render the
flow in the vicinity of the leading edge laminar (see, e.g., Pfenninger, 1977).

New experiments revealed once more a lack of understanding of swept leading-edge flow, since
they demonstrated that leading-edge transition — in particular, the phenomenon of leading-
edge contamination caused by turbulent flow propagating along the leading edge — cannot
be explained by the crossflow instability mechanism alone. Based on wind-tunnel experiments
on a swept wing model with a circular leading edge, Poll (1979) concluded that the flow is
also susceptible to instabilities right at the attachment line. This general finding has become
known as attachment-line instability. The above experimental results as well as the need to fully
understand the flow, in particular, in the leading-edge region, have fueled a substantial effort to
investigate the flow behavior governed by the two identified mechanisms. These investigations,
however, have been based on local flow models for either instability mechanism: (i) the swept
Hiemenz flow model has been generally accepted as an approximation for the incompressible
flow near the attachment line, and the studies of, among others, Hall et al. (1984); Spalart
(1988); Kazakov (1990); Joslin (1995, 1996); Lin and Malik (1996, 1997, 1995) have established
a remarkable body of literature discussing the properties of the attachment-line instability and
its dependence on curvature, compressibility and wall temperature; (ii) crossflow instabilities,
which have been experimentally observed further downstream of the stagnation line, have been
studied using a local flow model based on a three-dimensional boundary layer. For an overview
of the current state-of-the-art the reader is referred to, e.g., Saric et al. (2003); Bonfigli and
Kloker (2007) and references therein.

Up until about a decade ago, the two instability mechanisms have been investigated in
isolation of each other. Despite hints from experimental efforts that a link between the two
instability mechanisms may exist, the technical and numerical tools to investigate the two in-
stabilities together were not available at that time. One attempt to establish a link between
the two mechanisms has been undertaken by Bertolotti (1999) who continued, in the chordwise
direction, higher attachment-line modes using the parabolized stability equations. He found
that the continued attachment-line modes closely resemble the features and scales of crossflow
instabilities downstream of the attachment line. A recent global stability analysis, focusing
on boundary-layer instabilities, of compressible flow about a swept parabolic body established
a more definite connection between (local) attachment-line instabilities and (local) crossflow
vortices (see Mack et al., 2008).

The same flow model, which includes both local models, will be used in the present study to
compute the global spectrum and to obtain a more complete picture of the temporal flow dynam-
ics. In particular, we expect, besides boundary-layer modes, additional instability mechanisms
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due to compressibility effects (see, e.g., Mack, 1984) as well as continuous branches (Grosch and
Salwen, 1978; Balakumar and Malik, 1992).

Our goal is the comprehensive study of the stability behavior of compressible flow near the
leading-edge of a swept blunt body using global stability theory. First attempts in global stabil-
ity analysis date back to Jackson (1987) and Zebib (1987) who were among the first researchers
to apply global linear theory to study the flow past variously-shaped bodies and circular cylin-
ders, respectively. Over the following years, global stability analysis evolved into a widely used
approach to investigate moderately complex flows such as, for example, the periodic wake of a
circular cylinder (Barkley and Henderson, 1996), the three-dimensional flow over a backward-
facing step (Barkley et al., 2002) or the fully three-dimensional flow of a jet-in-crossflow (Bagheri
et al., 2009). Recently, numerous results and applications of global stability analysis have been
summarized in the review of Theofilis (2003).

A significant advance in global stability analysis occurred when direct methods, used in the
early studies, to compute the spectrum have been replaced by powerful iterative techniques
such as the Arnoldi method (Sorensen, 1992). Even though these techniques originated in large-
scale matrix algebra, their successful combination with numerical simulation techniques allowed
a considerable step towards a global stability analysis of complex flows with multiple scales
and multiple physical phenomena which where until then out of reach. Today, the accessible
level of complexity for global stability analysis crucially depends on (i) the availability of high-
performance computers, (ii) the efficiency and robustness of iterative algorithms and (iii) the
quality of numerical simulations that provide the flow fields to the iterative algorithms. The
concept of DNS-based global stability analysis, as used in the present study, is one of many
examples where the combination of high-performance computing and fast iterative algorithms
enables us to gain more insight into the dynamic behavior of complex fluid flow.

The present article is organized as follows. In the next section §2 we present the three-
dimensional flow model including the governing parameters, the governing equations and details
of the direct numerical simulation (DNS). In section §3 we briefly introduce the concept of
DNS-based global stability analysis and its implementation. This is followed by the results in
section §4 where features of the global spectrum are discussed; concluding remarks are offered
in section §5.

2 Flow configuration, governing parameters and numerical method

The flow configuration, as displayed in figure 1(b), consists of a parabolic body (in grey) about
which a three-dimensional body-fitted grid (in blue) is mapped. The local Cartesian coordinate
system (in red) is given by the x-, y- and spanwise z-direction pointing along the attachment
line (in black), and the local parabolic coordinate system (in orange) consists of the chordwise
ξ- and the normal η-direction pointing along grid lines in the downstream direction and along
grid lines normal to the wall, respectively. The surface of the parabolic body is given by

x(y) =
1

2R
y2, (2.1)

where R denotes its leading-edge radius. We consider flow situations where the oncoming flow
is supersonic

M1 = M∞ cosΛ > 1, (2.2)

where M∞ and M1 denote the freestream Mach number and its component normal to the shock,
and Λ is the freestream angle (see figure 1a); thus, the computational domain is limited by a
detached unsteady bow shock in the wall-normal direction, and this shock, assumed to be an
infinitely-thin moving discontinuity, acts as the inflow boundary.

The supersonic flow state upstream of the detached bow shock, denoted by the subscript ∞, is
given by the freestream Mach number M∞ and the freestream angle Λ, and a total temperature
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Figure 1. (a) Schematic of a detached bow shock (in black) and the relevant flow parameters upstream and
downstream of the shock. (b) Sketch of the three-dimensional flow configuration.

T0 = 728 [K] and total pressure p0 = 1.55 · 106 [Pa] are used as a reference state. From these
quantities and the Rankine–Hugoniot relations, the flow state downstream of the shock, denoted
by the subscript 2, is obtained (see figure 1a). Consequently, the incoming flow impinges on the
body with a velocity q2 and a sweep angle Λ2 yielding a sweep velocity w2 and a normal velocity
v2. The latter quantities will be used in what follows to define the governing parameters.

2.1. Governing parameters

The flow configuration under investigation is characterized by two distinct length scales, the
leading-edge radius R and a viscous length scale δ, which respectively describe the outer flow
and the flow inside the boundary layer. We define this viscous length scale as

δ =
(νr

S

)1/2
with S =

(
∂u

∂x

)

w

=
2v2

R
, (2.3)

where S is the strain rate at the wall, at the attachment line, which follows from the chordwise
derivative of the potential solution of flow around a circular cylinder with radius R, chosen as
R = 0.1 [m], evaluated at the stagnation point. The size of the length scale δ is depicted in
figure 3(c) for a selected parameter choice.

We further define a sweep Reynolds number Res, a leading-edge Reynolds number ReR, a
sweep Mach number Mas and a wall temperature ratio θw as

Res =
w2δ

νr
, ReR =

v2R

νr
, Mas =

w2

c2
, θw =

Tw

Tr
, (2.4)

where v2 and w2 are the wall-normal and sweep velocity downstream of the bow shock, c2 stands
for the speed of sound, and νr denotes the kinematic viscosity evaluated at recovery temperature
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Tr and stagnation pressure ps. In the present work we consider an adiabatic wall, and thus the
ratio of the temperature Tw at the wall and Tr is θw = 1.

Alternatively, the sweep Reynolds number Res can be reformulated to display an explicit
dependence on the leading-edge Reynolds number ReR and the sweep angle Λ2 as well as the
leading-edge radius R.

Res =

(
ReR

2

)1/2

tan Λ2 =
R

2δ
tan Λ2 (2.5)

As we can see from (2.5), the sweep Reynolds number describes the influence of sweep as well
as leading-edge curvature.

2.2. Freestream dependence

The governing parameters have been defined using the flow quantities downstream of the
bow shock (see section §2), and thus these parameters depend on the freestream conditions in
a nonlinear manner. As an example, using the definition of the sweep Mach number in (2.4),
the thermodynamic relation for the speed of sound for a perfect gas c2 = γRT as well as the
Rankine–Hugoniot relation for the temperature ratio T2/T1, the sweep Mach number can be
computed via

Mas =
γ + 1

2
M2

1 tan Λ

(
1 − γ

2
+ γM2

1

)−1/2 (
1 +

γ − 1

2
M2

1

)−1/2

; (2.6)

for the shock-free configuration, this relation reads

Mas = M1 tan Λ

(
1 +

γ − 1

2
M2

1

)−1/2

. (2.7)

Both equations, (2.6) and (2.7), reveal a nonlinear dependence of Mas on the freestream con-
ditions, and this dependence is given in figure 2. In figure 2(a), we show Mas as a function
of M1 and Λ, where the solid and the dashed lines represent constant values of Λ and M∞,
respectively. For instance, in this article, we study a freestream Mach number M∞ = 8.15 and
a freestream angle Λ = 30 ◦, yielding a shock-normal Mach number M1 = 7.06, which results in
a sweep Mach number Mas = 1.25. Furthermore, figure 2(b) demonstrates that, since the sweep
Reynolds number Res is a function of the sweep angle Λ2 (2.5), it also depends in a nonlinear
manner on the freestream conditions.

2.3. Numerical method

We consider the motion of a compressible fluid modeled as a perfect gas with constant specific
heat ratio γ = 1.4 and constant Prandtl number Pr = 0.71. The compressible Navier–Stokes
equations, the equation of state, Fourier’s law for the thermal conductivity and Sutherland’s law
(at ambient conditions) for the viscosity fully describe the flow. The equations are formulated
based on pressure p, Cartesian velocities (u, v, w) and entropy s and are solved on a time-
dependent, curvilinear and non-uniformly distributed grid, with a clustering of the grid points
towards the wall as well as in the leading-edge region, as shown in figure 1(b). For the direct
numerical simulations (DNS) in this article the computational domain is limited by a detached
unsteady bow shock, assumed to be an infinitely-thin moving discontinuity, in the wall-normal
direction. This discontinuity is incorporated through a shock-fitting technique (Moretti, 1987)
and provides the inflow conditions via the Rankine–Hugoniot relations. Along the surface of the
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Figure 2. (a) Sweep Mach number Mas and (b) sweep angle Λ2 as a function of the shock-normal Mach number
M1 = M∞ cosΛ and the freestream angle Λ. The region in grey denotes the case where the oncoming flow is
subsonic, i.e., M1 < 1 (note that in this case Λ2 = Λ), and the blue lines represent constant values of Λ while the
dashed black lines depict constant values of M∞. The red cross marks the freestream conditions of the present
study, and the green and blue cross represent the flow conditions which have been used in previous linear stability
analyses.

body no-slip boundary conditions and adiabatic wall conditions are applied. At the chordwise
edges of the computational domain, non-reflecting outflow boundary conditions are imposed and,
under the assumption of infinite span, periodic boundary conditions are used in the z-direction.
For details on the implementation of the numerical procedure such as the spatial, where compact
finite-difference schemes are employed, and the temporal discretization we refer the reader to
Mack and Schmid (2009). The homogeneity in the spanwise z-direction allows us to Fourier
transform this direction, and the remaining inhomogeneous η- and ξ-coordinate directions are
discretized using 128 × 255 grid points, respectively.

3 Global stability analysis

Information about the disturbance behavior for complex geometries and/or complex flow physics
relies on the formulation of a global stability problem when limiting assumptions such as locally-
parallel flow, multiple homogeneous coordinate directions or a low-Mach number approximation
are undesirable or impossible. For a comprehensive understanding of the perturbation dynamics
for our flow configuration (see figure 1) neither of the above-mentioned limiting assumptions
should be made; rather, a global formulation of the stability problem has to be attempted. For
this reason, we assume a three-dimensional perturbation field φ′ = (p′, u′, v′, w′, s′)T superim-
posed on a (steady) base flow φ0 according to

φ(x, y, z, t) = φ0(x, y, z) + ǫφ′(x, y, z, t) ǫ ≪ 1. (3.1)

We proceed by computing a base flow as a steady solution of the nonlinear compressible
Navier–Stokes equations, and a subsequent linearization about this base flow yields the linearized
Navier–Stokes equations for the perturbations φ′ which can formally be written as

∂φ′

∂t
= J (φ0)φ

′ (3.2)

with J (φ0) denoting the linear stability operator (the Jacobian).
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(a) (b)

(c)

Figure 3. (a) Streamlines (in blue) and pressure field [in Pa] of the computed steady base flow for Res = 800,
ReR = 129136, Mas = 1.25 and θw = 1; attachment line in black. (b) Schematic of the three-dimensional
boundary layer at a selected position downstream of the attachment line (adapted from Bippes, 1999). (c)
Normalized w-velocity profile, stretched by a factor of 100 in η, along the attachment line; the normal velocity v
is shown in the back δ = 1.968 · 10−4 [m] for the present parameter choice.

3.1. Base flow

The assumption of infinite span permits us to eliminate the z-dependence, but not the w-
component, from the base flow φ0(x, y, z) and to reduce the computations to a problem with
only two independent variables x and y. From the solution of a long-time integration the full
three-dimensional base flow can be recovered. This procedure is possible since the flow is stable
with respect to two-dimensional perturbations thus allowing a simple time-integration toward
a steady state. As a consequence, more sophisticated techniques such as Newton-type meth-
ods, (Jacobian-free) Newton–Krylov techniques (Knoll and Keyes, 2004) or selective frequency
damping (Åkervik et al., 2006) can be avoided.

An initial two-dimensional flow field has thus been integrated in time until a steady state
has been reached to within a sufficiently high accuracy. For a detailed discussion of the required
quality of this steady base flow and the distinction between base and mean flow for global
stability problems the reader is referred to Theofilis (2003) and Sipp and Lebedev (2007). The
converged three-dimensional base flow is visualized, in terms of streamlines and pressure field,
in figure 3(a). In addition, the local and nearly two-dimensional flow field in the vicinity of the
leading edge is depicted in figure 3(c) shown by the normal and streamwise velocity. The three-
dimensional base velocity profile further downstream from the attachment line is illustrated
in figure 3(b). It represents a typical profile of a three-dimensional boundary layer consisting
of twisted velocity vectors inside the boundary layer which eventually align with the curved
streamlines of the inviscid outer flow.
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3.2. DNS-based global stability solver

This three-dimensional base flow forms the starting point for our DNS-based global stability
analysis. The details of this stability solver are given in Mack and Schmid (2010), but for the
sake of completeness we briefly outline and discuss its main features.

Assuming a disturbance field, see equation (3.1), of a traveling-wave form

φ′(x, y, z, t) = φ̃(x, y)ei(βz−ωt), (3.3)

where φ̃(x, y) denotes the complex amplitude and β the real spanwise wavenumber of the per-
turbation; the temporal long-term evolution of the disturbance is characterized by ω whose real
part ωr describes the frequency and whose imaginary part ωi represents the growth rate. Upon
substitution of expression (3.2) into the linearized compressible Navier–Stokes equations (3.2)
and subsequent discretization in the remaining coordinate directions, we can formally write the
global discrete stability problem as

ω φ̃ = J(φ0) φ̃. (3.4)

Herein, the matrix J(φ0) represents the linear stability matrix (the Jacobian). The direct
solution of the resulting discrete n × n eigenvalue problem, where n = 5nξnη (with nξ and nη

as the number of grid points in the chordwise and normal direction) denotes the size of J(φ0)
and typically is of the order O(106 − 107), is prohibitively expensive. For this reason iterative
solution techniques have to be employed to extract pertinent stability information.

The algorithm to accomplish this task is the implicitly restarted Arnoldi method (IRAM),
a Krylov subspace technique presented by Sorensen (1992) which is publicly available and de-
scribed in Lehoucq et al. (1998). This class of techniques only requires the action of the Jacobian
matrix J(φ0) onto a given velocity field φ′. These matrix-vector products can readily be obtained
from direct numerical simulations via

J(φ0)φ
′ ≈ F(φ0 + ǫφ′) − F(φ0)

ǫ
=

∂F(φ)

∂φ

∣∣∣∣
φ=φ0

φ′ + O(ǫ), (3.5)

where ǫ is a user-specified parameter, chosen as ||ǫφ′||/||φ0|| = ǫ0 = 10−8, and F represents the
right-hand side of the nonlinear Navier–Stokes equations. This approximation avoids the ex-
plicit formulation and storage of the Jacobian matrix and thus allows a Jacobian-free framework
where direct numerical simulations (DNS) provide the input for the iterative stability solver.
For a discussion on the choice of the parameter ǫ0 see Mack and Schmid (2010). In the same
reference it was further demonstrated that a spectral transformation such as the Cayley trans-
formation is necessary to accelerate and control the convergence of the iterative eigensolver by
judiciously deforming the complex plane. In addition, this same spectral transformation adds to
the robustness of the solver and allows the Krylov subspace method to converge toward specific
parts of the complex global spectrum. The Cayley transformation consists of a two-parameter
conformal mapping defined as

TC(σ, µ) ≡ (J(φ0) − σI)−1(J(φ0) − µI), ω =
σλ − µ

λ − 1
, (3.6)

where σ and µ denote the mapping parameters, and I is the mass matrix, in our case the
identity matrix. The computed region of the full global spectrum depends on the choice of these
parameters, most notably on the choice of the shift parameter σ. The desired eigenvalues ω of
J(φ0) can straightforwardly be recovered from the eigenvalues λ of the transformed problem.
The advantages of using the transformation (3.6), however, comes at the expense of solving a
linear system which, in keeping with the overall iterative nature of our global stability method,
has to be done iteratively by a Krylov subspace technique, in our case the BiCGStab method
(van der Vorst, 1992) with an ILU-type preconditioner (Saad, 2003). Details can be found in
Mack and Schmid (2010).



Global stability of flow around a parabolic body 159

4 Results

The iterative algorithm outlined in section §3 is applied to simulations of compressible flow
around a swept parabolic body as depicted in figure 1. As the Krylov subspace is augmented by
subsequent calls to the direct numerical simulation (DNS) code, the ILU-preconditioned Cayley-
transformed Arnoldi method provides an approximate spectrum that consequently increases in
complexity but also in accuracy.

4.1. Global spectrum

The iteratively computed global spectrum is shown in figure 4. This global spectrum reflects the
richness of physical processes present in the flow configuration under investigation. It consists
of (mostly unstable) discrete shear modes (region I, in red) that express the flow characteristics
inside the boundary layer, of acoustic modes that describe the presence of (stable and unstable)
sound waves (region I, II and III, in blue) and of (stable) wave packet modes (region IV, in green)
that represent the dynamics of general perturbations outside the boundary layer; the latter type
of modes is complemented by the partial spectrum (region IV, in grey) obtained by directly
solving for the eigenvalues of the Jacobian matrix for an embedded and significantly smaller
sub-domain located near the attachment line. For the current parameter choice — i.e., a sweep
Reynolds number of Res = 800, a leading-edge Reynolds number of ReR = 129136, a sweep Mach
number of Mas = 1.25, an adiabatic wall (θw = 1) and a disturbance wavenumber β = 0.314 =
2π/Lz (with Lz as the fundamental length scale of the perturbations, nondimensionalized by
the viscous length scale δ, in the spanwise z-direction) —, the discrete boundary-layer branch
(in red) features the most unstable global modes.

The global spectrum (see figure 4) also shows that the physical processes described by differ-
ent types of global modes exhibit a distinct but characteristic frequency ωr. The boundary-layer
modes (in red), for instance, prevail inside the boundary layer, and the displayed modes travel
with a phase speed of approximately 12% to 37% of the (mean) velocity wmean ≈ w2 in the
spanwise z-direction (ωr,mean = w2β/(Sδ) with w2 = 583.1 [m/s], δ = 1.968 · 10−4 [m] and
S = 3704 [1/s]). The acoustic modes (in blue), on the other hand, travel downstream and up-
stream in z with w2 ± c2, where c2 stands for the speed of sound in the freestream. This speed
of w2 ± c2 corresponds to Mach numbers Mas = (w2 ± c2)/c2 of 2.25 and 0.25 (see figure 4).
The wave packet modes (in green) move with approximately the (mean) velocity w2 since they
mainly capture the dynamics of perturbations in the freestream.

4.1.1 Boundary-layer modes

Concentrating on boundary-layer modes (in red, see region I in figure 4), the employed global
stability solver identified, for our flow parameters, an eigenvalue branch of typical parabolic
shape. This branch consists of stable and unstable discrete modes whose frequency ωr ranges
from 31.1 to 92.8 (see figure 5e); the maximum growth rate ωi = 2.64 is achieved for ωr = 60.1.
Owing to the inherent symmetry properties of the flow the eigenvalues appear double at closer
inspection, and the associated modes exhibit characteristic symmetry properties with respect to
the attachment-line.

Two representative global modes, labeled B1,B2 and indicated by black circles in figure 5(e),
are visualized by iso-surfaces of the normal velocity v in figure 5(a). The slower-moving mode
B1 displays typical features of both attachment-line instabilities and crossflow vortices, as pre-
viously reported by Mack et al. (2008). The faster-moving mode B2 shows a substantially
stronger component of the crossflow instability, and its maximum amplitude is located further
downstream from the attachment line. This property is more evident in figure 5(b) where we
present a body-fitted cross-cut at a distance of half the boundary-layer thickness from the wall.
The same figure demonstrates again the two-dimensional character of the global modes near the
attachment line (see mode B1). Further downstream both modes display the typical curved
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Figure 4. Global spectrum showing the frequency ωr and the corresponding growth rate ωi of the iteratively
computed modal structures (Res = 800, ReR = 129136, Mas = 1.25, θw = 1 and β = 0.314); the eigenvalues ω
have been nondimensionalized using the strain rate S. Each region shows the least-stable eigenvalues belonging
to boundary-layer modes (region I), acoustic modes (region I, II and III), and wave packet modes (region IV);
unstable-half plane in grey. The most unstable modes in region I were presented in Mack et al. (2008).
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Figure 5. (a) Two representative global modes from the boundary-layer branch visualized by iso-surfaces (positive
values in red, negative values in blue) of the normal velocity v(x, y, z) = Real{ev(x, y) (cos βz + i sin βz)}; eight
periods in z are shown. The left and right mode correspond respectively to the two eigenvalues B1 and B2
depicted by circles in (e); contours of the associated pressure field are shown in the background; attachment line
in black. (b) Top view of v in the ξ-z-plane at approximately half the boundary-layer thickness; a log-scale is
used to visualize the positive values of v. (c,d) Chordwise cross-cuts of v at ξ/δ ≈ 400 and ξ/δ ≈ 580. (e) Region
I of the global spectrum shown in figure 4.

shape of crossflow instabilities. With the spanwise wavenumber β = 2π/Lz held constant for
both modes, the clearly visible difference in the spatial orientation of the crossflow vortices is
a consequence of a corresponding difference in the equivalent “local chordwise wavenumber”.
This same “local chordwise wavenumber” parameterizes the parabolic eigenvalue branch of the
associated global boundary-layer modes in figure 5(e). An equivalent parabolic shape would be
obtained in local stability analyses as the least-stable eigenvalue is traced as a function of the
chordwise wavenumber. Figure 5(c,d) depict two chordwise cross-cuts of the normal velocity v
at two selected positions, (c) at ξ/δ ≈ 400 and (d) at the location of the maximum amplitude
of B1.

The compressible nature of the flow is expressed in the existence of an associated weak
pressure field which reflects the acoustic footprint of a global shear mode. This phenomenon
is visualized in the ξ-η-plane by contours of the pressure for the boundary-layer mode B1 (see
figure 5a).

4.1.2 Acoustic modes (type A)

Due to the presence of compressibility, the global spectrum also features distinct sets of slow-
and fast-moving acoustic global modes (see blue dots in region I and II in figure 4) which describe
the presence of sound waves. These modes travel with approximately w2 ± c2 in the spanwise
z-direction as already discussed in section §4. In figure 6(a), we display region II of the global
spectrum (see figure 4) which contains the fast-moving set of acoustic modes. It is found that
these modes can be divided into symmetric S-modes — the spatial distribution of all disturbance
quantities except for the chordwise velocity u is symmetric with respect to the attachment line
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Figure 6. (a) Computed region of the global spectrum containing the fast-moving set of acoustic modes (see
region II and III in figure 4). (b–e) Spatial structure of a sample of associated global acoustic modes belonging
to the eigenvalues S1, S2, S3 and S4 from the S-branch depicted by red circles in (a). The modes are visualized
by the chordwise velocity u(x, y, z) in the x-y-plane. The green hue corresponds to vanishing amplitudes (larger
amplitudes in red); R = 0.1 = 508δ.

— and antisymmetric A-modes. Furthermore, each S-mode is found to pair with an A-mode at
the same frequency ωr, e.g., ωr,S2 = ωr,A2 (see dashed line in figure 6a). Moreover, either type
of modes describes a distinct branch in the eigenvalue spectrum, indicated by the grey line in
figure 6(a), where the modes on the A-branch are always more stable than the modes on the
S-branch.

The spatial structure of a representative sample of acoustic modes from the S-branch is
presented in figure 6(b–e); the corresponding eigenvalues of these modes are circled in red in
figure 6(a) and denoted by S1–S4, respectively. All modes are visualized by the amplitude
distribution of the chordwise velocity u in the x-y-plane. The unstable (S1) and the marginally
stable mode (S2) reveal a dominant spatial structure downstream of the detached bow shock,
and this structure decays toward the surface of the body; the bow shock acts as a flexible “wall”
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(a) (b) (c)

Figure 7. Sign of the pressure distribution sign(p) of selected global acoustic modes in the x-y-plane: (a) S-mode
(S2) and (b) A-mode (A2) from the fast-moving set of acoustic modes (see figure 6a); (c) mode corresponding to
S2, from the slow-moving set of acoustic modes denoted by S̄2 (see blue dots in region I in figure 4).

which prevents sound waves from traveling upstream of the shock. More stable modes (S3 and
S4) are more pronounced in the half of the physical domain which is adjacent to the body, and
they exhibit smaller spatial structures as they are increasingly tilted and damped; the smaller
spatial structures are the result of this obliqueness of the waves.

The smaller the spatial structures, the larger is the chordwise “wavenumber” α and thus
the propagation angle of the acoustic waves. The unstable mode S1 exhibits a small value of α
and thus displays an approximately two-dimensional wave traveling in the spanwise z-direction.
This mode further shows no strong interaction with the shock; rather, the bow shock reacts to
the structure of the mode by adjusting its spatial shape. However, for larger values of α, the
oblique traveling acoustic waves strongly interact with the bow shock resulting in a small energy
loss (S2). Finally, for even larger α structures close to the parabolic body prevail (S3 and S4).

In figure 7, we present a comparison of three acoustic global modes belonging to the S- and
A-branch of the fast-moving set of acoustic modes (see region II in figure 4) as well as an acoustic
mode from the corresponding slow-moving symmetric branch (marked by blue dots in region I
in figure 4). As an example we concentrate on the mode S2 and its associated mode A2 (see
dashed line in figure 6a). From the slow-moving set of acoustic modes we choose the image mode
(denoted by S̄2) to S2, i.e., the mode with the identical decay rate ωi as S2 but with a frequency
of approximately ωr ≈ w2 − c2. Regarding the spatial shape of these three modes it is found
that the sign of the pressure distribution sign(p) is nearly identical (see figure 7). Besides the
above-mentioned chordwise symmetric/anti-symmetric structure of these modes the two fast-
moving modes exhibit a characteristic wall layer that decreases as we proceed downstream from
the attachment line (figure 7a,b); this feature is absent for the slow-moving mode S̄2 (figure 7c).

4.1.3 Acoustic modes (type B)

In addition to the acoustic modes presented in section §4, another type of global acoustic
modes exists. The dominant part of these modes lies in the freestream, and they display a
characteristic structure in a local region between the detached bow shock and the attachment
line (see figure 8). Starting with the global mode in figure 8(a), which represents the first mode
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Figure 8. (a)–(d) Sample of a further type of global acoustic modes visualized by the sign of the chordwise
velocity, sign(u), in the x-y-plane; sonic line, i.e., Ma = (u2 + v2)1/2/c = 1, in red. (e) The black dots display
the corresponding eigenvalues in the global spectrum (see region III in figure 4); the eigenvalues circled in green
belong to the global modes (a)–(d).

A1 of the A-branch shown in the previous section §4, we again observe a symmetric spatial
distribution for the chordwise velocity component u in the freestream (visualized by the sign of
u). As we proceed along the eigenvalue branch marked in black in figure 8(e), an interesting
behavior emerges. It appears that a localized region between the bow shock and the attachment
line decouples itself — in terms of distinct spatial scales — from the regions downstream from
the attachment line. This decoupling is already visible, even though barely, in figure 8(a) directly
behind the bow shock at x = 0. Progressing farther along the eigenvalue branch this feature
becomes more pronounced as the localized region further extends in a semi-circular fashion from
its point of origin towards the body, and as the structure within shows increasingly finer scales
(see figure 8b–d). It appears that the symmetry properties of the structures inside and outside
the localized region are uninfluenced by each other. The range of scales, on the other hand,
indicates a link between the two regions: generally speaking, the smaller the scales inside the
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Figure 9. (a) Computed region of the global spectrum containing the eigenvalues belonging to wave packet modes
(see region IV in figure 4). (b) Three representative wave packet modes (W1, W2 and W3) are visualized by the
(normalized) chordwise velocity u; attachment line in black.

localized region, the coarser the structures on the outside (see figure 8d).
This type of modes is believed to account for the interaction of a moving flexible shock

and a rigid curved surface, and these modes are reminiscent of localized standing waves. The
increasingly finer spatial scales of the higher-order modes are linked to higher damping rates.
The localized spatial shape of the modes is also influenced by the different reflective behavior
(impedance) of acoustic waves by the curved solid surface (perfect reflection) and the curved
flexible shock (imperfect reflection).

4.1.4 Wave packet modes

Returning to the global spectrum in figure 4 a distinct set of eigenvalues centered around
the mean spanwise velocity is clearly visible. This region IV is again plotted in figure 9(a),
and it shows a dense clustering of damped eigenvalues confined to a triangular-shaped region.
The exact location of individual eigenvalues within this region is highly sensitive to numerical
details. For this reason, it can be assumed, and will be later argued, that this part of the
spectrum consists of an area which is progressively filled by the discrete eigenvalues as the
numerical parameters (resolution, starting vector, Cayley parameters, convergence tolerances,
etc.) but not the physical parameters are varied.

The location and distribution of the eigenvalues in region IV suggest a link to the continuous
spectrum, familiar from boundary layers (Grosch and Salwen, 1978; Balakumar and Malik,
1992) and other semi-infinite and bi-infinite viscous shear flows. In the boundary-layer case, the
continuous spectrum can be determined by a constant coefficient Orr–Sommerfeld equation for
the freestream. Its solutions are given by bounded exponential and trigonometric functions; the
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Figure 10. Amplitude distribution of two wave packet modes shown in figure 9: (a) W2 and (b) W3. The
modes are visualized using cross-cut profiles at the attachment line (in black) and at selected positions near the
attachment line.

location of the spectrum is defined by a line parameterized by a wall-normal wavenumber.
In contrast, our governing equations evaluated in the freestream still retain a dependence on

the wall-normal coordinate via the non-uniform base velocity. As a consequence, the solutions
in the freestream are no longer wave trains (as, for instance, in the boundary layer) but rather
localized wave packets. As an example, three representative modes (W1, W2 and W3) from
region IV are displayed in figure 9(b) which show the spatial distribution of u in the normal
direction in form of a wave packet; this property is even more visible in figure 10 where we
present cross-cut profiles of W2 and W3 in the normal direction near the attachment line.
These cross-cuts also demonstrate, even though barely visible, that the wave packet modes
extend into the boundary layer and thus establish a connection between boundary-layer and
exterior perturbation dynamics. They are thus certain to play a critical role in the receptivity
of boundary-layer instabilities to the external disturbance environment.

A consequence of the wave packet shape is its parameterization by two variables, a wall-
normal local wavenumber and the location of the wave packet peak (Trefethen, 2005; Obrist
and Schmid, 2009). For this reason, the associated continuous spectrum is area-filling as the
continuous spectrum for the boundary layer was line-filling due to only one variable, the wall-
normal local wavenumber.

4.2. Parameter studies

Compressible flow around a swept parabolic body is governed by a large number of parame-
ters describing various flow quantities, fluid properties and geometric characteristics of the flow
configuration. For a particular choice of parameters, i.e., Res = 800, ReR = 129136, Mas = 1.25,
θw = 1 and β = 0.314, the global spectrum (see figure 4) revealed that the only temporal insta-
bilities arise from boundary-layer and/or acoustic modes. To gain further insight into the global
stability properties of both types of instabilities, we present a parametric study of their stability
behavior by varying the spanwise disturbance wavenumber β = 2π/Lz and the leading-edge
Reynolds number ReR. In particular, we focus on the stability of the global modes in region I
and II in figure 4.

The first parametric study allows us to investigate the linear stability of a computed base flow
with respect to spanwise-propagating perturbations with a fundamental length scale Lz. The
second parametric study assesses the influence of the leading-edge Reynolds number ReR, via the
leading-edge radius R, on the stability of the flow. This influence is particularly important for
the global stability of the boundary-layer modes. Such a study requires, for each value of ReR,
the computation of a steady base flow, even though the freestream conditions remain fixed. For
all other types of parameter studies, for example, the influence of the sweep Reynolds number
Res = Res(M1, Λ) or the sweep Mach number Mas = Mas(M1, Λ), the nonlinear dependence
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Figure 11. Influence of the spanwise disturbance wavenumber β on the stability of the flow: (a) temporal spectra
of the least-stable boundary-layer modes for selected values of β; unstable half-plane in grey. The solid line in dark
grey describes the evolution of the maximum temporal growth rate ωi,max, and the evolution of ωi,max, denoted
by crossflow branch, as a function of β is shown in (b); (c) Temporal spectra and evolution of the maximum
temporal growth rate ωi,max of the least-stable acoustic modes; the corresponding acoustic branch is displayed in
(b).

between the governing parameters (see section §2) requires a substantial effort for a systematic
exploration of the four-dimensional parameter space.

4.2.1 Influence of the spanwise disturbance wavenumber β

The influence of the spanwise disturbance wavenumber on the boundary-layer modes was
already discussed in Mack et al. (2008) for 0.090 ≤ β ≤ 0.314 where they found a maximum
modal growth for β = 0.213. For a more comprehensive parameter study the application of the
Cayley-transformed Arnoldi method, as employed in this article, was found to be mandatory
for accessing selected parts of the global spectrum and to investigate a larger range of spanwise
wavenumbers β. The computed temporal spectra of the (most unstable) boundary-layer modes
are shown in figure 11(a) for 0.071 ≤ β ≤ 0.349. For a given value of β, the frequency ωr and its
corresponding growth rate ωi reveal an unstable discrete branch as discussed in section §4. Each
branch displays a maximum value of the growth rate ωi, and this value appears to grow steadily
up to a specific wavenumber β before decaying again (see crossflow branch in figure 11b). The
same figure 11(b) indicates that the boundary-layer modes are unstable for 0.061 ≤ β ≤ 0.363.

By adjusting the parameters in the Cayley transformation (3.6), we are also able to focus
on the computation of fast-moving acoustic modes (see region II in figure 4). In figure 11(c), we
present the influence of β on the stability of these modes. We observe clusters of discrete acoustic
eigenvalues where the least-stable mode belongs to the S-branch. This mode is, similar to the
most unstable boundary-layer mode, unstable for a specific range of spanwise wavenumbers
0.118 ≤ β ≤ 0.585 (see acoustic branch in figure 11b). It is furthermore evident from the
same figure that the overall prevailing instability can come from either branch depending on the
spanwise scale of the perturbation.
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Figure 12. Influence of the leading-edge Reynolds number ReR on the stability of the flow: (a) β = 0.143, (b)
β = 0.224 and (c) β = 0.314. ReR ranges from 129136 to 32284 (Res decreases from 800 to 400 with a step size
of 100) from the top to the bottom. The dashed lines indicate the evolution of the maximum growth rate ωi,max.

4.2.2 Influence of the leading-edge Reynolds number ReR

The influence of the leading-edge Reynolds number ReR on the global stability of the flow is
demonstrated in figure 12. As mentioned in section §2 variations in the leading-edge Reynolds
number ReR cause a proportional change in the sweep Reynolds number Res (see equ. (2.5)).
Three spanwise wavenumbers, located near the peak of the crossflow branch in figure 11(b) with
β = 0.224 and from either side of the peak with β = 0.143 and 0.314, have been selected for
this parameter study. As expected, a stabilizing effect due to a convex curvature parameterized
by the leading-edge radius R has been found as ReR is decreased from 129136 to 32284 (and
consequently Res changes from 800 to 400). This observation is in accordance with wind-tunnel
experiments on a swept wing as reported in Bippes (1999) and with theoretical studies on the
effect of leading-edge curvature using local models of the attachment-line boundary layer (Lin
and Malik, 1997). Our results also indicate that, for the selected values of β, the frequency ωr of
the computed unstable global boundary-layer modes decreases as ReR is decreased (see dashed
lines in figure 12).

5 Summary and Conclusions

The flow about yawed blunt bodies constitutes a configuration with many applications, not
only in aeronautics (such as swept wings) but also in general vehicle engineering. A profound
understanding of all aspects of this flow, in particular its stability characteristics, is hence
important for the geometric design and analysis of any blunt body that is subject to an obliquely
impinging flow.

Historically, the flow about swept bodies has been broken down into two local flow models
that describe the flow in the neighborhood of the attachment line (stagnation-point flow) and
in the region further downstream (three-dimensional boundary-layer flow). Growth rates and
modal structures for each of these models have been studied, and deviations from the most
common assumptions, among them nonlinearities, curvature and compressibility, have been
incorporated, mostly in a perturbative manner. The resulting body of literature still forms the
basis for any current design process, despite the fact that discrepancies between the two local
models exist. Efforts to connect the dominant structures of these two models have recently
been reported (Bertolotti, 1999; Mack et al., 2008); but a first comprehensive study of the full
global problem has been attempted in the present work. This is possible owing to a DNS-based
global stability solver which is based on iterative algorithms and a spectral transformation of
the complex eigenvalue plane (Mack and Schmid, 2010).

Due to the complex nature of the flow, which includes curved geometry and compressibility
effects, the global spectrum is accordingly rich and intricate. Nevertheless, distinct modal struc-
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tures could be identified and catalogued. Boundary-layer modes, describing the perturbation
dynamics close to the wall, are dominated by structures reminiscent of cross-flow vortices which
connect to associated attachment-line modes. For specific parameter combinations, modes from
this boundary-layer branch become unstable. Acoustic modes have been observed to fall into
two categories: common wave-like structures that progagate at approximately the respective
characteristic velocities, i.e., the mean spanwise velocity plus or minus the speed of sound, and
acoustic standing waves communicating between the flexible bow shock and the attachment-line
region of the solid body. Symmetry properties and a hierarchy of increasingly finer spatial scales
parameterize both types of acoustic modes. Wave packet modes complete the global spectrum
and describe the perturbation dynamics between the edge of the boundary layer and the bow
shock. They represent the equivalent of what is known in semi- and bi-infinite flows as the
continuous spectrum. Evidence supports the fact that for our flow case this continuous spec-
trum covers an area of the complex plane, rather than a curve as is the case, e.g., for classical
flat-plate boundary layers.

In general, advanced numerical techniques — both for providing highly-resolved flow fields
and for processing them by modern iterative algorithms — are capable of tackling the global
stability problem of complex flows without the need to resort to local models or simplifying
assumptions. Such a type of stability analysis, employed in this study for compressible flow
about a swept parabolic body, gives a more complete and encompassing picture of the flow
behavior, and the challenge of interpreting the spectral features of the flow far outweighs the
insight one gains into the global perturbation dynamics.
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The onset of transition in the leading-edge region of a swept blunt body depends on the stability
characteristics of the flow. Modeling this flow configuration by swept flow around a parabolic
body a global approach is taken to extract pertinent stability information via a DNS-based
iterative eigenvalue solver. Global modes combining features from boundary-layer and acoustic
instabilities are presented. A parameter study, varying the spanwise disturbance wavenumber
and the sweep Reynolds number, showed the existence of unstable boundary-layer and acoustic
modes. The corresponding neutral curve displays two overlapping regions of exponential growth
and two critical Reynolds numbers, one for boundary-layer instabilities and one for acoustic in-
stabilities. The employed global approach is expected to shed more light on the rich perturbation
dynamics of swept leading-edge flow, particularly, in the subcritical regime.

1 Introduction

Since the early fifties the problem of transition in the leading-edge region of swept wings has been
central to a great deal of investigations concerning the design of high-performance aircraft. This
problem was first observed in early flight tests on swept wing aircraft, where Gray (1952) found
that beyond a critical freestream velocity the transition front moved toward the attachment
line of the wing, a feature that could not be explained by existing two-dimensional arguments.
Furthermore, the employed flow visualization technique showed a series of closely-spaced streaky
structures almost aligned with the external streamlines of the flow. Subsequent investigations
confirmed these streaky structures as a consequence of crossflow instabilities.

In an attempt to gather further information on leading-edge transition, Pfenninger conducted
a series of flight tests on a swept X-21 wing in 1963, where he observed that unexpectedly high
suction rates had to be applied to eliminate the crossflow vortices and to thus achieve laminar
flow over the outer part of the wing. This strong suction was required particularly in the wing’s
leading-edge region which indicated that rather strong disturbances had to be present in the
laminar boundary layer originating near the upstream part of the wing. Evaluating his database
(Pfenninger, 1965), he was able to establish a criterion for the existence of spanwise contam-
ination along the wing’s leading edge in the presence of an initially turbulent attachment-line
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boundary layer emanating from the wing-body junction. He further realized that maintaining a
full-chord laminar flow on an X-21 wing critically depended on the existence of an undisturbed
laminar attachment-line boundary layer, thus stressing the importance of flow instabilities in the
vicinity of the attachment line. Pfenninger’s criterion is expressed as a critical sweep Reynolds
number of R̄ ≈ 245, which corresponds to a Reynolds number of Rθ ≈ 100 (based on the mo-
mentum thickness), to avoid leading-edge contamination, and this value to this day still guides
state-of-the-art design efforts for swept wings.

The observed prevalence of crossflow vortices in the experiments of, among others, Pfenninger
(1965) and Poll (1979) led, in the beginning, to the hypothesis of a leading-edge transition that
is based on crossflow vortices; however, doubts remained as to their singular role. In wind-tunnel
experiments on a swept wing configuration with a semi-circular leading edge, Poll (1979) reported
that the flow is also susceptible to instabilities close to the attachment line and established
attachment-line instabilities as a viable alternative governing the stability of leading-edge flow.
Summarizing his investigations of incompressible swept attachment-line boundary-layer flow he
confirmed Pfenninger’s critical Reynolds numbers of R̄ ≈ 245 for finite-amplitude disturbances
and furthermore established a critical Reynolds number of R̄crit ≈ 570 for small-amplitude
perturbations. The discrepancy between these two critical Reynolds numbers indicates the
subcritical nature of leading-edge transition, and an interplay between linear and nonlinear
mechanisms is expected in this parameter range (see, e.g., Joslin, 1996). Investigations into the
subsonic, supersonic and hypersonic flow regime have been undertaken by many scientists, and
a comprehensive summary of their results is given in Poll (1983) and Gaillard et al. (1999).
Adopting a reference temperature concept, a unique critical Reynolds number of R̄∗ ≈ 245 has
been determined for a finite-amplitude disturbance environment (Poll, 1983). For infinitesimal
perturbations a critical Reynolds number of R̄∗

crit ≈ 650 has been found (see, e.g., Gaillard et al.,
1999). In both cases, the critical Reynolds numbers appear to be independent of the sweep Mach
number Mas up to a value of Mas ≈ 5.

The experimental results as well as the need to fully understand swept leading-edge flow have
fueled a substantial effort (see, e.g., Hall et al., 1984; Hall and Malik, 1986; Spalart, 1988; Joslin,
1995; Lin and Malik, 1996; Semisynov et al., 2003) to investigate the flow behavior governed by
the two identified mechanisms, i.e., attachment-line instabilities and crossflow vortices. These
investigations, however, have been based on local flow models for either instability mechanism
which was a necessary step to apply classical tools of hydrodynamic stability theory. Despite
remarkable theoretical and numerical efforts based on these local models our understanding of the
mechanisms behind the perturbation dynamics in the subcritical range still remains incomplete,
even though limited success, such as approximating the critical Reynolds number for attachment-
line instabilities (Hall et al., 1984; Lin and Malik, 1996), has been achieved.

The shortcomings of the local flow models have been discussed by a number of scientists, and
the potential of a global stability approach based on a comprehensive flow model is unquestion-
able. Such an approach will yield a more complete understanding of swept leading-edge flow and
help answer questions such as the connection between attachment-line instabilities and crossflow
vortices. An approach of this type has already been alluded to by Lin and Malik (1996) who
stated that “... By choosing a computational domain large enough in the [chordwise] direction
to cover both the attachment-line instability and crossflow instability regions, and by using an
appropriate spatial resolution, the two-dimensional eigenvalue approach can provide us with a
means to explore this connection ...”. Based on such a global approach this connection has been
established in Mack et al. (2008), and the same line of analysis will be further pursued in this
article to explore the parameter dependence of swept flow around a parabolic body.
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Figure 1. Sketch of supersonic flow about a swept parabolic body.

2 Flow model, governing parameters and numerical method

Our model consists of supersonic flow about a swept parabolic body displayed (in grey) in
figure 1. The same figure introduces the used three-dimensional body-fitted grid (in blue),
and two coordinate systems: a local (x, y, z) Cartesian coordinate system (in red) and a local
parabolic (ξ, η, z) coordinate system (in orange). The attachment line (in black) coincides with
the spanwise z-direction. The surface of the parabolic body is given by y(x) = −1/(2R)x2,
where R denotes its leading-edge radius. We consider flow situations where the oncoming flow
is supersonic M1 = M∞ cosΛ > 1, with M∞ and M1 respectively denoting the freestream
Mach number and its normal component; Λ stands for the freestream angle. The computational
domain is limited by a detached unsteady bow shock in the wall-normal direction, and this
shock, assumed to be an infinitely thin, moving discontinuity, acts as the inflow boundary. The
supersonic flow state upstream of the detached bow shock is given by the Mach number M∞, the
freestream angle Λ as well as the pressure p∞ and temperature T∞. Via the Rankine–Hugoniot
relations, the flow state downstream of the shock, denoted by the subscript 2, is obtained. As a
result, the incoming flow impinges on the body with a velocity q2 and a sweep angle Λ2 yielding
a sweep velocity w2 and a normal velocity v2 (see figure 1).

This flow configuration is characterized by two distinct length scales, the leading-edge radius
R and a viscous length scale δ, which describe the outer flow and the flow inside the boundary
layer, respectively. We define the viscous length scale as

δ =
(νr

S

)1/2
with S =

(
∂u

∂x

)

w

=
2v2

R
, (2.1)

where S is the strain rate at the wall, evaluated at the attachment line. Its value is approximated
using the potential solution of flow around a circular cylinder with radius R. Based on these
two length scales we define a sweep Reynolds number Res and a leading-edge Reynolds number
ReR as

Res =
w2δ

νr
, ReR =

v2R

νr
, (2.2)
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where νr denotes the kinematic viscosity evaluated at recovery temperature Tr and stagnation
pressure ps. We further consider a supersonic sweep Mach number of Mas = w2/c2 = 1.25
and assume an adiabatic wall, i.e., the ratio of the temperature Tw at the wall and Tr is θw =
Tw/Tr = 1.

It is instructive to demonstrate an explicit dependence of the sweep Reynolds number Res on
the sweep angle Λ2 and the leading-edge radius R as well as the leading-edge Reynolds number
ReR according to

Res =

(
q2R

νr

sin Λ2 tan Λ2

2

)1/2

=

(
ReR

2

)1/2

tan Λ2 =
R

2δ
tan Λ2. (2.3)

The definition in (2.3) was used by Poll (1979) for incompressible flow over a swept cylinder.
For compressible flow it was extended using a reference temperature concept (see Poll, 1984)
where the kinematic viscosity ν∗ in the sweep Reynolds number R̄∗ is evaluated at a reference
temperature T ∗ given by T ∗ = Te +0.1(Tw −Te)+0.6(Tr −Te); the temperature Te is computed
at the boundary-layer edge.

The governing compressible Navier–Stokes equations are solved on a curvi-linear, moving
and body-fitted mesh using high-order compact finite-difference schemes and high-order time
stepping. Shock-fitting techniques, a characteristic-type formulation and standard non-reflecting
outflow boundary conditions are used, and further details about the direct numerical simulation
(DNS) are given in Mack and Schmid (2009a). To properly resolve small-scale features inside
the boundary layer as well as near the attachment line a highly non-uniform grid distribution is
employed, as indicated in figure 1.

3 Global stability analysis

It should be evident that stability studies of flow about a blunt body such as a swept wing
no longer allows the standard simplifying assumptions of multiple homogeneous coordinate di-
rections or a low-Mach number approximation. Rather, a global approach has to be adopted
to extract pertinent stability information about the flow. An approach of such type has al-
ready been amply motivated in the introduction where we concluded that further advances in
our understanding of leading-edge contamination critically relies on the formulation of a global
stability problem.

We therefore assume a three-dimensional perturbation field, which in our case consists of
the pressure, velocity components and entropy, i.e., φ′ = (p′, u′, v′, w′, s′)T , superimposed on a
steady base flow φ0 according to

φ(x, y, z, t) = φ0(x, y, z) + ǫφ′(x, y, z, t) ǫ ≪ 1. (3.1)

The base flow φ0 is computed as a steady solution of the nonlinear compressible Navier–Stokes
equations by time marching the direct numerical simulation (DNS) code.

Despite the complexity of our flow model we can still take advantage of the homogeneous
spanwise z-direction in form of a Fourier transform in z introducing a spanwise wavenumber β.
Physically, this corresponds to a swept parabolic body of infinite span. Assuming exponential
behavior in time, we take the perturbation in (3.1) in the form of traveling waves according to

φ′(x, y, z, t) = φ̃(x, y)ei(βz−ωt). (3.2)

In this expression, φ̃(x, y) denotes the complex amplitude of the disturbance, and its temporal
long-term evolution is given by ω whose real part ωr describes the frequency and whose imaginary
part ωi represents the corresponding growth rate.

Characteristic information about the stability behavior of compressible flow about a swept
parabolic body is contained in the global modes φ̃(x, y), which present the spatial shape of the
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Res ReR Rδ δ in 10−4 [m] R̄∗

800 129136 508 1.968 840
600 72639 381 2.624 630
400 32284 254 3.935 420

Table 8. Values of the Reynolds numbers, as defined in section §2, of the investigated parameter choices.

instabilities, and the corresponding global eigenvalues ω, which describe the associated temporal
dynamics. This information is extract by a applying a DNS-based iterative global stability solver
which consists of the implicitly restarted Arnoldi method (see Lehoucq et al., 1998) combined
with a conformal map (Cayley transformation) of the complex eigenvalue plane. By implement-
ing a Jacobian-free framework, flow fields computed by the direct numerical simulations (DNS)
provide the required input for the Arnoldi method, and a shift parameter σ in the Cayley trans-
formation allows us to manipulate the computed flow fields and direct the convergence of the
Arnoldi method toward specific global modes. In this manner, we are able to scan the physically
relevant regions of the full global stability spectrum. For more details about the DNS-based
global stability solver the reader is referred to Mack and Schmid (2010).

4 Results

Compressible flow around a swept parabolic body (see figure 1b) exhibits a complex perturbation
dynamics and thus features a wide and rich variety of global modes. This fact has already been
discussed in Mack and Schmid (2009b) where several types of global modes have been uncovered
for Res = 800, ReR = 129136, Mas = 1.25, θw = 1 and β = 0.314: stable and unstable boundary-
layer modes, different types of stable and unstable acoustic modes and stable wave packet modes
have been found. Furthermore, the present flow configuration is governed by a large number
of parameters describing various flow quantities, fluid properties and geometric characteristics
of the flow. Among these parameters, the influence of the spanwise wavenumber β and the
leading-edge Reynolds number ReR on the global stability of the flow has been briefly addressed
in Mack and Schmid (2009b). A more comprehensive study including the neutral curve will be
presented in what follows.

4.1. Spectrum and global modes

Boundary-layer instabilities have been found in previous studies (Mack and Schmid, 2009b) to
play a dominant role in the transition process. For this reason we start by presenting results from
the global spectrum which is displayed in figure 2(a) for a sweep Reynolds number of Res = 800
and a spanwise wavenumber of β = 0.314. It shows (in blue) a characteristic parabolic shape
of discrete global modes which are unstable for a frequency range of 36 . ωr . 93. The most
unstable modes from this branch for Res = 800, 600 and 400 are shown in figure 2(b); this time
the spanwise disturbance wavenumber was chosen as β = 0.224 which is close to 0.213, the value
for the most amplified perturbations (see Mack and Schmid, 2009b). Figure 2(b) further shows
that decreasing Res — which is equivalent to decreasing the leading-edge Reynolds number ReR

and thus the leading-edge radius R (see table 8) — has a stabilizing effect on boundary-layer
modes.

In figure 3, we present the spatial distribution of three global boundary-layer modes each
belonging to the most unstable eigenvalue (depicted by a circle) of the three eigenvalue branches
in figure 2. The modes are visualized by iso-surfaces of the normal velocity v, and 8 periods in the
spanwise z-direction are used; furthermore, contours of the associated pressure field of each mode
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Figure 2. (a) Part of the full global spectrum showing the least-stable boundary-layer modes (in blue) and the
slow-moving set of acoustic modes (in black) as presented in Mack and Schmid (2009b); unstable half-plane in
light grey. (b) Least-stable eigenvalues, belonging to global boundary-layer modes, of the global spectrum for
selected sweep Reynolds numbers Res (Mas = 1.25, θw = 1 and β = 0.224). The dashed line indicates the
evolution of the maximum growth rate.
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Figure 3. Spatial structure of a the most unstable boundary-layer modes (depicted by circles in figure 2a)
visualized by iso-surfaces (positive values in red, negative values in blue) of the normal velocity v(x, y, z) =
Real{ev(x, y) (cos βz + i sin βz)}; eight periods in z are shown; attachment line in black: (a) Res = 800, (b)
Res = 600 and (c) Res = 400. Contours of the associated pressure field of each mode are displayed in the
background.

are plotted in a wall-normal cross plane at z = 0. The noticeably different size of the domain
in z, for a fixed wavenumber β, is the consequence of our definition of the spanwise length scale
Lz = (2π/β) · δ, where the viscous length scale δ depends on the sweep Reynolds number Res

(see table 8). The disturbance wave length thus scales with the length scale δ and the thickness
of the boundary layer δ99 ≈ 2.38δ. Regarding the structure of the global modes in figure 3 we
identify typical features of crossflow instabilities: co-rotating vortices that almost align with
the external streamlines. Closer inspection of their spatial distribution, as Res is decreased
from 800 to 400 (see figure 3a–c), reveals, as we proceed downstream from the attachment
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Figure 4. Neutral curve for supersonic flow about a swept parabolic body for a sweep Mach number Mas = 1.25
and an adiabatic wall (boundary-layer modes in red, acoustic modes in blue); contour spacing for the boundary-
layer modes ∆ωi = 1, contour spacing for the acoustic modes ∆ωi = 0.1. The dashed lines indicate the evolution
of the maximum value of the growth rate.

line, (i) a weaker spatial exponential growth, causing (ii) a shift of the maximum amplitude
in the chordwise direction, followed by (iii) a weaker exponential decay further downstream.
A consequence of this behavior is, on one hand, a more compact spatial distribution closer to
the attachment line of more unstable global modes at higher Reynolds numbers and, on the
other hand, a substantially more elongated spatial distribution farther downstream from the
attachment line of less unstable global modes. It is these latter modes that are capable of
describing the dynamics in the entire leading-edge region and, at same time, of establishing a
possible link to Tollmien–Schlichting-type instabilities even further downstream.

Regarding the associated pressure field of the global modes in figure 3 an interesting feature
is observed. While the global modes in figure 3(a,b) do not display any pronounced pressure
field, the global mode in figure 3(c) adopts a pressure distribution which is known from the
least-stable acoustic mode of the slow-moving acoustic modes (see figure 2a, marked by a black
circle). This is a consequence of the coalescence of two eigenvalues, the least-stable eigenvalues of
the respective types, for the particular parameter choice Res = 400 and β = 0.224, which results
in a composite mode (showing typical features of boundary-layer modes and the least-stable
acoustic mode).

4.2. Neutral curve

The neutral curve for supersonic flow about a swept parabolic body is presented in figure 4.
In this figure, we display contours of constant growth rate ωi for the boundary-layer modes (in
red) and the acoustic modes (in blue). The presence of unstable global modes of boundary-layer
as well as acoustic type yields a composite neutral stability curve delineating parameter regimes
across which either boundary-layer or acoustic modes change from stable to unstable. Boundary-
layer instabilities prevail for small spanwise wavenumbers β and cease to exist below a critical
Reynolds number of Res,crit ≈ 377 (for β = 0.213). For rather large values of the spanwise
disturbance wavenumber β acoustic instabilities dominate the linear stability of the flow even
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Figure 5. Cross-cuts of the neutral curve in figure 4 showing the influence of β on ωi for selected values of Res;
unstable half-plane in light grey.

for sweep Reynolds numbers Res,crit < 377. However, for Res < 195 acoustic instabilities cease
to exist as well.

For more detailed information, cross-cut profiles of the neutral curve for selected values of
Res are presented in figure 5. The cross-cuts (as well as the neutral curve) show that the
boundary-layer modes (denoted by crossflow branch) exhibit significantly larger growth rates ωi

than the acoustic modes for large values of Res. These growth rates decay linearly with Res;
the maximum growth rate is always found at a critical spanwise wavenumber of β = 0.213. The
acoustic modes, on the other hand, show rather weak growth rates, do not scale linearly with
Res and do not show a Reynolds number independent critical value of β.

The neutral curve displayed in figure 4 represents a two-dimensional cut through a high-
dimensional parameter space. The immediate choice of varying parameters consists of the span-
wise wavenumber β (based on a one-time computed base flow) and the sweep Reynolds number
Res (requiring the computation of a new base flow for each value of Res). While for these
two parameter studies the freestream conditions remain unchanged, investigating the influence
of additional parameters (sweep angle, sweep Mach number, wall temperature ratio, etc.) re-
quires a substantial effort owing to the added complication of a nonlinear dependence of these
parameters on the freestream conditions (see Mack and Schmid, 2009b, for details).

5 Discussion and Conclusions

The stability of supersonic flow around a swept parabolic body has been studied using a global
approach based on a inclusive flow model which incorporates attachment-line instabilities and
crossflow vortices. These two instabilities have been identified as the dominant mechanisms
for the onset of transition in swept leading-edge boundary-layer flow. Global boundary-layer
and acoustic modes have been found to become unstable for specific parameter combinations,
and a neutral stability curve for these two types of modes has been presented as a function of
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the spanwise disturbance wavenumber and the sweep Reynolds number. Two critical Reynolds
numbers, based on a boundary-layer or an acoustic instability, have been determined.

Central to our analysis is the global stability approach and consequently the realization that
the computed global modes are of composite type combining features from boundary-layer and
acoustic instabilities. Even though the global boundary-layer modes show characteristics that
are known from the stability analysis of local flow models (for the attachment-line and the flow
further downstream), our approach treats the coherent dynamic structures of the flow as one
entity. Consequently, stability information obtained from a local approach, which constitutes
our current theoretical understanding of swept leading-edge flow, is expected to not coincide
with results from a global approach.

The need to venture beyond local investigations together with the observations that pro-
vided evidence for a link between attachment-line instabilities and crossflow vortices brought up
thoughts about a possible interplay between both instability mechanisms and their combined role
in swept leading-edge transition. Motivated by results from direct numerical simulations (DNS)
(Spalart, 1989) alluding to a possible link between both instabilities, Bertolotti (1999), starting
with a local attachment-line mode and marching in the chordwise direction using the parabolized
stability equations (PSE), eventually obtained stability features reminiscent of crossflow vortices.
This phenomenological link was later quantified by a global stability analysis (Mack et al., 2008)
which lead to a definite connection between attachment-line instabilities and crossflow vortices.

In conclusion, a stability analysis based on a global point of view — avoiding the limitations
of local flow models — constitutes a novel approach for swept leading-edge flow, promises new
insight into the inherent instability mechanisms and has the potential to uncover a wealth of
stability behavior as stated by Joslin (1996). In particular, for the subcritical regime the global
stability approach taken in this article is expected to give new results which will help answer
some of the remaining questions regarding the onset of transition for swept leading-edge flow.
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Abstract

The present thesis is concerned with the global stability of compressible flow in the leading-edge
region of a swept blunt body, a flow situation which can be found in many engineering appli-
cations. It is the goal of the present study to investigate a more comprehensive model and to
thus gain new insight into the complex stability characteristics of this flow. To this end, two
objectives have been pursued: (i) a powerful DNS-based global stability solver has been devel-
oped and (ii) this stability algorithm has then been employed to extract stability information
from our flow model. The former objective has been accomplished by combining direct numeri-
cal simulations (DNS) and Krylov methods using a matrix-free implementation; furthermore, a
Cayley transformation as well as preconditioning techniques are used to add, on the one hand,
flexibility and, on the other hand, robustness and efficiency to our algorithm. The developed
stability algorithm has then been employed to study the global stability of compressible flow
about a swept parabolic body. The computed spectrum provides a comprehensive picture of the
temporal perturbation dynamics of this flow and, as a result, a wide and rich variety of global
modes has been uncovered: boundary-layer modes, different types of acoustic modes and wave
packet modes have been found. Furthermore, boundary-layer modes connecting attachment-line
and crossflow instabilities as well as composite global modes featuring both the structure of
boundary-layer and acoustic instabilities have been computed. Moreover, the neutral curve for
boundary-layer and acoustic modes has been presented.

Keywords: global stability, compressible leading-edge flow, direct numerical simulation, Krylov
subspace methods, matrix-free implementation, Cayley transformation

Résumé

L’objet de cette thèse est l’étude d’un écoulement compressible, impactant un bord d’attaque en
flèche par une méthode de stabilité globale. Cette méthode, très générale, permet une meilleure
compréhension de la stabilité de cet écoulement. La démarche suivie consiste en deux étapes :
(i) le développement d’un solveur de stabilité globale basé sur une simulation numérique directe,
et (ii) l’application de ce solveur à notre cas d’étude. Concernant le premier point, nous avons
utilisé une méthode combinant des simulations numériques directes et des méthodes de type
Krylov ne nécessitant pas la construction explicite de la matrice de stabilité (“matrix-free im-
plementation”). La flexibilité de l’algorithme a été accrue par l’utilisation d’une transformation
de Cayley et sa robustesse améliorée par des techniques de préconditionement. La méthode
ainsi développée, a été appliquée à l’étude de la stabilité globale de l’écoulement compressible
autour d’un cylindre de section parabolique. La dynamique temporelle des perturbations est
caractérisée par le spectre de cet écoulement. Une grande variété de modes globaux a été de-
couverte : des modes de couche limite, différents types de modes acoustiques et des modes
représentant des paquets d’ondes. En particulier, nous avons établi une connection spatiale en-
tre les instabilités de type “attachment-line” et “crossflow” dans les modes de couche limite. De
même, quelques modes globaux représentant à la fois des structures dans la couche limite et des
instabilités acoustique ont été trouvés. Finalement, nous avons présenté la courbe de stabilité
marginale des modes de couche limite et des modes acoustiques.

Mots-clefs: stabilité globale, écoulement compressible, simulation numérique directe, méthodes
de type Krylov, matrix-free implementation, transformation de Cayley


