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Abstract

Man-made slender structures are known to be sensitive to high levels of vibration due to their
flexibility which often cause irreversible damage. In nature, trees repeatedly endure large
amplitudes of motion, mostly caused by strong climatic events, yet with minor or no damage
in most cases. A new damping mechanism inspired by the architecture of trees is identified
here and characterized in the simplest tree-like structure, a Y-shaped branched structure.
Through analytical and numerical analyses of a simple two-degree-of-freedom model,
branching is shown to be the key ingredient in this protective mechanism that we call
damping-by-branching. It originates in the geometrical nonlinearities so that it is specifically
efficient to damp out large amplitudes of motion. A more realistic model, using flexible beam
approximation, shows that the mechanism is robust. Finally, two bioinspired architectures are
analyzed, showing significant levels of damping achieved via branching with typically 30% of
the energy being dissipated in one oscillation. This concept of damping-by-branching is of
simple practical use in the design of very slender and flexible structures subjected to extreme

dynamical loadings.

1. Introduction

Vibrations in man-made structures are a central problem
in mechanical engineering (Den Hartog 2007). They may
result from external excitations such as wind, impacts or
earthquakes, or from internal excitations, such as a flow or
moving parts. Their consequences are numerous in terms
of functionality losses due to wear, fatigue or noise, to cite
a few. We distinguish here between low and high levels
of vibration. The former, where displacements are small
in comparison with the characteristic size of the structure,
may induce some of the long-term above-cited consequences.
The latter generally cause short-term failures and irreversible
damage to the structure by fracture or plastic deformation
(Collins 1993). These large amplitudes of vibration may be
particularly expected in slender structures, or assemblages of
them, due to their high flexibility.

In the most general framework of vibration analysis,
the amplitude of motion results, on one hand, from the
characteristics of the loading, and on the other hand, from
the characteristics of the structure in terms of inertia, stiffness
and damping (Humar 2002). Damping here refers to the
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capability of the structure to dissipate mechanical energy,
whatever the physical mechanism involved (viscoelasticity,
friction or interaction with a fluid). A high level of damping
in a structure is a standard way to reduce amplitudes of
motion. This is generally achieved with passive techniques,
such as the classical addition of dampers (Krenk 2000), tuned
mass-damper systems (Den Hartog 2007, p 119) or with
active or semi-active means such as piezoelectric materials,
magnetorheological fluids, shape memory alloys or even
simple hydraulic actuators in feedback or feedforward systems
(Preumont 2002). All these approaches have limits in terms
of cost or maintenance but more particularly in terms of their
range of acceptable deformations or displacements since they
are not specifically designed to damp out large-amplitude
vibrations.  Efficient and specific damping for extreme
dynamical loadings are of particular interest for slender and
flexible structures such as antennas which may encounter
large flow-induced amplitudes of vibration during such events
(Paidoussis et al 2011).

Nature may give insights into highly efficient mechanical
solutions in vibration problems, for instance, in shock-
absorbing devices (Yoon and Park 2011). Interestingly, slender
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Figure 1. Branched geometries. («) The walnut tree architecture analyzed by Rodriguez et al (2008). (b) and (c) Our Y-shaped spring-mass

model of an elementary branched tree-like structure.

structures are ubiquitous in nature, particularly in plants.
Most of these plants are regularly subjected to natural flow
excitations by wind or current causing vibrations (de Langre
2008). Although these vibrations contribute to some biological
functions such as in seed or pollen dispersion, extreme events
such as storms may cause dangerous large amplitudes of
motion (Niklas 1992). Therefore, in areas where intense flows
are common, plants are likely to possess efficient and specific
strategies to damp out vibrations of large potentially dangerous
amplitudes.

From a biomimetic point of view, the dynamical behavior
of trees, which has been extensively studied, is certainly a
possible source of inspiration. Scannell (1984) hinted that
trees might possess a ‘qualitative mechanical design principle
[...] beneficial to the tree’s survivability in conditions of strong
atmospheric turbulence’. Niklas (1992, p 183) noted that
‘experiments indicate that branching [...] dampens natural
frequencies of vibration’. At this point it is necessary to clarify
what is generally agreed to cause damping in trees. Firstly,
the constitutive material, wood, is known to have inherent
viscoelastic behavior causing dissipation, this itself has been
the source of bioinspired material (Spatz et al 2004). Secondly,
the aeroelastic interaction with the surrounding air causes
forces in the opposite direction to the local velocity in the tree,
thereby causing a strongly amplitude-dependent dissipation
(Blevins 1990). Finally, when considering the overall motion
of the tree by bending of the trunk, another mechanism is
often described as ‘structural damping’ (Briichert et al 2003,
Speck and Spatz 2004, James et al 2006, Moore and Maguire
2008). This third mechanism refers to the possible transfer
of mechanical energy from the trunk to the branches, where
it will be eventually dissipated by the two aforementioned
aeroelastic and viscoelastic damping mechanisms (Sellier and
Fourcaud 2009). But still it is not clear if this energy transfer
mechanism is amplitude dependent or not. By modeling
the tree branches as coupled tuned-mass-damper systems,
Spatz et al (2006) have shown that the frequency tuning of
the branches with the trunk plays a key role in this energy
transfer mechanism in trees. This model shows, by definition,
apurely linear energy transfer mechanism between parts of the

whole structure so that it is not amplitude dependent. More
recently, Rodriguez et al (2008) analyzed the architecture
of an actual walnut tree using finite element models,
figure 1(a), and have shown that the modal frequencies are
close and that the modal shapes are strongly localized in the
architecture. The former characteristic is classically favorable
to nonlinear modal energy exchanges in dynamical structures
and associated with the latter would be consistent with an
amplitude-dependent energy transfers from the trunk to the
branches.

In order to develop strategies for bioinspired designs
of slender structures including an efficient damping effect
specific to large amplitudes, it is crucial to clarify the nonlinear
mechanism involved in the energy transfer that many authors
invoke. The aim of this paper is therefore to identify and
characterize the elementary mechanism causing nonlinear
modal energy transfer and damping in a branched structure
specifically in the case of large-amplitude motions.

For this purpose, we first consider the simplest model
of a branched dynamical system in section 2, a spring-mass
model of a Y-shape. Section 3 shows, using a beam-finite-
element model, that the main results of the previous section
are also valid for a more realistic continuous structure of a
Y-shape. Based on these results, two illustrative designs of
bioinspired slender structures exhibiting efficient damping-
by-branching are proposed in section 4. The generality and
possible extensions of our approach are discussed in section 5.

2. Lumped-parameter model of a Y-shape

In order to reduce the dynamics of a branched structure to
its simplest possible features, we treat the case of a spring-
mass model of a Y-shape consisting of a trunk and two
branches. Since we are interested in the branching effect,
viscous damping is introduced in the branches only. The
equations of motion are written with dimensionless variables
and the dynamics is studied with an emphasis on the damping
of the whole structure.
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2.1. Model

The model consists of three massless rigid bars linked by
rotational springs and supporting three masses, figure 1(b).
The first bar, mimicking a trunk of length /;, is linked to the
ground by a rotational spring k; and supports a mass m;. The
branches are two symmetrical bars of length /5, each forming
an angle ¢, with respect to the trunk axis. Each branch is
linked to the tip of the trunk by a rotational spring k,, and
supports a mass #1,. The motion of the trunk is defined by the
angle 6, and we consider only the symmetrical motion of the
branches defined by the angle ¢, figure 1(c). Note that this
restriction is made in order to simplify the following dynamical
analysis of a two-degrees-of-freedom model. It has a small
impact on the results described in this section compared to a
full three-degrees-of-freedom model where each branch has
an independent angle of motion. Moreover, this choice will
be validated in the following sections for much more complex
models which have no such restrictions. The kinetic energy is
the sum of the kinetic energy of each mass:

T = L[(mili> + 2ma(1)* + 21115 cos(¢y + ¢) + 1) )0*
+2mal 7). (D)

The potential energy is the sum of the potential energy of each
spring,

V = 1(k60% + 2k9°). 2)

The equations of motion are derived using T and V in the
classical framework of Lagrangian dynamics (Humar 2002).
They read

JoO + k10 = 4mol 1 1L[0¢ sin(gy, + @) — 6J4(9)],

2maly> ¢+ 2kap = —2mal1 1267 sin(gy + @), 3)
where

Jo = mily? + 2my (I + 2111, cos ¢y, + 1), 4)
and

Jy (@) = cos(¢p + @) — cos ¢y,

The left-hand side of this system of equations represents two
simple linear harmonic oscillators. Denoting the generalized
displacement vector [, ¢], the two corresponding normal
modes of the system are directly [1, 0] and [0, 1] since there is
no linear coupling between 6 and ¢. The two modal angular
frequencies are respectively

2 _ ki 2 2k
Jg 2m2122 '

The first mode consists of motion involving 6 only, and the
second mode involving ¢ only. Therefore, in the following,
they are referred to as the trunk mode and the branch mode,
respectively. These two modes are coupled by the nonlinear
terms of the right-hand side of (3), representing the geometric
nonlinearities.

A dimensional analysis reveals the existence of four
dimensionless parameters describing the dynamics of the
model. We choose the dimensionless time T = w;t, the
branching angle ¢y, the ratio of angular frequencies Q =

W and Wy 4)

w> /wy, and the ratio I" between the inertial terms of the branch
mode and the trunk mode, multiplied by the length ratio [, /I,:
2myl? Ly 2molyl
r— Mabr” b _ m212' )
Jg 12 J9
The dynamics is described by the variables ®(t) = 0(¢) /11 /1>
and ®(t) = ¢(¢). As mentioned earlier, we introduce energy
dissipation in the form of a viscous damping rate &, in the
branch mode only. The dimensionless equations of motion are
O+ 0 = 2I'[Od sin(¢, + D) — OJ4(9)],
O +2Q5,P + Q2P = —O%sin(¢y + D). (7)
The dimensionless total mechanical energy is
E(r) = i[QTJs(¢) + DO* + © + T(* + Q*D?)]. 8)

Since the two modes are coupled by nonlinear terms, energy
can be exchanged between them. In this case, the dissipation
in the branch mode may damp the energy received from the
trunk mode, resulting in an effective damping of the whole
structure.

2.2. Damping criterion

In the following, we examine the free vibrations following an
initial condition
[©(0), ©(0), ®(0), D(0)] = [6y, 0,0, 0], ©))

such that the energy is located in the undamped trunk mode
only. This will allow us to easily demonstrate damping by
nonlinear modal energy transfer, if any, since in a purely linear
framework, energy would remain in the undamped trunk mode
with no way of being dissipated. The amplitude of the initial
condition, ®, determines the initial energy E(0) = Ej, using
(8). For the sake of clarity, the energy E is normalized so that
the initial energy Ey is 1 when ®¢ = m/2 corresponding to a
horizontal trunk initial condition. Note that ground interaction
is neglected here.

During free oscillations, a part of the energy transferred
from the trunk mode to the branch mode is dissipated. The
total energy decay over the first period of the trunk mode is
AE = Ey — E(2m) so that the effective damping rate of the
whole structure can be defined as

1 AE

eff = 7

4 EO

The effective damping rate, &.¢, is commonly related to the
quality factor Q by O = 1/(2&.). Note that & represents
the dissipation of the whole structure and not that of the trunk
mode. In fact, studying exclusively the trunk mode damping
is not appropriate since energy transfer can be reciprocal from
the branch mode to the trunk mode as well, as will be seen
in figure 3. The total energy decay AE is given by the work
of the damping term of the branch mode equation over one
period of the trunk mode:

(10)

8 2 .
AE = —zr/ 2Q&, > dr. (11)
T 0

Here, the coefficient 8/ 72 comes from the normalization
chosen for E. We analyze now the effect of the initial energy
Ey and the design parameters ¢y, &,, 2 and I" on the effective
damping, &f.
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2.3. Energy transfer by internal resonance

We first consider a low initial energy level so that ®y = ¢,
where ¢ « 1 is a small parameter. The harmonic balance
method (Nayfeh et al 1979) is used with the angles ® and &
developed as the power series of ¢:

O(1) = €O (1) + 2O (T) + - - -, 12)
D(1) = @ (1) + 2 Dy(T) +- - . (13)
The initial condition (9) requires that
®;(0)=1 and ©O,(0) = ®;(0) = $,(0) =0. (14)

Substituting (12) and (13) in the dynamical equations (7), and
using (14), the first-order terms are

®; =cost and &; =0. (15)

The second-order terms satisfy respectively

®, =0 and é2+29%‘bq’>2+92®2 = —@lzsinqbb.
(16)
Therefore, for small angles, (7) reduces to
. . 1— 2
b +2Q6,d + 20 = — 67 sin¢b$. (17)

This is the equation of a simple harmonic damped oscillator,
driven by a harmonic force, that can be analytically solved
(Humar 2002). A resonance exists at Q = 2; since 2
is the frequency ratio of the two modes, this is classically
referred to as a 1:2 internal resonance (Nayfeh et al 1979).
In the following, we will discuss the influence of Q2 near
this particular value. A general result for a forced damped
oscillator is that the amplitude of motion is proportional to the
amplitude of the driving force. As can be seen in (17), the
amplitude of the driving force is proportional to @% sin ¢, and
therefore to Ey sin ¢,. The effective damping &, defined by
(10) and (11), can therefore be simply expressed as

Ectr = Eol sin® ¢ (&, Q). (18)

Remarkably, (18) shows that & increases linearly with the
initial energy Ey: such a nonlinear damping proportional to the
energy is typical of an oscillator following the generic equation
O+kO>+0 = 0 (Nayfeh er al 1979). Besides, (18) shows that
& is proportional to sin® ¢y, so that the effective damping is
maximal for a branching angle ¢, = /2, corresponding to a
T-shaped structure. Conversely, for a non-branched structure,
where ¢, = 0 or m, the effective damping is zero. The
effective damping is also proportional to the relative modal
mass ratio I'. The dependence of &4 on 2 and &, is shown in
figure 2 as a contour map of the normalized effective damping
&, computed using mathematical symbolic software to solve
(17) for @, and then using successively (11), (10) and (18)
for &.

As expected, we observe in figure 2 that there is no
effective damping for &, = 0 since mechanical energy cannot
be dissipated in the structure. Interestingly, for any arbitrary
small value of &,, the effective damping is finite. In a purely
linear framework, the effective damping would be zero for

0.2

0.15

&y 0.5

1 2 "3
Q

Figure 2. Normalized effective damping &, (18), brought about by
branching, as a function of the branch mode damping &,, and the
branch/trunk modal frequency ratio Q. High damping is found near
the 1:2 internal resonance, i.e. at Q2 = 2.

any value of &,, since the total energy would be confined to
the trunk mode, without any possible transfer to the branch
mode where dissipation occurs. In other words, the effective
damping is due to the geometric nonlinearities.

We observe that a significant level of damping is present
over a wide range of parameter values. The effective damping
shows a maximum for branch damping near 0.2 and frequency
ratio near 2. Accordingly, the values ¢, = /2, & = 0.2,
Q =2andI" = 0.2 will be used as areference in the remainder
of this paper.

2.4. Effects of the design parameters

In order to obtain the full dynamics and the corresponding
effective damping at any energy level with an emphasis on the
effects of the design parameters ¢y, &, €2 and I, the dynamical
system (7) is now solved numerically by means of a fourth-
order explicit Runge—Kutta temporal scheme.

As a typical example, figure 3 shows, for an initial energy
level Ey = 1, the evolution of the total energy E and of the
modal energies

_ 4 o A i o2
Eo = 2(@ +0©°) and Eg = 2l_'(q) +Q°d%). (19)
b b4

Note that the total energy E, (8), is the sum of Eg, E¢ and
a nonlinear energy term. The energy exchange between the
two modes is clearly shown. Since energy is dissipated in the
branch mode, the total energy decays at an effective damping
rate &.¢. Figure 4 shows the Ey-dependence of this effective
damping &, in comparison with the analytical prediction of
the previous section. As expected, the analytical approach
corresponds to the limit of the numerical solution as E tends
to zero. As Ej increases, the analytical approach increasingly
overestimates the numerical effective damping. However, the
ratio &/ Eo—constant in the analytical approach—remains
finite: this constitutes the essential effect of branching on
damping.

The influences of the design parameters ¢y, &,, 2 and
I' on the effective damping, scaled by the initial energy,
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Figure 3. Typical evolution of the total energy, £ (——), and modal
energies, Eg (----)and Eg (------ ), with the respective evolution
of the trunk angle, ® (- - - -), and branch angle, ® (------ ), of the
spring—mass model of a Y-shape, as a function of time over three
periods of the trunk mode. The initial energy is Ey = 1, i.e

®¢ = /2, in the trunk mode only. The total energy decreases as a
consequence of the energy nonlinearly transferred to the damped
branch mode. The design parameters are set to ¢, = 7/2, & = 0.2,
Q=2andT =0.2.
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Figure 4. Effect of the initial energy level, Ey, on the effective
damping, &, of the spring—mass model of a Y-shape: (- - - -)

analytical effective damping from the low energy approximation,
(18); ( ) numerical effective damping from the full dynamics
integration of (7). The design parameters are set to the same values
as in figure 3.

&t/ Eo, are represented in figures 5(a)—(d) for three initial
energy levels. As expected, the analytical and numerical
approaches yield identical results for low energy levels and
therefore are represented by the same curve for £, = 0.01.
Consistently with figure 4, we observe that the analytical
approach overestimates the numerical effective damping as
Ey increases. In figure 5(a), at low energy levels, the
effective damping is proportional to sin’ ¢y, as predicted by
the analytical approach (18). The optimal branching angle
¢y shifts from /2 to slightly higher values when the initial
energy level increases. Therefore, in order to obtain an

optimum effective damping at any energy, a good compromise
would be to set the branching angle ¢, between /2
and 27 /3.

Not surprisingly, figure 5(b) shows an optimal branch
mode damping ratio value at about 0.2. In fact, & = 0
obviously results in no effective damping since the energy
cannot be dissipated anywhere in the undamped structure. In
the other limit of high branch damping, the branch mode
is critically damped so that the branches are locked with
the trunk, resulting in a low nonlinear energy transfer and
consequently a low effective damping mechanism. This
classical behavior can be seen for other types of structure
such as for taut cables (Krenk 2000). Figure 5(b) shows that
significant effective damping is created by a large range of
branch mode damping, &, as was also found in the low-energy
analytical approach. Analogously, the typical shape of the
Q-dependence at low energy is also conserved when the energy
increases, figure 5(c), with an optimal value of 2 ~ 1.8 and a
large range of frequency ratio leading to a significant effective
damping & > 3%. Finally, the simple I"-dependence on the
effective damping is shown in figure 5(d). The modal mass
ratio I' has to be maximal in order to get the highest possible
effective damping. For a high energy level, we observe that
the effective damping &.¢ is almost constant for I" between 0.2
and 0.4.

3. Finite-element model of a Y-shape

The damping-by-branching mechanism described in the
preceding section is now analyzed in the case of a more
realistic continuous beam structure of a Y-shape. The same
approach is used to demonstrate the effective damping: initial
energy in the trunk, dissipation in the branches and effective
damping evaluated by the total energy loss over one period
of the trunk mode. Note that this model incorporates several
differences from the previous one: a very large number of
modes, symmetric and non-symmetric modes, non-localized
mass and stiffness.

3.1. Model

The model consists of three assembled beams, figure 6(a).
Each beam has a uniform circular cross-section and is made
of a linearly elastic, isotropic and homogeneous material. The
trunk, of length /; and diameter d;, is clamped at the base.
Two symmetrical branches, each of length /, and diameter
d,, are clamped at the tip of the trunk so that they each form
an angle ¢y with the trunk direction. As in section 2, we
analyze the free vibrations of the structure. To solve the
equations of motion, numerical finite-element computations
are performed using the CASTEM v.3M software (Verpeaux
et al 1988). The finite-element model consists of Euler—
Bernoulli beam elements, the trunk and each branch being
described by ten mesh-elements. This refinement was found
sufficient to describe the full dynamics of the system according
to a convergence test. In order to take into account large
amplitudes of motion, since we are interested in geometric
nonlinearities, an incremental step-by-step procedure is used in
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Figure 5. Effects of the design parameters on the effective damping scaled by the initial energy, &/ Eo, of the spring—mass model of a
Y-shape: Eg =001 (——); Eg=01(----);and Eg =1(----- ). Unless varied, the design parameter values are ¢, = /2, §, = 0.2,
Q =2and I = 0.2. (a) Effect of the branching angle ¢,. (b) Effect of the branch mode damping &,. (¢) Effect of the branch/trunk modal

frequency ratio Q. (d) Effect of the branch/trunk modal mass ratio I.
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Figure 6. The continuous model of a Y-shape. (¢) Geometry. (b) Static initial condition. (¢) Trunk mode. (d) Damped branch mode.

the CASTEM v.3M software. This procedure uses an implicit
Newmark scheme. All stiffnesses are updated at each step,
including the elastic stiffness and the geometrical stiffness
related to internal stress.

The first two modal shapes are given by modal analysis
and are shown in figures 6(c) and (d). The branch mode,

figure 6(d), involves only bending of the branches as for the
lumped parameter model of section 2, but the trunk mode,
figure 6(c), involves mainly trunk bending, with a small
amount of bending of the branches. Still, we will refer to
this mode as the trunk mode for the sake of clarity and for
comparison with the model of the previous section.
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By analogy with (9), the initial condition is an initial
deformation resulting from a horizontal static pull on the tip
of the trunk, figure 6(b). The resulting initial energy Ey is
normalized so that it is equal to 1 when the deflection of
the trunk is equal to its length such that A = [;. This initial
condition corresponds to a distribution of the total deformation
energy as follows: 94.3% in the trunk mode, 0% in the
branch mode and 5.7% in all other modes. By analogy with
section 2, two dimensionless parameters are chosen: the
frequency ratio 2 = w,;/w; and a mass ratio I' =
(limy)/(l,my), where w, w;, and m;, m; are the modal angular
frequencies and the modal masses of the trunk mode and
branch mode, respectively. Energy dissipation is introduced
artificially on the branch mode only. To do so, a damping
matrix [C] is derived from the mass matrix [M] of the finite-
element model, from the branch mode modal shape vector
denoted 1, and with the aimed branch mode damping ratio
denoted &, as follows:

28w
my

[C]= (M) @ ([M]3o), (20)

where ® denotes the tensor product. Note that this form of the
damping matrix is not related to a particular physical choice of
Rayleigh damping but is built ad hoc to evidence the specific
role of branch mode damping in the model energy transfer.
The resulting effective damping mechanism is studied
with the same definition of the effective damping rate, &.¢,
as in section 2.2, and for the same reference values of the
design parameters ¢, = 7/2,& = 0.2, Q =2and " = 0.2.

3.2. Results

The simulated dynamics of the continuous Y-shape yields a
similar time evolution of the total energy to that of the lumped
parameter model, figure 3. The corresponding effective
damping rate is plotted in figure 7 as a function of the
normalized initial energy Ej. As in figure 4, the effective
damping rate increases with the initial energy level, quasi-
linearly at first, reaching several percent for high levels of
initial energy. This is a first indication of the robustness
of the effect of branching on damping in a more realistic
structure.

As in section 2, the effects of the design parameters
b, &, 2 and ' on the effective damping scaled by the
initial energy, &/ Eo, are represented in figures 8(a)—(d) for
three initial energy levels. Some differences appear for the
continuous model as expected. First, the branching effect on
the effective damping is clearly maximal for larger branching
angles, ¢p ~ 27 /3, rather than 7 /2, figure 8(a). Second, the
effective damping stabilizes or even slightly increases with the
branch mode damping &, figure 8(b), instead of decreasing
after &, =~ 0.2. Third, the effective damping is higher at
a modal frequency ratio 2 = 3 than Q = 2, figure 8(c),
suggesting a richer pattern of internal resonances. Singularly,
we observe that the effective damping vanishes here for Q2 = 1.
This is explained by the fact that, as I is kept constant, 2 = 1
represents a physical limit where the length of the branches
compared to the trunk tends toward 0. Finally, the effective

1072

geff 27

0 0.5 1
Ey

Figure 7. Effect of the initial energy level, Ey, on the effective
damping, &, of the continuous model of a Y-shape. The design
parameters are set to ¢, = 7/2, &, =02, Q =2and ' =0.2.

damping increases with the modal mass ratio I" but in a more
complex way, figure 8(d).

To further characterize the dynamics of the system, we
consider now its response to a harmonic loading. From the
rest position, the structure is forced with an oscillating torque
of frequency ¢ and amplitude M, near the base of the trunk
at one-tenth of the height of the trunk. The steady state
oscillation amplitude, A, is shown in figure 9, relative to the
static response Aggic. Because of the damping-by-branching
nonlinear mechanism, the resonance peaks at Q¢ = 1 and
Q¢ = 2 are damped though there is no damping in the trunk
mode. One can also estimate an effective damping ratio &,
considering that the amplitude at the resonance peak divided
by the static response is proportional to 1/(2&.¢). One obtains
Efr = 5% for the first peak resonance, where the level of
energy E associated with the amplitude A is about 0.9. This
value of effective damping is consistent with the case of the
previous pull-and-release loading in this range of energy, see
figure 7.

In conclusion, it appears that the main features of the
damping-by-branching mechanism are still present in this
more realistic Y-shaped structure.

4. Two bioinspired branched structures

Based on the results of sections 2 and 3, two bioinspired
branched structures are considered, figure 10. These two
bioinspired structures have the same trunk of length /; and
diameter d; as the model of section 3, so that the initial
condition is the same, with an initial bending energy in the
trunk only, as in figure 6(b), and with the same definition of
the initial energy E.

The first bioinspired structure, shown in figure 10(a), is a
two-generation T-shaped structure designed so that ¢, = /2
at each branching. The ratios of branch length and diameter
are respectively the same between orders of branching, i.e.
b/ly =13/l and d»/d| = d3/d,. They are chosen so that the



Bioinsp. Biomim. 6 (2011) 046010

B Theckes et al

102
6 F
7/ N
/
/
/
/
Eeff S
3t [
Ey y
VA
Za
0 n
0 = y
®p
(a)
1072
(J L
6 L
N
Seff / N
Ey / _
B
!
|
ol .
! 2
Q

()

Y-shape: Ey = 0.01 (

— 2

05 1

(d)

Figure 8. Effects of the design parameters on the effective damping scaled by the initial energy, &t/ E¢, of the continuous model of a

), Eg=01(----)y;and Eg=1(----- ). Unless varied, the design parameter values are ¢, = /2, §, = 0.2,

Q =2and I = 0.2. (a) Effect of the branching angle ¢,. (b) Effect of the branch mode damping &,. (¢) Effect of the branch/trunk modal

frequencies ratio Q. (d) Effect of the branch/trunk modal mass ratio I.

modal frequency ratio between the trunk mode, figure 10(b),
and the last-order branch mode, figure 10(c), is 1:2 and so that
the modal mass ratio is 0.2. With the same procedure as in the
previous section, (20), a damping rate of 0.2 is introduced in
this last-order branch mode only.

The second bioinspired structure, shown in figure 10(d),
consists of a double Y-shaped pattern with an added level
of branching at 3/4 of the height of the trunk. Both levels of
branching have a branching angle ¢, = 277/3 and are designed
so that the modal frequency ratio between the trunk mode,
figure 10(e), and the large branch mode, figure 10(f), is 2,
and the modal frequency ratio between the trunk mode and
the small branch mode, figure 10(g), is 3. A damping of 0.2
is introduced in the two branch modes only. The resulting
effective damping is studied with the same damping criterion
as in section 2.2 and is plotted in figure 11 as a function of
the normalized initial energy. In both structures, the effective
damping reaches several per cent (*3%) for high levels of
initial energy, roughly corresponding to a third of the initial
energy being dissipated after one period of the first mode.

These results on two different bioinspired branched structures
show that the damping-by-branching mechanism seems to be
robust regarding the branching scheme.

5. Discussion and conclusion

At this stage, one may consider the results of the preceding
sections in relation to the proposed aim of the paper: to identify
and characterize the elementary mechanism that causes
nonlinear modal energy transfer and amplitude-dependent
damping in branched structures. In section 2, we have shown
that branching is the key ingredient needed to obtain the modal
energy transfer and the resulting effective damping that several
authors had suspected. Sections 3 and 4 confirm that the
essential features of this damping-by-branching are present
even in more complicated branched models.

Clearly, the mechanism found here is complementary
to the tuned-mass damper mechanism described by Spatz
et al (2007) in trees. The present damping-by-branching
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mechanism consists of two essential characteristics: (i) itis not
associated with the condition of identical modal frequencies of
the trunk mode and of the branch mode; (ii) since it originates
in geometrical effects, the larger the amplitude of motion, the
higher the effective damping. As this mechanism is specific
to damp out large-amplitude motions, it can be useful only
in very slender and flexible structures where the limit elastic
stress is reached only during extreme dynamical events. In
this type of structure, we have shown that this damping-by-
branching can be achieved with some requirements on the
design parameters: a modal frequency ratio between the trunk

(d) (¢)
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i R
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0 0.5 1
Ey

Figure 11. Effect of the initial energy level, Ej, on the effective
damping, &, of the two bioinspired structures. (o) Ramified
T-shaped structure; () double-branched Y-shaped structure.

mode and the branch mode near 1:2, a branch damping ratio
about 0.2, and the highest possible modal mass ratio. All these
results suggest that modal energy transfer and the resulting
damping-by-branching are robust effects at large amplitudes
of motion.

Before generalizing our results, discussion is needed of
some of the assumptions made to derive them. Firstly, the
analyses pertaining to the effective damping have been made
on the dynamical responses to pull-and-release initial loading
or to a harmonic excitation of the trunk. This choice was made
so that only the nonlinear geometrical effects could cause the
effective damping of the structure. If other classical types of
loading were considered such as an initial impulse, or arandom
forcing (Humar 2002), energy would have been given to all
the modes of the branched structure. Although this would
make the global energy balance more complex to analyze, the

() (9)

Figure 10. Two bioinspired branched structures. (a) A two-order ramified T-shaped structure, and its modes of interest: (b) trunk mode, (c)
damped branch mode. (d) A double-branched Y-shaped structure, and its modes of interest: (e) trunk mode, ( /) damped large branch mode,

(g) damped small branch mode.
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nonlinear geometric terms responsible for the modal energy
transfer (7) would still be present but the resulting effective
damping would not be simply quantified. Secondly, we have
always considered perfectly symmetric and plane structures.
If asymmetry between the branches is introduced in the model
of section 2, a linear coupling is introduced between the trunk
and branch angles of motion so that the energy balance analysis
becomes more complex. By some aspects, such a change is
expected to bring similar effects as when introducing higher
modes, as was done in sections 3 and 4: the mechanism is
qualitatively the same. Similarly, if three-dimensional effects
are introduced, such as torsion or multiple 3D branching as
in real trees, a much larger number of degrees of freedom
is needed in order to describe the dynamics of the structure.
However, the results of sections 3 and 4 show that complicating
the modal content of the model does not impact the existence
of the modal transfer mechanism and the resulting effective
damping. Moreover, Rodriguez et al (2008) showed that there
exist no significant differences between the dynamics of an
actual tree architecture and that of an idealized one.

Finally, an important requirement of this damping-by-
branching mechanism is the damping of the branch mode. We
have shown that the optimal damping ratio for this mode is
approximately &, = 20%. Under this condition, for a general
structure of mass m, stiffness k, the physical damping denoted
¢ scales as Eb\/m_k. In other words, such a damping ratio
cannot be expected for heavy structures. However, for light
structures, physical phenomena such as drag-induced damping
for a slender structure vibrating in a cross flow often reach this
order of magnitude for the damping ratio, see Blevins (1990).
More generally, the question of how branched systems move
in a fluid environment is important in practice. In fact, our
analysis on damping originated in the dynamics of trees under
wind-loading (Spatz et al 2007). In the interaction between
a branched structure and flow, several distinct effects may be
expected (Blevins 1990, Paidoussis ef a/ 2011). Firstly, even
in the absence of flow, just the presence of a fluid around
the structure causes damping. This damping is present in
all modes, is amplitude dependent, and introduces nonlinear
coupling between modes. Flow-induced damping may also
appear in addition. These effects may be gathered under the
generic term of aeroelastic or hydroelastic damping. Secondly,
added mass and added stiffness effects appear and may alter the
essential dynamical characteristics of the branched structure,
such as frequencies and modal shapes. These effects are more
pronounced in water. Finally, flow may cause a large variety
of loadings through mechanisms such as turbulence excitation
or wake interactions. From this list, it appears that all the
key parameters involved in the mechanism of damping-by-
branching are affected by a fluid environment: modal damping,
frequencies, modal shapes and external excitations. In our
models, only artificial loadings and modal damping have been
investigated so that a systematic analysis of these effects is
clearly needed on the basis of the simple framework presented
in this paper.

In the design of a slender, flexible and light structure
that may encounter extreme dynamical loadings, a simple rule
to follow is to introduce branching and a significant damping
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ratio between branches. Secondary rules, aiming at optimizing
the efficiency of this damping mechanism, are to set the ratio
between the modal frequency of the branch mode and the
trunk mode near 1:2 and the modal mass ratio as high as
possible. Although a design rule based on the ratio of modal
frequencies and masses is not common, it should be noted
that the requirements are not strict, as we have shown in
sections 2 and 3 that damping-by-branching is robust and is
significant for a wide range of modal frequency and mass
ratios. The 1:2 rule is only indicative, as it is related to
the original internal resonance condition between the branch
and trunk modes. At this point, the concept of damping-by-
branching has only been demonstrated to exist theoretically
and numerically.  Although it has been inspired by the
observation of natural systems, it evidently needs to be
explored experimentally on man-made structures.
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