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When wind blows on trees, leaves flutter. The induced motion is known to affect
biological functions at the tree scale such as photosynthesis. This paper presents an
experimental and theoretical study of the aeroelastic instability leading to leaf flutter.
Experiments in a wind tunnel are conducted on ficus leaves (Ficus Benjamina) and artificial
leaves. We show that stability and flutter domains are separated by a well-defined limit
depending on leaf orientation and wind speed. This limit is also theoretically predicted
through a stability analysis of the leaf motion.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Leaf motion of a tree is a common observation during a windy day. In fact, the Beaufort scale of wind intensity is based
on the movement of leaves and branches: at Beaufort equal to 1, “leaves rustle”, and then “leaves and twigs move”, “small
branches sway”, “whole tree is in motion” at Beaufort levels of 3, 5 and 7 respectively. The Beaufort scale catches that the
total leaf motion is the result of the combination of the global motion of the branch and the local motion of the leaf with
respect to the branch it belongs to. In the general framework of flow-induced vibrations (Blevins, 1977; Naudascher, 1991;
Païdoussis et al., 2010), it may be stated that the local leaf motion may result from forcing by wind turbulence, from coupling
with the wake of the leaf, or from flutter. The present paper focuses on flutter, which is known to cause large increases of
vibration amplitudes in short ranges of flow velocity (Grace, 1978).

Leaf flutter not only influences human perception of wind but also degrades radar or WIFI transmissions (Narayanan
et al., 1994; Meng and Lee, 2010) and gives uncertainty on remote measurements of foliage characteristics (Kimes, 1984).
More importantly, leaf flutter has many consequences, often beneficial, on key plant biological functions. It may reduce
insect herbivory (Yamazaki, 2011) and enhance heat exchange (Schuepp, 1972; Grace, 1978), gas exchange (Nikora, 2010)
and photosynthesis (Roden and Pearcy, 1993; Roden, 2003). The flutter of leaves may also be beneficial to reduce the water
retention of the foliage and thereby to eject pathogens with the water droplets.

The mechanics of plant dynamics under wind have been studied in many aspects, see the review by de Langre (2008).
Most of the existing work focuses on overall tree sway (Mayer, 1987; Kerzenmacher and Gardiner, 1998; Sellier and
Fourcaud, 2005; Rodriguez et al., 2012) or crop canopy motion (Py et al., 2005, 2006; Dupont and Gosselin, 2010). At the leaf
scale, wind is known to affect the time-averaged position of the leaf, as well as its shape, a mechanism generically referred
to as reconfiguration (Vogel, 1989; Gosselin et al., 2010; Tadrist et al., 2014). In terms of leaf oscillation, Roden (2003)
modeled the aspen leaf flutter as a given periodic rotation, and the work of Niklas (1991) could let us think that poplar leaf
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motion is probably a case of classical coupled mode flutter. Miller et al. (2012) have shown on tulip tree leaves that leaf
reconfiguration reduces leaf vortex shedding and thus leaf vibration. Leaves of aquatic plants have also been studied
(Puijalon et al., 2005; Miller et al., 2012), with similar conclusions. Yet, it has been pointed out by Pearcy (1990) and more
recently Rascher and Nedbal (2006) that little is known about the mechanical processes resulting in leaf motion under wind.

The goal of the present investigation is to study and describe the mechanics of leaf flutter using both experimental and
theoretical approaches. To do so, we explore the influence of wind velocity and leaf parameters, mechanical or geometrical,
on the existence of leaf flutter.

In Section 2 we show that leaf flutter is actually torsional galloping, using ficus leaves (Ficus Benjamina) in a wind tunnel.
In Section 3, using artificial leaves, we explore more systematically the effects of mechanical and geometrical parameters on
the existence of flutter. With the help of standard concepts of aeroelasticity, a model is proposed in Section 4, and compared
with the experiments. A discussion of mechanical and biological issues is given in Section 5.

2. Experiments on real leaves

2.1. Evidence of torsional flutter

As a first step we test ficus leaves (Ficus Benjamina), such as illustrated in Fig. 1a. Leaves are taken from a tree using
standard practices in plant biomechanics in order to preserve their mechanical properties. Individual leaves are inserted in a
wind tunnel, as in Tadrist et al. (2014), and their bending and torsional deformation are measured optically, as a function of
the wind velocity, U. Leaves are held by pliers and their inclination angle may be varied by a wheel, see Fig. 1b.

To illustrate the generic behavior of those leaves under wind, we show in Fig. 2a a typical evolution of the bending angle,
δ, and the torsion angle amplitude,Δθ, with the wind velocity. The wind load on the lamina (the flat part of the leaf) results
in bending of the petiole (the beam-like connection between the branch and the lamina). The static deformation
Fig. 1. (a) Leaf components and motion. (b) Schematic view of the set-up and definition of angles used to define the position of the leaf.

Fig. 2. Deformation and flutter of a ficus leaf. (a) Evolution of the bending angle, δ, (square) and of the amplitude of torsional motion, Δθ, (�) showing the
onset of flutter, Uc. (b) View of the leaf below and above the onset of flutter, points A and B in (a).



Table 1
Nomenclature.

l Lamina length
w Lamina width
A Leaf area
p Leaf perimeter
P Palmation index
β Petiole insertion angle
Λ Center of gravity to petiole end distance
J Moment of inertia in torsion
f0 Leaf torsional eigen frequency
ω0 Leaf torsional eigen pulsation
ξ Leaf torsional damping
Mf Moment of the fluid on the leaf
U Wind velocity
ρ Air density
CM Aerodynamic moment coefficient
ψ Wheel support rotation angle
δ Angle between branch and petiole
ϕ Angle between lamina normal vector and wind direction
θ Angle of torsion of the lamina along its axis
α Angle between wind direction and lamina normal vector, in the lamina reference frame
γ Projection angle of moment
M Mass number
Ur Reduced velocity
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Fig. 3. (a) Zone of flutter of the Ficus leaf 1 in the space of wind speed and inclination angle. At the border, the leaf starts to vibrate in torsion. (b) Same
results, in polar coordinate ðU;ψÞ. (c) Same test for Ficus leaf 2.
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corresponds to reconfiguration effects as aforementioned. Note that the wind-induced change of the bending angle is here
close to π=2. Simultaneously, the torsion angle of the lamina along its main axis evolves as follows: for lower wind velocities,
up to 4 m/s here, no motion is observed. Above this velocity the leaf flutters in torsion, with an amplitude that increases
suddenly with U, reaching about π=4 at 5 m/s. The flutter observed here, in pure torsion, will also be referred to as torsional
galloping in the following, anticipating Section 4 where a model is proposed. For higher velocities, more complex motions
are observed combining several degrees of freedom of the leaf dynamics (Table 1).

2.2. Domain of torsional galloping

We focus now on the critical value of the wind velocity Uc that corresponds to the onset of torsional galloping, Uc ¼ 4 m=s
in Fig. 2. Experimentally, for a given wind velocity, U, we vary the angle ψ of the clamped end, Fig. 1b, to explore the range of
torsional galloping. An angle ψ¼0 corresponds to the lamina plane being perpendicular to the flow velocity when there is
no flow-induced bending. In the same manner, an angle ψ ¼ π=2 corresponds to the flow being tangential to the lamina
plane. The domain of flutter for a leaf is given in the ðU;ψ Þ parameters space, Fig. 3a. The error bar in ψ corresponds to a
small hysteresis effect observed when the sign of variation of ψ is changed. This small effect is discarded in the following.
Fig. 3a shows that torsional flutter is observed for all angles between the leaf and the wind axis, except for ψ¼0 and π,
where the leaf is set perpendicular to the flow. For the sake of clarity, the same results are also presented in a common polar
plot using ðU;ψ Þ variables, see Fig. 3b. The asymmetry between upper and lower stability regions results from non-



Table 2
Numerical values of leaves parameters.

A (cm2) w (cm) l (cm) Λ (cm) p (cm) β (–) δ (–) J (10�7 kg m2) f0 (Hz) ξ (%) Symbol

Ficus leaf 1 12.4 2.8 7.1 3.6 19.6 π=6 0 0.27 14.1 5.2 �
Ficus leaf 2 10.0 3.2 7 3.6 20.4 π=6 0 0.55 8.4 7.8 ■
Artificial leaf (A) 23.8 5.5 5.5 2.8 17.3 0 0 4.7 12.3 1.7 ◯
Artificial leaf (B) 23.8 5.5 5.5 2.8 17.3 π=4 0 4.7 4.01 2.7 ▵
Artificial leaf (C) 23.8 5.5 5.5 2.8 17.3 0 π=3 4.7 3.87 2.7 ⋆
Artificial leaf (D) 16.3 5 6.2 2.3 25 0 0 5.2 7.9 3.1 □

Fig. 4. Torsion mode of a leaf. (a) Experimental set-up. (b) and (c) Time evolution of the torsion angle.
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symmetric values of geometrical and mechanical parameters between the upper and the lower side of the leaf. To exemplify
the effect of variability among leaves, the stability domain of another leaf from the same ficus tree is shown in Fig. 3c. A
similar behavior is observed although the two leaves differ in many aspects (size, shape, mass, etc.), see Table 2.

These experiments on real leaves show that the angle of inclination of the leaf towards the wind has a crucial impact on
torsional galloping.

Considering that flutter occurs essentially in torsion along the leaf axis, the frequency and damping of the torsion mode
in still air are measured. This is done on the leaves clamped as above but the torsion motion being now measured through a
laser sensor (micro-epsilon ILD1300-20). The leaf is excited manually and the free motion is recorded. The frequency, f0, and
damping coefficient, ξ, are derived using basic fitting technique (Bert, 1973). This procedure is illustrated in Fig. 4. The
moment of inertia in torsion, J, is estimated through weighting of the leaf and using J ¼mw2=12 where m is the mass and w
is the width of the leaf. The results are given in Table 2 for the two ficus leaves.

We now turn to artificial leaves where geometrical and mechanical parameters can be controlled.
3. Experiments on artificial leaves

3.1. Geometrical parameters

We give in Fig. 5, the geometrical parameters used hereafter to discuss the geometry of a leaf in the following. First, the
shape of the lamina is defined by five parameters: the area, A, the width and the height, w and l, the distance from base to
center of mass, Λ, and the perimeter, p. Two angles need also to be defined, that between the lamina and the petiole, β, and
that of insertion between the petiole and the branch, δ, Fig. 5. Typical values of these parameters are given in Table 2 for the
ficus leaves used in the preceding section. We may define the following dimensionless parameters, A=wl, w=l, Λ=l and the
palmation index P ¼ 2

ffiffiffiffiffiffiffi
πA

p
=p which scales the complexity of the shape of the leaf perimeter (P¼1 for a circular shape).

Four different artificial leaves are now used, which allow us to test the influence of these dimensionless parameters,
Fig. 5b. Leaf A is a simple disk, with both angles β and δ set to zero. Leaf B has the same shape but with an angle between
lamina and petiole, β¼ π=4 and δ¼0. Conversely, in leaf C, β¼0 and δ¼ π=3. To define, leaf D, we rely on the data base LEAF
(2010) which gives about 90 shapes of lamina of simple leaves from typical European forest tree species. Some of the shapes
are illustrated in Fig. 6a. The four dimensionless parameters defined above are computed on all the species and displayed in
terms of probability density functions, see Fig. 6b. This allows us to define an average leaf which has a shape corresponding
to the average values of all parameters. This average leaf is not uniquely defined; we give in Fig. 5b the shape used hereafter,
named leaf D, which satisfies these conditions, namely A=wl¼ 0:54, w=l¼ 0:61, Λ=l¼ 0:43 and P¼0.57. The dimensional and
dimensionless geometrical parameters of all leaves are given in Tables 2 and 3 respectively.



(a) (b)

Fig. 5. (a) Geometrical parameters used to describe the leaf. (b) Artificial leaves used in the experiment.

Fig. 6. (a) Typical shapes of leaves from the data base LEAF (2010). (b) Probability density functions of the dimensionless geometrical parameters
considering all species of the database. The average values satisfied by leaf D are shown by a vertical line.

Table 3
Dimensionless geometrical and mechanical parameters for the leaves used in the experiment.

A=wl w=l Λ=l P β δ M ξ

Ficus leaf 1 0.62 0.39 0.50 0.63 π=6 0 0.15 5.2
Ficus leaf 2 0.43 0.45 0.51 0.55 π=6 0 0.09 7.8
Artificial leaf (A) π=4 1 0.5 1 0 0 0.10 1.7
Artificial leaf (B) π=4 1 0.5 1 π=4 0 0.10 2.7
Artificial leaf (C) π=4 1 0.5 1 0 π=3 0.10 2.7
Artificial leaf (D) 0.53 0.61 0.43 0.57 0 0 0.05 3.1
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3.2. Galloping of artificial leaves

The four lamina shapes (A, B, C, and D), in rigid plastic, are mounted on flexible petioles made of piano wires. The mechanical
parameters of these artificial leaves are obtained using the same procedure as for the ficus leaves, see Section 2.2. The moment of
inertia in torsion is computed with the actual shape of each leaf. The corresponding values of f0, ξ and J are given in Table 2. These
artificial leaves are inserted in the wind tunnel and their behavior is explored, for increasing flow velocity, varying also the wheel
angle ψ.

As for the ficus leaves, we observe a sudden transition to torsional flutter when the wind velocity is increased, strongly
dependent on the orientation angle ψ. The flutter domain in (U,ψ) parameters of the four leaves is given in Fig. 7. Note that
leaves A and D being up/down and right/left symmetric, only one quadrant was explored. The shapes of the flutter domains
are generally similar with some differences in leaves B and C. The magnitude of the flow velocity at the onset of flutter
depends on the leaf parameters. Note that for leaf C, near ψ¼π, a zone of flutter involving a completely different motion was
observed. This seems to be due to a very high bending curvature of the petiole in that position.

These same experimental results are now rescaled using standard dimensionless parameters in aeroelasticity (Blevins,
1977; Larsen, 2002; Robertson et al., 2003; Païdoussis et al., 2010), namely the mass number M, the reduced velocity UR and
the damping ratio ξ, combined in MUR=ξ. We define the former as

M¼ ρAw3

8J
and UR ¼

U
f 0w

: ð1Þ

The values of M and ξ for each leaf are found in Table 3. Fig. 7 shows the flutter boundary for all artificial leaves, in the
(MUR=ξ,ψ) space. The behavior of all four artificial leaves seems qualitatively similar and much more dependent on ψ than



Fig. 7. Limits of torsional flutter of leaves A, B, C and D. Labels (a)–(d) refer to a representation in ðU;ψÞ space and (e)–(h) to ðMUr=ξ;ψÞ space. The outer
circles correspond to U ¼ 15 m=s and MUr=ξ¼ 80π.

Fig. 8. (a) Schematic view of the change of angle towards the rotating surface. The distance xw=2 allows us to determine the reference speed on the plate
and the reference angle α. (b) Evolution of moment coefficient CM as a function of the incident angle α, from experimental values of Wick (1954). Between
π=2 and π, the graph is built by symmetry (■) experiments (–) model. Inset shows an enlargement of the curve close to π=2 where lifting line theory applies.
Dashed line (- -) represents the lifting line theory, CMðαÞ ¼ π=2ðπ=2�αÞ.
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all other geometrical parameters. This conclusion naturally leads to explore the possibility of a simple model of torsional
galloping to account for the dynamics of leaves under wind.

4. Model for leaf flutter

4.1. Aeroelastic model

In the framework of a plane leaf lamina in a flow, several angles have to be defined to describe the flow loading. Using n,
the normal to the lamina, and t, the axis of rotation of the lamina, we define ϕ¼ 〈n;U〉 and γ ¼ 〈n � U; t〉, see Fig. 1b. They
depend on the other angles β, δ and ψ defined above by cosϕ¼ cos ðδþβÞ cosψ and cos γ ¼ sinψ= sinϕ.

Let M be the moment of the aerodynamic load on the t axis. To model torsional flutter observed in the experiments we
use the simplest linear quasi-steady approach of torsional galloping (Blevins, 1977; Larsen, 2002; Païdoussis et al., 2010;
Fernandes and Armandei, 2014; Armandei and Fernandes, 2014) whereby the torsion moment depends on a reference angle
of attack, α, which itself depends on a reference relative velocity. Note that this approach is known to be unable to capture
several aspects of torsional galloping, see the discussion in Païdoussis et al. (2010); we nevertheless use it here as a first
approximation of the phenomenon. In the general geometrical case, taking into account all the angles above leads to rather
complex equations: we give here the equations for the simple case δ¼0, β¼0, where γ¼0 and ϕ¼ψ. The general case is



Fig. 9. Limits of torsional galloping predicted by the model and comparison with experimental data (a) for artificial leaves A, B, C and D and (b) for ficus
leaves 1 and 2. The shaded area correspond to flutter according to the model.
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given in Appendix A. In that simpler case, the variations of the moment of torsion, for a small variation of the angle θðtÞ may
be approximated by

M¼ 1
4
ρU2Aw

∂CM

∂α
∂α
∂ _θ

_θ ; ð2Þ

where CMðαÞ is the moment coefficient, _θ is the time derivative of θ, the area A and width w having been defined before.
Note that stiffness terms, proportional to θ, are not included in Eq. (2) for the sake of clarity. The reference angle of attack is
defined here by

α¼ψþx
w _θ
2U

sinψ ; ð3Þ

where x defines the position of the point where the solid velocity has been taken to define α (x¼1 is the leading edge and
x¼0 is the mid-chord), Fig. 8a.

The dynamic stability of the torsion mode is classically derived comparing the flow damping to the internal damping in
the equation of motion

J €θþ2Jξω _θþ Jω2θ¼M: ð4Þ
This reads, in dimensionless form,

€θþ 2ξ� x
2π

MUR
∂CM

∂α
sinψ

� �
_θþθ¼ 0; ð5Þ

and torsion galloping is expected to occur when damping vanishes, or

UR4
4πξ
M

1
sinψ

1
ðx∂CM=∂αÞ

or equivalently

x
∂CM

∂α

� �MUR

ξ
sinψ44π: ð6Þ

In the most general case, δa0 and βa0, elementary geometrical considerations actually lead to the same results, see
Appendix A. The key elements of this type of model are the position of the reference velocity, x, and the moment coefficient
CMðαÞ through the product x∂CM=∂α. Little is known on these two parameters for the complex shapes of leaves or even for
the disk used here.

4.2. Comparison with experiments

If we assume that x and ∂CM=∂α do not vary much with the angle of incidence, then so does not the product, and the
flutter condition, Eq. (6), reads

MUR

ξ
sinψ4C; ð7Þ

where C ¼ 4π=ðx∂CM=∂αÞ is a constant. In polar representation, in the ðMUR=ξ;ψ Þ space, the flutter domain is thus bounded
by two straight horizontal lines. By fitting such horizontal lines on the experimental data, Fig. 9, we have C ¼ 20π,
corresponding to x∂CM=∂α¼ 0:2. This value is compatible with values for thin rectangular plates with x in the range 0.5–1,
(Païdoussis et al., 2010, pp. 66–70) and ∂CM=∂α¼ 0:1 (Wick, 1954, Fig. 8b), leading to x∂CM=∂α¼ 0:05��0:1.
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The model does not capture the slightly increased stability observed in the experiments on artificial leaves, close to
ψ ¼ π=2 or 3π=2, when the flow is tangential to the leaf. This is expected as the sign of ∂CM=∂α does actually change there,
Fig. 8b, a feature not taken into account in our model.
5. Discussion

As emphasized in the previous sections, the geometrical and mechanical parameters of leaves are immensely varied
among species, and even among the leaves of a single tree, see Fig. 6. Moreover, wind does change some of these
parameters, the static bending and torsion of the petiole changing the angles and the effective torsion rigidity of the petiole
and thereby the torsion frequency and mode shape. In fact, the criterion given in Eq. (7), expressed in terms of dimensional
quantities, reads,

ρ
m=A

U
f 0ξ

sinψ4
40π
3

: ð8Þ

This shows that the angles δ and βmay change by elastic deformation without direct influence on the limit of flutter. The
indirect effect of deformation of the petiole on the frequency f0 will just shift the critical velocity. Moreover only the mass
per unit area ðm=AÞ counts in Eq. (8), a quantity fairly independent of the size of the leaf lamina, at least in a given tree.
Hence the size of the lamina only influences the critical velocity through the frequency, f0, which depends on the total leaf
mass. The palmation index of the leaf, P, and even its flatness seem not to influence the onset of torsional flutter as it can be
seen from the behavior of leaf D or of the real leaves, when compared to the circular plane artificial leaves, see Fig. 9.
Therefore, torsional galloping as described here seems a rather robust mechanism in terms of its dependency on geometrical
and mechanical parameters.

In the experiments and the model, we have only considered the onset of flutter. Actually, we have observed that at higher
velocities (20% higher than the critical velocity, 5 m/s for ficus leaves), complex motions of leaves arise, involving bending
and torsion of extremely large amplitudes and irregular temporal evolution. These large motions do exist in nature, but the
major transition is between no motion and torsional flutter, as most of the time a leaf experiences low wind velocities.

Translational galloping may arise if torsional galloping is prevented, for example by a strong anisotropy of the petiole or
simply if the torsional stiffness is much higher than the bending stiffness. A case of pure translational galloping, near ψ¼0,
has been observed for artificial leaves when the torsion mode was artificially canceled by a strong anisotropy of the petiole.
Coupled mode flutter involving torsion and bending modes, as expected from Niklas (1991), was never observed here,
probably because the frequencies in torsion and bending differed significantly. Both the model and ficus leaves exhibited a
torsional motion at the onset of flutter. It seems likely that most leaves experience torsional motion, but more species need
to be considered to confirm this.

In nature, a leaf is not made of a 2D lamina plane and an homogeneous and isotropic petiole. The lamina is more likely to
be a 3D surface because of growth or reconfiguration. This may change the aerodynamic moment coefficient CMðαÞ of the
leaf and the critical wind speed as well as the angle at which the leaf starts to flutter. The anisotropy of the petiole may
change the kinematics of galloping, as observed here when the artificial petiole was made strongly anisotropic.

We have explored here the flutter of a single leaf without any neighbor. On a tree, leaves may interact with each other by
their wakes, by impacts, by leaf to leaf friction or by their folding into clusters (Vogel, 1989). Our model, which does not take
into account interactions between leaves, is more adapted to trees with sparse foliage.

We may now discuss the potential use of these results in predicting the behavior of the whole foliage under wind. First,
we may combine the criterion of Eq. (7) with the models of distribution of orientation of leaves in a tree (Tadrist et al., 2014).
Assuming that all leaves are identical except for their orientation, we may predict numerically the proportion of the total
leaf population that flutters at a given flow velocity, a quantity of interest for photosynthesis (Pearcy, 1990; Rascher and
Nedbal, 2006). Using the distribution of leaf orientation of an idealized tree (Fig. 7 in Tadrist et al., 2014), the proportion of
leaves that flutter is found to shift from 0 to 0.9 in a short range of velocities, U=Uc ¼ 1 to 1.5, where Uc is the velocity where
the first leaf flutters. This shows that foliage flutter is expected to appear as a sudden global phenomenon. The present
approach may also be used to predict more complex quantities such as amplitudes and frequencies of flutter, which govern
the ejection of rain drops or pesticides from the foliage (Carlson et al., 1976). Furthermore, the full motion of the foliage may
be modeled by combining the deformation of the branched tree structure (Rodriguez et al., 2008) in response to the wind
turbulence, and the present model of leaf flutter. As stated in the Beaufort scale mentioned at the beginning of the paper, we
expect that as wind increases, leaves, twigs, small branches and then large branches are successively set into motion.
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Appendix A

A.1. Geometrical relations between angles

The mid-chord direction of the leaf, t , and normal vector, n, read,

t ¼
� sinψ sin ðδþβÞ
cos ðδþβÞ
� cosψ sin ðδþβÞ

�������
and n ¼

sinψ cos ðδþβÞ
sin ðδþβÞ
cosψ cos ðδþβÞ

�������
: ðA:1Þ

We define the vector q as the normalized cross product of n and ez

q ¼ 1
sinϕ

ez � n ¼ 1
sinϕ

� sin ðδþβÞ
sinψ cos ðδþβÞ
0

�������
: ðA:2Þ

Then by defining cosϕ¼ n:ez and cos γ ¼ q:t , we have

cosϕ¼ cosψ cos δþβ
� �

and cos γ ¼ sinψ
sinϕ

: ðA:3Þ
A.2. Derivation of the reference angle of incidence α

In the leaf reference frame, V ¼Uþxw _θn=2. Using Eqs. (A.1) and (A.3), we obtain, at the first order in w _θ=U,

�V � n
jV j ¼ ðU cosψ cos ðδþβÞ�xw _θ=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2�Uxw _θ cosψ cos ðδþβÞ
q ðA:4Þ

�V � n
jV j � ðU cosψ cos ðδþβÞ�xw _θ=2Þ

Uð1�xw _θ=u cosψ cos ðδþβÞ=2Þ
ðA:5Þ

�V � n
jV j � cosψ cos δþβ

� �þxw _θ
2U

cos 2ψ cos 2 δþβ
� ��1

� �
: ðA:6Þ

By using the definition, α¼ arccosð�V � n=jV jÞ, we have

α� arccos cosψ cos δþβ
� �� �þxw _θ

2U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos 2ψ cos 2ðδþβÞ

q
¼ϕþxw _θ

2U
sinϕ: ðA:7Þ

In the simplified case, β¼0 and δ¼0 leads to ϕ¼ψ and thus

α�ψþxw _θ
2U

sinψ : ðA:8Þ
A.3. General model with βa0 and δa0

In that case, the coefficient of fluid moment is changed by a factor cos γ due to the angle between the torsion axis and the
incidence of fluid on the plate

M¼ 1
4
ρU2Aw

∂CM cos γ
∂α

∂α
∂ _θ

_θ : ðA:9Þ

Using the full expression of α, Eq. (A.7), one can express the limit for torsional galloping

x
MUR

ξ
∂CM

∂α
cos γ sinϕ44π: ðA:10Þ

Eventually, with Eq. (A.3), the final result is strictly the same as in the simplified case

x
MUR

ξ
∂CM

∂α
sinψ44π: ðA:11Þ
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