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H I G H L I G H T S

� A biomechanical model of Leaf Inclination Angle Distribution (LIAD) is proposed.
� Self-weight and wind loading are considered.
� Leaf flexibility impacts strongly Leaf Inclination Angle Distribution.
� A change in leaf flexibility or external loading may change light interception.
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a b s t r a c t

In a tree, the distribution of leaf inclination angles plays an important role in photosynthesis and water
interception. We investigate here the effect of mechanical deformations of leaves due to wind or their
ownweight on this distribution. First, the specific role of the geometry of the tree is identified and shown
to be weak, using models of idealized tree and tools of statistical mechanics. Then the deformation of
individual leaves under gravity or wind is quantified experimentally. New dimensionless parameters are
proposed, and used in simple models of these deformations. By combining models of tree geometry and
models of leaf deformation, we explore the role of all mechanical parameters on the Leaf Inclination
Angle Distributions. These are found to have a significant influence, which is exemplified finally in
computations of direct light interception by idealized trees.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Among leaf geometrical traits, the leaf inclination angle, defined
as the leaf orientation with respect to the vertical axis, is of primary
importance in plant ecology as it directly drives radiation intercep-
tion by canopies and thus impacts gas exchanges, photosynthetic
activity level and related processes within canopies. The Leaf
Inclination Angle Distribution (LIAD) is commonly described in a
given tree through a probability distribution function pðφÞ, where
φ is the angle between the leaf normal direction and the vertical axis
(Falster and Westoby, 2003; Wang et al., 2007). For instance, when
the sun is at zenith, the direct light interception by a canopy, I0, is
commonly modeled as (Monsi and Saeki, 2005; Pisek et al., 2013)

ln
I0
IH

� �
¼ �A 1�

Z π=2

0
pðφÞ cos φ dφ

" #
; ð1Þ

where IH is the light intensity at the top of the canopy and A is a
function of the leaf density profile. Clearly the probability density
function of the leaf orientation, pðφÞ, has a strong effect on the
interception of light by a canopy.

The LIAD may be defined in several ways, considering that a
leaf may be curved and even if not curved, tilted across its mid-rib
axis. For the sake of simplicity, we shall hereafter use as inclination
angle, ϕ, the angle between the vertical axis and the base-tip axis
of the lamina (Fig. 1a). Note that ϕ does now vary from 0 to π,
contrary to other definitions such as in Eq. (1) where φ varies from
0 to π/2. The distributions PðϕÞ and pðφÞ are simply linked by
pðφÞ ¼ PðφÞþPðπ�φÞ. In the following, the probability density
function P(ϕ) will be referred to as the Leaf Inclination Angle
Distribution (LIAD). Fig. 1c and e shows a typical LIAD (Falster and
Westoby, 2003; Falster, 2012), one among the immense variety
that exists in nature. They may differ by the location of the peak,
the width of this peak or even by their general shape, see for
instance Falster and Westoby (2003) for typical examples.

Observed LIADs are highly variable between species and can
change over time along the growing season or according to abiotic
and biotic stresses (Pisek et al., 2013; Falster and Westoby, 2003).
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This variability is probably due to both physical and biological
factors: the tree architecture (through the inclination of branches),
the deformation of the petioles, which itself depends on turgor
pressure, phototropism, growth history and even instantaneous
reactions to stimuli. To account for this huge variability numerous
functions such as spherical, ellipsoidal or Beta distributions are
commonly used (Campbell, 1986; Wang et al., 2007; Pisek et al.,
2011). However these functions do not take into account any of the
factors listed above. We expect that including some of these
factors into a model can account simply for this variability. We
shall focus hereafter on the combined role of the first two of the
above list, namely the tree architecture and the elastic deforma-
tion of petioles under gravity or wind loading. The first one is
mainly geometrical and the second mechanical.

We define at this step the Branch Inclination Angle Distribution
(BIAD), which describes the orientation of the shoots supporting
the leaves with the vertical axis, Fig. 1b. Fig. 1d and f shows a
typical BIAD corresponding to a specific walnut tree (Rodriguez
et al., 2012). Modeling the BIAD requires some knowledge of the
tree geometry. Successful models, using simple iterating branching
laws, have been used for tree vibration (Rodriguez et al., 2012) and
for tree fracture (Lopez, 2011; Eloy, 2011). These models are based
on a branching angle and allometric laws only.

On the other hand, the elastic deformation of a petiole has been
considered by Vogel (1989) and Niklas (1999), using simple beam
models. They showed that the static and dynamic deformations of
the whole leaf are concentrated in the petiole for most leaves. This
idealized model of leaf deformation is not adapted when the
lamina is more flexible than the petiole or for complex geometries
such as pinnate leaves and sessile leaves. Nevertheless, models
considering the lamina as rigid and the petiole as flexible are
efficient in most applications (Niklas, 1992; Niinemets and Fleck,
2002).

The aim of the present paper is to combine simple models of
branch orientation with models of petiole deformation under
external loading, in order to understand and ultimately predict
some of the existing features of leaf inclination angle distributions.
More precisely we seek to clarify the respective role of these two
factors, geometrical or mechanical, affecting LIADs.

Considering the large number of branches and leaves we shall
use standard methods of statistical physics to build the probability
density functions. In Section 2, the Branch Inclination Angle
Distribution is built for idealized two-dimensional and three-
dimensional trees. In Section 3, a model is proposed to describe
the deformation of a leaf under two types of loads: that induced by
gravity and that induced by wind. In Section 4 these results are
combined to derive LIADs and their variations with parameters.
The possible effects on a global quantity such as the light
interception are also discussed.

2. Branch inclination angle

2.1. The two-dimensional tree

We seek to establish first the role of tree geometries on
inclination angles of branches which hold leaves. To do so we
use a description based on the assumption of an iterative branch-
ing process. This is similar in principle to the models used by
Rodriguez et al. (2008), Lopez (2011) or Eloy (2011) recently. The
simplest model, referred hereafter as the 2D tree model, is
illustrated in Fig. 2a. Here, the geometry results from a series of
n iterations where the end segments of the tree are prolongated by
two daughter branches, emerging with an angle θ0 from each
mother branch. As only inclinations are involved no other infor-
mation is needed on length or diameter of the branches (see
Rodriguez et al., 2008; Lopez, 2011).

As the BIAD describes the inclination angle of the shoots
supporting leaves, we focus our analysis on the branches of the
ultimate order of the tree, n. Elementary calculus shows that the

Fig. 1. (a) Definition of the leaf inclination angle, ϕ. (b) Definition of the branch
inclination angle, θ. (c) Example of LIAD (data by Falster (2012)), the same LIAD is
also plotted in polar representation in (e). (d) Example of BIAD (data by Rodriguez
et al. (2012)), the same BIAD is also plotted in polar representation in (f). The
distributions are shown with arbitrary amplitudes.

Fig. 2. Iterative idealized branched trees. (a) A two-dimensional tree, (b) the
corresponding BIAD, Eq. (3), with the number of iteration n is equal to 4, for a
branching angle θ0 ¼ π=6. (c) A three-dimensional tree, (d) the corresponding BIAD
obtained by numerical simulation with the same values of n and θ0 by averaging
over 105 trees.
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inclination varies between θ¼ 0 and θ¼ nθ0 depending on the
location of the branches. The probability that a branch of order n
has an inclination angle θ¼ kθ0, n and k being integers, is noted
Pnðkθ0Þ. The iteration law that defines this distribution reads

2Pnþ1ðkθ0Þ ¼ Pn½ðk�1Þθ0�þPn½ðkþ1Þθ0�; ð2Þ

with Pnþ1ðθ0Þ ¼ Pnð0ÞþPnð2θ0Þ=2 and Pnþ1ð0Þ ¼ Pnðθ0Þ=2. Consid-
ering that the number of iterations n is generally large, say larger
that 5 and up to 10 (Lopez, 2011), we may use elementary tools of
statistical physics, see for instance, p. 23, Kittel (2004), to derive an
approximation of the BIAD as

PnðθÞ ¼
1
θ0

ffiffiffiffiffiffi
2
nπ

r
e�θ2=2nθ20 : ð3Þ

Note that θ varies here continuously and is not restricted to the
discrete values θ¼ kθ0. Fig. 2b illustrates that the BIAD is a simple
Gaussian peaked at θ¼0 and with a standard deviation, s¼ θ0

ffiffiffi
n

p
,

depending on both the branching angle and the number of
iterations. A comparison with the BIAD of a real tree, Fig. 1f,
immediately shows that the present 2D model fails to capture the
position of the peak of the distribution, clearly non-zero in
practice.

2.2. The three-dimensional tree

To improve the model, we include now at each branching point
a random rotation around the axis of the mother branch. This
generates a full three-dimensional tree as illustrated in Fig. 2c. The
corresponding distribution of inclination angles may not be
analytically derived as it results itself from a random process.
We numerically generate 104 random trees for a given set of
parameters θ0 and n, and average their BIADs to obtain a reference
distribution, Fig. 2d. It significantly differs from that of the 2D
approximation and is no more peaked at θ¼ 0. In fact the 2D
model was biased by an excessive role of the vertical direction,
thus favoring the θ¼0 angle. By systematically exploring the effect
of n, we find a weak dependence of the number of iterations. These
distributions are fitted with Gaussian shapes

PðθÞpe�½ðθ�μÞ2=2s2 �; ð4Þ

where the peak position, μ, and the standard deviation, s, are
found to depend only on the branching angle θ0. Note that for the
sake of clarity, we have omitted the normalization factor in Eq. (4)
by using the notation “p”, meaning that P is proportional to the
right-hand side of the equation. By systematically varying θ0, from
0 to π/3, we find that the peak position and the standard deviation
are well approximated by

μ¼ π
2
sin

3θ0

2

� �
and s¼ π

4
sin

3θ0

2

� �
: ð5Þ

This 3D model has the ability to represent a BIAD that is not
peaked at θ¼0, contrary to the 2D model. Note that, since 3θ0oπ,
the peak of the distribution is never larger than π/2. We may
therefore directly state that geometrical effects are probably not
responsible for well off-centered distributions of Leaves Inclina-
tion Angle Distribution (LIAD) such as that of Fig. 1c, near 3π/4.

We apply the model defined by Eqs. (4) and (5) to derive the
BIAD of the walnut tree, Fig. 3. From the digitized geometry of the
walnut Fig. 3a, we compute the average branching angle, which is
found equal to θ0=π ¼ 0:26. This angle is then used to predict the
BIAD. Fig. 3b shows that the model predicts reasonably well the
Branch Inclination Angle Distribution, using only the value of the
branching angle.

3. Local models of flexibility

We now consider the effect of flexibility at the scale of the
individual leaf for different types of loading. Models that we build
in this section will then be used to derive the inclination angles at
the scale of the whole tree, by combination with the results of the
preceding section.

3.1. Flexibility under gravity loading

The parameters involved in the local deformation of a leaf
under gravity are the weight of the lamina, mg, the length of the
leaf, 2Λ, the bending rigidity of the petiole, EI, and the length of
the petiole, L (Fig. 4a). Elementary dimensional analysis shows that
these parameters may be combined in an elasto-gravity number

EG ¼ΛLmg
EI

; ð6Þ

which scales the loading by gravity on the lamina with the
stiffness of the petiole, and therefore the potential deformation.
Note that we have used the length L in place of LþΛ in Eq. (6), for
the sake of simplicity, without loss of generality. In all the cases we
show further in the paper that L and Λ are of the same order of
magnitude, so that our choice does not introduce a bias in the
analysis of results. For leaves with Λ⪢L, using LþΛ or even simply
Λ would be appropriate. More generally, if the leaf mass distribu-
tion is not uniform, the proper length parameter is LþLG where LG
is the distance from the base of the lamina to the center of mass of
the lamina. We estimated this elasto-gravity number on several
species mainly of fruit trees, by measuring on sets of six leaves the
parameters given above. To measure the petiole flexibility (EI), the
difference is made between the curvature of a petiole with and
without end load. The results are summarized in Table 1 showing
that the elasto-gravity number typically ranges from 0.1 to 2,
indicating that small or large deformation induced by gravity can
be expected depending on that parameter.

Fig. 3. (a) Digitized walnut geometry (Rodriguez et al., 2008). (b) Polar representation
of the walnut BIAD (bars) and theoretical prediction (continuous line), Eqs. (4) and (5).

Fig. 4. Schematic view of the deformation of a leaf under external loading:
(a) weight of the lamina and (b) wind forces. Also shown are the variables used
in this section.
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To quantify the deformation of the leaf system due to gravity,
an experiment is designed as sketched in Fig. 5a. A leaf is clamped
at the base of its petiole and the angle of clamping, θ, is
progressively increased. The resulting position of the leaf is
recorded with a camera, fitted with a macro lens of focal length
30 mm. The captured image, see Fig. 5b for an example, is then
processed to extract the leaf inclination, ϕ, regardless of any
reference position. Two types of leaves are tested: artificial leaves
made of a plastic sheet for the lamina and an optic fiber for the
petiole and tree leaves (Ficus Benjamina and Prunus Armeniaca

‘Précoce de Saumur’). Table 3 gathers the characteristics of the
tested leaves, including the angle between the petiole and the
lamina, β. Fig. 5c and d shows the measured inclination angle, ϕ,
as a function of the clamping angle θ.

To relate these results with the characteristics of the petiole,
standard models from elasticity may be used. Considering the
possible large deformation of the petiole, we use a fully non-linear
formulation of the equilibrium equation, and do not assume that
the petiole is horizontally inserted. The equation for the local
angle of the petiole, α (Fig. 1b), reads (Salençon, 2001)

EI
d2α
ds2

¼ �mg sin α; ð7Þ

where s is the curvilinear coordinate. In a dimensionless form,
using s ¼ s=L this reads

d2α
ds2

¼ �EG
L
Λ

sin α: ð8Þ

The boundary conditions at the branch side and the lamina side
are α¼ θ and dα=ds ¼ EG sin ðαþβÞ respectively. These equations
are more general than those used by Niklas (1992), who consid-
ered the lamina as a point load at the end of the petiole and differ
from those of Niinemets and Fleck (2002) by the non-linear terms,
but considering only here a uniform mass distribution and a rigid
lamina.

The solution of Eq. (8) involves elliptic integrals, but with a
non-trivial boundary condition at s ¼ 1. We solve it numerically
combining a standard Runge–Kutta procedure in space with a
shooting technique to satisfy the branching condition. An approx-
imate solution may also be given in the limits when Λ⪢L, large leaf
or short petiole, and ϕ� π, large inclination angle. The solution
reads simply αðsÞ ¼ θþsEGðπ�ϕþβÞ so that

ϕ¼ θþβþπEG
1þEG

: ð9Þ

Fig. 5c shows the experimental evolution of the inclination
angle of artificial leaves, ϕ, as a function of inserting angle θ, in
comparison with the models discussed above. Clearly the full
mechanical model, Eq. (7), captures well the evolution of the
inclination angle. The simplified model, Eq. (9), gives the main
trends: ϕ increases with θ and tends to π for high values of EG. For
the real leaves, Fig. 5d, with a large angle β between the petiole
and the lamina, the comparison shows the same trends. We shall,
in the following section, use the simplified formula, Eq. (9), which
allows analytical derivations.

3.2. Flexibility under wind loading

A similar approach may be undertaken for deformation induced
by wind. The static load induced by wind on the leaf depends on the
dynamic pressure, ρU2, on the leaf area, S, proportional to Λ2, and
on the angle between the leaf and the wind velocity (de Langre,
2008). Consequently, the dimensionless number that scales the
deformation induced by wind on the leaf is the Cauchy number (de
Langre, 2008), defined here as

CY ¼
ρU2Λ3L

EI
: ð10Þ

This number may be estimated, for winds of 0.1 m/s and 10 m/s,
for all the leaves of the species analyzed above. Table 2 shows that
Cauchy numbers, for such velocities range from 10�4 to 102. For
CY 41, significant deformation under wind may be expected.

An experiment is designed to explore the effect of wind loading
on the deformation of a single leaf. Artificial leaves, as in the
previous experiment, are placed in a wind tunnel, Fig. 6a (Lemaitre
et al., 2005). Two leaves are considered with L¼2.7 cm, Λ¼5.5 cm,

Table 1
Table of parameters.

Symbols Parameters

θ Branch inclination angle
ϕ Leaf inclination angle
ψ Leaf azimuth angle
θ0 Branching angle
n Branching level
Λ Half length of the lamina
L Length of the petiole
m Lamina mass
g Gravity
EI Bending stiffness
ρ Air density
U Wind velocity
CN Drag coefficient normal to the leaf
S Leaf area
β Angle between the petiole and the

lamina
EG Elasto-gravity number
CY Cauchy number
μ, Φ Peak position (BIAD, LIAD)
s, Σ Width of the peak (BIAD, LIAD)
P Inclination angle distribution
IH Light at the top of the canopy
γ Solar inclination angle
I Light intercepted
C Light interception ratio
C1 Limit light interception ratio

Fig. 5. (a) Sketch of the experiment. (b) Image taken from the experiment.
(c) Results on artificial leaves (□) Model 1 and (○) Model 2. (d) Results on actual
leaves (□) Apricot and (○) Ficus. (c) and (d) the solid line is the elastica model and
the dashed line is the analytical approximation.
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EI¼1.1�10�5, and β¼0 or β¼0.36π. The inclination of the leaf is
measured for several values of the wind velocity. Fig. 6b shows the
evolution of the angle ϕ with the flow velocity, represented here
in terms of the Cauchy number, Eq. (10).

We may adapt the previous mechanical model to the case of
wind loading, Fig. 4b. The force caused by wind is assumed to be
normal to the leaf and with a magnitude of Fn ¼ ρU2CNS=2, where
ρ is the air density, U is the wind velocity, CN is the normal drag
coefficient (Blevins, 1984), and S¼Λ2 cos ϕ is the projected area
in the wind direction. Hereafter CN will be taken equal to 1, but
may actually depend on ϕ. In a dimensionless form, using s ¼ s=L,
the equation governing the petiole deformation reads

d2α
ds2

¼ L
2Λ

CYCN cos ϕ cos ðϕ�αÞ: ð11Þ

The boundary conditions at the branch side and the lamina side
are α¼ θ and dα=ds ¼ �CYCN cos ðϕþβÞ=2 respectively. The
numerical solution to this equation is shown in Fig. 6b, in good
agreement with experiments, using CN¼1.

A simpler form of the relation between the insertion angle, θ,
and the leaf angle, ϕ, may be derived as a function of the Cauchy
number. In the limit Λ≫L, large leaf or short petiole, and ϕ� π=2
the solution reads αðsÞ ¼ θ�sCY ðπ=2þϕÞ so that

ϕ¼
θþβþπ

2
CY

1þCY
: ð12Þ

At low CY, we have ϕ¼θ (unbent petiole) and in the limit of
large CY, ϕ¼π/2 so that the leaf is bent in the wind direction. This
approximation is compared with the experimental data in Fig. 6b.
This simpler form will be used hereafter.

4. Combined models of leaf inclination angle distribution

4.1. Effects of gravity

We now combine the preceding results on the effect of petiole
flexibility, Section 3, with those on the distribution of branch
inclinations, Section 2. Considering first gravity, we invert Eq. (9)

to express θ as a function of ϕ, and inserting the result in Eq. (4)
yields directly the leaf inclination angle distribution as a function
of all parameters

PðϕÞpe½� ðϕ�Φ0Þ2=2Σ2 �; ð13Þ
where the peak value and the standard deviation are

Φ0 ¼
μþβþπEG

1þEG
; Σ ¼ s

1þEG
; ð14Þ

where μ and s are given in Eq. (5). This contains the effect of all
parameters on the LIAD, namely the branching angle in the tree,
θ0, the petiole/lamina angle, β, and the combined flexibility/
gravity parameter of the leaves, EG ¼mgLΛ=EI. To illustrate this
result, several typical LIADs are shown in Fig. 7, resulting from
particular choices of the parameters.

We now focus the discussion on the effects of the parameters
on the value of the peak of the LIAD, Φ0, Eq. (14). As noted
previously, the effect of the branching angle, θ0, is rather weak, as
shown in Fig. 8a. In particular, the branching angle may not be
responsible for a position of the peak of the LIAD larger than π/2 if
EG¼0 and β¼0. We shall use hereafter θ0 ¼ π=3 unless otherwise
noted. The effect of the lamina/petiole angle, β, is simple in the
sense that it essentially shifts the peak Φ0 linearly. The most
important parameter in our analysis is the flexibility parameter EG,
which combines the lamina load and the petiole flexibility. This
parameter has a strong influence on the LIAD, see Fig. 8b. In the
limit of EG≪1, the LIAD is identical to the BIAD, as the leaves are
undeformed by gravity. Conversely when EG≫1, all the leaves are
pointing downward and the LIAD tends to Φ0 ¼ π. Typical values
of the parameter EG range from 0.1 to 2, see Table 2. In this range,
the LIAD is strongly affected by the flexibility. Note that, for a given
tree, changes in flexibility, by growth or dehydration (Faisal et al.,
2010; Niklas and Spatz, 2012), may result in a change of LIAD.

Table 2
Typical values of the elasto-gravity number, EG, and the Cauchy number, CY, at 0.1 m/s and 10 m/s. Only mean values for the set of leaves of a given species are presented.
Typical standard deviation is of the order of mean values on EG and CY.

Tree L (cm) Λ (cm) EI10�5 (N m2) m (g) Elasto-gravity
number EG

Cauchy number
Cy (at 0.1 m/s)

Cauchy number
Cy (at 10 m/s)

Apple tree Malus pumila ‘Jubilé’ 2.3 3.6 7.8 0.57 0.060 1.4�10�4 1.4
Apple tree Malus pumila ‘Arianne’ 3.1 5.0 20 1.3 0.10 1.5�10�4 1.5
Apple tree Malus pumila ‘Golden delicious’ 3.2 4.5 13 0.80 0.08 2.2�10�4 2.2
Hazelnut tree Corylus avellana 1.9 5.5 4.5 0.75 0.17 7.0�10�4 7.0
Apple tree Malus pumila ‘Fuji’ 3.6 4.4 9.8 0.71 0.11 3.1�10�4 3.1
Plum tree Prunus salicina 3.4 5.3 20 1.1 0.10 2.5�10�4 2.5
Cherry tree Prunus avium ‘Burlat’ 5.3 7.1 10 1.3 0.48 1.8�10�3 18
Poplar tree Populus x. euramericana 6.0 4.4 7.2 1.6 0.58 7.1�10�4 7.1
Apricot tree Prunus armeniaca ‘Précoce de Saumur’ 3.9 4.3 3.9 1.3 0.55 7.9�10�4 7.9
Apricot tree Prunus armeniaca ‘Old Variety’ 5.8 4.2 1.7 1.1 1.83 2.5�10�3 25

Table 3
Parameters of artificial leaves, Ficus and Apricot leaves, used in the experiment.

Leaf L (cm) Λ (cm) EI10�6(SI) m (g) β=π – EG –

Model 1 1.5 1.7 1.0 0.12 0 0.30
Model 2 2.1 2.4 1.0 0.25 0 1.3
Ficus 2.0 4.3 18 0.4 0.45 0.20
Apricot 4.2 4.5 40 1.3 0.02 0.6

Fig. 6. Schematic view of the experiment in wind tunnel (a). Measured deflection
angle, ϕ, as a function of wind speed through the Cauchy number. The solid line
corresponds to the elastica model and the dashed line is the analytical
approximation.
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4.2. Effects of wind

By combining Eqs. (4) and (12), the LIAD under wind may now
be computed. Here, contrary to the case of gravity, the wind
loading is sightly more complex as the wind defines a particular
direction. Indeed the inclination of leaves are differently affected
depending on their orientation with this direction.

A first case may be treated, considering the 2D tree model.
It must be kept in mind that the 2D tree model, Section 2.1, bears a
caveat as it enforces the peak of the distribution of branch angles
to be at θ¼0. Yet, it may be readily used to understand qualita-
tively the effect of wind on a LIAD. Disregarding scaling factors, we
use the BIAD given by Eq. (3). Upon inverting the relation between
ϕ and θ, Eq. (9), the LIAD may be derived as

PðϕÞpe½� ðϕ�Φ1Þ2=2Σ2
1�; ð15Þ

with Φ1 ¼ πCY=2ð1þCY Þ and Σ1 ¼ nθ2
0=ð1þCY Þ2. Using the polar

representation, Fig. 9 shows that the LIAD, originally symmetric
about the vertical angle, becomes skewed in the windward
direction, as expected when CY is increased. More precisely, all
leaves pointing above the axis of wind, that is for θ between π/2
and �π/2, Fig. 9, are lifted by wind and ultimately aligned in the
direction of wind, ϕ¼π/2. Conversely, leaves below the axis of
wind are pushed down by wind and finally also aligned down-
wind, but by going through the down-pointing position. This
result shows that, as the Cauchy number is varied, a significant
reorganization of the LIAD is expected.

4.3. An application to light interception

As mentioned in the Introduction, the direct light interception
by a canopy is linked to the LIAD. More precisely, the simple form
of Eq. (1) for a sun at the zenith may be extended to the more
general case of a sun time-varying inclination angle γðtÞ (Pisek
et al., 2011; Varlet-Grancher et al., 1993) as

ln
I0ðtÞ
IHðtÞ

¼ �A 1�
Z π=2

0
PðφÞFðφ; γÞ dφ

" #
ð16Þ

where F is given in Pisek et al. (2013). Actually it is more relevant
for processes, such as photosynthetic activity, to consider the
intercepted light over a full day, as follows:

R
DayI0ðtÞ dt. This

implies that incoming light dependence on solar inclination is
modeled for instance following Campbell and Norman (1998) as

IHðtÞp0:71= sin γðtÞ: ð17Þ
In the framework defined above, we may now estimate the

effect of the elasto-gravity number, EG, on the direct light inter-
ception as follows: in Eq. (16), the LIAD PðφÞ now depends on EG,
denoted as Pðφ; EGÞ. To quantify this effect, we may define the
following light interception correction factor which estimates
changes in light interception relatively to the reference case EG¼0:

C ¼
R
DayI0ðtÞ dt

h i
EGR

DayI0ðtÞ dt
h i

EG ¼ 0

; ð18Þ

where I0 is given by Eq. (16), but using Pðφ; EGÞ in place of PðφÞ.
This correction factor now only depends on the chosen day, j, the
chosen location latitude, λ, which affects γðtÞ, and the elasto-
gravity number EG. To illustrate this effect, we show in Fig. 10 the
influence of EG at the summer solstice and at a latitude of 451N.

Clearly EG affects light interception when it comes close to
EG¼1 which is a case of practical interest, see Table 2. For large
values of EG, when all leaves hang downwards, a limit value is
obtained, C1, which only depends on the latitude, for a particular
day. As a synthetic result, we show in Fig. 10 this correction factor

Fig. 7. Computed LIAD showing a strong effect of the elasto-gravity number EG, for
two values of the branching angle, θ0. Here EG¼0 or 1 and θ0 ¼ π=6 or π/3.

Fig. 8. Dependance of the peak of the LIAD with parameters. (a) Effect of the
branching angle of the tree, θ0, for EG¼1, showing a weak influence. (b) Effect of the
elasto-gravity number EG for θ0 ¼ π=3, showing a strong influence.

Fig. 9. Evolution of the LIAD with increasing wind velocity. The black dot
corresponds to the specific leaf inclination sketched on the right (b, d, f).
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C1 as a function of latitude in the Northern Hemisphere at the two
solstices. Clearly, the deformation of the petiole affects light
interception, but this effect varies significantly with latitude and
day in the year. Overall, in the growing season in temperate and
equatorial zones, the light interception is reduced by petiole
flexibility of 10–20% at most.

Exactly the same procedure may be used to show the effect of
wind on light interception through the deformation of the leaves.
Yet, wind loading has a preferred direction, which is that of wind.
Hence the 2D model given in Section 3 is not sufficient. We
improve it as follows: (a) instead of using a simplified Eq. (12), we
return to the full equation describing the deformation of the
petiole, (b) the loading on a leaf is corrected by a factor cos ψ
where ψ is the azimuth angle of the leaf with respect to wind, and
(c) the wind direction is then assumed to be isotropically dis-
tributed. By doing so, a correction factor C may be derived, which
only depends on day, latitude and Cauchy number. The evolution
of C with the Cauchy number is shown in Fig. 10c, for a latitude
451N at the summer solstice. The light interception is seen to be
enhanced by wind. It reaches a plateau, C1, for large values of CY,
when all leaves are horizontal. Fig. 10d shows the evolution of this
plateau with the latitude, at summer and winter solstices. At the
season of growth, light interception is rather enhanced by wind
(C141).

5. Discussion and conclusions

We have built up a biomechanical model in order to under-
stand the role of the leaf deformation on the Leaf Inclination Angle
Distribution (LIAD). The first issue was to quantify the effect of the
tree geometry, characterized essentially by a branching angle and
an iterative construction. This allowed to derive the Branch
Inclination Angle Distribution (BIAD), which was shown to depend
directly on the branching angle. These results were obtained on
both 2D and 3D tree geometries, and we have shown that 2D
models carry a bias. We have only considered a simplistic tree

geometry, in an idealized form of sympodial architectures. We
expect that more complex tree architectures, such as a mono-
podial one (Rodriguez et al., 2008), would lead to different forms
of the BIAD, but will have a similar dependence on the branching
angle. Similarly, randomness in branching is not expected to
change the main conclusion, namely that the peak of the BIAD
shifts with the branching angle.

Second, we proposed models for the deformation of a single
leaf under gravity or wind loading. These non-linear models are
well suited to represent large deflections of the leaf through
bending of the petiole. Experiments on real and artificial leaves
confirmed their validity. Two dimensionless parameters, the
elasto-gravity number EG and the Cauchy number CY, were defined
to scale the magnitude of deformations under gravity and wind
respectively. Such models may be extended in many directions, at
the cost of simplicity by including: (i) other modes of deflection
than pure bending, such as torsion (Vogel, 1992), (ii) non-uniform
or non-isotropic petiole characteristics (Faisal et al., 2010),
(iii) other shapes of leaves (Moulia et al., 1994), (iv) effects of
growth on the petiole geometry, and (v) non-linear elastic proper-
ties of the petiole. These additional effects will probably change
quantitatively the final results of the paper, such as those of Fig. 10,
but are not expected to change them qualitatively: the simple
models used in this paper showed the direct link between leaf and
global parameters. Note that in our approach the elasto-gravity
number EG may change with time for a growing leaf, for instance by
change of petiole stiffness due to a change in turgor pressure.
Similarly, the Cauchy number may change because of wind velocity
but also with petiole stiffness or change of lamina geometry by
reconfiguration (Vogel, 1989; Gosselin et al., 2010).

Third, we combined the preceding geometrical and mechanical
models to derive the LIAD models. We showed that for small
values of EG and CY, the LIAD results directly from the BIAD, and
therefore from the branching angle. Conversely, in the limit of
large EG or CY, the leaves are fully deformed, and the LIAD is
governed by the deformation of the petiole, not the tree geometry.

The main objective of this work was to derive a simple mechan-
istic model of LIAD changes by gravity and wind loadings. Thus for
the sake of simplicity, our elementary biomechanical models do not
take into account other factors that are known to affect the LIAD:
phototropism, gravitropism or growth history. However all factors
affecting LIAD through petiole flexibility such as growth or dehydra-
tion (Faisal et al., 2010; Niklas and Spatz, 2012) can be directly
handled. The issue of leaf flutter is a bit more complex to take into
account for several reasons. First, at the individual leaf level, flutter
may correspond to several mechanism of fluid–structure interaction
and therefore has a complex dependence on the parameters
(Païdoussis et al., 2010). Second, at the tree level, one needs to define
a “dynamic” LIAD for the extension of a single leaf flutter amplitude
model to the leaf population flutter distribution. Finally, the effect of
leaf motion on biological traits such as photosynthesis or water
retention is largely unexplored, outside works such as by Roden and
Pearcy (1993). Although the effect of wind and flutter on light
interception is totally a different issue, our methodology may be of
some help to tackle it. Clearly, our approach differs from classical
LIAD representations where data are fitted with empirical functions
which do not allow predictability. As an application, we have
incorporated our LIAD models in the existing computation frame-
works of direct light interception, using the approach of Monsi and
Saeki (2005) and Pisek et al. (2013). Both gravity and wind were
shown to affect light interception, through leaf inclination. The
proposed approach seems generic enough to be used in the modeling
of many biomechanical effects on statistical populations of leaves in a
tree. Results such as those of Niinemets and Fleck (2002) on optimal
allocation of biomass in leaves for light interception can probably be
extended to more general conditions using the present work.

Fig. 10. Effect of the mechanical deformation of the leaves on light interception.
(a) Evolution of the correction factor C, Eq. (18), with elasto-gravity number EG at a
latitude 451N, on summer solstice. (b) Evolution of the limit value C1 with the
latitude, λ, for summer and winter solstices, continuous line and dashed line
respectively. (c) and (d) Same graphs but with wind loading. All calculations are
done with A¼3.

L. Tadrist et al. / Journal of Theoretical Biology 341 (2014) 9–16 15



Acknowledgments

The authors gratefully acknowledge fruitful discussions with
Bruno Moulia, Sarah Puijalon and Christophe Eloy and thank Daniel
Falster for communicating detailed experimental data and Pascal
Hémon for help on the design of experiments.

References

Blevins, R., 1984. Applied Fluid Dynamics Handbook, vol. 1.
Campbell, G., 1986. Extinction coefficients for radiation in plant canopies calculated

using an ellipsoidal inclination angle distribution. Agricultural and Forest
Meteorology 36, 317–321.

Campbell, G., Norman, J., 1998. Introduction to Environmental Biophysics. Springer
Verlag.

Eloy, C., 2011. Leonardo's rule, self-similarity, and wind-induced stresses in trees.
Physical Review Letters 107, 258101.

Faisal, T.R., Khalil Abad, E., Hristozov, N., Pasini, D., 2010. The impact of tissue
morphology, cross-section and turgor pressure on the mechanical properties of
the leaf petiole in plants. Journal of Bionic Engineering 7, S11–S23.

Falster, D., 2012. Private Communication.
Falster, D.S., Westoby, M., 2003. Leaf size and angle vary widely across species:

what consequences for light interception? New Phytologist 158, 509–525.
Gosselin, F., de Langre, E., Machado-Almeida, B., 2010. Drag reduction of flexible

plates by reconfiguration. Journal of Fluid Mechanics 650, 319–341.
Kittel, C., 2004. Elementary Statistical Physics. Courier Dover Publications.
de Langre, E., 2008. Effects of wind on plants. Annual Review of Fluid Mechanics 40,

141–168.
Lemaitre, C., Hémon, P., de Langre, E., 2005. Instability of a long ribbon hanging in

axial air flow. Journal of Fluids and Structures 20, 913–925.
Lopez, D., 2011. Flow-induced pruning of branched systems and brittle reconfigura-

tion. Journal of Theoretical Biology 284, 117–124.
Monsi, M., Saeki, T., 2005. On the factor light in plant communities and its

importance for matter production. Annals of Botany 95, 549–567.

Moulia, B., Fournier, M., Guitard, D., 1994. Mechanics and form of the maize leaf: in
vivo qualification of flexural behaviour. Journal of Materials Science 29,
2359–2366.

Niinemets, Ü., Fleck, S., 2002. Petiole mechanics, leaf inclination, morphology, and
investment in support in relation to light availability in the canopy of
Liriodendron tulipifera. Oecologia 132, 21–33.

Niklas, K., 1992. Plant Biomechanics: An Engineering Approach to Plant Form and
Function. University of Chicago Press.

Niklas, K., 1999. A mechanical perspective on foliage leaf form and function. New
Phytologist 143, 19–31.

Niklas, K., Spatz, H.C., 2012. Plant Physics. University of Chicago Press.
Païdoussis, M., Price, S., De Langre, E., 2010. Fluid–Structure Interactions: Cross-

Flow-Induced Instabilities. Cambridge University Press.
Pisek, J., Ryu, Y., Alikas, K., 2011. Estimating leaf inclination and g-function from

leveled digital camera photography in broadleaf canopies. Trees 25, 919–924.
Pisek, J., Sonnentag, O., Richardson, A., Mõttus, M., 2013. Is the spherical leaf

inclination angle distribution a valid assumption for temperate and boreal
broadleaf tree species? Agricultural and Forest Meteorology 169, 186–194.

Roden, J., Pearcy, R., 1993. Effect of leaf flutter on the light environment of poplars.
Oecologia 93, 201–207.

Rodriguez, M., de Langre, E., Moulia, B., 2008. A scaling law for the effects of
architecture and allometry on tree vibration modes suggests a biological tuning
to modal compartmentalization. American Journal of Botany 95, 1523–1537.

Rodriguez, M., Ploquin, S., Moulia, B., de Langre, E., 2012. The multimodal dynamics of
a walnut tree: experiments and models. Journal of Applied Mechanics 79, 4505.

Salençon, J., 2001. Handbook of Continuum Mechanics. General Concepts. Thermo-
elasticity. Springer, Berlin.

Varlet-Grancher, C., Bonhomme, R., Sinoquet, H., et al., 1993. Crop Structure and
Light Microclimate: Characterization and Applications. INRA Editions.

Vogel, S., 1989. Drag and reconfiguration of broad leaves in high winds. Journal of
Experimental Botany 40, 941–948.

Vogel, S., 1992. Twist-to-bend ratios and cross-sectional shapes of petioles and
stems. Journal of Experimental Botany 43, 1527–1532.

Wang, W.M., Li, Z.L., Su, H.B., 2007. Comparison of leaf angle distribution functions:
effects on extinction coefficient and fraction of sunlit foliage. Agricultural and
Forest Meteorology 143, 106–122.

L. Tadrist et al. / Journal of Theoretical Biology 341 (2014) 9–1616

http://refhub.elsevier.com/S0022-5193(13)00455-4/othref0005
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref2
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref2
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref2
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref3
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref3
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref4
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref4
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref5
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref5
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref5
http://refhub.elsevier.com/S0022-5193(13)00455-4/othref0010
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref7
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref7
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref8
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref8
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref9
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref10
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref10
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref11
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref11
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref12
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref12
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref13
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref13
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref14
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref14
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref14
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref15
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref15
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref15
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref16
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref16
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref17
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref17
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref18
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref19
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref19
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref20
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref20
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref21
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref21
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref21
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref22
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref22
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref23
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref23
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref23
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref24
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref24
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref25
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref25
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref26
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref26
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref27
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref27
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref28
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref28
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref29
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref29
http://refhub.elsevier.com/S0022-5193(13)00455-4/sbref29

	Wind and gravity mechanical effects on leaf inclination angles
	Introduction
	Branch inclination angle
	The two-dimensional tree
	The three-dimensional tree

	Local models of flexibility
	Flexibility under gravity loading
	Flexibility under wind loading

	Combined models of leaf inclination angle distribution
	Effects of gravity
	Effects of wind
	An application to light interception

	Discussion and conclusions
	Acknowledgments
	References




