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Air-levitated platelets: from take off to motion
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A plate placed above a porous substrate through which air is blown can levitate if
the airflow is strong enough. We first model the flow needed for taking off, and then
examine how an asymmetric texture etched on the porous surface induces directional
motion of the hovercraft. We discuss how the texture design impacts the propelling
efficiency, and how it can be used to manipulate these frictionless objects both in
translation and in rotation.

Key words: aerodynamics, flow–structure interactions, low-Reynolds-number flows

1. Introduction
Contactless objects draw their unique properties from their isolated nature. For

instance, they can avert chemical and physical contamination (Duchemin, Lister &
Lange 2005), minimize thermal exchanges and prevent shocks and the resulting
damage with their substrates. In addition, they have an unequalled mobility, which
makes them glide with negligible friction compared to usual cases. In order to
generate levitation, many techniques (Brandt 1989) relying on acoustics (Brandt
2001), magnetism (Souza et al. 2010), optics (Nagy & Neitzel 2008) or electrostatics
(Sakata et al. 2015) have been successfully developed. However, these techniques
often imply complicated set-ups or restrictions regarding the objects that can be
manipulated. Instead, air can simply be blown through porous media to induce
levitation, such as done with air hockey tables (Lemaitre et al. 1990; Hinch &
Lemaitre 1994). Airflow underneath an object can maintain it in mid-air under the
action of inertial forces (Lemaitre et al. 1990; Hinch & Lemaitre 1994; Waltham,
Bendall & Kotlicki 2003; Fitt, Kozyreff & Ockendon 2004) and/or lubrication flows
(Leidenfrost 1966; Goldshtik, Khanin & Ligai 1986; Petit 1986; Duchemin et al.
2005; Wang 2012; Bouwhuis et al. 2013; Snoeijer & van der Weele 2014). It is
useful to understand and to optimize the key parameters needed for levitation, and to
think of ways of simultaneously manipulating the objects in a controlled manner.

Here we propose to tackle both problems at once. Inspired by recent findings on
the control of Leidenfrost drops by texturing the substrate on which they float (Linke
et al. 2006; Hashmi et al. 2012; Wells et al. 2015; Soto et al. 2016), we study porous
substrates (allowing take off) on top of which special structures are engraved (allowing

† Email address for correspondence: david.quere@espci.fr
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FIGURE 1. (Colour online) (a) Side view of the device. The top of a Plexiglas box is
pierced by holes (radius r ≈ 100 µm, spacing p = 400 µm, length H = 2 mm). Above
this porous plate, we have channels with height h= 180 µm, on top of which we place
a glass plate (in green) with length a, width b and thickness c. Air injected in the box
at a pressure P1 > P0 escapes through pores at speed W. The pressure in the channels,
below the plate, is denoted as P(x). (b) Top view of the device. The channels form a
herringbone pattern with angle 2α. Their width is w= 1 mm and they are separated by
walls with thickness λ = 0.3 mm. The air speed along a channel of axis x and length
L= b/2 sin α is denoted as U. As soon as airflow is strong enough to induce levitation,
the plate starts moving in the X-direction (red arrow).

manipulation). We first present a series of experiments showing the combination of
levitation and propulsion, which we explain with scaling arguments. Then we develop
an analytical model to capture the different observations, which leads us to propose
other propelling situations.

2. Levitating hovercrafts

The potential hovercrafts are glass platelets with length a, width b < a and
thickness c. Their density being denoted as ρ (ρ = 2130 kg m−3), the lamella mass
M is ρabc, of the order of one gram in our experiments. The substrate is made of
Plexiglas with thickness H = 2 mm and pierced with a laser cutter (Epilog Helix 24)
to obtain a square array of through holes with radius r = 90 ± 10 µm and spacing
p = 400 µm. This substrate closes the top of a Plexiglas box, in which we can
inject air from below, as sketched in figure 1(a). A texture is finally etched on the
porous material, consisting of rectangular channels with width w= 1 mm and depth
h = 180 µm separated by walls with thickness λ = 0.3 mm. These channels adopt
a herringbone pattern (figure 1b), an asymmetric design shown to induce directional
motion of Leidenfrost drops (Soto et al. 2016). We denote α as the angle between the
channel direction and the symmetry axis of the pattern. In order to have a controlled
geometry, we experimentally impose α > arctan b/2a.

An experiment first consists in adjusting the substrate horizontality, as checked with
a spirit level with a precision of 0.1 mm m−1. Then air is injected in the box that
acts as a reservoir whose pressure gradually increases from the atmospheric pressure
P0 to P1, at which the plate takes off. At this point, the plate does not contact the
herringbone walls anymore and it skims just above the channels. Simultaneously,
the plate is observed to move in the X-direction, as indicated by the red arrow in
figure 1(b). We record the motion with a video camera (uEye), from which we
can access the position X(t). This function is parabolic and we deduce from the
acceleration Ẍ of the glider the propelling force F = MẌ. To be more precise, we
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FIGURE 2. (Colour online) (a) Force F propelling a plate on a herringbone, as a function
of the plate length a, for three widths: b = 6 mm (blue data), b = 12 mm (red data)
and b= 24 mm (green data), and two thicknesses: c= 0.16 mm (circles) and c= 1 mm
(squares). Solid lines show the linear fit suggested by (2.1) and (3.8). (b) Propelling force
F as a function of the half-angle α of the herringbone pattern. Each curve corresponds
to a fixed lamella geometry with [a, b, c] = [30, 12, 1] mm (triangles), [23, 12, 1] mm
(diamonds) and [15, 6, 1] mm (asterisks). Solid lines show (3.8).

push several times the object (at typically 10 cm s−1) in the direction opposed to the
propulsion (supplementary movie 1 available at https://doi.org/10.1017/jfm.2017.27),
and monitor the deceleration, stop and acceleration of the plate, from which we
extract F. The dimensions a, b, c set the levitation pressure P1 and thus impact the
force propelling the object. We report in figure 2(a) how F depends on a, b, c for a
herringbone texture with h= 180 µm and α = 45◦.

The force F is found to span between 10 and 100 µN, that is, 1 % of the plate
weight. In this frictionless situation, F is large enough to propel the plate at typically
10 cm s−1 after a few seconds. Propulsion depends on the plate geometry: it increases
with both the length a and thickness c, but shows no obvious variation with width b.
F(a) and F(c) are both close to linear, as highlighted in figure 2(a) by the straight
lines whose slope ratio is 6.25, close to 6.2, the ratio between the two thicknesses.

Plate motion arises from the presence of an asymmetric pattern, and we tested how
F is impacted by the characteristics of this texture. We can see in figure 2(b) that F is
not monotonic if plotted as a function of α, the herringbone half-angle. It vanishes as
α reaches 0◦ or 90◦ and has its maximum around α= 45◦. This behaviour is valid for
the three plates we tested, corresponding to dimensions [a, b, c] in millimetres of [30,
12, 1] (triangles), [23, 12, 1] (diamonds) and [15, 6, 1] (asterisks). We recover here
some of the properties observed for drops levitating on hot herringbones (Soto et al.
2016): the propulsion direction is the same, and its efficiency is maximum for α =
45◦. However, the use of air-blown plates will allow us to discuss new aspects, and
specifically to describe quantitatively the levitation and how to control these passive
hovercrafts, for which we can freely choose the dimensions, unlike liquids.

Air coming out of the porous substrate has no other option than being channelled.
Since objects move in the same direction as air, we assume that propulsion arises from
the viscous drag generated by the directional airflow (Baier et al. 2013). Denoting
the air viscosity and characteristic speed as η and U (as defined in figure 1b) and
assuming h�w, its flow will create in each channel a viscous stress τ ∼ ηU/h acting
on the glass slide over a surface area abφ, where φ=w/(w+ λ) is the portion of the
area covered by channels. The resulting projected force along X is F∼ηUabφ cosα/h,
where U is still unknown. It is obtained by balancing the viscous friction ηU/h2 in
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FIGURE 3. (Colour online) Measured propelling force for all the data of figure 2 (same
symbol definition), as a function of the force provided by the scaling law (2.1). Each point
is an average of 5–8 experiments. The equation of the solid line is F= 1/2φρgach sin 2α,
that is, having the scaling of (2.1) and a numerical coefficient calculated in (3.8).

a channel by the gradient of pressure δP/L responsible for the flow, denoting L =
b/2 sin α as the length of channels (see figure 1b) and δP as the overpressure inside
them. Since the pressure beneath the plate has to support its weight, we assume that
δP scales as ρgc, which yields the air velocity U∼2ρgch2 sinα/ηb, and thus a scaling
law for the force:

F∼ φρgach sin 2α. (2.1)

Equation (2.1) predicts that F linearly depends on both the plate length a and
thickness c, as observed in figure 2(a). In addition, it predicts a maximum for
α= 45◦ in agreement with figure 2(b). We compare in figure 3 the measured force to
the one predicted by (2.1). All data collapse on a line of slope 1 with a numerical
coefficient in (2.1) equal to 1/2, which we discuss further.

3. Model

Although scaling arguments capture the underlying physics, we can go further
and take advantage of the well-defined geometry of the porous medium through
which the air is injected at a mean speed W. Our aim is to establish exact
formulas for both the pressure needed for levitation and for the propelling force
generated by the asymmetric pattern. We start by describing the airflow in the porous
substrate, and express the Poiseuille law relating the flux per hole Q = πr2W to
the pressure jump P1 − P(x) between the box (experimentally controlled) and the
channels (here x is a coordinate parallel to the channel, as shown in figure 1b). We
have: Q = (πr4/8ηH)(P1 − P(x)), where H is the length of each pore (figure 1a).
Conservation of mass provides a second equation that links the injection speed W
and the velocity U in the channels: h∂U/∂x=Q/p2. Hence we get:

h
∂U(x)
∂x
= πr4

8ηHp2
(P1 − P(x)). (3.1)

We can also recall the Poiseuille law in a channel:

12ηU(x)
h2

=−∂P
∂x
. (3.2)
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FIGURE 4. (Colour online) Levitation overpressure P1−P0 normalized by the weight per
unit area ρgc of the plate, as a function of the width b of plates with thickness c= 1 mm
and length a between 15 and 60 mm for a texture with angle α= 45◦. Equation (3.4) is
drawn with a solid line.

Combining (3.1) and (3.2), we obtain an equation of the form d2ψ(x)/dx2 =
ψ(x)/σ 2 for both functions P1 − P(x) and U(x), where the characteristic distance σ
of the variation of the pressure P and the speed U is:

σ =
√

2Hp2h3

3πr4
. (3.3)

The distance σ depends on the geometrical characteristics of the porous substrate,
namely H, p and r, and on the height h of the texture walls. All these parameters are
fixed in our experiments, and we have σ = 3.0± 0.3 mm.

We can integrate the equations for P(x) and U(x), using as boundary conditions:
U(0)= 0 and P(L)= P0. We find: U(x)= (P1 − P0)(h2/12ησ)((sinh x/σ)/(cosh L/σ))
and P(x)− P0 = (P1 − P0)[1− ((cosh x/σ)/(cosh L/σ))], where we still do not know
the pressure P1 needed to make the plate levitate just above the texture. Assuming
that the corresponding force compensates the weight, we have at the scale of each
channel: ρgcL= ∫ L

0 [P(x)− P0] dx, which yields:

P1 − P0 = ρgc G
(

L
σ

)
, (3.4)

where we introduced the function G(x)= 1/(1− (tanh x)/x). Equation (3.4) confirms
that the levitation pressure is scaled by ρgc, as assumed in the scaling analysis.

We show in figure 4 experimental measurements of this overpressure, as a function
of the width b of plates with length a spanning from 15 to 60 mm and thickness
c = 1 mm. Drawn with a full line without an adjustable parameter, (3.4) is found
to well describe the data. If we look back to figure 1(b) we observe that although
most channels beneath the plate have the same length L= b/(2 sin α), channels at the
left and right edges of the plate become shorter, hence make a smaller contribution
to overall lift. To compensate for this, we experimentally expect a higher reservoir
pressure than the one predicted by (3.4), as observed in figure 4. In a similar way,
for a given aspect ratio b/a of the plate, decreasing angle α will also accentuate this
edge effect.

The G-function has two asymptotic regimes, which allows us to define ‘narrow’ and
‘wide’ plates: (i) For wide plates (L>σ ), the function G(x) tends towards 1 and P1−
P0 saturates at the ‘hydrostatic’ pressure ρgc, as shown in figure 4 for large b. (ii) In
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the narrow plate regime (L< σ ), the function G(x) reduces to 3/x2, leading to P1 −
P0 ≈ 3ρgc σ 2/L2, which diverges for L→ 0, as seen in figure 4.

We can finally inject the levitation overpressure P1−P0 (3.4) in the expressions of
P(x) and U(x) to obtain the exact profile solutions:

P(x)− P0 = ρgc G
(

L
σ

)1−
cosh

x
σ

cosh
L
σ

 , (3.5a)

U(x)= ρgc
h2

12ησ
G
(

L
σ

) sinh
x
σ

cosh
L
σ

. (3.5b)

Two different regimes can be observed regarding the length L of the channel
compared to σ .

(i) In the wide plate regime (L > σ , corresponding to most experiments since we
have σ/L = 0.11 for b = 36 mm and σ/L = 0.17 for b = 24 mm), the latter
expressions can be approached by:

P(x)− P0 ≈ ρgc (1− e(x−L)/σ ), U(x)≈ ρgc
h2

12ησ
(e(x−L)/σ ). (3.6a,b)

Pressure in the channel drops exponentially from ρgc to atmospheric pressure in
a narrow region fixed by σ as shown in figure 5(a). The uniformity of pressure
elsewhere explains the absence of airflow in most of the channel, as seen in
figure 5(b). Since airflow is confined in a region of order σ close to the plate
edge, drag appears to be localized in this region.

(ii) In the narrow plate regime (L<σ ), a Taylor expansion leads to:

P(x)− P0 ≈ 3
2
ρgc

(
1− x2

L2

)
, U(x)≈ ρgc

h2

4ηL2
x. (3.7a,b)

The variations of P and U invade the channel as shown in figures 5(c) and 5(d),
so that a larger pressure is needed to sustain the plate and drag is exerted over a
wider distance. As shown by the large difference of scale in vertical axis between
figures 5(b) and 5(d), corresponding air velocities can then become large enough
to make us leave the regime of small Reynolds number assumed and checked
in § 4.

We can use the analytical solutions for the speed and pressure to calculate the
viscous force exerted by the airflow on the plate. The local stress being τ = 6ηU/h
and using (3.2), we find per channel: Fi=

∫ L
0

∫ w
0 τ dx dy= (hw/2)[P(0)−P0]. Previous

solution for P(x) yields: P(0) − P0 = ρgc S(L/σ) where S(x) = G(x) (1 − 1/ cosh x).
Considering the number N = 2a sin α/(w + λ) of active channels (channels that
are open on both ends do not contribute to propulsion as seen on the left part
of the plate in figure 1b) and projecting the force along the motion, we get
F = (1/2)φρgcah sin 2α S(L/σ). The function S is monotonically decreasing from
3/2 to 1 so that P(0)−P0 is always bounded between ρgc and (3/2)ρgc (as seen in
figures 5a and 5c). Since experiments are performed in the wide plate regime (L>σ ),
we have S(L/σ)≈ 1; P(0)− P0 reduces to ρgc, and F becomes:

F= 1
2φρgcah sin 2α. (3.8)
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FIGURE 5. (Colour online) (a,c) Calculated pressure P(x) (3.5a) and (b,d) speed U(x)
(3.5b), as a function of the position x in a channel of length L = b/2 sin α and angle
α=45◦, for plates of various widths b, thickness c=0.16 mm and length a=60 mm. (a,b)
Correspond to the wide plate regime (L>σ ) where the characteristic distance of variation
of P and U happens close to the exit of the channel with an exponential behaviour as
shown by (3.6a,b). (c,d) Correspond to the narrow plate regime (L<σ ) where channel is
smaller than the characteristic decay distance σ and variations invade the whole channel.
As a result, we have a parabolic expression for the pressure (which is maximum for x= 0
with a value (3/2)ρgc) and a linear profile for speed, as described by (3.7a,b).

Equation (3.8) confirms the scaling found in (2.1) for which it provides a numerical
coefficient of 1/2, in excellent agreement with the data in figure 3. We can deduce
from (3.8) the maximum climbable slope θmax on solids tilted by an angle θ : the
projection of the plate weight along the substrate being ρabcg sin θ , we obtain with
α = 45◦ θmax ≈ h/2b, that is, approximately 1.5 %. We can see in the supplementary
movie 2 a plate with b= 6 mm on a texture having h= 0.18 mm moving against a
slope of 1.2 %, a value slightly smaller than θmax.

4. Reynolds number
In all our experiments, the crenel depth h is fixed and constant. Increasing the

platelet thickness c (or analogously the crenel depth h) results in an increase of the
needed injection speed W. Eventually, there will be a point when airflow speed will no
longer allow us to assume low Reynolds regime. Since speed U is maximal at x= L
and the Reynolds number expression writes ρaUh2/ηL (where ρa denotes air density),
the maximal Reynolds number is:

Re= ρaρgch4

12η2L2
K
(

L
σ

)
, (4.1)

where the function K is defined as K(L/σ)= (L/σ)G(L/σ) tanh(L/σ). Two asymptotic
regimes can be observed.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 P
ol

yt
ec

hn
iq

ue
, o

n 
31

 Ju
l 2

01
7 

at
 0

9:
58

:1
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
27

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.27


542 D. Soto, H. de Maleprade, C. Clanet and D. Quéré

100 103102101

10–4

100

10–2Re

FIGURE 6. (Colour online) Reynolds number Re as a function of channel depth h as
predicted by (4.1). Thickness is fixed to c= 1 mm (corresponding to our thickest plates,
hence highest experimental Re), plate width b∈ [0.1, 6, 36] mm (as indicated with colours)
and angle α=45◦. The dashed black line shows asymptotic behaviour h5/2 ((4.3) for ‘wide
plates’, also corresponding to shallow crenels). The dotted black line shows asymptotic
behaviour h4 ((4.2) for ‘narrow’ plates or deep crenels). Re= 1 is shown with a dash-dot
black line to visualize the range of validity of our assumption, represented by the region
beneath it.

(i) For ‘narrow’ plates b� σ(∝h3/2) we have K(L/σ) ∼ 3, leading to a Reynolds
number proportional to h4 (dotted line in figure 6):

Re∝ h4. (4.2)

(ii) For ‘wide’ plates b� σ(∝h3/2), K(L/σ) reduces to L/σ , and we have (dashed
line in figure 6):

Re∝ h5/2. (4.3)

We show (4.1) in figure 6 as a function of the channel depth h for different widths
b and a thickness fixed to our highest value c= 1 mm. In our experiments, the worst
scenario (where the Reynolds number is highest) corresponds to the thickest and most
narrow plate (c= 1 mm and b= 6 mm, blue curve in figure 6), for which we indeed
have Re 6 1 (given that we have fixed h = 180 µm). All other plates have smaller
Reynolds number (Re 6 0.3), agreeing with our viscous scenario. Since we have σ ∝
h3/2, we can observe for each curve a transition from ‘wide’ plate to ‘narrow’ plate
regime, seen in figure 6 by a change in slope.

5. Other propelling designs
Our findings can be exploited to create new propelling designs. We qualitatively

discuss two of them.

5.1. The truncated herringbone
In the wide plate regime, viscous drag only acts over the last few millimetres of
the channels, by a distance ∼σ at the plate edges (3.3). Hence the central part of a
herringbone should not play a major role in plate propulsion, but mainly contributes
to levitation. We tested this result by comparing the efficiency of regular and truncated
herringbones (figure 7a), where the latter design has a central straight section of length
bT (bT = 10 mm) perpendicular to the motion (supplementary movie 3). We compare
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(a) (b)

FIGURE 7. (Colour online) Two designs entraining a glass plate (a = 30 mm,
b= 15 mm,c= 1 mm) with mass M = 1 g. (a) Top and bottom textures are regular and
truncated herringbones, with same α and a central straight section in the latter case with
length bT =10 mm. (b) Plate trajectory for these two textures. The plate is initially pushed
against the propelling direction, so that it accelerates in the opposite direction: blue and
red data respectively correspond to regular and truncated herringbones.

in figure 7(b) the trajectories on both textures, for a slide (a = 30 mm, b = 15 mm,
c= 1 mm) launched at V ≈ 5 cm s−1 against the propelling direction. The drag force
accelerates the plate, resulting in a trajectory close to a parabola (friction is negligible
at this scale). Trajectories on both textures are similar, indicating that the two devices
have comparable propelling abilities despite marked geometrical differences.

We deduce from the trajectories FT = 30± 5 µN for the truncated herringbone and
F = 45 ± 5 µN for the regular one. We can adapt the reasoning done for a regular
herringbone (3.8) to obtain the corresponding truncated version. The local stress being
τ =6ηU/h and using (3.2), we find that the contribution to the total force between two
points x1 and x2 along the channel is Fx1,2 =

∫ x2

x1

∫ w
0 τ dx dy= hw/2[P(x1)−P(x2)]. For

the truncated herringbone the stresses have an effective projection to propulsion only
between x1 = bT/2 and the final length of the channel x2 = bT/2+ (b− bT)/(2 sin α)
(instead of x1= 0 and x2= b/2 sinα in the regular case). Hence the ratio FT/F will be
equal to (P(bT)−P0)/(P(0)−P0). Using (3.5b), we get FT/F= 0.8, very close to the
experimental value of 0.7± 0.1, confirming that viscous drag is mainly concentrated
along the slide sides.

5.2. The rotating mill
We discussed up to now translational motion. In term of manipulation, it is often
necessary to achieve rotation. For this purpose, we developed a texture made of
four sections with parallel grooves whose direction rotates by 90◦ in each quadrant
(figure 8a). A plate of side 2b and thickness c is centred with a thin needle on this
windmill texture, so that viscous drag acts on the plate in the direction of the arrow
in figure 8(a), which leads to rotation, as seen in figure 8(b) and in the supplementary
movie 4.

The angular velocity starts from 0, increases for approximately 30 s, until it
reaches a plateau at θ̇∞= 8.5± 0.1 rad s−1, corresponding to a linear velocity θ̇∞b of
approximately 17 cm s−1. Figure 8(b) highlights the existence of a terminal regime
for plate propulsion.

Using the previous expression of entrainment force for a single wide channel, we
can write the corresponding torque Mi acting on the plate and scaling as ρgchwb sinα,
where α is the angle between the channel direction and the edge of the plate; this
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FIGURE 8. (Colour online) (a) Top view of a windmill texture consisting of four
quadrants with parallel grooves (w= 1 mm, λ= 0.3 mm, h= 180 µm). Glass fibre, acting
as a central axis, keeps centred a Plexiglas plate with side 2b levitating above the texture.
Red arrows show viscous drag in each quadrant resulting in rotation, quantified by the
angle θ . (b) Angular velocity θ̇ as a function of time t, for a plate with c = 1 mm
and b= 20 mm. The slope of solid red line is 1.00± 0.05 rad s−2 corresponding to the
initial acceleration θ̈0. Horizontal red dashed line corresponds to maximal rotation speed
θ̇∞ without friction.

angle spans between 0◦ and 45◦ for a square plate. Reducing the contribution of
sin α to its average value, the total torque M experienced by the plate scales as
φ((1− cos π/4)/(π/4))ρgchb2. Since the moment of inertia for a square plate varies
as ρcb4, Newton’s law provides an initial angular acceleration of the plate scaling
as θ̈0∼ g(h/b2)φ((1− cos π/4)/(π/4)). This simple argument allows us to predict an
initial acceleration of 1.2 rad s−2, a value close to 1.00± 0.05 rad s−2 deduced from
figure 8(b). Once the plate starts accelerating two new mechanisms leading to the
saturation regime seen in figure 8(b) have to be taken into account.

(i) Drag is generated due to the shear between the top plate (initially at rest) and the
underlying flow. Once the plate starts accelerating, the shear will decrease until it
drops to zero when the plate speed bθ̇ and the projection of the speed flow in the
same direction U sin α become equal. Averaging the role of sin α between 0 and
π/4 as previously done, we can predict that the maximal final rotation speed θ̇∞
is U(L)/b((1− cos π/4)/(π/4)). Using (3.5b) (or its approximate version (3.6b))
we obtain θ̇∞ ≈ 12 rad s−1.

(ii) Due to friction, we can see in figure 8(b) that saturation is reached around
8 rad s−1, a value below the expected θ̇∞ of 12 rad s−1. Indeed, if we take the
simple case of a Couette-style plate rotating on a resting surface at height h, the
torque associated with viscous shear will scale as ηθ̇/hb4. Using again Newton’s
law, we can deduce a slow down over a time scale τ ∼ (ρch)/η, typically 10 s
for a plate similar to the one used in our experiments.

6. Concluding remarks
Future work might follow various directions. (i) It would be interesting to see

what happens if water is blown instead of air, which would allow us to propel solids
immersed in water. (ii) Our model was developed in the limit of small Reynolds
numbers. Heavier plates or deeper grooves would lead to a higher gas velocity, and
thus to Reynolds numbers possibly larger than unity. It would be useful to understand
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how inertial effects impact our findings. (iii) A more versatile device would carry its
own propelling principle: a first step in this direction would be to study what happens
if we transfer the propelling texture to the base of the levitating object itself, and
make it levitate on a flat porous substrate. (iv) The study of the friction experienced
by a plate on a crenelated texture would set the first stone to completely model the
saturation of the velocity, in particular for the case of the rotating mill.
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