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a  b  s  t  r  a  c  t

Microfluidic  techniques  are  employed  to investigate  air–liquid  flows  in the lung. A  network  of microchan-
nels  with  five  generations  is  made  and  used  as a simplified  model  of  a  section  of the  pulmonary  airway
tree.  Liquid  plugs  are  injected  into  the network  and  pushed  by  a  flow  of  air;  they  divide  at  every bifurca-
tion until  they  reach  the  exits  of the  network.  A resistance,  associated  with  the  presence  of one plug in  a
given  generation,  is  defined  to  establish  a linear  relation  between  the  driving  pressure  and  the  total  flow
rate in  the  network.  Based  on this  resistance,  good  predictions  are  obtained  for  the  flow of  two  successive
plugs  in  different  generations.  The  total  flow  rate  of  a two-plug  flow  is  found  to  depend  not  only  on  the
driving  pressure  and  lengths  of  the  plugs,  but  also  the  initial  distance  between  them.  Furthermore,  long
range  interactions  between  daughters  of a  dividing  plug  are  observed  and  discussed,  particularly  when
the plugs  are  flowing  through  the  bifurcations.  These  interactions  lead  to  different  flow  patterns  for  dif-
ferent forcing  conditions:  the  flow  develops  symmetrically  when  subjected  to  constant  pressure  or high
flow  rate  forcing,  while  a low  flow  rate  driving  yields  an  asymmetric  flow.

© 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The lung is a dynamic organ where mechanical stresses play
an important biological role. These stresses may arise in particular
from the presence and transport of liquids within the airway tree.
While liquid is always present on the inner surfaces of the pul-
monary paths, it can form discrete plugs that occlude the airway in
pathological situations [1].  Indeed, many respiratory pathologies,
such as asthma, pneumonia, or respiratory distress syndrome, may
involve the blockage of the airways by liquid plugs which impede
the flow of air. Moreover, flows associated with the movement or
rupture of liquid plugs can cause damage to endothelial cells which
line the lung surface [2,3].

In addition to these pathologies where occlusion by the pul-
monary fluids can occur, the instillation of liquid plugs into the
pulmonary airway is common in medical treatments such as par-
tial liquid ventilation and drug delivery [4].  It is of vital importance,
for instance, in the case of Surfactant Replacement Therapy, where
surfactant is injected as a liquid bolus into the lungs of premature
neonates [5].  In these cases of drug delivery, the only available con-
trol over the plug distribution is at the entrance of the network, at
the level of the patient’s trachea. Once the bolus is injected, lit-
tle is known about the ultimate distribution of liquid within the
pulmonary tree, although some studies have attempted to predict
surfactant dispersion by numerical or experimental models [6,7].

∗ Corresponding author. Tel.: +33 169335261; fax: +33 169335292.
E-mail address: baroud@ladhyx.polytechnique.fr (C.N. Baroud).

Variations in the paths taken by daughters of the initial surfactant
plug may  account for the inconsistent responses observed in such
therapies [5].

One of the difficulties that arise is due to the interactions
between the immiscible interfaces and the complex geometry of
the lung. Indeed, the presence of surface tension introduces a
nonlinear relationship between pressure drop and flow rate in a
particular branch, through the addition of Laplace pressure terms
[8,9]. While these nonlinearities already appear in flow through
straight channels [10], they are amplified when plugs pass a bifur-
cation since the interfaces must strongly deform in this case [9].
This can lead to the existence of local blockage if the pressure is
below a threshold value, or to plug rupture if the plug length is too
small.

Microfluidics has already been proposed as a way to model
branching geometry of the lung, at least in the generations where
gravity and inertial effects are negligible [11]. These regions of the
lung are characterized by length scales below the capillary length
and small Reynolds numbers. The capillary length LC, i.e. the scale
below which the effects of gravity become small compared with
surface tension effects, is generally around 2 mm for most liquids.
The Reynolds number compares the effects of fluid inertia with vis-
cous effects through the relation Re = �lUD/�, where �l is the liquid
density, U is a characteristic velocity, D is the airway diameter, and
� is the fluid viscosity. The two  criteria D < LC and Re < 1 are met
in the lung for a large range of generations, starting from about
generation 9 to the respiratory bronchioles, around generation 20
[12]. The ability to fabricate complex microfluidic geometries using
photo-lithography techniques therefore opens a wide range of pos-

1350-4533/$ – see front matter ©  2010 IPEM. Published by Elsevier Ltd. All rights reserved.
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sibilities for addressing questions of liquid distribution that are
relevant for pulmonary flows, in the presence of different additional
physical phenomena.

Below, we study the motion of liquid plugs in a connected tree
of microchannels. We  begin with a description of the experimental
setup in Section 2. In Section 3, we derive an empirical relation
for the resistance to flow due to a single plug in the network and
show that this relation generalizes well for the case of a train of two
plugs. Further, different behavior is observed for pressure vs. flow
rate driving as the plug flows further into the network, since the
resistance to flow is modified by the passage through successive
bifurcations.

2. Experimental setup

Our experiments are conducted in a network consisting of
branching microchannels that have rectangular cross-sections,
as shown in Fig. 1. Soft lithography techniques are employed
to make the channels of polydimethylsiloxane (PDMS) [13]. A
thin flat layer of PDMS is spin-coated on a glass microscope
slide and the channels are bonded on this PDMS layer in order
to guarantee identical boundary condition at all four channel
walls.

The network inlet consists of a Y-junction connected to the
first generation for creating and injecting liquid plugs into the
network. One inlet of the Y-junction is connected to a syringe
filled with perfluorodecalin (PFD) and the syringe can be pushed
by a pump. PFD is a fluorocarbon whose viscosity and surface
tension are � = 5 × 10−3 Pa s and � = 20 × 10−3 N/m, respectively. It
presents good wetting properties on PDMS and does not swell
the channels. Through the second inlet of the Y-junction, the air
goes into the network and a constant driving is applied between
the first and the last generations. Either constant pressure or
constant flow rate can be applied. When pushing at constant pres-
sure, the inlet of the air is connected to a computer-controlled
pressure source (FLUIGENT, MFCS-8C). To apply a constant flow
rate, a syringe is filled with water and connected to the air inlet
through a flexible tube. Only a small volume of air near the net-
work entrance is left in the tube in order to reduce the effects

Fig. 1. Microscope image of the microfluidic network with five generations. Gen-
erations are numbered with Arabic numerals. The two  early plugs (A and B) in
generation 2 are the daughters of the first plug. A second plug (C) is moving in
the  first generation.

Table 1
Experimental conditions.

Number of plug(s) Driving Condition

1 Pressure: Pdr = 150, 250, 400 Pa
1 Flow rate: Qdr = 2, 5, 20 �L/min
2 Pressure: Pdr = 500 Pa

of air compressibility. A syringe pump ensures a constant flow
rate of the water which then pushes the air into the network.
Driving conditions for the experiments in this paper are given in
Table 1.

The height of all the branches in the network is 50 ± 2 �m and
the width of the branch in the first generation is 720 �m.  Chan-
nel widths of successive generations wi decrease at a constant rate
wi+1 = �wi, where � = 0.83 is a constant parameter and the sub-
script denotes the generation number. This value of � preserves the
ratio of mean diameters observed in the pulmonary airway [12]. It
gives a width 342 �m for the last generation. The channel lengths
also decrease linearly with the generation number, with a ratio 0.6.
This value was chosen to preserve the ratio of plug length to branch
length at each generation, thus reducing the number of variables
in the problem, if the plugs divide symmetrically at the bifurca-
tions. PFD plugs (bright regions) surrounded by air (gray regions)
are indicated in Fig. 1. The plugs are injected into the first genera-
tion and pushed through the network, dividing into two daughters
at every bifurcation. At the exits of the last generation, sixteen holes
(black in Fig. 1) are punched to fix the exit condition at atmospheric
pressure.

Experiments are recorded with a high speed camera (Photron
Fastcam, 1024 PCI) through a stereomicroscope at 0.7× magnifi-
cation. The resolution of the camera is 1024 × 1024 pixels, which
yields 1 pixel for 24.8 �m.  For the single plug experiments, images
are taken at different rates (varying from 30 to 125 images per sec-
ond) according to the driving conditions, thus ensuring that the
plug positions can be traced with a good resolution. For two succes-
sive plugs under constant pressure driving, 125 images per second
are recorded. From the image sequences thus obtained, the posi-
tions xr of the rear interface of the plug are manually recorded
while the plug is traveling in the network. Based on these measure-
ments, the plug velocity is calculated as U = [xr(t) − xr(t − dt)]/dt,
where dt is the time step between successive images. The fluid
deposition on the walls is neglected in the calculation since
it does not affect the flow significantly in our experimental
conditions.

3. Movement in the straight sections

In this section, we focus on the velocity of a plug pushed at a
constant pressure as it travels in the straight channels between two
successive bifurcations. We first study the case of a single plug and
its daughters in the network, then build a relation reproducing the
results and show that it can be applied to the case of two  successive
plugs and their daughters.

3.1. A single plug in the network

A single plug is injected into the network and then pushed at
a constant pressure Pdr. It divides into two  at every bifurcation
and velocities of all its daughters, measured in each branch, are
recorded according to their position in the network (generation
numbers i). The daughter plugs are constantly subjected to the
same pressure difference and should therefore all move at the same
speed which, in addition, should be constant during their passage
in their respective branches. Variations from branch to branch and
within a branch, to be attributed to imperfections in the micro-
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Fig. 2. Average plug velocity as a function of the generation number i (driving pres-
sure 250 Pa). Symbols correspond to values recorded in each branch and the solid
line to their average. The prediction from a previous study [9] is shown as a dashed
line.

fabrication, are observed however. As the channels get narrower,
the flow becomes more sensitive to wall conditions, which brings
bigger separations between data points in later generations. For
each generation number i, values corresponding to the 2i−1 indi-
vidual time-averages of the plug velocities are plotted in Fig. 2. The
solid line drawn through these points thus gives the average value
obtained over the 2i−1 branches.

At this stage, it is interesting to compare these observations to
the theoretical prediction that could be made from the study of
plug motion in straight channels in microfluidics conditions [9].
The formula in Eq. (11) of Ref. [9] is used to compute the veloc-
ity in all the generations by assuming that plugs divide equally at
each bifurcation while taking into account the narrowing of the
channels wi = w1�i−1, hence Li = L1/(2�)i−1. The result is given as
a dashed line in Fig. 2, from which it is immediately seen that the
plugs experience a resistance larger than predicted as they progress
in the network. Since the formula is well validated in the case of long
plugs, we attribute the discrepancy to the exponential shortening
of the plugs with the generation number: for the experiment corre-
sponding to the data in Fig. 2, the plug length in the last generation
is L5 = 300 �m while the channel width is w5 = 342 �m. Plugs are
therefore comparatively short and the resistance is underestimated
in the last generations.

The limitations of the theory led us to develop an empirical rela-
tion that we now describe. As for an electrical network, we  define
a resistance RiLi associated with the presence of a daughter plug of
length Li in generation i, where the role of the voltage is played by
the driving pressure Pdr and the role of the current intensity by the
volumetric flow rate in each branch of that generation Qi. We can
therefore write Pdr = RiLiQt = RiLiQiNi, where Ni = 2i−1 is the number
of branches in that generation and Qt = QiNi is the total flow rate
in the network. We  assume further that each plug divides into two
daughters of essentially equal lengths at every bifurcation, which
is consistent with experimental observations, Li = L1/(2�)i−1. Flow
rate Qi is calculated as Qi = Uihwi, Ui being the plug velocity in that
generation. The values of Ri can be computed from the measure-
ments since the driving pressure, the initial length of the plug and
the flow rate based on velocity measurements are known. They are
found to decrease with the generation number, as shown in Fig. 3.
This leads to an increase in the total flow rate Qt as the plug reaches
later generations (symbol � in Fig. 4).
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Fig. 3. Dependence of the resistance on the generation number.

3.2. Two  successive plugs

The relation just defined now allows us to analyze the dynam-
ics when two plugs are injected successively. Like for two  resistors
mounted in series, the relation between the driving pressure and
the volumetric flow rate can be written as Pdr = R[1]

i
L[1]

i
Q [1]

t +
R[2]

j
L[2]

j
Q [2]

t = (R[1]
i

L[1]
i

+ R[2]
j

L[2]
j

)Qt , where the superscripts ‘[1]’ and
‘[2]’ denote the first and the second plugs and the subscripts ‘i’ and ‘j’
indicate the position of the plugs in the network by the correspond-
ing generation numbers. Using the values of Ri determined above
and the initial lengths of two plugs, RiLi can be computed. Flow rates
for a two-plug train for the driving pressure Pdr = 500 Pa are com-
pared to the experimental findings in Fig. 4. Satisfactory agreement
is obtained, indicating that the linear description of the flow in the
network gives a good approximation in the current conditions.

Notice that although the lengths of the plugs and the driving
pressure are kept the same, the total flow rate displays a clear
dependence on the distance between the two  plugs, as shown
in Fig. 4. When the plugs get further apart, a higher flow rate is
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Fig. 4. Evolution of the total flow rate in a single plug experiment (�) (driving pres-
sure Pdr = 250 Pa) and two-plug experiments (Pdr = 500 Pa) when they always flow in
the  same generation (�), in two successive generations (�) and with a separation
of one generation (�). Open symbols denote experimental data and closed ones are
values derived from the linear law.
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observed. This can be understood by noting that the resistance due
to the downstream plug decreases with generation number and
thus the sum (R[1]

i
L[1]

i
+ R[2]

j
L[2]

j
) also decreases.

4. Passage through a bifurcation and long range
interactions

The passage of a plug in a bifurcation leads to highly nonlinear
effects because of the strong modification of the shape of the inter-
face. We  begin by considering the details of the passage of a plug
through a bifurcation before turning to how the behavior of one
plug influences the passage of plugs elsewhere in the network.

4.1. One plug in one bifurcation

Consider a plug that just arrives at a bifurcation, as sketched in
Fig. 5(a). The curvature of the front interface decreases before the
rear one is affected by the bifurcation, which introduces a capil-
lary pressure difference across the plug. This is a three-dimensional
problem and the biggest curvature of the interface exists in the
direction perpendicular to the plane of the network. However, we
assume that the capillary pressure difference is mainly driven by
curvature differences in the plane of the network. The pressure dif-
ference Pcap between the rear and front interfaces can be expressed
as Pcap = Pr − Pa = �/rr − �/ra, where Pr, Pa denote the capillary pres-
sures at the receding and advancing interfaces and rr, ra are the
signed radii of curvature of the interfaces in the plane of the net-
work. Before the plug touches the opposite wall, we  have ra > rr and
ra increases as the plug advances. So Pcap acquires increasing pos-
itive values. There exists a threshold pressure necessary to push
a plug through a bifurcation, which is estimated as the maximum
value of Pcap: Pthr = Pcap,max = �/rr − �/ra,max where ra,max is the max-
imum possible value of ra, reached just before the front interface
touches the corner of the opposite wall. Beyond this point, Pcap

becomes negative (ra < rr) and pulls the daughter plug (Fig. 5(b)).
When the plug has fully passed the bifurcation, Pcap cancels (ra ≈ rr).

The threshold pressure Pthr can be computed from the network
geometry:

Pthr = 2� cos �

wi
− �(cos � − sin ˛)

wi+1
(1)

where � is the contact angle of PFD on PDMS (around 23◦) and the
bifurcation half-angle, ˛, is half the angle between the two  branches
of the same generation. Here ˛ = 60◦ yields the threshold pressure
Pthr = 51, 61, 74 and 89 Pa for the first to the fourth bifurcations,
respectively. Although the values of Pthr depend on the value of the
contact angle �, a difference of 23◦ in the contact angle only changes
the threshold by 2 Pa.

rr

Pr Pa

Pdr

(a)
Pr Pa

Pdr

(b)

ra

rr
ra

Fig. 5. Passage through a bifurcation. (a) A plug arrives at the bifurcation. The radius
of  curvature ra is bigger than rr and increasing while the plug is advancing. (b) After
the  front interface touches the next generation, ra becomes smaller than rr (notice
that here 2  ̨ = 90◦ for convenience).
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Fig. 6. Experimental measurements of plug velocity during the passage through a
bifurcation. The position of the plug is defined as that of its rear interface.

When the plug is pushed at a constant pressure, the pressure
difference across the plug can be expressed as �P = Pdr − Pcap. The
variation in Pcap will lead to variations of �P  and also of the velocity
of the plugs as they advance. In order to push a plug through a bifur-
cation, �P  has to remain positive during the passage. This implies
that the driving pressure has to be larger than the threshold pres-
sure. Meanwhile, the velocity variations during the passage should
account for the appearance of Pcap, which modifies the value of the
effective driving pressure as �P.

Measurements of the velocity of a particular plug are shown
in Fig. 6 when it is pushed at Pdr = 250 Pa and passes the second
bifurcation in the network. The plug initially slows down after it
enters the bifurcation (position A), after which its velocity rises
quickly as the front interface reaches the opposite wall (position
C), since Pcap < 0 and �P  increases. Accordingly the passage of a
plug through a bifurcation is always associated with a large spike
in the velocity.

When the plug is forced at a constant flow rate, if the passage
can be treated as a quasi-static process, we  may  write that �P  = Pcap

[14]. Variations in Pcap will therefore induce variations in the pres-
sure upstream of the plug position such that �P will increase until
the plug touches the opposite wall, where it rapidly switches to a
negative value which pulls the plug into the daughter channels. The
largest value reached by �P  is �P  = Pthr.

4.2. Plug interactions

The connectivity of the branching tree implies that local pres-
sure variations will lead to long range effects across different
regions of the network. The fundamental unit to understand these
interactions is shown in Fig. 7, where two  daughters (I and II) of the
same plug arrive at two bifurcations nearly simultaneously.

Assume that plug I touches the opposite wall slightly earlier
than plug II. Then, its velocity as well as the flow rate in that branch
increase according to the above analysis. In case of constant pressure
forcing, the driving condition for plug II is not modified; this plug
also slows down and then speeds up as it crosses the bifurcation,
independently of plug I. This is no longer the case if the plugs are
pushed at constant flow rate Q. When plug I passes the bifurcation
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Fig. 7. The fundamental unit of long range interactions between two  plugs.

shown in Fig. 7, the flow rate QI increases, forcing QII to decrease in
order to conserve the value of Q = QI + QII. In fact, QII may  become
zero or even negative, which means that plug II may  stop or even
move backwards, depending on the value of Q.

5. Results

The flow behavior is studied by tracking the positions and veloc-
ities of daughter plugs along the paths shown in Fig. 8. In these
experiments, a single plug is injected into the network and forced
to divide into two at every bifurcation.

5.1. Constant pressure driving

A time sequence showing the successive divisions is shown
in Fig. 9, when the plug is pushed at a constant driving pressure
Pdr = 250 Pa. Only half of the network is shown for clarity. As seen
in these images, the plug positions may  vary slightly across the dif-

Fig. 8. Paths along which the plug positions and velocities are measured. The dashed
box indicates the zone that is displayed in Figs. 9 and 11.

ferent generations but they mostly advance in synchrony through
the bifurcations and across generations. These results are typical
of many different experiments. A more quantitative measure of
this synchronous flux is given by measuring the plug velocities as
functions of time along the four paths, as shown in Fig. 10.  As the
daughter plugs advance in the network, their number increases and
their velocities vary according to the analysis in Section 3.

The spikes that appear in the velocity time series are the signa-
tures of passages through the bifurcations, as explained above. By
tracking the moment at which the spikes occur along each of the dif-
ferent paths, we see that the plugs reach the bifurcations and divide
at roughly the same time. This is in spite of imperfections in the
network which lead to slight asymmetry in the divisions and thus
yield plugs of variable sizes. Moreover, a careful examination of the
time series reveals small differences in the passage times through
the second bifurcation. However, this difference is not amplified in
later generations and the plugs all continue in a steady fashion. The
flow remains globally symmetric during its evolution.

5.2. Constant flow rate driving

When the experiments are repeated by pushing the plug at a
constant flow rate, the behavior may  be strongly modified. In the
experiment shown in Fig. 11,  the driving flow rate is Qdr = 2 �L/min
and two daughters are observed as they advance simultaneously
in generation 2 (image (b)) but this synchrony is broken when
they reach the bifurcation. At this stage, only one of the daughters
divides and its daughters continue to flow in generation 3 (image
(c)). However, the upstream plug catches up with its sister which
gets blocked at the next bifurcation due to the higher threshold
pressure.

The velocities of the plugs are displayed in Fig. 12 along the same
paths as above. Due to flow rate conservation in the network, the
plugs adjust their velocities while advancing and the acceleration
in one path leads to a deceleration in the others. Here, an uneven
division, which introduces daughters of different lengths, leads to
significant velocity variations since a shorter daughter is easier to
push forward than a longer one. Velocity differences are visible, for
instance, in the case of the two  daughters of the initial plug as they
flow in generation 2: while the one in paths (3, 4) speeds up, the
one in paths (1, 2) must slow down.

After one daughter passes a bifurcation and divides, a flow rate
increase in the corresponding branches results in a slowing down
of other daughters which become stuck at the bifurcations. Once
the early plug that has divided reaches the next bifurcation, the
threshold pressures at two  successive bifurcations have to be com-
pared and the plug with the lowest threshold will advance first.
In this network, the threshold increases with generation number,
which implies that the late plugs can catch up with the early ones.
The most downstream plug must therefore wait at the bifurcation
for all other plugs to reach the same bifurcation level before it
can continue its journey. This is shown in the velocity evolution
in Fig. 12,  by the segments with zero velocities before the passage
of a bifurcation.

At constant flow rate forcing Qdr = 2 �L/min, the air–liquid
flow therefore remains symmetric but evolves through discrete
steps. Plugs are never more than one generation apart due to the
increasing threshold pressure, but they spend long periods of time
stationary at bifurcations, waiting for plugs in the other branches
to catch up.

5.3. Flow patterns in the network

Results of experiments repeated at different driving condi-
tions are summarized in this section. As shown earlier, the flow
is synchronous at Pdr = 250 Pa, but turns out to be asynchronous at
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Fig. 9. Image sequence for the half network, obtained from the experiment of constant pressure driving.
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Fig. 10. Velocity variations along four paths under a constant pressure driving
Pdr = 250 Pa. The vertical line indicates the time when the plug passes a bifurcation.

Qdr = 2 �L/min. However, the flow pattern depends on not only the
type of the driving condition but also the value of driving force.

The behavior described above can be summarized by measuring
the time �ti separating the first and last plug divisions at a particu-
lar depth in the network. We  normalize this time difference by the
mean time taken to travel through the following generation (Ti+1)
and write the normalized time �ti. A value of �ti < 1 indicates that
the plugs advance nearly simultaneously through the generation
i + 1, while a value of �ti > 1 implies that some plugs only divide
once the early ones have already reached the next bifurcation. The
results for different experiments are shown in Fig. 13,  where each
data point corresponds to an average over several experimental
realizations.

Two distinct behaviors are observed. The division times for
constant flow rate driving are above 1 at the second and third
bifurcations for Q = 2 �L/min and at the third bifurcation for
Q = 5 �L/min. This confirms that plugs pass one by one, waiting for
each other to reach the next bifurcation. The transition to �ti > 1
occurs when the pressure necessary to ensure the constant flow
rate decreases below the local threshold, as described in Ref. [14].
Note that the values of �ti increase with generation number here
because the number of sister plugs increases and since they must
pass separately. In contrast, constant pressure driving yields values
of �ti that are significantly below 1, indicating that plug divisions
are nearly synchronous. This is the case for all of the data recorded
here except for the lowest pressure value, at which �ti∼1.3. This
can be attributed to imperfections in the microfabrication. Indeed,
depth variations of the channel, due to the uncertainty in the photo-
lithography process, can lead to pressure differences between the
front and the rear of a plug. When combined with low values of the

Fig. 11. Image sequence for the half network, obtained from the experiment of constant flow rate driving.
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Fig. 12. Velocity evolutions along four paths under the constant flow rate
Qdr = 2 �L/min. The vertical line indicates the time when the plug passes a bifur-
cation.

driving pressure compared with the threshold to pass a bifurcation,
these can result in small values of �P, which imply that some plugs
advance very slowly through particular bifurcations.

For large driving flow rate (e.g. Q = 20 �L/min) and pressures
(Pdr > 150 Pa), the plug movement is synchronous in both meth-
ods, as seen by the small values of �ti. This can also be observed by
plotting the positions of the plugs as a function of time, as shown
in Fig. 14.  In this figure, the position of the rear interface along four
representative paths is plotted and all four divide simultaneously
both for constant flow rate and constant pressure. However, the
distance curves display different evolutions, which allows us to dis-
tinguish the driving conditions. While the plugs slightly accelerate
as a function of generation number in the case of pressure forcing,
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level, data normalized to the average traveling time in the next generation.

T
ra

ve
le

d 
di

st
an

ce
 (

m
m

)

76543210
0

10

20

1

2

3

4

(a) Pdr = 250 Pa

Time (s)
32.521.510.50

0

10

20

1

2

3

4

   μ(b) Qdr = 2 0 L/min

Fig. 14. Distance traveled by daughter plugs along four paths in the network. The
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right of the y-axis and the line color is used to indicate the corresponding path shown
in  Fig. 8. (a) Driving condition Pdr = 250 Pa. (b) Driving condition Qdr = 20 �L/min.

they clearly decelerate in the case of flow rate driving, since the
number of daughters increases and the flow is distributed over a
larger area.

This information can be summarized by measuring the time (Ti)
spent traveling in the straight sections in each generation. This is
shown in Fig. 15,  where each data point is the average over all the
plugs in a given generation, averaged over several experimental
realizations. Ti is normalized by the total time for an experiment,
i.e. the time from the initial plug entering the first bifurcation to
the last daughter passing the last bifurcation. For pressure driving,
we observe that the time spent in the straight channel decreases as
the plugs advance. Since the plug velocity decreases more slowly
than the channel length, it takes a shorter time to pass the branch
in the later generations. In the case when the plug is pushed at a
high flow rate, the travel time remains constant with generation
number because the decrease in plug velocity evolves in the same
way as the channel length. This result is true by construction and
holds for any value of �.
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6. Summary and discussion

In investigating the flow of liquid plugs in a branching network,
an empirical relation expressing the pressure–flow rate evolution
is derived from the motion of a single plug and found to account for
the resistance of the network to the flow of liquid. Given the initial
condition of the experiments, e.g. driving pressure and plug lengths,
this relation quantitatively predicts the flow rates in the presence
of a train of two plugs. This empirical relation indeed provides a
better prediction of the flow of a train of plugs than the physical
model presented in Ref. [9].

When two successive plugs are separated by a large distance
in the network, the resistance associated with the downstream
plug is small compared to the resistance of the upstream liq-
uid. This implies that the flow rate in the network is essentially
fixed by the upstream plug and the downstream plug perceives
a constant flow rate forcing, even if the actual driving condi-
tion is through pressure. This may  modify the flow distribution
in the branching tree through inter-generation effects, which
are expected to feed back on the flow everywhere in the net-
work.

Furthermore, the passage through a bifurcation induces strong
variations in the capillary pressure jumps across the air–liquid
interfaces, which has a major impact on the flow through the
branching channels. When considering a single bifurcation, this
leads to large variations in the velocity at which the plug advances.
It also leads to the existence of a threshold value of the driving pres-
sure necessary to push the plug. A similar threshold is expected to
exist in the case of the circular tubes forming the pulmonary airway
tree, although its value will strongly depend on the details of the
geometry at the bifurcation. Nevertheless, the presence of thresh-
old pressures will have a similar effect on the global organization of
flow in the lung as observed in our experiments. Finally, although
the threshold values may  be small compared with the driving pres-
sure, a sufficiently deep airway tree will always lead to regions in
which the local pressure becomes comparable with the value of the
threshold.

The influence of the driving condition on the plug propagation in
the network has also been explored. The nonlinear pressure–flow
rate relation at a bifurcation induces strong long range interactions
between plugs in different parts of the network. This is particularly
visible in the case of driving the fluids with a low flow rate, in which
case some plugs can stop at bifurcations and wait for long periods
of time while others continue to advance. Nevertheless, symmetric
filling of the network is observed in both conditions. Finally, syn-

chronized filling can be achieved at high pressure and high flow rate
driving although different flow evolutions are observed at two  con-
ditions. A better understanding of the filling of a branching tree and
of the long range interactions in it should lead to improved models
of liquid dispersion in the lung, which is an important problem in
view of its application to pathology and drug delivery.
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