
PHYSICAL REVIEW FLUIDS 2, 113904 (2017)

Time-delayed feedback technique for suppressing instabilities
in time-periodic flow

Léopold Shaabani-Ardali,1,2,* Denis Sipp,2 and Lutz Lesshafft1
1LadHyX, École polytechnique–CNRS, 91120 Palaiseau, France

2DAAA, ONERA, Université Paris-Saclay, F-92190 Meudon, France
(Received 6 February 2017; published 17 November 2017)

A numerical method is presented that allows to compute time-periodic flow states, even
in the presence of hydrodynamic instabilities. The method is based on filtering nonharmonic
components by way of delayed feedback control, as introduced by Pyragas [Phys. Lett. A
170, 421 (1992)]. Its use in flow problems is demonstrated here for the case of a periodically
forced laminar jet, subject to a subharmonic instability that gives rise to vortex pairing. The
optimal choice of the filter gain, which is a free parameter in the stabilization procedure,
is investigated in the context of a low-dimensional model problem, and it is shown that
this model predicts well the filter performance in the high-dimensional flow system. Vortex
pairing in the jet is efficiently suppressed, so that the unstable periodic flow state in response
to harmonic forcing is accurately retrieved. The procedure is straightforward to implement
inside any standard flow solver. Memory requirements for the delayed feedback control
can be significantly reduced by means of time interpolation between checkpoints. Finally,
the method is extended for the treatment of periodic problems where the frequency is not
known a priori. This procedure is demonstrated for a three-dimensional cubic lid-driven
cavity in supercritical conditions.
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I. INTRODUCTION

Any analysis of linear flow instability first requires the definition of an unperturbed basic flow
state. An obvious problem is that such flow states, if indeed they are unstable, cannot be recovered
as asymptotic solutions by simple time stepping. In the context of steady flow, several methods
exist that allow the computation of unstable steady states. Newton-Raphson iteration [1] and
recursive projection [2,3] are efficient in many such configurations, although they may require
deep modifications of numerical flow solvers, and their convergence is often problematic. A robust
alternative, which furthermore is convenient to integrate into an existing time-stepping simulation
code, has been proposed by Åkervik et al. [4] under the name of “selective frequency damping”
(SFD). This technique has since been used for a wide variety of steady flow configurations.

Time-periodic flows constitute a distinct class of instability problems, and interest in the
computation of periodic states is furthermore not limited to the purpose of instability analysis.
Examples include vortex shedding in shear flows [5], pulsating flow in blood vessels [6], and
complex flow in turbomachines [7].

Even when a flow settles into an asymptotically stable time-periodic state in the long-time limit,
its computation by time stepping may be costly if long transient dynamics prevail. This difficulty can
be overcome by use of the “harmonic balance” technique [8,9], which consists in the simultaneous
computation of all or many temporal Fourier components of a given periodicity. A pseudotime is
typically employed in order to make all Fourier components converge. This approach is widely used
today both in fundamental and in applied contexts. Several improvements of the method address
specific issues: if the fundamental period is not known a priori, a “gradient-based variable time
period” algorithm [10–13] allows us to identify it as an additional unknown of the problem; if the
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flow is simultaneously forced at several frequencies, the method can be generalized [14]. Some
strategies for control and shape optimization have also been devised on this basis [15].

Yet time-periodic flows may sustain hydrodynamic instabilities. In particular, the growth of
subharmonic perturbations is observed in many such cases. Prominent examples are the pairing of
vortices in shear flows [16] and the parametric subharmonic instability (PSI) of internal waves in
stratified media [17]. Such instabilities may arise from linear dynamics, tractable in the framework
of Floquet theory, or from nonlinear effects, as in the case of PSI. It may be possible to retrieve
unstable periodic states through harmonic balance, as long as no harmonics of the fundamental
flow frequency are involved in the instability, but to the best of our knowledge, this has never been
attempted. Shooting methods have been designed to this effect [18,19], and these have been used
successfully in the context of some flow problems [20,21]. However, their implementation requires
a considerable overhead around a given flow solver.

The objective of this study is to present an easy-to-implement filtering technique, similar in spirit
to the SFD method [4] used for steady flow, that allows the exact computation of time-periodic orbits
in stable as well as unstable situations. To this end, an artificial forcing is added to the Navier-Stokes
equations, which is required to leave the dynamics of the fundamental flow frequency and of all its
higher harmonics unaffected, such that the simulation converges in time towards a periodic solution
of the unforced equations. A delayed feedback control [22] achieves this objective. Such time-delay
filters have been extensively used in the context of controlling chaotic dynamics in systems with
a low number of degrees of freedom. In a recent study [23], a similar technique is applied in a
high-dimensional flow problem, in order to suppress spatio-temporal asymmetries in wakes. In the
present paper, the use of time-delayed feedback for flow stabilization is explored.

The phenomenon of vortex pairing in an axisymmetrically forced jet is chosen to illustrate
the procedure. It is demonstrated how the artificial damping efficiently suppresses the growth of
subharmonic perturbations, and thereby the onset of vortex pairing, so that unstable periodic solutions
of the Navier-Stokes equations can be obtained. The feedback optimally eliminates subharmonic
components, letting the fundamental and its harmonic components unaffected, while all nonharmonic
frequencies experience damping. We will show that in weakly stable settings, the feedback can be
used to accelerate the convergence towards the asymptotic state. However, this method, due to the
full period storage, can be memory-consuming; to severely reduce the memory requirements, we
will show how spline interpolation between checkpoints in time can be used, without affecting much
the convergence properties of the algorithm.

When flow periodicity arises from intrinsic dynamics, as opposed to external forcing, the period
length of the asymptotic state is not known a priori. We will show that the stabilization method
for such cases can be extended to identify the period length through iterative adjustment, as will be
demonstrated for a cubic lid-driven cavity. Due to their broad range of application, cavities are well-
studied flow systems, which can sustain several types of instabilities [24]. A configuration is chosen
that is known to give rise to coexisting limit cycles and intermittently chaotic dynamics [25–27].

The paper is organized as follows. The jet flow example is introduced in Sec. II, and the occurrence
of vortex pairing in the absence of artificial damping is discussed. The stabilization method is pre-
sented in Sec. III. A single free parameter needs to be chosen; its optimal value is found in the context
of a simple model problem. Section IV documents the performance of the technique for an unstable
vortex street, with a discussion of the optimal parameter choice. It is further shown how the same
technique accelerates the convergence in stable situations, and how the memory requirements may be
reduced through check pointing and interpolation. Details on the simulation technique are provided
here. Section V extends the stabilization procedure to periodic flows with an unknown period.

II. AN EXAMPLE OF SUBHARMONIC INSTABILITY: VORTEX PAIRING IN JETS

Axisymmetric harmonic forcing at the nozzle of a laminar round jet excites, over a wide range
of frequencies, a shear instability of the steady flow state, leading to exponential growth of the
perturbation amplitude along the axial direction. As the amplitude reaches nonlinear levels, the
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FIG. 1. Vorticity snapshots of paired and unpaired states, obtained without stabilization for two different
parameter settings. The paired state (a) was obtained at Re = 2000 and St = 0.6 while the unpaired state (b)
was obtained at Re = 1300 and St = 0.6. Reynolds and Strouhal numbers are defined in Sec. IV A.

shear layer rolls up into a regular street of vortex rings, which form and convect at the frequency
of the applied forcing. Depending on flow parameters and forcing frequency (more details are
given in Sec. IV A), these vortices may undergo subsequent pairing [28], and if the ambient flow is
sufficiently quiet and the harmonic forcing is well-controlled, this pairing takes place in a perfectly
regular fashion. The numerical method is detailed in Sec. IV A.

In cases where pairing occurs, two neighboring vortices merge into one, such that the passage
frequency of vortices downstream of the pairing location is exactly half that of the imposed forcing. If
the forcing is characterized by the time period T , such that ωf = 2π/T , the “paired state” is globally
2T -periodic (T -periodic upstream of the pairing and 2T -periodic downstream). The velocity field
of a paired state will be denoted up. An example, obtained by direct numerical simulation, is shown
in Fig. 1(a).

Another case at different parameter settings, where no pairing is found to occur, is shown in
Fig. 1(b). Vortices roll up close to the nozzle and advect downstream, until they are dissipated by
viscosity. Such a flow state is (globally) T -periodic and will be called hereafter an “unpaired state.”
Its velocity field will be denoted uu.

The purpose of this study is to show how, for each paired state, a corresponding unpaired state
can be recovered, defining two valid periodic solutions of the Navier-Stokes equations at the same
parameter setting.

III. SUBHARMONIC STABILIZATION

In this section, after a brief presentation of filtering techniques (Sec. III A), a simple model
problem is introduced in order to determine the coefficients of a time-delayed feedback—here an
additional term added to the momentum equation—so that the forced Navier–Stokes simulation
converges towards a T -periodic state.
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A. Time-delayed feedback

A fully synchronized paired state can be decomposed into components that are T -periodic and
those that are only 2T -periodic,

up(x,t) =
∑

n

uT
n (x) exp(inωf t) +

∑
n

u2T
n (x) exp

(
i
2n + 1

2
ωf t

)
, with

n = 0,±1,±2, . . . , ± N. (1a)

An unpaired state, in contrast, is purely T -periodic,

uu(x,t) =
∑

n

uT
n (x) exp(inωf t). (1b)

The objective is to design a filter that will damp all 2T -periodic components under the second
sum in Eq. (1a), while leaving any T -periodic flow state unaffected. Of course, this filter should also
lead to a stable global system.

A first approach might be to consider a standard linear band-stop filter H that cuts around the
subharmonic frequency ωf /2 (i.e., gain |H (ωf /2)| � 1), while preserving the steady component and
the fundamental frequency: H (0) = H (ωf ) = 1. However, in order to achieve such characteristics,
a very high-order filter is needed: in logarithmic scale, ωf /2 and ωf are apart by only log(2) = 0.69,
whereas the gains are separated by − log[|H (ωf /2)|] � 1. This filter would be cumbersome to
implement, and it would require a careful stability and pole placement analysis, as described, for
example, by Aström and Murray [29] or by Doyle et al. [30]. Furthermore, such a filter could not
satisfy all requirements: the gain at ωf /2 cannot be strictly zero, and no constraint can be imposed
on the higher 2T -periodic harmonics (± 3

2ωf ,± 5
2ωf , . . .).

A better approach, that will be adopted here, is to use time-delayed feedback (TDF), as described
by Pyragas [22]. When the flow at time t is compared with the flow at time t − T , components of
period T and of period 2T are cleanly distinguished.

The 2T -periodic components in a paired state (1a), which are the target of artificial damping, are
thus isolated as

up(x,t) − up(x,t − T ) = 2
∑

n

u2T
n (x) exp

(
i
2n + 1

2
ωf t

)
, (2)

whereas a T -periodic unpaired state satisfies

uu(x,t) − uu(x,t − T ) = 0. (3)

Then adding a forcing term of the form

f = −λ[u(t) − u(t − T )] (4)

to the right-hand side of (12) allows us to control 2T -periodic fluctuations without any forcing on
T -periodic dynamics. In this framework, λ is a forcing parameter that needs to be prescribed (see
Sec. III B).

The Laplace transform of this forcing term is

L{f } = −λ(1 − e−ωT )L{u}, (5)

so that its gain for a given frequency ω is found as

‖L{f }‖
‖L{u}‖ (iω) = λ

√
2 − 2 cos(ωT ). (6)

The resulting transfer function is plotted in Fig. 2. The time-delayed feedback damps all frequencies
that are not harmonics of ωf , with maximum effect on the subharmonic frequency ωf /2 and on its
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FIG. 2. Gain of the delayed feedback transfer function.

odd harmonics (n + 1/2)ωf . It is neutral with respect to the mean flow, the fundamental frequency
ωf , and its harmonics nωf .

If the forced system converges towards a T -periodic unpaired state, the forcing will vanish, such
that the recovered state is a consistent solution of the unforced Navier-Stokes equations.

B. Choice of the feedback parameter λ

At first glance, it might be expected from (6) that larger values of λ will always lead to more
efficient nonharmonic damping. This however is not the case, similar to what has been demonstrated
in the context of low-dimensional chaotic systems [22].

In order to guide the choice of the feedback parameter λ for the present purpose, a model problem
is proposed. The dynamics of a two-frequency oscillator is considered,

d

dt

⎛
⎜⎜⎜⎝

xs

x̃s

xh

x̃h

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 ωf

2 0 0

−ωf

2 0 0 0

0 0 0 ωf

0 0 −ωf 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

xs

x̃s

xh

x̃h

⎞
⎟⎟⎟⎠ − λ

⎛
⎜⎜⎜⎝

xs(t) − xs(t − T )

x̃s(t) − x̃s(t − T )

xh(t) − xh(t − T )

x̃h(t) − x̃h(t − T )

⎞
⎟⎟⎟⎠, (7)

with T = 2π/ωf the period of the fundamental mode. Unlike the flow problem, the two frequencies
ωf and 1

2ωf in this model are uncoupled. After nondimensionalization, ωf t → t and λ/ωf → λ,
the system can be diagonalized as

d

dt

⎛
⎜⎜⎜⎝

ys

ỹs

yh

ỹh

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

i
2 0 0 0

0 − i
2 0 0

0 0 i 0

0 0 0 −i

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ys

ỹs

yh

ỹh

⎞
⎟⎟⎟⎠ − λ

⎛
⎜⎜⎜⎝

ys(t) − ys(t − 2π )

ỹs(t) − ỹs(t − 2π )

yh(t) − yh(t − 2π )

ỹh(t) − ỹh(t − 2π )

⎞
⎟⎟⎟⎠. (8)

In a general linear problem with time-delayed feedback, the eigenvalues are not found in closed
form, and their number is infinite [31]. In contrast, exact eigensolutions of the uncoupled problem
(8) can be found analytically. Introducing exponential modes, the following system is obtained:

ys ∝ eαs t ⇒ αs = i

2
− λ

(
1 − e−2παs )

, (9a)

ỹs ∝ eα̃s t ⇒ α̃s = − i

2
− λ

(
1 − e−2πα̃s )

, (9b)

yh ∝ eαht ⇒ αh = i − λ
(
1 − e−2παh)

, (9c)

ỹh ∝ eα̃ht ⇒ α̃h = −i − λ
(
1 − e−2πα̃h)

. (9d)
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FIG. 3. Real part of eigenvalues αh
j for −4 � j � 4, pertaining to fundamental oscillations, as functions

of λ. It is found numerically that αh
j and αh

−j always have the same real part. The system is neutrally stable for
any value of λ, with the neutral mode αh

0 = i.

As long as real values are chosen for λ, the solutions of Eqs. (9a)–(9d) come in complex conjugate
pairs, α̃s = ᾱs and α̃h = ᾱh. It is therefore sufficient to consider Eqs. (9a) and (9c) and their
closed-form solutions:

αs
j = i

2
− λ + 1

2π
Wj (−2πλe2πλ), (10a)

αh
j = i − λ + 1

2π
Wj (2πλe2πλ), j ∈ Z. (10b)

Wj denotes the j th branch of the Lambert W function, which is the inverse relation of the
complex function z 	→ zez [32]. An infinite number of solutions of Eqs. [(9a) and (9c)] exists,
each corresponding to individual branches of the Lambert function. In particular, W0 gives αh

0 = i

for any value of λ, preserving the harmonic dynamics. For the purpose of flow stabilization, only
the real part of the α values is of interest, as these govern the growth or decay of fluctuations. If, for
a given λ, there exists at least one j such that the real part of αs

j or of αh
j is positive, then the system

is unstable. Therefore, λ must meet two criteria:
(1) It should provide the most efficient damping in the subharmonic component equation (9a).

For a given λ, it is always sufficient to consider the least stable mode among all possible solutions,
i.e., the mode αs

j with the largest real part in Eq. (10a). The optimal value of λ leads to maximal
decay in the least stable mode.

(2) At the same time, λ must not create any instability in the fundamental equation (9c); the real
part of αh

j must be negative for every j ∈ Z. While the neutral fundamental mode αh
0 = i exists

irrespective of λ, it must not be dominated by any unstable mode.
In order to identify the optimal λ according to these requirements, the following result is

demonstrated in the Appendix: if, for a given value of λ, Eqs. (9a) or (9c) has unstable solutions, the
branch j on which this solution lies is such that

|j | < 2λ + 1. (11)

As will be seen later, optimal subharmonic damping is found to be achieved within the range
0 < λ < 2; consequently, the stability of the fundamental component must be ascertained for this
range of λ, and the branches −4 � j � 4 are to be considered.

Figure 3 shows that no fundamental modes on these branches are unstable for any value of λ. As
expected, the neutral eigenvalue αh

0 = i is always recovered, which is consistent with the premise that
the applied forcing does not modify the fundamental dynamics. Therefore, the stability requirement
for the fundamental modes (criterion 2) does not restrict the choice of λ.

Figure 4 demonstrates that the subharmonic modes on branches −2 � j � 2 experience damping
for any value of λ. The same is observed for branches |j | = 3,4. Therefore, all the subharmonic
modes are stable. The least stable modes among these correspond to j = 0 and j = −1. The real
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FIG. 4. Real part of eigenvalues αs
j , pertaining to subharmonic oscillations, as functions of λ. On the left,

eigenvalues for −2 � j � 2; on the right, zoom on small λ values only for j = 0. All these eigenvalues are
stable, but least so for the j = 0 branch. Higher eigenvalues than those shown are even more stable.

parts of αs
0 and αs

−1 are identical for λ > 0.04432. This is identified as the optimal λ value, as it
provides the strongest stabilization of αs

0.
It is now examined whether the damped value αs

0 = −0.203 + 0.501i is still the least stable across
all j branches. It is demonstrated in the Appendix that, if such a mode exists, it must stem from a
branch j such that |j | < 1 + (1 + e2π0.203)λ. For λ < 2, this criterion restricts the search interval
to −10 � j � 10. It can be reported that αs

0 is indeed the least stable eigenvalue of the stabilized
system. Consequently, λ = 0.04432 is the optimal value of the damping parameter, leading to a
system where the maximum subharmonic growth rate is −0.203.

IV. STABILIZED VORTEX STREET

In this section, the TDF technique presented in Sec. III is applied to the case of vortex pairing. The
configuration and the numerical code used in this article (Sec. III A) are first described in more detail.
Then, in Sec. IV B, it is demonstrated that adding a time-delayed feedback makes a Navier-Stokes
simulation converge towards the unstable unpaired state when initialized with the natural paired
state. In Sec. IV C, it is confirmed that the simple model problem provides the optimal coefficient
in the present vortex pairing case. Finally, in Sec. IV D, the technique is shown to also provide an
efficient means to accelerate convergence in the case of a stable unpaired state.

A. Simulation method

Direct numerical simulations were carried out using NEK5000 [33], an incompressible spectral
element code. An axisymmetric laminar jet is described in cylindrical coordinates (z,r), z being the
main flow direction and r being the radial distance from the jet axis. The flow is assumed to be
governed by the incompressible Navier-Stokes equations with zero azimuthal velocity, written in
dimensionless form as

∂u
∂t

+ (u · ∇)u = −∇p + 1

Re
�u, ∇ · u = 0. (12)

The velocity u has axial and radial components u and v, and p denotes pressure. The jet diameter
D and the inlet centerline velocity U0 are used to render the flow problem nondimensional, defining
the Reynolds number as Re = U0D/ν, with ν the kinematic viscosity. The computational domain
extends over 15 × 5 diameters in the axial and radial directions, respectively, and it is discretized
with 6600 spectral elements, each containing 64 mesh points. Mesh convergence has been validated
by comparing results for different spectral polynomial orders (n = 4, 6, 8, and 10; 8 being the
standard). Boundary conditions are specified as follows.
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(1) In the inlet plane, z = 0, a hyperbolic-tangent velocity profile is imposed. In dimensionless
form, its amplitude is modulated in time as

u(r,t) = 1

2

{
1 − tanh

[
1

4θ0

(
r − 1

4r

)]}
[1 + A cos(ωf t)]ez, (13)

where A = 0.05 is the forcing amplitude of the jet, θ0 = 0.025 is the initial dimensionless mixing
layer thickness and ωf is the axial forcing frequency. The periodic nature of the flow is imposed
with the periodic inlet forcing, similar as in Jacobs and Durbin [34]. The forcing period is given by
T = 2π/ωf , and the Strouhal number is defined as St = ωf D/(2πU0).

(2) On the centerline of the jet, r = 0, axisymmetric boundary conditions are imposed,

∂u

∂r
= v = ∂p

∂r
= 0. (14)

(3) In the outlet plane, z = 15, and on the lateral boundary, r = 5, a stress-free outflow condition
is applied:

−pn + 1

Re
(∇u)n = 0. (15)

The flow configuration is thus characterized by the Reynolds number Re, the Strouhal number
St, the dimensionless mixing layer thickness θ0, and the forcing amplitude A.

B. Computation of an unstable unpaired state

The stabilization technique described in Sec. III A is now applied, by adding a time-delayed
feedback term

f(t) = −λωf [u(t) − u(t − T )] (16)

to the right-hand side of the Navier-Stokes equations (12). The parameter setting Re = 2000 and St =
0.6 has previously been found to exhibit synchronized vortex pairing in the absence of stabilization
[Fig. 1(a)] and will serve as example case. The action of the feedback is measured by tracing a norm
of nonharmonic (in the sense of non-T -periodic) fluctuations, defined as

e(t) = 1

2

√∫
z

∫
r

r‖u(t) − u(t − T )‖2 dr dz. (17)

This quantity measures the residual during the stabilization process.
The simulation is started at t = 0 from the paired state represented in Fig. 1(a), and the optimal

value λ = 0.04432 as identified in Sec. III B is used first. Feedback is switched on at t = T , because
one flow period needs to be recorded before the TDF term can be evaluated. The evolution of e(t) is
plotted in Fig. 5; four phases in the stabilization process can be distinguished.

During the first phase, the applied forcing quenches the 2T -periodic paired vortices. The distinct
vortex structures downstream of the pairing location are thus replaced by a diffuse band of vorticity,
as seen by comparing Figs. 6(a) and 6(c). The magnitude of the nonharmonic component, ‖u(t) −
u(t − T )‖, which is proportional to the magnitude of the instantaneous forcing, is displayed in
Fig. 6(d): the forcing at this stage is active in the entire paired region, but not in the region of
initial vortex roll-up. This behavior is typical for 0 < t < 5T , when the decay of the nonharmonic
component is fastest, according to Fig. 5. This stage of the stabilization process is conceptually
similar to the subharmonic damping in the model problem of Sec. III B. However, the damping rate
observed in the jet is smaller than predicted by the model. This may be explained by the inherent
positive subharmonic growth in the jet, which the damping has to overcome, whereas no such growth
was assumed in the model problem.

During the following phase, the flow domain is gradually repopulated by a street of unpaired
vortices, essentially by convection, as shown in Fig. 6(e). This interpretation is consistent with the
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shown in Fig. 6.
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in Fig. 1(b).
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FIG. 7. Residual norm as a function of time for several values of λ : λ � 0.0432 (a) and λ � 0.0432 (b).
Curves for λ = 0.0425, 0.0475 are omitted for clarity. At values of λ larger than 0.5, the convergence is
increasingly ill-behaved, displaying huge oscillating behavior, and results are not reported.

map in Fig. 6(f), where nonharmonic fluctuations are seen to be concentrated around the trailing end
of the emerging vortex array. This behavior dominates the plateau region around t = 10T in Fig. 5.

The third phase begins as the unpaired vortex street reaches the downstream end of the domain,
when the flow visually appears to have reached a periodic state, displayed in Fig. 6(g). The
nonharmonic fluctuations at the trailing end of the vortex street leave the domain at this point,
as seen in Fig. 6(h), and this leads to a second sudden drop in the residual norm e(t) in Fig. 5.

In the final phase, the flow is globally synchronized, and no visible difference between subsequent
periods is observed anymore. Fig. 6(i) shows the flow state at t = 44T . The residual norm continues
to slowly decay in time as residual fluctuations are suppressed. These fluctuations are located far
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FIG. 8. Residual norm e(t) at t = 50T , 100T , and 250T as a function of λ.

from the jet inlet [see Fig. 6(j)], and they do not present any spatial structure that can be associated
with vortex pairing.

C. Validation of the optimality of the feedback parameter λ

In the preceding section, λ has been prescribed as the optimal value derived in the context of a
model problem. The optimality for the present flow problem is now to be assessed. The simulation
from Sec. IV B is repeated, over a time horizon of 250T , with 16 different values of λ between 0.01
and 2. The time evolution of e(t) is documented in Figs. 7(a) and 7(b) for each value 0.01 � λ � 0.5.
Larger values give poor results and are not reported.

Comparable results are achieved with 0.03 � λ � 0.2; all curves in this range display the same
characteristic phases of convergence, albeit with different efficiencies over short times. The long-time
residual e(t � T ) is seen in Fig. 8 to be insensitive to the choice of λ within these limits. However,
an optimal λ value may be identified that induces the fastest convergence towards the final phase,
i.e., the λ for which the end of the third phase defined in Sec. IV B is reached in the shortest time.
Figures 7(a) and 7(b) show that the optimal value in this sense, among all values tried, is indeed
λ = 0.04432, the one obtained in Sec. III B.

D. Convergence acceleration in a stable setting

In the context of steady flows, selective frequency damping is effective in stabilizing unstable
settings, but it also provides accelerated convergence towards a steady state in weakly stable situations
[4]. Time-delayed feedback may achieve the same for weakly stable periodic flow. The case of a
jet at Re = 1300, forced at St = 0.6, is chosen for a demonstration. The stable periodic solution in
this setting is the unpaired state presented in Fig. 1(b). This case is close to the onset of a pairing
instability, as the same configuration with Re = 1400 settles into a stable paired state. Convergence
of the final periodic unpaired state at Re = 1300 is slow as a consequence.

A converged steady laminar state without inflow forcing is chosen as initial condition, and
harmonic inflow forcing (13) is started at t = 0. Simulations are then performed with and without
time-delayed feedback; the nonharmonic component norm e(t) is plotted as a function of time for
both runs in Fig. 9.

Without damping, pairing sets in quickly several diameters downstream of the inlet. The paired
vortex is then convected downstream, while repeated pairing takes place at almost the same location,
such that the global norm of non-T -periodic components continue to grow (dashed line in Fig. 9).
This growth ends at t = 14T , when the first paired ring reaches the outlet, as can be seen in Figs. 10(a)
and 10(b). Subsequently, e(t) decays as the pairing location moves slowly downstream. At the end
of the simulation, at t = 200T , pairing still takes place near the downstream end of the domain, as
shown in Figs. 10(c) and 10(d). Evacuation of the transient pairing through convection is a very slow
process in this setting.
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FIG. 9. Evolution of the residual norm e(t) with and without stabilization applied. The different time steps
defined in Sec. IV D are reported.

In the presence of time-delay feedback, pairing is never observed, and the convergence is
significantly accelerated. According to Fig. 9, subharmonic fluctuations are reduced to residual
levels within 20 forcing periods, which corresponds to the convection time of vortices through the
domain. Snapshots of vorticity and of nonharmonic components are shown in Fig. 11 for three
notable instances, as marked in Fig. 9.

E. Reducing the memory requirements through time interpolation

The TDF method described so far, although easy to implement, needs the storage of one full flow
period, which can be resource-intensive, especially in the case of three-dimensional simulations. A
remedy may be to store all flow variables and their time derivatives only at N equispaced instants
over one period, and to approximate all intermediate time steps through interpolation.

A first interpolation technique could rely on Fourier methods, since the converged flow is T -
periodic. However, since the algorithm is based on the damping of nonperiodic components, accurate
reconstruction of these component precludes the use of Fourier series.

A spline interpolation is tried instead: each period is composed of N�t time steps, and N

equispaced time steps of the previous running period are stored in memory, i.e., one time step every
N�t/N time steps. The time derivative ut of the velocity at each time step, computed with a centered-
difference scheme, is also stored. Then, to reconstruct the flow at t − T , if ti � t − T � ti+1, with
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FIG. 10. Vorticity (left) and nonharmonic component magnitude ‖u(t) − u(t − T )‖ (right) without time-
delayed feedback applied represented at t = 14T (a)-(b) and 200T (c)-(d). The vorticity colorbar is in Fig. 1(b).
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FIG. 11. Vorticity (left) and nonharmonic component magnitude ‖u(t) − u(t − T )‖ (right) with time-
delayed feedback applied represented at t = 4T (a)-(b), 15T (c)-(d) and 23T (e)-(f ). The vorticity colorbar is
in Fig. 1(b).

ti and ti+1 time steps where the flow is stored, the following spline interpolation formula is used:

ũ(r,z,t − T ) = (1 − t ′)2(1 + 2t ′)u(r,z,ti) + t ′(1 − t ′)2 T

N
ut (r,z,ti)

+ t ′2(3 − 2t ′)u(r,z,ti+1) + t ′2(t ′ − 1)
T

N
ut (r,z,ti+1), (18)

with the normalized time

t ′ = t − T − ti

ti+1 − ti
. (19)

This interpolation technique yields interpolated values, continuous up to the first time-derivative,
that match the true velocity and acceleration at every checkpoint. Therefore, the forcing used in the
Navier-Stokes equations (12) is now taken as

f̃(t) = −λωf [u(t) − ũ(t − T )]. (20)

In traditional check-pointing techniques, such as the one used in direct-adjoint optimization
schemes ([35,36]), a new simulation is run from the checkpoint to avoid errors from interpolation.
This strategy cannot be applied in the present case, due to endless interdependency between periods:
the time-delayed feedback at t − T requires the knowledge of the flow at t − 2T , which in turn
depends on the flow state at t − 3T , and so forth.

The reconstruction technique has been evaluated for the paired jet case at Re = 2000 and St =
0.60. Each period of the flow is composed of 1000 time steps, with �t = 5/3 × 10−3. Four cases
have been investigated and compared to the results obtained without interpolation: N = 50, 20, 10,

and 5. These cases respectively need 10, 25, 50, and 100 times less memory than the full-storage
method (as memory is needed for the flow and its derivative).
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FIG. 12. Convergence analysis of the stabilization procedure with interpolation, for different storage
requirements N : (a) residual norm based on the interpolated velocity ẽN (t) as a function of time for different
N and comparison to full-storage residual e(t) and (b) ratio between the exact residual eN (t) and the residual
obtained with full storage e(t) as a function of time for different N . For N = 5, 10 and 20, ẼN is defined as the
maximum peak of ẽN (t) when the residual starts oscillating. For N = 50, no oscillations of ẽN (t) are observed.

In order to evaluate the convergence performance of the algorithm for various values of N , two
residuals are used. The first one, denoted ẽN (t), is based on the interpolated velocity ũ at t − T :

ẽN (t) = 1

2

√∫
z

∫
r

r‖u(t) − ũ(t − T )‖2 dr dz. (21)

The second one, denoted eN (t), is based on the true velocity u at t − T , as defined in Eq. (17).
ẽN (t) is the only available residual when interpolation is applied in general, whereas eN (t) is the true
residual, which is normally unknown. For each N , the evolution of each of these two residuals is
compared to the evolution of the residual e(t) obtained with the full-storage version (see Sec. IV B).

The convergence results with the interpolated residual ẽN (t) are depicted in Fig. 12(a). In every
case, the residual first decreases in the same way as the uninterpolated stabilized flow. However,

113904-14



TIME-DELAYED FEEDBACK TECHNIQUE FOR . . .

TABLE I. Maximum normalized error between the interpolated and the real flow as a function of N for a
fully stabilized unpaired flow at Re = 2000 and St = 0.60.

N 50 20 10 5

maxt ‖u(t)−ũ(t)‖
e(T ) 3.6 × 10−6 1.3 × 10−4 1.5 × 10−3 1.1 × 10−2

for N < 50, the residual starts to oscillate at a critical residual threshold. These oscillations have a
maximum peak value ẼN , which depends on N , and they descend in all cases to the same residual
level E that is found in the full-storage solution (black line). The oscillation period corresponds to
the interpolation period T/N . It is found that at the precise instants where snapshots are stored, the
residual ẽN (t) is of the same order as the reference residual E.

In order to understand the meaning of this residual peak ẼN , the maximum error between the
interpolated and the real flow field as a function of t and N has been computed for the stabilized
unpaired case. This maximum error occurs at t = (ti + ti+1)/2 and is listed in Table I. For each N ,
the values obtained are of the same order as ẼN from Fig. 12(a). For N = 50, the value 3.6 × 10−6 is
one order of magnitude smaller than mint ẽ50(t) = 6 × 10−5, which explains why oscillations are not
encountered in this case. The residual from the interpolated velocity ẽN (t) can then be understood as
the sum of two components: the non-T -periodic component of the flow eN (t) and the interpolation
error of the flow at t − T . At large times, the interpolation error component seems to dominate the
interpolated residual ẽN (t). We will now prove this statement and show that interpolation does not
affect the overall precision of the reconstructed flow.

For this, Fig. 12(b) displays the evolution of the ratio between the residual eN (t) computed
with the exact flow field for each interpolation level N and the residual e(t) from the full-storage
reference case. For t > 30T , in the final phase of stabilization [see Fig. 12(a)], the exact residual with
interpolation eN (t) is only slightly above the residual from full-storage calculations. As N increases,
the interpolation improves and eN (t) approaches the reference value. It is found that the stabilized
flow state obtained with checkpointing, even for N = 5, is about as accurate as the full-storage
solution, despite large residual values ẽ(t) between checkpoints. When interpolation is used and
only ẽN (t) is available, the convergence of the algorithm should therefore be assessed only at times
t that correspond to checkpoints at t − T .

V. STABILIZATION OF LIMIT CYCLES UNKNOWN FREQUENCIES:
THE LID DRIVEN CAVITY EXAMPLE

When the frequency of the limit cycle is not known a priori, unlike the jet example, some
techniques have been developed in the harmonic balance technique to overcome this issue, such
as the Gradient-Based Variable Time Period [10–13]. This technique is based on considering the
residual as a function of not only t but also T , and to choose T as an extremum of this residual. This
method, based in their case on gradient computations, can easily be transposed to our stabilization
procedure:

(1) A starting guess Tg of the period T0 of the limit cycle is required.
(2) TDF is then applied with this Tg . Both the term u(t − Tg) and the dimensional λ depend on

Tg; see Eq. (16).
(3) At t = t1, when initial transients are stabilized, i.e., when e(t1,Tg) is small enough (for

instance, e(t1,Tg) < 0.01‖u(t1)‖), a new value for Tg is identified as the minimum

Tg = arg min
T ′∈[0.8Tg ;1.2Tg ]

e(t1,T
′), (22)

with the residual e(t,T ) as defined in Eq. (17). This global search, almost inexpensive since u(t) and
u(t − T ′) are already stored, is restricted to [0.8Tg; 1.2Tg] in order to avoid abrupt variations of Tg .

(4) The stabilization procedure is applied again with the new Tg over a time horizon equal to Tg .
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TABLE II. Review of the critical Reynolds number and frequency of the linear unstable mode at Rec for
the cubic lid-driven cavity.

Feldman and Gelfgat ([25]) Kuhlmann and Albensoeder ([26]) Loiseau et al. ([27])

Rec 1914.0 1919.5 1914.0
ωc 0.575 0.586 0.585

(5) The global search is regularly carried out at ti+1 = ti + Tg .
We prefer performing regular global searches for Tg instead of calculating ∂e/∂T , because the

full storage of the past period allows us to perform a cheap and quick optimization over a full range
of Tg values ([0.8Tg; 1.2Tg]) and because of the superior robustness provided by global methods
compared to local methods.

As the limit-cycle frequency in the forced jet is prescribed by the applied forcing, it would be
contrived to treat it as an unknown. The flow in a three-dimensional cubic lid-driven cavity is chosen
instead for a demonstration. It has been shown that the steady solution of such a flow, above a critical
Reynolds Rec, is no longer stable [25–27], and that it bifurcates towards a limit cycle in a slightly
subcritical fashion [26]. The bifurcated state is unsteady and, close to Rec, it evolves at the frequency
ωc predicted by linear stability theory. Critical Reynolds number and frequency are listed in Table II.
However, as shown in Refs. [26,27], this limit cycle is not stable since it experiences intermittent
chaos: short bursts occur that destabilize the cycle before disappearing. Therefore, without applying
any stabilization technique, it cannot be expected that this cycle will converge naturally.

These simulations have been carried out again with NEK5000, on the same mesh as used in Ref. [27].
The driving velocity and the cube side length are used to nondimensionalize the problem. A Reynolds
number of 1930, above the critical limit, is chosen. At this Reynolds number, the limit-cycle frequency
is kept unchanged at ω0 = 0.585 ([27]). The time step was fixed to �t = 2.0 × 10−3. In this study,
all time steps have been stored (the method described in Sec. IV E was not applied). At t = 0, the
cavity is at rest: u(t = 0) = 0.

To understand the performance of the algorithm, several cases have been investigated:
(1) With no forcing.
(2) With forcing applied at the fixed frequency of the limit cycle, ω0 = 0.585.
(3) With variable-frequency forcing applied, starting from an initial guess. Five estimated values

have been tried: ωg = 0.50, 0.55, 0.60, 0.65, and 0.585. The frequency interval covered is ω0 ± 15%.
The results are reported in Fig. 13. First, it can be stated that the method works for every ωg

studied: the convergence is improved by at least two orders of magnitude compared to the time
stepping without stabilization. Moreover, the convergence of the flow and ω is achieved whatever
ωg studied, which shows the robustness of the technique. Convergence is achieved in about 25T0

whatever ωg , which is the same physical time needed for the case with fixed ω0 to settle. Therefore,
the frequency search does not augment significantly the computational cost. However, contrary to
the unpaired jet, the decrease of the residual is not monotonic, which can be linked to the fact that
the cavity flow is not receptive to ω0/2 perturbations but to other frequencies [27].

VI. CONCLUSION

A time-delayed feedback method, introduced by Pyragas [22] in the context of ODEs with few
degrees of freedom, has been applied to a flow problem for the purpose of computing unstable
time-periodic states. It has been demonstrated that spontaneous vortex pairing in a harmonically
forced jet is efficiently suppressed by this method, such that an unpaired vortex street, synchronized
at the frequency of the prescribed inflow forcing, is recovered. In this final converged flow state,
the stabilizing feedback term vanishes, and the recovered state is therefore a true solution of the
flow equations, uncompromised by artificial damping. The one free numerical parameter for this
procedure has been chosen based on a simple model problem, where the optimal value could be
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FIG. 13. Convergence analysis of the lid-driven cavity: (a) norm of the residual component as a function
of time for the different cases studied normalized with the total velocity norm at t = 50T0 for the fixed ω0 case
and (b) evolution of the global frequency guess for each case as a function of time.

determined analytically. It has then been found that the same value provides optimal convergence
also in the jet calculations.

The same technique has been shown to be useful also in weakly stable situations, where
uncontrolled time stepping converges towards a T-periodic state, but only slowly so. Artificial
damping through time-delay feedback greatly increases the rate of convergence in this case.

The described method is very easy to implement with a given flow solver, as it requires only
the addition of a simple source term, as well as the storage of one full cycle of the flow. The latter
aspect may be memory resource-intensive. An interpolation method has been proposed in order to
overcome this limitation. In the jet example, the storage requirement could thus be reduced by a
factor 100, without significant loss of accuracy, and at negligible additional cost.

The suppression of vortex pairing in the present example enables a stability analysis of the
recovered unpaired state, and the results of such analysis will be reported in a forthcoming study.

The time-delayed feedback method has finally been adapted to stabilize limit cycles in unforced
flows, where the frequency is not known a priori. This was demonstrated for a lid-driven cubic cavity
case with intermittent chaos. The procedure has been found to be very effective, enabling limit-cycle
stabilization at the correct frequency. The iteration identification of the limit-cycle frequency, as

113904-17



SHAABANI-ARDALI, SIPP, AND LESSHAFFT

an additional unknown, did not lead to prolonged simulations in the cavity example. As in the
harmonically forced jet, the recovered state is a true solution of the flow equations.
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APPENDIX: STABILITY OF SOLUTIONS TO EQS. (9a) AND (9c)

Consider the equation

α = ki − λ(1 − e−2πα), (A1)

with both k and λ having positive real values. Solutions [32] are found as

αj = ki − λ + 1

2π
Wj (2πλe2π(λ−ik)), j ∈ Z. (A2)

The j th solution involves the j th branch Wj of the Lambert function. Assuming that there exists
a branch Wj such that Re(αj ) > β for a given λ, the triangular inequality, applied to Eq. (A1),
guarantees

|αj | � |ki| + λ|1 − e−2παj | � k + (1 + e−2πβ )λ. (A3)

The imaginary part of (A2) is evaluated as

Im(αj ) = k + 1

2π
Im[Wj (2πλe2π(λ−ik))]. (A4)

Positive and negative integer values of j need to be considered separately.

1. Case j > 0

In this case, from [32], as Im[Wj (z)] > 0 for all complex number z and k > 0:

|Im(αj )| = k + 1

2π
Im[Wj (2πλe2π(λ−ik))], (A5)

so that, as |αj | � |Im(αj )|:

|αj | � k + 1

2π
Im[Wj (2πλe2π(λ−ik))]. (A6)

Therefore, combining (A3) and (A6):

Im[Wj (2πλe2π(λ−ik))] � 2π (1 + e−2πβ )λ. (A7)

From the properties of the Lambert function [32], and because j > 0, Im[Wj (z)] > 2π (j − 1) for
all complex z. Therefore a necessary condition for Re(αj ) > β with j > 0 is

|j | < 1 + (1 + e−2πβ )λ. (A8)

2. Case j < 0

In this case, from [32], as Im[Wj (z)] < 0 for all complex number z and k > 0:

|Im(αj )| = k − 1

2π
Im[Wj (2πλe2π(λ−ik))], (A9)
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so that, as |αj | � |Im(αj )|,

|αj | � k − 1

2π
Im[Wj (2πλe2π(λ−ik))]. (A10)

Therefore, combining (A3) and (A10):

−Im[Wj (2πλe2π(λ−ik))] � 2π (1 + e−2πβ )λ. (A11)

From the properties of the Lambert function [32], and because j < 0, Im[Wj (z)] < 2π (j + 1) for
all complex z. Therefore a necessary condition for Re(αj ) > β with j < 0 is

|j | < 1 + (1 + e−2πβ )λ. (A12)

3. Conclusion

The two cases j ≶ 0 leads to the same conclusion, which is also valid for j = 0. Therefore, for
a given λ, any mode αj such that Re(αj ) > β must derive from branches Wj with

|j | < 1 + (1 + e−2πβ )λ. (A13)

This criterion is strict and holds for any value of k.
In particular, for a given λ, the unstable modes, if they exist, must derive from branches Wj with

|j | < 1 + 2λ.
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