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Abstract

It has long been established that turbulent jets comprise large-scale coher-
ent structures, now more commonly referred to as “wavepackets” [1]. These
structures exhibit a remarkable spatio-temporal organisation, despite turbu-
lence.

In this work we analyse, from a qualitative point of view, the temporal
dynamics of axisymmetric wavepackets educed, experimentally, from sub-
sonic iso-thermal jets. We use the data presented by [2], where time-series of
the wavepackets are extracted at different streamwise locations. A thorough
analysis is performed; statistical tools are used for estimating the embed-
ding and correlation dimensions characterising the dynamical system. Sys-
tem identification is used for computing nonlinear surrogate models. Finally,
control-oriented linear models are computed.

The goal of the contribution is to assess the extent to which non-linear
models are necessary, or appropriate, for description of the temporal wave-
packet dynamics and to provide a complementary perspective to the current
modelling.

Keywords:

1. Introduction

Following the early studies of Mollö-Christensen [3, 4, 5], a considerable
body of work has been devoted to exploring the nature of organised motions
that are observed in turbulent jets [6, 7, 8, 9, 10]. It was hypothesised early
on that this component of the flow might be understood in terms of an

Email address: semeraro [at] ladhyx.polytechnique.fr (Onofrio Semeraro)

Preprint submitted to Physical Review Fluids (PRF) September 10, 2018

ar
X

iv
:1

60
8.

06
75

0v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  2

4 
A

ug
 2

01
6



Figure 1: Left: realisation taken from Large Eddy Simulation (axisymmetric component
of pressure at St = 0.37). Right: Global mode (m,St) = (0, 0.37). Courtesy of [27]

instability of the turbulent mean [6, 11, 12, 13, 14, 15]; and the importance
of such flow structures for sound radiation has been suggested in numerous
studies [16, 17, 18, 19, 20, 8, 21].

It is only more recently, however, thanks largely to progress in theory,
numerical simulation and experimental diagnostics, that it has been possible
to explore these hypotheses in a comprehensive manner. Exhaustive compar-
ison of the results of theory with experimental measurements has confirmed
that the average characteristics of coherent structures in turbulent jets are re-
markably well described by solutions of the Navier-Stokes equations linearised
about the turbulent mean [22, 23, 24]; these solutions are synonymous with
globally stable modal solutions [25, 26, 27], which, physically, amount to hy-
drodynamic waves that are convectively amplified in the upstream region of
the flow, but become neutrally stable and then decay farther downstream. It
is for this reason that they have been given the denomination ‘wavepacket’
[1]. An example of a modal solution, from [27], is shown in figure 1, where it
is compared with a realisation taken directly from the Large Eddy Simulation
[28] that provided the mean flow. The wavepackets can be seen to comprise
a hydrodynamic component, with an amplitude envelope as described above,
and an acoustic component that takes the form of a directive beam radiating
to shallow angles.

Considering the Reynolds number of the jet, Re = 1× 106, and the fact
that it issues from a nozzle with fully turbulent boundary layers, the agree-
ment between the LES realisation and the linear global mode is striking. One
is compelled to ask how, despite the non-linear, orderless character of the tur-
bulence that dominates the fluctuation energy of this flow, such organisation
can exist and how a linear model can capture so many of its features.

However, something less clear from the images is the considerably lower
acoustic efficiency of the linear wavepacket. As shown in a number of recent
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studies [29, 24, 30], the intensity of the soundfield of the linear solution, once
the hydrodynamic fluctuation levels of LES and model have been matched,
can be as much as 40dB below that of the LES. Such a large discrepancy,
in the face of such compelling organisational similarity, is intriguing and the
subject of a number of ongoing research efforts, which we summarise briefly
in what follows.

The present understanding is that the linear dynamics do not contain
the acoustically important degrees of freedom: the average wavepacket does
not generate the average sound [31, 32, 33, 24, 29]. The essential sound-
producing motions are those associated with higher-order statistics of the
wavepacket dynamics. These motions have been denoted ‘jitter’ by [31], and
would appear to be underpinned by non-linearity [24, 29, 34, 35].

The nature of this non-linearity remains to be clarified, and it motivates
the present study. Do wavepackets jitter on account of non-linear wave-wave
interactions [36, 37], i.e. is the non-linearity of an intrinsic kind? Or is it
rather an extrinsic, stochastic forcing of linear waves by background turbu-
lence that leads to the activation of these higher-order degrees of freedom
[34, 35]? Or might both extrinsic and intrinsic mechanisms be at work? In
this work, in light of the foregoing considerations and questions, we are inter-
ested in low-dimensional projections of the complete wavepacket dynamics.

A further issue, that motivates both the modelling efforts evoked above
and the work we undertake in this paper, is that of control. Given the suc-
cess of linear models in predicting both the average wavepacket structure, in
frequency space, and the real-time evolution in an experimental context [38],
is it legitimate to ask if the tools provided by linear control theory might
be sufficient? Such possibilities are presently being explored by [39]. But
if it were to be necessary to directly manipulate the more subtle dynam-
ics associated with the energetically-unimportant-but-acoustically-essential
degrees-of-freedom, then a non-linear control framework would be required
(machine learning etc. [40]). In both cases the question of the dimension
of the space spanned by the dynamics must again be asked: is this small
enough for control to be realistic in an experimental context?

And, finally, there is the issue of the physical interpretation of POD
modes, which some recent results show may correspond to the highest gain
structures of the linear Navier-Stokes operator subject to stochastic exter-
nal forcing by turbulence. With this in mind, the various analyses of the
dynamics will be performed using both raw and POD-filtered data.
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Consideration of the above issues via qualitative dynamical analysis has,
to the best of our knowledge, not previously been attempted. We therefore
consider the same turbulent jets studied by [41, 23, 2], using a variety of
non-linear signal-processing and system identification techniques, in order to
explore dynamics of low-frequency wavepackets. Particular attention is given
to pressure signals dominated by fluctuations at Strouhal numbers St < 0.2,
where linear models are found to perform most poorly.

Our analysis starts with a minimal description of the experimental setup
in Sec. 2; we refer to [2] for a detailed description. The remainder of the
paper is organised in two parts. The behaviour of the time-series obtained
from the experimental campaign is discussed in Sec. 3, where statistical tools
and spectral analysis are introduced for a preliminary characterisation of the
temporal dynamics.

In the second part, we pursue an alternative approach by analysing reduced-
order models of the time-series, based on system identification; the approach
is introduced in Sec. 4, while the dynamical analysis is reported in Sec. 5
and Sec. 6 . More details on the techniques are given in Appendix A. The
manuscript finalizes with a discussion of the results and concluding remarks
in Sec. 7.

2. Experimental data

The study presented in this paper is based on the analysis of the temporal
behaviour of axisymmetric wavepackets educed from iso-thermal turbulent
jets. In particular, we consider the near-field pressure fluctuations measured
by [2]. For a detailed description of the measurement setup, data acquisition
and post-processing the reader can refer to that paper. We here limit our-
selves to a brief presentation of the data, in order to highlight those features,
which are relevant to the analysis we perform.

2.1. Experimental setup

We consider an unforced, isothermal, subsonic jet issuing from a round
nozzle with a fully turbulent boundary layers. The flow is thus very different
to the transitional jet studied by [42]. The setup is shown in Fig. 2a, and
a schematic of the near-field microphone array used for eduction of the ax-
isymmetric wavepacket signature is sketched in Fig. 2b. The experiments
were carried out in the anechöıc free jet facility at the Centre d’Etudes
Aérodynamiques et Thermiques (CEAT), Institut Pprime, Poitiers (FR). The
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Figure 2: Overview of the experiment, adapted from [2].

Figure 3: The near-field signal is shown as a function of the distance from the nozzle exit
(x/D) and the time τ , scaled with the velocity U and the diameter D. The measured
quantity is the pressure related to the axisymmetric mode m = 0. The time-series are
obtained from the POD reconstruction described in [2].

jet Mach number ranged from Ma = 0.4 to Ma = 0.6. In what follows,
the diameter of the nozzle, D = 0.05m, is taken as the reference length-
scale, while the exit velocity, U , is the reference speed. Time is scaled as
τ = tU/D. The corresponding Reynolds number Re = ρUD/µ ranges be-
tween 4.2×105 < Re < 5.7×105, where ρ is the density and µ the air viscosity.
The potential core length of the jet ranges between 5 < x/D < 5/5.

Azimuthal rings of six microphones recorded pressure fluctuations from
the near-field of the jet, on a conical surface. An azimuthal ring of three
microphones recorded the far-field fluctuations. In this work, we focus on
the near-field fluctuations; two different datasets are analysed, obtained from
two measurement campaigns.

1. The first set of data is obtained by simultaneous measurements at 7
different streamwise locations in the near-field. At each location, an
azimuthal ring, each with 6 microphones, is positioned. The array thus
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comprises a total of 42 microphones, placed on a conical surface in the
near-field of the jet, as shown in Fig. 2b. The spacing between the rings
is x = 0.75D. At each x/D location a Fourier-series decomposition is
performed in the azimuthal direction.

2. The measurements of the second campaign are performed using a rig of
4 equi-spaced, azimuthal rings, which are displaced in the streamwise
direction over the range 0.5D < x < 8.9D with a streamwise resolution
of x = 0.4D. This set of measurements allows a more detailed computa-
tion of the two-point flow statistics, providing the cross-spectral-density
matrix, an eigen-decomposition of which provides POD modes.

This POD basis is used for the projection of the data from the first campaign.
In this way, a larger domain along x/D is spanned. The temporal dynamics
of the axisymmetric mode m = 0 is shown in Fig. 3, as a function of time
τ and the streamwise direction. This space-time picture is complementary
to the frequency-space realisation shown in Fig. 1. Both show clearly the
highly organised nature of wavepackets in these high-Reynolds-number, fully
turbulent jets.

Our study focuses on the temporal dynamics of the axisymmetric mode
m = 0. The analysis is carried out by considering the time-series extracted
at given streamwise locations, for each of the datasets. By definition, a time-
series is a sequence of equi-spaced data points, function of time. For our case,
the sampling rate is 105Hz, and the total number of points for each series is
N = 2.4× 105.

In the following section, preliminary analysis of the temporal behaviour
is performed by means of spectral analysis and estimation – using non-linear
tools – of the embedding and correlation dimensions associated with these
wavepackets.

3. Part I: Time-series analysis

In this section, we consider both the original data and the time-series
post-processed by means of proper-orthogonal decomposition (POD). In par-
ticular, we study the runs at Ma = 0.6 and Reynolds number Re = 5.7×105,
at different locations along the streamwise direction (1.25 < x/D < 5.75,
0.5 < x/D < 8.9).

The main goal in this section is to characterise the time–series from a
dynamical-system point of view. Although we are considering a fully turbu-
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lent case, we study a projection of the system on a set of linear, axisymmetric
wavepackets. Thus, the working hypothesis is that the resulting temporal
dynamics is low-dimensional. In principle, a dynamical system can be qual-
itatively analysed by reconstructing the – unknown – underlying attractor
from a sequence of observables of its state, for instance the time-series. This
idea is at the heart of the Takens’ theorem [43], a delay embedding theorem
providing the conditions under which the reconstructed dynamics preserves
the properties of the original system. In particular, the theorem ensures a
diffeomorphism between the original – unknown – phase space and the re-
constructed phase space. In that sense, there are two crucial parameters:
i) the minimal embedding dimension m, i.e the dimension of the projection
phase space of the reconstructed dynamics; ii) the correlation dimension d2,
a measure of the fractal dimension of an attractor (see [44]). According to
these values one can evaluate the dimensions of the attractor of the system
and – if possible – study its projection.

In general, the available time series are univariate; thus, the embedding
is typically the first step for the qualitative analysis of a dynamical system.
Different procedures of embedding are available. For instance, a singular-
value decomposition of the Hankel matrix based on univariate time-series can
be performed, where the dimensions of the rectangular matrix are the length
of the time series N and the maximum embedding. A second alternative
consists of computing higher-order derivatives of the time-series, such that
each of the derivatives corresponds to one of the columns of the embedding
vector. In this work, we rely on the most classical approach: once a maximal
embedding dimension m is chosen, each coordinate is obtained by a time shift
∆t; thus, introducing the time series y(t), the embedding vector is obtained
as

Y (m,∆t) = [y(T ), y(T + ∆t), y(T + 2∆t), ..., y(T +m∆t)] , (1)

where T indicates the time-span; note that the last channel will have a total
shift of m∆t with respect to the first one. Once an embedding vector is ob-
tained, we need to identify the minimal embedding dimension m that allows
determination of the dimension of the (hypothesised) attractor. A small m
indicates the possibility of unfolding the attractor. A popular method for es-
timating the minimum embedding dimension is the false nearest algorithm,
[45, 46].

The second dimension of interest is the correlation dimension d2, provid-
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Figure 4: Temporal behaviour for the mode m = 0 at x/D = 5.7. In the inset (a) the
original signal (TS-Raw) is compared to the result of the POD post-processing (TS-POD),
at a location x/D = 5.75. A second non-linear filter is applied to both the series as shown
in the insets (b) and (c), where the original time-series (black solid line) is compared to
the filtered one (red dashed line); the resulting error is shown as a blue dashed-dotted line.
Finally, in the inset (d) the spectrum of the four time-series is shown. A difference between
TS-Raw and the TS-POD is observed for St > 0.6, while good agreement is obtained at
St numbers relevant for our analysis.

ing an estimate of the fractal dimension of an attractor. This quantity is
related to the embedding dimension m by the Takens’ theorem, stating that
m ≤ 2d+ 1 ([43]).

In what follows, we adopt statistical tools described from the theoretical
point of view in the book by Kantz & Schreiber [45]. A thorough discussion
of these techniques is beyond the scope of this paper: we will focus mainly
on the validation of the results. Unfortunately, these statistical methods
are capable of producing results also in the presence of purely random time-
series. Thus, the validation has a twofold goal: assessing the robustness of
the results, and confirming the determinism of the dataset.

3.1. Filtering and spectral analysis

In order to analyse the time-series, we first perform non-linear noise re-
duction. Indeed, noise is a dominant, limiting factor for the embedding proce-
dure [45]. The de-noising algorithm is a moving-average filter, applied along
the trajectory identified in the embedding space, on the assumption that the
dynamics is continuous. In Fig. 4, the time-series is shown at x/D = 5.7. In
particular, we are interested in assessing to what extent the applied filters
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Figure 5: Spectral analysis for the series based on POD projection, at different locations
along x/D, namely x/D = 2.1, x/D = 3.3, x/D = 4.5 and x/D = 5.7. It can be observed
that the peak shifts from St ≈ 0.50 to St ≈ 0.15 when considering downstream locations.

modify the essential dynamics of the time-series. In the following, for ease
of discussion, the original time-series is denoted TS-Raw while data filtered
using POD as the projection basis is denoted TS-POD.

In Fig. 4a, the TS-Raw data are compared with the TS-POD set in the
time-domain. A quantitative assessment is reported in Fig. 4d using Welch’s
power spectral density (PSD) estimate. At the significant Strouhal numbers,
St = fD/U , it can be see that the POD filter does not strongly modify the
dynamics of the time-series. Differences can be observed only at St > 0.6.
At lower St, we observe the cut-off due to high-pass filtering of the original
data applied to remove energy below the anechöıc cut-off frequency of the
windtunnel. The two data sets are filtered using the non-linear filters in
Fig. 4b and Fig. 4c. By definition, the non-linear filter does not act on specific
bandwidths, but on the whole spectrum, while preserving the foliation of the
attractor in the embedded space. Welch analysis confirms this behaviour: in
Fig. 4d we can observe that the non-linear filter acts on the whole range of
St numbers. The standard deviation of the removed noise is σ = 0.075 and
σ = 0.063, for TS-Raw and TS-POD, respectively.

The spectral content of the TS-POD data at x/D = [2.1, 3.3, 4.5, 5.7] is
compared in Fig. 5. We observe that the maximum fluctuation levels move
progressively to lower frequencies as the observation position moves down-
stream, from St ≈ 0.50 at x/D = 2.1 to St ≈ 0.15 at x/D = 5.7. A change in
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Figure 6: Spectrogram for the time-series based on the POD projection at x = 5.7. In the
insets (b) and (c), the power spectrum is shown as a function of the Strouhal number St
at τ ≈ 170 and τ ≈ 240.

the maximum amplitude can also be observed. An alternative analysis is pro-
vided by the spectrogram, shown in Fig. 6a for the TS-POD at x/D = 5.7.
The graph is in two dimensions: the horizontal axis represents the time scale,
while the St number is reported along the vertical axis. The amplitudes are
shown as a colour map: at each instant, the intensity of the fluctuation is
shown as a function of St. The Welch estimate can be regarded as an average
along the time-span of the results shown in the spectrogram. In particular,
in Fig. 6b− c, two instants are shown at τ ≈ 170 and τ ≈ 240, respectively.
The instantaneous amplitudes of certain frequencies in the bandwidth can be
observed; this behaviour is a time-frequency view of the organised behaviour
manifest in space-time in Fig. 3. These behaviours are the signature of the
amplifier nature of the flow: wavepackets are hydrodynamic instability waves
that exist on the turbulent mean flow. These waves acquire initial amplitudes
and phase at upstream stations – either from disturbances issuing from the
turbulent motions within the nozzle, or from distributed turbulence that acts
as a volume force – and evolve in the downstream direction according to the
stability properties of the linear operator, possibly subject also to distributed
forcing from background turbulence; this last issue is one that is presently
being studied.

10



2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

m

e
1
, 

e
2

 

 

e
1

e
2

Figure 7: Example of minimum embedding dimension m estimation. The POD-filtered
data are used, in x/D = 5.7. The saturation of the parameter e1 (blue curve) indicates
the minimal embedding m; the complementary parameter e2 (red curve) confirms the
determinism of the dataset, as e2 6= 1 for m < 13.

3.2. Embedding dimension and correlation dimension

Assessment of the correlation dimension, d2, and embedding dimension,
m, is performed for both TS-Raw and TS-POD datasets, filtered non-linearly.
The results are collected in Fig. 8, as a function of the streamwise direction
x/D.

3.2.1. Minimal embedding dimension

The minimal embedding dimension m is estimated by using the algo-
rithm described by Cao in [46]. The algorithm does not strongly depend on
the length of the time series and it is capable of estimating the embedding
dimension also for time series describing high-dimensional attractors. More
importantly, it allows to clearly determine whether the signal is deterministic
or stochastic, as shown in Fig. 7. The dimension m is estimated by analysing
the behaviour of the parameter e1: the saturation indicates the minimal em-
bedding dimension. We chose it using a threshold value δ = 0.99, giving
m = 13. The quantity e2 explicitly accounts for the correlation: random se-
ries will be characterised by e2(m) = 1, for any m. For deterministic data, e2
cannot be a constant. In our case, we find that the values of e2 are not con-
stantly unitary, as shown in Fig. 7: this is a first clue that we are analysing
deterministic time series.

A critical aspect is the choice of the embedding delay ∆t. In principle,
the embedding dimension m is independent of the time delay; in practice,
the minimum embedding dimension estimate may depend on this choice and
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needs to be verified case by case. In Fig. 8, we identify a confidence interval
for the m estimates; the upper bound corresponds to a time-delay ∆t = 0.21,
while the lower bound is obtained for ∆t = 0.29. The choice of the embedding
delay is done by analysing the auto-correlations. N = 1.0× 104 points have
been used for the computations, although we verified that m is scarcely
affected by this choice.

The confidence intervals are shown using shadowed areas. Each point
corresponds to the value where the parameter e1 saturates, as discussed in
Fig. 7. Dotted curves identify the minimal embedding dimension computed
by averaging the results obtained with N = [1.0, 1.5, 2.0] × 104 points and
∆t = 0.21. It can be observed that the TS-Raw series is characterised by a
rather constant value of m, oscillating between a minimum value m = 12 at
x/D = 5 and maximum values m = 13 − 14 further upstream, at x/D = 2.
This estimate follows closely the upper bound of our confidence interval. The
lowest value is found at x/D = 5.7, for the runs at ∆t = 0.29.

The behaviour of the TS-POD series is coherent with the original data, al-
though we found higher values. This apparently counter-intuitive behaviour
is discussed later (see Sec. 3.2.3). For values x/D > 5.7, the minimal embed-
ding dimension is practically constant until x/D = 8; however, note that in
this region the data are extrapolated, so relevant dynamics carried by higher
order POD modes is missing.

3.2.2. Correlation dimension

The correlation dimension d2 is estimated using the routines included in
[47], based on the Grassberger-Procaccia algorithm [45]. Convergence tests
were performed over the input parameters of the algorithm: the embedding
quantities m, the time delay, and the Theiler window. The Theiler window
accounts for the possible oversampling. In fact, the computation of d2 is
based on a correlation sum: in the time-series, successive elements are gener-
ally not independent and can be highly correlated. To limit this effect, that
could lead to inconsistent results, a time-shift – i.e. the Theiler window – is
introduced to reduce the correlation between points during the pair counting.

A limit characterises the computation of the correlation dimension; in
particular, the value of the correlation dimension d2 over a decade cannot
exceed d2 = 2log10N , where N is the number of points in the time series
(Eckmann-Ruelle limit, [48]). The amount of data available allows us to get
a value of dmax ≈ 11. This means that when we approach this upper bound,
it is not legitimate to conclude that the d2 value corresponds to the dimension
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Figure 8: The estimates of the embedding dimension m and the correlation dimension d2
are summarised as function of x/D for both the datasets under investigation. The minimal
embedding dimension m is computed for two different time-delays, defining the confidence
intervals indicated with shadowed areas: a smaller time of embedding, ∆t = 0.21, defines
the upper limit, while a longer time, ∆t = 0.29, is related to the lower bound. The red
area is obtained for the TS-Raw series, while the grey one is associated with the results of
the dataset TS-POD. The nominal estimate for m (dotted curves) is obtained by averaging
the results of different runs. The correlation dimension d2 is indicated with a squared-
dotted black curve and a squared-dotted red curve for TS-POD and TS-Raw, respectively.
A green line indicates the Eckmann-Ruelle limit: values of d2 above this bound are not
physical.

of the inner dynamics.

In Fig. 8, the results are shown with squared-dotted curves. For each
positions of the available data-series, we analysed two subsequent blocks of
data containing a total of N = 105 points; thus, only values of correlation
dimension d2 < 10 are considered relevant (a green shadowed area indicates
the limit). The final value of d2 is obtained by averaging the results of
the blocks. We observe that the time-delay ∆t imposed for the embedding
procedure does not influence the final result. A Theiler windows of ∆tTW ≈
0.4 was chosen; we do not observe relevant changes when increasing this
parameter.

For the series TS-Raw, we observe a behaviour similar to m, with 7 ≤
d2 ≤ 9 in the span 1.25 ≤ x/D ≤ 5.75. For the TS-POD, consistent with the
previous estimate of m, we found that the value of d2 are slightly higher. In

13



−200 −100 0 100 200
−200

−150

−100

−50

0

50

100

150

200

t

t 
+

∆
 t

(a) Phase space, x/D = 2.5

−200 −100 0 100 200
−200

−150

−100

−50

0

50

100

150

200

t

t 
+

∆
 t

(b) Phase space, x/D = 4.1

Figure 9: Phase-space analysis for two positions taken from the TS-POD series. The
embedding space is obtained by time-delayed coordinates, using ∆t ≈ 0.4.

the upstream region x/D ≈ 2, the value close to the upper bound d2 ≈ 10
does not allow us to conclude that this is the effective value of the correla-
tion dimension. However, the dimension d2 with respect to the embedding
dimension m is bounded within the limits imposed by the Takens theorem.

A decrease is observed at the location extrapolated in the vicinity of the
nozzle x/D < 1 and far downstream, for locations x/D > 6. Also in this
case, low values observed in the TS-POD data are due to the POD filtering
suppressing important dynamics in these regions of the flow (see [2]).

3.2.3. A brief discussion on the estimated dimensions

The preliminary analysis of the minimal embedding dimension m and
the correlation dimension d2 indicates deterministic behaviour, despite the
limitations that both algorithms pose. Interestingly, the values of m and
d2 are higher when considering the POD-filtered data. This result has been
found also by computing the embedding dimension with a different algorithm
based on the false nearest strategy (results are not reported). We believe that
the behaviour is due to the physics of the system described in the different
datasets and it is not a numerical artefact. As mentioned in Sec. 2, the
simultaneous pressure measurements of TS-Raw are projected on a basis of
PODs obtained using two-point flow statistics on a larger number of points
in the streamwise direction leading to a finer resolution. Although from
the spectral point of view the resulting time-series are equivalent, except
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Figure 10: Phase-space analysis for the TS-POD series at x/D = 5.7 (left) and first
return map obtained by stacking the local peaks of the time series. The embedding space
is obtained by time-delayed coordinates, using ∆t ≈ 0.4.

at higher St (see Fig. 4), from the dynamical point of view the projection
on the POD-basis might lead to a richer dynamics due to the increased
accuracy of the measurements. When considering the dimensions outside
the range 1.25 ≤ x/D ≤ 5.75, i.e. where the simultaneous measurements
are not available, we observe a rather low correlation dimension, while the
embedding dimension is constant until x/D ≈ 8. This effect is due to the
extrapolation of the data in this region of the flow. For this reason, in the
following sections we focus only on the points x/D < 5.75.

The embedding space that should be used according to the Takens crite-
rion is rather large. In Fig. 9 and Fig. 10a, we show three phase-portraits
reconstructed in a three dimensional embedding space obtained by imposing
a delay of ∆t ≈ 0.4, between each of the three coordinates. In all cases, at
a first glance, the reconstructed phase space suggests a toroidal nature for
the dynamical system; unfortunately, the projection is poor due to the high-
dimensionality and cannot be further investigated. Moreover, the first return
map in Fig. 10b suggests contamination of the dynamics due to external forc-
ings. Similar results were obtained for all the positions along x/D regardless
of which embedding strategy was used (SVD embedding and derivative em-
bedding).

In conclusion, the results are consistent with a determinism of the time-
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series under investigation and suggest that the dynamics is relatively low-
dimensional. However, the embedding and correlation dimensions are still too
large for useful characterisation of the attractor geometry. For this reason,
alternative strategies are necessary for exploration of the dynamics of the
system. In the next section, system identification is applied: with the same
tools, we attempt to replace the original data with surrogate models that
capture a part of the dynamics.

4. Part II: A system-identification modelling approach

In the previous section, the preliminary study of the time-series – based
on statistical tools and Fourier analysis – provided clues that the underlying
temporal dynamics of the axisymmetric coherent structures is deterministic.
However, the dynamics educed locally is rather rich and cannot be analysed
by simply using the standard tools from dynamical system theory. From a
global view point, the turbulent jet is characterised by a strong convective
behaviour: the intrinsic dynamics is sensitive to external forcing [49]. Thus,
one might wonder to what extent the behaviour educed from the time-series
analysis is due to intrinsic non-linear interactions, external activation of de-
grees of freedom driven by external (stochastic) forcings or a combination of
intrinsic and extrinsic mechanisms.

In an effort to understand the underlying dynamics of the system, sur-
rogate models can be introduced by applying system identification [45, 50].
By definition, system identification aims at building mathematical represen-
tations of dynamical systems from set of observables, i.e. measured data. In
other words, given a dynamical system, we can analyse it from its observables
and infer a model reproducing the dynamics (or part of it). Starting from
the hypothesis that the chosen observables properly represent the system
behaviour, this approach can be summarised in the following steps:

1. Identification of the model structure and parameter estimation – models
are identified such that the dynamics of the observables is reproduced.
Due to the number of parameters involved, the number of possible
models is typically large (see Sec .4.1 and Appendix A).

2. Model validation – among all the possible models, only a few allow a
proper characterisation of the dynamical system. Validation is neces-
sary in order to discard the models unable to reproduce a dynamics
close to the real one.
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3. Prediction or dynamical analysis – according to the goal of the identi-
fication process, we can aim at minimising the prediction error given a
time horizon or analysing the dynamical properties of the system.

The last aspect is particularly relevant: according to the goal of the iden-
tification process, the choices of the inputs/outputs as well as the model
structure are of great importance.

In the following, we will often refer to noise indicating with this term the
external forcings driving the system dynamics. As already said, turbulent
jets are convectively unstable, so strongly sensitive to external forcings; mea-
surement noise will be generally indicated as error or residual in the context
of the identification problem.

4.1. Choice of the model, inputs and outputs

For our application, the chosen model consists of non-linear Volterra series
of polynomials. Hereafter, the outputs will be denoted by y(t) and will
be represented by the measurements taken at different locations along the
streamwise direction. By including also the inputs, indicated by u(t), the
model reads

y(t) =
nα∑
i=1

αiy(t− i) +

nβ∑
i=1

βiu(t− i) +NL(u(t), y(t)) + e(t). (2)

This relation is called the equation error model. On the right-hand side,
the first term relating the past outputs at the present y(t) is referred to as
the auto-regressive term; the second term reproduces the dynamics between
the inputs u(t) and the outputs y(t) (exogenous part). The unknowns of the
model are the set of coefficients α, β, the non-linear part – here represented
by high-order polynomials – and the error e(t). A classical way to model the
error e(t) is to consider it as a moving-average of unknown white-noise. The
most general strategy of identification based on Eq. 2 is the non-linear (N)
autoregressive (AR) exogenous (X) with moving average (MA) algorithm,
usually referred as N-ARMAX.

A quick overview of the algorithm is provided in Appendix A, while for a
deeper discussion we refer to [51, 52, 53]. For our purposes, it is interesting
to focus here on the choice of the inputs; in particular,

1. if we are interested in revealing the core mechanisms of a dynamical
system, we can neglect the input u(t) such that all the dynamics is
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described by the autoregressive part of the model and it is not contained
in the inputs; in this case, the model is a discrete representation of an
autonomous system.

2. if a non-autonomous representation is sought, an optimal choice is rep-
resented by inputs modelled as stochastic white noise or random binary
sequences. In this case, all the dynamics will be described by the iden-
tified input-output model.

3. a third choice consists in introducing as input u(t) one of the available
outputs y(t), thus containing already some of the dynamics. In this
case, due to the correlation between input and output, the resulting
model will be an optimal transfer function among the elements; this
approach is control-oriented.

In sec. 5, we use full non-linear ARMA models; the main goal is to identify the
essential dynamics using autonomous models, in order to educe the intrinsic
mechanisms at work. In sec. 6, we aim at identifying models that minimise
the prediction error in terms of best mean-squared errors over a time-horizon,
given a measurement as input u(t); in this case, full non-linear ARMAX
models are computed.

The models discussed in the next sections were computed using the tools
developed by Luis A. Aguirre and co-workers (see [50]). The linear mod-
els were cross-validated with in-house scripts [53]. We use polynomial ex-
pansions, but alternative approaches are available. For instance, non-linear
combinations of elementary functions can be used. In this case, the system
identification problem changes: we do not seek only the coefficients of the
model but also the optimal combination of functions fitting the original data;
due to the necessity of identifying also the basis of functions, these techniques
require full non-linear optimisation [54] or statistical-learning techniques (see
[55], for instance).

5. Non-linear models: dynamical system analysis from the observ-
ables

In this section we consider non-linear ARMA modelling. With respect to
the full equation error model in Eq. 2, we neglect the exogenous terms. The
basic model reads

y(t) =
nα∑
i=1

αiy(t− i) +NL(y(t)) + e(t). (3)
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The identification process consists in identifying the number of necessary
terms and coefficients α for an optimal representation of the time-series over
a window of assimilation.

This approach leads to a discrete, autonomous model. The un-modelled
part is accounted for in the error term e(t). The final analysis is performed
on a surrogate time-series obtained by running the model over long time-
horizons, not driven from external known forcings. Thus, we do not expect a
predictive model, but rather a phenomenological model. The aim is to mimic
a part of the dynamics of the original system.

We analyse the results obtained by applying the identification approach
to the time-series. In particular, we consider the TS-POD at x/D = 5.7, non-
linearly filtered (see Sec. 3.1). As previously shown, the TS-POD series are
less affected from measurement noise, in the range where the simultaneous
data from TS-Series are available; moreover, the non-linear filter preserves
the dynamics across all the frequencies. The chosen location corresponds
roughly to the end of the potential core.

In Sec. 5.1, we provide a brief description of the parametric analysis
performed during the computation of the non-linear ARMA models. Results
are shown and discussed in Sec. 5.2 for three different models.

5.1. Computation of the chosen models and validation

The analysis involves several parameters, namely: i) the polynomial order;
ii) the window of assimilation; iii) the maximum number of coefficients nα; iv)
the optimisation parameters. Due to the non-linear terms and the complexity
of the system, we expect multiple minima for the optimisation process. In
that sense, ranging a large span of parameters is necessary. In the following
we briefly motivate and explain our choices.

Polynomial order – non-linearities. We consider as maximum non-linear or-
der 3; the choice is a compromise between numerical and computational issues
rising from higher-order models and the physical description of the system.
In particular, high-order non-linearities might lead to inconsistencies due to
singular entries in the Hankel matrices (see Appendix A), used during the
identification process.

Assimilation window. The model can depend from the chosen assimilation
window. Indeed, considering the spectrogram in Fig. 6, we already observed
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that the dynamics is characterised by events at given frequencies correspond-
ing to organised behaviour in time-domain. In principle, one should consider
more windows of assimilation, stacked over the entire time-span; in prac-
tice, for computational and convergence reasons, we consider shorter time-
windows of assimilation roughly corresponding to the average length of the
high-amplitude events observed in the spectrogram. We tested windows of
length τaw = [20.5, 30.9, 41.2, 61.8, 82.3]; in the present manuscript, we con-
sider τaw = 41.2, that provided best results.

Coefficient nα. This coefficient dictates the second dimension of the regres-
sion matrix (see Appendix A), the first being the assimilation window. More
importantly, it relates past entries with the actual value y(t) during the auto-
regression process. We consider the range nα = [1, 30]; the maximum value
in convective time corresponds to τ ≈ 1.25 and it is based on the analysis
of the auto-correlation. Larger values would lead to erroneous correlations
between past and present dynamics.

Optimisation process parameters. For the optimisation process, we consider
a maximum of Ni = 20 iterations for each model and a maximum Ne = 60
elements for the resulting models, whose 10 terms are related to the error
part.

As a result of the parametric analysis, we identified a total of 36000 mod-
els. As said, the models can be biased by the window of assimilation. At a
first glance, one might think that the choice of relatively short time-windows
of assimilation reduces the validity of the models; however, the main aim of
the modelling approach is to explore the dynamics behind the organised be-
haviour observed in Fig. 6, trying to separate the inherent dynamics observ-
able in small windows of observation from the effects of the noise-sensitivity.
In that sense, it might not be possible to get endogenous models of the sys-
tem, unless we were to introduce an exogenous forcing decorrelated from the
output y(t). For this reason, we believe that a short window of assimila-
tion results in an identification process consistent with a part of the inherent
dynamics of the dynamical system.

5.1.1. Validation process

The simulation of the models is not driven by known forcings; thus, these
non-linear models will quickly deviate from the original time-series after a
short transient roughly corresponding to the initial conditions. The vali-
dation process is performed in two steps: i) the minimisation of the error
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during the system identification; ii) the spectral analysis of the model, com-
pared with the original time-series. In particular, we can not apply the Welch
method due to the short time-window of assimilation; as an alternative, we
apply a power spectral density estimation based on the Yule-Walker method
[56]. This method estimates the spectral content by fitting an autoregressive
linear prediction filter to the signal. By applying these two criteria and cross-
ing the results, we were able to identify three different “families” of models.
Of all the models identified, around 21% show periodicity, quasi-periodicity,
toroidal features or chaotic behaviour. The remaining models are badly con-
ditioned, unstable or decaying to zero after a transient. The selected models
are robust with respect to the initial conditions, i.e. they show the same
asymptotic behaviour in the presence of uncertainties in the initial condi-
tions. With respect to the position x/D, the optimisation procedure leads
to models with different coefficients α, but similar dynamics from the phe-
nomenological point of view. Thus, the surrogate models discussed here are
still able to qualitatively describe the physics of the underlying system.

5.2. Autonomous models

In this section, we discuss three different models, labelled as follows

1. Model T – in Fig. 11 the model is characterised by nα = 26. It is a
toroidal (T) example, that settles on the frequencies characterising the
windows of learning.

2. Model LC – in Fig. 12 the model is characterised by nα = 25. After a
rather long transient (up to τ ≈ 150), it ends up on a stable limit-cycle
(LC), see Fig. 13.

3. Model S in Fig. 15 the model is characterised by nα = 6. It is a chaotic
model, as it can be seen from the first-return map. We believe that it
reproduces some short (S) time dynamics related to the jittering.

The coefficient nα gives to the models distinctive features. The first two
models are characterised by a long window of correlation. The third model is
obtained considering the shortest, possible correlation length. In the follow-
ing paragraphs, we comment on the significance of these phenomenological
models.

5.2.1. Models T and LC

In Fig. 11, the properties of the model T are analysed. As already men-
tioned, none of these models is predictive: after a short time, the dynam-
ics quickly deviate from the original one (Fig. 11a). However, the original
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Figure 11: Comparison N-ARMA model T (in red for all the insets) vs. original time-
series TS-POD at x/D = 5.7 (in black). The comparison in time-domain (= a) is only
qualitative. Thus, spectra analysis (b−c) and phase space reconstruction are necessary for
an assessment of the performance of the model. The embedding space for the phase space
reconstruction (d) is obtained with a delay ∆t ≈ 0.3. The first-return map is obtained
using the maximum values in the model (e); the black dots correspond to the beginning
of the trajectory, while the superimposed blue dots the last points of the simulation.
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time-series are contaminated by the external disturbances, while the model
behaviour is dictated by the intrinsic dynamic educed during the assimila-
tion process. The quality of the model can be assessed by analysing the
spectral properties in the window of assimilation: in Fig. 11b, the power
spectral density is shown based on autoregressive modelling; the current
model reproduces the peak frequency St = 0.25; a second peak appears
at St ≈ 0.35. However, we can also observe that model T is not properly
reproducing the low frequencies St→ 0. The long-time behaviour is charac-
terized by a toroidal behaviour in phase space, showed with a red solid line
in Fig. 11d. The Fourier analysis in Fig. 11c and the first-return map built
with the relative maxima in Fig. 11e confirm the phase space representation.
In particular, in Fig. 11e, the black dots correspond to the beginning of the
trajectory, while the superimposed blue dots the final part.

Model T is characterised by a limited match in the autoregressive PSD;
for this reason, a second model is presented in Fig. 12, labelled as model LC.
In this case, we observe an excellent agreement at low Strouhal numbers,
St < 0.5 (see Fig. 12b). We note a rather different behaviour when comparing
the transient with the asymptotic state. During the transient, the spectrum is
not characterized by distinct frequencies (see Fig. 12c), although we observe
the dominance of frequencies around St = 0.35 and St = 0.15 (due to the
assimilation windows). The overall dynamics is more complex as shown in
the phase space portrait in Fig. 12d; the corresponding first-return map in
Fig. 12e can be understood by considering the long-time behaviour of the
system reported in Fig. 13. Indeed, after a transient of τ ≈ 150, the model
settles on a limit cycle (Fig. 13a− b); the dominating frequencies in Fig. 13c
are the same as those observed in the Welch PSD analysed in Fig. 12c.
Having the long-time behaviour in mind, it is easier to understand the first-
return map in Fig. 12e. In particular, the blue dots are representative of the
limit-cycle trajectory: we can observe that the model during the transient
progressively settles on the limit cycle, that “attracts” the trajectory.

The transient has a qualitative behaviour similar to the original model
also if observed from the spectrogram. In Fig. 14, it is possible to compare
the original time-series (inset a) with the model (b), in the same time-span.
It is evident that on average the length of the organised events is similar,
while a significant difference is given by the frequency range; in particular,
as already observed, this feature is an attribute of the extrinsic dynamics
at work on the dynamical system. Thus, these two models suggest that if
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Figure 12: Comparison N-ARMA model LC (in red for all the insets) vs. original time-
series TS-POD at x/D = 5.7 (in black). The comparison in time-domain (= a) is only
qualitative. Thus, spectra analysis (b−c) and phase space reconstruction are necessary for
an assessment of the performance of the model. The embedding space for the phase space
reconstruction (d) is obtained with a delay ∆t ≈ 0.3. The first-return map is obtained
using the maximum values in the model (e); the black dots correspond to the beginning
of the trajectory, while the superimposed blue dots the last points of the simulation.
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Figure 13: Asymptotic behaviour for N-ARMA model LC shown in Fig. 12a − e: after
the transient, the system settles on a stable limit cycle. In a the phase space is shown
(embedding delay ∆t ≈ 0.3); in b is shown the first-return map (blue dots of Fig. 12e).

(a) TS −POD at x/D = 5.7 (b) Model 2 at x/D = 5.7

Figure 14: Spectrogram: comparison between the original time-series and the model LC.
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only the endogenous dynamics were considered, the dynamics due to non-
linear interactions among wavepackets would be dominated by the organised
behaviour that characterises the “short-living” events observed in the spec-
trogram. In particular, the dynamics would evolve after some transient on
the surface of a 2-torus (T2) or a limit cycle. In models T − LC however,
one limit cycle (at least) is stable and attracting. Therefore, the hypothetic
underlying chaotic toroidal set is only transient.

5.2.2. Model S

In this section, we analyse a third model, depicted in Fig. 15 and based on
a shorter window of correlation. Also in this case, the peak in frequency at-
tains at St ≈ 0.25, as shown in the auto-regressive PSD analysis in Fig. 15b;
this same dominance is observed in the Welch analysis in Fig. 15c. The
resulting behaviour in phase space and in the first-return map is rather dis-
tinctive and different compared to the previous models. In particular, this
model appears to slowly evolve in time; in this case, we can conjecture that
the model captures some inherent mechanisms related to combination of
wavepackets-pairs being driven by the stochastic turbulence in the real case.

5.2.3. Discussion

Within the limits of the methodology, an analysis of the models provides
some hints regarding the possible dynamics underlying the system. The main
idea is that the jittering is a mixture of stochastic and deterministic compo-
nents. Model T and Model LC seems to indicate that frequencies can lock
together, leading to non-linear wave-wave interactions. Eventually, without
external forcing, they can set on limit cycles or in trajectories embedded on
a toroidal surface in phase space.

In this sense, the jitter signature is now more deterministic, but, in the
real case, it is ’randomised’ due to continuous forcing by stochastic back-
ground turbulence. In fact, because the flow is a convective amplifier, the
wave-wave interactions can never fully take over and the asymptotic be-
haviour can never happen because information is continuously convected out
of the system. The dynamical systems reproduced by Model T and Model
LC evolve according to initial conditions and a dynamic law that cannot
evacuate the information convectively.

One might imagine the phase space as a dense ensemble of trajectories
evolving on limit cycles and toroidal surfaces, associated with wave-wave

26



0 50 100 150
−200

−100

0

100

200

τ

(a) Comparison between time-series and model

0 0.5 1

10
0

St

P
S

D

(b) Autoregressive PSD

0 0.5 1

10
0

St

P
S

D

(c) Welch PSD

−50

0

50−50
0

50

−50

0

50

t

t+∆ t

t+
2
∆

 t

(d) Phase space comparison

−20 0 20 40 60 80
−10

0

10

20

30

40

50

60

70

i

i+
1

(e) First-return map

Figure 15: Comparison N-ARMA model S (in red for all the insets) vs. original time-
series TS-POD at x/D = 5.7 (in black). The comparison in time-domain (a) is only
qualitative. Thus, spectra analysis (b−c) and phase space reconstruction are necessary for
an assessment of the performance of the model. The embedding space for the phase space
reconstruction (d) is obtained with a delay ∆t ≈ 0.3. The first-return map is obtained
using the maximum values in the model (e); the black dots correspond to the beginning
of the trajectory, while the superimposed blue dots the last points of the simulation.
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interactions. Due to the sensitivity of the system to external noise, the sys-
tem will continuously and erratically deviate from these attracting solutions
without setting on any one of them as observed in the spatiotemporal plots
and the spectrogram in Sec. 3. The high sensitivity to external disturbances
is inherently connected to the convective nature of the flow. This picture
can be linked to recent ideas regarding wavepacket theory: the organisation
observed is understood as being due to the resolvent operator forced by back-
ground turbulence. In this sense, the resolvent operator is an organiser of
the flow, while the turbulence that forces wavepackets via this operator is
the disorganiser.

Also, note that the resolvent analysis has proved to be particularly effi-
cient for St > 0.3, where the linear wavepackets are in remarkable agreement
with the coherent structures observable in the jet flow. On the other hand,
at low St – and particularly at low Mach number – non-linear wave-wave
interactions may be more relevant as the linear analogy fails: this makes our
conjecture particularly appealing for explaining this discrepancy.

6. Input-output modelling for control: is linear modelling enough?

When the forcing term u(t) is represented by an output of the system,
used as an input of the model, system identification identifies a transfer
function between inputs and outputs. In particular, we use the output at
x/D = 5.7 and inputs placed in four positions, x/D = [2.5, 3.3, 4.1, 4.9].
The models include only one input (single-input-single-output modelling,
SISO); the performance are shown in Fig. 16a-d, where we compare the
model prediction with the original time-series. The window of assimilation
is t ∈ [0, 164]. The validation is performed by integrating the model in the
window t ∈ [0, 620].

The application of the full non-linear ARMAX algorithm results in a poly-
nomial expression: the final models are fully linear and based on a limited
number of coefficients α and β, Nα,β = 20. The good results can be explained
by observing the spectral analysis in Fig. 5. As already noted, the convective
nature of the flow implies a progressive drift of the main frequency of ampli-
fication and a slight variation of the maximum amplitude in the spectrum as
we move further downstream; in this sense, we need only a limited number
of degrees of freedom for modulating amplitudes and frequencies, and cor-
rectly representing the time-delays of the system. This observation justifies
the small dimensions of the models, that here act as filters.
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Figure 16: Reduced-order model vs. original time-series. Solid, black lines indicate the
original signal at x/D = 5.7; the red dots indicate the model prediction. Four inputs are
considered, at x/D = [2.5, 3.3, 4.1, 4.9].

The standard deviation between the resulting model and the original
time-series is generally low. In Fig. 17a, the results are summarised for a
number of outputs along the streamwise direction. In particular, six different
positions along x/D are introduced as input, in the range 2.9 ≤ x/D ≤
4.9, while as outputs are considered the locations downstream of the inputs
between x/D = 3.3 and x/D = 5.7. Except the transfer functions with inputs
at x/D = 2.9 − 3.3 and output at x/D = 5.7, characterised by a standard
deviation σ ≈ 0.3−0.5, in all the other cases the standard deviation is below
σ = 0.3. As already mentioned above, all the shown models are linear: this
observation has interesting implications when considering the design of linear
controllers.

These results confirm and extend the findings of [38], where linear AR-
MAX modelling, parabolised stability equation (PSE) and empirical trans-
fer function were compared for the estimation of downstream propagating
wavepackets, showing equivalent results. With respect to the work of [38], in
our analysis the linearity of the model is a result of the optimisation process
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and not a working hypothesis: despite the fact that candidate models intro-
duced in the identification procedure were characterised by all the terms of
Eq. 2 up to order n = 3, non-linearities appear to be un-necessary for an
optimal representation of the transfer functions.

6.1. Robustness and control

The limited amount of dynamical information retained in these models
lead to robustness issues. The set of coefficients is obtained as least-squares
solution from the assimilation datasets at given amplitude. The transfer
function only retains information regarding the time-delays of the system,
the modulation of the amplitude and the frequency bandwidth. Any sources
of uncertainty can lead to robustness issues. As an example, in Fig. 17b,
we illustrate the lack of robustness with respect to time-delays, due to the
convective time of propagation of the perturbations. The model assimilated
using the input at x/D = 4.5 is applied with different inputs, taken in the
range 3.3 ≤ x/D ≤ 5.3. The validity of the models quickly decays. Values
of the standard deviation σ > 1 indicate phase-opposition of the resulting
model with respect to the original time-series.

The robustness issues can be attacked using different strategies. Control
design can be conceived by accounting for the robustness issues arising from
uncertainties of the system within the robust framework or the adaptive
control theory (see [57, 58]). In particular, with respect to the convective
nature of the flow, feed-forward schemes combined with self-tuning, adaptive
controllers can be applied. These controllers are characterised by two time-
scales: a fast time-scale, for the real-time estimation of the input u(t), and
a slow time-scale, based on feedback measurements of the flow necessary for
correcting off-design conditions. Examples of these strategies can be found
for weakly non-linear transitional flows (see [59]) or non-linear, turbulent
cases (see [60]).

7. Conclusions

Coherent large-scale structures in turbulent jets – usually referred as
wavepackets – have been subject of numerous investigations for the role that
such structures might play in sound radiation. Remarkably, it is well es-
tablished that certain aspects of the wavepacket dynamics can be modelled
by means of linear ansatz ([1]). In this work, we considered an unforced,
isothermal, subsonic jet issuing from a round nozzle with a fully turbulent
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Figure 17: Left: the normalized standard deviation between the models and the time-
series is analysed. The x-axis indicates the location of the output, while in the legend the
six lines correspond to the inputs. In total, 27 models are analysed, most of which are
characterised by a standard deviation σ < 0.25. Right: the model is computed between
the input at x/D = 4.5 and the output at x/D = 5.7; the same model, is tested by using
different inputs between x/D = 3.3 and x/D = 5.7; the test shows the lack of robustness
with respect to the time-delays of the system.

boundary layers at Re − 5.7 × 105 and Ma = 0.6. The temporal behaviour
of the axisymmetric wavepackets is analysed; starting from the studies by
[2], we investigate the experimental, spatio-temporal measurements from a
dynamical point of view. To the best of our knowledge, this is the first time
such an analysis has been attempted. The key point is the remarkable spatio-
temporal coherence of the measurements: despite the high Reynolds number,
the low-dimensional projection of the dynamics reveals a well-organised be-
haviour. This aspect raises questions regarding the temporal behaviour of
the wavepackets, the nature of the non-linearities involved and the possibility
of designing control strategies starting from this knowledge.

In order to answer these questions, a variety of strategies ranging from
statistical tools to system identification have been adopted. The estimation
of the correlation dimension and the embedding dimension of the dynamical
system confirmed that the organised temporal behaviour is low-dimensional
and deterministic. The minimal embedding ranges between m = 10 and m =
15, while the correlation dimension is rather low at locations corresponding
to the end of the potential core, d2 ≈ 6. These dimensions are nonetheless
still too large for useful characterisation of attractor geometry.
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For this reason, alternative strategies are necessary for exploring the dy-
namics of the system. A system identification approach is pursued. The
time-series taken at a streamwise location of the jet is assumed as output;
we replace the original dynamics with surrogate, autonomous models using
data-assimilation based on this output. These models are limited, as they
reproduce only a part of the dynamics and are influenced by the choice of
the parameters.

By comparing the results from three different classes of models, we suggest
that the jittering dynamics might be described as a combination of extrinsic
and intrinsic mechanisms at work. We observe that our surrogate models
reproduce the ideal case where the background turbulence is not active; in
this limit, the dynamics of the system would be dominated by wave-wave
interactions leading to stable limit cycles and/or solutions lying on toroidal
attractors. Evidence on this behaviour is provided by the spectral analysis
of the transient dynamics of these solutions that qualitatively reproduces the
local (in time) dynamics of the original system. However, in the real case,
the extrinsic dynamics drives the system: wave-wave interactions can never
fully take over and the asymptotic behaviour of the ideal models can never
happen. This interpretation justifies the self-organised features appearing in
the time-frequency analysis of the time-series and it is consistent with the
nature of the jets as noise-amplifiers: due to the sensitivity of the system to
external noise, the trajectory in phase space will continuously escape from
these attracting solutions.

Given these interpretations, control strategies can be conceived. Due
to the convective nature of the system and its implications regarding the
non-linear interactions, system identification is used for computing non-
autonomous models, where the inputs are represented by local measurements
taken upstream of the outputs. These models are filters that i) account for
the time-delays and ii) modulate the amplitudes and the frequencies already
existing in the inputs. In particular, we found that non-linearities are un-
necessary for an optimal representation of these models. In other words, if
the inputs contain a large part of the dynamics, a linear filter is enough to
reproduce the temporal behaviour at downstream locations due to the con-
vective nature of the system. The main limit is the robustness of these linear
filters; however, in our opinion, this might be more a problem of controlla-
bility of the flow, rather than a lack observability and predictability. Thus,
we believe that the robustness limitations may be tackled in the control de-
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sign, by applying strategies such as adaptive control or loop-shaping robust
control, and verifying the effects of the actuation on the real flow.

Future work should be devoted to further improving the non-linear mod-
els for the dynamical analysis. While accepting the impossibility of capturing
all the features of the system in low-dimensional models, a possible path to
improve our understanding of the jittering would be the identification of sur-
rogate models where a stochastic excitation is also included; in principle,
this strategy would help in separating the instrinsic mechanisms from the
extrinsic ones. In this sense, we believe that machine learning and statis-
tical learning techniques may be robust alternatives to classical non-linear
system identification. Indeed, these techniques are quickly spreading in the
community as a powerful tool for system identification (see [55]).

The authors wish to acknowledge Luis A. Aguirre for sharing his system
identification package and Christophe Letellier for fruitful discussions. This
work is supported by the Agence Nationale de la Recherche (ANR) under
the ”Cool Jazz” project, grant number ANR-12-BS09-0024.
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Appendix A. System identification using polynomials expansion

We introduced in Sec. 4 the basic ideas behind the application of system
identification for the qualitative analysis of dynamical system and the defini-
tion of control-oriented models. The aim of the section is to provide a quick
overview of the algorithms.

We rely on an input-output description of time-invariant systems. The
aim of our models is reproducing the behaviour of the output y(t) by defining
a non-linear model of the dynamics of the measurement or a transfer function
between the input u(t) and the output y(t). For sake of conciseness, we
consider a single-input-single-output (SISO) case; nonetheless, the extension
to the multi-inputs-multi-outputs cases is rather straightforward from the
theoretical point of view.

By assuming a SISO system, we can generalise the equation error models
in terms of Volterra series

y(t) = y0 +
nα∑
i=1

α(1,i)y(t− i) +

nβ∑
i=1

β(1,i)u(t− i) +
nα∑
i=1

nβ∑
j=1

η(1,i,j)y(t− i)u(t− j)

+
nα∑
i=1

nα∑
i=j

α(2,i,j)y(t− i)y(t− j) +

nβ∑
i=1

nβ∑
i=j

β(2,i,j)u(t− i)u(t− j)

+ e(t) + ...+O(2) (A.1)

where αi, βi, ηi are the i−th order Volterra kernel. The error can be modelled
as a moving-average of (unknown) white-noise w(t)

e(t) = w(t) +

nγ∑
i=1

γiw(t− i) (A.2)

where γi are the coefficients for the error modelling. The kernel’s coefficients
and the error e(t) are the unknowns of our problem. The Volterra-series
are an extension of the linear convolution integral and represent non-linear
systems as a series of multi-summations (or integrals) of the Volterra kernels
and the inputs [61]. We can note that the complete model consists of a linear
combination of three groups of terms

1. the auto-regressive terms related to the output y(t);
2. the exogenous terms due to the input u(t);
3. the moving-average description of the error e(t).

Additionally, the non-linear combinations are introduced in the full model.
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Appendix A.1. Solution of the identification problem: a basic ARMAX algo-
rithm

The first step of the identification procedure consists in a the preliminary
computation of the coefficients θ? = [α1 α2 ...αn β1 β2 ...βn]. To this end, we
assume that the error is null, such that the least-squares regression can be
performed. Note that the error e(t) is modelled as a moving average of white
noise w(t), leading to a coloured noise with expected value E [e(t)] 6= 0; the
estimate of the coefficients θ will be affected by a bias, due to the expected
value of the error e(t). In particular, the error is computed as

e(t) = y −HNθ
?, (A.3)

where HN is a rectangular Hankel matrix including inputs u and outputs
y. The Hankel matrix has the dimensions of the number of the coefficients
and the window of assimilation. We can introduce a matrix ZN of the same
dimensions as the Hankel matrix ZN such that

E [ZNy − ZNHNθ
?] = 0. (A.4)

Thus, with a proper choice ZN , the “de-biased” estimate of θ? can be com-
puted as

θ? =
(
ZT
NHN

)−1
ZTy, (A.5)

if ZNHN is invertible. This generalisation of the least-squares problem is
known as Instrumental Variable (IV) method and allows a first estimation
of the coefficients in the expansion, while neglecting the error.

The IV method is iterative. For the first iteration, the matrix of instru-
ments is written as ZN =

[
HN(η)H(u)

n(u)
]
; a rather effective choice consists

in choosing η(t) = u(t−nd), i.e. the delayed input. These values are relaxed
till convergence.

The IV method allows to compute the coefficients α and β, reducing the
effects of the bias due to the non-whiteness of the error e(t). The unknowns
of the moving-average part, namely the coefficients γ and the white-noise
series w(t) can be extracted using appropriate algorithms (see [52] or [53]).

Thus, we can divide the basic algorithm into two steps:

1. Evaluate the coefficients α and β using the iterative IV method.
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2. Apply the moving-average algorithm for defining the coefficients γ and
the white-noise w(t).

This prototypical algorithm allows a first estimate of the kernel coefficients
and the error of the moving average description. We can improve these
estimates using the extended least-squares (ELS) approach; in particular, we
can consider the first estimation of the error as an input of the system: in
this way, the estimates will be de-biased by explicitly accounting the error.
Moreover, an iteration can be cast: the difference between the prediction and
the original output, allows to refine again the kernels estimate and further
improve the e(t) prediction.

Appendix A.2. Other techniques

The main difference between the linear modelling and the full non-linear
Volterra series is mainly related to the dimensions of the problem and the
risk of ill-conditioness. Already cubic non-linearities may introduce nearly
null entries, leading to rank-deficiency and singularities. To this end, the
regression step can be replaced by well-conditioned algorithms, such as the
orthogonal least-squares (OLS); this iterative scheme introduces in the least-
squares process a Gram-Schmidt orthogonalisation, which ensures that each
new column added in the matrices is orthogonal to all previous columns.
Moreover, this process allows us to estimate the relative relevance of the
kernel’s coefficient in residual terms; thus, elements that are not relevant are
discarded during the process. The OLS approach is described by [61] or [50],
and allows the identification of minimal non-linear models by keeping only
the relevant terms of the model. This is the strategy implemented in the
routines adopted in our manuscript.

Other methods for the system identification are based on the minimisation
of the prediction at a given time-horizon, based on gradient-based optimi-
sation process; an example is given by the predictive error method (PEM),
implemented in the system identification toolbox by [62] (see also [51]).
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