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This work investigates the slow viscous MHD axisymmetric flow about a solid sphere
with a radius a translating parallel to a uniform magnetic field with a magnitude B > 0
in a quiescent conducting Newtonian liquid with a uniform viscosity µ and a conduct-
ivity σ > 0. The advocated treament exploits two fundamental axisymmetric MHD
flows recently obtained elsewhere and holds by essence whatever the Hartmann number
Ha = aB/

√

µ/σ. It consists in determining the surface traction at the sphere boundary
by inverting there a boundary-integral equation and then getting the flow velocity and
pressure in the liquid by appealing to integral representations of those quantities solely in
terms of the surface traction. As a result, the drag experienced by the translating sphere
and the MHD flow patterns about it are given for different values of Ha. Not surprisingly,
the MHD flow about the sphere is found to be very sensitive to the Hartmann number
Ha.

Introduction. As sketched in Fig. 1, we examine the low-Reynolds-number
axisymmetric MHD flow about a solid sphere, with a radius a and center O,
translating in a quiescent and conducting Newtonian liquid at the velocity U =
Uez parallel to the given uniform ambient magnetic field B = Bez , B > 0.

In the absence of additional assumptions, one has to determine not only the
MHD flow, with the velocity u and pressure p, about the sphere, but also the
resulting electric field E′ and the magnetic field B′ in the entire liquid domain
D . Unfortunately, this problem turns to be tremendously involved [1, 2] even
for a sphere since (u, p,E′,B′) are actually coupled through the unsteady non-
linear Navier–Stokes equations and Maxwell equations. Here, for a conducting
liquid having the uniform density ρ, the viscosity µ, the conductivity σ > 0 and
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Fig. 1. A solid sphere translating in a conducting Newtonian liquid, parallel to the
given uniform ambient magnetic field at the velocity U = Uez.
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the magnetic permeability µm > 0, the unknown coupled fields p,u,E′ and B′

depend upon three dimensionless numbers: the magnetic Reynolds number Rm =
µmσ|U |a, the Reynolds number Re = ρ|U |a/µ and the Hartmann number Ha =
a/d, where the length d = (

√

µ/σ)/B is the so-called Hartmann layer thickness
citeHartmann1937.

Henceforth, we take Rm ≪ 1 and assume the flow to be quasi-steady. Un-
der those assumptions the task remains pretty complicated since B′ has to be
determined too [4]! However, if the sphere has the same magnetic permeability
as the liquid and Rm ≪ 1, it appears that B′ = B [5]. Because the flow (u, p) is
axisymmetric, and without swirl one also gets E′ = 0 [1, 4]. Although B′ = Bez
and E′ = 0, getting the MHD flow about the sphere, whatever Ha and Re, is still
a challenging task. However, assuming further that Re ≪ 1 enabled [6] and [7] to
asymptotically solve the problem for Ha ≪ 1 and Ha ≫ 1, respectively.

This work presents a new boundary approach which allows one to compute,
in essence, whatever the Hartmann number Ha > 0, the required axisymmetric
MHD viscous flow (u, p) in the entire liquid domain and also the resulting drag
exerted on the translating sphere.

1. Governing problem and challenging issues. As explained in the
introduction and also illustrated in Fig. 1, we consider the axisymmetric MHD
viscous flow, without swirl and with pressure and velocity fields p and u in a
liquid domain D , about a solid sphere with the radius a translating in a quiescent
conducting Newtonian liquid at the velocity U = Uez parallel to the uniform
magnetic field B = Bez. Assuming that Re = µmσ|U |a ≪ 1 and neglecting
all inertial effets, i.e. taking here Re = ρ|U |a/µ ≪ 1, the flow (u, p) obeys the
following well-posed MHD creeping flow problem

µ∇2u = ∇p− σB2(u ∧ ez) ∧ ez and ∇.u = 0 in D , (1)

(u, p) → (0, 0) as |x| → ∞ , u = Uez on S. (2)

Inspecting Eqs. (1)–(2) immediately shows that the normalized flow u′ =
u/U, p′ = ap/(µU) solely depends upon the Hartmann number Ha = a/d which
compares the sphere radius a with the Hartmann layer thickness d = (

√

µ/σ)/B [3].
We locate each point x in the domain D ∪ S by its cylindrical coordinates

(r, z, θ) with θ ∈ [0, 2π], z = x.ez and r = {|x|2 − z2}1/2 ≥ 0. Accordingly, one
has x = rer + zez with the usual local unit vector er = er(θ) shown in Fig. 1.
For the axisymmetric MHD viscous flow (u, p) without swirl, one then gets the
properties u(x) = ur(r, z)er + uz(r, z)ez and p(x) = p(r, z) at each point x in the
liquid. At the sphere boundary S with the unit n pointing into the liquid, this flow,
with the stress tensor σ, exerts a surface traction f = σ.n of the following form
f = fr(r, z)er + fz(r, z)ez. For symmetry reasons, the sphere thus experiences
a zero torque about its center O and a force F parallel to the sphere velocity
U = Uez. From the previous form of the traction f , this force F immediately
reads as

F =

ˆ

S

fdS = [2π

ˆ

C

fz(P )r(P )dl(P )]ez = −6πµaλUez, (3)

where C is the half-circle trace of S in the θ =0 half-plane (each point P on
that curve C has cylindrical coordinates r(P ), z(P ) and θ(P ) = 0). Note that
when deriving the second equality in Eq. (3), we used the relation dS = rdldθ
and performed integration over θ in [0, 2π], whereas the occurring coefficient λ
is the usual so-called drag coefficient. This work considers to which extent the
normalized flow (u′, p′) in the liquid domain and the resulting drag coefficient λ
depend upon the Hartmann number Ha = a/d.
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2. Advocated boundary approach.

2.1. Relevant velocity and pressure integral representations. Since the
axisymmetric problem (2)–(3) is linear, one can think about solving it by a bound-
ary formulation extending thereby the usual one derived (see, among other text-
books, [8, 9]) for the usual Ha = 0 Stokes flow case (here obtained either for a
non-conducting liquid (σ = 0) or in the absence of imposed ambient magnetic
field (B = 0)). Such boundary formulation requires to determine the fundamental
axisymmetric MHD flow produced by a distribution of forces, with the strength
Frer +Fzez and (Fr , Fz) constant, on the ring with a radius r0 > 0 located in the
z = z0 plane. At the point x(r, z, θ), the resulting MHD flow (v, q) is without swirl
and axisymmetric. It also has a velocity field v(x) = vr(r, z)er+vz(r, z)ez and the
pressure field q(x) = q(r, z) recently obtained in [11]. Actually, the latter paper
successively builds two fundamental axisymmetric MHD flows ( associated with
the choices Fr =0 and Fz =0) by angular integration of the three-dimensional
solution recently obtained in [10] for the fundamental flow and electric potential
produced in the liquid by a point source with a given strength. For the associated
pretty-involved steps and formulae for the resulting flow velocity (axial and ra-
dial) components and pressure, the reader is directed to [11]. Introducing M(r, z)
and M0(r0, z0) in the half θ = 0 plane, taking the indices α and β in {r, z} and
adopting henceforth the usual tensor summation convention, the results detailed
in [11] are

vα(x) =
1

8πµ
Gαβ(M,M0)Fβ , q(x) =

1

8π
Pβ(M,M0)Fβ for M 6= M0 , (4)

with the so-called Green tensor velocity components Gαβ(M,M0) and the Green
pressure vector components Pβ(M,M0) given in terms of (z − z0, r, r0, d) in [11],
but not reproduced here for the sake of conciseness. Extending the treatment
presented in [9] for the Ha = 0 Stokes flow case made it possible to derive the
basic integral representations of single-layer types for the required axisymmetric
flow velocity u and pressure p satisfying Eq. (1), the far-field behaviour (2)and
also the constant velocity boundary condition (2). Curtailing the details which
will be displayed elsewhere, one actually arrives at the relations

uα(x) = −
1

8πµ

ˆ

C

Gαβ(M,P )fβ(P )r(P )dl(P ) for x ∈ D ∪ S, (5)

p(x) = −
1

8π

ˆ

C

Pβ(M,P )fβ(P )r(P )dl(P ) for x ∈ D . (6)

One should note that we here obtain the above single-layer representations
(5)–(6) because of the very specific form of the velocity boundary condition (2)
which makes it possible to prove that the additional double-layer terms also arising
in general on the right-hand sides of Eqs. (5) and (6) vanish for the present problem.
In [11] it has been shown that Grβ(M,P ) = 0 for r =0. Substituting that property
in Eq. (5) yields ur(x) = 0 for x located on the (O, ez) problem axis of revolution
(as this must be the case for the regular axisymmetric velocity field u). From
Eqs. (5)–(6) it is clear that is it sufficient to gain the traction f(P ) = fβ(P )eβ on
the half-circle contour C in order to subsequently compute the flow in the entire
liquid domain.

2.2. Key coupled boundary-integral equations. The required traction f is
gained by enforcing the no-slip condition u = Uez at the sphere boundary. Using
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Eq. (5) yields the following coupled boundary-integral equations of the first kind
ˆ

C

Grr(M,P )fr(P )r(P )dl(P ) +

ˆ

C

Grz(M,P )fz(P )r(P )dl(P ) = 0, (7)

ˆ

C

Gzr(M,P )fr(P )r(P )dl(P ) +

ˆ

C

Gzz(M,P )fz(P )r(P )dl(P ) = −8πµU (8)

for M on C .
Of course, for symmetry reasons, one has fr(P ) = 0 at the points P located

on the problem axis of revolution (O, ez), while at M on C satisfying r(M) = 0
one solely requires Eq. (8) (relation (7) being satisfied from the previous property
Grβ(M,P ) = 0).

2.3. Numerical implementation. The boundary-integral equations (7)–(8)
have been numerically inverted by carefully evaluating each influence coefficient
Gαβ(M,M0) (see the procedure described in details in [11]) and by splitting the
half-circle, with the unit radius a =1 and center O into 16 curved 3-node quadratic
boundary elements with equal length. The discretized coupled boundary-integral
equations (7)–(8) are then numerically enforced at the resulting 31 nodal points
located off the sphere axis of revolution (O, ez). Of course, only Eq. (8) is imposed
at the two remaining nodal points located on the sphere axis of revolution (as
previously pointed out, Eq. (7) is trivially satisfied at those nodes). It has been
numerically found that taking Ne =16 curved boundary elements is quite sufficient
to ensure a five-digit accuracy for the drag coefficient λ given by Eq. (3) in the
entire range Ha ≤ 30. For instance, at Ha =30, one obtains λ =11.837020 for
Ne =16 and λ =11.837016 for Ne =32.

3. Numerical results. This section presents numerical results both for the
drag coefficient λ and for the flow patterns about the translating sphere.

3.1. Drag coefficient. Let us first consider the drag coefficient λ defined
by Eq. (3). This basic quantity has been asymptotically approximated at a small
Hartmann number Ha in [6] by a procedure quite different from the boundary one
advocated in this paper. More precisely, [6] predicts that

λ ∼ λa = 1 + 3Ha/8 + 7Ha2/960− 43Ha3/7680 (9)

for Ha small enough.
As shown in Table 1, our computations are in excellent agreement with Eq. (9)

for Ha in the range [0,1].
In contrast to the quite different procedure worked out in [6], the present

boundary approach makes it possible to investigate the case of larger values of the
Hartmann number Ha. The drag coefficient has thus been computed for Ha ≤ 30.
The results are plotted in Fig. 2 solely for Ha ≤ 10 in order to clearly reveal the
range of validity of the approximation (9) which turns out to be very good for
Ha ≤ 2. As also shown in Fig. 2, the drag coefficient is found to increase (nearly
in a linear fashion) versus Ha for large Ha.

Table 1. Comparisons between the computed drag coefficient λ and its asymptotic
estimate λa (see Eq. (9)).

Ha 0.01 0.1 0.3 0.5 0.7 1

λ 1.00381 1.03763 1.11310 1.18886 1.26479 1.37884
λa 1.00375 1.03757 1.11301 1.18862 1.26415 1.37669
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Fig. 2. Computed (solid line) and asymptotic (dashed line with open circles obtained
using Eq. (9)) drag coefficient.

3.2. Flow patterns. We now investigate the axisymmetric MHD flow sens-
itivity to the Hartmann number Ha. This is done by computing in the liquid
domain the normalized pressure p′ and the normalized radial and axial velocity
components u′

r and u′

z defined as

p′ = ap/(µU), u′

r = ur/U, u
′

z = uz/U. (10)

Since the flow is axisymmetric, those quantities are drawn only in the θ =0
half-plane using the normalized coordinates r′ = r/a ≥ 0 and z′ = z/a. Similarly,
the flow streamlines are provided in the same half-plane.

For Ha = 0, one retrieves the well-known problem of the Stokes flow about
a sphere with a radius a translating in a Newtonian liquid (either insulating or
conducting) in the absence of a magnetic field for which the previous quantities are
analytically known (see, for instance, [9]). Using the above normalized coordinates
(r′, z′) and setting ρ′ = {r′2 + z′2}1/2, one actually gets at M =0,

u′

r =
3z′r′

4ρ′3

[

1−
1

ρ′2

]

, u′

z =
3

4ρ′

[

1 +
1

3ρ′2

]

+
3z′2

4ρ′3

[

1−
1

ρ′2

]

, p′ =
3z′

2ρ′3
. (11)

The results (11) are further employed to draw the figures at Ha =0, whereas
other figures for flow patterns at Ha > 0 are numerically obtained, outside the
sphere boundary, from the integral representations (5)–(6). The numerical results
agree with the symmetries u′

r(r
′, z′) = −u′

r(r
′,−z′), u′

z(r
′, z′) = u′

z(r
′,−z′) and

p′(r′, z′) = −p′(r′,−z′) which can be easily established from the governing problem
(1)–(2).

The dependence versus Ha of the normalized radial velocity component u′

r is
first investigated by plotting in Fig. 3 the isolevel contour curves of this quantity for
Ha =0, 0.1, 1, 5, 10, 20 for the points (r′, z′) in the liquid domain such that r′ ≤ 3
and −3 ≤ z′ ≤ 3. For a given value of Ha, the normalized velocity component
u′

r vanishes (due to the no-slip condition) on the sphere half-contour C , remains
small in the liquid domain except for the two pockets (in which, say, |u′

z| ≥ 0.1)
located close above C and also quickly decays away from C in all directions as
ρ′ = {r′2 + z′2}1/2 becomes large. As Ha increases, |u′

r| is seen to decrease in the
liquid, whereas the two previous pockets shrink and clearly approach C near its
(r′, z′) = (1, 0) point.
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Fig. 3. Isolevel lines for the normalized radial velocity component u′

r
for different

values of the Hartmann number with the following choices: Ha = 0 (Stokes flow) top left;
Ha =0.1 top right; Ha = 1 middle left; Ha = 5 middle right; Ha = 10 bottom left, and
Ha = 20 bottom right.

The case of the normalized axial velocity component u′

z is illustrated in Fig. 4
for the same values of Ha. Not surprisingly, for a prescribed value of Ha one
obtains u′

z = 1 on C (from the no-slip boundary condition) and also 0 < u′

z < 1
decreases away from C as ρ′ increases. However, in contrast to the previous case
of the radial velocity u′

r, such a decay clearly depends upon the direction in which
one goes away from C ! More precsisely, there is a large domain near the r′ =0
axis of symmetry in which u′

z remains of significant value, say, u′

r ≥ 0.5. In a sense,
one can thus speak of wakes in the upstream (z′ < 0) and downstream (z′ > 0)
directions for the quantity u′

z. As Ha increases, the previous trends are still valid,
with a quicker decay of u′

r away from the r′ =0 axis of symmetry and, in contrast,
previous wakes which now extend away from the sphere in the r′ =0 upstream
and downstream directions.

The trends observed in Figs. 3 and 4 when Ha increases suggest that, as Ha
becomes very large, the normalized velocity u′ is nearly zero exept in the liquid
located in two ’upstream’ (z < 0) and ’downstream (z > 0) wakes (located in
the normalized “tube” r′ ≤ 1), where it should tend to the normalized sphere
translational velocity ez. This conclusion agrees with the asymptotic prediction
proposed in [7] for the MHD axisymmetric flow about a body of revolution trans-
lating at large Ha parallel to both its axis of symmetry and to the prescribed
ambient uniform magnetic field. More precisely, from [7], those wakes actually
extend upstream and downstream up to |z′| ≤ O(Ha). In accordance with that
prediction, the computed streamlines (which are of course the same for both ve-
locity fields u and u′) presented in Fig. 5 clearly tend to become parallel to the
r′ = 0 axis in the wakes as Ha increases. Outside those wakes, the streamlines
are less parallel to the r′ = 0 axis as Ha increases, but the normalized velocity
magnitude |u′| there collapses as Ha increases.
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Fig. 4. Isolevel lines for the normalize axial velocity component u′

z
for different

values of the Hartmann number with the following choices: Ha = 0 (Stokes flow) top left;
Ha =0.1 top right, Ha = 1 middle left; Ha =5 middle right; Ha =10 bottom left, and
Ha =20 bottom right.
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Finally, we consider the normalized pressure p′ by plotting in Fig. 6 the as-
sociated isolevel contour curves. With a given Ha, the pressure field p′ quickly or
sowly decays away from C normal to or along the r′ = 0 axis, respectively. Note
also that the pressure exhibits large changes on and near C , especially in the vi-
cinity of the (r′, z′) = (1, 0) point. As Ha increases, p′ becomes very small except
again in the previous wakes in which it reaches large values and its magnitude
increases with Ha.

4. Conclusions. A new boundary formulation has been proposed to accur-
ately and efficiently determine the viscous axisymmetric MHD flow about a solid
sphere translating at the velocity U in a conducting and quiescent Newtonian li-
quid, parallel to a prescribed uniform ambient magnetic field. As a consequence,
it has been possible to compute the drag experienced by the sphere and the flow
about it for several values of the Hartmann number Ha. The results clearly reveal
that the drag increases with Ha nearly in a linear fashion, whereas the flow pat-
terns (velocity components, streamlines and pressure) are found to deeply depend
upon Ha. The computations also suggest that for Ha ≫ 1 the MHD flow (u, p)
will be confined in a liquid “tube” in which u ∼ U and p is large. Those findings
agree well with the very first-order prediction derived in [7] for Ha ≫ 1 and suggest
to build in the future a high-order asymptotic analysis of the problem for large
Ha. Such a challenging task requires additional efforts and is thus postponed to
another work.
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