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ABSTRACT
This work obtains the velocity and pressure fields of two
fundamental axisymmetric MHD viscous flows of a conducting
Newtonian liquid due to axial and radial distributions of forces on
a ring in the presence of a uniform axial magnetic field B = Bez .
The worked out procedure rests on the analytical determination
of the pressure and of some of the Cartesian velocity components
of another general three-dimensional fundamental MHD flow.
The derived axisymmetric fundamental flows are found to deeply
depend upon the nature (axial or radial) of the forces distributed
on the ring, the ring size and the Hartmann layer thickness
d = (

√
μ/σ)/|B|. This is illustrated by computing a few flow

patterns using a suitable numerical treatment.
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1. Introduction

For some basic applications, it is required to determine the flow about a solid
(either insulating or conducting) body experiencing a given rigid-bodymigration
in a conducting Newtonian liquid subject to a uniform and steady ambient
magnetic field B0. In general, the body affects the ambient magnetic field and
in addition to the disturbed magnetic field B a non-uniform electric field E,
vanishing far from the body, also arises in the liquid. The occurring liquid flow,
with velocityu and pressure p, is driven by the Lorentz body force f = j∧Bwith a
current density j adopting for usual cases the Ohm’s law j = σ(E+u∧B)where
σ > 0 designates the uniform liquid conductivity. For a solid rigid migration
described by its translational velocity U and angular velocity � one then looks
at the quantities (B,E, u, p) in the entire liquid domain once the body shape and
motion (U,�), the uniform ambient magnetic field B0 and the liquid uniform
conductivity σ > 0, density ρ and viscosity μ are provided. Such a task turns
out to be tremendously involved because the fields (B,E, u, p) are governed by
the unsteady non-linear and coupledMaxwell and Navier–Stokes equations with
non-uniform Lorentz body force f = σ(E+u∧B)∧B. For further informations
regarding this challenging issue falling inside the so-called and wide field of
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Magnetohydrodynamics, the reader is directed to (Branover & Tsinober, 1970;
Tsinober, 1970; Moreau, 1990).

If one restricts the attention to a small enough particle experiencing a slow
motion, the problem becomes quasi-steady but still difficult to solve even for
the case of a sphere (Gotoh, 1960). As nicely discussed and summarised in
Gotoh (1960), for a steady problem several great simplifications, detailed below,
might however occur depending upon the range of some dimensionless numbers
and/or upon the problem symmetries. Those relevant dimensionless numbers are
defined using the body length scale a, the flow velocity magnitude scale V > 0
and the liquid uniform conductivity σ > 0, density ρ, viscosity μ and magnetic
permeability μm > 0. The very first number is the magnetic Reynolds number
Rem = μmσVa. As in most of the encountered cases, we henceforth assume
that Rem � 1 and the body to have the same magnetic permeability as the
liquid. It follows (Tsinober, 1970) that B = B0 in the entire liquid domain,
with magnitude B = |B| > 0. Near the body surface a so-called Hartmann
layer (Hartmann, 1937), with typical thickness d = (

√
μ/σ)/B, takes place.

In this layer, the viscous term μ∇2u and the flow contribution σ(u ∧ B) ∧ B
to the Lorentz body force have comparable magnitudes. Two additional key
dimensionless numbers are then introduced: the Reynolds number Re and the
so-called Hartmann numberM defined as

Re = ρVa/μ, M = a/d = aB/
√

μ/σ . (1)

Note thatM compares the body length scale awith theHartmann layer thickness
d and that M vanishes with the ambient magnetic field B. Getting this time
the steady fields (E, u, p) whatever (B, Re,M) and the body shape and rigid-
body migration (U,�) is therefore still a challenging task essentially because the
electric field E is coupled with the velocity field u in the entire liquid domain
through the equations∇∧E = 0 and∇.E = −(∇∧u).B (with the latter relation
provided by the charge conservation in steady case ∇.j = 0). Fortunately, this
coupling vanishes due to symmetries in the following basic and quite different
cases:

(i) The two-dimensional MHD flow about a plane solid body with B and u
lying in the same plane.

(ii) The axisymmetric three-dimensional MHD flow about a solid body of
revolution translating, without rotating, with U and B parallel with the
body axis of revolution.

In cases (i)–(ii), one gets ∇.E = 0 and also, for an insulating body (Tsinober,
1970), the condition j.n = 0 on S yields the boundary condition E.n = 0 on S.
Recalling that ∇ ∧ E = 0 in the liquid and that E vanishes far from the body it
follows that E = 0 in the entire liquid domain. In summary, in cases (i)–(ii) one
solely has to determine the flow (u, p) by solving steady incompressible Navier–



EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 3
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Figure 1. (a) A solid body of revolutionP , with smooth boundary S, translating at the velocityU
parallel with its axis of revolution in a quiescent conducting Newtonian liquid in which a uniform
magnetic field B parallel with U prevails. (b) Top view of observation point x = rer + zez and
source point x0 = r0 cos θ0ex + r0 sin θ0ey + z0ez located on the (r − r0)2 + (z − z0)2 = 0 ring.

Stokes equations with body force σ(u∧B)∧B.Without any further assumption
on the flow Reynolds number Re the task remains involved in both cases (i)–(ii)
and this explains why quite a few works cope with the subject. Among others
one can mention general considerations (Hartmann & Sanchez-Palencia, 1973)
for large Hartmann number M and arbitrary Reynolds number Re in cases (i)–
(ii) and also for moderate Reynolds number the flow about a disk (Yosinobu,
1960; Kalis, Tsinober, Shtern, & Shcherbinin, 1965) in case (i) or about a sphere
(Gotoh, 1960) in case (ii).

As soon as Re � 1 one can neglect the inertial term in the Navier–Stokes
equations therefore ending up with the more tractable linear Stokes equations.
This so-called creeping flow model makes it possible to obtain several results in
cases (i)–(ii) and for several ranges of the Hartmann number M : the solution
in case (i) for a translating disk with numerical results restricted to M ≤ O(1)
in Yosinobu and Kabutani (1959) and the solution in case (ii) for a sphere and
M � 1 in Chester (1957) or for an arbitrary body of revolution and M � 1
in Chester (1961). In order to efficiently deal with other shapes than a disk
in case (i), a new boundary approach has been recently proposed in Sellier,
Aydin, and Tezer-Sezgin (2014a). This procedure, which has been found to
accurately provide the flow about the body in a large range ofHartmann number,
rests on the determination in Sellier, Aydin, and Tezer-Sezgin (2014b) of the
associated fundamental MHD two-dimensional plane Stokes flow produced by a
concentrated point force with arbitrary strength. In a similar fashion, it would be
nice to develop a boundary technique to cope with an arbitrary translating body
of revolution in case (ii)! The present work addresses the very first step in this
direction, i. e. the derivation of two relevant fundamental axisymmetric MHD
Stokes flows due to some axisymmetric distributions of concentrated forces on
a ring.

The paper is organised as follows. The governing MHD creeping flow equa-
tions in axisymmetric case are given together with the resulting problems for
two axisymmetric fundamental flows in Section 2 which also shows how one
can build each of the required axisymmetric flow from the knowledge of a
more complex three-dimensional fundamental flow. The determination in closed
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form of the three-dimensional and of the two axisymmetric fundamental flows
is achieved in Section 3. The numerical implementation together with related
accuracy issues are handled in Section 4 which also provides some computed
velocity and pressure patterns for each considered axisymmetric fundamental
flow. Finally, a few conclusions close the paper in Section 5.

2. GoverningMHD problems and advocated procedure

This section gives the equations governing the steady creepingMHDaxisymmet-
ric flow about a solid body of revolution translating parallel with both its axis of
revolution and the ambient uniformmagnetic field. It also presents the associated
steady axisymmetric MHD Low-Reynolds Number fundamental flows whose
determination, which is the matter of the present work, is handled in Section 3.

2.1. Governing axisymmetric MHD creeping flow problem and associated
fundamental flows

As illustrated in Figure 1(a) and mentioned in the introduction, the problem
motivating the present work is the determination of the steady axisymmetric
creeping MHD flow about a solid body P with axis of revolution (O, ez) trans-
lating, without rotating, at a prescribed velocity Uez in a quiescent conducting
Newtonian liquid subject to a uniformmagnetic field B = Bez with B > 0.

The liquid has strictly positive uniform viscosityμ, density ρ and conductivity
σ , while both the solid body and the liquid have the same uniform magnetic
permeabilityμm > 0.Designating byV = |U | > 0 the liquid velocity magnitude
and by a the body length scale, the relevant usual Reynolds number Re and
magnetic Reynolds number Rem read Re = ρVa/μ and Rem = μmσVa,
respectively. Assuming that Rem � 1 shows, since the liquid and the body
have the same magnetic permeability, that the magnetic field takes the uniform
value B = Bez in the entire liquid domain (Moreau, 1990). Taking Re � 1 (i. e.
neglecting all inertial effects) also shows that, for our axisymmetric flow, there is
no electric field (Tsinober, 1970) in the liquid domain D. As a result, the steady
creeping flow axisymmetric velocity and pressure fields u and p obey

μ∇2u = ∇p − σB2(u ∧ ez) ∧ ez and ∇.u = 0 in D, (2)
(u, p) → (0, 0)as r = |x| → ∞, (3)
u = Uez on S (4)

where S denotes the body surface.
In dealing with (2)–(4) one can either employ Cartesian coordinatesO(x, y, z)

or cylindrical polar coordinates (r, θ , z)with r = √
x2 + y2 ≥ 0, θ ∈ [0, 2π ] and

x = r cos θ , y = r sin θ. Associated unit vectors are the usual triplet (ex , ey , ez)
and the local vectors er = cos θex + sin θey and eθ = ez ∧ er .
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Clearly, the solution to (2)–(4) adopts the general form u = Uu′ and
p = μUp′/a with the normalised flow (u′, p′) solely depending upon the body
shape and the Hartmann numberM defined as

M = a/d, d := (
√

μ/σ)/B (5)

where d is the so-called Hartmann layer thickness (Hartmann, 1937).
Of course, for a non-conducting liquid (vanishing conductivity σ) one has

d → ∞(M → 0) and (2) becomes the usual axisymmetric Stokes equations
for which several efficient methods are available (see the standard textbooks
(Happel & Brenner, 1983; Kim&Karrila, 1983)). One efficient approach for both
fully three-dimensional and axisymmetric Stokes flows is the Boundary Element
Method (BEM), thoroughly detailed elsewhere (Pozrikidis, 1992; Sellier, 2006).
This powerful technique rests on the determination of the so-called Stokeslet
which is the free-space Green’s flow of Stokes flow produced by a point force
with strength g (Happel & Brenner, 1983; Kim&Karrila, 1983; Pozrikidis, 1992).
At any point x = x0 the Stokeslet velocity us(x) and pressure ps(x) take the very
simple forms

us(x) = 1
8πμ

{
g

|x − x0| + [g.(x − x0)](x − x0)
|x − x0|3

}
, ps(x) = g.(x − x0)

4π |x − x0|3 .

(6)
The BEM formulation for a Stokes axisymmetric flow is also derived from the
fundamental flows produced by a ring of point axial or radial forces (Pozrikidis,
1992).

It should be nice to extend the BEM technique developed for axisymmetric
Stokes flows to the present problem (2)–(4) whatever the Hartmann number
M! A very first step in this direction is the determination of two different fun-
damental axisymmetric MHD flows produced in the free-space by a prescribed
axisymmetric distribution F(x) of forces located on the r = r0 > 0 ring in the
z = z0 plane. Those axisymmetric fundamental flows (u, p) obey

μ∇2u = ∇p − σB2(u ∧ ez) ∧ ez − F and ∇.u = 0 for r = r0 and z = z0, (7)

(u, p) → (0, 0)as
√

(r − r0)2 + (z − z0)2 → ∞. (8)

Denoting by δ the usual Dirac one-dimensional pseudo-function, we address in
the present paper the following flows:

(i) A fundamental flow produced by a ring of axial forces with

F(x) = F
∫ 2π

0
[δ(r− r0)δ(z− z0)δ(θ − θ0)ez]dθ0 = Fδ(r− r0)δ(z− z0)ez

(9)
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(ii) A fundamental flow produced by a ring of radial forces with

F(x) = F
∫ 2π

0
[δ(r − r0)δ(z − z0)δ(θ − θ0)er(θ0)]dθ0. (10)

The quantity F = 0 in (9)–(10) is the given forces strength.

2.2. Solution in terms of a three-dimensional fundamental MHD flow

In getting the previous fundamental axisymmetric flows, one can think about
two different approaches worked out to derive axisymmetric Green’s functions
or flows in several fields: acoustics (Dawson, 1995) magnetostatics (Dini, Kho-
rasani & Amrollahi, 2004; Priede & Gerbeth, 2006), elasticity (Kermanidis, 1975;
Hasegawa, 1975, 1976, 1981, 1984, 1988, 1992), Stokes flow (Pozrikidis, 1992) and
MHDviscous flow (Tsinober, 1973; Tsinober, 1973; Priede, 2013). In thoseworks
two procedures are employed: the direct treatment of the axisymmetric Green’s
problem using a Bessel transformation in Dini, Khorasani & Amrollahi (2004),
Hasegawa (1975, 1976, 1981, 1984, 1988, 1992) or, for the other previously quoted
references, the integration over a ring of given distributions of three-dimensional
Green’s function (or flow). In the present paper, it has been foundmore tractable
to use the second three-dimensional Green’s flow approach.

Accordingly, we look at the three-dimensional fundamental MHD viscous
flow produced, in the entire space where prevails the uniform magnetic field
B = Bez , by a concentrated point source with arbitrary strength g located at
point x0. Since fully three-dimensional, this flow with velocity v and pressure q
induces a steady electric field E = −∇φ with φ the electric potential. Imposing
the charge conservation ∇.j = 0 and recalling the Ohm’s law for the current
density j, one arrives at the fundamental basic three-dimensional problem

μ∇2v = ∇q + σB∇φ ∧ ez − σB2(v ∧ ez) ∧ ez − δ(x − x0)g for x = x0,
(11)

∇.v = 0 and �φ = B∇.(v ∧ ez) for x = x0, (12)
(v, q,∇φ) → (0, 0, 0)as|x − x0| → ∞ (13)

with � and δ the three-dimensional Laplacian operator and Dirac delta pseudo-
function, respectively.

By linearity, it turns out that at each point x = x0 the fundamental flow reads

μv(x) = V(x − x0, y − y0, z − z0).g, q(x) = Q(x − x0, y − y0, z − z0).g (14)

where the Cartesian components of the second-rank velocity Green tensorV and
Green pressure vector Q will be obtained in Section 3.1. From those Cartesian
components, we then build the two required fundamental axisymmetric MHD
flows (u, p), solution to (7)–(8) with force distributions F given by (9)–(10), by
spreading source points x0 on the entire (z − z0)2 + (r − r0)2 = 0 ring. Under
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our notations, each resulting axisymmetric flow (u, p) reads, at point x(r, θ , z),

u(x) = ur(r, z)er + uz(r, z)eθ , p(x) = p(r, z) (15)

and, as illustrated in Figure 1(b), it is thus sufficient to get (ur , uz , p) at the point
x = rex +zez taking for each point x0 located on the ring cylindrical coordinates
(r0, θ0, z0) with θ0 ∈ [0, 2π ].

Under this choice x = r, y = 0, x0 = r0 cos θ0 and y0 = r0 sin θ0.Recalling the
relations (14) and the definitions (9)–(10), the first axisymmetric fundamental
flow produced by the ring of axial forces (9) then readily writes

μur(r, z) = F
∫ 2π

0
Vxz(r − r0 cos θ0,−r0 sin θ0, z − z0)dθ0, (16)

μuz(r, z) = F
∫ 2π

0
Vzz(r − r0 cos θ0,−r0 sin θ0, z − z0)dθ0, (17)

p(r, z) = F
∫ 2π

0
Qz(r − r0 cos θ0,−r0 sin θ0, z − z0)dθ0 (18)

while because er(θ0) = cos θ0ex+sin θ0ey , the second axisymmetric fundamental
flow induced by the ring of radial forces (10) is this time given by

μur(r, z) = F
∫ 2π

0
{cos θ0Vxx(r − r0 cos θ0,−r0 sin θ0, z − z0)

+ sin θ0Vxy(r − r0 cos θ0,−r0 sin θ0, z − z0)}dθ0, (19)

μuz(r, z) = F
∫ 2π

0
{cos θ0Vzx(r − r0 cos θ0,−r0 sin θ0, z − z0)

+ sin θ0Vzy(r − r0 cos θ0,−r0 sin θ0, z − z0)}dθ0, (20)

p(r, z) = F
∫ 2π

0
{cos θ0Qx(r − r0 cos θ0,−r0 sin θ0, z − z0)

+ sin θ0Qy(r − r0 cos θ0,−r0 sin θ0, z − z0)}dθ0. (21)

In summary, the results (16)–(21) express the two required fundamental flows in
terms of the vector Q and of only six Cartesian components of the second-rank
tensor V.

3. Determination of each addressed fundamental flow

As shown in Section 2.2, the task consists in determining the fundamental
three-dimensional viscous MHD flow (v, q) governed by (11)–(13). The needed
Cartesian components of the associated tensor V and vector Q (see (14)) are
obtained in Section 3.1 while the axisymmetric fundamental flows are deduced
in Section 3.2 and Section 3.3.
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3.1. Fundamental three-dimensional viscousMHDflow

3.1.1. Analytical solution
Clearly, there is no need for the present work to gain the electric potential φ

coupled to the required flow (v, q) through the second equation (12). Since the
derivation of (v, q) has been nicely achieved in Priede (2013), we briefly give
below the required steps. First, we get rid of the pressure q by applying the
operator ∇ ∧ (∇ ∧ ) to (11). Taking into account both relations (12) then easily
yields

μ∇2(∇2v) − σB2
∂2v
∂z2

= ∇ ∧ (∇ ∧ [δg]). (22)

Recalling the definition (5) of the Hartmann layer thickness d and because g is
constant the required velocity v is thus given by

μv = ∇ ∧ (∇ ∧ [Hg]), �(�H) − 1
d2

∂2H
∂z2

= δ(x − x0). (23)

Upon introducing, for a vector field a, the linear operator L as

L[a] = �(∇.a) − 1
d2

∂

∂z
(a.ez) (24)

and applying this operator to (11) now gives, exploiting (12), a governing equa-
tion for the pressure q. This equation is

�(�q) − 1
d2

∂2q
∂z2

= L[δg]. (25)

By virtue of the governing equation (23) for the function H , it follows that

q = L[Hg] = �[∇.(Hg)] − 1
d2

∂

∂z
[H(g.ez)]. (26)

As required by (13) and shown by (23) and (26), it is thus sufficient to obtain the
functionH solution to the second identity (23) and such that both v and q vanish
as |x − x0| → ∞. Clearly H is thus defined up to a constant. In this paper, we
select a solution H by adding a constant to the one proposed in Priede (2013).
The retained solution is

H(x, x0) = − d
8π

{
E1
( |x − x0| − (z − z0)

2d

)
+ E1

( |x − x0| + (z − z0)
2d

)

+2 log

(√
(x − x0)2 + (y − y0)2

2d

)
+ 2γ

}
(27)

where γ denotes the usual Euler’s constant and E1 is the exponential integral
function defined Abramowitz and Stegun (1965) as E1(t) = ∫∞

t s−1e−sds for
t > 0,
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In summary, the fundamental three-dimensonal flow (v, q) is obtained from
(23) and (26)–(27). This analytical solution suggests the following remarks:

(i) As consistent with the announced relations (14), note thatH = H(x−x0).
(ii) As t → 0+ one has E1(t) ∼ −γ − log t + t + O(t2) (see Abramowitz &

Stegun, 1965). Accordingly, the following basic asymptotics hold

H(x, x0) ∼ Hs(|x − x0|)as|x − x0| → 0 or as d → ∞, Hs(t) = −t/(8π).

(28)
Not surprisingly, the above function Hs is the one obtained for the Stokes flow
(see the derivation of the Stokeslet solution in Pozrikidis (1992)). As the reader
may check, putting Hs into (23) and (26) indeed produces as fundamental flow
(v, p) the Stokeslet solution (6).

(iii) It is worth pointing out the useful relations below (which may be either
directly retrieved by the reader from (27) or deduced, for (29)–(30), from Priede
(2013))

− 4π�H = cosh
(
z − z0
2d

)
e−|x−x0|/(2d)

|x − x0| , (29)

− 4π
∂H
∂z

= d sinh
(
z − z0
2d

)
e−|x−x0|/(2d)

|x − x0| , (30)

− 8π
∂H
∂x

= d(x − x0)
{

2
(x − x0)2 + (y − y0)2

− e−|x−x0|/(2d)

|x − x0| [ e(z−z0)/(2d)

|x − x0| − (z − z0)
+ e−(z−z0)/(2d)

|x − x0| + z − z0
]
}
. (31)

Those relations will be of interest in Section 3.1.2.

3.1.2. Resulting required vectorQ and Cartesian components of tensor V
The resulting Cartesian components of the second-rank velocity tensor V and
pressure vectorQ have not been given in Priede (2013). Those needed quantities
are here calculated from the previous results (23), (26)–(27) and (29)–(31).

Taking first g = ez immediately provides the relations

Vxz = ∂2H
∂x∂z

, Vzz = ∂2H
∂z2

− �H , Qz = ∂�H
∂z

− 1
d2

∂H
∂z

. (32)

Setting henceforth R = |x − x0| it follows from (29)–(30) that (anticipating on
the equality Vzx = Vxz obtained for g = ex)

Vxz = Vzx = sinh
(
z − z0
2d

)[
1 + 2d

R

] [
x − x0

R

]
e−R/(2d)

8πR
, (33)

Vzz =
{
cosh

(
z − z0
2d

)
+ sinh

(
z − z0
2d

)[
1 + 2d

R

] [
z − z0
R

]}
e−R/(2d)

8πR
, (34)
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Qz = (
1
d
)

{
sinh

(
z − z0
2d

)
+ cosh

(
z − z0
2d

)[
1 + 2d

R

] [
z − z0
R

]}
e−R/(2d)

8πR
.

(35)

Selecting now g = ex or g = ey yields the announced identity Vzx = Vxz and

Vxx = ∂2H
∂x2

− �H , Vxy = ∂2H
∂y∂x

, Vzy = ∂2H
∂y∂z

, Qx = ∂�H
∂x

, Qy = ∂�H
∂y

.

(36)
Accordingly, from (29)–(30), one gets

Vzy = sinh
(
z − z0
2d

)[
1 + 2d

R

] [
y − y0
R

]
e−R/(2d)

8πR
, (37)

Qx =
(
1
d

)
cosh

(
z − z0
2d

)[
1 + 2d

R

] [
x − x0

R

]
e−R/(2d)

8πR
, (38)

Qy =
(
1
d

)
cosh

(
z − z0
2d

)[
1 + 2d

R

] [
y − y0
R

]
e−R/(2d)

8πR
. (39)

In a similar fashion, using again (29) but also this time (31) for ∂H/∂x, provides
after more (although elementary) manipulations the desired quantities Vxx and
Vxy. It is finally found that

Vxx = 1
8π

{
2 cosh

(
z − z0
2d

)
g(R, d) + d

[
T1 − (x − x0)2T2

]}
, (40)

Vxy = −
[
d(x − x0)(y − y0)

8π

]
T2 (41)

with functions T1 and T2, depending upon (R, z − z0, d), defined in Appendix 1.

3.2. Fundamental flow produced by an axial force distribution

For this flow we employ (16)–(18) in conjunction with (33)–(35) in which we
use the relations (recall Section2.2 and Figure 1(b)) x = r, y = 0, x0 = r0 cos θ0
and y0 = r0 sin θ0. Moreover, we have the basic identity and useful definition
(see Appendix 1)

R = {
r2 + r20 − 2rr0 cos θ0 + (z − z0)2

}1/2 , g(R, d) = e−R/(2d)/R. (42)

Under those notations, it follows that

8πμur(r, z) = F sinh
(
z − z0
2d

)∫ 2π

0

[
g(R, d)

R

] [
1 + 2d

R

]
(r − r0 cos θ0)dθ0,

(43)

8πμuz(r, z) = F cosh (
z − z0
2d

)

∫ 2π

0
g(R, d)dθ0
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+ F(z − z0) sinh
(
z − z0
2d

)∫ 2π

0

[
g(R, d)

R

] [
1 + 2d

R

]
dθ0,

(44)

8πdp(r, z) = F sinh (
z − z0
2d

)

∫ 2π

0
g(R, d)dθ0

+ F(z − z0) cosh
(
z − z0
2d

)∫ 2π

0

[
g(R, d)

R

] [
1 + 2d

R

]
dθ0.

(45)

As d → ∞ one retrieves the fundamental Stokes flow given in Pozrikidis (1992).

3.3. Fundamental flow produced by a radial force distribution

For this second flow, we appeal this time to (19)–(21) and arrive at the following
velocity components and pressure

8πμur(r, z) = 2F cosh
(
z − z0
2d

)∫ 2π

0
g(R, d) cos θ0dθ0,

+ Fd
∫ 2π

0

{
T1 cos θ0 − (r − r0 cos θ0)(r cos θ0 − r0)T2

}
dθ0,

(46)

8πμuz(r, z) = F sinh
(
z − z0
2d

)∫ 2π

0

[
g(R, d)

R

] [
1 + 2d

R

]
(r cos θ0 − r0)dθ0,

(47)

8πdp(r, z) = F cosh
(
z − z0
2d

)∫ 2π

0

[
g(R, d)

R

] [
1 + 2d

R

]
(r cos θ0 − r0)dθ0.

(48)

Clearly, the more complicated quantity is the radial velocity component ur since
it involves both non-trivial functions T1 and T2 displayed in Appendix 1. Again,
the limit of (46)–(48) as d → ∞ recovers the associated fundamental Stokes
flow discussed in Pozrikidis (1992).

4. Numerical method and flow patterns

From Section 3.2 and Section 3.3, we can restrict attention to the case z0 = 0.
This section is devoted to the numerical implementation of the previous results
(43)–(48) for z0 = 0. It permits us to plot, in normalised coordinates r = r/d
and z = z/d, the resulting flow patterns for a few values of the normalised ring
radius r0 = r0/d > 0.

4.1. Numerical implementation and accuracy issues

For given liquid viscosity μ and conductivity σ imposing the uniform ambi-
ent magnetic field B = Bez actually prescribes the Hartmann layer thickness
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d = (
√

μ/σ)/B > 0. Henceforth, we set z0 = 0 and use normalised coordinates
r = r/d and z = z/d. The normalised distance R = R/d is given by (setting
z0 = 0 in (42))

R = {
r2 + r20 − 2r r0 cos θ0 + z2

}1/2
. (49)

Inspecting (43)–(48) suggests introducing seven integrals J10, J20, J30, J11, J21, J31
and J defined as

Jmn =
∫ 2π

0
[R]−me−R/2 cosn θ0dθ0 for n = 0, 1 and m = 1, 2, 3, (50)

J =
∫ 2π

0

{
T1 cos θ0 − (r − r0 cos θ0)(r cos θ0 − r0)T2

}
dθ0 (51)

with occurring functions T1 and T2 obtained by replacing (R, z, z0, d) with
(R, z, 0, 1) in (A2)–(A3) and given in Appendix 3. Under those notations one
obtains:

(i) For the axial force distribution (using (43)–(45)), the associated first fun-
damental flow (u(1)

r , u(1)
z , p(1)) is given by

8πμdu(1)
r /F = sinh

(
z
2

)
{(J20 + 2J30)r − (J21 + 2J31)r0}, (52)

8πμdu(1)
z /F = cosh

(
z
2

)
J10 + z sinh (

z
2
)(J20 + 2J30), (53)

8πd2p(1)/F = sinh
(
z
2

)
J10 + z cosh (

z
2
)(J20 + 2J30). (54)

(ii) For the radial force distribution (using this time (46)–(48)) the second
fundamental flow (u(2)

r , u(2)
z , p(2)) satisfies

8πμdu(2)
r /F = 2 cosh

(
z
2

)
J11 + J , (55)

8πμdu(2)
z /F = sinh

(
z
2

)
{(J21 + 2J31)r − (J20 + 2J30)r0}, (56)

8πd2p(2)/F = cosh
(
z
2

)
{(J21 + 2J31)r − (J20 + 2J30)r0}. (57)

In view (52)–(57), calculating the flows (u(l)
r , u(l)

z , p(l)) (with l = 1, 2) in the
half z − r plane (r ≥ 0), outside the point (r − r0)2 + z2 = 0 (which is the ring
trace), requires to compute the integrals Jmn and J . Those integrals solely depend
upon (r0, r, z) and are strongly sensitive to the distant h = [(r−r0)2+z2]1/2 > 0.

We first pay attention to the integrals Jmn. It is found that for a sufficiently
distant point (h ≥ O(1)) usual quadratures with a few Gaussian points ensures
a good accuracy even for h large (a case for which putting the sinh (z/2) or
cosh (z/2) factors inside the integrations over θ0 yields the same results). For
a point located close the ring (0 < h = o(1)) much more Gaussian points
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are needed because each integral now approaches a weakly singular one. To
examine to which extent a good accuracy is reached without any special care, a
’regularization’ technique has also been employed to evaluate each integral Jmn.

In this approach, Jmn is splitted into a regularised integral and some other terms
involving the integrals Imn defined as

Imn =
∫ 2π

0
[R]−m cosn θ0dθ0 for n = 0, 1 and m = 1, 2, 3. (58)

The integrals Imn have been actually previously encountered for the axisym-
metric Stokes fundamental flows (see, for instance, (Pozrikidis, 1992)). Here, we
adopt for small h and n = 0, 1 the decompositions

J1n =
∫ 2π

0
[R]−1

[
e−R/2 − 1

]
cosn θ0dθ0 + I1n, (59)

J2n =
∫ 2π

0
[R]−2

[
e−R/2 − 1 + R/2

]
cosn θ0dθ0 + I2n − I1n/2, (60)

J3n =
∫ 2π

0
[R]−3

[
e−R/2 − 1 + R/2 − R2

/8
]
cosn θ0dθ0 + I3n − I2n/2 + I1n/8.

(61)

Clearly, the first integral on the right-hand side of each above decomposition is
regular even for vanishing h.

As detailed in Pozrikidis (1992), the accurate determination of the integrals
Imn is done by expressing each integral in terms of the usual complete elliptic
integrals of the first and second kind F and E (Gradshteyn & Ryzhik, 1965).
Those latter integrals are defined for 0 ≤ t < 1 as

F(t) =
∫ π/2

0
(1− t2 sin2 ω)−1/2dω, E(t) =

∫ π/2

0
(1− t2 sin2 ω)1/2dω. (62)

Setting θ0 = π − 2ω indeed yields the relations

Imn = 4km

(4r r0)m/2

∫ π/2

0

(2 sin2 ω − 1)dω

(1 − k2 sin2 ω)n/2
, k =

[
4r r0

(r + r0)2 + z2

]1/2
(63)

which make it possible to write, as displayed in Appendix 2, each integral Imn
solely in terms of r, r0, k and the elliptic integrals F(k) and E(k) which are here
computed by calling Fortran subroutines.

We compared the ability, in terms of number of Gaussian points and accuracy,
of the direct and regularised methods. The results are illustrated by giving in
Table 1, for r0 = 1, the computed integrals Jm0 at three points located in the z− r
plane in the vicinity of the ring trace: P1(0, 1+ h), P2(0, 1− h) and P3(h, 1). The
table considers the demanding value h = 0.001 and indicates the number N of
Gaussian points used for the direct integration over [0, 2π ] (Method 1), the direct
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Table 1. Computed integrals J10, J20 and J30 at points P1, P2 and P3 located very close the ring
trace (h = 0.001) in the z − r plane using either direct or regularisation methods (M = m for
Methodm).

P M N J10 J20 J30

P1 1 1024 15.61037048265319 3131.686002842942 1997434.739654201
P1 2 512 15.61037048282996 3131.686003112822 1997434.739990571
P1 3 256 15.61037048288568 3131.68600288449 1997434.740055039
P1 4 15.61037048286234 3131.686003166309 1997434.740054467
P2 1 1024 15.62573470565284 3134.819724575156 1999433.177987192
P2 2 512 15.62573470492680 3134.819723404632 1999433.176471672
P2 3 128 15.62573470493114 3134.819723417441 1999433.177855004
P2 4 15.62573470559920 3134.819724480102 1999433.177854478
P3 1 1024 15.61804696551391 3133.251688551726 1998433.209514288
P3 2 512 15.61804696531082 3133.251688237248 1998433.209117909
P3 3 128 15.61804696530070 3133.251688392196 1998433.209539091
P3 4 15.61804696553471 3133.251688576636 1998433.209539000

Table 2. Computed integrals J11, J21 and J31 at points P1, P2 and P3 located very close the ring
trace (h = 0.001) in the z − r plane using either direct or regularisation methods (M = m for
Methodm).

P M N J11 J21 J31

P1 1 1024 13.73818993760090 3129.9436129152341 1997427.939985994
P1 2 512 13.73818993777768 3129.943613185113 1997427.940322366
P1 3 128 13.73818993777768 3129.943613185113 1997427.940322366
P1 4 13.73818993781008 3129.943613238599 1997427.940386263
P2 1 1024 13.75031422679633 3133.072910110099 1999426.358016457
P2 2 512 13.75031422607029 3133.072908939588 1999426.356500937
P2 3 128 13.75031422607465 3133.072908952396 1999426.356530830
P2 4 13.75031422674271 3133.072910015055 1999426.357883743
P3 1 1024 13.74424780775037 3131.507088769532 1998426.399707410
P3 2 512 13.74424780754728 3131.507088455040 1998426.399311033
P3 3 128 13.74424780753714 3131.507088609985 1998426.399497232
P3 4 13.74424780777115 3131.507088794434 1998426.399732121

integration over [0,π/2] using symmetries and the variable v = θ0/2 (Method 2)
and the direct integration (again over [0,π/2]) of the regularised integrals
arising in (59)–(61) (Method 3). The reported values, obtained using a Fortran
double precisionCode, have also been compared against a direct integration over
[0, 2π ] by the Mathematica Software (Method 4) which performs an optimum
and adaptive numerical integration method instead of the standard Gaussian
procedure (consequently, no number of Gaussian is given for Method 4).

Inspecting Table 1 shows that all methods perfectly agree. As expected, the
‘regularization’ technique requires fewer Gaussian points than the others meth-
ods. A similar behaviour is also observed in Table 2 for the other integrals Jm1
evaluated at the same points P1, P2 and P3. Accordingly, the ‘regularization’
procedure is well adapted to compute each flow in the vicinity of the ring.

In summary, it has thus been found both efficient and accurate to resort to
the ‘regularization’ technique to evaluate the integrals Jmn close to the ring while
away from the ring a direct integration is fine. Moreover, when h becomes large
it appeared convenient for accuracy reasons to put the sinh (z/2) or cosh (z/2)
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Table 3. Computed integral J for r = r0 = 1 and several positive values of z using or not the
alternative form (see Appendix 3) for T1 and/or T2. In the concerned columns we indicate each
term for which the alternative form has been employed.

z None T1 T2 T1, T2 Mathematica

1 -0.3716369059 -0.3715230691 -0.3716369059 -0.3715230691 -0.3715230691
5 2897.1184627 -0.0291278082 2897.1184627 -0.0291278082 -0.0291278082
10 11706.606402 -0.0036452547 11706.606402 -0.0036452547 -0.0036452547

Table 4. Computed integral J at points P1, P2 and P3 located very close the ring trace (h = 0.001)
in the z − r plane using different methods (with or without the alternative form for T1 and/or
T2).

Method P1 P2 P3

None 13.73818993771359 13.75031422468661 11.74160727094769
T1 13.73818993771365 13.75031422468683 11.74425728885313
T2 13.73818993771342 13.75031422468666 11.74160727094769
T1, T2 13.73818993771349 13.75031422468688 11.74425728885313
Mathematica 13.73818993781008 13.75031422674270 11.74425728919264

factors (see (52)–(57)) in the integrals before performing such a direct integra-
tion.

The last integral J , defined by (51), also writes (set α = θ0/2)

J = 4
∫ π/2

0

{
T1 − (r − r0 cos 2α)(r cos 2α − r0)T2

}
dα. (64)

It turns out that computing J (again in Fortran)with aGaussian quadrature using
the definitions (A2)–(A3) experiences troubles on the r = r0 tube far enough
from the ring! This difficulty is illustrated in Table 3 (compare the second and
last columns) for r0 = 1 and z = 1, 5, 10.

The problem is due to the last terms on the right-hand sides of (A2) and (A3)
because R2 − z2 = 2r2(1 − cos 2α) vanishes at α = 0 although both T1 and
(1 − cos 2α)2T2 admit a finite limit. To circumvent this numerical Problem, we
recast T1 and T2 into equivalent alternative forms depending upon the sign of
z and displayed in Appendix 3. As seen in Table 3 for z > 0, the use of those
alternative forms nicely solves the previous accuracy troubles.

As for the integrals Jmn comparisons at previous points P1, P2 and P3 located
near the ring trace have been made for the integral J using or not the alternative
forms for T1 and/or T2. The obtained results for r0 = 1 and h0 = 0.001 are
presented in Table 4. It turns out that it is not necessary to use the alternative
forms for h small.

4.2. Flow patterns

We now turn to the different fundamental flow patterns for a few values of ring
normalised radius r0. More precisely, we plot in the z − r half plane the isolevel
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. Fundamental axisymmetric flow streamlines for r0 = 0.1, 1, 10. The value of r increases
from top to bottom and the first fundamental flow (due to axial forces on the ring) is for cases (a),
(c) and (e).
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contours of the following normalised quantities (for l = 1, 2)

U (l)
r =

[
8πμd
F

]
u(l)
r , U (l)

z =
[
8πμd
F

]
u(l)
z , P(l) =

[
8πd2

F

]
p(l) (65)

and the associated streamlines.
For a given value of r0 the two fundamental flows exhibit quite different

patterns. This is shown in Figure 2 for the normalised velocity components and
r0 = 1.

This figure reveals that, not surprisingly, all these quantities are positive in
the entire fluid half domain. Moreover,U (1)

z is larger thanU (2)
z . These quantities

and U (1)
r decay slowly away from the ring trace point P having coordinates

z = 0 and r = 1. By contrast, U (2)
r exhibit a very fast decay away from P and

this explains why, amazingly, the velocity component U (2)
r due to radial forces

becomes smaller than the component U (l)
r due do axial forces except in the

very vicinity of the ring trace P. The same trend is observed for the normalised
pressures in Figure 3.

Each resulting flow streamlines (which here coincide with the fluid particles
trajectories since the flow is steady) are also drawn in Figure 3. It appears that
for the second flow due to the ring radial force distribution some trajectories are
closed near the ring trace point P. This means that some fluid particles located
near the ring are trapped, i.e. not able to escape away as it is the case for the first
fundamental flow produced by the ring axial forces.

We close this subsection by investigating the previous results sensitivity to
the normalised ring radius r0. This is here done by considering, in Figure 4, the
obtained velocity components for a large ring r0 = 10.

The trends (hierarchy and decay rate away from the ring trace) previously
noticed for the ring with radius r0 = 1 and depicted in Figure 2 still hold. Here
the addressed fluid domain is larger, both in terms of z and r, than the one
seen in Figure 2 and this permits one to observe non-necessary similar far-field
behaviour of each normalised velocity component in directions close either to the
z axis or to the r axis. It thus appears that near the two upstream and downstream
directions (r ∼ 0) the normalised velocity U (1)

z experiences a very slow decay
while the magnitude of other reported velocities (especially the quantity U (2)

r )

quickly decrease in all directions away from the ring trace point P.

Finally, we gather in Figure 5 the computed fundamental flow streamlines for
r0 = 0.1, 1, 10.On comparing the different plots, the reader should note that the
pocket of trapped liquid for the second fundamental flow can extend far away
from the ring (see the r0 = 10 case).

5. Conclusions

The radial and axial velocity components (ur , uz) and the pressure p of two
basic fundamental axisymmetric MHD viscous flows produced in a conducting
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Newtonian liquid by axial and radial distributions of forces on the (z−z0)2+(r−
r0)2 = 0 ring in the presence of a given uniform axial magnetic field B = Bez ,
with B > 0, have been obtained in closed form.

The adopted procedure requires to determine the pressure and some of the
Cartesian components of a more involved three-dimensional fundamental MHD
flow and permits one to get the required axisymmetric flows in closed form. At
point (r, θ , z) each flow solely depend upon both (r, r0, z − z0) and the so-called
Hartmann layer thickness d = (

√
μ/σ)/B. The proposed numerical treatment,

both implemented and tested, makes it possible to accurately compute the flow
velocity components and pressure (ur , uz , p). The resulting flow patterns, drawn
versus the normalised coordinates r = r/d and z = z/d, reveal that both flows
exhibit quite different behaviours at given parameters (r0, d) and also deeply
depend upon the ring-normalised radius r0 = r0/d.

From the knowledge of (ur , uz , p) versus (r, z) it is straightforward to obtain, if
needed, the resulting stress tensor components (again in cylindrical coordinates).
This derivation offers no additional difficulty and is thus left to the reader.

As mentioned in the introduction, we intend in future to develop a new
boundary element method to get the axisymmetric MHD flow about a trans-
lating axisymmetric body having axis of revolution and translational velocity
parallel with the uniform magnetic field B. Such a challenging task will appeal
to the two axisymmetric fundamental flows (but not to the associated stress
tensors!) obtained in the present paper. Since requiring additional efforts such
investigations are however postponed to another work.
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Appendix 1. Functions T1 and T2
In this Appendix we give in closed form the functions T1 and T2 first occuring in (40)–(41).
This is done using the distance R and the function g such that

R = |x − x0|, g(R, d) = e−R/(2d)/R. (A1)

Appealing to (31) for ∂H/∂x, we then have the following definitions

T1 = g(R, d)

{
e(z−z0)/(2d)

R − (z − z0)
+ e−(z−z0)/(2d)

R + z − z0

}
− 2

R2 − (z − z0)2
, (A2)

T2 = g(R, d)

R

{[
R + 2d
2dR

][
e(z−z0)/(2d)

R − (z − z0)
+ e−(z−z0)/(2d)

R + z − z0

]

+ e(z−z0)/(2d)

[R − (z − z0)]2 + e−(z−z0)/(2d)

[R + z − z0]2
}

− 4
[R2 − (z − z0)2]2 . (A3)

Note that from (A1) we can recast the last terms appearing in T1 and T2 by using the relation

R2 − (z − z0)2 = r2 + r20 − 2rr0 cos θ0 (A4)

so that both T1 and T2 solely depend upon (r, r0, θ0, z − z0) and d.

Appendix 2. Expressing Imn in terms of elliptic integrals
Using the definitions (62) and the relation (63) easily yields the identities

I10 = 2kF(k)
(r r0)1/2

, I20 = πk2

2r r0
√
1 − k2

, I30 = 4k3E(k)
(4r r0)3/2(1 − k2)

, (B5)

I11 = 2k
(r r0)1/2

{
(
2
k2

− 1)F(k) − 2
k2

E(k)
}
, (B6)

I21 = π

2r r0

{
2 − k2√
1 − k2

− 2
}
, (B7)

I31 = 4k
(4r r0)3/2

{
[2 − k2

1 − k2
]E(k) − 2F(k)

}
. (B8)

Appendix 3. Alternative forms for T1 and T2
This Apprendix provides the employed alternative forms used for the numerical implemen-
tation and of importance for r = r0. By virtue of (A1)–(A3), the definitions of T1 and T2
immediately give
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T1 = 1
R

[
e−(R−z)/2

R − z
+ e−(R+z)/2

R + z

]
− 2

R2 − z2
, (C9)

T2 = 1

R2

{[
R + 2
2R

][
e−(R−z)/2

R − z
+ e−(R+z)/2

R + z

]

+ e−(R−z)/2

[R − z]2 + e−(R+z)/2

[R + z]2
}

− 4

[R2 − z2]2
. (C10)

When R2 = z2 the last terms on the right-hand sides of (C9)–(C10) induce numerical
troubles. This basic issue is adequately handled using the following equivalent alternative
forms:

T1 = 1
R

[
e−(R−z)/2 − 1

R − z
+ e−(R+z)/2

R + z

]
− 1

R(R + z)
for z > 0, (C11)

T1 = 1
R

[
e−(R+z)/2 − 1

R + z
+ e−(R−z)/2

R − z

]
− 1

R(R − z)
for z < 0, (C12)

T2 = 1

R2

{[
R + 2
2R

][
e−(R−z)/2

R − z
+ e−(R+z)/2

R + z

]

+ e−(R−z)/2 − 1
[R − z]2 + e−(R+z)/2

[R + z]2
}

− 3R + z

R2
(R + z)(R2 − z2)

for z > 0, (C13)

T2 = 1

R2

{[
R + 2
2R

][
e−(R−z)/2

R − z
+ e−(R+z)/2

R + z

]

+ e−(R+z)/2 − 1
[R + z]2 + e−(R−z)/2

[R − z]2
}

− 3R − z

R2
(R − z)(R2 − z2)

for z < 0. (C14)
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