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Abstract

This work presents a new recursion scheme to compute the cartesian derivatives of potentials on the smooth surface of a connected
solid. The advocated strategy solely appeals to boundary-integral equations and a very few informations regarding the surface geometry.
The whole algorithm is carefully tested against analytical solutions both for interior and exterior problems by implementing a collocation
points method.
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1. Introduction

Let us consider a solid particle occupying the bounded
domain P enclosed by a smooth, insulating and closed sur-
face S, of unit outward normal n, immersed in a viscous
and conducting liquid metal. It has been shown [1] that
when subject to uniform ambient electric and magnetic
fields E and B this particle experiences a rigid-body motion
whose determination requires to calculate surface integrals
of the following types

I1 ¼
Z

S
½V i/;i�ðxÞdSðxÞ; I2 ¼

Z
S
½W ij/;ij�ðxÞdSðxÞ; ð1Þ

where / denotes the perturbation electrostatic potential,
harmonic in the unbounded fluid domain X ¼ R3 nP and
subject to the Neumann boundary condition $/ Æ n =
E Æ n on the insulating surface S and /,i = o//oxi whereas
/,ij = o2//oxioxj for usual Cartesian coordinates xi =
OM Æ ei. In addition, occurring vector or tensor cartesian
components Vi or Wij in (1) are given. Clearly, the key eval-
uation of I1 and I2 appeals to accurate approximations of
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/,i and /,ij on the boundary S. At a very first glance, one
may think about estimating I1 by the determination of /
on S (as explained in Section 2.1) and the computation
of its tangential derivatives (because we know the normal
component $/ Æ n = E Æ n this procedure indeed provides
the required potential gradient, $/, on the surface). How-
ever, such an approximation of the needed tangential
gradient, $/ � [$/ Æ n]n, requires to resort to high-order
boundary elements on S. For example, using 6-node
(curvilinear) triangular boundary elements yields a linear
approximation of the tangential gradient but only at inte-
rior points of the elements. If one may content oneself with
this procedure for I1 the case of I2 is far more tricky: if in-
deed it remains possible to deduce inner constant approxi-
mations of second-order tangential derivatives of / on each
quadratic boundary element (such as previously alluded to
6-node curvilinear triangular elements) the obtention of
the needed second-order normal derivatives, by exploiting
$2/ = 0 on S, necessarily requires the intricated use of lo-
cal coordinates (as achieved in [2–4]). In the same spirit, the
calculation of the third-order derivatives /,ijk would at least
require to resort to cubic interpolations of / on S and a
cumbersome link for the third-order normal derivative in
terms of local coordinates. Accordingly, one needs another
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Fig. 1. (a) Case of the interior problem: X = Xi. (b) Case of the exterior
problem: X = Xe.
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procedure in computing high-order derivatives of the
potential on the surface. One might object that, except
for the motivating cases of I1 and I2, one seldom needs to
compute the derivatives of potentials on the surface. How-
ever, it is sometimes worth evaluating / and/or its deriva-
tives not on but near to S and the well-known and widely
employed integral representations of /(M) and its deriva-
tives, in terms of the values of / and the normal flux
$/ Æ n on S (see Section 2), experience dramatic losses of
accuracy as M approaches S. Even more and more refined
surface meshes fail in adequately handling such difficulties.
To remedy to these troubles it seems quite suitable to ap-
peal to the Taylor expansion of / about a point M0 of S

close to M and this approach rests on the accurate estima-
tion of more and more higher order cartesian derivatives of
/ at this point M0 on S, at least is M0M is not parallel to
n(M0). Similar worries actually also arise in linear elasticity
for the key evaluation of the surface stresses near or on a
boundary. If most of available papers deal with an
hyper-singular boundary-integral equation for the required
stress Cartesian components [5–8] and the displacement
Cartesian derivatives [9] note that [10] and [11] end up with
a non-singular boundary-integral equation in 2D and 3D
problems, respectively.

Recently [2–4] proposed a general method to compute
derivatives of potentials, displacements, stresses on the
boundary in both 2D and 3D problems arising in potential
theory and linear elasticity. The approach resorts to local
curvilinear normal and tangent coordinates in a neighbor-
hood of S and notes that each normal derivative ok//onk

(of order k P 2) may be expressed, by exploiting the har-
monic equation, in terms of tangential derivatives of order
k � l of the normal derivatives ol//onl for 0 6 l 6 k � 1,
(under the notation o0//on = /). Hence, on S the deriva-
tives (with respect to the local coordinates) up to order
k P 2 are deduced from tangential derivatives of / and
w = $/ Æ n up to order k and k � 1 respectively. It is proved
that, writing the integral representation A[w] = B[/] on S,
each tangential derivative of w of order m P 1, denoted
by wðmÞt ; fulfills the boundary-integral equation A½wðmÞt � ¼
Cm on S, with Cm obtained from /ðmÞt ;w and wðlÞt with
2 6 l 6 m � 2 if m P 2. Successively solving such integral
equations as m increases from 1 to k � 1 (k P 2) thus pro-
vides on S the derivatives of / with respect to local coordi-

nates up to order k. To the present day, this procedure has
been successfully and numerically worked out for k = 2 (by
a Galerkin method) and 2D interior or exterior Dirichlet
problems for the Laplace and plane linear elasticity equa-
tions only. Actually, the numerical implementation for
k P 3 and/or 3D problems encounters the following
difficulties:

(i) For k P 3, one needs accurate approximations of
higher and higher order tangential derivatives of both
/ and the local metric tensor on S. Even if the surface
is analytically given this requires more and more cal-
culations and when / is not analytically prescribed
more and more refined meshes on S since one then
also needs to numerically approximate / on the
boundary.

(ii) One has to build the encountered right-hand sides
Cm, a task which becomes involved as m increases.

(iii) In 3D cases two tangential coordinates are needed
and this results in a tedious calculation of Cm, even
for k = 2.

(iv) Finally, the obtained derivatives are expressed in
local coordinates only. This appears somewhat dam-
aging for subsequent use of these derivatives (for
instance for surface integrations of derivatives, as
needed for I1 and I2) or Taylor’s expansions of
both the potential and its derivatives in the vicinity
of the boundary.

This work presents a new procedure free from all the
previous drawbacks (ii)–(iv). The advocated treatment
gives the cartesian derivatives /;i1...im , if needed up to large
orders m P 1, without any amount of complexity as m

increases and solely makes use of the unit normal vector
n and the mean curvature on the surface S. More precisely,
the paper is organized as follows. A new boundary-integral
equation and a suitable bootstrapping algorithm that
provides the cartesian derivatives of / up to order m P 1
are established in Section 2, both for interior and exterior
problems and a the surface S of one connected solid. The
general case of the surface of a collection of connected
solids is addressed in Section 3 whereas a numerical imp-
lementation and illustrating benchmarks, both for one
and several connected solids, are presented in Section 4.
Finally, a few concluding remarks and suggestions close
the paper in Section 5.
2. Interior or exterior problems for one connected body

Let us call connected solid a nonempty, compact and
connected subset of R3 whose smooth boundary S has only
one connected component and denote by Xi its interior. We
further designate by Xe the exterior domain Xe ¼ R3 n Xi

and by n the unit outward normal on S, as sketched in
Fig. 1(a) and (b).

Throughout the paper Cartesian coordinates xi =
OM Æ ei and the usual tensor summation notation are
adopted with x = OM = xiei and r = jxj = (xixi)

1/2. Both
for interior (X = Xi) and exterior (X = Xe) cases, the poten-
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Fig. 2. Case of an exterior problem. The surface, Sq, of the sphere
centered at x is indicated by the dashed curve.
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tial / is governed by the usual mixed boundary value
problem

r2/¼ 0 in X; r/ �n¼ F on S0; /¼U on S00 ¼ S nS0 ð2Þ
with prescribed Neumann and Dirichlet data F and U and
the following additional far-field behavior and compatibil-
ity condition

jr/j6Oð1Þ as r!1 for exterior Cases ðX¼XeÞ; ð3ÞZ
S

F ðyÞdSðyÞ ¼ 0 if S0 ¼ S for interior Cases ðX¼XiÞ: ð4Þ

Let us introduce the usual Sobolev spaces H1(Xi) = {u

such that u 2 L2(Xi) with ou/oxi 2 L2(Xe) for i = 1,2,3},
W(Xe) = {u such that u/(1 + r2)1/2 2 L2(Xe) and ou/oxi 2
L2(Xe) for i = 1,2,3}, the standard boundary Sobolev
space H1/2(S) as alluded-to in [4] and detailed in [15], and
its dual Sobolev space H�1/2(S) via the usual L2-duality.
For R � S we furthermore define the dual Sobolev bound-
ary spaces H1/2(R) and H�1/2(R) with H 1=2ðRÞ ¼ fu defined
on R such that û 2 H 1=2ðSÞ if û ¼ u on R and û ¼ 0 on
S n Rg. Then [12], under the additional conditions (3) or
(4), the problem (2) admits a unique solution / in W(Xe)
or H1(Xi) as soon as U 2 H1/2(S00) and F 2 H�1/2(S 0) for
exterior problems or interior problems respectively if
S 5 S 0. If S 0 = S any well-posed interior problem (such
that the compatibility condition (4) holds) admits a solu-
tion / 2 H1(X) unique up to an arbitrary constant for
F 2 H�1/2(S). For any encountered case, we look at the
cartesian derivatives /,i = o//oxi, /,ij = (/,i),j, . . .at the
boundary S.

2.1. Obtention of the normal flux on the surface

In this subsection it is assumed that S 0 5 S and we
briefly give a well-established procedure to obtain the
potential / and its normal flux $/ Æ n on the whole bound-
ary. If G(x,y), H(x,y) = $Gy Æ n(y) and h(x) respectively
denote the usual free space Green’s function, its normal
derivative on the surface S and a function h such that

Gðx; yÞ ¼ 1

4pjx� yj ; Hðx; yÞ ¼ ðx� yÞ � nðyÞ
4pjx� yj3

;

hðxÞ ¼
Z

S
Hðx; yÞdSðyÞ ð5Þ

we first note that, because S admits a tangent plane
everywhere,

hðxÞ ¼ �1 if x 2 Xi; hðxÞ ¼ �1=2 if x 2 S;

hðxÞ ¼ 0 if x 2 Xe: ð6Þ

In addition, the second Green’s identity yields the widely
employed integral representationZ

S
fGðx; yÞ½r/ � n�ðyÞ � /ðyÞHðx; yÞgdSðyÞ ¼ �/ðxÞ;

for x 2 X ð7Þ
with, as henceforth adopted in the whole paper, signs � or
+ for interior or exterior problems respectively. If X is
bounded (case of the interior problem) the above pro-
perty (7) easily arises (see [13,14]) from the basic link
$2G(x,y) + d(y � x) = 0 where d denotes the usual Dirac
generalized function. For exterior problems one intro-
duces, as depicted in Fig. 2, the bounded domain Xq en-
closed by S and the sphere Sq = {y; jy � xj = q} centered
at x 2 X = Xe and of large enough radius q. Relation (7)
then holds for the interior problem in Xq of boundary
S [ Sq and outwarding unit normal ex(y) = (y � x)/q on
Sq and �n on S. Noting that the far-field behavior (3)
and the 1/r-decay of G make the integration on Sq vanish
as q tends to infinity, one thus deduces (7) for the exterior
problem.

For interior problems, substituting (6) in (7) then yieldsZ
S
fGðx; yÞ½r/ � n�ðyÞ � ½/ðyÞ � /ðxÞ�Hðx; yÞgdSðyÞ ¼ 0;

for x 2 Xi [ S: ð8Þ

Indeed, (8) clearly holds if x belongs to X = Xi and it actu-
ally remains true as x tends to S because each occurring
integral remains regular in such a limit process. The case
of exterior problems is again handled by using the bounded
domain Xq and letting q tend to infinity. Noting that for
x 2 Xq [ SZ

Sq

ðx� yÞ � exðyÞ
jx� yj3

dSðyÞ ¼ �4p; ð9Þ

one this time ends up, for any exterior problem, with the
relationZ

S
fGðx;yÞ½r/ � n�ðyÞ� ½/ðyÞ�/ðxÞ�Hðx;yÞgdSðyÞ ¼�/ðxÞ;

for x 2Xe [ S: ð10Þ

If x is located on S the above links (8) and (10) result in
boundary-integral equations that relate the potential / to
its normal flux $/ Æ n on the boundary. More precisely,
taking into account the mixed boundary value conditions
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(2) on S 0 5 S and S00, one obtains the well-posed bound-
ary-integral equationZ

S
½/ðyÞ � /ðxÞ� ðx� yÞ � nðyÞ

jx� yj3
dSðyÞ � 2pð1þ�1Þ/ðxÞ

¼
Z

S

½r/ � n�ðyÞ
jx� yj dSðyÞ; x 2 S ð11Þ

with � and + signs for interior and exterior problems
respectively. Each integral occurring in (11) is regular and
the boundary-integral equation (11) admits a unique solu-
tion / 2 H1/2(S), $/ Æ n 2 H�1/2(S) as soon as S 0 5 S if
$/ Æ n = F 2 H�1/2(S 0) and / = U 2 H1/2(S00). If one resorts
to a N-node mesh on S (for example for a collocation point
implementation as achieved in Section 4) and denotes by
g(n) the value of the function g at the nth node M(n), the
discretized Eq. (11) provides N relations for the general-
ized 2N-unknown X = (/(1), . . . ,/(N); [$/ Æ n](1), . . . ,
[$/ Æ n](N)) whereas the boundary conditions (3) provide
N additional relations: /(M(n)) = U and [$/ Æ n](M(n)) =
F if M(n) belongs to S00 and S 0 respectively. In summary,
we now assume that / and its normal flux F = $ Æ n are gi-
ven on the whole surface S, i.e. on a prescribed N-node
mesh of S.

2.2. Obtention of the potential gradient on the surface

This subsection establishes the key boundary-integral
equation that permits us to deduce the cartesian compo-
nents /,i = $/ Æ ei of the gradient on S from the previous
knowledge of the normal flux F = $/ Æ n and a very few
informations on the geometry. We successively present
and prove the boundary-integral equation of interest.

The surface is smooth enough so that it admits continu-
ous normal n(x) = ni(x)ei and mean curvature Hc(x) :¼
�C(x)/2 with C(x) = [$ Æ n](x) (for these latter definitions
of differential operators on the surface S the reader is
directed to [15]). For x on S such assumptions make it
possible to introduce, for i 2 {1,2,3}, the surface integrals

I iðx; SÞ ¼
Z

S

ðy� xÞ � nðyÞ
jx� yj2

� CðyÞ
" #

nðyÞ � ei

jx� yj dSðyÞ;

CðxÞ ¼ ½r � n�ðxÞ: ð12Þ
Each above integral Ii(x,S), that only depends upon x and
the geometry, indeed is regular since (6) yields for x on SZ

S

ðy� xÞ � nðyÞ
2pjx� yj2

" #
nðyÞ � ei dSðyÞ
jx� yj

¼ niðxÞ þ
Z

S

ðy� xÞ � nðyÞ
2pjx� yj3

" #
½niðyÞ � niðxÞ�dSðyÞ: ð13Þ

For any function g differentiable in a neighborhood of S

let us also define, as in [16], the tangential derivative Dijg

on S as

½Dijg�ðyÞ ¼ niðyÞg;jðyÞ � njðyÞg;iðyÞ
¼ ðei ^ ejÞ � ðn ^ rgÞ½y�: ð14Þ
The last equality (14) indeed clearly shows that [Dijg](x) so-
lely involves tangential derivatives of g at the point x of S.

Theorem. If the surface S and the potential / satisfy the

assumptions

(i) The boundary S admits continuous normal n and mean

curvature C.

(ii) The potential is of C1,a+1 regularity at any point x of S,

i.e. there exist a > 0, C1 > 0 and C2 > 0 such that for y

on S and close enough to x
j/ðyÞ � /ðxÞ � r/ðxÞ � ðy� xÞj < C1jx� yj1þa
;

jr/ðyÞ � r/ðxÞj < C2jx� yja; ð15Þ
then the following boundary-integral equations govern,

for i 2 {1,2,3}, the required potential gradient $/ =

/,iei
� 2p/;iðxÞ� ½Dij/�ðxÞIjðx;SÞ

þ
Z

S

½Dij/�ðyÞ� ½Dij/�ðxÞ
jx� yj3

( )
ðx� yÞ � ej dSðyÞ

¼�F ðxÞI iðx;SÞþ
Z

S

F ðyÞ� F ðxÞ
jx� yj3

" #
ðx� yÞ � ei dSðyÞ;

x2 S ð16Þ

with signs � or + for interior or exterior problems

respectively and a normal flux F(x) = [$/ Æ n](x) given
on the whole surface S (as explained in Section 2.1).
Proof. The derivation of (16) is achieved in three steps
and, for conciseness, omitted details and elementary calcu-
lations are displayed in Appendix A.

Step 1: Since it concentrates all the difficulties we first
consider an exterior problem and introduce for x 2 X [ S

the potentials w(y) = /(x) + $/(x) Æ (y � x) and wj(y) =
(y � x) Æ ej. Of course, w(y) and wj(y) are harmonic in X but
do not exhibit the ‘good’ far-field behavior (3), previously
invoked in establishing (10). Again we resort to the
bounded domain Xq (see Fig. 2) and apply (8) to w and
wj for this domain. We then end up with two surface
integrals: one over S and the other one over Sq. Keeping
the notations q = jy � xj and ex(y) = (y � x)/q and in-
voking symmetries we easily obtainZ

Sq

½rw � n�ðyÞGðx; yÞdSðyÞ ¼
Z

Sq

r/ðxÞ � exðyÞdSðyÞ
4pq

¼ 0;

ð17ÞZ
Sq

½rwj � n�ðyÞGðx; yÞdSðyÞ ¼
Z

Sq

ej � exðyÞdSðyÞ
4pq

¼ 0; ð18ÞZ
Sq

½f ðyÞ � f ðxÞ�Hðx; yÞdSðyÞ ¼ 0 for f ¼ w and f ¼ wj:

ð19Þ

Accordingly, the integral on Sq vanishes and the relation
(8) also holds for w and wj! More precisely, from the defi-
nition of wj it follows that
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Z
S
fnjðyÞGðx; yÞ � ðy� xÞ � ejHðx; yÞgdSðyÞ ¼ 0

for x 2 X [ S; ð20Þ

whereas the combination of (10) for / with (8) for w imme-
diately provides, under the definition of w, the regularized
relation

/ðxÞ ¼
Z

S
f/ðyÞ � /ðxÞ � r/ðxÞ:ðy� xÞ�gHðx; yÞdSðyÞ

�
Z

S
½r/ðyÞ � r/ðxÞ� � nðyÞGðx; yÞdSðyÞ

for x 2 X [ S: ð21Þ

For x = xiei and y = yiei we set G,i = oH/oyi and observe
that G,i = �oG/oxi. From the definition H = G,jnj one thus
obtains oG/oxi = �G,ijnj. Exploiting these properties and
(20), the derivation of (21) with respect to xi yields the
key identities

/;iðxÞ ¼
Z

S

�
ðr/ � nÞðyÞ � ðr/ � nÞðxÞ

� r/ðxÞ � ½nðyÞ � nðxÞ�
�

G;iðx; yÞdSðyÞ

þ
Z

S
½/ðxÞ � /ðyÞ � r/ðxÞ � ðx� yÞ�

� G;ijðx; yÞnjðyÞdSðyÞ
for x 2 X [ S: ð22Þ

Let us emphasize that (21) and (22) not only hold in X but
also on the boundary. As the reader may easily check, un-
der assumptions (i) and (ii) each integral in (22) is regular
for x on S. Note that (22) turns out to be a boundary-inte-
gral equation for $/ on S as soon as one knows / and its
normal flux $/ Æ n on the boundary. As achieved in steps 2
and 3 it is however possible to restrict the needed surface
quantities to n, $/ Æ n and the mean curvature C.

Step 2: For 0 < �	 1 let us introduce, for x on S, the
open set d� = {y 2 S, jx � yj < �} and denote by T �

1 and T �
2

the first and second integrals on the right-hand side of (22)
with the domain S replaced by S(�) = Snd�. Of course, (22)
now reads: /;iðxÞ ¼ lim�!0ðT �

1 þ T �
2Þ. Setting

K�
ijðxÞ ¼

Z
Sð�Þ

niðyÞG;jðx; yÞdSðyÞ;

J �i ðxÞ ¼
Z

Sð�Þ
G;iðx; yÞdSðyÞ; ð23Þ

one immediately obtains, for F(x) = [$/ Æ n](x), the decom-
position

T �
1 ¼

Z
Sð�Þ
½F ðyÞ � F ðxÞ�G;iðx; yÞdSðyÞ þ F ðxÞJ �i ðxÞ

� /;jðxÞK�
jiðxÞ: ð24Þ

From our definition (14) a few elementary algebra yields

G;ijðx; yÞnjðyÞ ¼ G;jjðx; yÞniðyÞ � Dij½G;j�;
Dij½fg� ¼ fDij½g� þ gDij½f �: ð25Þ
Since G,jj(x,y) = 0 for y on S(�) one thus deduces the
decomposition

T �
2 ¼

Z
Sð�Þ

G;jDij½f � � Dij½G;jf �
� �

dSðyÞ;

f ¼ /ðxÞ � /ðyÞ � r/ � ðx� yÞ:
ð26Þ

Exploiting the above definition of f, one further obtains

Dij½f � ¼ ½Dij/�ðxÞ � ½Dij/�ðyÞ þ /;jðxÞniðyÞ
� /;iðxÞnjðyÞ � ½Dij/�ðxÞ: ð27Þ

Appealing to (6) for x on S and the definition (23) of K�
ijðxÞ

one thus arrives at

T �
2 ¼

Z
Sð�Þ
½Dij/�ðxÞ � ½Dij/�ðyÞ
� �

G;jðx; yÞdSðyÞ þ /;iðxÞ=2

þ /;jðxÞK�
ijðxÞ � ½Dij/�ðxÞJ �jðxÞ �

Z
Sð�Þ

Dij½fG;j�dSðyÞ

þ /;iðxÞ
Z

dð�Þ
G;jðx; yÞnjðyÞdSðyÞ: ð28Þ

Step 3: We equip the closed boundary c� of d� (which is
not a circle centered at x) with its unit outward normal v

and tangential vector t = n ^ v. As shown in Appendix A,
the Stokes theorem ensures that

4p lim
�!0
½J �i ðxÞ� ¼ �I iðx; SÞ þ lim

�!0

I
c�

ei � vdsðyÞ
q

� �
ð29Þ

where q = jx � yj and ds is the differential arc length on the
closed path c�. The first integral on the right-hand side of
(24) or (28) are regular as � vanishes. Accordingly, if we
rewrite the stated relation (16) as Li(x) = 2p/,i(x) +
D[$/] � E[F] = 0 we finally deduce from (24) and (28) that

LiðxÞ ¼ lim
�!0
f½A0;�

i þ /;iA
1;�
i þ /;jP

�
ij�ðxÞg;

A0;�
i ðxÞ ¼ �4p

Z
Sð�Þ

Dij½fG;j�dSðyÞ;
ð30Þ

A1;�
i ðxÞ ¼

Z
dð�Þ

4pG;jðx; yÞnjðyÞdSðyÞ þ
I

c�

njðxÞej � vdsðyÞ
q

;

ð31Þ

P �
ijðxÞ ¼

Z
Sð�Þ

4p½niðyÞG;j � njðyÞG;i�dSðyÞ

þ
I

c�

½njðxÞei � v� niðxÞej � v�
dsðyÞ

q
: ð32Þ

Because (see Appendix A for details) all quantities
A0;�

i ðxÞ;A1;�
i ðxÞ and P �

ijðxÞ vanish as � goes to zero, we end
up with (16) for the exterior problem. For interior poten-
tials note that w and wj of course fulfill (8) whereas (21)
and (22) hold with left-hand sides /(x) and /,i(x) replaced
with zero. Hence, (16) is also proved for interior problems.

The key relation (16) may be understood as an integral
representation of the gradient at the surface: namely, from
the knowledge of / and the normal flux F = $/ Æ n one
should deduce the value of $/ on S. Unfortunately, within
this point of view one faces with troubles in a numerical
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implementation due to the need of adequate and consistent

interpolations of / and F on the boundary elements. More
precisely, in establishing (16) we actually assumed that
/ and F are C1,a and C0,a on S and if it is easy to obtain
C0,a approximations of F, i.e. such that jF(y) � F(x)j <
C3jy � xja for x, y on S and C3 > 0, a > 0, it is tedious to
build C1,a approximations of / on boundary elements for
a 3D problems. In order to circumvent such damaging
drawbacks in any numerical implementation, we rather
exploit (16) as a Fredholm boundary-integral equation of
the second kind for the gradient $/ once n, C and the
normal flux F are given on S. In this approach we only
need C0,a approximations of F; a criterion fulfilled by any
usual boundary elements. h
2.3. A boostrapping algorithm for high-order cartesian

derivatives

In this subsection we show how to obtain on the N-node
mesh of S high-order cartesian derivatives of the potential
by a recursion scheme. More precisely, for m P 2 we
assume that:

Assumption 1: n and C are known on the N-node mesh,
Assumption 2: all cartesian derivatives /;i1...im�1

of order
m � 1 are known on the N-node mesh (as explained in
Section 2.2 for m = 2), and we look at the cartesian
derivatives /;i1...im of order m on the same N-node mesh.

For any given values of indices i1, . . . , im�1 in the set
{1,2,3} the required derivatives /;i1...im�1im is obtained, for
im 2 {1,2,3}, by appealing to the following steps:

Step 1: Obtention of the normal flux r/;i1...im�1
� n on the

N-node mesh.
First we note that our function /;i1...im�1

actually fulfills
the well-posed boundary value problem

r2½/;i1...im�1
� ¼ 0 in X; /;i1...im�1

¼ Ui1...im�1
on S; ð33Þ

jr/;i1...im�1
j 6 Oð1Þ as r!1 for exterior problems; ð34Þ

with, under our Assumption 2, a prescribed Dirichlet data
Ui1...im�1

on S. As explained in Section 2.1, we thus obtain
the normal flux r/;i1...im�1

� n on the given N-node mesh
by exploiting (11) which becomes the following Fredholm
boundary-integral equation of the first kind

B½r/;i1...im�1
� n� ¼ A�½/;i1...im�1

� on S; ð35Þ

with operators A�, A+ and B defined as

A�½u� ¼ �2pð1� 1ÞuðxÞ þ
Z

S

½uðyÞ � uðxÞ�ðx� yÞ � ndSðyÞ
jx� yj3

;

B½u� ¼
Z

S

uðyÞdSðyÞ
jx� yj : ð36Þ

Step 2: Obtention of /;i1...im�1im on the N-node mesh.
Since /;i1...im�1

is harmonic in X we deduce its gradient
r/;i1...im�1

¼ /;i1...im�1im eim on the N-node mesh from the
value of n, C and the previous normal flux r/;i1...im�1

� n
on S, as explained in Section 2.2. More precisely, we end
up with the Fredholm boundary-integral equation of the
second kind

C�½r/;i1...im�1
� ¼ D½r/;i1...im�1

� n� on S; ð37Þ

where operators C± and D are readily defined by inspecting
(16). Solving the above Eq. (37) then provides the required
cartesian derivatives /;i1...im�1im for prescribed indices i1, . . . ,
im�1 and im 2 {1,2,3} on the N-node mesh.

In summary, the computation up to any order m P 2
and on a given N-node mesh of the cartesian derivatives
of / subject to (2)–(4) is achieved by using the following
strategy:

(1) Preliminary computational work
(i) The values of n and C are prescribed at each

nodal point M(n) from an analytical description
of the surface (as anyone knows, it is indeed
very difficult to accurately compute the required
mean curvature C solely from the location of
the employed nodes).

(ii) The integrals Ii(x,X), previously defined by
(12), are computed at each node M(n).

(iii) The discretized integral Eqs. (35) and (37) yields
discretized and fully populated N · N square
matrices B and A± and 3N · 3N square matrices
C± and D respectively. These matrices are com-
puted together with the LU factorizations of
the influences matrices B and C±.
(2) Obtention of the gradient of / on the N-node mesh
(i) If S 0 5 S one first obtain the normal flux

F = $/ Æ n on the whole mesh by solving (11)
under the prescribed boundary conditions (2).
One thus encounters a dense and 2N · 2N

square matrix for the generalized and discret-
ized unknown X = (/,$/ Æ n) on S.

(ii) Solve the discretized Eq. (37) to obtain the poten-
tial gradient $/ = /,iei on the N-node mesh.
(3) Obtention of the cartesian derivatives /i1...ik for
2 6 k 6 m

We successively work out as k increases from 2 to m the
following steps:

(i) Compute r/i1...ik�1
� n from the value of /i1...ik�1

by solving (35).
(ii) Compute the gradient r/i1...ik�1

¼ /i1...ik�1ik eik on
the given N-node mesh by solving (37).

Observe that we do not need derivatives of C or addi-
tional efforts as m increases for the advocated boostrapping
scheme.
3. Case of a collection of connected solids

So far we only paid attention to the surface S of one
connected solid. However, some encountered applications
(for instance the analysis of particle–particle interactions
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Fig. 3. Exterior problem for a multiply connected boundary S. Case of
two surfaces S1 and S2, i.e. L = 2.
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in our motivating problem of induced migration) involve
several connected solids and one then faces with a bound-
ary S consisting, as depicted in Fig. 3, of a finite number
L P 2 of surfaces Sl, l 2 {1, . . . ,L} associated to connected
solids Xl.

We equip each surface Sl with a Nl-node mesh, note
N ¼

PL
l¼1Nl and assume that both n and the mean cur-

vature C are given at each node of the total mesh on
S ¼

SL
l¼1Sl. The potential / again fulfills the well-posed

boundary value problem (2) and (3) for Xi ¼ R3 n Xe and
adequate additional conditions become:Z

Sl

F ðyÞdSlðyÞ ¼ 0 if Sl � S0 for interior problems:

ð38Þ
As the reader may easily check by proceeding as detailed in
Section 2.1 for one connected solid boundary, the values of
/ and its normal flux $/ Æ n on the entire surface S ¼SL

l¼1Sl again satisfy (11). Because for x on Sp we actually
haveZ

Sl

ðx� yÞ � nðyÞ
jx� yj3

dSlðyÞ ¼ 0 if l 6¼ p; ð39Þ

this boundary-integral equation also reads

� 2pð1þ�1Þ/ðxÞ þ
Z

Sp

½/ðyÞ � /ðxÞ� ðx� yÞ � nðyÞ
jx� yj3

dSpðyÞ

þ
X
l 6¼p

Z
Sl

/ðyÞ ðx� yÞ � nðyÞ
jx� yj3

dSlðyÞ

¼
Z

S

½r/ � n�ðyÞ
jx� yj dSðyÞ if x 2 Sl: ð40Þ

Taking into account the boundary conditions (2), one
again arrives at a discretized linear system of 2N · 2N

dense influence matrix and 2N generalized unknown
X = (/,$/ Æ n) on the given N-node mesh of the whole
boundary S. Thus, we henceforth assume that $/ Æ n has
been determined at each node and two circumstances arise:

(1) Case of an interior problem
Because we know n, C and $/ Æ n on Sp we can immedi-

ately deduce, as advocated in Section 2, the cartesian deriv-
atives of / on the Np-node mesh on each surface Sp. Since
this procedure holds for any surface Sp it provides the
required cartesian derivatives of / on S.

(2) Case of an exterior problem
In such a case we cannot any more invoke the results

established in Section 2 because the surface S is made of
a collection of several surface Sl. The proposed procedure
then consists in the following steps:

(i) Step 1: We first resort to a single-layer representation
of / in X [ S, i.e. we set

/ðxÞ ¼
XL

l¼1

/lðxÞ; /lðxÞ ¼
Z

Sl

qlðyÞdSlðyÞ=jx� yj

for x 2 X [ S: ð41Þ

From the knowledge of the normal flux $/ Æ n on S, the
introduced ‘source’ densities q1, . . . ,qL are governed by
the classical Fredholm boundary-integral equation of the
second kind

2pqpðxÞ þ
Z

Sp

qpðyÞðx� yÞ � nðxÞ
jx� yj3

dSpðyÞ

þ
X
l 6¼p

Z
Sl

qlðyÞðx� yÞ � nðxÞ
jx� yj3

dSlðyÞ ¼ �½r/ � n�ðxÞ

for x 2 Sp; p 2 f¼ 1; . . . ; Lg: ð42Þ

Note that any integral occurring in (42) is regular. If the
integral over Sp is denoted by LpðxÞ, the use for x on Sp

of (6) indeed yields

LpðxÞ ¼ qpðxÞ
Z

Sp

ðx� yÞ � ½nðxÞ � nðyÞ�dSpðyÞ
jx� yj3

� 2p

( )

þ
Z

Sp

½qpðyÞ � qpðxÞ�ðx� yÞ � nðxÞdSpðyÞ
jx� yj3

:

ð43Þ
Eq. (42) is well-posed: as soon as $/ Æ n 2 H�1/2(S) it
admits a unique solution (q1, . . . ,qL) in H�1/2(S) (see
[12]). These unknown ‘source’ densities q1, . . . ,qL may be
efficiently and accurately obtained by resorting to iterative
and/or fast multipole methods because the interaction
between two different points x and y on S quickly decays
(it exhibits the strong 1/jx � yj2-decay).

(ii) Step 2: When looking at the derivatives of / on the
surface Sp it is fruitful noting that our single-layer potential
/p obeys

r2/p ¼ 0 in Xp;

½r/p� � n ¼ F p : ½r/ � n� �
P
l 6¼p
½r/l � n� on Sp;

ð44Þ

jðOpMÞ/pj 6 Oð1Þ as jOpM j ! 1; ð45Þ

where Xp denotes the unbounded domain outside Sp and,
as indicated in Fig. 3, Op designates a given point inside
Sp. In other words, the potential /p obeys a well-posed
exterior Neumann problem about the surface Sp. More-
over, it is straightforward to compute on the Np-node mesh
of Sp the normal flux Fp, introduced by (44), from the total
normal flux $/ Æ n and the previously obtained ‘source’
densities ql, l 5 p. Accordingly, one immediately gains at
each node on Sp the cartesian derivatives /p;i1...im of order
m P 1 by applying the recursion scheme presented in Sec-
tion 2.3 for each surface Sp. Finally, the cartesian deriva-
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tives of the total potential are readily computed on the sur-
face Sp from the link

½/;i1...im �ðxÞ ¼ ½/p;i1...im �ðxÞ þ
X
l 6¼p

Z
Sl

qlðyÞ
1

jx� yj

� �
;i1...im

dSlðyÞ

ð46Þ
as soon as one notes that available recursion relations
[17] easily provides the required cartesian derivatives of
1/jx � yj, with respect to x, at any desired order.

4. Numerical implementation and illustrating benchmarks

In order to test the efficiency of the procedure proposed
in Sections 2 and 3 for one or several connected solid(s)
respectively, we present in this section a numerical imple-
mentation and a few illustrating and carefully selected
benchmarks against analytical and available solutions.

4.1. Numerical method

For simplicity the normal flux F = $/ Æ n is prescribed
on the surface, i.e. S 0 = S in (2) (if this is not the case,
one has only to invert the additional integral Eqs. (11) or
(40) by the technique described below). Thus, we need to
compute the integrals Ii(x,S) or Ii(x,Sl) and to invert the
boundary-integral Eqs. (16) (or (37)), (35) and (42) that
all adopt the form MX = Y with X unknown and a right-
hand side Y to be accurately evaluated. As previously
mentioned, we implemented a collocation point Boundary
Element Method although a Galerkin method may be also
employed. Since details are available in any standard text-
books (see, among others, [18–20]), we only briefly present
the main steps of the procedure.

Step 1: Henceforth, we choose L P 1 with L = 1 for one
connected solid with surface S = S1. The Nl-node mesh on
Sl consists of Ne(l) 6-node triangular elements DðeÞl , with
1 6 e 6 Ne(l), which are mapped to the standard triangle
D of inequations 0 6 n1 6 1, 0 6 n2 6 1 and n1 + n2 6 1
in plane cartesian and intrinsic coordinates n = (n1,n2) by
six bilinear shape functions km such that

k1ðnÞ ¼ ð2n3 � 1Þn3; k2ðnÞ ¼ 4n1n3; k3ðnÞ ¼ ð2n1 � 1Þn1;

ð47Þ
k4ðnÞ ¼ 4n1n2; k5ðnÞ ¼ ð2n2 � 1Þn2; k6ðnÞ ¼ 4n2n3; ð48Þ
if one sets n3 = 1 � n1 � n2. Any function g on S is inter-
polated on the element DðeÞl , of nodal points y

ðe;mÞ
l with

m 2 {1, . . . , 6}, by using the same shape functions. Hence,

gðyÞ ¼
X6

m¼1

kmðnÞgðe;mÞl for y ¼ yðnÞ ¼
X6

m¼1

kmðnÞyðe;mÞl

ð49Þ
if gðe;mÞl designates the value of g at the node y

ðe;mÞ
l of Sl and

one thus builds a continuous and isoparametric interpola-
tion of g on the whole surface S which is quite suitable
because we assume that g is C0,a, i.e. jg(y) � g(x)j <
Cgjy � xja for x, y on S and Cg > 0, a > 0.
Step 2: Any encountered weakly singular integral is of
the following form

R1ðxÞ ¼
Z

Sl

gðyÞ
jx� yj dSlðyÞ;

Ri
2ðxÞ ¼

Z
Sl

½gðxÞ � gðyÞ�ðx� yÞ � a
jx� yj3

dSlðyÞ ð50Þ

with a = ei or a 2 {n(x),n(y)} and we exploit the decompo-
sition

Z
Sl

f ðx; yÞdSlðyÞ ¼
XN eðlÞ

e¼1

I ðeÞl ðxÞ;

I ðeÞl ðxÞ ¼
Z

DðeÞ
l

f ðx; nÞJðnÞdn; ð51Þ

where J designates the Jacobian of the mapping of our
cartesian coordinates y to the triangular coordinates n.
Each integral I ðeÞl ðxÞ is accurately computed as indicated
in [21] if x does not lie on the element DðeÞl and by analytical
removal of the 1/jx � yj-type weakly singular behavior via
polar coordinates centered at x in the space of intrinsic
coordinates n otherwise. Hence, one only faces with regular
integrations which are numerically performed by standard
Gaussian integrations formulas (see, for instance, [22]).

Step 3: Under the treatment of steps 1 and 2, each
boundary-integral equation becomes a discretized matrix
system of N, 2N or 3N unknown for Eqs. (35), (42) and
(37). The solution is obtained by using a LU factorization
algorithm (subroutines DGETRF and DGETRS of the
Lapack Library) for any illustrating example (L 6 3) but
(42) should be adequately solved by an iterative methods
as soon as L becomes large (roughly exceeding 10).

4.2. Numerical benchmarks

The previous numerical implementation holds for
smooth enough but arbitrarily shaped surfaces Sl (one only
needs an analytical description of Sl that exactly gives the
required unit normal n and mean curvature C). For each
retained illustrating example Sl is the surface of an ellipsoid
of semi-axis a1(l), a2(l), a3(l) which is ‘centered’ at the point
Ol (see Fig. 3 for L = 2) of cartesian coordinates
xi(l) = OOl Æ ei. For any point x = xiei of Sl if we set
�xi ¼ xi � xiðlÞ it follows that (without summation over i
in (52))

�x2
1

a2
1ðlÞ
þ �x2

2

a2
2ðlÞ
þ �x2

3

a2
3ðlÞ
¼ 1; nðxÞ � ei ¼

sðxÞ�xi

a2
i ðlÞ

;

s�2ðxÞ ¼ �x2
1

a4
1ðlÞ
þ �x2

2

a4
2ðlÞ
þ �x2

3

a4
3ðlÞ

; ð52Þ

CðxÞ ¼ ½r � n�ðxÞ ¼ sðxÞ 1

a2
1ðlÞ
þ 1

a2
2ðlÞ
þ 1

a2
3ðlÞ

�

� s2ðxÞ �x2
1

a6
1ðlÞ
þ �x2

2

a6
2ðlÞ
þ �x2

3

a6
3ðlÞ

� ��
: ð53Þ



A. Sellier / Comput. Methods Appl. Mech. Engrg. 196 (2006) 489–501 497
In order to define the Nl-node mesh on Sl we introduce the
elliptical angles hl 2 [0,2p] and ul 2 [0,p] such that

�x1 ¼ a1ðlÞ sin ul cos hl; �x2 ¼ a2ðlÞ sin ul sin hl;

�x3 ¼ a3ðlÞ cos ul for �xi ¼ xi � xiðlÞ ð54Þ

and locate each point of Sl by its angles (hl,ul). Under these
notations, the Nl-node mesh is characterized by two posi-
tive integers Nu(l) P 3, E(l) P 0 and consists of the points
x = (hl,ul) such that

hl ¼ 2pðnh � 1Þ=N hðlÞ; ul ¼ pnu=½2NuðlÞ�;
N hðlÞ ¼ 12� 2EðlÞ ð55Þ

for positive integers nh and nu that obey the conditions

1 6 nh 6 N hðlÞ if 2 6 nu 6 2½NuðlÞ � 1�; ð56Þ
nh ¼ 2k with k 2 f0; . . . ;N hðlÞ=2� 1g if nu 2 f1; 2NuðlÞ � 1g:

ð57Þ
Accordingly, the pair (Nu(l), E(l)) defines a Nl-node mesh
of Ne(l) boundary elements on Sl with

N l ¼ 2f1þ N hðlÞ½NuðlÞ � 1�g;
N eðlÞ ¼ N hðlÞ½NuðlÞ � 1�; N hðlÞ ¼ 12� 2EðlÞ ð58Þ

and for convenience we shall note Nl = [Nu(l), E(l)].

4.2.1. Case of the surface S of one connected solid: L = 1

We spread N = N1 = [Nu(1),E(1)] nodal points M(n),
with n 2 {1, . . . ,N}, on S and consider both interior and
exterior illustrating potential problems. If g and gnum

respectively denote the exact and computed values of g

at the point M on S the employed numerical error hgi is
the relative l1-norm of the error defined as

hgi :
Maxðn¼1;...;NÞjgðMðnÞÞ � gnumðMðnÞÞj

jgj
if jgj : MaxðM on SÞjgðMÞj 6¼ 0; ð59Þ

hgi : Maxðn¼1;...;NÞjgnumðMðnÞÞj if g ¼ 0 on S: ð60Þ
Table 1
Numerical errors and order of convergence a with respect to N�1/2 for first- an
sphere

hgi; a (a), N0 (a), N00 (a), N000

h/,1i; a 0.274987 0.054851; 2.9 0.005940; 3.2
h/,2i; a 0.204884 0.054851; 2.4 0.005940; 3.2
h/,3i; a 0.200368 0.056076; 2.3 0.007365; 2.9

h/,11i; a 0.175995 0.060885; 1.9 0.013007; 2.2
h/,12i; a 0.097378 0.050092; 1.2 0.010822; 2.2
h/,13i; a 0.096749 0.065197; 0.7 0.010228; 2.7

h/,21i; a 0.137258 0.050092; 1.8 0.010822; 2.2
h/,22i; a 0.132980 0.065197; 1.3 0.013007; 2.3
h/,23i; a 0.141025 0.065197; 1.4 0.010228; 2.7

h/,31i; a 0.140420 0.063853; 1.4 0.011034; 2.5
h/,32i; a 0.182878 0.063853; 1.9 0.011034; 2.5
h/,33i; a 0.194082 0.072146; 1.8 0.016348; 2.1

Labels (a) and (b) indicate results for selected interior and exterior problem
N000 = [12,2] = 1058. The associated values of the l1-norm jgj are given in Ap
Note that the selected relative error hgi provides a clear
indication of the incurred local error at each point of the
boundary S. In addition, one readily needs to evaluate
for each addressed numerical benchmark the l1-norm jgj
of g = /,i and g = /,ij. Whenever possible this is analyti-
cally achieved. In other cases, one locates any point M
on S by its angles h and u, as introduced in (54), and it
has been possible to obtain in closed form each partial
derivative G,h :¼ oG/oh and G,u :¼ oG/ou of the function
G(h,u) = g(M). The requested quantity jgj is then numeri-
cally obtained by iteratively enforcing to zero those deriv-
atives G,h and G,u through a two-dimensional Newton–
Raphson algorithm whose suitable guess value (hg,ug) is
guided by the evaluation of jG(h,u)j on a fine grid in the
domain [0,2p] · [0,p].

Besides the errors hgi it is worth calculating the order of
convergence a with respect to N�1/2 with N the number of
collocation points. For errors hgi0 and hgi00 associated with
N 0 and N00, respectively the number a is computed as
follows:

a ¼ �2 logðhgi00=hgi0Þ= logðN 00=N 0Þ: ð61Þ
(1) Potential problems for a sphere.
The following problems are addressed for the unit sphere

S = {x, r = 1} for N 0 = [4,0] = 74, N00 = [6, 1] = 242 or
N000 = [12,2] = 1058 collocation points and a prescribed
normal flux $/ Æ n:

(a) The interior potential / = x1x2x3 with $/ Æ n =
3x1x2x3. For this potential note that j/,iij = 0.

(b) The exterior case of $/ Æ n = n Æ e2 which admits the
exact solution / = �x2/[2r3] outside the unit sphere
(for r = jxjP 1).
The associated values of the l1-norm jgj are given in
Appendix B. As indicated in Table 1, the computed
cartesian derivatives exhibit a nice convergence
towards the exact values as the number N of collocation
d second-order cartesian derivatives of potentials at the surface S of a unit

(b), N 0 (b), N00 (b), N000

0.070757 0.012800; 3.1 0.001747; 2.9
0.065337 0.012127; 3.1 0.001402; 3.1
0.048747 0.013753; 2.3 0.001956; 2.8

0.188937 0.035614; 3.1 0.004741; 2.9
0.108113 0.034426; 2.1 0.004637; 2.9
0.156295 0.046441; 2.2 0.005984; 3.0

0.108325 0.028433; 2.4 0.003747; 2.9
0.164448 0.035501; 2.8 0.004992; 2.8
0.124870 0.029341; 2.6 0.005427; 2.4

0.142334 0.038800; 2.4 0.005837; 2.7
0.129976 0.026091; 2.9 0.003593; 2.9
0.100155 0.027197; 2.4 0.004833; 2.5

s (a) and (b), respectively whereas N0 = [4,0] = 74, N00 = [6,1] = 242 and
pendix B, Table 5.



Table 2
Numerical errors and order of convergence a with respect to N�1/2 for first- and second-order cartesian derivatives of potentials at the surface S of the
ellipsoid a1(1) = 1, a2(1) = 0.8 and a1(3) = 1.5

hgi; a (c), N0 (c), N00 (c), N000 (d), N0 (d), N00 (d), N000

h/,1i; a 0.105198 0.018826; 3.1 0.003137; 3.3 0.026527 0.008327; 2.1 0.001547; 3.1
h/,2i; a 0.066638 0.015554; 2.6 0.002279; 3.5 0.054597 0.008941; 3.3 0.002462; 2.3
h/,3i; a 0.129888 0.029200; 2.7 0.006766; 2.7 0.043300 0.011882; 2.4 0.003033; 2.5

h/,11i; a 0.122808 0.048079; 1.7 0.012803; 2.4 0.086126 0.022115; 2.5 0.005112; 2.7
h/,12i; a 0.048284 0.022823; 1.4 0.005045; 2.7 0.083069 0.048693; 1.0 0.008662; 3.1
h/,13i; a 0.137843 0.051232; 1.8 0.013070; 2.5 0.076200 0.032966; 1.5 0.006300; 3.0

h/,21i; a 0.067429 0.024450; 1.8 0.005320; 2.8 0.085134 0.021584; 2.5 0.004835; 2.7
h/,22i; a 0.178981 0.082386; 1.4 0.022547; 2.4 0.193129 0.031528; 3.3 0.009793; 2.1
h/,23i; a 0.118376 0.039800; 2.0 0.010852; 2.4 0.147535 0.027247; 3.1 0.005894; 2.8

h/,31i; a 0.162265 0.051109; 2.1 0.015254; 2.2 0.093894 0.039016; 1.6 0.011319; 2.3
h/,32i; a 0.107586 0.035236; 2.0 0.011034; 2.1 0.156953 0.048854; 2.1 0.012648; 2.5
h/,33i; a 0.084732 0.024246; 2.3 0.008030; 2.0 0.168433 0.029058; 3.2 0.011048; 1.8

Labels (c) and (d) indicate results for selected interior and exterior problems (c) and (d), respectively whereas N 0 = [8,0] = 170, N00 = [12,1] = 530 and
N000 = [18,2] = 1634. The associated values of the l1-norm jgj are given in Appendix B, Table 5.
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Fig. 4. (a) Side view of the 2-sphere cluster with O1O2 = 2de3 and d > 1.
(b) Top view, in the x1–x2 plane, of the 3-sphere cluster.
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points increases both for the interior and the exterior
potentials. The refined 1058-node mesh provides accu-
rate enough results for any further surface integration
on S, as needed for our motivating integrals I1 and I2

(see definitions (1)).

(2) Potential problems for an ellipsoid.
We take O1 = O, a1(1) = a = 1, a2(1) = b = 0.8, a3(1) =

c = 1.5 and successively employ N 0 = [8,0] = 170, N00 =
[12,1] = 530 and N000 = [18,2] = 1634 nodal points for the
following potential problems:

(c) The interior potential / = x1x2x3 with $/ Æ n =
s(x)x1x2x3[a�2 + b�2 + c�2].

(d) The exterior potential /(x) = 1/[2r] for r = jxj.

Again, we provide the associated values of the l1-norm
jgj in Appendix B. As revealed by Table 2, we still obtain
excellent agreement between the computed and exact carte-
Table 3
Numerical errors hgi1 = hgi2 and order of convergence a with respect to N�1/2

the multiply connected surface S1 [ S2 of a 2-sphere cluster versus the number

hgil; a (i), N 0 (i), N00 (i), N
000

h/,1il; a 0.015711 0.001822; 3.9 0.000154; 3.6
h/,2il; a 0.014815 0.001822; 3.9 0.000154; 3.6
h/,3il; a 0.019907 0.001985; 4.2 0.000069; 4.9

h/,11il; a 0.066927 0.012555; 3.0 0.001440; 3.1
h/,12il; a 0.046019 0.012898; 2.3 0.001772; 2.9
h/,13il; a 0.046977 0.013973; 2.2 0.001982; 2.8

h/,21il; a 0.073424 0.012898; 3.1 0.001772; 2.9
h/,22il; a 0.133780 0.024611; 3.1 0.002824; 3.1
h/,23il; a 0.051481 0.013947; 2.4 0.001982; 2.8

h/,31il; a 0.042023 0.005985; 3.5 0.000610; 3.3
h/,32il; a 0.036623 0.005985; 3.5 0.000610; 3.3
h/,33il; a 0.058510 0.009314; 3.3 0.000752; 3.6

(i) case d = 2. (ii) case d = 1.2. Here we have N 0 = [4,0] = 74, N00 = [6,1] = 24
sian derivatives on the surface of the ellipsoid both for inte-
rior and exterior cases (c) and (d). Note that we spread a bit
more nodal points on our somewhat ‘slender’ ellipsoid than
of first- and second-order cartesian derivatives of the exterior potential at
N1 = N2 of nodal points on S1 and S2 for two center-to-center distances 2d

(ii), N 0 (ii), N00 (ii), N000

0.015023 0.001746; 3.9 0.000153; 3.5
0.016498 0.001746; 3.9 0.000153; 3.5
0.019071 0.001903; 4.2 0.000067; 4.8

0.067904 0.012615; 3.1 0.001449; 3.1
0.046119 0.012739; 2.3 0.001762; 2.9
0.045661 0.013719; 2.2 0.001956; 2.8

0.073505 0.013041; 3.1 0.001762; 2.9
0.069302 0.012615; 3.1 0.001449; 3.1
0.050085 0.013719; 2.4 0.001956; 2.8

0.045403 0.005809; 3.7 0.000600; 3.3
0.039540 0.005809; 3.5 0.000600; 3.3
0.047658 0.008212; 3.2 0.000761; 3.4

2 and N000 = [12,2] = 1058.
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on the unit sphere in order to gain computed results of
comparable accuracy.

4.2.2. Case of the surface S of a collection of connected

solids: L P 2

Since any interior case actually reduces to interior prob-
lems for the simply connected surfaces Sl we restrict our
benchmarks to exterior potentials. The numerical error hgil
on Sl for a function g defined on the whole surface S is
given as defined in (59) and (60) where one replaces the sur-
face S with the surface Sl of the considered sphere. The
value of each l1-norm jgj is computed as mentioned in
Section 4.2.1.

(1) Case of a 2-sphere cluster.
We consider, as depicted in Fig. 4(a), two unit spheres
S1 and S2 centered at O1 and O2 respectively with
O1O2 = 2de3 and d > 1. The exterior potential is /
(M) = 1/O1M + 1/O2M and its normal flux is pre-
scribed on S = S1 [ S2. For symmetry reasons
hgi1 = hgi2 for g = /,i and g = /,ij. These errors are
given in Table 3 if d = 2 or d = 1.2 (close spheres)
for three numbers (Nl = 74,242 or 1058) of colloca-
tion points on the spheres. Clearly, computed results
are in excellent agreement with theoretical ones both
for moderate (d = 2.0) and small (d = 1.2) gaps
between the spheres. If the numerical errors are com-
parable for these two center-to-center distances one
of course expects a loss of accuracy for near-touching
spheres (as d! 1) because the approximation of the
integral on the right-hand side of (46) deriorates as
d � 1 vanishes.

(2) Case of a 3-sphere cluster.
Finally, we consider a 3-sphere cluster with centers of
the spheres in the x1 � x2 plane and located at the
vertices of an equilateral triangle, as sketched in
Fig. 4(b). Again, the center-to-center distance is
denoted by 2d and each sphere has unit radius so that
d > 1. More precisely, we set
Table 4
Numerical errors hgil and order of convergence a with respect to N�1/2 for first- and
multiply connected surface S1 [ S2 [ S3 of a 3-sphere cluster with d = 1.2

hgil; a (a), l = 1 (b), l = 1 (c), l = 1

h/,1il; a 0.013926 0.001616; 3.9 0.000155; 3.4
h/,2il; a 0.012897 0.001583; 3.8 0.000155; 3.4
h/,3il; a 0.019566 0.001926; 4.2 0.000092; 4.4

h/,11il; a 0.066649 0.012515; 3.0 0.001422; 3.1
h/,12il; a 0.041147 0.011338; 2.3 0.001562; 2.9
h/,13il; a 0.048032 0.013777; 2.3 0.001956; 2.8

h/,21il; a 0.065806 0.011364; 3.2 0.001564; 2.9
h/,22il; a 0.053278 0.009965; 3.1 0.001169; 3.1
h/,23il; a 0.049833 0.013597; 2.4 0.001944; 2.8

h/,31il; a 0.040017 0.005855; 3.5 0.000609; 3.3
h/,32il; a 0.032362 0.005774; 3.1 0.000602; 3.3
h/,33il; a 0.062707 0.009768; 3.4 0.000818; 3.6

(a) case N1 = [4,0] = 74. (b) case Nl = [6,1] = 242. (c) case Nl = [12,2] = 1058.
x1ðlÞ ¼
2d cosðalÞffiffiffi

3
p ; x2ðlÞ ¼

2d sinðalÞffiffiffi
3
p ;

al ¼
2p
3
ðlþ 1Þ with l ¼ 1; 2; 3: ð62Þ
The exact potential is /(M) = 1/O1M + 1/O2M + 1/O3M

and we confine ourselves to the severe benchmark
d = 1.2, a case of very close spheres. For symmetry reasons
note that hgi1 = hgi3. As shown in Table 4, the computed
errors for the cartesian derivatives vanish as the number
of collocation points on each sphere increases.

5. Concluding remarks

In summary, a new procedure has been both proposed
and numerically worked out and tested for the accurate
approximation of the cartesian derivatives of potentials
on a simply or multiply connected surface. The advocated
recursion scheme appeals to the same and very few bound-
ary-integral equations and geometrical informations on the
geometry (the normal vector and the mean curvature)
whatever the order of the required derivatives. These pleas-
ant features make it possible to successively compute, if
necessary, higher and higher order derivatives at a reason-
able cpu cost. Exterior problems for a multiply connected
surface consisting of a large number of simply connected
boundaries may be easily addressed by using iterative
methods for the integral-equations bearing on the whole
surface. Finally, let us note that the proposed approach is
likely to apply to the Helmholtz equation and linear elasti-
city in 3D problems. Such challenging tasks are under
current investigation.
Appendix A

This Appendix both establishes (29) and proves that
A0;�

i ðxÞ;A1;�
i ðxÞ and P �

ijðxÞ vanish as � goes to zero. The
second-order cartesian derivatives of the exterior potential at the

(a), l = 2 (b), l = 2 (c), l = 2

0.013622 0.001587; 3.9 0.000152; 3.4
0.015101 0.001781; 3.9 0.000151; 3.6
0.019566 0.001926; 4.2 0.000092; 4.4

0.061909 0.011988; 3.0 0.001389; 3.1
0.041083 0.011207; 2.4 0.001544; 2.9
0.046054 0.013565; 2.3 0.001937; 2.8

0.066016 0.011174; 3.2 0.001540; 2.9
0.070187 0.013061; 3.1 0.001490; 3.1
0.050648 0.014101; 2.3 0.001985; 2.8

0.039937 0.005729; 3.5 0.000596; 3.3
0.033735 0.005939; 3.2 0.000619; 3.3
0.062706 0.009768; 3.4 0.000818; 3.6



Table 5
Computed values of the l1-norms j/,ij and j/,ijj for the problems (a) and
(b) for a sphere and (c) and (d) for an ellipsoid considered in Section 4.2.1

jgj (a) (b) (c) (d)

j/,1j 0.50 0.75 0.6 0.501172109
j/,2j 0.50 1 0.75 0.781250000
j/,3j 0.50 0.75 0.4 0.355481059
j/,11j 0 8=

ffiffiffiffiffi
15
p

0 1
j/,12j 1 8=

ffiffiffiffiffi
15
p

1.5 1.141951010
j/,13j 1 5=

ffiffiffi
3
p

0.8 0.536543873
j/,22j 0 3 0 1.953125000
j/,23j 1 8=

ffiffiffiffiffi
15
p

1 0.943929861
j/,33j 0 8=

ffiffiffiffiffi
15
p

0 0.976562500

Table 6
Computed values of the l1-norms j/,ij and j/,ijj for the 2-sphere cluster
(with d = 2 for (i) and d = 1.2 for (ii)) and the 3-sphere cluster with d = 1.2
(l = 1 and l = 2 rows)

jgjl (i) (ii) l = 1 l = 2

j/,1jl 1.01431739 1.05883156 1.14656830 1.17069207
j/,2jl 1.01431739 1.05883156 1.16745862 1.05761683
j/,3jl 1.04000000 1.08650519 1.11956142 1.11956142
j/,11jl 1.98825507 1.96837442 2.06648896 2.16211465
j/,12jl 1.50125920 1.51270937 1.70395343 1.72717688
j/,13jl 1.50408962 1.52014837 1.53307521 1.54064421
j/,22jl 1.98825507 1.96837442 2.62316431 1.91525806
j/,23jl 1.50408962 1.52014837 1.53985593 1.50135529
j/,33jl 2.07407407 2.72886297 1.93676893 1.93676893
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starting point is the usual Stokes’ theorem that gives, for
any vector u defined and smooth enough in a neighbor-
hood of S,Z

Sð�Þ
rotðuÞ � ndSðyÞ ¼

I
c�

u � tdsðyÞ; ð63Þ

where the tangential and unit vector t is defined as intro-
duced right after (28) and ds denotes the differential arc
length on the closed path c�. From (63) it is possible to
obtain, if C :¼ $ Æ n on the smooth enough boundary S(�)
and v = t ^ n, the identitiesZ

Sð�Þ
½Dijg�ðyÞdSðyÞ ¼

I
c�

gðei ^ ejÞ � tdsðyÞ; ð64ÞZ
Sð�Þ

g;iðyÞdSðyÞ ¼
Z

Sð�Þ
½Cg þrg � n�½n � ei�dSðyÞ

þ
I

c�

gv � ei dsðyÞ: ð65Þ

In establishing the above results it is fruitful reminding
(see [23, p. 1081 and 1084]) the usual identities

ða ^ bÞ ^ c ¼ ða � cÞb� ðb � cÞa;
rotða ^ bÞ ¼ ðr � bÞa� ðr � aÞbþ ðb:rÞa� ða:rÞb:

ð66Þ

Accordingly, the definition (14) becomes

Dijg ¼ ðei ^ ejÞ � ðn ^ rgÞ ¼ ½rg ^ ðei ^ ejÞ� � n
¼ rot½gðei ^ ejÞ� � n ð67Þ

and using (63) we obtain (64). Selecting a = n and b = gei

in applying (66) and taking into account the definition of
C and the property n,i Æ n = 0, the reader may also easily
check that

½rotðn ^ geiÞ� � n ¼ g;i � ½Cg þrg � n�ei � n: ð68Þ

The use of (63) in conjunction with (68) then provides (65).
Because 4pG(x,y) = q�1 with q = jx � yj a straightforward
application of (65) for g = q�1 then proves (29). In addi-
tion, from (64) and our definitions (14) of Dij, (26) of F

and (30)–(32) one obtains

A0;�
i ðxÞ ¼ �

I
c�

1

q

	 

;j

f ðei ^ ejÞ � tdsðyÞ;

f ¼ Oðq1þaÞ with a > 0; ds ¼ OðqÞ; ð69Þ

A1;�
i ðxÞ ¼

Z
dð�Þ
½njðyÞ � njðxÞ�

1

q

	 

;j

dSðyÞ

þ njðxÞ
Z

dð�Þ

1

q

	 

;j

dSðyÞ þ
I

c�

ej � vdsðyÞ
q

" #
; ð70Þ

P �
ijðxÞ ¼

I
c�

½ðnjðxÞ � njðyÞÞei � ðniðxÞ � niðyÞÞej�:
vdsðyÞ

q

þ
I

c�

fðei ^ ejÞ � tþ ½njðyÞei � niðyÞej� � vg
dsðyÞ

q
:

ð71Þ
In view of (69), that takes into account our property (15),
A0;�

i ðxÞ clearly vanishes with �. For our smooth boundary
S the first integral on the right-hand sides of (70) and
(71) also collapses with �. Because [nj(y)ei � ni(y)ej] Æ v =
(ei ^ ej) Æ (v ^ n) and t = n ^ v the quantity P �

ijðxÞ thus tends
to zero with �. Finally, we consider the last term arising
in (70), further denoted by nj(x)Kj(x). The integral over
d(�) in Kj(x) is treated by using (65) and carefully taking
care of the orientation of the tangential vector t. One thus
arrives at

KjðxÞ ¼
Z

dð�Þ

1

q

	 

;j

dSðyÞ þ
I

c�

ej � vdsðyÞ
q

¼
Z

dð�Þ

Cnj

q

� �
ðyÞ þ r 1

q

	 

� n

� �
ðyÞ½njðyÞ � njðxÞ�

�

þ njðxÞ r
1

q

	 

� n

� �
ðyÞ
�

dSðyÞ: ð72Þ

Clearly, the integral over d(�) in (72) vanishes with � and
this closes the proof.

Appendix B

Computed values of the l1-norms j/,ij and j/,ijj either
for one connected solid (Table 5) and a collection of con-
nected solids (Table 6). These values are obtained either
analytically or numerically as detailed in Section 4.2.1.
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