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Abstract

The thermocapillary motion of two bubbles near a plane solid wall at uniform temperature is investigated by solving five
boundary integral-equations. Preliminary computations show that wall-bubble interactions dictate the migration of equal bub-
bles with line of centers paralle] to the wall. 7o cite this article: A. Sellier, C. R. Mecanique 333 (2005),
© 2005 Académie des sciences. Published by Elsevier SAS, All rights reserved.

Résumé

Sur la migration thermocapillaire d’une paire de bulles en présence d’une paroi plane rigide. Le mouvement ther-
mocapillaire de deux bulles au voisinage d’un plan solide isotherme est obtenu par résolution de cing équations intégrales de
frontiére. Les calculs présentés montrent que les interactions paroi-bulle pilotent en premiére approximation Ie rouvement de
deux bulles de mémes rayons placées 2 des distances identiques du plan. Pour citer cet article : A. Sellier, C. R. Mecanique
333 (2005).
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

A single spherical bubble with radius 2 and temperature-dependent surface tension y(T’) of constant slope
¥’/ =dy/dT migrates [1] when freely suspended in a Newtonian fluid of uniform viscosity w and subject to a
uniform temperature gradient V T, at the velocity U= —ay’' VT /[24]. This velocity is affected in presence of
other bubbies or boundaries and pure bubble-bubble and wall-bubble interactions have been thus investigated for
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Fig. 1. A two-bubble cluster near the hot (V7 - €2 < 0) xp = 0 plane solid wall X (a) an arbitrary cluster with Q103 - e3 = 0; (b) the case of
two equal bubbles (2 = ay = a2} with 0103 Aep =0.

Fig. 1. Paire de bulles au voisinage d’un plan solide 2 (xp = 0) chaud (V7o - &z < 0} @ (a) cas d'une configuration arbitraire avec
0107 - e3 = 0. (b} cas de deux bulles identiques (@ =a; = a3) telles que 01O Ae =1

several bubbles in absence of boundary [2-5] and one bubble near a plane wall [6-8]. In addition, [9] addresses
combined wall-bubble and bubble—bubble interactions for two equal bubbles assumed to move parallel to a very
close wall, This work deals with the general case of a 2-bubble cluster in the vicinity of a plane solid wall at
uniform temperature, i.e. when the velocity of each bubble is allowed to be non-tangent to the wall.

2. Advocated boundary-integral approach

We adopt Cartesian coordinates (O, x1, x2, x3) with x = OM, x; =X - e; (see Fig. 1(a)) and consider two
spherical bubbles P, (n = 1,2} with center Oy, radius a, and surface S, freely suspended in a Newtonian liquid
of uniform viscosity ¢ above the x; = 0 plane solid wall X' and subject to a uniform ambient temperature gradient
VT, normal to 2.

The non-conducting surface S, has normal n = OyM/a, and temperature-dependent surface tension ¥, with
¥, = dy, /dT uniform. The bubble P, translates, with respect to X, at the unknown velocity U and the liquid ex-
periences in the fluid domain §2 velocity, pressure and disturbed temperature fields u, p and T + 77, respectively.
For vanishing Reynolds and Marangoni numbers, 7" and the flow {(u, p) with stress tensor o obey {6]

V7' =V.u=0 and puV?u=Vp inf2; (VT up)—(0,0,0) as|OM|— oo (1)

VT .n=~VTx-n, u-n=U".n, on—[n-o-nn=—yV[Te+T'] onS, 2

u=0 and T'=0 onZX, [a-ndS:O forn=1,2 3
S

Note that V[Te + '] Am =0 on each S, whereas the integral conditions in (3) hold because the bubbles are
freely suspended. Setting U,ﬁ") = U™ . ¢ and selecting 010z - e3 = 0 yields Uél) = U3(2) = 0 for symmetry
reasons. Mimicking [4], we introduce for n = 1,2 and i = 1,2 four Stokes flows (ugn) . pf")) with stress tensor ag”)

subject to (1) and the conditions

uf-”) =0 onZX, a’?’) ‘n=[n- a,@") ‘n]n  and uf") ‘n=28yyme;-n onSy @)
with 8um the Kronecker Delta, and (for n,m, i and j in {1, 2}) the associated coefficients
AP = f (e;-m){n o -n)dS Q)
Sm

Extending the treatment advocated in [4], (1)~(3) then yield for the unknown generalized velocity X = w®,
v, u®, Uéz)) the following key linear 4-equation system
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ZZA(”)('")U("') nym Sume; — W) - VIToo + T'1dS, n=1,2 i=1,2 6)
m=1 j=1 = ]S

The system (6) has a real-valued, symmetric and negative-definite matrix (for conciseness the proof is omitted) and
therefore admits a unique solution X readily obtained by solely evaluating V[T, + 771, u§") and n - cr}”) -1 on
§ = 81 U S. In order to calculate such quantities we first use the second Green identity for 7’7 governed by (1)=(3).
Denoting by x'(x|, —x2, x3) the symmetric of a point x(xj, x2, x3) in £2 with respect to X one thus easily obtains
the following boundary-integral equation of the second kind

—4xT'(x) + f T’(y)g.f_w'_';(ﬂds(y) + f [T"(y) _ T;(x)]S{:Y)‘_I;(Y) ds(y)
Ix — i [x—yl
S\Sm Sm
fT’( )wd‘g( )—f[VToo'n](Y)[ - L _ ]dS(y) forx on Sy, (7
s I —y g Ix -yl |x—y¥

Inverting (7) provides T’ on S and the vector V[T, + T'] is evaluated on each S,, by computing there the tangential
derivatives of 7., + 7. For any pair (n, ) we also look on .S, where d = u( ") . nis given, ata =n- a(") +n/u and
the tangential velocity a = u — dn, Adopting henceforth the tensor summation convention for indices &, and p
in {1, 2, 3}, the Green tensor G’ (y, x) = G}, (y, X)e; ® ¢; vanishing on X' (i.e. G}, (y,x) =0 fory - e; =0) and the
associated stress tensor T'(y, x) = Tk’,‘D (y, x)e; @ €; @ e, are given by [10]

, 8 [(x—¥) &ll(x—y) &l [ 8t [(X’—y)-ek}[(X’—y)-ez]}
Gy, X) = _
w0 =0 x— yP w—y = yP
2er(x - 30K — ) - " y)-
- Zake) °§){akz(x’—y)-ef—5¢2(x’—y)-ek+(y-ez)[am— o =) el = y) °‘]“
X —yl X' —yl
(8
T Ol —y) - edl(x—y)-ell(x~y)-e5]  6[(x' —y)-el[(x' —y) - e/ll(x' —y)-e]
kig (¥, X) = x—yP - X y°
12¢;(x -
- %ﬂ?[%[(ﬂ -y e[ -y -e2] - [ -y -e][& —y)-e]
- (y-ez)(ékq[(X’ -y e+ —y) e ]+ 8, [ —y)-e]
5[(X —y)-ell(x —y) ell(x —y) el 9
[ — y|? ®

with ¢; = ¢3 = 1 and ¢; = —1. Using the material in [11], the property a(") An=0o0n § and the conditions (4)
then makes it possible to prove that g and a; = a - ¢ (fork =1,2,3) obey the boundary-integral equation (with
summations over indices k, / and p)

{SIraf(x)— f [ax(y) — @ (x)] T, (v, X)np(y) AS(¥) — f @ ()T, (v, X)np(Y) dS(y)
Sm S\Sm

+ f Gy, X)nk(y)a(y)dS(y)}ez={—8n[dn:](X)+ f [dre)(¥) T, (y, XInp(y) AS(y)
s S\Sm

+ f{[dnk](.v) ~ [dng 1) } Ty (v, X)np (¥) dS(Y)}ez forxon Sp (m=1,2) (10)
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Table 1

Comparisons with [6] (for M if A = 0) and 2] (for (M, N) if & = 0) using increasing numbers N1 = N3 of nodal points on each bubble, Here
A3 =1/1.0811

Tableau 1

Comparaisons pour M si A = 0 avec [6] et pour (M, N) si § = (t avec [2] en utilisant différents nombres Ny = Ny de points de collocation sur
les bulles. Ici, A3 = 1/1.0811

(M, N) (A, 8) N1 =74 Ny =242 Ny =530 Ny = 1058 [6.2]
M (0,02) 0.9664 0.9909 0.9943 0.9947 0.9950
M ©,2/3) 0.7724 0.7914 0.7943 0.7945 0.7948
M (0, A1) 0.3388 0.3197 0.3139 0.3139 0.3145
M .2, 0) 0.9726 0.9965 0.999% 1.0002 1.0005
N ©.2,0) —0.0002 —0.0005 —~0.0005 —0,0005 —0.0005
M 0.6,0) 0.9852 1.0096 1.0130 1.0134 1.0137
N (0.6,0) —-0.0124 —0.0135 —0.0137 —0.0137 -0.0137
M (0.9,0) 1.0194 1.0441 1.0479 1.0483 1.0486
N ©.9,0) ~0.0464 —0.0485 —0.0485 —0.0486 —0.0486

In summary, the velocity (U 1(1), uih, Ul(z), U2(2)) is gained from (6) by solving five boundary-integral equations:
(7yand (10) forn = 1,2 and { =1, 2. As in [5], the numerical implementation uses 6-node isoparametric boundary
¢lements on § with N,, nodes on S, and the linear systems resulting from (7) and (10) are solved by Gaussian
elimination.

3. Preliminary numerical results and discussion

This section presents numerical comparisons and new results for two equal bubbles (a; = a2 = @) with Yy <
0,7 = y4/v| and 0107 - e2 = 0 (see Fig. 1(b)). This geometry is characterized by the positive wall-bubble and
bubble-bubble separation parameters § = a/00 - €2 < 1 and A =2a/010; < 1. In addition, by linearity and for
symmetry reasons, the normalized velocities vim = 2,00 [y;anV T - €2] can be written:

v = [M +nN'les +[M +9Nlez, v =—[M' + N'/nle; +[M + N/nle (1D

with mobility coefficients M, N, M’ and N' depending upon (4, 8). For A8 = 0 bubbles move normal to & (M’ =
N' =0) and the computed values of M for distant bubbles (A = 0) and of (M, N) in absence of wall (§ =0} are
compared with [6,2] for N1 = N> nodal points in Table 1. Note that [6,2] resort to a quite different approach using
bipolar coordinates.

Clearly, using 530-node meshes yields a nice accuracy of order of 0.1%. Accordingly, we select N = 530
when investigating combined wall~bubble and bubble-bubble interactions for A # 0. The computed coefficients
M, N, M and N’ are plotted in Fig. 2.

As depicted in Fig. 2(a), M is positive, deeply sensitive to the wall position § and much less sensitive to the
bubble-bubble separation A. Other coefficients N, M’ and N’ are small in magnitude compared to M, negligible
for ) £ 0.2 whatever 8 and either positive or negative for A > 0.2. Near the wall (for § > 0.8) M is nearly constant
and M’ and N’ (not N) increase in magnitude with A large enough. By virtue of (11) and Fig. 2(a) and (b), the
velocities v’ = v . e, are positive for 7 = O(1). By contrast, since M’ and N’ of comparable magnitudes
satisfy M'N' < 0 for & large enough, as seen in Fig. 2(c) and (d), velocity components ug") =v® . ¢; will exhibit
a more subtle behaviour versus (A,8) and n. We illustrate this feature for two identical bubbles (az = a1 and
n=y;/y; =1) inFig.3.

As expected, vgl) = v£2) weakly depends on A (wall-bubble interactions are dominant for the motion normal

to X' and the velocity component v{l) = —vgz) parallel to X deeply depends on (A, 8): it is negative far enough
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Fig. 2, Coefficients M, N, M’ and N’ for § =0 (solid curves), § =0.4 (0), 8 =0.6 (®), § =0.8 (D) and 5§ = 0.9 (W). (a) M. (b) N. (&) M".
(d) N'.

Fig. 2. Coefficients M, N, M’ et N’ pour § = 0 (courbes en maits pleins), & = 0.4 (), § = 0.6 (@), 5 = 0.8 () et 5 = 0.9 (M). (a) M. (b) V.
() M. (d)y N'.

from X (8§ = 0.4), positive close enough to X' (§ =0.9) and either zero at a critical spacing A, positive for
distant bubbles (A < A.) and negative for close bubbles (A > A;) if § = 0.6 or § = 0.8. For § = 0.9 the monotonic
plot (dashed curve in Fig. 3(b)) of v}, obtained as in [9], is due to quite different conditions: Uz(") 0 and (only)
[ f 5, 0N dS] A ez = 0. Finally, note that two identical bubbles with 8 < 0.4 at initial time will successively separate
each other and then approach as time evolves when moving toward a hot wall (VT - €2 < 0 with 0103 - e; =0).
This behavior agrees with experiments [9].

4. Conclusions

For two equal bubbles (a1 = a2) with 0102 - €2 =0 it is found that combined wall-bubble and bubble-bubble
interactions induce a weak velocity component parallel to the wall and that for y; = O(y/) the migration is dictated
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Fig. 3. Normalized velocities v; = v."? for identical bubbles (a3 = a1, n = 1) with i = 1,2 and § = 0 (solid curves), § = 0.4 (0), § = 0.6 (®).
§=0.8(0), § =0.9 (M). (a) vz2. (b) vy with results obtained as in [9] for § = 0.9 indicated by a long-dashed curve.

Fig. 3. Vitesses adimensionnées v; = v\ pour des bulles identiques (az = aj,7 = 1) si i = 1,2 et 5 = 0 (solid curves), § =0.4 (0), § = 0.6

(®), 5§ =08 () 8 =0.9 (A). (a) v3. (b) v avec aussi pour § = (.9 des résultats obtenus comme dans [9] et indiqués en traits pointillés.

by wall-bubble interactions: a bubble nearly moves as if alone near the wall. This latter property might however
breakdown not only if @) # az or 0,0, - €3 # 0 but also when VT, is parallel to the wall. Such cases are therefore
under current analysis.
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