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ON THE SLOW GRAVITY-DRIVEN MOTION OF
ARBITRARY CLUSTERS OF SOLID PARTICLES
AND BUBBLES: GENERAL THEORY

A. SELLIER

LadHyX, Ecole Polytechnique
91128 Palaiseau Cédex, France

Abstract

A new theory is proposed to determine the migration of a collection of
arbitrary-shaped solid bodies and spherical bubbles under the action of
gravity when inertial effects are negligible. The advocated procedure
appeals only to surface quantities on the entire cluster's boundary and
is therefore quite suitable for a future numerical implementation. The
well posedness of the approach is established and the relevant
boundary-integral equations governing all the needed surface quautities
are also derived.

1. Introduction

Determining the motion of a collection of particles (solid bodies or
bubbles) remains a tremendous challenge for many applications
encountered in multiphase flows. As explained in [3] and [5] one usually
adopts the simplified Stokes flow approximation for small particles with
weak inertia. However, even within this framework it remains very
difficult to investigate the particle-particle interactions for fully three-
dimensional clusters made of more than two particles and the available
results therefore confine the analysis special cases. Among others, one
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can cite the case of spherical (not arbitrary-shaped) solid bodies [4], the
axisymmetric configurations of solid spheres and spheroids [2, 6] and the
thermocapillary migration of chains of bubbles [1, 7, 8, 10, 13]. New
boundary methods have been recently proposed to obtain the
thermocapillary motion of arbitrary clusters of spherical bubbles in
Sellier [11] and the gravity-driven motion of a collection of arbitrary-
shaped solid bodies in Sellier {12]. However, neither [11] nor [12] is able
to cope with the gravity-driven motion of clusters consisting of both
spherical bubbles and arbitrary-shaped solid bodies. The present study
thus introduces a generalized boundary method which adequately
addresses such clusters when subject to the gravity and recovers [11, 12]
as special cases.

2. Governing Equations

We consider, as sketched in Figure 1, N solid arbitrary-shaped bodies
P,(n =1, .., N) and M spherical bubbles B,(m=1,.. M) immersed

in a quiescent and unbounded Newtonian fluid of uniform viscogity u and
density p and subject to the uniform gravity field g. The cluster migration
is studied in a given Cartesian framework (O, %, %9, ¥3) and we

henceforth adopt the usual tensor summation convention with OM = x
=xe; and r = |x| = (x;x; )1/ 2. Each not necessarily homogeneous solid
Pp with length scale @,, boundary S, and center of mass 0,, experiences
a rigid-body motion of unknown translational velocity U™ (the velocity
of 0,) and angular velocity Q™ whereas each bubble B, with
boundary B,,, center C,, and radius a,, only translates at the unknown

velocity U'™ For negligible inertial effects, i.e., if Re = pUa/p << 1 with
a = Max(a,, ap,) and U = Max(] U™, a,| @™, [U ™)), the fluid flow

is quasistatic and has velocity u, pressure p + PE - x and stress tensor e

such that
pV2u=Vpand V.-u=0in Q,(u, p) > (0,0) as r = (xixj)1/2 ~ o, (1)

u =0, oM, O,Mon S, forn=1,.. N, (2)
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a-n=U" nande-n=(m-¢-n)non B, form=1., M 3
with ©Q the unbounded fluid domain and n the unit outward normal on
each surface S, or B,,. The boundary conditions (2)-(3) are explained in
the Appendix. The flow (u, p + pg - x) applies on S, a net force R, and
a net torque T, (about O,) whereas it exerts on B, a net force R,
and, by virtue of (3), a zero net torque about C,,. If P, has center of
volume O/, and volume V,, then one easily obtains

R, = Jl o -ndS + (M, - pV, )z,

n

r, - _[S O,M A o -1ndS - pV,0,0, A g. )
n

In addition, for a spherical bubble B, with radius ap, the quantity R,

reads

Ry, = [ o-ndS, —4n(a) pe/s. ®)

m
Assuming solid bodies P, and bubbles B,, of negligible inertia, we
require that R, = [, =0 and that R;, = 0. Exploiting (4)-(5) those
conditions immediately become, for n =1, ..., Nand m =1, ..., M,

.“S

n

6 -ndS = {pV, - M,)g, IS O,M A6 -ndS =pV, 0,0, r g, ©)
n

I o - ndS = 4an(a;,)® p/3. ¥))

m

Hence, we look at the unknown generalized velocity X = (U(I), vers uW );

o) o™, u® U™ guch that (1)-38) and (6)-(7) hold. A
possible iterative treatment might consist in appealing, as many times as
necessary, to a Finite Element Code to obtain (u, p) solution to (1)-(3) for
a given entry X, then subsequently evaluate all the integrals occurring in-
(6)-(7) by computing the surface traction ¢ -n on S, and B,, and finally

stop the iterative procedure as soon as both (6) and (7) are satisfied by the
tested value of X. Unfortunately, this method suffers from the following
drawbacks:
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(1) One needs to initiate the iterative scheme with a good enough
guess value X, but there is no efficient rule to choose it.

(ii) The liquid domain is not bounded and must therefore be truncated
for a Finite Element implementation. However, it is well-known 13, 5]
that a body B (here a solid particle P,, or a bubble B,,) induces a fluid

velocity that exhibits a weak 1/A decay at any point M located far from B
with A =|O,M | if B="P, and A =|C,M| if B = B,,, respectively.
This behavior requires to use a large truncated fluid domain and this

would yield tremendously cpu time consuming computations when
iteratively appealing to the Finite Element Code.

(iii) For any tested entry X the Finite Element Coede would produce u
and p in the truncated liquid domain at a given accuracy. However, one
further needs to evaluate the associated surface traction ¢-n on the
entire cluster’s surface (i.e., the Cartesian derivatives of each velocity
component u-e;) when dealing with (6)-(7) and this key step would

actually yield a dramatic loss of accuracy.

Because of the previously alluded to significant drawbacks (D-(id), a
quite different and boundary approach free from such troubles is then
advocated in Sections 3 and 4.

3. A Key and Well-posed Linear System

This section derives a well-posed linear system for the 6N + 3M
unknown Cartesian velocity components UJ(-”’) =UM . ¢ i QE”) =0 g ;
and UJ',-(m) =Ulm . g j- The trick consists in using for i=1, 2, 3;
n=1.,N and m=1,.., M this time 6N + 3M auxiliary Stokes
flows (u(q'.")'i, pg'.‘)’i), (u%‘)'i, pg')’i) and (u?)! pl"hi) with stress tensors

og})‘i, ng),i and ™ that obey (1), i.e., are free from body forces and

quiescent far from the cluster, and fulfill the following specific boundary
conditions:

ug'f)’i =8,r€; on S,; u,(l,'f) ‘.n=0 and o-g_,'.”)'i ‘nAan=0on B,, (8)
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u%)’i =5, A0,Mon S,;; u%)’i n=0 and og';)'i ‘nan=0on B, (9
u™i — 0 on S,;ul™i.n=3,,e nand 6" nan=0on By, (10)

with 8;; the Kronecker delta. Clearly, ugf)’i and u%)'i are the flows
occurring when all the bubbles and solid bodies are motionless except Py,
that translates or rotates respectively at the velocity e;. Subscripts T and

R are thus employed for a translation and a rotation, respectively, of only
one solid body. In a similar fashion, only B,, is not at rest and translates

at the velocity e; for the flow u?)¢, Using the above flows u%)’i, u%)’i

and u)’ makes it possible to express the conditions (6)-(7). This is
achieved by exploiting the key Lorentz reciprocal identity [3, 5]

J'u-o'-ndszju'-o-nds A
S S

that holds for two arbitrary Stokes flows {u, p) and (u’, p) with stress
tensors ¢ and ¢’ obeying (1) with S the entire surface of the cluster, 1.e.,

such that 8§ = S, US, if S, =UY.,S, and S, = UM B, henceforth

denote the entire solid and non-solid surfaces, respectively.

Exploiting the conditions ug,‘)'i = &,,e; on Sy, ugf)’i -n=0 and

6-nan=0 on S, and finally the identity (11) for (u', p') =

(u(j'f)’ £ p.yf)’ i) yields

I e, -6-ndS = jS ugﬂ‘)’i ra-ndS = J‘Sug.'*)’i .0 -ndS

n

B J.su ‘ og"l)'i -ndS. 12y
In a similar fashion, using the boundary conditions (9), one also obtains
e; {J. OnMA-o-ndS} = j (e; AOyM)-0-ndS = ‘[ uvc%)’i -ndS.
Sn Sy S

(13)
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For L e {T, B} recall that o(i")'i 'nmAn=0 on each surface B,,.

Therefore, u - u'(f‘)’i -n={(u-n)(n- o'(i”)’i -n) on the surface ). Taking

into account the conditions (2)-(3) for u and adopting the following
definitions:

A("’)sirj = -[g ej ‘Ug})’i -ndS,

(n), T ,
n
B = [, (e nOuM)-af nas, (149)
A(::')):l-hj = IS r ej ’ ﬂ%l)'z ’ ndS’
B("»)sirj - I (e S A O 'M) . u(n),i N nds (15)
n),R ~ g, VY n R ,

okl = _[B (e; -n)(n- ol . n)ds,

'm’

Contt = J‘Bm,.(ej ‘n)(n- ol n)ds, (16)
in conjunction with the equalities (12)-(13) thus easily yields (under the
standard tensor summation convention) the relations

J‘S ei -0 ndS = ALNLIU) 4 BEMEIRW) o il ), (17)

n

e; - { -[5‘" O,Mnr o ndS} = AlRIU®) o gl Cimkiu ). )

Let us now deal with the conditions (7). Since 6 n A n = 0 and u™ . o
= 8,me; -1 on each B, we readily obtain

J-B e; -6 -ndS (u™i ‘n)(n-o-n)dS

m Bm

i (" . n)(n-e-n)ds. (19)
b

Using successively the equality ¢ -n A n = 0 on S, the property ulmhi

= 0 on S, the identity (11) and the condition 6. n An = 0 on 8y it
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follows that

J. e; -6 -ndS
B

o

I uhi & ndS
Sp

I w6 . ndS = j u-6i . nds
S S

= j w-s™i . ndS + I (u-n)(n-o("")'i -n)dS. (20)
S, Sy

£

Upon introducing the new coefficients

Do - [ e -nas, D23 = [ e 0,0 mas, o

Fodti < | (ej-m)m o™i m)ds, @2)

and using the boundary conditions (2)-(3) for u one thus arrives at

n), T m

J' e; o -ndS = D((m) i jU(n) ((n;) i, ;Q(u) + F((m% i, ]Ur(m,) @3)

m

In summary, the previous relations (17)-(18) and (23) yield, when
combined with the conditions (6)-(7), the following (6N + 3M)-equation

linearsystem (i = 1,2, 3;n=1,.., Nand m =1, ..., M)

AU 4 BEYIUD 4 COMIU) < v, - Mg 28)

A((::))”ﬁ J'U-En) + B((::)) ke JQ(n) + C(n) i -’U}(’”') = pV,[0,0. A gl e;, (25)

D((::'));,JU("' . D((m)),l JQ(H) + F(g:?:g, i,.fU}(ﬂ;') = 411;(0;“)3 g ei/3r (26)
for the unknown Cartesian velocity components UE"") , QS"’) and U}(m').

If one denotes by A the matrix associated to the second-rank tensor
AbJ e; ®e; and by *X the transposed value of X the equations (24)-(26)

also admit the condensed notation ‘Y = M . !X with
Y = (bW - My)g, ..., pVN — Mpr)g; pV1010% A &, ..., pVNONON A &5

an(a})pg, .., 4n(apr)’pg)
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and the following real-valued matrix:

gl ... gl o)

WOz - Az Bz Wt Cor 0 Canr
Ay - Al By B r S o O e

1 1 1 1 1 1

Wy AGr - Allr Br - Bix Clz ~ Clinr o

N N N N N Ny |
Ah).)n AEI\)T;,R Bgl;.)R Bél\)’iﬂ Cgl(),))x CEA(I)),R

1) 1 1 onl no 1)
Diyr = Diwyr Dar  Payr Fo Foar

(M) ) o) o) o) o)
D - Divir Duyr  Divyr Fy Foury |

Let us prove that M is symmetric and negative-definite. First, we note
that (12) also holds for the flows ug,',’r)’j and ug{)’j , i.e., not only the flow

u. By virtue of (14)-(15), one thus arrives at -

it _ (n'),Jj X W) i _ ) | gn)i
A((::)?TJI — .[Su%l j_ogil)t_nds’ A(::)’érn = J‘Suﬁ)}.o:}} ’-ndS. (28)

On this side (18) actually also holds for the flows ugff')’j and ug'{")’j and a

similar treatment permits us to obtain

BUM = IS i ol nds, BE)ST - IS ulfh ¢ nds. (29

Now, applying the key identity (11) to each integral arising in (28)-(29)
immediately establishes the following properties:

A(n’),j,i _ A{n),i,j A(n’),j,i _ B(n),i,j

(n), T )T’ “(n),R "), T
Bt = a0}, BU)E = B, (30)

Furthermore, using the definitions (16), (21) and the conditions (8)-(10)
makes it possible to show for L = T', R that

C((::r.)'),lf = IS (u(m »i . n)(n - cgt)d . n)dS = J‘S u(m’),j ) G(Ln),i -ndS, (31)

D((:;i)i:r,l = .[g (ug‘)" -n)(n g n)dS = -[S at®i _G(in )J . ndS. 32)
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By virtue of (11), it follows that

iy = Cohis DEYRT = Gk @3

Finally, exploiting the conditions (10) for the flows u®)i and &™)/ in
conjunction with the definition (22) and the identity (11) gives

Flnhii _ js(u(m’),f -n)n - glmhi n)dS

(m")

m

I (u(m) i n)(n G(m) j n)dS F((m)) A : (34)

In summary, the relations (30}, (33) and (34) readily show that M is
symmetric. Let us now consider, for an arbitrary generalized velocity

X = (U(l), oy U o® . oM, g U’(M)), the flow (u, p) subject

to (1)-(3). Since (1) holds the rate E of dissipation of mechanical energy
for this flow satisfies [3]

E= J'Su-o-nd3<o. (35)

In order to express E we note that, by superposition (under the tensor
summation convention) we have '

u = U}n’)ug}‘), jy Q"(iu‘)u%tr)’ j N U}(m'")u(m')’j , (36)
o = U}n) ogr.),i + qu) G%L)’i + U;(m) G(m),i‘ (37)

Accordingly, E = Lf,il)'iU i(") + Ig‘)'iﬂgn) + 7(m), iUg(m) withfor L = T, R,
1 = Is“ cofhE . nds, 10 < _“Su.u("‘)-" .ndS. (38)
Owing to the decomposition (36) note that

e -yl _[S w6l nasg + ol IS ulhi o0 ngs

. U}(m') J‘S uhi. i nds  (39)
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with, by virtue of the boundary conditions (8)-(10), the relations

.[g ug}'),f _ogl),i -ndS = oy -og‘)'i -nd8, (40)
fs u§ e nds - fsr (ej A OLM) - 61 - nds, (41)
J‘ ulhi oM ngg - J‘ (e -m)(n ol . n)ds. (42)
S B

Combining (39) with (40)-(42) and the definitions (14)-(16) thus yields
. i FR () _
I = Al U0 4 gl CONHUL™ for L =T, R, (43)
Adopting the same method, the reader may easily establish that
1._ { ’.:- (’) m),',’ (' ()",' '( ,)
1004 = D0 DIl + Efmbiiod).
Hence, the inequality (35) shows that for any generalized velocity X,
E = P 4 10iql) o fmdighm) o g pltx <o, as)

By virtue of (45), the real-valued and symmetric matrix M is negative-
definite and the system (24)-(26) therefore admits a unique solution X.
This property establishes the well posedness of the advocated general
theory which consists, when solving (24)-(26) under the definitions (14)-

(16) and (21)-(22), in only evaluating the surface tractions 0(1'.”)”. - n,

og‘)'i -n and o(m)": 'n on the entire surface S of the cluster and

thereafter circumvents the calculation of the fluid flow about the cluster
when determining the motion of the solid bodies and spherical bubbles.
Note that our approach is free from all the drawbacks (D-(iii) alluded to at
the end of Section 2. The next section gives the boundary-integral

equations that govern the required surface quantities G,E,',‘)’i 'n, 6%1)’i ‘n

and g™ . g,
4. Relevant Boundary-integral Equations

First, let us recall [9] that the velocity w = u je; of a Stokes flow
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(u, p) subject to (1) and exerting on S the surface traction ¢ - n, obeys in

the whole fluid domain Q the following integral representation:
1 €, '6:'n
i 01) = = [ YTy (P, D) (P) - G (P, )| S22 | P (a0

if one sets n = ne; on S and denotes by G, (P, M) and Ty;(P, M) the

Oseen-Burgers second-rank free-space Green’s tensor and the associated
third-rank stress tensor Cartesian components, respectively, such that

ﬁjk + [PM-ek][PM-ej]

Gi(P, M) = 5o Y0

(47

G[PM . ek][PM : eJ][PM . el]
PM5 )

By virtue of (46), (36)-(37) and (24)-(26) one is therefore able to compute
the fluid velocity u about the migrating cluster by solely evaluating (for

Tpit(P, M) = (48)

L = T, R) both the surface tractions G(ii')’i -n, 6" .1 and the velocities

u,([j")‘i, ™% on the entire surface S. In order to obtain all those surface

quantities it is fruitful to let M tend to S in the relation (46) associated to
an arbitrary Stokes flow v = v;e; with pressure g, subject to (1) and

exerting on S the surface traction pf = pfpe;. Curtailing elementary

manipulations, one arrives for M located on S at the key identity

8nv; (M) = _[ . [v.(P) — v (N Tys (P, M)ny(P)dS

+ _[S\S,vk(P)Tka(P. M)n,(P)dS - IS Gjr(P, M)f(P)dS (49)

with §' = S, (respectively 8' = B,,)) if M lies on S,, (respectively B,).

Clearly, the relation (49) provides a link between the velocity v and the
vector f on the boundary S. Henceforth, we assume that v is one auxiliary

flow ug‘)’i or ™ and introduce on the non-solid surface S; the

functions d, ¢ and the vector a = a,e; such that

v=dn+aand a-n=0f =an. (50)
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Of course (recall (8)-(10)) both v and d are prescribed on surfaces S, and
Sp, respectively. The unknown quantities (a, a) on S, and f = fie, on
S; are found, owing to (49), to satisfy the coupled boundary-integral

equations

ak(P)Tkjl(P» M)nl(P)dS - ij(P, M) [ank](P)dS
Sp Sp
- .[S Gu(P, M)f(P)dS = s[d, v](M) for Mon §,, (51)

8na; (M) - [ [a4(P) - a, ODITigu(P, Myny(P)as

m

_ Is,,\B,,. o (P) T}y (P, M)ny(P)dS - j'sb G (P, M)lan,](P)dS

- IS G (P, M)fy(P)dS = £'[d, v](M) for Mon B,,, (52)
with the definitions

5714 VIOM) = 8r0;(00) = [ [a(P) ~ ok (MNP, M) (P)as

- .[s \s, ¥ (P)Tyy (P, M)ny(P)dS

8

- Isb [dng 1(P) Ty (P, M)ny(P)dS, 63)
VO = [ [dng)(P) - ) MOT(P, Myny(Ps
. Is,,\B [dn ) (PYT(P, M)ny(P)dS

; IS op(P) Ty (P, M)ny(P)dS. (54)

The general theory advocated in this paper hence finally reduces to the
treatment of 6N + 3M boundary-integral equations (51)-(52) associated
to thne following cases:
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(i) v =95y, on Sy and v-n=0 on Sp. In this case one obtains
cgf)’i .n = pf on Sg; u(q'f’)'i =a and og’f)'i .n = pan on S;.
(ii) v = 8py(e; AOxM) on S, and v-n =0 on Sp. In this case one
obtains G%l)’i 'n = pf on Sg; u%’)’i =a and o%)’i -n = pan on Sp.

(i) v=0 on S; and v-n = ,,e; -n on B,y. In this case one

obtains 6™ .n = pf on S; ul™i = g +5,,.{e; -n)n and ™. n

= pan on each By,.

Before closing this section, let us mention that for any closed surface
S (for example, S =8, of S =By) and any point M located on S,

inside or outside the domain bounded by & the following identities hold
[9]:

_[S Gu(P, M)ny(P)dS =0, j=1,23. (55)

Accordingly, the boundary-integral equations (51)-(52) do not admit a
unique solution (g, a) on S, and fon S;: one can readily add to a an

arbitrary constant on each surface B, and to f an arbitrary multiple of
the unit vector n on each surface S,. Note however that the coefficients

introduced by (14)-(16) are not sensitive to those arbitrary quantities, i.e.,
that our system (24)-(26) and therefore its unique solution X are
unchanged.

5. Concluding Remarks

A general procedure has been established to determine the migration
of a collection of M 21 spherical bubbles and N 21 arbitrary-shaped
solid bodies subject to the gravity and the resulting velocity field about
the cluster. The proposed theory is proved to be well-posed and solely
appeals to the knowledge of the velocity and the surface traction arising
on the entire cluster's surface 8 for 6N +3M auxiliary Stokes flows.
These key surface quantities are governed by coupled boundary-integral
equations on S and one thus only needs to mesh the cluster’s surface
when achieving a numerical implementation of the theory. Such a
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suitable implementation is under current progress and resorts, as
achieved in [12] for only N solid bodies and different boundary-integral
equations, to standard boundary elements.

Appendix

This Appendix introduces the adopted boundary conditions (2) on the
surface S, of a solid particle P,, and (3) on the surface B, of the bubble

B,, as follows:

(i) The solid P, rotates at the unknown angular velocity o and its

center of mass O, translates at the unknown velocity U™ with respect
to the selected Cartesian framework (O, x;, %9, x3). Since the liquid is
viscous one thus immediately prescribes at S, the no-slip velocity

boundary condition (2).

(ii) The bubble B, only translates at the velocity U,, and the

condition (3) on the normal fluid velocity w-n arises from the
impenetrability requirement. The remaining condition of zero tangential
stress on B, is the balance of tangential stress at the bubble-liquid

interface while the normal stress balance is ignored since we assume a
surface tension high enough to keep the bubble spherical [10].
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Figure 1. Employed notations for the addressed cluster



