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Abstract

The sedimentation of N 2 1 small arbitrarily-shaped solid bodies near a solid plane is addressed by discarding inertial effects
and using 6N boundary-integral equations. Numericai results for 2 or 3 identical spheres reveal that combined wall—particle
and particle—particle interactions deeply depend on the cluster’s geometry and distance to the wall and may even cancel for a
sphere which then moves as it were isolated. To cife this article: A. Sellier, C. R. Mecanique 333 (2005).
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sédimentation d’un ensemble de particules solides en présence d’une parof solide plane. La sédimentation en régime de
Stokes de N 2> 1 corps solides quelconques situés prés d’une paroi plane est tudiée 3 I'aide de 6V équations de frontigre, Les
résultats pour 2 ou 3 sphéres identiques montrent que la résultante des intéractions particule-particule et paroi-particule est ir2s
sensible 2 la disposition des spheres et peut méme s’aanuler pour 1'une d’elles qui dans ce cas migre comme si elle était seule.
Pour citer cet article : A. Sellier, C. R, Mecanigue 333 (2605).
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Imtroduction

The new approach advocated in [1] to compute the low-Reynolds-number falling motions of N > 1 arbitrarily-
shaped solid bodies investigates pure particle~particle interactions in sedimentation. However, boundaries are also
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encountered in practice and the case of a solid wall has been only handled in [2,3] for ¥ = 1 and for several
spheres in axisymmetric motion in [4]. The present work thus investigates combined particle—particle and wall-
particle interactions for arbitrary clusters lying near a plane solid wall X by extending [1]. This is achieved by using
this time a Green’s tensor [5] that vanishes on X and therefore again solving 6N boundary-integral equations on
the entire cluster’s surface.

2. Governing linear system

We look at N = 1 solid arbitrarily-shaped particle(s) P, (n = 1,..., N) immersed in a Newtonian fluid of
uniform viscosity & and density p above the solid and motionless x3 = 0 plane ¥ For example, the case of a few
spheres is sketched in Fig. 1.

Under the uniform gravity g each P, with center of mass O, settles with respect to the Cartesian frame
{0, x1, x2, x3) at the unknown angular velocity 20 and translational velocity U™ (the velocity of O,). The
fluid and each P, with volume V,, center of volume (,, mass M, and surface S, have negligible inertia. Hence,
the liquid has at a current point M quasi-steady [1] velocity u, pressure p + pg - OM and stress tensor ¢ that obey

pV2u=Vp and V.-u=0 inf2, (u p)— (0,0) as|OM|— co (1
u=0 onX and u=UD+2WAO0M ons, (=1 (2)
fo'-ndSn-!—(Mn—an)g:O, fonMAcr-ndS,,+ang/\0n0;=0 (nzl) 3)
S S '

with §2 the fluid domain and n the unit outward normal on the cluster’s surface § = Uf:l Sx. In order to rewrite (3),
that requires zero net force and torque (with respect to 0y,) on each P, of ignored inertia, let us introduce 6N flows
@, p™y with stress tensor o'\ for L € {T, R},i € {1,3} and n = 1,..., N. Those flows fulfill (1) and the
conditions

ug')'i =0 onZX, uf,f)'i =0 ond, ifm#n, ugl)'i =¢; and ug‘)'i =¢; AOM on §, (4)
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Fig. 1. Identical spheres near the x3 = 0 solid plane E: (a) 2-sphere cluster with 0703 - e3 = 0; (b) 2-sphere cluster with 010y normal to Z;
(c) 3-sphere cluster with 01 02 = 0103 = 0203,0203 - ey =0and g= —ges.

Fig. 1. Spheres identiques au voisinage du plan solide ¥ (x3 =0) : (a) N =2 et 0103 -3 =0; (b) N =2 et 010 perpendiculaire d T'; (¢)
N=3et 0107=0103=0203,0203 - ¢3=0,g= —ges.
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Because u = 0 on X' where n = ez the usual reciprocal identity [6) provides, for any flow (u', p’) with stress tensor
o' satisfying the equations and far-field behavior (1), the relation

N
fu’-a-ndS= f u-a'-nds=2fu.a'.ndsm (5)

sur SUE m=lg
Upon introducing the vector £ = ¢ . n on 5, the quantities Agf"))'j_’ and B((;))”iij with
A = — / e 10 dS,,  BUYG =- f (€7 A OmM) - £ dS,, 6)
S S
and adopting henceforth the tensor summation convention with U™ = U}")e ; and 2™ = .Q}")e ;. the choice
', p'y = @™, pP) in (5) easily shows that (3) becomes

(b pm) | O Y _
(A U™ + By 2] Jeoi = (Mu — pVa)g =T &
(AU + B 2™ e = pVu @ A 0a0)) - e = C™ ®

Setting Y = (TV, ..., T™ Y . C™)y, the linear system (7), (8) with 6N x 6N matrix A alsoreads A-'X =
'Y with X = (U, ..., UW), .ﬁ.’_(‘), e 2Ny the unknown generalized velocity and ‘V the transposed of V. As
seen by _putting (u, p). = (uf,:')", pg‘)") and (w/, p') = (uf{")"r , pi’")"’ ) in the first equality (5) the matrix A is
symmetric. Moreover, if V[u-e;] = V[u;] = u; je; and ¢;; = (u;,; +u;,:)/2, the divergence theorem and (1) yield

E:= fu-cr-ndS=—2ufe,-;e,-,-d.Q<0 9
sux b7]
Since (2) and (4) show that ¢ - n = Ui(")i(;)’i + !2,-(")1‘(;)". onSandu= U}m)ej + Q}m)(ej AOxM) on S, it
follows from (9), (2) and (6) that E = —X - A - ‘X < 0 whatever X. Hence, A is not only real-valued and symmetric
but also positive-definite and (7), (8) thus admit a unique solution X, here obtained (see (6)) by solely evaluating
the surface tractions ffL”)’i on the multiply-connected (if N = 2) cluster’s boundary S.

3. Relevant integral representations and boundary-integral equations

We denote by M'(x|, x2, —x3) the symmetric with respect to the plane X' of any point M (x, x2, x3) located in
£2 U S U X and introduce for P on § the pseudo-functions [5]

GU(P, M) =8/ PM + (PM -¢))(PM - &1}/ PM° (10)
Gi(P. M) =—GY(P, M) — 2c;[(OM - €3)/ PM"]{5:3PM - ¢;
—8;3PM’ - e, + OP - &3[5j5 — 3(PM - ¢;)(PM' - )/ PM"]} an

with ¢1 = ¢2 = 1, ¢3 = —1 and 8 ;¢ the Kronecker delta. Extending in our case N 2 1 the result obtained in [7,8] for
a single particle it is found that ug')" , subject to (1) and {4), then admits the key single-tayer integral representation

—sruul’ - e;1(M) =/[G?k +GL]P, M[E(P) - ]dS forMinQUSUX (12)
S
The above key result (12) appeals to the following remarks and basic consequences:;
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(i) Of course uf,f)"' vanishes on X because [ng + G?k]( P M) =0if M lies on X [5]. However, (12) in general
also involves for (w”, p”) subject to (1) and the property u” = ¢ on X' an additional double-layer integral which
only vanishes if u” is a rigid-body motion on each 3, (as is each ug’)"').

(ii) Each unknown traction l'gl W obeys on $ a Fredholm boundary-integral equation of the first kind obtained by
combining (4) and (12). One thus determines X = W ..oV, e | 2®™) by solving 6N integral equa-
tions on the cluster’s surface.

(iii) Once all vectors fg’ )i and X have been evaluated, {(12) finally provides if necessary the velocity fields u

and thereforeu =U (")ug’)'i + S?‘-(")ug?)'i in the liquid domain £2.

i

(n).f
L

4. Numerical method and preliminary results

As in [1], the integral equation (12) for f(lf' M s inverted by a boundary element technique [9] with 6-node
isoparametric curved triangular elements and N,, nodes on each S, and a LU factorization algorithm to solve the
discretized counterpart of (12). The procedure which readily recovers [1] far from the wall (see (10), (11)) is tested
for a single spheroid with uniform density p;, inequation x% + x% +6 2(x3 — H)? /< a? and separation ratio s =
H/(ea) > 1. If isolated (h = 00) this body only translates for g = ges at the velocity U = ga?(p, — p)v(e)/ues
with u(1) =2/9 for a sphere and for oblate spheroids [6]

v(e) = {p(p? + D arctan(1/p) — p*}/12 withp=¢/(1—€*)'? and0<e <1 (13)

Symmetries and linearity confine the analysis to the settings g = ge; and g = —ges with g > 0. For ps # p the
non-zero Cartesian velocities, normalized by the velocity of the isolated spheroid and solely depending upon (¢, &),
are found to be
pa~ 200 . ¢ _ ua2 QW e f o gor: _ua W e
U= o — ey T glos — pu(©) e TP RPN
The computed values are compared in Table 1, for different N1-node meshes on Si, both with the analytical bipolar
coordinates method [10] for a sphere (¢ = 1) and the numerical results of [3] for the € = 1/2 oblate spheroid.
Clearly, the agreement is excellent for the sphere and very good for the oblate spheroid. Actuatly, [2,3] kept in
(12) the extra weakly-singular double-layer integral although (remind our remark (i) below (12)) it vanishes and
this might explain the small observed discrepancies for € = 1/2.
Although the advocated procedure holds for ¥ > 1 arbitrary bodies, we henceforth present results for clusters
(see Fig. 1) of 2 or 3 identical spheres P, with center O,, radius 2 and uniform density p; # p. We put 242 nodes

ifg=—ges (14

Table 1
Computed normalized velocities a1, wy and u3 (see (14)) for a sphere (¢ = 1) and the ¢ = 1/2 oblate spheroid for different M'-node meshes

Tableau 1
Vitesses adimensionnées 11, Wy and w3 (voir (14)) pour une sphére {¢ = 1) et un ellipsoide de révolution aplati (¢ = 1/2) en fonction du
nombre Ny de points de collocation

N h upie=1 wye=1 3 e=1 upe=0.35 wa; e=0.5 uy e =035
74 1.1 0.4463 0.0245 0.1087 0.6433 —0.0534 0.246
242 1.1 0.4424 0.0259 0.0886 0.6413 —0.0538 0.244
1058 L1 0.4430 0.0270 0.0871 0.6411 -0.0538 0.244
{10, 3] L1 0.4430 0.0270 0.0873 0.6464 =0.0522 0.241
74 20 0.7256 0.0034 0.4726 0.7910 —00250 0.473
242 2.0 0.7235 0.0035 0.4707 0.7890 00252 0.472
1058 2.0 0.7232 0.0035 0.4705 0.7888 ~0.0252 0.472

[10, 3] 2.0 0.7232 0.0035 0.4705 0.7892 —0.0252 0477
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Fig. 2. Normalized velocities # and w in Cases k f N=2 and 0105 -e3 =0for§=0.1 (k =1(0),k=2(e),k = 3(*)),8 = 0.5 (k = 1 ([,
k=2(0),k=3(0) and § = 0.9 (k = 1(A), k = 2(A), k = 3(V)}. (a) u with dashed (k = 1,2) and solid (k = 3) curves for § = 0; (b) w with
dashed (X =2, 3) and solid (k = 1) curves for § =0.

Fig. 2. Vitesses adimensionnées u et w dans les Cas k si N =2 et 0402 - e3 = 0 pour 8§ = 0.1(k = 1{o),k = 2{e).k = 3(x)),
§=05G(k=10),k=2(0),k=3(0) et § = 0.9 (k = 1(A), k = 2(A), k = 3(V)}. (a) u avec des courbes en trait pointillé (k = 1,2) et
plein (k = 3) pour § = 0; (b) w avec des courbes en trait pointillé (k = 2, 3) etplein (k = 1) pour § =0.

on S, and introduce the positive wall-sphere and sphere—sphere separation parameters as § = ¢/00; -e3 < 1
and A =2a/0; 0z < 1, respectively, By linearity we consider the settings g = ge) {Case 1), g = gex (Case 2),
g = —gej3 (Case 3) with g > 0 and use in Case k the normalized velocities

9ua~2UM . ¢ ua 32" .
wh® JZRE T %o TR T8 i = =1, ey =1 (15)
2g(ps — pIck

2g(ps — pleck

For 2 spheres and 0105 - &3 = O (see Fig. 1(a)) only u = u,(cl)'(k) = u,(cz)'(k)
inCase l, w= wgl)’(z) = _wgz),(z) gl),(a) = _w§2).(3) in Case 3 are non-zero. These quantities
are plotted in Fig. 2 versus A,

As seen in Fig. 2(a), pure wall-sphere {1 = 0) interactions slow down the spheres (u < I) and increase with
& and pure sphere—sphere (8 = 0) interactions speed up the spheres (4 > 1) and increase with A. For §A # O both
interactions interact and # — 1 deeply depends on (3, A). If 8 = 0.1 (all Cases k) and § = 0.5 (Case 1) we may have
# = 1 (a sphere ignores the other one and ') or also 4 > 1 if A and § are large and small enough, respectively. In
other cases wall—particle interactions are dominant and spheres move slower than if isolated (u < 1). This actually
occurs near the wall whatever A since u then weakly depends on A, as observed for A = 0.9. Finally, note that u
strongly depends on Case k and u{"" > u{"® > u{>D for any pair (3, ) with 81 # 0. In Fig. 2(b) similar
trends are obtained for w with wgl)'(z) > wgl).(:i) and w — Q0as A — 1 in Case 1 (not in Cases 2 or 3).

If 010 is normal to X (see Fig. 1(b)) non-zero velocities read u(n) = u(l")’(l) = ug;),(z) in Case 1 (or 2) and
u(n) = u{” in Case 3. As depicted in Fig. 3(a), #(1) < u(2) in each Case k for § > 0 since P; experiences
stronger wall-sphere interactions than P2. As in Fig. 2(a), u(n) decreases as § increases for any A and P, might
ignore the other sphere (u{n) = 1) for (n, 8} = {1,0.3) in Case 1 and (n, §) = (2, 0.3) in Cases 1, 3. In addition,
u(n) is smaller in Case 3 than in Case 1 and ©(2) strongly decreases as A increases for § = 0.9.

Finally, we consider in Case 3 the 3-sphere cluster sketched in Fig. 1(c) by plotting in Fig. 3(b) the velocities
u{n) = ug")’(s) for 10A =1,5,9. Clearly, u(1) and u(2) = u(3) decrease with 1/8 or A and for a given sphere—
sphere separation A there exist wall positions &; such that #(1) = 1, §> such that #(2) =1 and §. at which all
spheres adopt the same velocity (4(1) = u#(2) > 1) whereas «(2) — u(1) has sign of § — §, for § # §,.

ineach Casek, w = wél),(l) = wgz)’(l)

inCase2and w = w
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Fig. 3. (a) Normalized velocities u(n) for N = 2 and OyOz normal to % in Case 1 for § = 0.3 (n = 1{{),n = 2(W)) or 8 =09
(ot =1(A).n =2(a)) and in Case 3 for § = 0.3 (n = 1{{),n =2(#)) or § =0.9 (n = 1(V),r =2(¥)); (b) velocities u(n) versus § for
N=3inCase3ifA=01(r=1{0),n=2(e)),A=05 (n =D, n=2(M)) and A = 0.9 (n = L(A), n = 2(4)).

Fig. 3. (a) Vitesses adimensionnées u(n) si N =2 et 010 normal 3 ¥ dans le Cas 1 pour § = 03 (r=10),n=2(M) cu § =09
(n = 1(A),n =2(A)} et dans le Cas 3 pour § = 0.3 (n = 1({), n = 2(#)) ou § = 0.9 (n = 1(V), n = 2(¥)) : (b) vitesses u(n) dans le Cas
3siN=3etAi=01(n=1hn=2()),A=05n=1{0),n=2(0)) ou A=0.9 (n = 1(4A),n =2(4)}),

5. Conclusions

The proposed procedure has a reasonable cpu-time cost and may therefore be embedded in a Runge-Kutta
march-in-time algorithm to track a time-dependent cluster’s geometry as time evolves. This task is under investiga-
tion both for spheres and non-spherical bodies. As obtained in [3] for one spheroid, we expect to find equilibrium
orientations of non-spherical particles for a few specific initial clusters.
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