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Abstract

A new approach is advocated to compute at a low cpu time cost the rigid-body motions of settling solid particles when
inertial effects are negligible, In addition to the relevant boundary-integral equations, the numerical implementation and a few
convincing benchmark tests we address two configurations of equivalent spheres and spheroids, i.e. that exhibit when isolated
the same settling velocity. To cite this article: A. Sellier, C. R. Mecanigque 332 (2004).
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Résumé

Sur Ia sédimentation d’une assemblée quelconque de particules solides. On propose une approche originale pour déter-
miner te mouvement d’une assemblée de particules solides et de formes arbitraires soumise 3 I’action de la pesanteur dans
1'approximation de Stokes. Outre les intégrales de frontigre et la méthode numérique associes on présente quelques comparai-
sons et examine le cas de deux configurations de spheres et ellipsoides de révolution équivalents, ¢’est-a-dire dotés lorsqu’ils
sont seuls de la méme vitesse de sédimentation. Pour citer cet article : A, Sellier, C. R, Mecanigue 332 (2004).
© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Evaluating the rigid-body motion{(s} of N > 1 arbitrarily-shaped solid particles subject to the gravity and adopt-
ing a general (not necessary periodic) configuration remains a tremendous task even within the usual Stokes flow
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approximation, Consequently, the available works only deal with spheres [1-4] or axisymmetric chains of spher-
oids aligned with the gravity [5,6]. This study thus introduces a new method valid whatever the shapes of the
particles. The advocated approach appeals to 6N boundary-integral equations and makes it possible to calculate
the rigid-body of each particle without determining the unbounded fluid flow about the cluster.

2. General theory

We consider, as depicted in Fig. 1, a collection of ¥ 2 1 arbitrarily-shaped solid, small and not necessar-
ily homogeneous particles P, with surface Sy, center of mass @, and mass M,,. Using Cartesian coordinates
(€, x1, x2, x3) and the usual tensor summation convention with OM = x;e;, we assume that the particles are sub-
ject to the uniform gravity field g = —ge3 (with g > 0) and immersed in a quiescent and unbounded Newtonian
fluid of uniform viscosity p and density o.

The solid P, with small length scale g, experiences a quasi-static rigid-body motion of unknown angular
velocity 22 and translational velocity U™ (the velocity of 0,). Neglecting inertial effects, i.e. assuming that
Re = pla/u « 1 with a = Max(a,) and U = Max(|U™|, a,|R™)|), the quasisteady fluid velocity field u and
pressure field p + pgx3 obey

pViu=vVp and Vu=0 inf n
(wp)— 0,0 asr=xx)?>0, w=UP+29A0M ons, 2

with §2 the fluid domain. The generalized velocity X := (UD, ... UY; 2 @) is unknown and one thus
needs to supplement (1)}~(2) with additional relations. Denoting by n the unit outward normal on S, the flow (u, p)
with stress tensor o, the static pressure ggx3 and the gravity g apply on P, with volume V,, and center of volume
0}, anet force R™ and a net torque C™ (about the center of mass O,) such that

R" = f ondS, + (M, —pVp)g, C= f OpM A c.ndS, — pV,0,0, A g &)
S" Sﬂ
Neglecting particle inertia, the required conditions read R = C™# =, i,
F® = f ondS,=(pV, — Mg, T®:= f OoM A 0.ndS, = pV, 0,0, A g @
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Fig. 1, A 2-sphere cluster in (a) axisymmetiic or (b) asymmetric cases and (c} a cluster of 4 equivalent spheres and spheroids.

Fig. 1. Deux sphéres disposées de Fagon (a) axisymétrique ou (b) asymétrique et (c} un ensemble de 4 sphéres et ellipsoides de révolution
Equivalents.
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When determining X fulfilling (1), (2) and (4) one may think about using a Finite Element Method to calculate
the above net forces F™ and torques '™ induced by (u, p) solution to (1), (2) for a given guess value X, and
then iteratively modify X, until (4) is satisfied. Unfortunately, for fully three-dimensional N -particle clusters this
strategy is tremendously cpu time consuming and yields a poor accuracy for the velocity X because one has to
numerically evaluate the traction o.n on each boundary S, for the computed flow (u, p). The approach advocated
in this work is free from such drawbacks and appeals to 6N steady Stokes flows (ug’)", pg')") with L € {T, R},
ie{l,3}and n € {1,..., N}. These flows, free from body force and quiescent far from the cluster, obey (1) and

the boundary conditions
o =bumei, U =dunle; AOM] on S, ®

with 8, the Kronecker symbol. The flow (uf{’)"', pg:)..‘) has stress tensor crg') * and thus applies the surface trac-

tion fi")"' = crf,:')’i.n on the entire cluster’s boundary § = U,‘:V:] 8,. Noting that, since (u, p) obeys (1), the usual
reciprocal theorem [7] yields

f W g.nds = f wol™ nds = f ufds ©)

it is then straightforward, by exploiting the boundary conditions (2) and (5), to cast the conditions (4) under the
following 6N -equation linear system

A 4 B0 00 2 (v, — b3ga o
ALY 4 B 2 = pgVn(0aO) Aes).ei/n 8
if one sets UE'") =Uim e, .(25-"') = @™ e; and makes use of the definitions
—pAGS = f e f) dSm,  —uBay = f (e AOmM)LE 4S5, ©
Sm Sin

The key system (7), (8) admits a 6N x 6N square, real-valued, symmetric and positive-definite matrix [8] and
therefore a unique solution X for any N -particle cluster and settings Py, g, My, Vs, O, G}, It also shows that
is sufficient to compute the very few surface tractions fg')" on the entire cluster’s boundary S to obtain the re-
quired rigid-body motions of the particles. As nicely established in [9], the velocity field ugt)" admits both in the
unbounded fluid domain £2 and on the surface .S the integral representation

. 3 X (m),i .
i edon = - [ g+ e [T |mas k=123 1o
5

The proposed strategy then consists of the following steps:

(i) First, obtain each traction fﬁ")"' by exploiting the representation (10) on S. One thus ends up with a Fredhclm
boundary-integral equation of the first kind that admits a solution defined up to an arbitrary constant multiple
of n on each subdomain S, [9]. . .
(ii) Solve the governing system (7)~8) by computing the coefficients AE;))',J}:‘ and B((,';))'L’ {(which are readily
uniquely determined for £"* defined up to a multiple of n on S).
(1ii) If needed,evaluate the velocity u in the unbounded domain £2 by using (10) where ug‘)'f and I‘E’)"' are replaced
with uand = 3 33 (ymemi g oMy respectively.
Clearly, the advocated approach applies to N -particle clusters made of arbitrarily-shaped and not necessarily

homogeneous particles. Moreover, the derived boundary formulation permits us in practice to accurately compute
the rigid-body motions of the particles without determining the fluid flow (by only using the previous steps (i)—(ii)).
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3, Numerical implementation and benchmarks

The 6N boundary-integral equations encountered in step (i) are discretized by using on §, a N‘g") -node mesh of
6-node isoparametric, curvilinear triangutar and boundary elements [10,9). This results in a Ny-node mesh on the
cluster’s surface § and the obtained linear systems with dense and non-symmetric 3Ny x 3Ny matrix are solved
by Gaussian elimination. Henceforth, we confine the analysis to the case of homogeneous (Q, = 0}) spheres and
spheroids. Appealing to [8], a single spheroid Py of inequation x? + x2 + x2/A% < @ is found to settle without
rotating at the velocity U = ga?(p — pi)ves/p with v = 2/9 for a sphere and for A 3 1, under the notation
p=Ar—1"172

Pl r+1 _ : _P .2 l .
v—lz{(P +1)10g[p_1] 2p] ifA>1, —6{p+(1 p)arctan(p)} ifa<t (11

QOur numerical implementation is benchmarked against the above exact solution for a sphere and oblate (L = 1/2)
or prolate (A = 2) spheroids. As shown in Table 1, the computed velocity v nicely converges towards its anatytical
value as the number N ;” of collocation points on §; increases with an excellent relative precision of order of 0.1%

for N}l) =242, Even for Nt?) =74, each computed angular velocity component is of order of 10>,
The case of two identical spheres (A] = A2 =1,a) = a2 = a, p1 = p) in axisymmetric and asymmetric con-
figurations (see Fig. I(a), (b))} is also compared with [1] and [2], respectively. Following those works, we list in

Table 1
Computed, normalized velocity v for a sphere and obtate or prolate

spheroids using different numbers N}l) of collocation points

Tableau 1

Vitesse adimensionnée v obtenue pour une sphére ou des ellipsoids de
révolution en utilisant un maillage & N;U noeuds

w v =1/2) vih=1) v =2)

74 0.123016 0222682 0.370022
242 0.122767 0222219 0.369245
1058 0.122736 0222227 0.369164
exact 0.122733 0.222222 0.369158

Table 2

Computed non-zer nommalized velocity components ug") and wé") of two identical spheres (z) = ay = a) settling in the (a) ax-
isymmetric and (b) asymmetric configurations sketched in Fig. 1 for two separation parameters # = 0 0z/(ay +a3)

Tableau 2

Vitesses adimensionndes ug") et wg’) de deux sphéres identiques (¢) = a3 = a) dans les configurations (a) axisymétrique et
(b) asymdétrique illustrées A la Fig. 1 pour deux valeurs de 1a séparation A = 0 02 /(ay +a3)

NP N p @) =0 0 uD =, -
74 1.12763 1.51843 1.36702 0.13084
242 1.12763 1.51628 1.36506 0.13154
1058 1.12763 1.51601 1.36481 0.13142
exact [1,2] 1.12763 1.51599 1.36480 0.13141
14 2.35241 1.30458 1.16645 0.03358
242 235241 1.30272 1.16435 0.03380
1058 2.35241 1.30248 1.16413 0.03383

exact (1,2] 2.35241 1.30246 1.16410 0.03383
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Table 2 the non-zero Cartesian velocity components normalized by the settling velocity of an isolated sphere, i.e.
the quantities

9, U™ ey
2g(p ~ pr)ai’
Again, using 242-node meshes yields a nice 4-digit accuracy even for k= 1.12763.

ous™ e _ 010y

(n)
WPy = €,
2 () 2g(p — pn)ad a1 +a

(12)

) () =

4. Results for configurations of homogeneous equivalent spheres and spheroids

We present preliminary results for two N-particle clusters (N =4, 5) consisting (see Fig. 1{c)) of N — 2 equal
spheres P, arranged at the corners of a regular polygon in the horizontal x3 = 0 plane with 3 < n < N,a, =
a3, 00, = d and two identical spheroids Py and P of inequations x] +x3 + [x3 + (~=1)"h)> < A%af forn=1,2
with (A, d, h) so that the particles do not touch. All the particles admit the same uniform density g, and settling
velocity when isolated (equivalent particles), i.e. a1 /a3 = (9v/2)~1/2 with v given by (11) and we resort to a 242-
node mesh on each S,. Symmetries show that the only non-zero normalized Cartesian velocity components are
# = u@® and 4® = ... = 4™ with u™ = 9U™ . e3/[2gad(p ~ ps)1forn=1,...,N.

These quantities are plotted in Fig. 2 versus the ratio fi/a3 2 2 ford/fa3 =2,1.=0.5, 2 and N =4, 5. Note that
each particle moves faster than if isolated (u (@} > 1) and the interactions become strong for h ~ d = 2a3 (with
u™ ~ 2), The velocities are bigger for five particles (N = 5) than for four particles (N = 4) and for a given value
of N it is found that 1"’ and #® weakly and strongly decrease with A, respectively. Finally, curves for ‘D and
u® cross for a critical value & = h, at which the cluster keeps a steady configuration when falling, all particles
adopting the same velocity.

The critical setting /. /d has been found by an iterative (bisection) scheme stopping as soon as |ut" — 4@ <
5 x 10~ for 1.5 < d < 10 and both the computed ratio 4. /d and the associated cluster’s settling velocity u, =
a1 = 4 are displayed in Fig. 3. The curves k./d previously given in [4] for spheres (A = 1) are perfectly
recovered and as d increases £ /d increases and asymptotes to a constant value because particles behave like point
forces for large distances d and k. Moreover, . /d increases both with A and N for a given value of d. Asrevealed
by Fig. 3(b), u. not only increases with 4 because interactions become strong but also with 1/A and N for a

25 s+
23 r 23t

21+ 21 |

19} 19}

17 | 17}

151 15

131 18+ »
1.1 R T —— 11

0 2 4 8 a1o121'41's1'320'0 2 .'1('551'01'21'41'31'320
h/a3 h/a3
Fig. 2. Nommalized velocities «(1) (¥ = 4(0) or ¥ = 5(M)) and ™ (N =4(0) or N = 5(#)) for dfaz =2, (a) . =0.5 and () L =2.
Fig. 2. Vitesses adimensionnées u¢D) (N = 4(0) ou ¥ = 5(M)) et > (N =4(0) ou N = 5(#)) pour d/az =2, (@) A=0,5 et Y A=2.
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Fig. 3. (a) Coitical ratio k. /4, and (b) settling velocity u,, of the steady configurations for A =0.5 (N =40} or N = 5(I)), A =1 (N =4(0)
or N =5(e}) and A =2 (N =4()) or N =5(4)).

Fig, 3. (a) Rapport critique k. /d, et (b} vitesse de sédimentation ., des configurations rigides pour A=0,5 (¥ =4(0) cu N =5(I)), A =1
(N=4(c)ouN=5())ecti=2(N=4(Q)ou N =5(4)).

given spacing d. For example, the critical N-particle cluster with ratio d /a3 settles faster when involving prolate
spheroids than when consisting of N spheres.

§. Concluding remarks

The present method nicely recovers previous results for spheres and permits us to deal with non-spherical
particles. The exhibited critical steady configurations of N =4, 5 spheres and spheroids are likely to be unstable
and the challenging stability analysis of such clusters, assuming a fluid flow of small but nen-zero Reynolds number
as achieved in [11] for identical spheres lying in the same horizontal plane, is under current investigation.
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