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ON THE LOW-REYNOLDS-NUMBER MOTION
OF A NON-CONDUCTING PARTICLE
IN UNIFORM ELECTRIC AND MAGNETIC FIELDS

A. Sellier
LadHyX. Ecole polytechnique, 91128 Palaisear Cedes, FRANCE

We present the formulation and the numerical implementation of a new boundary ap-
proach that permits us to compute the rigid-body motion of an arbitrarily-shaped, freely-
suspended and non-conducting particle immersed in a liquid metal under the action of
prescribed and uniform ambient electric and magnetic fields E and B. The paper de-
scribes the advocated numerical strategy and discusses preliminary benchmarks against
the analytical solution obtained elsewhere for an ellipsoidal particle. The case of an insu-
lating pear-shaped particle, which may experience boih translation and rotation, is also
briefly addressed.

Introduction. Under the application of uniform ambient electric and mag-
netic fields E and B, any solid and non-conducting particle freely suspended in a
viscous liquid metal experiences a rigid-body motion [1]. Since this phenomenon
may receive basic applications in impurities separation, it is of prime interest to
determine the motion of a non-conducting, solid and arbitrarily-shaped particle,
i.e., its angular velocity Q2 and translational velocity U (the velocity of one point,
say O, attached to the particle). Within a relevant framework (2], it has been
possible recently [3] to propose a suitable boundary formulationto to carry out
this task. Contrary to [1, 4], which only deal with spheres {or cylinders), the ad-
vocated method holds for a particle of arbitrary gecmetry as soon as one succeeds
in achieving a powerful numerical implementation. This paper both presents and
tests such a suitable numerical strategy. :

1. Governing system. This section briefly introduces our governing equa-
tions and for additional details the reader is directed to [3]. Henceforth, we adopt
the Cartesian coordinates (O, z, z2,z3) and the usual tensor summation conven-
tion. For instance, x = w,e;, whereas U = Uje; and 2 = 0je;. The particle
P disturbs the applied field E so that the electric field in the fluid domain D
becomesE — V¢, where the perturbation potential ¢ obeys the well-posed exterior
Neumann problem ‘

V?¢=0in D, V¢ >0 asx—ooand Vé-n=E-non S (1)

with n being the unit outward normal on the insulating surface $ of the particle.
The liquid metal of constant viscosity u, density p and electric conductivity o
experiences a quasi-steady Stokes flow (u,p) and the particle P has a volume Vp
and a small enough length scale a such that indeed Re = pVa/p < 1, where V
denotes the scale of u. Let us introduce six steady Stokes fows ug) and ug), free
from body forces and vanishing far from O, that are subjected to the following
rigid-bodyboundary conditions '

wW=e, ull=erx ong (2)
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We further denote by f}‘ } and fg) the surface stress arising on S in the above-
mentioned flows ug) and ug) . The knowledge of these forces provides the Cartesian
components K;;, Wi;, Vi; and Dj; of the so-called [5] translation, rotation and
coupling secend-rank tensors K, W,V and ID so that

—kKy = fe,—-f}.")ds; —uWi; =f[e,- nx]-£54ds, (3)
S 5

~-uViy = [[e,— Ax] - £7dS; —uDaj=/Se,--f}§)dS. (4)
g

According to (3}, the unknown velocity components U; and ©; are then governed
by the key linear 6-equation system

KijUj + Viij = i—{ - an[E/\B] - F} - e, (5)
DU + Wy = l{a[EA B] A [/ xdv] + G} -e;, (6)
M P

where Vp designates the particle volume, and the vectors F and G are given by
the relations

F.e = oﬁ[fg(f)]/(&r,u), G-e; =0l [fg)]/(Swu), (7)
if the linear operator £ is defined as:

~ PM - n(M)
L] = - /S fs v(P)- [Ve(a) A B) o) 4spdsiy

+ [S fs [V(P)‘%] [Vo(3) A B] -n(b)aSpdsy

(8)
+ .[g- ,/5:' EkmnPM[V . ek] (P) [B - en] [¢,m1(n . e;)] (M) dSp dSM.
In above equality (8), the symbol €y, denotes the Cartesian component of the
usual asymmetric permutation tensor and the notation bmt = 820/ 02,0 is em-
ployed. Since its 6 x 6 square matrix is symmetric and positive-definite [6], govern-
ing system (5)-(6) admits a unique solution (U, Q). By virtue of relations (3)-(4),
(7) and definition (8), the determination of (U, 1) solely requires to compute the
previously mentioned surface forces fr?), fg) and the first-order and second-order
Cartesian derivatives of the perturbation potential ¢ on the insulating boundary
S. In other words, the proposed formulation circumvents calculating the fluid flow
(u,p) and the perturbation potential ¢ in the whole unbounded fluid domain D;

at least as soon as we are able to evaluate separately f}f),fg) and the Cartesian
derivatives ¢, and ¢ ,,; on S.

2. Relevant boundary integral equations and numerical procedure.
This key section presents three relevant boundary-integral equations on § that
permits us to accurately compute the required quantities f, (i),f g), V¢ and ¢,m; on
the particle surface. More precisely, we appeal to the following equations:

(1) One Fredholm boundary-integral equation of the first kind. As established
in {7}, for L € {T, R} the required surface forces on § obey the following integral
equation

i 4; PM.e; PM . f’: tey
e = - [{ B+ O g e sl ey,
k=1,2,3
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where & denotes a usual Kronecker Delta symbol. Actually, (9) not only holdson §
but also within the whole fluid domain D. Such simple single-layer representation
of the velocity field ug) in D is due to a very specific nature {a rigid-body motion
of S) of the prescribed boundary conditions (2).

(2) A widely-employed Fredholm boundary-integral equation of the first or
second kind. If ¢ is harmonic in D and vanishes far from O, the application of the
Green’s theorem yields the basic integral equation

Ap[¥l = By[VY-n] on 8§ (10}
with the following definitions:

PM - n(P)

Anly) = —ampan) + [ [oe) —won] i as,
BM[w-n]:[q[—?-%mds. (12)

Selecting 17 = ¢, the above integral-equation of the second kind (10) provides the
numerical approximation of ¢ on the insulating surface S.

(3) A new Fredholm-boundary integral equation of the second kind. For ¥
harmonic in D, vanishing far from O, and of prescribed normal lux Vi.n on 8, it
has been possible to establish [8] in the following integral equation of the second
kind

Ci[V¥} = Dy[V¥ -n] on S for i€ {1,2,3} (13)
where the operators C; and Di, are defined as

D[V - n] = —L(M, SYV - n){(M)

[(Ve - n)(P) — (V4 - n){M)]
+f3 MP?

(PM -e;)dS, (14)

Ii{(M,8) = fs [%—H(P)] %ﬁds, K(P) =divs[n(P)], (15)

C;,,{Vgp] = 2mi (M) — [Diyp| (M) I;(M, 5)

Di;$(P) — Dy (M
+fs [D; — j )]

(PM-e;)dS, (16)

with the tangential surface operators Dy;, so that
[Dis9] (M) = [n(M) - &:]9;(M) — [n(M) - e;],:(M). (17)

In view of the above results (10) and (13), we suggest to proceed as follows:

(i) We first compute V¢ on S by inverting (13) and taking into account
boundary condition (1), i.e., the relationV¢-n =FE -n on S.

(ii) Observing that ¢, is harmonic in D and vanishes far from O, we then
obtain the normal flux V(¢ ] -n on § from the previous knowledge of ¢ ., by
resorting again to (10). Selecting ¢ = ¢ ,,,, we finally gain the required gradient
V¢, on 5 by inverting (13).

The advocated procedure, consisting of (i) and (ii), may appear cumbersome
to the reader. For instance, one would perhaps think about first approximating
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V¢ on S by tangential derivation of the computed value of ¢ and the knowledge
of the normal derivative V¢.n = B - n and further deduce, through an additional
numerical differentiation, the derivatives ¢ ,:. Unfortunately, such a simple ap-
proach results in a poor accuracy, especially for the second-order derivatives ¢ m;
that is dramatically damaging for the accurate estimation of the rigid-body mo-
tion (U, $2). The suggested method is free of this drawback: it yields accurate
approximations of both ¢, and ¢ m; on S.

Any encountered boundary-integral equation (9), (10} or (13) is discretized by
using a N —node mesh of isoparametric, curvilinear and triangular 6-node bound-
ary elements on the surface S. For details, regarding the implementation of such
a widely-employed Boundary Element Method, the reader is directed to standard
texthooks (see, for instance, [9]). Each discretized integral equation then becomes
a linear matrix system AX = Y of fully populated and asymmetric influence
N’ x N' square matrix A (with N’ = N for equation (10) and N’ = 3N for equa-
tions (9) and(13)). The solution is finally obtained by resorting to a Gaussian
elimination.

3. Numerical comparisons for ellipsoidal particles. In order to ascer-
tain both the validity and the accuracy of the advocated numerical strategy, it
is essential to compare, whenever possible, the computed velocity components U
and ; with theoretical predictions. Fortunately, the solution has been recently
derived in the closed form (3] for any insulating ellipsoidal particle, and such sim-
ple geometry, therefore, appears as a natural candidate for numerical benchmarks.
Since it is orthotropic, i.e., it admits three orthogonal planes of symmetry through
its centre of volume, the ellipsoid does not rotate [2]. If the particle P admits the
equation

2 2 2
b T T
2+ 24+3<1, (18)
aij ag aj

its translational velocity U is found to be [3]
_ O €k oy (2(1? + O:,'a?)
TRY la; — 2]

with the following definitions

- oc,-af}[E -e;1[B - exle; (19)

%0 (a2 +) 't
Q5 = alaga;;/ - 2 .
o {(a? +t)(ad +t)(a} +¢)}

For a spheroid with a; = a2 = a and a3 = Ag, it is possible by elementary algebra
to express the above coeflicients a; in the closed form. Under such circumstances,
one indeed easily arrives at [3]

7z A =VER.  (20)

A\ X 1
al:a2:ﬁ[1_ﬂ-§], Ofa:xz——_—l'[xf—z], (21)
¥ () = »—-\//\:\_T_Ilog [2)6’-‘ FoanAZ o1 1] if A1, (22)

2 Vi A2
4 = ———— B ———— ]
xX'(A) = A5 arctan — if A<l (23)
For a sphere of radius o one immmediately recovers the well-known and simple

result [1]
2
aoaq
U——E[E/\B]. (24)
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Table 1. Effect of mesh refinement for a sphere of radius a if E = Fez and B = Be;.

N 74 242 530 1058

pUa/[ca®£B) | 0.17486 | 0.16765 | 0.16709 | 0.16675
pUsR/[oa® EB] | 0.16667 | 0.16667 | 0.16667 | 0.16667

For example, if E = Fes and B = Be; with £B # 0, the theoretical velocity
reads U = UfPe; with pUL"/[ca®EB] = 0.16667.

Our computed and normalized velocity components 1£2;/[ca EB|, pl; /(g0 EB)
and uUs/[0a? EB) are weaker than 1074, whereas, as reported in Table 1, the non-
zero computed component Us is found to exhibit a nice convergence towards its
theoretical value U?, as the number N of collocation points increases. The choice
of 1058 collocation points yields a 4-digit accuracy for spheres.

For oblate (A < 1) or prolate (A > 1) spheroidal particles, equation {19) shows
that U is unnecessarily parallel to E A B and strongly depends upon the particle
orientation relative to E and B.

The non-zero normalized velocity components ul/y/[ca?EB| are computed
for different settings E = Ed;nem and B = Béjne, using the refined 1058 --node
and compared to the theoretical values given by (19} and (21)—(23) both for oblate
{A < 1) and prolate (A > 1) spheroids. Again, a 4-digit accuracy is observed
and clearly the spheroid translation is very sensitive to the ambient electric and
magnetic fields. In summary, the use of about one thousand collocation points on
the surface of moderately prolate or oblate spheroids makes it possible to obtain
very accurate estimates of the rigid-body motion. As the spheroid collapses to a
thin disk or becomes slender and needle-shaped, it is of course necessary to resort
to more and more refined meshes on the surface of the particle but the present
method permits us to deal at a reasonable cpu cost with a wide class of ellipsoidal
particles (not too thin or too slender ones).

4. Case of an insulating and pear-shaped particle. As established in
(2], non-orthotropic and axisymmetric particles may experience both translation
and rotation. As a simple example of such bodies, we consider a pear-shaped
particle, which has (O, e3) as the axis of symmetry. More precisely, the selected
surface S admits the equation 1/Z2 + z3 = ah(z3/a), where the positive function
h obeys

Table 2. Comparison for a refined 1058—node mesh between the computed and the
theoretical normalized velocity components Uy /[ca® EB} for either oblate (A < 1) or
prolate (A > 1) spheroids and different settings (E, B) = (Fe;, Be;) with EB # 0.

A | G) | k| uUe/lea®EB] | uUit/loa®EB)
12 (21 |3 0.08046 0.08036
1/2 § (2,3) | 1| —0.10329 —0.10320
1/24 (3,2) | t 0.13018 0.12979
V2 @20 |3 0.23269 0.23257
VZ1(23) 1] -020184 —0.20152
Vv2 | (32) | 1 0.19236 0.19235
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Fig. 1. Selected profile function h for a pear-shaped particle.

R u)=u(l —u)if ~1<u< —0.5, R (u)=18u—u? ~08if0.9 <u<l, {(25)

A*(u) = 0.01 + 0.12{1 ~ sin [1‘W—4(u - 0.2)] } if —05<u<09.  (26)

The above function h is plotted in Fig. 1 versus the normalized coordinate
u = z3/a and our insulating particle is clearly far from being orthotropic. As
shown in Table 3, this pear-shaped particle both translates and rotates for E = Fes
and B = Bey (with EB # 0). In addition, it has been found that for E = Ee,
and B = Be; U and £ are parallel to ez and ey, respectively. Accordingly, for
the setting (E,B) = (Fes, Bes) the pear-shaped particle translates normal to e
and rotates about the ey direction (£ is aligned with e;). The orientation of
the particle, therefore, changes with time and its rigid-bedy motion thus becomes
time-dependent.

Concluding remarks. As evidenced by the discussed benchmarks against
the available analytical solution for the insulating ellipsoid, the proposed procedure
makes it possible to accurately compute the required rigid-body motion of a non-
conducting particle at a reasonable cost (one only needs to discretize the insulating
surface of the particle). Like any other orthotropic particle 12}, ellipsoidal particles,
however, only translate. By contrast, a non-conducting and pear-shaped particle
has been found to experience a rotation, which is dramatically sensitive to the
orientation of the ambient electric and magnetic fields E and B.

Table 3. Effect of mesh refinement on the non-zero normalized Cartesian velocity com-
ponents for a pear-shaped particle if E == Fe; and B = Bes.

N 170 458 1874

wU1/[oa®EB] | —0.0487 | —0.0492 | —0.0478
uQ2/[caEB] 0.0118 { 0.0115 | 0.0107
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Finally, one should point out that in practice solid impurities may be con-
ducting. It would be nice in the future to extend the present work to the case
of an arbitrarily-shaped and conducting solid particle. Such a challenging issue is
under current investigation.
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