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Abstract

A whole boundary-integral formulation is proposed to determine the rigid-body motions of two solid and insulating particles,
freely-suspended in a metal liguid and subject to uniform ambient electric and magnetic fields. As revealed by our numerical
results, particle—particle interactions may become significant for close enough bodies. To cite this article: A. Sellier, C. R.
Mecanique 331 (2003).
® 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur Pinteraction particule-particule lors de Pextraction d’impuretés solides isolantes. En s’appuyant sur une
formulation intégrale, on détermine le mouvement de deux particules solides, isolantes et plongées dans un métal liquide,
sous I’action conjuguée d'un champ électrique et d’un champ magnétique uniformes. Les premiers résultats numériques
montrent que les interactions entre les particules peuvent &tre trés fortes lorsque ces derniéres s’avérent proches. Pour citer
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1. Introduction

As theoretically predicted [1] and further experimentally confirmed [2], a solid and insulating particle freely
immersed in a Newtonian liquid metal of uniform density p, kinematic viscosity p and conductivity o7 > 0 moves
under externally applied, steady and uniform electric and magnetic fields E and B. As established in [1], a single
sphere of radius a then does not rotate and translates at the following velocity

2
U=-22EAB o)
6u
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A general framework [3] and a theoretical procedure have been proposed and implemented for a single, non-
conducting and arbitrarily-shaped particle in [4,5]. However, particle—particle interactions may become significant
for close bodies. This study thus extends the prior works [4,5] to the case of two (close) insulating particles.
The conditions of zero net force and torque on each particle are first expressed by using the reciprocal identity.
The required velocity components are thus governed by a linear system which solely appeals on each particle
boundary to the surface tractions induced by six specific Stokes flows and the first-order and second-order Cartesian
derivatives of the perturbation potential. All these quantities are finally obtained by solving boundary-integral
equations; a procedure which circomvents the calculation of the electric field and the flow in the unbounded fluid
domain.

2. The governing integral formulation

As sketched in Fig. [, let us consider two solid particles P, (n = 1, 2), of insulating boundaries S,,, closely
immersed in the conducting liquid metal occupying the unbounded domain 2. We further denote by n the unit
outward normal on the whole surface 5 = 1 U S; and resort to Cartesian ¢oordinates (O, x1, x7, x3) and the usual
tensor summation convention with OM = x;e; and r = (x;x;) /2.

The particles modify the electric field which becomes E — V¢ in the domain £2. For our insulating surface §
the potential ¢ obeys the well-posed exterior Neumann problem

V=0 inf2, V¢—>0 asr—>o, Vé-n=E.-n onSUS; )
The unknown rigid-body motion of P, is entirely described by its angular velocity 2™ = .Q}")e ; and the

(translational) velocity U? = Uj(.")e ; of its point O,,. Denoting by g, V and a the uniform fluid electromagnetic
permeability and the typical particles length and velocity scales, we assume that the associated Reynolds number
Re, magnetic Reynolds number Re,, and Hartmann number are small, i.e. that

Re=pVa/u &1, Ren=pootVakl, M=[Blalo/w)'?«1 3)

Thus [3], the magnetic field B is not disturbed and the Lorentz body force f in the fluid is f = A — o; V¢ A B where
A = 0jE A B is uniform. In addition, the quasi-steady fluid flow of velocity u and pressure p + A - OM is such that

V.ou=0, pVu=Vp+oaV¢AB inf2 (4)
{u,p) = (0,0) asr— oo, u=U"4+ 2" A0,M onsS, (5)

If o(u, p) is the stress tensor associated to {u, p) and V, the volume of P,, the requirement of zero net
hydrodynamic force and torque on each freely-suspended particle can then be written

fa(u, p)-ndsS, = V,A, fOnM/\ [o(u, p)-n]dS, =—AA /O.,Mdv; n=1,2 (6)
5, S, P,
Xa Q
TB = Bey n (o, )
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Fig. 1. Two solid and insulating inequal spheres in Case |, i.e, when (E, B} = (Ee;, Bes).
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Fig. 1. Deux sphéres isolantes de tailles différentes dans le Cas 1, c’est-a-dire pour (E, B) = (Ee3, Bey).
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As achieved in [4] for one particle, let us now introduce, for L € [T, R} and n € {1, 2}, 12 steady Stokes flows

(u(") ‘L pg’) ) free from body forces, quiescent far from O and such that

U = bmei, UG = dymle; AOM] on Sy, (7
with 8, = | and 8,,, = 0if m # n. Clearly, subscripts T or R are used for a translation or a rotation respectively of

only one particle and the previous flows induce on S a surface force f?) = g™, p"") . n. Extending the usual

reciprocal identity [6] to the multiply-connected surface § in presence of the decaying body force —a; Ve A B, one
also obtains

f[uﬁ‘"" o, p)-n—u £ ds = FP,  FW = _a,[ug_w [V AB]dR2 (8)
s 2
Exploiting (8), the equalities {6) then yield the basic governing linear system

AP 4 B QM = = [—O’{V'p [EAB]-e& + Fi) ©)
A AU +BoyH 2" = ; {m ([EA B] A [ / onMdvD et Fé"“] (10)
if we adopt the following definitions "
—u AU _fej A dS, B _f(ej A OmM) - £ ds,, (11
Sin

Finally, it is possible to obtain a whole boundary formulation by converting each volume integral F, ,E"“ into a
surface integral. In the same spirit as in [4], one first notices that u(") i

£2 U § the fruitful integral representation

. . . . . H),f . .
R (e o K= LR

fortunately admits in the whole domain

Injecting (12) in (8) and proceeding as in [4] (for conciseness, details are omitted here), one thus obtains the key
decomposition

BTl pwi _ [ff(")’(P) [Vé(M) A B] s ( PM M) 455 dsy

al

+ff|:fg’)’i(P).m][V¢(M)AB] -n(M)dSp dSy
58

+ f f St PMIEP - e (P)B - €,1[V (b,m) - n}(M) dSp dSys (13)

where &y, denotes the Cartesian component of the usual antisymmetric permutation tensor and the notation
¢.m = 3¢ /0x,, is adopted. In summary, by virtue of (11) and (13) one only needs to compute the surface forces
f(L")'i, the gradient V¢ = ¢ e, and the normal fluxes V(¢ ;) - n on the surface ) U 5 when solving the linear
system (9) and (10) of unknown generalized velocity X = (UD, () U2, 2®) It is thus no use to determine
the fluid flow (u, p) and the potential ¢ in the unbounded domain §2 and we only appeal to surface quantities: this
is the announced integral formulation of the problem. Note also that the system (9), (10) is well-posed; this admits
a unique solution X because its 12 x 12 matrix is symmetric and positive-definite [7].
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3. Advocated boundary-integral equations and numerical implementation

It is actually possible to compute all the required surface quantities £, ', V¢ and V(¢ - n by resorting to a
few boundary-integral equations on S as follows:

{1) by ensuring (12) on whole surface S in conjunction with (7) one readily obtains a Fredholm boundary-
integral equation of the first kind on S for £

(2) recalling that any function ¥ harmonic in §2 and decaying far from O at least as fast as 1/r fulfiils (use the
usual second Green’s identity) the key boundary link

Byly) =Dyl —dn (M) = Cy[Vy -n} onS (14
under the following definitions
_ : PM . n(P) v(P)
Du(v] =f[v(P) —v(M)]—FA—p——dS, Culv] :f P ds (15)
5 5

one also evaluates Vi = ¢ ;,e,, and V(¢ ;) - n on § by appealing to two steps:

(1) by virtue of (2), first select ¥ = ¢ and determine ¢ on § by solving the Fredholm boundary-integral equation
of the second kind By [¢] = d (M) with d{M) = Cy[V¢ -n] prescribed. The computation of tangential derivatives
of ¢ on § thus gives the needed vector V¢ — (V¢ - n)n, ie. (use (2)) the required gradient V¢ on the surface S;

(i) finally, select ¢ = ¢, and thus deduce the normal flux V(¢ ) - n on S from the previous calculation of
¢ m on the surface by solving the Fredholm boundary-integral equation of the first kind Cas[V (¢ ) - 1] = d (M)
with d,,{M) = By[¢ ] given by the previous step (i).

The numerical implementation resorts to a N,-node mesh of 6-node triangular and curvilinear boundary
elements on each surface 5, [6,8)]. Each discretized counter-part of the previously mentioned boundary-integral
equations results in a linear system of N’ x N’, dense and non-symmetric matrix {with ¥’ = N} + N, or
N’ =3(N| + N3)), which is solved by a standard LU factorization algorithm. Each tangential derivative of ¢ on §
is accurately evaluated by applying a refined fourth-order finite difference scheme to the computed values of ¢.

4. Numerical results for 2-sphere clusters

This section presents our very first numerical results for 2-sphere clusters, More precisely, P, is a sphere of
radius @, and center O, with (see Fig. 1) 0,01 = 0 Oqe3, a2 2 a) and we take as length scale ¢ = a;. Fora
2-sphere cluster only .!'Zgn and ng) are found to be non-zero if both E and B are aligned with the same vector e;.
By superposition, we thus confine our attention to three cases

Case 1: (E', B’} = (e3, e2), Case 2: (E/,B") =(ez2,¢e3), Case3: (E,B) = (e, e) {16}
with |E||B] # 0, E’ = E/|E| and B’ = B/|B|. For those settings we look at the non-zero mobilities ' (1) and
wj(,.")()L) such that
MUJ(-") _ !LQ}") i +a
os;aERB’ o,aEB’ =TT 0,04

uﬂ-”)(l) = <1 (17

where A denotes the separation parameter.

As illustrated in Table 1 foras =2a; =2a and A = 0.1 or A = 0.9 in Case 2, the use of N = N = N> collocation
points on S, for a2 € 2a; ensures a 3-digit and a 4-digit accuracy for uff') and wf,.") respectively if N = 530 for
A 2z 0.4 and N = 1058 otherwise. Using these values of N, two clusters of equal (@3 = ) and different (az = 24/)



A. Sellier / C. R. Mecanique 331 (2003) 753-758 157

Table 1
Computed non-zero mobilities u{l") and wg') in Case 2 for different numbers & = ¥| = N; of collocation points, A = 0.1, A = 0.9 and inequal

spheres {ay = 201 =2a)

Tableau |

Influence du nombre N = N = Ny de points de collocation pour les mobilités non nulles 1 E") et wg’] dans le Cas 2 pour A =0,1, A =09%et
deux sphéres différentes (a4 = 2a) = 2a}

(N, 3) (242,0.1) (530.0.1) (1058, 0.1) (242,0.9) (530.0.9) (1058,0.9)
Wl —0.15703 -0.16323 -0.16620 —0.36356 —0.36519 -0.36560
wi! 0.00128 0.00118 0.00112 0.13596 0.13574 0.13574
' —0.66146 —0.66471 ~0.66643 ~0.69862 ~0.69927 —0.69962
w? ~0.00022 —0.00017 ~0.00014 —0.01652 —0.01634 ~0.01633

-0.16 T T 1 T 0.045
ulm) |8 wgn)
-0.18 1 0.035
-0.2 0.025
-0.22 r 1 0015 4
-0.24 | 1 €005
-0.26 1 -0.005
-0.28 . L L v -0.015 - g . .
0 0.2 0.4 0.6 038 A 1 o 02 0.4 0.6 08 /\ 1
Fig. 2. Non-zero mobilities for two equal spheres: (a} functions _u(ll) = _“(12) in Case I (0), “(11) = u‘lz) in Case 2 {{J) and ug” =ug2) in

Case 3 (O, (b) functions " = —wl” in Case 1 (0) and Case 2 (C0).

Fig. 2. Mobilités non nulles pour deux sphéres identiques : (a) fonctions —u“) = —um dans le Cas 1| (O), w1 = 4 dans te Cas 2 (O et
P " 1 1 1 1

ug!) = ug?} dans le Cas 3 () ; (b) fonctions w;(z” = -wg } dans les Cas | (G) et 2 (0).

spheres are addressed. For symmetry reasons, in each above Cases 1-3 identical spheres (a; = a1) adopt opposite
angular velocities (2 + 22 = 0) and equal translational velocities (UV = U?), i.e., move with a constant
center-to-center spacing d = ¢ Uz > 2a;. The associated non-zero mobilities ”,(r'") {A) and wj(,.")(k) are displayed
in Fig. 2 versus the separation parameter A = 2a/d.

Of course, as . — 0 (d large) one recovers the solution (1) for a single sphere of radius a = a;. For any Cases
1-3 the 2-sphere cluster translates parallel to E A B and faster than a single sphere. As shown in Fig. 2(a), the
non-zero mobilities #” increase in magnitude as sphere approach (as A — 1) and for a given separation parameter
) admit the largest and smallest values for Cases 3 and 2 respectively. The spheres are free from rotation in Case 3
and rotate parallel to e at opposite angular velocities in other cases. As revealed by Fig. 2(b}, wé” increases from
zero with A in Case 2 and remains negative and of weak magnitude whatever 2 in Case 1.

The cluster consisting of different spheres (a2 = 2a;) exhibits a less simple behavior: this time the translational
velocities Ut and U@ differ and the center-to-center distance d = Q| (; will then change as the cluster moves.
More precisely (see Fig. 3), the solution (1) still holds for A = 0 and, as depicted in Fig. 3(a}, each sphere again
translates in any Case 1-3 parallel to E A B, faster than when isolated and faster or slower than in Case 1 in Cases 3

and 2 respectively. However, the small sphere mobility ug-”(k) may strongly differ from the mobility uf,.”(O) of

the single sphere as A increases: in Cases 1 and 3 one obtains |uf,.l)(k) / ui.l)(O)l ~ 4 as A — 0.9, By contrast, the
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Fig. 3. Non-zero mobilities for two inequal spheres with a; = 2| = 2a: (a) functions —ugl) {O) and _u(IZ) (®) in Case 1; u(ln (O) and u(|2)
(W) in Case 2: ugl) (<) and ugz) (#) in Case 3; (b) functions w;l) (G) and wéz) (®) inCase 1; w:(,_” (O) and wgz) (M) in Case 2.

Fig. 3. Mobilités non nulles pour deux sphéres différentes avec @3 = 2a; = 2a : (a) fonctions ﬂt(ll) (Q)et _HSZ) (@) dans le Cas 1 ; u[]l) ()]

et ugz) (W) dans le Cas 2 ; ug” (O)et ugz) (#) dans le Cas 3 ; (b) fonctions wgl) (Q)et wéz) (®) dans le Cas 1 ; wé” () et w§2) (m) dans le

Cas 2.

big sphere mobility uf,.z)(k) weakly depends upon A and 1 < |uf,.2) (A /ufiz) (] < 1.1 in any instance. It is also
worth noting that, as the reader may easily check, the relative velocity UV — U@ decreases in magnitude as
spheres approach. Finally {see Fig. 3(b)), the only non-zero velocity components SZ;") exhibit the same trends as

the translational velocities components: non-negligible mobilities wé”}(}\.) increase in magnitude with A, the small
sphere rotates faster than the big one in Cases 1 and 2 and the small rotation of the big sphere weakly depends upon
both the selected case and the separation parameter .

5. Ceoncluding remarks

As illustrated by our numerical results, sphere-sphere interactions always and eventually dramatically speed up
each sphere. A 2-sphere cluster will then catch up other single spheres in a separation process. Note that clusters
consisting of two insulating ellipsoids centered at @ and € should experience a (global) rotation of the vector
010 (if at least one particle is non-spherical). Particle—particle interactions in such challenging and more involved
cases are under current investigation.
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