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Summary

We examine the electrophoretic motion of a uniformly charged particle embedded in a varying
electric field Foo. If R and x~!1 respectively denote the typical radius of curvature of the
particle’s surface and the usual Debye-Hiickel screening length we assume that R > k!
and allow variations of Ex, over lengths of order at least R, Under these assumptions, this
paper shows that it is vnnecessary to calculate the total electric field in the electrolyte when
determining the rigid-body motion of the particle. The well-known Smoluchowski solution
is thereafter readily recovered. Finally, we pay special attention to orthotropic and uniformly
charged particles and detail the case of a solid ellipsoid.

1. Introduction and assumptions

Electrophoresis is defined as the transport of charged colloidal particles by an applied and possibly
non-uniform electric field Eo, (in this paper, Eo, denotes the external electric field that would prevail
when there is no particle). Many chemical and biological experimental applications, such as particle
analysis or separation, actually consider the electrophoretic motion of solid particles in viscous
electrolytes.

Except in the case of proximal boundaries (see for instance Keh and Anderson (1)), one may
restrict the analysis to a single particle embedded in an unbounded viscous fluid. The charge on the
surface of the particle § (see Fig. 1) is balanced by a diffuse cloud, C, of counter-ions surrounding
the particle. Since the total charge is zero, one speaks of a double-layer for § U C and we denote by
5+ the outer boundary of C.

At thermal equilibrium, for Ee, = 0 the particle and the electrolyte are motionless and the
previous charges induce in the fluid domain an electrostastic potential ¥ governed, for the Gouy—
Chapman theory (see Hunter (2), Russel, Saville and Schowalter (3)) by the Poisson-Boltzmann
equation. Accordingly, both ¥ and the charge density p in C quickly decay away from the surface
5 and vanish at a distance of order of the Debye—Hiickel screening length «~!. This typical
length depends on the permittivity constant ¢ of the electrolyte, the thermal energy kT (with &
the Boltzmann constant}, the fundamental charge e and the concentration and valency of each type
of ion far from the particle.

For a weak applied field E (of electrostatic potential ¢) the previous charge distributions
approximately remain unchanged and the total electrostatic potential becomes 1 - ¢, Note that ¢
differs from ¢ since the charges in § U C actually modify the applied field, Within the double
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Fig. 1 A charged particle embedded in Eqg.

layer, the field E = —V¢ induces a relative displacement of the diffuse cloud with respect to the
surface § (except for polarization effects within the double layer (see for instance Fixman (4) and
(' Brien (5)) this rearrangement does not affect the electric field E). Through viscous effects the
solvent outside C, that is, in the outer domain, also moves but remains quiescent far from the particle.
Consequently, for a steady fluid motion the particle experiences a rigid-body motion of unknown
angular and translational velocities w and U (where U designates the velocity of any origin O, see
Fig. 1, attached to the particle). For a viscous electrolyte, the determination of (w, U} requires
solving the Poisson equation for E and, for the fluid motion, the quasistatic Stokes equations with
PE as body force within the double layer. Such a task is very cumbersome. However, whenever the
typical radius of curvature, R, of § is much larger than the Debye screening length (« R > 1), the
surface fooks like a plane within the thin double layer. By combining the one-dimensional Stokes
and Poisson’s equations in the cloud layer, one thereafter obtains for the fluid velocity u in the outer
domain, the following boundary condition (see Hunter (2), Anderson {6)) at each point M of the
surface S+:

u(M) — (U+wAOM) :=u’(M) =-f-§—§i)-E,(M) on $t, (1.1

where this form for the ‘slip velocity' o' (M) is known as the Helmholtz-Smoluchowski equation,
the subseript ¢ denotes the tangential component, u is the solvent viscosity and the so-called zeta
potential ¢ is equal to ¥ on the shear surface (such a surface defined in Hunter (2) is approximated
by $). The zeta potential plays a central role in electrical aspects of surface chemistry (see Adamson
(7). Through adequate models within the double layer (see Hiemenz and Rajagopalan (8)) it is
possible to relate ¢ to the charge density on S. In the outer domain, the electrostatic potential ¢
satisfies the Laplace equation and, for a non-conducting particle (that is, when the double layer
admits no charge transfer across it} the boundary condition reads

Vén(M)=0 on S+, (1.2)

where n(M) denotes the outer unit normal on S*. Note that the net charge of § U ( is zero and for
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a thin double layer the outer field E exerts zero force and torque on the particle (see Anderson (6)).
Accordingly, one deduces (U, w) by setting to zero the torque (about O for instance) and the force
exerted by the outer flutd on §*. For a uniform external field Eq and a uniformly charged particle
(that is, of constant ¢ potential} the celebrated result of Smoluchowski

U= iEm, w=0 (1.3)
B’

holds, The solution (1.3) was first derived by Smoluchowski (9} for a sphere and further extended
to an arbitrary shape by Morrison (I0) and Teubner (11). Its validity rests on the following
assumptions:

(i) the particle is both rigid and non-conducting,
(ii} the surrounding solvent is unbounded,
(iii) the typical radius of curvature R satisfies « R » 1, that is, the ‘slip velocity' model (1.1}
applies,
(iv) the charge distributions within the double layer are not disturbed by the applied field E,,,
(v) the zeta potential £ is uniform over the surface of the particle,
(vi} the applied field Eq, is uniform.

However, many practical applications require to relax at least one of these assumptions. For
instance, one may assume that the particle is conducting. The colloquial piece of work of Henry (12)
considers the case of a conducting sphere with a centrally-symmetrical charge density within the
diffuse cloud. If ' and y respectively denote the sphere and electrolyte specific conductivity,
Henry establishes that, under assumptions (ii} to (vi), w = 0 but this time U = 2yetEco /{2y +
y")ue. As the ratio y'/y vanishes, one of course recovers Smoluchowski's result (1.3). It is worth
pointing out that Henry (12) also considers the case of a thick double-layer (actually by relaxing both
assumptions (i) and (iii)} for a rigid and spherical particle. Increasing { results in a large change
of ion densities within the thin double-layer. In such circumstances, the assumption (iv) breaks
down and, for a spheroid, the reader is directed to the refined treatment of (’Brien and Ward (13)).
Hence, for (1-3) to hold the zeta potential £ must be sufficiently small. The effect of non-uniform
zeta potential on the solution (1.3) has been also recently addressed for a sphere by Anderson (14),
Keh and Anderson (1) and for a spheroidal particle by Fair and Anderson (15).

Qur aim is to obtain the solution (U, w) if the previous assumption {vi) is relaxed, more precisely
when the applied field Eo may vary over lengths of order of the radius R. Note that Anderson (14)
provides the answer for a sphere and shows that for such a particle (1.3) remains valid with Eoo
replaced by its value at the centre of the sphere.

Before tackling our problem it is worth adding a new assumption. As pointed out by one referee,
each available work in the field of electrophoresis (at least to the author’s very best knowledge)
neglects the polarization body force f := (P»V)-E that takes place in the electrolyte. This force
may contribute to the net force and torque exerted by the electric field on the surface of the particle.
Henceforth, we add a new assumption.

(vii} The net force and torque exerted on the surface of the particle by polartzation effects in the
electrelyte are neglected.

The paper is organized as follows. By applying the reciprocal theorem to the viscous fluid outside
S, we derive our general solution in section 2. Section 3 deals with the more tractable case of
orthotropic particles whilst a few concluding remarks in section 4 close the paper.
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2. A solution solely expressed in terms of the applied field

Henceforth, we keep the assumptions (i) to (v) but weaken the condition (vi) by allowing the applied
field Ego to vary over lengths of order at least R 3> x ~'. This section derives, within this framework,
the solution (U, w).

For « R 3 1, one actually approximates the outer surface ST by S and imposes the boundary
conditions (1.1}, (1.2) on § (this discards the case of variations of Ee on the k1 scale). Since we
adopt the guasi-static form of the creeping motion equations for the electrolyte in the outer domain,
the fiuid velocity u and pressure p obey the following equations and boundary conditions

uViu=Vp  inQy, @0
Vau=0 inQs, 2.2
(u,p)y— (0,00 asr — o0, 2.3)
u=u; ons§s, (2.4}

where Qg designates the unbounded domain outside S, r := OM (with O the origin previously
alluded to) and uy is a vector-valued function, If ¢’ 1= ¢ — ¢hoo denotes the perturbation potential
in the outer domain £25 the combination of (1.1) and (1.2) yields

€
W(M)=U+wAOM+ f(wf —Ey) onS. 2.5
Under the usual Cartesian tensor summation convention, the symmetric stress tensor pertaining to

the Stokes flow (u, p) reads & = o;¢; @ ¢; with
oy = ap(u, p) = —pdy; + p(du; faxj + dujfxi), (2.6)

where & denotes the Kronecker delta and OM = x;e;.

As explained in the previous section, the solvent remains at rest far from the particle and this
justifies the condition (2.3) for u. Moreover, if we require a constant pressure far from the particle
the equations (2.1), (2.2) imply that, far from O, the pressure and stress tensor o decay at least
as fast as 1/r? whilst the fluid velocity u decays at least as fast as 1/r. The proof of these basic
behaviours rests on the far-field expansion of the creeping motion equations (2.1), (2.2) in terms
of spherical harmonics (see Lamb (16), Pozrikidis (17)}. Accordingly, the flow satisfies (2.3). In
addition, the Lorentz reciprocal theorem holds, that is, if (u, p, ) and (v’ p’, o’) satisfy (2.1) to
(2.4) respectively for data ug and w; then

fu;-a-nds=fud-a’-ndS. 27
s s

Since it is available in standard textbooks (see Kim and Karrila (18), Pozrikidis (17)}, the proof is
not reproduced here. However, note that the derivations combine the reciprocal identity V(g-u’ —
o’-u) = 0in Qg and the previous behaviours far from §.

The requirement of zero net force F = Fje; and torque I' = I';; (about the origin O) exerted by
the fluid motion on the particle imposes, for i € {1, 2, 3},

Fi = f e-ondS=0, ;= [ e [OM A o nldsS = f[e,- AOM]-ondS =0. (2.8)
5 s s
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This latter form of I'; actually invokes the identity a-(b A ¢) = (a A b)-q. If one introduces
{see Happel and Brenner (19)), for i € {1, 2, 3}, the translational motion (ugi), pgf), ag)) and the

rotational motion (ug), pg), ag)) that satisfy the system (2.1) to (2.3} and the boundary conditions

ugf) = ¢, ug) =e; A OM on §, 2.9

then a legitimate choice of ug.':) and ug) for v’ in applying the relation (2.7) makes it possible to cast

the equalities (2.8) into the following forms (see (2.5)):
[ U-o.nds + f [w A OM]-o%) ndS = -EI f {Eoo-o ndS — I ] (2.10)
s s s

fU-af,;').nds + f[w AOM]-c) nd$ = ilf {Ego-0r'y ndS§ — 1}{’}, (2.11)
s s #lJs
where the quantities Ij(f ) and Ig) depend on the perturbation potential ¢ and read

1§ = f (Ve oW nds, 1§ = f ;Ve'-o'lnds. (2.12)
S S

Our main result is that the integrals 7§ and 73
surface of the particle (assumption (v)).
First, we observe that the perturbation potential ¢’ obeys (see the previous section and (1.2)) the

following well-posed boundary-value problem

actually vanish as soon as ¢ is uniform over the

vi¢' =0  inQjs, (2.13)
V' —+0 asr— o0, (2.14)
Vé'n = Exn  onS. 2.15)

The boundary conditions (2.14), (2.15) are indeed sufficient to find a unique solution, ¢', of
Laplace's equation (2.13), Thus, one determines in €25 U § the field v := V¢'. Assuming that
E is induced by charges lying outside the particle, the condition (2.15) yields f; v-ndS = 0.
Accordingly, one deduces the refined far-field behaviour

lv| ~ 1773 asr — 00, (2.16)

Morrison (11) exploits the fact that any potential flow satisfies the Navier—Stokes equations (with
pressure and fuid velocity related by Bernoulli’s equation). Here, we observe that, since the How is
potential, v obeys the creeping motion equations (2.1), {2.2) with a constant pressure. The behaviour
(2.14) and previous remarks actually show that this constant is zero. Thus, for the Stokes flow (v, ()
the stress tenser o (¢”) 1= or(v, 0) becomes (see (2.6))

2.1t

g ® &) 2.17)
xj

@) = 2

For a constant zeta potential ¢, the behaviour (2.16) makes it possible to employ the reciprocal
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identity (2.7) when calculating the terms /%?/¢ and 1% /z. By invoking (2.17), one thereafter

obtains
¥ 3 [og
T [ e -o(¢ynds = Z,uf —(—)deS, (2.18)
¢ s s dx; \ 8x;
I(i) 32 ’
R_ f[e; AOM-o{p)ndS = 2u f I:e;,i,,x,,—]nde, (2.19)
e ) s dxpdx;

where €g;,, designates the completely antisymmetric permutation tensor. For r sufficiently large,
we denote by §2(r) the region that is enclosed by the particle surface S and the surface §, :=
[M; OM = r}. Owing to the divergence theorem, it follows that

(i} 2 47
Iy f 2 2.4 39" x;
T | L v¥hda +f ¥ Zigs, 2.20
2ul Q) 0% 5 0x;dx; r ( )
() 247 241
Ip g ¢ f €kinXnXj O°¢
= = — | €ginxn——— |dQ _— dS. 221
2L fgm ax; [e"”‘x’ axkax,-] Tl T 7 amox (221)

Since €r;; + €jix = 0 and (2.13) holds, the volume integrals on the righi-hand sides of (2.20),
(2.21) vanish. In addition, in virtue of (2.16) the surface integrals over S, go to zero as r — oco (the
reader may actually check that this remains true whenever |V¢'| ~ 1/ r2), The external electrostatic
potential ¢, does not decay as fast as 1/r far from the particle and this feature prevents us from
applying the same treatment to the remaining right-hand sides of (2.10), (2.11). In other words,
there exists a Stokes flow satisfying (2.1) to (2.4) with ug = Vo but this flow is not (Veheo, 0).

Following Happel and Brenner (19), we introduce the widely employed translation tensor K,
rotation tensor §2 and coupling tensors € and D whose Cartesian components obey

—ukij = f ej-o%.-ndSs, —puS; = f lej A OM]-a%) nds, (2.22)
$ M

—uCij = f fe; A\OMl-oPnds; —puby; = f ej-0%) nds. (2.23)
M 5

These tensors characterize the resistance of the particle to a rigid-body motion and depend on the
location of the origin O {except for K) and on the particle shape. In terms of this notation, the
equalities (2.10), (2.11) become

KU+ Cw= ":Ti [ f Ew-ag)-nds:lej, (2.24)
s

DU+ Qw= _i% [ f Ew-ag’-nds]e,-. (2.25)
S

Hence, (U, w) obeys a system of six linear algebraic equations whose associated 6 x 6 square
matrix, denoted by M, is usually referred as the resistance matrix. By exploiting once more the
reciprocal theorem, Happel and Brenner (18) have shown that the tensors K and 2 are symmetric
whilst C = D7, Thus, M is a symmetric matrix. Moreover, the condition of positive energy
dissipation (see Happel and Brenner (19)) requires the matrices M, K and £2 to be positive-definite
and thereby invertible. Accordingly, (2.24), (2.25) admits a unique solution.
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If E is uniform one readily recovers the Smoluchowski solution (1.3) by using the system (2.24),
(2.25). Our results {2.24), (2.25) also show that, under the assumptions (i} to (v), the determination
of (U, w) does not require calculation of the perturbed electric field E even if the applied field Eo
admits variations (over lengths at least of order of the typical radius of curvature R).

3. Application to orthotropic bodies

Despite the simple form of the system (2.24), (2.25) only a numerical determination of (U, w)
remains thinkable for a particle of arbitrary shape (as soon as Ex is not uniform). However, it is
worth considering how simple variations of the external field Eo {for instance, a linearly varying
field) affect the Smoluchowski solution.

This section examines such a question for an orthotropic particle, that is, a particle admitting
three mutually perpendicular symmetry planes. For our orthotropic body we take as origin O
the intersection of the planes of symmetry and for €, €2 and e3 vectors normal to these planes.
Under these choices (19), the coupling tensors C and D vanish whilst K and € become diagonal,
According to (2.24), (2.25), one thereafter separately determines each component of the translation
and rotation velocities U and w (recall that U is the velocity at point O).

In computing K, € and the right-hand sides of (2.24), (2.25) one needs the vatues of the surface
forces 0'51) = ,u,f(T‘) and orf,;)-n = ,u,t(j;) exerted by the fluid on the particle for the previously
introduced translational and rotational motions. Note that neither £5° nor £%’ depends on the fluid
viscosity p. For a sphere of radius a about O (the simplest orthotropic particle), one obtaing

: 3 ; 3
£ (M) = ——e;; (M) = —=(e; A OM), @.1)

The reader may actually check these formula by invoking Lamb (16) for 1 and Jeffery (20) for £
(see also (3.16) and (3.18)). For our sphere, it follows that (no summation over f in (3.2))

i 3 a¢oo
= 6ma; Eoof2ds = —— | X248 32
Kii = 6ra; fs wtlds =~ [ T, (3.2)
i oo
EofydS = =3 [ (Beo ne)ndS = -3 |  ejpr—mdQ=0 (3.3)
5 s Blay | 9xjdxx

if B(a) := {M; OM < a). Moreover, since 8¢poo/3x; is harmonic in the sphere B(a), one
deduces (sce Kellogg (21)) that [@¢hee /8x;:1(0) is the arithmetic mean of 3¢ /3x; over §. Thus,
the combination of {2.24), (2.25) and (3.2), (3.3) yields, for any external field Ex,

U= %EM(O), w =0. (3.4)

This result recovers the conclusions of Anderson (13) and Keh and Anderson (1): for a sphere
one has only to replace Eq, by Eoo(0) in the Smoluchowski solution {1.3). For other orthotropic
particles, we use for Eo its Taylor polynomial expansicn about the origin @. By superposition we
restrict ourselves to the case

n
—_f® . ) i 2 da,
Ew =Eg = Z ;" %1 X2 X5 €5, n

W

(3.5)

ini2,d3
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and denote by (U™, w'™) the associated solution (U, w). The previous symbol 3¢ ;  indicates
a summation over positive integers &,/ and m such that k +/ + m = n. Note that the properties

V AEx = 0and V2¢oo = 0 impose relations between the real families (a,l inni ) which can be

expressed in terms of derivatives of the electrostatic potential ¢ at O, Since Eg?,) = Ex(0), the
solution (U®, @) is given by (3.4). Forn > 1, it is worth taking into account the symmetry
properties of surface forces crg,f)-n and ag)-n. As the Appendix shows, for an orthotropic particle

the following properties hold, for M (x, x2, x3) belonging to §,

e £ 01, x2, x3) = er £ (L, Ixal, Lxal), (3.6)
et (x1, x2, 13) = sgn(xp)sgn(x e £ 10x1 |, bxal, Ixal) - for j € {2, 3), 3.7
er£%) (x1, x2, x3) = sgnlxi)sgnx)sgn(rs)ler £ 1(xy . |xal, [x3), (3.8)

Erf{xl)(xhxz,xa)=Sgﬂ(x;)sgn(xz)sgn(xa)[ej-f‘R”](le|,|xz|, [xs]), fe{2.3, (G9

where sgn{x) := x/|x| for any non-zero value of x. Morevoer dSCx, Y x2,F x3) = dS(xy, x2, x3).
Accordingly, many integrals encountered when calculating the right-hand sides of (2.24), (2.25) for
i=1and Egé) actually vanish. Two different cases occur for the solution (U | oty

(i) Ifn =2m > 2, then o = 0.and U is given by

w _ _€ 211 252 203 1
K11Uj { f a3 2pan*l X2 X3 [e)-£51dS
s 12 i3

211+1 2ja+8;2 2J3+5;3 1)
53 3f RIS L fe/ 1S . .10
iy j=

Remember (see (2.6)) that § designates the Kronecker delta.

(ii) Ifn = 2m + 1 > 1, then U = 0 and w" is given by

n,l1 2j1+1 2}2+1 2_,!3+1 1)
Q11‘7" [ “2;1+l 2h+2+H%1 Y2 X 1'1'5? 145
Juiads
2_“ 2.rz+'52 2!3+3J3 1
F 3y [ s, 5 e &5l @
ik i=

where 8}, =1 — &u.

It is straightforward to deduce the solution (U™, w™}) by applying cyclical changes of indices
to our formulae (3.10), (3.11). Thus, only even or odd values of n respectively contribute to the
translational and angular velocities. However, even and odd values of » indirectly interact since
the rotation changes the external field felt by the particle and thereafter modifies the translational
velocity as the particle moves. Case (i) indicates, for instance, that an orthotropic particle embedded
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in a quadratic electric field does not rotate. For a linear external field (not necessarily vanishing at O)
such a particle translates at velocity U = € Eq(0)/ ¢ and rotates at the angular velocity w = w;e;
such that (apply (3.11)forn = 1)

L S (0)f[x es + x2e3] 1048 (.12)
1 MQII 3123X3 362 26311y f .
wp = €t B (0)[[x3el +x1e3]t< ds, (3.13)

(S22 3x18%3
€ [ 3)
= 0 £y, 3.14
o Bxlaxz( ) S[xzel +x1e]657°d S (3.14)

Of course, for a sphere one recovers w = 0 (employ (3.1)).
Before closing this section we address the case of an ellipsoidal particle whose surface, £, is
defined by

xf/a% +x§/a% +x§/a§ =1 for M(x;,x3,x3)€f&. (3.15)

For this specific body, note that Oberbeck (22) and Edwardes (23) (further corrected by Perrin (24))
respectively provide the diagonal tensors K and £ but discard the surface forces a-gf)-n and ag)-n.
The solutions fg) and fg) are éctually available in Jeffery (20). The results (26) of this latter paper
however suffer from misprint errors () to be replaced by g in the numerators of H and A’ and
similar corrections for other terms F, F’, G and G'). One thereafter obtains, for M (x;, x2,x3) € £
(without summation over i)

As (M) €M) = LM)]( AOM), (3.16)

M) = —————e,
(30 [x +a’a;] [x — a?e;

where, if we set A(#) := {(a} + ){al + 1)(a3 + 1)]!/2, then

aaa[m dt afoo at G.17)
= —_—, o = a1 ———————— .
rEaaSly aor CTUR ) @ oam

and, if we adopt usual ellipsoidal coordinates ¢ € {0, 7] and 8 € [0, 2x], the functions 5 and 45
obey, on £,

s(M) := (x3/a} +x2jad + x3af)TV2, s(M)S = arazay singdpdo. (3.18)

By substituting (3.16) into (2.22) it follows that (no sumrnation over /)

16maapas 16na1a2a3[a% + a% + a% - aiz]
i =T, i = 2 . (3.19)
Ex + g; o] 30x —a,.oz,-]
Accordingly, simplifications occur for (3.10) and (3.11). For instance, (3.10) becomes
ni2 . . )
um = E 21: 20 zbaf’a%“a:f"’ |:fs xf‘”xzz“”xghdSl]e;, n=2mz=2, (3.20)
1

Jl Jnia
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where $1 = {M{(x, x2, x3); x;x; = 1} denotes the unit sphere in R3. Moreover, when embedded in
a linear external field Eo, the ellipsoidal particle experiences a rigid-body motion (U, w) (see (3.12)
to {3.14)) given by (no summation over i)

€4
wla} +af +af —

U= Slf—Eoo(O), W = az] {V A {(ﬂ?ej)'Eoo]}(O)-e,'. 320

i

For a spherotd whose axis of revolution is e, note that wy = 0.

4, Concluding remarks

The present work also applies to the osmosis (transport by gradients of solute) of a particle
embedded in a non-electrolyte (see Anderson et al. (25)). The concentration of neutral molecules
C plays the role of the electrostatic potential ¢ (with VCy the possibly non-uniform external field
and Cy, the given and undisturbed solute concentration). The function C obeys Laplace’s equation
with the condition (1.2) on § (no transport of molecules across the particle surface) and the “slip
velocity’ (see Anderson (6))

(M) = —%KL*(VC),(M), (4.1)

where kT, K and L* respectively designate the constant thermal energy, a positive ‘adsorption’
length and first (positive or negative) moment of the solute distribution in the vincinity of S. Both
quantities K and L* may be related to the zeta potential £ on the particle surface through adequate
models {for instance, see Koh and Anderson (26)). The length | L*] is the range of the solute—particle
interaction and plays the role of k!,

If |[L*| « R and ¢ is constant over §, the material developed in sections 2 and 3 immediately
yields the particle’s rigid-body motion (U, w) for possibly non-uniform external fields VCe.

Acknowledgements

The author is indebted to a referee who drew his attention to the basic work of Henry (12) and also
questioned the role played by the polarization body force in the electrolyte (thereby suggesting the
assumption (vii)).

References

1. H. Keh and J. L. Anderson, Boundary effects on electrophoretic motion of colloidal spheres, J.
Fluid. Mech. 153 (1985) 417-439.

2. R.I. Hunter, Zeta Potential in Colloid Science (Academic Press, New York 1981).

3. W. B. Russel, D. A. Saville and W. R. Schowalter, Colloidal Dispersions (Cambridge
University Press, Cambridge 1989).

4, J, Fixman, Charged macromolecules in external fields. I. The sphere, J. Chem. Phys. 72 (1980)
5177-5186.

5. R. W. O'Brien, The solution of the electrokinetic equations for colloidal particles with thin
double layers, J. Colloid. Interface Sci. 92 (1983) 204-216.

6. I.1.. Anderson, Colloid transport by interfacial forces, Ann. Rev. Fluid. Mech. 21 (1989) 61-99.



ELECTROPHORESIS OF A CHARGED PARTICLE 571

7. A. W. Adamson and A. Gast, Physical Chemistry of Surfaces (Wiley, New York 1997).
8. P. C. Hiemenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry (Dekker, New
York 1986).
9. M. V. Smoluchowski, In Handbuch der Elektrizitit und des Magnetismus (ed. L. Graetz and
J. A. Barth; Leipzig, 1921).
10. F. A. Morrison, Electrophoresis of a particle of arbitrary shape, J. Colloid. Interface Sci. 34
(1970) 210-214.
11. M. Teubner, The motion of charged colloidal particles in electric fields, J. Chem. Phys. 76
(1982} 5564-5573.
12, D. C. Henry, The cataphoresis of a sphere, Proc. R. Soc. A 133 (1931) 106-129.
I3. R. W, O’Brien and D. N. Ward, The electrophoresis of a spheroid with a thin double layer, J.
Colloid. Interface Sci, 121 (1988) 402-413.
14. J. L. Anderson, Effect of nonuniform zeta potential on particle movements in electric fields,
ibid. 105 (1985) 45-34.
15. M. C. Fair and J. L. Anderson, Electrophoresis of nonuniformly charged ellipsoidal particles,
ibid. 127 (1989) 388—400.
16. H. Lamb, Hydrodynamics, 6th edn (Cambridge University Press, Cambridge 1932).
17. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow
(Cambridge University Press, Cambridge 1992},
18. S. Kim and §. Karrila, Microhydrodynamics: Principles and Selected Applications (Butter-
worth, London 1991).
19. 1. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Martinus Nijhoff, The
Hague 1973).
20. G. B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. A
102 (1922) 161-179.
21. O. D. Kellogg, Foundations of Potential Theory (Dover, New York 1954).
22. Oberbeck, Uber stationare Flussigkeitsbewegungen mit Berucksichtigung der inneren Reibung,
J. Reine Angew. Math. 81 (1876) 62-80,
23. B. A. Edwardes, Steady motion of a viscous liquid in which an ellipsoid is constrained to rotate
about a principal axis, Quart. J. Math. 26 (1892) 70-78.
24. E Perrin, Mouvement Brownien d’un ellipsoide (I). Dispersion diélectrique pour des molécules
ellipsoidales, J. Phys. Radium. 5 (1934) 497-519.
25, 1. L. Anderson, M. E. Lowell and D. C. Prieve, Motion of a particle generated by chemical
gradients, Part 1. Non-electrolytes, J. Fluid. Mech. 117 (1982) 107-121.
26. W. H. Koh and J. L. Anderson, Diffusion of neutral molecules in charged pores, J. Colloid
Interface Sci. 64 (1978) 57-67.

APPENDIX

This Appendix examines the properties exhibited by the surface forces ag.})-n and ag)-n for an orthotropic
particle whose surface S obeys the equation F(x, x2, x3) = F(lx1], |x2}, |x3]} = 0. This assumption shows

that, for M(xy, x7, x3) € S, the unit normal vector n(M) satisfies

ni(xy, X2, x3) = sgnx;dn;(|x3 s |x21, lxa). (5.1)
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The associated translational motion (u, p) is the unique solution of the following equations and boundary
conditions:
pV2u-Vp=0 and Vu=0  ingQs (5.2)
{up)— 0,0 asr — coandu = ¢j on §. (3.3)

Forv = vje;, the reader may check that the flow (', p') such that, for M € 25U 5,

wy(x), %2, x13) =wy(—x1, X2, x3),  plapap, x3) = —p(—x1. 12, x3), (5.4)
up(xq, X3, x3) = —tz(—x1, %2, X3), 501, %2, X3) = —u3(—x;, %2, 13}, (5.5
also obeys (5.2), (5.3). Thus, (u, p) = (u’, p’) and one thereafier deduces properties of the flow (u, p) by

replacing (u’, p’) by (u, p) in (5.4), (5.5). The same procedure holds when changing x5 in —x; and x3 in —x3.
For M (x[, x7, x3) € 5 U S, it follows that

(M) = (x|, Ixzl, [x3]),  p(M) = sgalx ) p(lxl, 121, 1xaD, (5.6)
u (M) = sgnlx)sgn(x Ju (x|, |2, ix3)  for j € {2, 3}. (5.7

Finally, one obtains the results {3.6), (3.7) from (2.6}, (5.1} and (5.6}, (5.7). The rotational metion (u”, p”}
satisfies on § : u(M) = —rje3 + xyey. How the change of x| in —x; affects the solution {(u”, p”) is obtained
by noting that the fluid motion {—u’, —p") (introduced by (5.4), (5.5)) obeys the same problem as (u” P
This is also the case of the fluid motion (u”, p™) such that, for M (x], x3, x3) € @gU S,

ug’(xlslex3) = ug(x], _x2$x3)l p’”(xlvx2! X3) = _P”(x]. _x2!x3)! (5-8)
u'l”(xl, X9,x3) = —u"l'():l. —x32,x3), ug”(xl X9, x3) = —ug(xl, —x3, x3). (R}

If one replaces x3 by —x3 other properties are deduced for (u”, p”). Hence the reader can check that, for
M(xy, x2,x3) € Qg U S and if [M| := (|x1], |%2], %3]},

uy (M) = sga(x3)us (M), p" (M) = sgn(xa)sgn(xa)p” (|1M]), (5.10)
uz(M) = sgn(x)uz (AM[),  wf (M) = sgnlxq)sgnxa)sgn(xau] (M), [CARY

The properties (5.10), (5.11) yield the relations (3.8), (3.9).



