Asymptotic Analysis of Low Reynolds
Number Flow with a Linear Shear Past
a Circular Cylinder*
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Two-dimensional steady flow of an incompressible viscous fluid around a circular
cylinder in the case where the velocity field at large distances is the combination of a
simple shear and a uniform stream is described in terms of matched asymptotic
expansions valid at a low Reynolds number. The main purpose of the present paper
is {1) to examine the validity of the assumptions used by Bretherton (1961) and (2)
to construct an alternative approach without using such assumptions. In the present
paper is constructed a system of governing integral equations for vorticity and stream
function based on an Oseen-type equation. Local solutions, inner and outer solutions,
are obtained from these equations by using the method proposed by Kida (1991), which
is so systematic that we do not need the detailed physical consideration. Finally
aerodynamic forces are compared with those obtained by Bretherton. The present
paper shows that Bretherton’s assumptions are correct within the first approximation.
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One cycle higher order solutions are obtained in this paper.
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1. Introduction

This paper treats a steady, two-dimensional low
Reynolds number flow of an incompressible viscous
fluid around a circular cylinder in the case where the
velocity at large distances is given by the combination
of a uniform flow and a simple shear. Low Reynolds
number flow problems are classic and have been studi-
ed by many investigators (e.g., Pozrikidis’"), how-
ever, the present shear flow problems have not been
studied in detail except by Bretherton®, who analyzed
this problem using a method of matched asymptotic
expansions with respect to Reynolds number FRe,
which was based on the incoming flow velocity to the
cylinder and the radius of the cylinder. In his analysis,
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the inner solutions of the stream function were
assumed to approach the shear flow as |ZFl— and
they were obtained by using the assumption: (a} the
inner solutions which satisfy the boundary conditions
on the surface of the cylinder and the far-field condi-
tion, of| F{log| |} as | F|— oo, are identically zero. The
first approximation of the outer solutions was
assumed to be the shear flow and the second approxi-
mation was assumed to be a uniform fow. Further-
more, he assumed: (b) the outer solutions which
satisfy the conditions, that they are o(|X|logiX]) as
| X|-0 and their derivative becomes zero as | X|— oo,
must be constant, where X is the outer variable (X =
(Ref2)'*F} (Re=Gat/v, where G is the shear rate).
In order to obtain the additional outer solutions, the
following assumption was used: (¢ ) the outer solu-
tions are given by superposing solutions for the instan-
taneous Oseen solution of an unsteady point source in
a shear flow and they are expressible as a power series
of 1/log Re. The first and the second approximations
mentioned above are of the order of unity and Re'”,
respectively, and the higher approximations are ex-
pressed as Re'”*/(log Re)"” (n=1,2,---). However,
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these assumptions have not been proved yet from the
point of view of the asymptotic analysis.

Michaelides® reviewed earlier works which
investigated forces on an object immersed in a fluid
flow. In these works, the Reynolds number of flows
based on a typical slip velocity on the surface of a
body and a typical length of the body is very low.
Therefore, the interaction between the body and the
ambient flow is mainly based on the theoretical and
experimental results of the Stokes or Oseen flows.
Earlier theoretical works for finite low Reynolds
number flows were mainly based on the matched
asymptotic approach completed by Proudman and
Pearson®, Kaplun and Lagerstrom® and Kaplun® for
two- and three-dimensional bodies in a uniform
steady flow. As pointed out by Kaplun®, there is an
essential difference between two-dimensional and
three-dimensional cases in the method of matched
asymptotic analysis: in a two-dimensional flow, inner
solutions are obtained by matching with outer solu-
tions (the first solution of the outer flow is the uniform
flow), however, in a three-dimensional flow, outer
solutions are obtained by matching with inner solu-
tions (the first solution of the inner flow is the Stokes
flow solution). This difference results from the
Stokes and Whitehead paradoxes in the iterative
method with respect to the Reynolds number (see Van
Dyket”). The matched asymptotic approach has been
applied to unsteady flow problems by many investiga-
tors: an impulsively started motion, a sudden change
of motion and an oscillatory motion (e.g., Bentwich
and Miloh®, Sano®, Lovalenti and Brady"”-!?,
Nakanishi and coworkers!!®4!4}.

With regard to a shear flow, three-dimensional
flows past a sphere have been studied by many investi-
gators (e.g., DBretherton"®, Saffman®®, Drew®?",
McLaughlin®®, and Feng and Joseph"®). However,
two-dimensional flows have not been studied except
by Bretherton®. Bretherton® pointed out that the
lift force was not generated on the basis of the creep-
ing flow equations regardless of the velocity profile
and relative size of particle. Saffman“®, therefore,
analysed the lift force on a sphere in a shear flow at a
low Reynolds number using the matched asymptotic
method, in order to take into account the inertia term.
Drew™ extended Saffman’s method to pure rotation
and pure shear in a far-field flow and derived the
hyrodynamic force F* for the shear flow as

— . 1 1/2 . .
F=6maU-[[I+O.10(7xRe) ](éle.+ 2:5)
1 1/2
+0_502(-2—xRe) (2,834 & é'l)}.

Here, {7 is the fluid velocity far from the sphere, a the
radius of the sphere, ¢ the viscosity, Re the Reynolds
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number (= pUafi), and x a dimensionless measure of
the shearing. On the other hand, Bretherton® derived
the force F on a circular cylinder under the assump-

tions (a) - (¢): F=d4nu|Real M, Real
r-——z—logRe

L

M , Where Re=Ga2/]j, U=(UD- VD)) EI
Ty log Re

—2.11;, F=-1+0.289;, H=1+0.289;, K=-0513;,
and r=0.679+0.798¢ and “Real” denotes the real part.
Thus, the lift force is of the order of 1/(log Re)’,
although the drag force is of the order of 1/log Re.
We note in his analysis that the outer solutions to any
finite order approximation are governed by the Oseen
equation for the shear flow from his assumption {c}.

The main purpose of the present paper is to
confirm Bretherton's assumptions, that is, whether or
not the assumptions from (a) to (c) are reasonable.
In two-dimensional flows, the key point of the
asymptotic analysis is to obtain outer solutions.
Bretherton™® gave the outer solutions using the un-
steady problem of diffusing substance which is instan-
taneously released at the origin at time =0, that is,
the assumption {c), however, it is hard to extend
systematically his method to higher order approxima-
tions without a detailed physical consideration. In the
present paper is constructed an alternative asymptotic
approach based on integral expressions proposed in a
series of papers by Kida and coworkers*"=#®. This
approach is so systematic that a detailed physical
consideration is not necessary and it does not lead to
incorrect solutions (e.g., Kida and Miyai®®, Nakanishi
et al.¥).

In the present paper, governing integral expres-
sions will be first constructed in section3 for an
Oseen-type approximation of the combination flow of
a uniform flow and a simple shear flow. Second, inner
and outer solutions will be derived from these integral
expressions in section4. In particular, it will be
shown that Bretherton's outer solutions will be
obtained without assumption (¢ ). Furthermore, the
second-order approximation of the aerodvnamic
forces will be obtained in section b.

2. Governing Equations

We consider a two-dimensional incompressible
steady fluid flow past a circular cylinder as a combina-
tion of a uniform fow and a simple shear flow, as
shown in Fig. 1. Cartesian coordinates are taken as
(z1, T2) and the origin is taken as the center of the
circular cylinder. The ratio of the simple shear is
defined as G and the uniform velocity is denoted as
(U, v).

JSME International Journal



G.’L'2+U

Fig. 1 Physical state and coordinate systems

The governing equation for vorticity, (0,0, @), is
derived from the two-dimensional Navier-Stokes
equations :

#:dw/dx:= vV w, (1)
where #(F,t) (=(u, u2)) is the velocity vector at
point F(=(x\, x2)), V is the nabla operator, and v is
the kinematic viscosity. We introduce the stream
function, ¥, then the vorticity is related to ¥ ;

w=—V*U, (2)
No-slip condition and far-field condition are imposed
in this problem :

d—-(Gr+ U, V)  as |Z|-co, (3)

#=0 on S, {4)
where S is the surface of the circular cylinder.

We normalize lengths and velocities with respect
to the radius of the circular cylinder @ and the uniform
speed U:=(U?+ V)Y Here, we introduce the follow-
ing dimensionless perturbation stream function ¢.

BDIZ+ Uo Ersb_ Ha= Vo“_@'(é—, (5)
where fo=Ga/l/: and ({/s, Vo) is the normalized uni-

form flow with {%. Then, the dimensionless forms of
Eqgs.(1), (2) are

Jw 2
(Box2t+ Ua) + Voo — 35 Rev w+f, (6)
w=—VY, (7
where f and the Reynolds number Re are defined by
— a¢ Ow l ow
f_ 0x2 8.1'1 8.1': dxe ' (8)
Re=ULalv. (9)

The boundary conditions for the perturbation stream
function ¢ are obtained from Egs.(3), (4) as

o o O =l
o "0 Gy 0 as | F| = oo, (10
¢ _ of _ .4
le_V"’ F i sin 8— U, on S, (11)

where # is defined by & ={cos &, sin #)} on S.

In this problem, Bretherton® defined the alterna-
tive Reynolds number Ga*/v based on the incoming
shear flow and assumed it to be of the same order of
Re, that is, fo=0(1). We note that we cannot treat
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the special flow of fo=0 under this assumption, that
is, the flow past a circular cylinder in the uniform flow.
Here we define the small parameter & for conve-
nience of the description as
&= Re/2. (12)
The basic governing equation of vorticity, Eq.(6), is
rewritten as

dw
Vep— 25((3m+ U221 v, £2)— —2¢7. (13)
Here, we introduce 7 and .Q as
F=n+ UsfBo, Q=exp(—eV,i)w. (1
Then, £ and ¢ are governed from Eqs.{7), (13} by
ViR —2eB.5 ——(sVa)EQ—_Zeexp( eVoi )/,
(15)
Vig=—expleVo7)0. (16)

3. Integral Expressions

Let us define a fundamental function as GA&
—~X¥o; Jo) satisfying the following governing equa-
tion :

VG + 26607 S —(e VG

—3(3."1—3:01)8(1;—170), (17

G0 as | X — Fo| o o0, (18)

where 8(z) is the Dirac delta function. From the

Green formula and the boundary conditions at far
field, |2(Z)| -0 as |F[- o0, Q(F) is given by

2= [ (G x50 7o) 2 Ze)
—Q(Fs) 3Gf(lfsa Fo; To) )dﬁ

—2ejo' (Bosin 8+ Un) Gy Fo— To: 7o)

X 2 Fs)cos 90’3—26_/; exp(—eVoi)

Xf(f)Gf(f" fa; Ea)db‘, (19)
where Fs=(cos d,sin 8} is on S, p=|T — Tl for L.
D, D is the entire flow region outside the circular
cylinder and dv=dridr. From Egs.(10), (18), ¢(Z,)
is also given by

‘b(f")zfl}r_f exple Vai )82 f)logidv

27r (q{:(.rs) ar OB o T T oy oy log )dﬁ
(20)
The boundary conditions given by Eq.(11) yield the
following :
0 éf‘) = Vocos # — Upsin 60— 7—%c0528.
(21)
L) - y,sin 6~ Uycos o-Lsin20. (22

The fundamental function G, is obtained from
Egs.(17), (18). The detailed derivation is shown in
Appendix 1:
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~y_ 1 1
GAX, Y ; §o)= 47rj; Gr ™
xexp[—f-‘giﬁrﬁ()(2+ Y?)

172 2
sﬁ%;—vf—g—gz—g‘%()ﬂ%zxga)

-3 (v g+ -0 |as, 23)

where X=x1—xo1 and Y =1:—zo..

4. Asymptotic Solutions

We easily see from Eq.(23) that there are two
significant local regions: (X, Y)=0(1} and (X, ¥)=
O(1/e"%) (see Kida®"), We call the former and latter
regions “inner region” and “outer region”, respective-
ly. The inner and outer variables are defined as
(X, V) and (X, V)=("2X, 7).

The inner solution of {2, say &, is obtained by
substituting Eq.{23) into Eq.(19} and using the con-
cept proposed by Kida®”. Let us consider the integral
operator :

G/ = [ G/jdv. (24)
The above relation is rewritten as

ar=[ ["Gtrrards+ [ [ G raras. 25)

where & is a small parameter with & = &%, where &, is

a small parameter with e<e&,. Gfis the asymptotic
expansion of (, with respect to the inner variable
(X, Y), which is given in Appendix 3. Since G} has
only a logarithmic singularity, the asymptotic expan-
sion of the first term on the right-hand side of Eq.(25)
is given by substituting G} The concept proposed
by Kida®” states that in the second term on the
right-hand side, f is indeterminate. In this term,
| £o|<1/8 and |F|>1/8, therefore, we can expand
Gr asymptotically with respect to €. Thus, we can
obtain the functional form of the second term on
the right-hand side of Eq.(25) with unknown co-
efficients. We easily see that the asymptotic form of

2r oo -
j{: PfﬁaG}frdrdﬁ is the same as that of the second

term on the right-hand side of Eq.(25). Thus, the

above relation is rewritten as
. 2 o s 27 o0 -
Gi= 'L Pt [ Gifrardp+ [P [ Gotraras,
(26)

where f is an indeterminate function. Using this
concept, the first inner expansion of £ is given by

= A, (7+10g(£M))

2 8.3
+ 2 e (Amcos me+ Ansin me). (27)

Let us consider the outer sclutions. Here, we

define the integral operator G7:
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ari=[" [+ Gi/RdRdS. | (28)

Let us define G7 as the outer expansion of C,_ then G?
is given in Appendix 3. The above relatlon {28} is
rewritten as

Gri=[" [ceirarde+ [ [ GRaRas,
— [Pt [ Go7raras
G#) FRARA0, (29)

+ [Pt [ (G-
12

where & is a small parameter 8=¢&0". Using the
concept of Kida®», f for R<48 is indeterminate,
where R=|Z|, (§ =¢"*#). In the second term on the
right-hand side of the first line of Eq.{29), the
asymptotic expansion of Gy for R,>8 and R<§ is
obtained using Theorem A given in Appendix 2, where
Ro=|Z.l, (Fo=€"2%,). We see that the asymptotic

functional form of j pf £ G2FRARS is the same as

that of [ [ G.fRdRdS.

Here we use the following assumption for obtain-
ing the outer solution.

Assumption A: The first approximation of the non-
linear term, that is, the third term on the right-hand
side of Eg.(19), is higher order than that of the first
and second terms on the right-hand side of Eq.{19)
with respect to &.

a
Then, we have from Eq.(19)

Q° zz_lx_Pf'/o.wmlm—wexp(ﬁo CR¥)a.

+ "2 BoRo{ b A+ bf B)1dt, (30
where I =R {cose,sing), and A, B and C are
defined as

t 1 t2 . 12
A= 9.3072 cos 99——2“1:_7—251[1 ¢——6"WCOS @,
{ . 1 ¢ 142
B=gzmsing+5 1 pcose——g 7 zsing

t 31{2 t 1 2
137 1 IvrE Ty 1+fzsln a4

C=—

31/2 t,
+-— I a2 cos2e.

Bretherton'® says that the outer solution of £ is given
as 2A8/66 +2B(6¢/d& -~ 3¢/dC). as shown in Egs.(19),
{20} in his paper, where & is given by Eq.(15) in his
paper and A, B, € correspond to A4, B, C in his paper.
respectively. The present result. Eq.(30), reveals that
Q2 is expressed as aof+ "X boL/o& + cation)+ Ole.
£"2a,). As will be shown by Eqgs.(32), (36), (37), @0 is
of a much higher order than £/25{°. Thus, we see that
the first approximation of the present outer selution is
essentially identical with Bretherton’s®, that is, the
first part of the assumption (¢} mentioned in section
1 is correct within the first approximation.
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The inner expansion of the outer solution, 2%, is
given from Eq.(30) by using Eqgs.(91) - (99) in Appen-
dix 3:

()

+T(bfcos ¢+ bfsin qo)RLa. (31

Thus, we have from the matching requirement, 27 =
2

o™= — KAq, bi = gAfS (32)

ARfx for m>2, {(33)

The inner and outer solutions of ¢ are also
obtained and we can match these solutions. Using
further the boundary conditions given by Egs.(10),
(11), we finally obtain the following relations (the
detailed derivation is omitted due to the limitation of
pages) :

< [ bt f Qirdrdd

1
=3 +Jrloge

1 (Tt l 2°(cos 8, sin 0)dRd9

2" b

——1—Af'3 log ex( V,, — Us)

f Pf ‘g "Q°log RRARA6, (34)

271'
Substituting Egs. (27),
obtain Ae as

Aoz—‘s—l%g—s/[f(r+log(8—€§%)— 1)1036

+PffR10ngRPf'£"(lTltz)u—2
X exp( — BoCRD (Bl @+ 6D RDAL],  (36)
where
1 ¢ _
C—'—4.31;2 (f+ I+_!2 ), a=

[
237 1+

Thus, we see that A, is O(e). Therefore, the first
order of Af*® is obtained from Eq.(35)
Az ———(V,, — L) {37)

log IS
From these results, we see that Af{* is of 0(1/log )
and £° is of O(1/loge). Therefore, f=0(¢/(log &)?),
that is, we see that Assumption A is reasonable,

Let us extend this to one cycle higher approxima-

tion. The first approximation of 27 becomes,
.Q"z%(Afcos e+ Afsing), (38)
o

since Ao=0(e). Substituting Eq.(38) into Eq.(20)
and taking into account Eqs.(32), (33), we have

by f 2%cos 8, sin @)drdd.  (35)
(30) into Eq.(34), we can

1 2
4 1+

¢'x — Uyrysin g+ Vorocos qo**é-log Yo

+'1~?’§cos 2 +%(Afcos o+ Afsin @)

JSME International Journal
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7 1 .
X (Ta‘—m— ¥olog 7‘0). (39)
Therefore, the first approximation of f in the inner
region, say /%, is given by

f‘x;lg((AfVo— fUsdcos 20— (A V,
+AtUn)sin2¢) ~—(Afsin3p— Afcos 3¢)
+§];73F(Afsin ¢— Afcos @)

A}l-glog ro( fAfcos2¢ +%(A52—Af2)sin 2«;9).

{40)

Thus we can obtain the second approximation of
£2' by substituting Eq.(40) into Eq.(19). Since ao=
O(e) in Eq.(30), we can also obtain the second approx-
imation of £2¢ from Eq.(19). Furthermore, we can
obtain the second-order stream functions for the
outer and inner regions. From the requirement of the
matching, we finally have (the detailed derivation is
omitted due to the limitation of pages)

2n o0
Vo~2;u2 A’ Pf fo 2° cos 6dRd0

—‘;1‘ lOgE+‘3]'§610ngAf+ Helogg), (41)

— Uy~ 2;61,,, f Pt _( " Q°sin 0dR a8

— 41 loge—gl—zalogzeflf-l- O(clog e). {42)

Here, the first approximation of £2° is given from Eq.
(30)

o 5112 o 1 )
9o~ &R, Pf [ 7y exp(B.CRY)
X(ATA+AIB)di =" (AiQf+ ASQP.  (43)
Substituting Eq.(43) into Eqs.(41), (42), we have A}
and Af:

A= 4[UO(T —loge)+ Vo(T _E?Elogze)]

~

[(log e~ $)t0g e~ 79

(Ts——slog e)(S + 2elog a)] (44)
Apxd| VAS*loge) + Uo S*+35<loge )]
/| toge~s9)10g e~ 7)

(Ts—kelog 5)(3':#"—610};26)]. (43

where
se=< ["pt [ i cos oarad, (46)
so=L ["pt ["tsin 0aras, (47)
Te=L [Pt [ 0tcos 0aRa, (48)
7+=2 [t ["Grsin 6arad. (49)

Substituting £F and £2f defined by Eq.(43) into Egs.
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(46) - (49), we finally arrive at (see Appendix 4) :

S o ytllogy S°.8 L 37

B, = vt ylogl, =gt (50)
& ¢

F o s L I

Following the above-mentioned procedure, we can
obtain Af*:

Af=1 -!-%Aonelog e+4£(loge+2)
X (Af Vo~ AfUs)— 1 (log* e+ 2) AT Af
1 2 o0 !20
- '[: Pf £ 4 cos 20dRd0, (52)
A% ~2-AiUae log e+ (loge—2)
X(AfVo+ ATU,) +%(log2 e—2)0(AP— A
1 2T oo Qo
-1 £ Pf fu £~ cos 20dRd8. (53)

5. Aerodynamic Forces

We consider the aerodynamic forces acting on a
circular cylinder, Taking into account no-slip condi-
tion, we easily obtain the pressure forces :

2
Xp=pUe [ sin 6V*u,dp,

2 (54)
Yo —ul, j: cos OV%usde,

where us is the tangential component of velocity on

the surface of the cylinder, and (X}, ¥3) is the pres-
sure force. Friction forces are also obtained as

2n
X,= —uUc_/u' sin @ %” 4,

¥

(55)
2T
Vr=ul [ cos 69k g,
Thus, total forces (Fx, Fy) are given by
2r K azus
FXI#U{:']‘: sin HW—dﬁ,
2m azu (56)
Fy=—nU. [ cos 0254 dp.

2 £
Since %}%S—Z[%fj—g‘-ks%sin B.Q]exp( —eVy(sin 8

+ Us/B0)) on S, from Eq.(56). we finally obtain
Fex -~ muU241- (easida;

+ VaAf—z%Af)), G7)
Fy~nu U:(?AH e(%AH—%Af

+ VGA§+2MA1°)). (58)

s
The aerodynamic coefficients C. and Cp are defined
by

CL=F}'/(JU1Uc), CD=FX/(]UJUC). (59)
Figure 2 shows the coefficients A and Af for various
Re. Bretherton’s results® are also shown in this
figure as broken lines. We see that there is no essen-
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0 - —y
A ¥
-0.5F ! -
-1 . ] .
0 0.05 0.1

R

¢

Coefficients A} and Af in the case of U= V=
1/2"% Solid line: Egs.(44), (45}, Dotted line :
Bretherton’s results

Fig. 2

tial difference between the present results and
Bretherton’s. The difference of Afis due to the higher
order, that is, the present one is given by a one cycle
higher order approximation and we see that the effect
of the higher order in the shear flow is much greater
on the lift force than on the drag force.

6. Conclusions

The present paper investigates a circular cylinder
in the combination of a uniform flow and a simple
shear flow and the Reynolds number with respect to
incoming flow velocity is assumed to be small. The
governing integral expressions of the Oseen-type
equations are constructed. The method of matched
asymptotic expansions proposed by Kida and co-
workers® =49 js anplied to the governing integral
equations and the inner and outer solutions are
obtained from the equations. The present paper
reveals that the outer solutions given by Bretherton®
can be obtained by the present approach without using
his assumption (¢ ) mentioned in section 1 and we can
confirm that the assumptions (a) and (b) used by
Bretherton are correct within the first approximation.
The present approach is so systematic that it is shown
to be easily extended to the higher order approxima-
tions. It is also shown that the lift force is much
greater than the drag force in shear flows and the
effect on aerodynamic forces due to a one cycle higher
order approximation is very small for the drag force
but slightly large for the lift force.
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Appendix 1

In order to solve Eq.{17), we introduce a new
function gr( ¥ ; @) defined by the following expression :
Gf(-f — % ’ !70)

= ["o(ei-zatad, - 4o;dde,  (60)
g:& 7;@)~0 as |£|+[g]> or a—oo, (61)
g (&, n;:a)~0 as a—0. (62)
From the conditions in Egs.(61), (62), we easily
obtain
f At g, (63)
Therefore, we have
~ dgr | 99y
L7 %+ %5 ) a0, (64)

Substituting Eq.(60) into Eq.(17) and using Eq.(64),
we arrive at

s(e~aind(n= [ ((1+g2)7gr+82w

+2a§§§L 2 Boé—‘qf——e Vog;)da, (65)
where £=x1— a1t ae¥ and =7 — ¥o. Thus, we see

that a selution of Eq.(65) is governed by the following
differential equation:

Fgr o 69 Fhdr o p 00
1+ 85; f+2 as;f; 2680 5
— & Vigr= 6‘(5 aio)d(n)8{a). (66)

The solution of Eq.(66) is obtained using the
Fourier transformation. The final expression is given
by

.1_ 1 __i___ga_
ir a1+ A1) exp[ 20 1+ /12

x($2+(1+%2~)nz—a$77) 2,805%] (67)
Changing the variable @ to 8 by a=2-3"%/8 and using
E=X+aYtagoand 7= Y, where X=xi—xanand ¥
= Z2—Is2, the fundamental function G, from Eqs.(60),
(67) is given by Eq.(23).

No-shear-flow case, that is, &G~0, corresponds to
B.—0 and Bofio* o, As fo>0, we change the integral
variable 8 as §=88.. Then, G, for 8.—0 becomes

GI(X Y yﬂ) 41"{'

Q'f(E, n)=—

Fexe| ~ g (x°
+ e - a3 exvo— ey Lo az,

= —%exp( — el X)Ko(e(( X2+ YH( VE
+ UDN), (68)
where Ko{x) is the modified Bessel function of zero-th

order. Thus, we can derive the same fundamental
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solution in the case of flow past a body in a uniform
flow as that given by Kida et al.?®z®
Appendix 2

In order to obtain the asymptotic expression of

G, for the inner and outer regions, we use the follow-
ing theorem:

Theorem A : Let us consider the following integral :

szomf(t)exp(—e%~sbt)dt, (69)

where @ and b are constants independent of &, Sup-
pose that the function / is sufficiently continuous, |/| -
O(1/t) as t »co and | f]- O(1) as ¢ =0, and for {£[0, 5]
where & is an arbitrary small parameter with 8 > &,
where ¢, is some small value:

Nim)
f= 3 fut( 2 omlog t), (70)
where f» and g3 are constant and N(#) is an integer

dependent on #. Then, we have the following
asymptotic form with respect to & for e<é&o:

- ® 1/ _ay
P—Pf_/u‘ f(t)exp(—ebt)nZ:!O a1 ( £ t) dt
+eaf(0)y +loglea) — 1)+ O(£%), (71
where Pf f(-)dt denotes the Pf-integral, that is, the

finite part of lim f “(-)at (see Sellier®-0). [
4-0 74

Proof :
We introduce an arbitrary small parameter &

which i1s é > &,. Then, since exp( - 6—): i L( -

t/ acom!

x%)m for =38, we can express P as
o0 -3 1 a n
P=["Hoexp—et) 3 L —e2)ar
8
a
+j;f(t)exp(—s—t—ebf)dt,

=Pt ["H(exp(~ b0 5, -~ L) ar

a0 #n! f
+Pf'£8f(t)[exp(*e%)
—gﬂ;lzf(—e—%)”]exp(febf)df. (72}

Here we note that P is independent of &, that is. P is
not a function of 4.

Let us estimate the second integral on the right-
hand side of Eq.(72). We use the following relations :

Sk+! !

K,,_Pffx log' tat =g — e K
for £+ —1, (73)
K4 —Iillog“'é‘ for /+—1, (74)
I- %4
i 1, e
—F‘f[co ydy—log(log 8. (7o)

Deriving Eq.(75), the integral variable # was changed
to ¥ by =exp(y). Then, we see that Ki=function of
8 for any integer of £ and /, where “function of 6"
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denotes that a function is expressed as a sum of terms

multiplied by a nonzero power of & together with

a power of logd or nonzero power of logd. Since

exp{~eht)= Z;;}T(—sbt)" for ¢<8, we have the
N a= .

following relation :

pif ’f(z)exp(—ebf)i L(—ei)"dt

—2 E Z'angm , ( Eb) ( sa) K o

=function of &. (76)
Let us consider the following integral :

¢ a
Li(ea)EPf_/u’ t”Iog‘texp(—e—t)df. (77
Here, we easily obtain
Liea) =6exp( ——%g-) —ea
. . £a &a
X finite part of I}_I:lél(E;( —7) - E.—( 3 ))

~ga(y +loge+loga—1)+ O(&)
+function of &, {78

where E{—z)=— mﬂm—xldr. From integration
z x

by parts, we have
Lilea)=—¢ea(—1)"n!

n 1
- .sargo( - l)r(n_f.?—'ﬁl’ﬁ "(ea)

+function of 4. (79}
Furthermore, we have the relation:
%Liﬂ(ea): —eLica). {80)

Therefore, L ea) becomes

Liea)=—ea(— 1)l + a%LB’(ea)

w r n! d n-r
-5-421(—1) (n——rﬁg&_[‘“ {ea)
+function of §. (81)
Thus, we obtain

Lb(ea)=ea+aéi—[.é(ea)*ea(r+loge
+log a)+function of 8. (82)
4§
Since L¥0)= j{: log ¢t =function of &, we have

Li(ca)=ca log(scz)(l e %log(ae))

+function of §. {83)
Therefore, since L&{0)=function of &, we easily
obtain

s(ea)= (&) +function of 48, (84)
where Oie)} denotes the order of & multiplied by a
power of loge. Since L:.+.(0)=function of &, we have
from Eq.(80)

mlea)=0e™") +function of &,

for n>0. (85)
From the assumption of Theorem A, we have

j:af(t)exp(— s%)exp( —sbt)dt
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N

)

}

M

f frght” log™ ¢

0 J0
( eb)‘"t”exp(—sﬁ)dt--
= z:!fngmL—LLm-p(Ea)

]
Ny p

~ 2, fognL(ea) + Ox(e?)

= fgeLiea) + O(e®)=eaf(0)(y +log &

+loga—1)+ O&d). (86)
Thus, we can estimate the second term on the right-
hand side of Eq.(72) from Eqs.(76), (86) and we can
arrive at Theorem A. We note that N(0)=0 from the
assumption of this theorem. d

=z
>

X

Ef»*

-]

=0
N

=
=

[
=M
M

Appendix 3

Let us consider the asymptotic expansion of G
for the inner region, say Gi From Eq.(23), G} is
expressed as

i pef 1 ehf— e @
Gf" ir Pf,/o- Wexp[ cbt—e I &C
c_ ¢ -
tetn ed—ﬁ_?-]dt, (87)
where @, b, ¢ and & are independent of ¢ and of O(1)
with respect to &

| 73
a——%—- Vﬁ, b=z"%(X2+ YZ),

cz%’—(XHz Yo,

~ ~ i’z Xz
—nl/z 2 =
=3 B,,(Yyo+ yg+ 4 17 )

From Theorem A (see Appendix 2), G} is expanded as
Gi=—1 Pt e - E L
a_ ¢ __ gt |
X[—e } ec-l-smz— ed 1+t‘°':| daf
—4—1]r-sa(y+log et+loga—1)+ (. (88)

Here, we have to estimate the above Pf-integral. To
do this, we use the following relations for @o >0 (see
3.366 and 3.374 in Gradshteyn and Ryzhik™) :

IW(IT}.CZ)T:!EXD( —asx)dr
= _g[Eo(aa)'i'No(ao)], (89}

[
A Wexp(—aax)dx
=5 [Hi{a)=N(an)]-1, (90)
where N» is the Bessel function and H. and Ea. are
Struve functions and Weber’s function, respectively.
From Egs.(89), (90), we easily obtain for @o—0:
_/; TlTl‘i.le_fé'exD(‘aoI)dl‘

~ =y —log(%-)+ a,— 2y +log4e+1),
9D
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_£ ‘(ﬁ.%zjm-exp( —gox)dz

N 7S 2o 3
~ar 1+ (r+10g %+ 3) (92)

Using integration by parts, we easily obtain from Eqs.
{91}, (92) :

j:—(lq_?wfexp(—ao.r)dr
v
~1-a,+ P (r+iog L +3) (93)
o 1 _ L2 1
L‘Wexp( ao.r)dr~§——?a.,, (94)
’/’wh—_l_l;zyrfem(—aax)dx zi {(93)

Differentiating these relatlons w1th respect to do, W€
arrive at

j:zl—_'_x—;gwexp(—ag:c)dz
z—lz———é—(y+log(%)+—g—), | {96)

ao

jo‘wzﬁ;jyrexp(—aax)dr
zl—ag(7+log( az., )+2), (97)

_/u‘ wrﬁﬁ-ajm-exp( —aox)dx 2%-#%0.0. (98)

Here, we use the relation:
o 1
ga Pf:/O- x(1+‘r2)”2 exp(—ag.r)dr

- Pflmﬁfym—exp( —aor)dr

zyﬂog%"——ar,,

= i
P e

2YLIZ2 y |eo
= —finite part of lJiIl(’}l log(*li"(ig—‘z—)—-—)

3
4

=log2.
Thus, we have

Pf.L‘ Wexp(—aax)dx
~ Qo y_4)_ Ll 2
~log2+ag(r+log( 5 ) 1) 5 do. {99)
Using Eqgs. (91) - (59}, Eq.(88) becomes
Gi= 41H [—y—log(%é)+sb-*ealog2
+Ec(y+log( Eb) 1)—ed]
mjl‘lf?ea(r+log(sa)—l).

Thus, we arrive at
GHX, ¥ ; g0y [{7 3log 2—-log 3

+log e+log 8, +log( X*+ Yz)}

{ eBs XY+2Xyo} cbo Xz;}f

f:j__ 3 (531 12 Vg
+€ﬁ VologZ EB Vo(Y'HOg Bo )
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—1)~.sﬁ XY +2X7o
)

+ 68,3 Yio+ 73+ r_x )]+0(e2)
' (100)

G, for the outer. variables, say G7, is expressed as
GAX, V; Yo

——El}—’/;wf"()?, Y t)exp(—

Vo)dt

(101}
where the outer variables are defined as (X, ¥)=
"X, Y), and

f°=ﬁwexp[—j%ﬁ(x‘z+ ?)

€ 8ot

2 ~ ~ ~ =
e RV 42X T 38,

(P74 4L £ (102)
Then we have from Theorem A (see Appendix 2) .
Grx—=Pt [ 1R, 7, t)(l eﬁ : Va)dt
_ 1 37 ( (6‘3 AN
e Vi r+10g( ) 1). (103)
Thus, we arrive at
GAR, ¥ Py~ — bt [T
F : £ A A (I+,82)“2
Xexp[—%_é’u BX+ 79
B 294207
2 B (XY +2XY,)
— 2l YZ Xz ]
3 BO?L(Yx,Jr pre L 12)
_e 3”7 ., 2
(1 &3 s +O(e))dﬂ
E 3112 53112 Vg _
where Ya v, +e“2%_
Appendix 4
Let us consider S* defined by Eq.{(47). Substitut-
ing Eq.(43) into Eq.(47), we have
S¢ 2 [ . = B
3 2 ”'/0' s:nﬁdﬁPf£ Wdt
x pffRexp(czez)dR. (105)
From the definition of Pf-integral, we obtain
5 2r
‘;0 = finite part of 1}_1"{)1 _V!Lrg_o %L' sin 8d@

xj;' z(l—ﬁgwdt[wRexp(CRz)dR. (106)

We have to consider the order of limitation from the
procedure of analysis.

The integration with respect to R is easily carried
out :

ar
.8_ = —finite part of l: lim L sin 8df

~0 Noad-0 2T
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{107)

x f L L exp(CAYdt
L CluF e Caat

Here, we consider the foilowin_g integral :

- {¥B 1 .

S’=./: Carmmexe(Ca)at,
Vo

=£ gﬁrltfwfew(cm)df
N

+Laa%(ﬁWEXD(CAZ)dt'

— wﬁ 1 df
Tl C+5H7
f” B 1 2
+ lwofw(exp((:ﬂ)-l)dt
for 4-0, {108)

where J, is a small parameter with 1> 8, 42,
172 2

14
For t>1, stﬁ {sin 6, Cx—sl—zt from the

definitions in Eq.(30}. Thus, the second integral of Eq.
{108} becomes

B 1 2y
_/:m CTH—tZ)_W(eXD(CA) dt

~—oaing ¥ L1 _3% e\

&= —2sin 6_/1;“ t(exp( 12 M) l)dt,

o . _ 311‘2 2 _ _ 3!12 2

~ —2sin 9(5( 4N B{-3 4 /aa)

—log(4N)+log(4/8.)), (109)

where E\(—x)= *'/;m%exp(—r)dr.

From the order of limitation, first we have to take
the step, N~ co, and second we have to take the step,
A4-0. Thus, S. becomes

- {~B__1
1

—23in€(—7+2]0g2+ : 1og3). (110)

Further, we consider the following integral :

2):_13 3 _2—?f 2 _ 23142
l: CS‘"6d5_4+3t2(f +4—4 41+ )V,

(111)
From Egs.(110), (111}, we arrive at
S _ e 1 1 3
Bo I 4+3t§(t+(1+t2)“2+(1+rz)”2)dt
+2[0g2—7+%10g3. (112)

The first integral of the above equation is easily inte-
grated and finally we arrive at the first equation of Eq.
(30). These steps are applied to Eqs. (46) - (49, then
we arrive at Egs.(50), (51).
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