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Electrophoretic motion of two solid particles embedded
in an unbounded and viscous electrolyte

A. Sellier

Abstract This work determines the electrophoretic mo-
tion of two colloidal particles embedded in a viscous and
unbounded electrolyte. Contrary to other works in the
field, the advocated method does not calculate the per-
turbation electric potential and the electrolyte Stokes flow
in the whole fluid domain and its range of applications is
not restricted to the case of uniformly charged particles
embedded in a uniform electric field E... The idea consists
in establishing and solving thirteen Fredholm boundary
integral equations (one of the second kind plus twelve of
the first kind). The numerical implementation is briefly
reported. Numerical benchmarks and new results are both
presented and discussed with a special attention to the
interactions between the particles.
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1

Introduction and assumptions

We consider a colloidal solution consisting of charged and
solid particles embedded in an unbounded and viscous
electrolyte of constant permittivity e and viscosity . Un-
der the application of the external electric field E., each
charged particle moves and this phenomenon is termed
electrophoresis.

In many applications to particle analysis or separation it
is of the utmost interest to determine the electrophoretic
motion of any solid particle P of smooth boundary S (see
Fig. 1). This is usually achieved by resorting to the following
theory and assumptions (here detailed for only one particle):

(i) Without any applied field E.. and due to its interac-
tions with the electrolyte, the surface S actually admits
a charge distribution (for example of positive charges).

Consequently, the particle 7 is surrounded by a diffuse
cloud C of counterions whose typical thickness is the
Debye-Huckel screening length ' (Anderson 1989). By
counterions, one means negative (positive) ions for posi-
tive (respectively negative) charges on 5. The outer
boundary of C is denoted by S. Outside the double-layer
S UC the electrostatic potential or field and the charge
density quickly vanish and both the electrolyte and the
particle are motionless. Finally, one introduces the
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so-called zeta potential { (Hiemenz and Rajagopalan 1986)
as the electrostatic potential on § in such circumstances
(for a zero external field E.).

(ii) For a weak enough applied electric field E the pre-
vious charge distributions remain unchanged. How-
ever, those charges do modify the external field and we
denote by ¢ and E = E, — V¢ the perturbation po-
tential and the electric field in the fluid domain. The
field E induces a body force in the cloud C and a fluid
flow. By viscosity the solid particle P thereafter ex-
periences a rigid-body motion (U, @) of unknown
translational velocity U (the velocity of one point O
attached to P) and angular velocity .

(iii) Since particles of interest are micron size, the
Reynolds number Re = VL/v, scaled on the typical
fluid velocity V and particule size L, is very small (v is
the kinematic viscosity). Thus, the quasi-static creep-
ing motion equations apply to the electrolyte flow
(u, p} where u and p respectively denote the fluid ve-
locity and pressure. If Q" = R\ (PUC) designates
the fluid domain the functions ¢, p and u thereafter
obey the equations
Vip=0, uVu=Vp, V-u=0 inQ". (L1)

(iv) The typical radius of curvature of S is assumed (*“thin”
double-layer theory) to be large compared to the cloud
thickness x~*. Thus, Q" and S respectively collapse
to Q:=R\{PUS) and S and one prescribes
boundary conditions for the perturbation potential
and the fluid velocity u and pressure p on S. More
precisely, provided that § is insulating, those bound-
ary conditions read

(V¢ n](M)=1{E, n](M). onS (1.2)
w (M) = u(M) — [U + o A OM]
= —€¢[CE[(M)/n. on S {1.3)

where n designates the unit outwarding normal and u’
a “slip velocity” (Anderson 1989) which results from
the electrically driven flow inside C. The Neumann
boundary condition (1.2) holds in the limit of a non-
conducting particle, i.e. when the double-layer (here of
vanishing thickness) do not admit charge tranfert
across it. For further details, the reader is directed to
Hunter (1981). The relation (1.3} is established within
the limit Re — 0. Finally, the governing problem
(1.1)-(1.3) for (¢.u.p) is supplemented with the fol-
lowing far field behavior



Fig. 1. A colloidal and charged particle embedded in the electric
field E,

(V,u(M),p(M))— (0,0,0) asAM —oc . (1.4)

(v) Each particle is freely suspended. In addition, for a
thin double-layer (assumption (iv)) the external elec-
tric field E., applies zero net force and torque on each
particle. Hence, the electrolyte flow produces no net
hydrodynamic force and torque on any particle. For
only one particle, these conditions read

/o’-ndSzO, [{0M/\c-n]d8=0 (1.5}

§ S
where & denotes the usual Cauchy stress tensor, i.e. for
our Newtonian electrolyte

6= —pl+ pu(Vu+'Vu) . (1.6)
In determining (U, ®) one usually proceeds as follows:

(i) First, obtain in the whole fluid domain € the pertur-
bation potential ¢ and the electrolyte flow (u, p}.

(ii) Finally, compute the stress tensor ¢ on the particle’s
surface S and deduce (U, ®) by enforcing the condi-
tions {1.5).

For a single particle of uniform zeta-potential ¢ (one
speaks of uniformly charged particle) embedded in a
uniform electric field E., such a treatment yields the
celebrated Smoluchowski result

(1.7)

Thus, the particle does not rotate and only translates
along the direction of the applied field E... This re-
markable behavior has been first derived by Smolu-
chowski (1921) for a sphere and further extended to the
case of an arbitrary shape by Morrison (1970) and
Teubner (1982). The Smoluchowski equation (1.7) pro-
vides the very first approximation of the electrophoretic
velocity of a dilute suspension of uniformly and equally
charged particles embedded in a uniform electric field.
However, determining the dependence of this velocity
upon the weak particle concentration of a suspension of
particles that present a distribution in both zeta potential
and size at least requires to investigate the interaction
effects between pair of particles. As achieved through a
microscopic model by Anderson (1981) for identical
spheres or Chen and Keh {1988) for spheres of unequal
radii, such analysis indeed accounts for the volume-
fraction effect on the average electrophorectic mobility in
a bounded and dilute suspension of particles different

24
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both in size and uniform zeta potential. Accordingly, the
interaction between two spheres has received a strong
attention in the last two decades. For two identical
spheres one can cite the pioneering work by Reed and
Morrison (1976) that makes use of the bipolar coordi-
nates but discards the allowed rotations of the spheres.
The case of different spheres has been handled for a large
center-to-center distance by a method of reflections by
Chen and Keh (1988) and for any separation distance by
Keh and Chen (1989a, b) by resorting again to the bipolar
coordinates. For equal and uniform zeta potentials all
these works found that the Smoluchowski solution (1.7}
still holds: the two spheres translate (without rotation) at
the same Smoluchowski’s velocity. As established by
Acrivos et al. (1990), this actually remains true for any
number of identical spheres of the same and uniform zeta
potential.

To the author’s very best knowledge the case of two
arbitrary particles of unequal and either uniform or non-
uniform zeta potentials has not yet been addressed. As
recently derived by Sellier (2001) two arbitrary particles
admitting the same and uniform zeta potential experience
the same Smoluchowski rigid-body motion (1.7) when
embedded in a uniform electric field E... For unequal
potentials it is worth examining the interactions between
the particles (and for uniformly charged surfaces the
corrections to the Smoluchowski prediction) versus the
separation distance, especially for near-contact particles.
The aim of this work is to present a new and general
approach that holds for arbitrary shapes, zeta potential
functions and applied electric field E,.. More precisely, the
paper is organized as follows. Section 2 derives a key linear
system that governs the two unknown rigid-body motions
of the particles. Relevant boundary integral equations are
established in Sect. 3. In Sect. 4 we detail the advocated
numerical procedure and both present and discuss nu-
merical benchmarks and new results for ellipsoids and
spheroids. Finally, a few concluding remarks close the
paper in Sect, 5.

2

The governing linear system

We consider two particles P, and P, of smooth enough
boundaries S, and S, (see Fig. 2). The total surface §
reads § = §; U S, and the Auid domain is

Q =R\ (P, UP,;US). Henceforth, Cartesian coordi-
nates (0. x,.x;.x;) and the tensor summation convention
are adopted whilst indices x or f§ belong to {1.2} and
indices i.j or v belong to {}.2.3}. Under these notations,
J, is the zeta potential of the surface &, and the particle
P, experiences a rigid-body motion {U'*". '*'} of

n
12 /1{1

S-g Sl

Fig. 2. Our notations for two particles P, and P;
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unknown velocity components U(’) U™ . ¢; and

oV = o . e,
According to the previous section, in such circum-
stances the perturbation potential ¢ fulfills the well-posed

and exterior Neumann-type problem
Ve=0inQ, Vp—>0asr— oo,
Vé-n=E.-n onS

2.1)
(22)

where r := OM. If O, designates a given point attached to ul

P,, inspecting the boundary condition (1.3) we define the
velocity field uy as

w (M) = U¥ 4 0% A 0,M - [EC;E

@ ons,

(2.3)
and the electrolyte flow (u, p) obeys the following equations
Vu=0inQ, (2.4)

Jasr—oo and u=u; onS .

Viu = Vp;

(u,p} — (0,0
(2.5)

As previously suggested, one might deduce the required
rigid-body motions (U, (")) and (U®, @®) by
expressing from (2.1)~-(2.5) the functions ¢, p and u in the
whole fluid domain € and the stress tensor ¢ on § in terms
of our twelve unknown velocity components U™ or w!*
and thereafter enforcing the counterpart of (1.5), i.e. the
twelve conditions

fe;-c-nde=0, /[e,‘AOIM]-c-ndS,:O.
S, 8y
(2.6)

With the notable exception of the two-sphere cluster (for
which the use of bipolar coordinates succeeded in pro-
viding analytical results) only a numerical treatment seems
thinkable for arbitrary particles and calculating ¢, p and u
in the whole unbounded domain Q (for instance by re-
sorting to Finite Elements) results in a costly computing
challenge. Thus, it is highly desirable to look at a whole
boundary formulation. In this paper this is achieved in two
steps:

Step 1. Prove, in this section, that one only needs to
compute a few number of relevant quantities on
the surface S.

Step 2. Show, in the next Sect. 3, that it is actually possible
to obtain those required surface quantities by
solving boundary integral equations on the
bounded surface S.

The first step rests on the exploitation of the well-known
Lorentz reciprocal identity for Stokes flow. For two arbi-
trary Stokes flows (u.p) and (u'.p’} of stress tensors
o(u.p) and ¢’'(u’.p’) and subject to the equations (2.4)-
(2.5), respectively for boundary conditions uy and u, the
following relation holds, on the surface &,

/uif-c(u.p)-ndS:/ us-o'(u.p)-ndS . (2.7)

W S

+*

Note that the establishment of (2.7) makes use of the good
decay of (u,p) and (v, p") at infinity; functions u and p
respectively behaving like 1/r and 1/r? (see, for instance,
Kim and Karrila 1991). At this stage it is fruitful to
introduce twelve specific Stokes flows (u(:) , p(Tk) ) and
(u g‘) , pg‘) } that obey the creeping motion equations
(2.4), the far-field behavior (2.5) and the boundary
conditions

Tz).i = 620 u;:).i = d,p(e; A O:M] on Sg {2.8)

where § designates the Kronecker delta. Clearly, one par-
ticle is motionless whereas the other one admits a unit
translation or rotation in the e; direction (with letters T
and R respectlvely for the translation or the rotation). For
L e {T,R}, £ = a(u*, p{"")n designates the surface
forces that arise on & for these specific Stokes flows of the
electrolyte. By successively selecting each specific Stokes
flow for (v, p’) in applying the key relation (2.7), it is
possible to cast any condition (2.6) into a more pleasant
form. For example, note that

f ;- o{u,p) -nds,

Sl
/“Eﬁ‘"- o(u.p) - nds
S
= f ug - £27as, + / ug - £207ds, (2.9)
Sl SZ

In virtue of our Def. (2.3}, the zero net hydrodynamic
force conditions in {2.6) thereafter become

f EiE £ ds = / U + 0 A0M] - £ ds,
S

+ f U + 0® A0M] - £ dS, .
Sz
(2.10)

By using the specific flows (ug"", pi’), other conditions
prescribed by (2.6) are treated in a similar fashion. Finally,
one arrives at the following linear system of twelve

equations, for the unknown velocity components

Uj(!) =yl gj and (1){1) =o' . €,

(1)djyplx) (.ij, (%) (1hd

A“)_TUJ +B( coj #/gE f ds . (2.11)
S

AU 4 B e = / CE-£77ds (2.12)
H
5

(ifprley | pillij (x) _ € f op pilii
S

AL el = [ ias e
s

where arising coefficients obey, for L € {T, R},



Ay = f g- £ ds, | (2.15)
S:
B = [ (A 0.M) £ ds (2.16)

S,

For example, the relation (2.10) readily follows from the
Eq. (2.11), for any integer i in {1,2,3}. Hence, the
generalized unknown velocity X = (U}-m, Uj(z), w}m, ;2))
obeys the system (2.11)-(2.14) of twelve linear and
algebraic equations. The associated 12 x 12 square matrix
M is termed the grand resistance matrix (see Kim and
Karrila 1991). As proved in Happel and Brenner (1973),
this matrix M is symmetric and negative-definite.
Thereby, the system (2.11)-(2.14) admits a unique solu-
tion.

Keeping in mind that E = E. — V¢, a straightforward
inspection of our system and definitions (2.15)-(2.16)
immediately reveals that one needs to compute the vectors

V¢ and fiﬂ)" on the surface S only in getting the unique
generalized velocity X. This nice feature strongly suggests
to look at a boundary formulation that would directly
prov1de those quantities on S. As the next Section shows,
this is 1ndeed possible to calculate the required quantities
V¢ and f " on S by solving thirteen boundary integral
equations. As a consequence and contrary to previous
works in the field, it is no use computing the perturbation
potential ¢ and the electrolyte flow (u, p) in the whole fluid
domain €.

3

The relevant boundary integral equations

This section presents the boundary integral equations of
interest for the proposed approach.

31

Getting the vector V¢ on S

The perturbation potential ¢ obeys the problem (2.1)-
(2.2). As the boundary condition (2.2) provides the normal
derivative of ¢, the question actually reduces to the
numerical approximation of the tangential derivatives of ¢
on the surface S. Here, this is achieved by first computing
the function ¢ on S (as the numerical solution of a
boundary integral equation) and thereafter building a
numerical estimation of the required tangential deriva-
tives. More precisely, from (2.1)-(2.2) the boundary value
of the perturbation potential is easily found to satisfy the
well-known Fredholm boundary integral equation of the
second kind

ang(M) + / ($(P) — $(M),
&5

:/[Ex'n](P) ds
J PM

If H°(S) denotes the usual Sobolev space, this well-posed
integral equation admits a unique solution in H~ 1/2(S) as
soon as E. - n € H™%(5) (see Dautray and Lions 1988).

PM - n(P)

o ds

(3.1)

3.2

Getting the surface forces f#'on S

For an arbitrary velocity data uy the Stokes flow (u,p)
solution to (2.4)-(2.5) is unique (Ladyzenskaya 1969). In
addition, for any point M of the fluid domain Q (see, for
instance, Pozrikidis 1992) the following representation
holds

uj(M) = smff Gy{P, M)dS

I
8
by
where v € {1,2,3},u4; = u - ¢.f; = e;.0 - n and the Oseen

tensor G = Gje; @ ¢; and the stress tensor
T = Tj.e; ® ¢ ® e, are given explicitly by

3 (PM-e)(PM-¢) |

Typ(P.M)n- e )(P)dS  (3.2)

Gi(P. M) = Bt PM> (3:3)
Ty (P, M) = 6(PM'e")(PrM:f)(PM'e”) . (3.4)

The first and the second integral occurring in (3.2) are
respectively termed the single-layer and the double-layer
distribution. Now we consider any rigid-body motion

U + @ A OgM of the same electrolyte in the interior of the
particle Pg. Such a bounded flow is actually a Stokes flow
of constant pressure p and stress tensor ¢ = —pl. Any
point M of the fluid domain Q is located outside the in-
terior of P; and thereafter (see Eq. (2.3.4) in Pozrikidis
1992} one obtains

0= f ([U + @ A OgP) - &) T;u(P, M)[n - &,](P)dSg
S_u

_ﬁ / ni(P)Gyj(P, M)dSs .

Sp

(3.5)

Because the Oseen tensor G is divergence free, the last
integral arising on the right-hand side of (3.5) actually
vanishes for any location of the point M. In other words,
the key identity

/ TI,'(P)G,'}'(P. M)dS,; =0

S'lj

(3.6)

holds for a point M located outside the particle Pg, right
on the surface §; or inside the particle. Thus, for any
rigid-body U + @ A OsM one obtains, for M lying in the
fluid domain €,

/ ([U + @ A OgP] - &) Tyo(P. M)[n - €,](P)dS; = 0 .
Sg

(3.7)

Accordingly, for any specific Stokes flow (u}™, pi™")

that satisfies a rigid-body motion type boundary
condition on S| and S, (see (2.8)) the double-layer term
arising in (3.2) vanishes and the velocity representation
becomes
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1

P f (E21(P) - e,G,(P, M)dS

(1)1
M) =~
€ty ( ) 8
8

(3.8)

One thereafter speaks of single-layer representation for
our twelve specific Stokes flow in the fluid domain . Since
this single-layer is actually continuous as the point M
crosses the boundary S, the Eq. (3.8) is also valid on the
boundary &, U S;. This remark immediately yields the
Fredholm boundary integral equations of the first kind

/ {PM+(PM &) (PM - ev)}[f“‘” °}(p)

PM3 8my
s
= ¢l(M) for M on S.

(3.9)

Those integral equations govern the required surface
tractions f( ¥ on & for our twelve specific Stokes flows, At
this stage, the existence and uniqueness of solution of (3.9)
become of theoretical importance. Multiplying (3.9) on
any surface Sy by the normal vector n, integrating on S
and switching the integrations on S and Sg, and finally
exploiting the identity (3.6) easily yields the integral con-
straints for the right-hand side of (3.9)

f[uf')""n]dsﬂ =0, le{l,2}. (3.10)
Sy

Prescribed boundary conditions (2.8) actually ensure that
those constraints are met for our specific Stokes flow and
it is worth investigating the existence of eigensolutions q
of the corresponding homogeneous integral equation, i.e
such that

f[q -&,](P)G;(P,M)d§ =0, forMonS . (3.11)

In virtue of (3.6), for any constant and real values 4, and
4y the function q(4,, 4;) defined as

q(;-l:}d) = Zln on 81. q(;-la /:2) = /:.zl'l on Sz ,

(3.12)

is an eigensolution. Conversely, arguments similar to those
invoked by Pozrikidis (1992) in the case of a simply-
connected surface S show that any eigensolution is of the
present form (3.12). In summary, each integral equation
(3.9) admlts an infinity of solutlons

£, = g7 + q(41. 73) where g denotes any particular
solution. However, the special form (3.12) of any eigen-
function q(4;. 4) together with the enforced boundary
condition (2.2) ensure that the right-hand sides of our
governing system (2.11)-(2.14), its associated matrix M
(inspect definitions (2.15)-(2. 16)) and thereby its unique
solution X = (U, U™, J” *1Y do not depend upon
the choice of the selected solutions £,

4

Numerical strategy and numerical results

As previously outlined, the general case of two particles of
arbitrary shapes and configurations imposes to resort to a

numerical treatment. This section first presents a numer-
ical method without restriction on the shapes and con-
figurations of the particles and finally both gives and
discusses numerical results for two ellipsoids of uniform
zeta potentials.

4.1

A boundary element method

Our thirteen boundary integral equations (3.1) and {3.9)
are discretized by using an isoparametric boundary ele-
ment method: each unknown is interpolated on § from a
finite set of boundary values at the nodes of a surface
mesh. We briefly describe the main steps of the procedure
implementation and refer the reader for further details to
the standard textbooks (see, among others, Brebbia 1994,
Beskos 1987 and Bonnet 1999).

Step 1. Discretize each surface S, into N(x)} sux node
triangular and curvilinear boundary elements A with
ec{l,.. («)}. This is achieved by using a Nd( Y-node
mesh on S and each boundary element Ai") is mapped to
the standard triangle A of inequations 0 < ¢, < 1,

0<¢ <1land¢; +¢&; <1 in plane Cartesian and
intrinsic coordinates ¢ = (&), ¢,) by the following six
quadratic shape functions M, defined, for g € {1,...,6}

and &3:=1—¢&, — &5, as

M(S) = (28— 1)&,  Ma(S) = 46,45 (4.1)
M;(&) = (26, —1)¢;, My(Q) = 4C_1Cz ) (4.2)
Ms(S) = (28, — 1)&,, Mg(E) = 48345 (4.3)

Accordmgly, each boundary element A{? is characterized
by its six nodes Y7 (three corners and three mldSldes)
and any point P(¢) on A %), of intrinsic coordinates &, is
given by

&)0,Y,P (4.4)

IIMO\

Step 2. Each mtegraI equation of unknown quantity F is
evaluated at any node M{n)} with 1 < n < Ny(1) + Ny(2). If
Fr denotes the restriction of F to S), one has to approximate
in any case the following integral

LM(n)] = / Fy(P)K[P, M(n)]ds,
Sy

(4.5)

where K is a kernel of 1/PM type weak singularity, The
previous boundary discretization of S, and the isopara-
metric interpolation

F[P()] = ZM (HFP P = F (Y] (4.6)
of F, on &, readily yield
Nelah 6
L{M(n) = > Zc‘fﬂ’[M n)F2e (4.7)
e=1 g=
CDM(n)) = f K[Z. M(n)][MJ*")(3)d¢ (4.8)

Aili



where J(*) designates the Jacobian of the mapping (4.4)
from our Cartesian coordinates x;(P} = OP - ¢; to the in-
trinsic coordinates ¢. Gaussian integration formulas es-
tablished by Lyness and ]espersen (1975) are employed in
approximating each integral Ci*¥ [M(n)] with two different
circumstances:

(i) If our node M(n) lies on the boundary element A,
the encountered weak singularity is removed by
resorting to polar coordinates in the space of intrinsic
coordinates & (see Bonnet 1999).

(ii) If M(n) lies outside A'* the regular integral
C¥¥{M(n)] is computed by using more or less refined
Gauss integration formulas (the chosen formulas
depend upon a “severity” parameter that takes into
account the distance from the boundary element
(see Rezahat et al. 1986).

Step 3. If Ny = N4(1) + Na(2) each integral equation
thereafter becomes a linear system AX =Y of fully pop-
ulated and non-symmetric square Ny x Ny {for Eq. (3.1))
or 3Ny x 3Ny (for Egs, (3.9)) influence matrix A, For our
two-particle cluster it is possible to store the matrix A.
Thus, each system AX =Y is solved by resorting to a
standard LU factorization algorithm (subroutines
DGETRF and DGETRS of the Lapack Library).

This procedure is quite suitable for the integral equa-
tion (3.1} which is of the second kind and admits a unique
solution. As highlighted by our theoretical analysis of
Sect. 3.2, the integral equations (3.9) do not have a unique
solution and this suggests numerical troubles. On a
theoretical ground we face with ill-conditioned boundary
integral equations of the first kind but in practice this
ill-posedness is not apparent unless very fine meshes are
used {see Tran-Cong and Phan-Thien 1989; Pozrikidis
1992): the computed influence matrix A associated to the
discretized boundary equations (3.9) is nonsingular.

Finally any surface integration that occurs in calculating
the matrix M and the right-hand sides of our system
(2.11)-(2.14) is performed with seven Gauss points on
each boundary element A"

The proposed boundary element method holds for any
particles shapes and configurations: one only needs a mesh
for any surface S,. Henceforth, we actually restrict our
attention to the case of two ellipsoids. More precisely, each
surface &, admits the equation

X2 g -]
2ttt a2
i

7 2
by o

with 00, = x3(%)es. Thus, the vector e; is directed along
the line of centers O, and O,. The center-to-center distance
d = ,0; equals ¢; + ¢, for touching particles and is
greater than ¢, + ¢; for separated ellipsoids. For elliptical
angles ), € {0.27] and ¢, € [0. 7] such that

{4.10)
(4.11)
we discretize S, by employing the following two-parame-

ter Ny(2) - node mesh of N,(x) boundary elements
(characterized by two positive integers E{x) and

No(x) = 3))

x| = @ sing, cosf,.x; = bysing, sin8;, .

x3 — x3(%) = ¢, cos @,

0, = 2m(xy — 1}/ Np(a),
Np(2) = 12 x 250

@, = map/[2Np(x)} . (4.12)

(4.13)

for positive integers %y and =, that obey the conditions

1 <oy < Np(a) if 2< 0, 2[NG(%)—1] , (4.14)
Lz@— 1}, %, € {1.2Ny(z) — 1} .

Ap N
—=keq0,...
s _ie o

(4.15)
Under this choice, one immediately obtains
Ny(2) = 2{1 + No(2)[Np(2) — 1]} . (4.16)
Ny(%) = Na(2)[N,(2) — 1], Ny(z) = 12 x 28

(4.17)

Henceforth, the notation Ny{x} = [N, (2}. E{%)} means that
{4.16)-(4.17) hold.

4.2

Numerical comparisons

In this whole subsection the external field E.. and the zeta
potentials ; and {, are uniform. Two benchmarks are
proposed.

{i) The case {, = ;. Int such circumstances, each charged
ellipsoid experiences the Smoluchowski rigid-body trans-
lation (1.7) whatever the separation distance d! This the-
oretical result, first obtained for any number of identical
spheres by Acrivos et al. (1990) and recently extended by
Sellier (2001) to the case of arbitrary shapes, provides a
nice numerical test. We set {| = {; = { # 0, impose

E. = e, + e; + e; and look at the electrophoretic mobili-
ties

U™ e

u(.:t) = V.
¢ EC[Ex . e,-} ’ !

po'™ - e

x ) 4.138
e([Ex - & (4.18)

where r, = max(a1 b,.c,). Theoretical results predict that

u;” =1 and vf = 0 for any center-to-center dlstance d.
In Table la-c we list the computed values of u * for two
ellipsoids defined by a; = 1.2.5, =08.¢, = 1. O a, = 0.8.
b =10and c; = 1.2.x3(2) =0 and d = x3(1) > 2.2. In
this case d > 2.2. For only 74 collocation points on any
surface &, a one percent accuracy is observed in the whole
range d > 2.4. For d > 5, the numerical errors, incurred
by these surface meshes, do not depend on d. As expected,
for close particles (as soon as the distance between particle
surfaces becomes comparable to our mesh size) the ac-
curacy both depends on d and deteriorates. As indicated in
Table 1b,c, the use of more and more refined Ny(x)-node
surface meshes makes it possible to obtain, if required,
e}((xc’ellent approximations of each electrophoretic mobility

D

As shown in Table 2, similar trends are obtained for the

mobilities v(i". The use of 74-node surface meshes yields a
ONe percent accuracy.

(ii) The case J; # 5. In virtue of (2.1)-(2.2), the resulting
electric field E is a linear function of E.. Using the de-
compositions
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Table 1. Computed mobilities u* for two ellipsoids with
a = 1.2, b[ = 08, =10, a = 0.8, bz = 1.0, c; = 1.2 and
x3(2) =0, d= x3(1) > 2.2

)

Table 2. Computed mobilities v\ for our ellipsoids with
ar=12,6=108,¢,=10,a, =08, b, = 1.0, ¢c; = 1.2 and

X3(2) =0,d= x;(I) >22

N N B
(a) Case Ng(1) = Ng(2) = 74 = [4, 0]
24 1.0076 1.0110 1.0059 1.0136 1.0071 1.0084
5 1.0087 1.0095 1.0077  1.0112 1.0076 1.0063
10 1.0087 1.0096 1.0076 1.0113 1.0077 1.0063
{b) Case Nz(1} = Nu(2) = 242 = [6, 1]
23  1.0003 1.0024 0.9995 1.0030 1.0010 1.0018
24 1.0005 1.0011 1.0004 1.0015 1.0007 1.0011
5 1.0008 1.0009 1.0007 1.0009 1.0007 1.0007
1¢  1.0008 1.0009 1.0006 1.0009 1.0007  1.0006
30 1.0008 1.0009 1.0006 1.0009  1.0007  1.0006
100 1.0008 1.0009 1.0006 1.0009  1.0007 1.0006
(c) Case Nu(1) = Ny(2) = 434 = {10, 1]
2.3 1.0002 1.0005 1.0002 1.0008 1.0003 1.0005
24 1.0002 1.0003 1.0003 1.0004 1.0002 1.0004
5 1.6002 1.0003 1.0003 1.0004 1.0002 1.0004
10 1.0002 1.0003 1.0003 1.0004 1.0002 1.0004
+ —_
(1:(:1 - C2+(_1)oc+l &) . G2 ’ (4.19)

the previous extension of the Smoluchowski solution
for particles of the same and uniform zeta potentials
(¢1 +¢2)/2 and inspecting the governing system (2.11)-
(2.14) reveals that

O+ G =8 )
U STy bl T ooy g
L P e - ks
(4.20)
~1)% . .
ot = (1 (CETEY) LN (4.21)
where I(TI) and IE:) respectively denote interaction tensors

between the particule P, and the other one. Indeed, the
corrections to Smoluchowski’s results are given by (4.21)
and
U _ f&Ex _ (=1)%
It U
Above results (4.20), (4.22) hold for any two-particle
cluster of uniformly charged particles (when embedded
in a uniform electric field E, ). Such behaviors (interac-
tion terms linear in the difference {, — {;} have been
established for two-sphere clusters only by Reed and
Morrison (1976} for two equal-size spheres and Keh and
Chen (1989a, b) for arbitrary spheres. For two spheres P,
and P; respectively of radius r, and r, and such that
d = x3(1) — %3(2) > r, + 3, those authors found that
If,f) -3 =0.ek-Ig.’”-e3 =0.e;-I(Tx)-ek=0 if i # k for
i€ {1.2.3} and k € {1.2} and calculated the following
interaction coefficients

(= By . (422)

Ni; = re; - Ig).el, M =¢ -I(T” ey =€y Ig.” -e;
(4.23)

M, =e;- I;'” ey, M =e;- I{Tz) ey (4.24)

d Na(1) = Na(2) max|v*| (ims )
for (im, %m)
2.3 242 = [6,1] 721E~3 (2,2)
2.3 434 = [10,1] 1.48E - 3 (2,2)
2.4 74 = [4,0] 1.06E — 2 (2,2)
24 242 = [6,1] 222E-3 (2, 2)
2.4 434 = [10,1] 3.00E - 4 (2, 2)
5 74 = [4,0] 1.55E — 3 {1, 3)
5 242 = [6,1] 4.68E — 4 (1, 3)
5 434 = [10,1] 2.88E — 4 (1, 3)
10 74 = [4,0] 1.55E - 3 (1, 3)
10 242 = {51} 4.68F ~ 4 (1,3
10 434 = [10,1] 2.88E - 4 (1, 3
30 242 = [6,1] 4.80E — 4 (1, 3)
100 242 = [6,1} 4.80E - 4 {1, 3}

for different ratio r,/r; and dimensionless separation
parameter
1= n+r
d
In evaluating N3, M;; and M, we select {, =0 and {, = 1
whilst M}, is obtained by choosing {, =1 and ¢, = 0.

Each computed coefficient is compared to its exact
value (see Keh and Chen 1989a, b). As suggested by our
previous comparisons for {; = {,, we start with 74-node
surface meshes. For r;/r; € {0.5,1.2} this choice yields
fine results (of 0.1% and 0.01% accuracy for (M, My;)
and (M3, Ny;) respectively; see Tables 3 and 4) in the
range £ > 0.8. However, as the gap thickness between
spheres approaches zero (for 4 - 1) our meshes become
too coarse and this results in discrepancies, especially
for r;/r, = 5. As shown in Table 5, mesh refinement
makes it possible to remedy, if needed, to this loss of
accuracy.

For symmetry reasons, ifry/m ol then M|, = M, and
Nz[ = I’zIR -8 = —Nu,Mgl = IT -ep = M. HOWEVEI’,
our numerical treatment differs for our identical spheres,
at least because of the LU factorization algorithm and this
yields non-zero computed quantities M;, — M},. Nj; + Ny
and M,; — M;;. As indicated in Table 3 for the difference
M), — M,,, our numerical scheme was actually found to
preserve the required symmetry properties up to five digits
even using 74 collocation points on each sphere, For ex-
ample, one actually obtains M}, = 0.1055108 and
Mj, = 0.1055078 if 2 = 0.8. Note that for r; = r, = 1 the
functions M, = M}, is plotted versus /. in Fig, 3.

(4.25)

4.3

Numerical results for ellipsoids

The present method makes it possible to deal with parti-
cles of arbitrary shapes and potentials. For example, it is
worth examining the dependence versus the center-to-
center distance d = 0,0; of our interaction tensors I‘Tx)
and I3 for two uniformly charged ellipsoids embedded in
a uniform electric field E. First, we consider two ellip-
soids P, and P, such that (remind (4.9))



Table 3. Computed interaction coefficients M{, and M}, for two

Table 5. Effects of mesh refinement for two near-touching

spheres and Ny(1) = Ny(2) = 74 = [4,0] spheres with Ny, = Ny(1) = Ny4(2) and nry/r; = 2.0/0.4
z i Computed values Exact values N i My, M;,
M, M, M, M, 242 = [6,1] 0.8 0.31567 0.00484
530 = [12,1] 0.8 0.32275 0.00486
0.2 000101 000101 000101 000101 o 08 0.32237 0.00486
. ! . .03288 0.032
10 08 01051  O0ss1  Olosss  o.loaes M- E)’zl]l] o9 da31ee 000802
' . : ) . 20969 s - : ¥
0.9 0.19749 0.19749 0.20969 0.2 Exact 0.9 0.51300 0.00783
0.2 0.00238 0.00030 0.00238 06.00030
0.6 0.06859 0.01102 0.06975 0.01111
% 0.8 0.19291 0.03653 0.20588 0.03729
0.9 0.33907 0.06893 0.37465 0.06985
0.2 0.00465 0.00004 0.00463 0.00004
0.6 0.12060 0.00157 0.12708 0.00159
{%] 0.8 0.27417 0.00481 0.32237 0.00486 .
0.9 0.43166 0.00802 0.51300 0.00783

Table 4. Computed interaction coefficients M,; and N, for two
spheres and Ny(1) = Ny(2) = 74 = [4,0]

2 A Computed values Exact values
—M, Ni —M; Ni;
0.2 0.00015 1.06E-6 0.00015 3.56E-7
0.6 0.00439 0.00085 0.00402 0.00087
0 08 001313  0.00689 0.01319  0.00714
0.9 0.02381 0.01728 0.02435 0.01829
0.2 0.00050 9.12E-7 0.00050 3.87E-7
0.6 0.01406 0.00106 0.01395 0.00109
% 0.8 0.03745 0.00944 0.03747 0.01063
0.9 0.06339 0.02613 0.06536 0.03274
0.2 0.00119 1.06E-6 0.00119 1.75E-7
0.6 0.03284 0.00046 0.03229 0.00065
3208 0.08247  0.00414 0.08079 0.00878
0.9 0.13011 0.01488 0.13066 0.03572
a; = 1.2, bl = {.8. ¢, = 1.0, X3(l) =d>22 s
{4.26)
a> = 0.8, bz = 1.0, e =1.2, JC3(2) =0.
(4.27)

This configuration readily admits (O.x;.x;) and also
{0, x3,x3) as planes of symrnetry Accordingly, many in-
teraction coefficients e; - I, - ¢; vanish, for L € {T.R}.
The non-zero terms
T =6 1 ey, S

T = (4.28)

R¥ =e, 107 ¢ (4.29)

for m & {1,2} and k € {1.2}, only depend on the di-
mensionless separation parameter

/kC1+C2
) d

As suggested by the previous Sect. 2, we use only 74 col-
location points .on each ellipsoid and compute our non-
zero quantities e; - IL - €; by selecting ({;,{;) =(0.1) o
($1.¢2) = (1,0) respectively for x =1 or x = 2. Computed
results are plotted, versus /, in Figs. 3-5. Each interaction

(4.30)

1.0

Fig. 3. Interactions coefficients Tu) (see definition (4.28)) versus
the separation variable /. Coefﬁctent M, = M}, for equal-size
SF(D%’])CI‘ES with r, = r;: (»?). Coefficient T;_l,': (O) and coefficient
T33: (@)

coefficient is seen to dramatically increase in magnitude as
the surface-to-surface spacing gets close to zero (4 — 1)
but is still large relative to the Debye length x~'. These
behaviors result in strong interactions for close enough
ellipsoids. Contrary to the case of two identical spheres
(see Fig. 3) interaction coefficients I 3) and 133) {slightly)
differ. For particles more d1fferent in size, one expects
larger differences |} — i)

For two spheres of unit radii, one obtains Ny, = R(l;) =
Rz1 = —Rlz = —RZI) = —Nj,. As shown in Fig. 5, this is
not at all the case for our ellipsoids (the coefficient Rf,_ll is
weak in the whole investigated domain 2 < 0.9).

Of course, the strong dependence of the interaction
coefficients upon the center-to-center distance d induces
large variations of the electrophoretic mobilities u( and
vg ' (see Def, (4.18)), For example, if we choose {; = 1 and
{» = 1, mobilities u} and u{?" are plotted versus d in
Figs. 6 and 7 respectively for different values of 5. Those
electrophorectic mobilities clearly deeply depend on d for
close ellipsoids.The first ellipsoid P, (see Fig. 6) is speeded
up or slowed down {with respect to the Smoluchowski
solution) by the motion of the second one as soonasy > 1
or n < 1 respectively. For  negative and near contact
particles {see, in Fig. 6, the curve pertaining to the case
i = —5), the first ellipsoid may even experience a zero or
negative mobility, i.e. change its direction of motion! On
the contrary (see Fig. 7), the ellipsoid P; is slowed down
by P, whatever 5 and d.
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Fig. 4. Interactions coefficients T;E:), for k € {1,2}, versus the
separation variable i. Product 1012‘;’ : (O), product lOTg): (@),
product IOT“): {C1) and product IOTﬁ): »)
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Fig. 5. Interactions coefficients Rf:,i, for k # m, versus the sepa-
ration variable /. Product IOR{;’: (O), product lOREz): (@),

product IORS): () and product IORS,ZI): (™)

Finally we consider the case of identical spheroids. Two
configurations are addressed:

(i) First configuration. Here we choose
A =ay=b =by=10,¢, =, = 2.0 and
d = x3(1) — x3(2) > 4.0, Again, for symmetry reasons
the only non-zero interaction terms are still given by
{4.28)~(4.29) and we set

Ty =T = 11 | (4.31)

T =Ty =T = 1)) = 17 . (4.32)
(ii) Second configuration. This time

ty = a3 = Z.O.bl = bg =0 =¢ = 1.0and

d = x3(1) ~ x3(2) > 2.0. In this case we look at the

following non-zero coefficients

t (1) (2)
Ty = Ty = IET

f el p(2) . (1 (2)
I =T, = I, Téz = Tzz) =T .

A 170-node mesh is used for each spheroid
(N4(1) = Na(2) = [8,0]) and the dependence of the

(4.33)
(4.34)

16
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Fig. 6. Normalized electrophoretic mobility ugn versus the cen-
ter-to-center distance d for {, = 1 and G2 =n-(x}n =5 (O}
n=3.(Akn=0,(0):9=-1,(™):n=-3and (@):n=—5
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d
Fig. 7. Normalized electrophoretic mobility ugl’ versus the cen-
ter-to-center distance d for {, = 1 and =0 (%):g =5 (O
H=3%0knp=-1land (P} y=-3

computed coefficients upon the separation variable
4= (e + ¢;)/d is illustrated in Figs. 8 and 9,

As revealed by Fig. 8 and 9, the behavior of one
spheroid deeply depends upon the selected configuration:
the differences Ts; — T}, and Ty, ~ T}, become large as the
center-to-center distance d decreases.

5

Conduding remarks

Usually, one determines the electrophoretic motion of a
two-particle cluster by calculating the perturbation electric
potential and the electrolyte flow in the whole fluid do-
main. Such a task seems possible only for spheres and
actually becomes a great numerical challenge in case of
arbitrary configurations and shapes of the particles. The
approach proposed in the present paper is free from these
drawbacks and permits us to compute, at a reasonable
cost, the rigid-body motion of any particle which may be
of non-uniform zeta potential and embedded in a uniform
or non-uniform electric field E.. Our method rests on the
establishment and the numerical treatment of thirteen
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Fig. 8. Interactions coefficients Ti7, versus the separation vari-
able 4, for two identical spheroids. Coefficient T33: (C) and co-
efficient T{;: (@)

boundary integral equations. The proposed numerical
results perfectly agree with available analytical results for
two-sphere clusters. For uniformly charged ellipsoids the
interaction coefficients are found to deeply depend on the
selected configuration.

In applications of electrophoresis, one usually encoun-
ters clusters of more than two particles. The advocated
method is likely to apply to such circumstances. Such a
task, which makes use of iterative methods and multipole
approximations, is in current investigation.
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