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Electrophoresis of an insulating particle near a plane boundary
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Abstract

This work presents a new procedure to determine the electrophoretic motion of a solid and insulating particle 2 freely suspended in a
viscous electrolyte in proximity of a plane boundary Z. The applied electric field E , is uniform and either parallel or normal to the plane
wall. The advocated approach applies to the general case of a particle of arbitrarily smooth shape and zeta potential {. Our method actually
rests on the treatment of seven Fredholm boundary integral equations on the particle’s surface and circumvents the computation of the electric
field and the electrolyte flow in the whole fluid domain. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider a rigid and charged particle 2, which is
freely suspended in a viscous electrolyte of constant dielec-
tric permittivity € and viscosity g The surface & of 2 is
nonconducting. Under the application of an extemal electric
field E ., the particle experiences a rigid-body motion of
unknown transfational velocity U (which is the velocity of
one point O attached to 2 see Fig. 1) and angular velocity
w. This motion, termed as electrophoresis, admits basic
applications in chemical engineering and biology. There-
fore, the determination of (U, w) has received considerable
attention in the last decade. Within the widely employed
model of the “thin double layer,” the required rigid-body
motion (U, w) of a single particle 2 only depends upon the
ratio €/u, the external electric field E _ and the so-called
“zeta potential” ¢ of the particle’s surface % (which may
actually be closely related to the charged density prevailing
on % [1]). For a single particle, the simplest theoretical
result is obtained for a particle of uniform zeta potential
embedded in a uniform ¢lectric field E .. Under these rather
strong assumptions, the well-known Smoluchowski solution
reads:
SE.. w=0 (1.1)
I
The simple solution (Eq. (1.1)} holds for a uniformly
charged (J uniform) particle of arbitrary shape embedded
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in a uniform electric field E. [2--4]. In the electrodeposi-
tion of colloids at metailic electrodes, boundary—particle
interactions may strongly affect the Smoluchowski solution
for a close enough electrode. Thus, several works examine,
but for a sphere of uniform zeta potential { only, wall effects
of a plane boundary 2 (normal to e;; see Fig. 1) on
Smoluchowski’s solution. Two different cases actually
occur:

Case 1. E _=Fe, is parallel to the plane boundary X, which
is an insulating surface of uniform zeta potential .

Case 2.E =Fe; is normal to a conducting and plane
boundary X of uniform electrostatic potential.

In both cases, the nonzero quantity £ is either positive or
negative.

As previously mentioned, several works discuss the case
of the spherical particle of uniform zeta potential ;. Case 2
has been addressed by resorting to spherical bipolar coor-
dinates in a pioneering work by Morrison and Stuckel [5].
Using the method of reflections, Keh and Anderson [6]
obtained, for both Cases 1 and 2. accurate expansions of the
translational velocity U in terms of the ratio / of particle
radius to the distance of its center to the boundary, However,
these authors assumed that the sphete translates without
rotation (this assumption breaks down in Case 1). Note that
Keh and Chen [7] also handled Case | but allowed this time
a rotation of the sphere. Finally, numerical results are
available in Keh and Lien [8] for Case 2.
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Fig. 1. A rigid particle near a plane boundary Xix;=—h} with /2> 0.

To the author’s very best knowledge, the more general
case of a nonuniformly charged particle of arbitrary shape
has not yet been addressed. Even for a single particle, only a
few papers deal with the case of a nonuniform function {. In
this direction, one should mention the results of Anderson
[9] for a single sphere of arbitrary zeta potential and the
solution derived by Fair and Anderson [10] for spheroids of
axisymmetric zeta potential distributions.

This paper briefly introduces a new method that makes it
possible to determine the required rigid-body motion (U, w)
for a particle of arbitrary shape and zeta potentiai { in both
Cases 1 and 2. Ounly the main steps of the advocated
approach and our very first numerical results are presented.

2. Governing equations

The particle # is rigid and freely suspended in the
viscous electrolyte occupying the semi-infinite domain
(see the Fig. 1). Its nonconducting boundary % is a smooth
enough surface {n designates the unit outwards the normal)
of given zeta potential {. Henceforth, the usual tensor
summation convention and Cartesian coordinates (O, x|,
X», x3) are adopted with OM=x;e;. The plane boundary X
admits the equation x;=—# with #>0 and is large encugh (so
that our particle indeed lies above the plane wall). Finally,
{. denotes the uniform zeta potential of the proximal
boundary ¥ in Case 1. The perturbation potential ¢ and
the electrolyte flow (u, p) respectively obey the harmonic
equation and the quasi-static creeping flow equations in the
fluid domain [1], i.e.

Vig=0 V-u=0, uVu=VpinQ (2.1)

Those equations are supplemented with the following boun-
dary conditions {6]:

Vé-n=E_ -n and

w

u=U+w/\0M—i—f[Et~v¢] on ¥, (2.2)
Eow

u=— P e, De +e el

(E. — ¥¢) on X for Case 1, (2.3)

Vo e3=00n %, (Véup) — (0 ——E-CLE,,,O)

as OM — o for Case |, (2.4)
¢=0 and wu=0o0n2,

{(V¢,u,p) — (0,0,0) as OM — » for Case 2. (2.5)

Since the particle ‘surface’ encloses a neutral body, the
electric field E ., produces zero net force and torque on 2,
Thus, the net force and the torque exerted by the fluid on the
freely suspended particle must vanish. One thereafter dedu-
ces six conditions for the unknown velocity components
U;=U-¢; and w;=w-e;. Upon introducing, for i€{l, 2, 3}
and LE{T R} six spec1ﬁc Stokes flows (u}”, pi”) of
stress tensors o} that vanish far from the particle and
fulfill the boundary conditions:

ugr) = uR =0on 2,

u(;) =¢ and uﬁa] =¢; AOM on &, {2.6)

and extending to the case of our semi-infinite flow
domain @ the usual Lorentz reciprocal theorem (see Ref.
[11]). one finally arrives at the key linear system:

KU+ Cyoy == [ 0 (EL- Vo) fiar. @)
N

€ “t i
DU + Q0 =ﬁf J(E. — Vo) -1 d, (2.8)
N
where {' = {~{,, for Case 1. &' = { for Case 2. f""=
o'n on ¥ and

(i
K”:f ej'o';'ﬂdy,
v

Q= f (e, AOM] - oy - nd &, (2.9)
v

C,,:] [e, AOM]- o - nd ¥,
M

Dif:f e oy -nds.

Since itg associated 6x6 square matrix is symmetric
and negative-definite [11]. the previous system (Egs.
{2.7) and (2.8)) admits. in any case. a unique solution
X=(U,. Us, Us. o). m-. ;). The important message
delivered by Eqs. (2.7)-(2.10) is that one only needs
to evaluate the quantities f;” and V¢ on & in
determining the nigid-body motion (U. w).

(2.10)

3. Relevant houndary integral equations

This section presents seven boundary integral equations
that permit us to compute the previously alluded to the
quantities on %. Since ¢ is harmonic in £ and obeys the
boundary condition Egs. (2.2), (2.4) and {2.5). its value on
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Table 1

Nommalized quantity (1) in Case |

A N=14 N=242 N=530 Keh and Chen
0.1 1.00893 1.00072 1.60012 0.99994

03 1.00754 0.99931 0.99872 0.99853

0.5 1.00349 0.99526 0.993467 0.99448

0.7 0.99768 0.98986 0.98933 0.98915

0.9 0.99718 0.99549 0.99790 0.99789

% is governed by the well-posed Fredholm boundary
integral equation of the second kind:

~arp) + [ 166) - o)

+(- 1)’*'] P(P PM’ ()dyp

M’3
- [ Ene {5+

where M’ (x,, xa, —2h—x;} denotes the symmetric of M(x,,
X3, X3} with respect to the plane wall X, and the integer §
refers to the addressed case (select j=1 for Case | and j=2
for Case 2). A numerical treatment of Eq. (3.1) makes it
possible to approximate the tangential derivatives of ¢ on
the surface & where V¢-n=E _-n. One thereafter computes
the required vector V¢ on & by solving Eq. (3.1). In
addition, each surface force fm is found to satisfy the
Fredholm boundary integral equation of the first kind:

d¥p

(—l)f'*’#}d% (3.1)

—8nu [uf’ -ej] (M)

= f G} (P.M) [ff’-ek](P)d.sﬂp on % (3.2)

where G’(P, M)=G,"(P, M)e;Ze, designates the Green
tensor derived by Blake [12] that vanishes on the plane
boundary, i.e. GIA(P M= G,dM P) 0 as soon as P belongs
to X. More precisely, G,,\ G,\+G,A and G,A, G_,,k read:

GY(P.M) = 0u/PM + (PM - ¢)(PM - e,)/PM*.  (3.3)

GY(P.M) = ~GL(P.M) — 2 {(AM  e1) ,"PM'—“]

x {aﬂ.:PM'- e — 5, PM ¢, + AP - e

X [(s,k ~3(PM' &) (PM - &) /PM':] }
(3.4)

with ¢;=¢>=1, ¢;=—1 and AO=he; (see Fig. 1}.

Thus, one has only to solve six boundary integral
equations (Eq. (3.2)) in getting the required surface forces
fi) on &

4. Numerical method and results

Each encountered boundary integral equation, Eq. (3.1) or
(3.2), is numerically solved by resorting to a standard
boundary ¢lement method. More precisely, isoparametric
curvilinear and triangular boundary elements are employed
in discretizing . This results in an N-node mesh for &,
Each discretized boundary integral thereafier becomes a
linear matrix system AX=Y whose N’ XN’ square matrix is
unsymmetrical and fully populated (¥’ =V for Eq. (3.1) and
N'=3N for Eq. (3.2)). Finally, each dicretized linear system
AX=Y is solved by applying an LU factorization algorithm.

For our very first numerical results, the attention is
restricted to the case of a sphere of radius a<h. However,
the approach proposed in this work applies to any smooth
enough boundary %. Let us introduce, for our spherical
particle 2, the separation parameter /<] as:

de=afh < 1. (4.1)

We look at the dependence of the velocity components U
and w; upon A for several zeta potential functions {. First,
we assume that { is uniform. As has been already addressed
in previous works (see Introduction}, this choice actually
provides nice benchmarks in testing the accuracy of the
ptesent approach.

4.1, Case |

In this case, E .=Fe, and  ={—{,. The only nonzero
velocity components are U{7) and w»(Z). In Table 1,
comparisons of our numerical approximations against the
theoretical results of Keh and Chen [7] are given for several
N-node meshes on the sphere of radius a and a few values of
the separation parameter ;. We actually compared the
normalized quantities:

1l (4)
6(‘: - ‘:\\')E1

ape( )

l![().):: Q:(/):m (42)

Clearly, the use of more and more refined meshes makes it
possible to obtain excellent agreement with Keh and Chen
[7]. The choice of =530 nodes is seen to ensure a very
good approximation in the whole range 2<[0.1, 0.9]. If €2
is seen to be highly sensitive to the separation parameter 2
(see Table 2). the translational normalized velocity com-
ponent i1, exhibits a very weak sensitivity to the influence

Table 2

Normalized quantity £2-¢2) in Case |

/ N=T4 MN=242 N=330 Keh and Chen
0.1 —0.060021 —0.000019 -0.000019 —0.000019
0.3 —0.001533 —0.001535 -0.001334 —0.001335
0.5 -0.012316 —0.012356 -0.012325 -0.012333
0.7 —0.053154 —0.05506% —0.052978 —0.053007
0.9 —0.207664 —0.020722 —0.203950 —-0.203891
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of the wall (see Table 1). In order to track this weak

dependence, it is thereafter essential to use a refined mesh
on %,

4.2, Case 2

In this case, E =Fe; and ' ={. The only nonzero
velocity component is {/;. Comparisons with the results of
Keh and Lien [8] for the normalized velocity us(A)=uUs(L)/
[elE] are listed in Table 3. Again, the 530-node mesh
ensures accurate enough results,

In summary, a sphere of uniform zeta potential transiates
in the direction of the applied electric field E . for any
location of the proximal plane boundary. However, this
simple behavior does not hold any more for a nonuniformly
charged sphere! This was already obtained for a single
sphere by Anderson [9]. For example, we set:

. U
CI’ ==C0i: Ci == %! H;‘ (A):=#EEJ‘§:) *
Q (4)= ——a‘[:;fc(o't) , (4.3)

where ¢ denotes a given, uniform and nonzero zeta poten-
tial. Selecting the functions {{ and {3, the reader may easily
check by using the material in Ref. [9] that u} (0)=; (0)=0
for both Cases 1 and 2 except the normalized velocity Q4
that equals —3/4 if {’ =, for Case 2 and (' ={; for Case 1. It
is now worth examining the values of our normalized
velocities u/ (4) and £/ (4) in proximity of the plane wall
(4>0) when {’ equals J{ or {§. The 530-node surface mesh
is employed and oniy the nonzero functions are displayed in
Figs. 2 and 3.

As depicted in Fig. 2, each nonzero normalized velocity
component u; deeply depends upon the separation variable
/ in proximity of the plane boundary X {as A<Q(1)). The
proximal plane is thereafter seen to induce a translation of
the sphere.

If ' ={3, the particle translates parallel to the applied
field E . If ¢’ =, note that the sphere translates perpen-
dicular to the external electric field E_.! The magnitude of
the electrophoretic translational velocity is alse seen to
increase as the sphere approaches the boundary whenever
<" does not change in the direction of E . (symbols ()
and (@)} and to admit a maximum in other circumstances.
In all cases, the proximity of the plane wall is found to

Table 3

Normalized quantity «;(~) in Case 2

/ N=74 V=242 N=530 Keh and Chen
0.1 1.00489 0.999%4 0.99962 0.99938

03 0.98893 0.98384 0.98354 0.98330

0.5 0.92709 0.92137 092111 0.92089

0.7 0.77200 0.76323 0.76316 0.76297

0.9 0.43395 0.38967 0.38535 1.38584

0.30 T T v T
0.25
0.20
015 |
0.10
uf’. () 0.05
0.00
-0.05
0.10

015

0.20 :
0.0 0.2 0.4 0.8 08 1.0

A

Fig. 2. Nonzero normalized velocity u/ (4) versus the separation parameter
A=alh. If § = (], then j=3 for Case | (O0) and j=1 () for Case 2. If
{ =03, then j=1 (@) for Case | and j=3 (») for Case 2.

dramatically affect the zero translation solution obtained
for the single particle. As illustrated in Fig. 3, similar
trends also hold for the nonzero-normalized velocity Q3 :
near the plane boundary X, the rotation of the sphere
differs from the quantity €4 (0). In addition, the difference
€5 (4)—£25 (0) vanishes for only one specific value Ay in
[0, 0.9] and is positive in one of the subdomains [0, 4] or
[4p, 0.9] and negative in the other one.

In summary, Figs. 2 and 3 reveal that at least for the
prescribed zeta potential functions {{ and {4, our wall effects
are weak enough to be neglected as soon as the distance A
roughly exceeds 10 times the radius ¢ of the spherical
particle. In case of a proximal boundary, wall—particle

-0.66 T T
-0.68 e
0.70 { E

Q4H(h) p
072 | / ]

074 |

-0.76 - . -

-0.78 .
0.0 0.2 04 06 0.8 1.0

A

Fig. 3. Nonzero normalized velocity 24 (2) versus the separation parameter
#=alh. For {' =;{ and for Case 2 (O}. For ;" ={} and for Case | (@),
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interactions may dramatically affect the solution that pre-
vails for a single particle far from the boundary.

5. Conclusions

As clearly highlighted by the enclosed numerical results,
wal| effects on the electrophoretic motion of a nonuniformly
charged sphere deeply depend upon both its zeta potential {
(and the wall uniform zeta potential {,, for Case 1) and the
applied electric field E .. Contrary to previous works in the
field, the present approach not only circumvents the evalua-
tion of the electrostatic potential and the electrolyte flow in
the fluid domain but also makes it possible to cope with the
general case of a nonspherical particle of the not necessarily
uniform zeta potential distribution {. Future work will
thereafter permit us to quantify nonsphericity and orienta-
tion effects in electrophoresis in proximity of a plane
boundary. The case of the ellipsoidal particle is under
current investigation and expected to bring some light on
these basic issues. Finally, it is also worth noting that our
boundary integral formulation is also likely to apply to
chailenging case of several particles.
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