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Asymptotic solution of 2D and 3D boundary integral equations arising

in Fluid Mechanics and Electrostatics

A. Sellier

Abstract We present a systematic method to asymptoti-
cally expand, with respect to a small slenderness

or thickness parameter, the solution of a wide class of
boundary integral equations arising in Electrostatics
and Fluid Mechanics. The adopted point of view permits
us to bypass the tedious matching rules of the widely
employed method of matched asymptotic expansions.

If each step of the proposed procedure is described
within a general framework, the paper also addresses
applications to 2D and 3D problems. The 3D example not
only briefly reports but also extends the results obtained
elsewhere by the author. The whole 2D application to the
potential flow around a thin aifoil is original. Finally, a
special attention is paid to the case of a non-smooth 2D
domain.

1

Introduction

This paper presents a general method to asymptotically
invert, with respect to a small slenderness or thickness
parameter ¢, a large class of boundary integral equations
encountered in different fields such as Electrostatics and
potential flows. Henceforth, the dimension 4 belongs to
{2,3} and des1gnates a bounded, open and simply
connected subset of RY. This domain 74, of smooth
boundary 8.¢74, admits rounded ends O and E and is either
a ‘straight’ slender-body if d = 3 or a thin profile if d = 2
in the following sense (see respectively Figs. 1 and 2):

(i) For d =3 and cartesian co-ordinates (0, x], x5, x3)
such that e; = OE/L then
e := Maxueow, [(X,)* + (x))2]'"* = L where the
slenderness ratio e satisfies 0 < ¢ < 1.

(if) For d =2 and cartesian co-ordinates (0, x], x;) such
that e; = OE/L then e := Maxycg., |¥5| = ¢L where
the thickness ratio € obeys 0 < ¢ < 1.

For M belonging to 8.2/, the vector n(M) designates the
unit outwarding normal. In Electrostatics or for potential
flow problems, one often looks for a perturbation potential
¢ solution to an elliptic and exterior boundary value
problem consisting of the equations
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Ad = Zafafo in R\ (4 Udy) | (1.1)
¢~ ClogOM + O{1/OM) as OM — oo ifd=2, (1.2)
¢~ O0(1/OM) as OM — oo if d=3 (1.3)

together with the Neumann type boundary condition

V¢ -n=g onde/y with ]g’dsﬁo,
L

(1.4)

or the Dirichlet type boundary condition, for function g
and constants a and b,

¢=g+aonddy and b=/V¢-nds. (1.5)
s/ g

The constant C arising in behavior {1.2) actually obeys
erC ja&/ V(,b nds. In Egs. (1.4) and (1.5), the functions
£’ and g are given (for instance g = —V¢_. -n and

g = —¢., where ¢, denotes the applied and undisturbed
potential). In addition, in Eq. (1.5} a or b is prescribed (see
Sect. 3). Note that for d = 2 the Neumann type problems
{1.1), (1.2} and (1.4) lacks another condition to be well-
posed (see Sect, 4). As the small parameter ¢ goes to zero,
the domain =74 collapses to the segment [OE] and the
derivation of the asymptotic expansion of unknown
function ¢, in terms of this small slenderness or thickness
ratio €, has received a considerable attention in the past
decades. Nowadays, a theoretical approach of this question
remains of interest for at least two reasons: the numerical
treatments experience troubles in the limit € — 0 and it is
worth deriving simple asymptotic models. To achieve this
task, one may think about the well-known method of
matched asymptotic expansions (Van Dyke 1975). This
method approximates ¢ in two domains: the inner one
where 6(M) = O{e), if 6(M) stands for the distance from
point M to the segment [OF|, and the outer one where
(M) = O(L). The procedure requires to match, at each
order, the derived asymptotic estimates. For details the
reader is referred (among others) to Van Dyke (1954,
1956) if d = 2 and Van Dyke (1959), Tuck {1964) and
Euvrard (1983) if d = 3. However, this approach yields
more and more cumbersome calculations when enforcing
the matching rules at high orders. This increasing com-
plexity explains why the method actually only provides the
very first orders of approximation. A different point of
view, first alluded to by Landweber (1951}, has motivated
many works in the field. It consists in building the func-
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Fig. 2. A thin profile and our notations

tion ¢ outside </, by spreading singularities disteibuted
along a part of the segment [OE]. The boundary condition
{1.4) or (1.5) imposes a one-dimensional integral equation
{depending on the small parameter ¢) for the unknown
strength and extend of these singularities, Since he em-
ployed the method of matched asymptotic expansions to
deal with this integral equation, Moran (1963) applied this
procedure up to the second order only. Solutions up to any
order were later derived by Geer and Keller (1968), Geer
(1974, 1975) by using a systematic expansion of the one-
dimensional integral equation. This expansion was estab-
lished by Handelsman and Keller {1967a, b). This treat-
ment avoids the matching rules previously alluded to.
Unfortunately, this attractive approach presents at least
three drawbacks:

(iy For d =3, it only addresses slender bodies of revo-
lution.
(il As recently outlined by Cade (1994}, the one-di-
mensional integral equation under consideration
does not, in general, admit a solution, i.e. is ill-posed.
The quantities of physical interest are related to the
value of ¢ or its derivatives on the boundary 0.%7.
Thus, additional calculations are needed in approx-
imating these quantities,

(iii)

The aim of this work is to present a general treatment free
from the previous objections. The paper is organized as
follows. Section 2 details, within a general framework, the
different steps to achieve. It highlights the ability of the
concept of integration in the finite part-sense of Hadamard
to bypass the mathematical difficulties of the problem. The
proposed procedure is illustrated in Sects. 3 and 4, re-
spectively for a three-dimensional Dirichlet type problem
arising in Electrostatics and the two-dimensional Neu-
mann type problem pertaining to the potential flow past a
thin (but smooth) airfoil. Qur formulation is given in
Sect. 2 for a smooth boundary ¢.¢7 4. However, in Sect. 5
we also show how it works for a thin airfoil with a cusped
trailing edge E. Finally, a few concluding remarks close the
paper in Sect. 6.

2

A general treatment

In this section we present, within a general framework, the
typical steps of our approach. Henceforth, indices & or {
belong to {1,2} whilst indices i or j belong to {1,2,3}.

21

The “well-posed” boundary integral equation

The very first task consists in reducing the initial elliptic
boundary value problem to a well-posed boundary integral
equation. As soon as there exists a fundamental Green
solution for the initial system, this integral equation is
actually obtained by employing the well-known Green’s
representation formula. It often takes the form of the
following general and linear Fredholm integral equation

Ag{M) +pv ] q(P)Ky(P,M}ds = T(M) on /4
Ol y

(2.1)

for the unknown density g and given constant 4, function
T and kernel K;. One speaks of integral equation of the
first kind if A = 0. In this case, the kernel Ky is regular on
/4 and the symbol pv is omitted. For 4 # 0, (2.1) becomes
an integral equation of the second kind and our kernel K,
may be weakly-singular for M = P. In these latter cir-
cumstances, the pv symbol designates the Cauchy princi-
pal value (see, for d = 3, Kupradze 1963} with

pv / a(P)Ka(P, M)ds
Tedy

= lm
J—0,0>0

f q(P)K4(P, M)ds

s g\ vy (M)

(22)

where the removed neighborhood v,{M) is defined as

v (M) = {P € 0/ 4; MP < u}. In many cases, the kernel
K, turns out to be a finite sum of typical kernels K, of the
following form

K}(P, M) = dy4a0(M)log[PM)]

d .
+ [22] (M){ H[x;(P) — x;(M)}lf}/PMEJ,-i,J,_..._,_Ed
=1
(2.3)

where J; denotes the Kronecker delta and the positive
integers iy and positive or negative integer E < d — 1 are
given. If E <. d — 1, the kernel K} is regular whilst for

E = d — 1 with assume that iy + .-+ i3 = 1 and K} be-
comes weakly-singular for P = M. This decomposition of
K, not only holds for the kernels arising in Electrostatics
and potential flows but also for those encountered in 2D or
3D Stokes flow and Elasticity problems (think about the
usual fundamental Oseen and Kelvin tensors). For many
applications, the boundary integral equation (2.1} is “well-
posed” in the following sense: the existence of solutions g
may be established in adequate functional spaces and one
also knows the associated eigenspace. Indeed, the solution
to Eq. (2.1) is not always unique (for instance, in 3D Stokes
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flow, for a prescribed velocity T and zero vector £ on 0.e73,
the vector g is obtained up to a multiple of the normal
vector n). Since “well-posed”, the integral equation (2.1) is
free from the objections of Cade (1994), Moreover, for

d = 3 it holds for a body which is not necessary of revo-
lution about the axis Oxj. In addition, in many applica-
tions the density g is directly related to the physical
quantities of interest. Thus, the integral formulation (2.1)
is highly preferable to the one-dimensional integral han-
dled by Handelsman and Keller (1967a, b) and others,
Since the domain of integration in Eq. (2.1) is the whole
boundary 8.2/ 4, this approach might however yield tech-
nical difficulties. This key point is addressed in the fol-
lowing Subsections 2.2 and 2.3.

2.2

Asymptotic expansion of the integral equation

Let us introduce the set # of positive functions f whose
square f* is defined, analytic and of unit magnitude on
[0,1] and can be expanded in power-series about the end-
points as follows:

= Z dxt forx — 0F (2.4)
n>1

:Zc}:(l—x)" forx — 17 | (2.5)
n>1

with ¢} > 0 and ¢] > 0. For f belonging to #, the notation
i de&gnates the derivative of order n. In order to rewrite
Eq. (2.1) in terms of the small parameter ¢, we locate each
point of &7 by new and non—dimensional coordinates.
Two cases occur:

(i) If d = 2, we set x| = Lx), X, = ex,. The closed path
0./ is shared into its upper side %, and lower side %, (see
Fig. 2) such that there exist functions f;, fi < fo of & with

x2 = fi(x1);q(M) = gi(x1)  if M(x;,x;) € €x .(2.6)

We set x,(P} = x] and apply, for our typical kernel K},
the change of scales (x],x}} — (x;,x,) and the shift
xf = x; + u to the integral arising in Eq. (2.1). Hence, one
is led to the following types of integrals

1-x)

],E'!(e) = f vi{u + %) log[u* + ezhi,(u)]du , (2.7)

v (1 + xp Yl by (u) du
Jule) = pv f i 1 (u) (E¥i+i)/2 (2.8)
if the new functmns v, and kg obey
vi(x) = qee) {1+ [ef )P (29)
h(u) = fi(u +x1) — filx1) - (2.10)

(ii) If d = 3, we set x§ = Lx;,x}, = ex;,x] = ex| and
introduce non-dimensional cylindrical coordinates
(r,8,x3) such that * = x? + x2. Then, the boundary d.:/4
admits the equatlon r= f (0, x3) where the function (8, .)
belongs to #. If f! = 3'f/dv for v € {0, x3} and

so= {14+ (FU + (1)1

(2.11)

it follows that, for x;(P} = xf,
ds = eL[fs.](0p, x5)d6p dx; . (2.12)

Owing to Eq. (2.12) and for x} = x3 + u, the integral oc-
curring in Eq. (2.1) obeys, for K] given by Eq. (2.3),

et lpv / g(P)K; (P, M)ds

A

= al(M)€E+i'+j2lpV/h(E)de ) (2.13)
\ 0
B l ix? — 1] [x — xa]%vs(u + x3)du
J5(€) *f uiut + EZhg(u)](EHﬁferfa)/z . (214)

where vs{x3) = efs.g(0p, x3) and
h3(u) = h3(0p, i+ x;3, G,JC3)
= {fz(BP,JQ + u) +f2(8, x3)

—2cos(fp — O)f (8, %3)f (8, x5 + u) /% .
(2.15)

Clearly, the next step consists in building the asymptotic
expansions of integrals J},(¢), J};(¢) and J5(¢) with respect
to the small parameter ¢. This task is not at all trivial and
concentrates the Mathematical difficulties of our ap-
proach. Contrary to the cases of J){¢} and J},(¢), the as-
ymptotic estimate of J3(¢) may be singular, i. e. it may
happen that |J3(e)| — oc as e — 0 (for instance, if

i, =i =iy = 0 and E = 2 the integral J2(0) becomes
hypersingular). It is possible, through tedious calcula-
tions, to approximate the quantities J;(€), Ji;{€) and J3(e}
by employing the method of matched asymptotic expan-
sions. Here, we rather invoke a systematic and powerful
formula established in Sellier (1996). This formula makes
use of the fruitful concept of integration in the finite part
sense of Hadamard and addresses a large class of regular,
weakly or strongly singular integrals depending upon a
small parameter. The next Subsection 2.3 introduces this
concept and provides the general asymptotic expansion of
interest for our method.

23

A key result

Henceforth, C denotes the set of complex numbers. First, it
is possible to define the Hadamard’s finite part integration
of specific complex functions (see also Hadamard 1932
and Schwartz 1966).

Definition 1 For any complex function v such that there
exist # > 0, two complex families (v,4), () and a complex
function V fu]ﬁlling-

[v— V](u ZZVF Wrloghu,  peloyl, (2.16)
p=t q=
Re(op) < -+ < Re(og) =0;w00 =0 ifag =0, (2.17)
V(0) = lil’% V(u) exists (2.18)
=



the complex V(0) is called the Hadamard’s finite part of
the quantity v(x) and denoted by fp[v(u)].

By employing the previous Definition 1, one may extend
the usual concept of integration to strongly singular
functions. These functions can exhibit singularities at a
finite number of points and at infinity. If zero is the only
authorized singularity, one for instance gets

Definition 2 If for a < b and u € L}, (|a, b[\{0}, C) there
exist a strictly positive real #, four complex families

{u Pq) (u3.), (@ ) (23) and two complex functions
U, € L}, (]a, b[ C) and U € L} (Ja, b[. C) such that

Re(op) < --- < Re(a)) = —1; le{1,2}, (2.19)
= iji w1 loghx + Ulx);  x€]0,y[
p=0 g=0
(2.20)
then:
b -i b
jp/ u(x)dx := fp [f +f] u(x)dx (2.21)

Of course, this deﬁnltlon applles to a function u regular on
Ja, b and if u{(—1)'x] = ¢(—1)/x + Uj(x) the integral
(2.21) becomes the usual Cauchy principal value. The
Definition 2 actually authorizes us to consider different
strongly singular behaviors at the origin (on the right for
x > 0 and on the left for x < 0). Through a simple shift, it
also makes it possible to deal with a class of complex
functions singular at x; € R\ {0}. Moreover, if
ucli, ]a +oo[\{0}, C) admits at infinity a singular be-
havior gwen by {2.20) for l = 2 and x replaced by 1/x,
then fp [ u(x)dx := fp[ [ u

For mstance, we can apply Deﬁmtxon 2 to the following
general integral

b

I(e) = / g ()L, eh(w)]du

a
if —oc <a<0<b<oo,gand h are smooth enough
complex functions and L{u, v] is a regular or singular “Q
pseudo-homogeneous” kernel such that

Litu, tv] = t9S(£)L[u,v], fort#0 (2.23)

with @ a positive or negative integer and 5(¢t) =1 or
5(¢) =t/|t| on R\ {0}. In addition, the kernel L may be
singular only for (u,v) = (0,0} and admits partial deriv-
atives 0y L := 8"L/0v" bounded for (1, v) # (0,0). Observe
that the asymptotic expansion of J{;(€) may be reduced to
the one of I(¢) if we choose L{u, v] = log[u? + v*] — log[?].
This latter kernel indeed satisfies our assumptions with
Q =0,8(t) = 1 and bounded partial derivatives with re-
spect to v for (u, v) # (0,0). The remaining integrals J},{¢)
and J;(¢) also look like () (take as kernel
Llu,v] = (12 + 2 Eretafzy,

When building the required asymptotic approximation
of I(€}, as € goes to zero, two different circumstances arise:

(2.22)

(1) The case k(D) = 0. Since our function k is smooth
throughout |a, b, the function eh(u}/u remains small in
this domain. Thus, one can approximate L[1, eh(u)/u] by
using a Taylor expansion of L[1, v] with respect to v. More
precisely, one may prove that, as ¢ — 0,

N ~n b "
10 =3~ S0 [, [ SR 0

€4 O(el‘ 1 ) .
i wn—Q
poor 1 13

a

(2.24)

Each term in Eq. (2.24) involves the functions g and h
on the whole domain la, b[: only outer terms appear in the
asymptotic expansion of I{¢) as soon as h(0) = 0. Since
(see Eq. {2.10) hix(0) = 0 (with no summation over k}, this
result immediately applies to integrals J2 (¢} and J}, (¢).

{ii) The case h(0) # 0. In those circumstances, it is
more tedious to establish the asymptotic behavior of I{¢)
and the reader is directed, for additional details, to
Sellier (1996). This time inner terms {from the domain
|u{ = O(€)} occur in the result and the following theorem
holds:

Theorem 1 For h(0) > 0 and smooth functions g, b and
“Q pseudo-homogeneous™ kernel L satisfying the previous
assumptions, one gains, for N > Max[0, Q + 1] and as

¢ — 0, the asymptotic estimate

:nz”;a;L[l,OJ [fp /”S(u) (’f,,[hé“”"d”] .

n!

I{e)

a

N-Q-1 m m-I

th Q+m+1
Ny

=0 i

1

i=0
N Q-
—[1—8(-1)] Z Z C"l"' "loge

n=0 |=0 i=0 j—0

n n-lI-

+0(cM ! loge) (2.25)

whlere Z _o@ =0 if ] < 0 and the quantities Y and
Cy"" are given by

T T
C;Ji’,r:.l:g (Ol)‘flmfffl |:fp f a;L[t,h(O)]tmdr] ) (226)

nlij [h(o)][g(j)(O)CLijfl
S 1t

oL[1,0] (2.27)

if g denotes the derivative of order / and the coefficients
¢, are deduced from the behavior of # in vincinity of zero
as follows

(2.28)
(2.29)

CEZ(SP(); p201

{[h(x) — h(0)]/u} = Zc;up, asu — 0 .

p20
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This key theorem provides the asymptotic expansion of
I{€) up to high orders of approximation without too much
efforts. It also suggests several remarks:

1. Whilst the first sum on the right hand-side of
Eq. (2.25) contains the “outer” terms the two other
{and new) sums for #(0) # 0 only involve the func-
tions g and k in vincinity of zero and are thereafter
“inner” terms.

2. If §(r) =1, then no logarithmic terms " loge occur
in the asymptotic estimate.

3. Even if the initial integral I{€) is regular, the integrals
arising in our asymptotic formula are integrals in the
finite part sense of Hadamard. In computing those
integrals, one must be careful. For instance, the ap-
plication of the change of scale t = h{0}¢ to the in-
tegral occurring in definition (2.26) of coefficient
C{"‘l" may induce extra terms {see Sellier 1996 for
details).

24

The asymptotic solution

By employing the previous material, we can asymptotically
expand the initial boundary integral equation (2.1). In
terms of our non-dimensional coordinates, the right-hand
side T(M} reads T(M) = T(xy, efx(x))) for M € € and
T(M) = T(x3,¢f (0, x3)) for M € Os75. Thus, one easily
expands T(M) with respect to ¢. The derived asymptotic
approximation is in general free of logarithmic terms and

reads
J
= Z Tj}'(xla A
j=0

where the real family (r;) obeys ry < --- < r;. The integral
arising on the left-hand side of Eq. (2.1) is treated as
previously explained in Subsections 2.2 and 2.3, This
yields the asymptotic expansion of the left-hand side, .#[g],
of Eq. (2.1}. Such an estimate admits the general form

Z Z Z L v)elog™ e+ o(e™)  (2.31)

—3d-2 u=0 m=

T(M) %3 )e% + o(€") (2.30)

Flg) =

with a real family (s,) such that sy < --- < sy. The com-
bination of Eqgs. (2.30) and Eq. (2.31) thereafter suggests to
seek the unknown v; in the form v; = 37 o j1,.(€)v! with
My1(€) = o{u,(€)). The Sects. 3-5 will detail, for 2D and
3D problems, this basic step which deeply depends on the
initial equation (2.1). For instance, the leading terms in
Eq. (2.31) may either involve v; on the whole boundary
0.4/ 4 or only in vincinity of M. We successively detail this
ford=2and d =3.

1. If d = 2, one expands the integrals J;(c} and J,(¢) by
employing the general formulas (2.25)-(2.29). For in-
stance, one deduces that J§,(¢) = J°[vi] + O(e) with

1

Plve] = [ n(e) log[( — Yt

0

(2.32)

Thus, as soon as the integral equation (2.1} only yields
integrals similar to Ji;(e), one determines the unknown

(v, v}) by solving (from top to bottom) a pyramidal set of
integral equations J°[v}] = g,. For J}(¢), one takes

Llu,v] = (u* + ) EH2 e Q= —(E+ i, + i)
Since L[1,0] # 0, the first outer term, J. ., in (2.25) reads
(take n = 0)

vi(x P)h (xf — x)S(xf —x1) |
outer f/ x dxl " (2'33)

P_ x| )E+r2
Note that J} ... may be small compared to the leading inner
term, Ji..., given by (2.25). For instance, if E= 14, = 1 and
iy = 0 then §(t) = | and

e =ion{p | 1o S}

is non-zero for k # I (remind definition (2.10})). Thus, if
K2(P, M) = al(M) [xz(P) — x4(M)]/PM? the unknown
functions v} and v} are obtained without solving any
integral equatlon

2. For d = 3, we set I*(¢) = [ J3(¢)d6p and also
v3(x3} = fsot(f, x3) (see the definition of v; right-after
equality (2.14)). In the non-dimensional plane x; — x;, we
introduce the cross-section C{x;) = {P ¢ ./3;xf = x3}.
On this closed path C{(x3), the line element dlp reads
dlp = fs dfp. Accordingly, the leading outer term arising
in the asymptotic expansion of I*(e) is

*VS(x) — x3)
outer fp/( : 3E+f1+12 dx}

where the quantity F(x}) is the following generalized
moment of the unknown density f in the cross-section
C(JC‘_:,):

F(x3) = j[ [xf[;x‘]ilt(g".’xg)dlp

A

(2.34)

(2.35)

(2.36)

C(x5)

For J3(¢), one has Q@ = —(E+ 14, + i; + i3). The leading
inner term, Ifnner(e), may contains a logarlthmlc term (for
Q even) and is either smaller or greater than I .. In
general, it is however always possible to determine the
unknown functions v4(0, x3) by solving this time a pyra-
midal set of two- dlmen51ona1 boundary integral equation
on the closed path C(x3). Those boundary integral equa-
tions actually pertain to exotic two-dimensional boundary
value problems since the density v along C(x3) may in-
duce, in the non-dimensional plane x; — x;, fields which
does not vanish far from C(x;) (see the remarks taking
place between equalities (3.15) and (3.16) in Sect. 3).

3

Treatment of a three-dimensional Dirichlet type problem
We assume that our slender-body 275 is perfectly con-
ducting and embedded in an arbitrary electrostatic po-
tential ¢b... The perturbation potential, ¢, is solution to
Eqgs. (1.1), (1.3) and the Dirichlet type boundary condition
(1.5) with g = —¢_, and two different circumstances for



the constant value a of the total electrostatic potential on
d.2/3 and the total “charge” & of the body:

1. Case 1. The value of a is prescribed and b is un-
known.

2. Case 2. The body is isolated. This time, & is given and
a is unknown.

We seek the asymptotic expansion of a or b with respect
to the slenderness parameter e for our slender-body of
general cross-section. Handelsman and Keller (1967b)
solved this problem, for an axisymmetric slender-body
only, by putting sources on the segment [OF]. The case of a
general slender-body has been addressed by Sellier {1999).
In order to illustrate our procedure, we briefly report but
also extend the results derived in Sellier (1999) and refer
the reader to this latter paper for additional details.
Here, we obtain the potential ¢ by spreading free
electrostatic sources on 0.73. If ¢ designates the unknown
source density, we immediately arrive at the following
Fredholm boundary integral equation of the first kind

f q(P)ds/PM = a — qﬁx.(M); on 0.7 (3.1)
ds/s

which admits, for given a and ¢, a unique solution
q = Zla — ¢,]. Under this representation of ¢, the con-
stant b reads b = —4n [, , #[a — ¢, ]ds. Accordingly,

b / P[p.)ds — a f 2l1)ds .

2
4r (3 )
Dl

X8

This relation (3.2) shows that one has only to determine
the solution g = ¥[¢ ] for any electrostatic potential ¢ .
However, since harmonic any potential ¢ admits near
0.975 (see Geer 1976) the following behavior

oo = a0(€1%, x3) + Z {ay(er?, x3) cos 16

i>1

+ by(e*r*, x3) sin I0} (3.3)

with smooth enough functions ag, 4; and b;. By linearity
and superposition, we thereafter restrict ourselves to the
case

Do = = r'y(er?, x3) cos 16; (3.4)

where the function yr(u, x;) admits partial derivatives
G ,\ of unit magnitude for x; = O(1) and small values of
u. Note that Sellier (1999) did not adopt this convenient
choice of ¢,.. On 0.¢73, the quantity f is of order of € and
(,bl3C thereafter reads

Lo = F1(0,%3)9(0, x5) cos 10
+ (0, %)0,(0, x3) cos 10 + O(e') . (3.5)
= &[¢ ] such that

[>0

We look for the source density ¢;

< q) = / il

a,i‘/3

P)ds/PM = ¢, onds/; . (3.6)

The above integral equation is similar to (2.1} with only
one typical kernel
Ki(P,M)=PM " \E=1,iy =i, =i = 0,4 =0 and

T(M) = ¢;(M). The approximation of T on 3.3 has
been given by (3.5). If we introduce the density t{f,x;) by
fsot = eqyfs; and remind that dlp = fs, d6p on the closed
path C(x3)}, a careful application of Eqs. (2.13)-(2.14) and
Eqgs. (2.25)-(2.29) yvields the asymptotic estimate

L g = £p[t)loge + L[] + 77 [1)e loge

+ ffg‘x’[t]ez + O(fsote*loge) | (3.7)
where the linear operators arising in (3.7) obey
LBl = 2 f (p)dlp | (3.8)

Clxs)
LV = -2 j{ t(P) log H(0p, x3, 8, x3)dlp
Clxs)

- T L) (3.9)

_ ofx)dx
To, {ofx}} = a(xs)log2 +fp/2|x Pl (3.10)

0x3 H Bp,x 8 JC3)
= axz B
C(x) X=x5
(3.11)

L5 = - log2) £37

+fpf$x[rH2(9p,x a8 x3)]

4|x - JC3|
2 2
+6_ jgt(P)[H log H]{0p, x, O’xB)dlp
Ox? 2
Clx) x=x;
(3.12)

if H = h; is given by Eq. (2.15). Observe that 3’ [¢] only
involves the function t on the cross-section C(x3) this
(leading) quantity is a two-dimensional (inner) term. By
requiring the function t respectively on the whole surface
03 and on cross- sectlons nearby C(x;) the other terms
FU0(1), 9% (1] and £57[1] are strongly or weakly three-
dlmensmnal quantities. The combination of asymptotic
formulas (3.5) and (3.7) yields the asymptotic expansion of
t. In building this behavior of ¢, it is useful to determine,
for given functions a(x;) and b(®, x3), the unknown
functions u(0, x3) and #3’[v] such that

L3 (U] = alxs); LV7u] = b6, %3) — LRV . (3.13)

Owing to Eqs. (3.8)-(3.10), the basic problem (3.13) be-
comes

K% u] := u(P)dlp = —a(x3)/2 | (3.14)
Clxs)
L% [u] = — u(P)log PMdlp = b'(0, x3)
C(x3)
= [b(6,35) — L) + Tufa(®}/2 . (3.15)
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In this deﬁnmon of operator L"*, the distance PM is given
by PM = {(xF - xM)* + («f - x};’)z} 2 Our integral
equation {3.15) seems to be the counter-part of a two-
dimensional elliptic (Laplace) boundary value problem in
the x; — x; plane. However, the total “charge” on C(x3) is
non-zero as soon as a{xs) # 0 and this actually prevents us
from associating to Eq. (3.15) such a well-posed elliptic
problem. If the diameter 3(x3)} = Max{PM for P and M
belonging to C(x3)} belongs to |0, 1[ (this is always true
through an adequate choice of our typical “radius” e),
the integral equation of the first kind (3.15) admits a un-
ique solution u = {L%%}~'[b'] (see Hsiao and Wendland
1981). Accordingly, the systems (3.14) and (3.15) admits a
unique solution  if and only if the functions a and ¥
fulfill the compatibility relation

K5 [{L%} )] = ~a(xs)/2 (3.16)
Moreover (see Giroire 1987), if u, is the solution of the
equation LY*[u] = 1 then ¢|(x3) := K*[u;] £ 0. Hence,

the solutions u and 3’ [v] of the initial problem (3.13)
read

u={L"}"[b/2] - {ax3)+Kx3({L”"3} e}

(3.17)
x50 K* ({177} (b))
go [V] - st{a(x)} + c (xs) ' (3'18)
where 1, = {L*}7'(1], ¢, (x3) = K®[u] and
Su{oa(x)} = T {a(x)} + afxs)/e1(x3) (3.19)

Observe that for a(x3) = 0 and b = b(x;) the previous
solutions take the pleasant forms: u = 0, £5°[v] = b(x3).
Moreover, if b = 0 then ¥ = —a(x3)u;/[2c1{x;)] and
Zy*v] = Sy, {a(x)}. Accordingly, one obtains the follow-
ing asymptotic expansion

tnm
Y5> Botame” 1 0t ogt ) (3.20)
n=0 m=—n [0 E]
with family (#,,,) given by relations
L5 [ton] =0, (3.21)
LVNto0] = F1(0,%3)9(0,x3) cos 10 — L2t , (3.22)
A o) = =L ltomir] = O > 1 (3.23)
and family (z, ,,) obeying the equalities
gg-’ [tl,—l] ={ , (3.24)
L0l a] = =27 [o] — L3 [to] (3.25)
g?m[tl,m] = bm(gs JC3) - gg}[tl,nﬁl]; mz=0, (3'26)
bm(Ua x3) = _c&ag!xs[t&m#—l] - ggf’fs [tﬂ,m]
+ 5m[lfl+2(91 x.’:)a:;‘jl(oa JC3)C0519; m 2 0
(3.27)

If one introduces the functions v}(8,x3) and df(x;) by
LY [) = f1(0, %) cos10;  df(xs) = K*[Y]  (3.28)

it is straightforward to obtain the solution (%)

foo = ﬂb(oz:xs) [V — f: ((;33)) w] (3.29)
mi—1 H
o = o {¢(02:1)(i3()x)/c1(x)} u; m>1 (3.30)

where §% {a(x)} =1and for m > 1,87 = §,, o S '. Note
that for =0,v) =u and 5, = 0. Moreover, for m>1
each so}utlon tym presents the same dependence as func-
tion u; upon the variable ). The determination of (t,,,)
only requires to solve in each cross-section C(x;) the two-
dimensional integral equations L*u;] = 1 and, if

1> 1,1%%)] = f1(0, x3) cos 16 The case of family (¢,,,) is
more trlcky As the reader may check, equalities (3.24)-
(3.27) yield

1 1
L ) (3.31)
’ 2 ZC] (JC3)
if the functions v} (6, x3) and d] (x3) obey
L[] = — L0 tgol; d () = K*[v}] (3.32)
and, for m > 0, the relations
k5 ({1} [,
Lo ltumn] = Su{ L3l )y + L) o)
c1(x3)
(3.33)
poopy ) b LEl0n] _ KUELY b))
L 2 2¢;(x3) 2¢1(x3)
(3.34)
with b, given, for m > 0, by equality (3.27) and
cg)gs[tho] = dll (x;)/cl (JC3) . (335)

Note that f; _, = 0 if I = 0. In getting the functions #, ,,,
one needs to solve the integral equations (3.34) in each
cross-section.

Our results (3.29)-(3.31) and (3.33)-(3.35) permit us to
build the asymptotic estimate (3.20) for any imposed po-
tential (,b . By authorizing such a general potential ¢,
have thereafter extended the results obtained in Selher
(1999). Observe that one can immediately approximate the
total charge

1

[ quSZLfol[t]dx

ey 0

(3.36)

and employ the link (3.2) to deal with both Cases 1 and 2.
For further details and term-to-term comparisons with the
exact solution in case of a slender ellipsoid, the reader is
referred to Sellier (1999).

4

Treatment of a two-dimensional Neumann type problem
This Section considers the steady potential flow of an in-
viscid and homogeneous fluid around a thin airfoil .«7,. A
special attention is paid to the pressure distribution.



4.1

The boundary integral equation

Far from .o/, the flow is uniform with given pressure p.
and velocity u.. = Ue, + Ve,. The fluid velocity reads

u = uy + V¢ where ¢ denotes the perturbation potential.
This function ¢ satisfies the equations (1.1) and (1.2)
with C = 0 and the Neumann type boundary condition
{1.4) for g = —u,. - n. In order to obtain a well-posed
problem, we also impose the total circulation

I'=4. ;, W~ dl. More precisely, we shall assume that

T/L=U{cy+ cre + O())} + V{dy + dye + O(*)}

(4.1)
with ¢; = O(1) and d; = O(1}. The fluid pressure p is de-
duced from ¢ by using the usual Bernoulli’s theorem.
More precisely, in the fluid and on 057, the pressure
coefficient C, reads

PocHag
if p,, denotes the constant fluid density and
tae = {U? + V212 The potential function ¢ has been
approximated with respect to the small thickness param-
eter € by Geer (1974). However, this latter paper does not
express the pressure on the airfoil. Here, we disregard the
potential ¢ and directly build the asymptotic behavior of
the fluid velocity on d./,.

For this purpose, it is convenient to obtain the pertur-
bation velocity, u’ = V¢, by spreading either normal
doublets or a vortex distribution over 0.7, (see Dautray
and Lions 1988), Thus, if es = e; A e;, we set

1
u’(M) = g {f qz(P)e3 A Vp[logPM]de
%2

(4.2)

B [Mr

U

+fq1(P)€3AvP[IOgPM]dlp} . (43)

In (4.3), gx and dlp denote the unknown vortex density
and the arc length on curves €y (dlp is zero at O and
increases on %) as the point P moves from O to E).
The relation (4.3) deﬁnes smooth, irrotational and sole-
noidal velocity fields u/, and u], respectively inside and
outside 0.%/;. More prec1se1y (see Kellogg 1953) one ob-
tains, for k € {1 2},

[ul, — ul = [qxn}(M) A e;; on € . (4.4)
Thus, uj, -n =u),.n = —u,, - n on s/, and this implies
that u{, = —u,, in /3. Consequently, on 8.2/, the fluid
velocity u and the pressure coefficient C, read
a2
u=[gn Ae;Co=1— [—k] , on % . (4.5)
Hoo

Moreover, the flow-tangency condition (1.4) yields the
boundary integral equation

A PM
2nu, - n{M) = pv f ql(P)e:DT -n{M)dilp

“,

n(M)dlp; on 07, . (4.6)

6’3/\PM
+PV]qZ(P) P
2

Depending on the location of M, the first or the second
integral in (4.6) reduces to a regular integration. One has
to solve the problem consisting of (4 6) and (4.1) with the
relation I" = fa q,(P)dip + fg G2(P)dlp. Clearly, (4.6)
looks like (2.1) ‘with a kernel satlsfymg (2.3).

4.2
The asymptotic solution
Since, for M € %%, the normal vector n reads

ﬁfk(l)(xl)el]
} 1/2

1 e2 —
{1+ [ef(

the boundary integral equation (4.6) becomes (we keep for
functions v, the definitions (2.9)).

(- 2D+ R x0)ix) ~ Dt
na (D) (G — ) + i) — Al

P — ) + e L lf() o))
7, WD (e — 2 + @[fe(mr) — foe (D))

:Z{V—GUfk (JC;)]; 0 < x <1,k€{1,2} .
(4.8)

Hence, the asymptotic expansion of (4.6) rests on the as-
ymptotic approximation of the following integral

alg] v /

for real values of a and smooth enough functions g and h.
Indeed, for 0 < x; < 1, (4.8) also reads

n(M) = (- (4.7)

py

g(u+ x))acth(u) — u
u? + 2h*(u)

du (4.9)

2 o] + e ] = 2[V - UV (m)) (4.10)
50 [vo) + L] = 2[V — eUf P (x)] (a.11)
provided one successively chooses
m=a =) as=as=f"x) (4.12)
h(u) = folx1) — falxs + 1) (4.13)
hy(u) = folxr) = filos +u) (4.14)
hs(u) = fi(x) — folxy + 1) | (4.15)
ha(u) = filx1) —filxr +u) (4.16)

Note that k,(0) = hy(0) = 0 whilst #,(0) > 0 and
h3(0) < 0. If g, = Maxp y|g|, a careful application of our
systematic formula (2.25) yields

I 18] = —Lalg] + I gle + B [g]e + O(gme®)
(4.17)

with, if Ag := 0 and A, := y/|y| for non-zero y,
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Lqlgl = —pv f i(f)if (4.18)
1% (8] = Auoy {[a + BV (0)]g + h(0)g" } (1), (4.19)
pelg—pp [ =R Fhaa)ldr

S mlg()h(x —x)] 7 (x x)’

Thus, the leadmg term Lx. [g] does not depend on func-
tlon h and real a. Like sz [g], it is an outer term whereas
1 v, [g] is an inner quantity. Finally, the functions v, and v,
obey the asymptotic problem

— Ly [V + o]+ I [vie + LN [v]

Iy e 4 O(EF) = 2[V — eUfV (x1)] , (4.21)
— L[ + 2] + 155 [ma]e + 55 [va)e?
+ ] 4+ 0(E) = 2[V — cUF (1)), (4.22)
/[Vl + va)(x1)dx; = T/L (4.23)
0

where ¥ designates the typical magnitude of v; and v, and
I'/L is given by Eq. (4.1). A glance at Egs. (4.21)-(4.23)
suggests to look for the solution g of the following integral
problem R,[s]

1

] g)dx =1, Lolgl = s(x) in0,1] ,

0

(4.24)

for given real number r and function s. Standard textbooks
devoted to integral equations (see Muskhelishvili 1958;
Kanwal 1971; Zabreyko 1975) only address the case of
functions s and g obeying a Lipschitz condition respec-
tively on [0, 1] and on [p, 1 — 5] (where 0 < i < 1) with the
condition: |A(x)| < Ajx — ¢|” for some ¢ < < 1 and

A > 0 near ¢ € {0, 1}. Unfortunately, we also need to
consider functions s such that s(x) ~ s'|c — x| '/* near

¢ € {0,1}. By extending the works of Schrader (1938) and
S6hngen (1939), the Appendix therefore defines an ade-
quate set, Ejg ), of functions s fulfilling weaker assump-
tions. For s € E}y |, the unique solution g = R;![s] satisfies
(see the Appendix)

m/xiglx)
{1 —xl} 1/2

The inspection of Eqs. (4.21)-(4.23) and our result (4.25)
suggest to seek each solution v in the following form

vi = U{u} + ute + uhe? + +h0(e)}

=T

X — X

X)dx+r . (4.25)

+ Vv 4+ vRe 1 vk + hp0(E)) (4.26)

with hg(x) = [x,(1 - xl)}_'/z. By re-introducing those
approximations into Eqs. (4.21) and (4.22), one gets the

incoming pyramidal set of one-dimensional integral
equations

L [uy + ul =0, Ly lvg + v = -2, (4.27)
Lo [y + ] = 1% ) + 27" (x1)
M3.a3r 2 (1)
=I, [uo] +2f; '(x1) (4.28)
LoV} + il = B v} = D0 ) (4.29)
L [w) + wy] = I3 [wy] + B [wl] + L2 [wy)
iy asp, 2 hy.asp, 2 hedsr, 17,
- Il X3 [Wl] + IZ.x, [WU] + 12 WXy [WO]-'
we {u,v} . (4.30)
Note that
hy,az k
Il,x? [w] = 1;?3[ =[(fh — fl)W]( {x1) . {4.31)
Since f, — f1 vanishes for x; = 0 and x; = 1 the Egs. (4.28)

and (4.29) thereafter yield u2 — uj = 2 and v3 = v}. By
invoking {4.27) and the additional conditions (4.1) and
(4.23), it follows that

k(o (11K ‘o
Ug(x;) = (1) +27t\/xl(1——x1) , (4.32)
v,(;(xl) — dg + (] et 2X1)TE (433)

2n/x1(1 — xp)

Those solutions pertain to a zero-thickness aerofoil and
thereafter do not depend upon the shape functions f;. The
functions u} + u? and v} + v} are given by Eq. (4.25), re-
spectively for r = c]} and r = d;. Moreover, our definition
(4.20) of operator I’ shows that, for k € {1,2},

)

[ [2lx) - folxr) fn(xl)]W(X)dx} .
2n(x — 2)*{[fs — Ala)}

h2+k‘az+&
[Iz‘x] -

L

(4.34)

Thus, for w € {u, v}, the relations (4.30) yield

[ fiwh = fimd)x)dx
n{x, — x)*

(W3 = wil(xr) = — pf

W f{wﬁ% ds
xl —'JC
(4.35)

By employing the previous solutions (4.32} and (4.33), one
finally obtains, for w € {u, v},



2wk (%))
”kl./vmijf@ e
m;@rnﬁuh%?%§2@+4MM@o
+ hs(x ]“___ —~ fiwd + 2] (x)dx

(4.36)

where c(u) = ¢1,f, = fi. ¢(v) = d, and f, = 0. The com-
putation of uf requires to detail the term O(g,e®) in

Eq. (4.17). The calculations are let to the reader, Finally,
from Eq. (4.26) we deduce the pressure coefficient on 8.2/,
by employing Eq. {4.5).

4.3

Comparison with an exact solution

This Subsection compares the proposed results with the
asymptotic estimate of an exact solution available in case
of a thin elliptic aerofoil. More precisely, d.2/; admits the
equations

(2x /L — 1)* Z=ax(1-x%) . (437)

+(¥/e) = 1;

Weset X =x| —L/2,Y =x)and u- e = % If
Z=X+1iY and W(Z) =%, — ili; denote the complex
variable and velocity, one obtains, on 0.47;,

(_l}kvk =u + Ef;((l)'ﬁz = Re{W(Z)[l + iE-f;C(])]} )
(4.38)

Here we gain the complex velocity W by using the well-
known Joukowsky’s conformal mapping Z = F(z) (see for
instance Von Mises and Friedrichs 1971)

F(z) =z + [L* — 4¢]/[162}; z=re . (4.39)

Such a mapping indeed transforms the circle of radius
= {L 4 2¢)/4 into our ellipse 8./,. The flow about this

circle admits, for a free velocity

Uy, = Uec[COS aey + sin oey| of angle of attack « and a

prescribed circulation I', the complex velocity

. R . iTe—1¢
W(Z) =ty [e-—m _ r_zel(z—ZD)] + e

,Fr >R .

(4.40)

On 0./, we have X = Lcos/2,Y = esin 0 and the
required complex velocity W(#) = w(z)dF/dZ is

. _'0
{um{eix _ it 2il’e™ }

n(1 + 2¢)L
-1
sl =2zl
L 2e

Since cos @ = 2x — 1 and fi(x;) = 2(
exact solutions v read

w()

(4.41)

(~1)% /%1 (1 — x1), the

[t — 2x;]sinw

vl —x)

; O0< <l .

V(1) = too[1 + ze]{

r

x{1 —x)

+ (=1 cos a}

+ 4.42
2nL ( )

Qur previous results (4.32), (4.33) and (4.36) perfectly
agree with these solutions {one has only to employ
Eq. (4.42) successively for « = 0 and o = =/2).

5

Case of a non-smooth boundary

This last Section addresses the case of a non-smooth
boundary 8.7;. In order to highlight the encountered
troubles, the problem treated in Sect. 4 is handled this
time for a thin-airfoil .7, of cusped trailing edge E.

5.1

The asymptotic solution

This time, the boundary 0.7, is smooth except at its
cusped trailing edge E. More precisely, f? is smooth in
]0, 1], admits near zero the behavior (2.4) (with ¢} > 0) and
satisfies fZ(x1) ~ bu(1 — x;)" as x; — 1~ with n > 2. For
such a profile it is not possible any more to impose the
circulation I'. Instead, one applies the Kutta-Joukowsky
condition which specifies that the fluid velocity is finite at
the cusped trailing edge (see Ashley and Landhal 1965;
Moran 1984 and Anderson 1991). Again, we adopt the
representation {4.3) and the definitions (9) of v,. Since

Wiy (1) 1), the Kutta-Joukowsky condition (i.e. the
1 ¥
requlrement of a finite velocity at E) becomes

g1 + 2] (1) = [vi +2](1) =0 . (5.1)

The equalities (4.2)-(4.20) still hold and the functions v
obey Eqgs. (4.21) and Eq. (4.22) with Eq. (4.23) replaced by
Eq. (5.1). Accordingly, the basic problem R,[s] (see Eq.
(4.24)) is replaced by the problem $[s]

g(1) = 0; Ly [g] = s(x1) in O, 1] .

If s € Ejoq) with s} = 0 (see the Appendix), the unique
solution to this problem is

e [ s

with the useful relation
1

s Hsa- [

The solution (5.3) is bounded as x goes to 1 but may not
vanish here. The value of $7!(s](1) deeply depends on the
given function s (see the Appendix). Again we seek vy in
the form (4.26) with, this time, fig(x,) = x1 ® The
equalities (4.27)-(4.31) remain valid. Hence, one obtains

ub(xy) = (=) v(x) = {0 —al/x)}

For our cusped trailing edge, the reader may check from
Eq. {5.5) that the right-hand sides s of Egs. (4.28) and
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(5.2)

(xl

x)dx . (5.4)

(5.5)
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(4.29) belong to Ej 1 with 5] = 0. Thls permlts us to use
once more Eq. (5.3) in determining u] + u and u} + 43
and to obtain

2mut(x)) =

1)k+1pf/[f2 fI](x dx

e

(5.6)
\/719 ]\/;A—:dx[ f/-;jix)] xldfx ‘
(5.7)

Among the quantities of practical interest, it is worth
giving the total force R = p__I'es A u, acting on the
airfoil. Since

F/M@O+MMWM, (5.8)

we only need to compute the quantities w! + w? for

we {u,v} and i € {0,1,2}. Actually, Eq. (5.4) clearly
indicates that one has only to calculate, by using (4.19),
(4.20) and (5.5) the right-hand sides of Eqs. {4.28)-(4.30).
Curtailing the details, we obtain

T/L—anef\f [Uifi + f2) + V(leéx}“)
- [P+ Vel e+ o)

(5.9)
where, if w € {u, v},
gw(a) = ([l = Alwi)(x1)
+ prf hx) f; i)]x)w"(x)dx . (5.10)

Note that the term of order of € in Eq. (5.9) requires to
calculate the solutions w’l‘ by using Egs. (5.6) and (5.7). The
determination of this term by our method extends the
formula proposed by Geer (1974) for T'/L up to order ¢
only.

5.2

Remarks on the asymptotic solution near a sharp trailing
edge

One may wonder whether our so]u‘uons uk and vk remain
valid for a sharp trailing edge 1ffl ( ) — f( (1) #£0).
Here we should impose ¢,(1) = g2(1) = 0 instead of Eq.
(5.1). We try once more to expand v, as in Eq. (4.26) with
hg(x1) = x, Y2, Under those assumptions, we again arrive
at Eqs. (5.5)- (5.7). Note that the last terms arising on the
right-hande sides of Eqs. (5.6)-(5.7) vanish as x; — 1.
The remaining terms are treated by noting that, for

ac {0 1/2} and g smooth enough near 1,

g(x)dx

1= 2]"g) — gm) — g () (x = x)
N of[ ] {x1 = x)2 &
(5.11)
with, through elementary algebra,
— x]*dx
xl pf/):ﬂ[x-’i]xl] (512)
Ag(xy) = log[ — 1];A1/2(x.) =7 (5.13)
Thus, as x; — 17, one obtains v{(x) = O(1) and
2mt() ~ (D'~ AT (Dlog(l —x) . (5.19)

Hence, the Poincaré expansion (4 26) fa1ls for a sharp
trallmg edge E as soon as U # 0 since eu* becomes greater
than u} near E (ev*(x,) actually becomes of unit magni-
tude for 1 —x; = O(e 17¢}). Such troubles have been also
encountered by the method of matched asymptotic ex-

x pansions (see Van Dyke 1975). In case of a sharp trailing
edge, Hoogstraten (1967) resorted to the Lighthill ’s
method of strained coordinates (see Lighthill 1949) to
obtain a first-order approximation to the potential func-
tion free from this drawback. Sheer (1971) later derived
the solution up to any order when the thin airfoil presents
both sharp leading and trailing edges, is symmetric with
respect to the axis Ox| and u, = Ue,. If u, denotes the
(tangential) velocity on the profile, Sheer (1971) actually
proved in this case that log|u,| (not u, itself} admits a
Poincaré type expansion uniformly valid in |0, 1[. It would
be nice to extend Sheer’s results to the case of a non-
symmetric thin-airfoil admitting a rounded leading end O
and a sharp trailing edge E. As previously explained, the
present method is not the right one for such a challenge.
To the author’s knowledge, this question is still unsolved,

6

Conclusions

This paper presents a general method to built asymptotic
solutions of a wide class of boundary value problems ad-
mitting a fundamental Green solution. Contrary to other
methods, such as the method of matched asymptotic



expansions, our approach provides, without too much
efforts, the solution at high orders of approximation and
for non-axisymmetric slender bodies. This general scheme
is also likely to apply to 2D and 3D elasticity problems.
Finally, one should note that the case of a slender-body
of curved (not straight) centre-line would probably require
a different treatment. In such circumstances, one may
employ the method of matched asymptotic expansions.

Appendix

We denote by Ep ) the set of complex functions s,
defined on ]0, 1| and such that s{x) =
R(x)+sologx+sllog(l—x)+s’x*1/2 +s) x (1 —x)71/?
where sp, 55,51 and 5| are complex values and the complex
function R, fulfills the next assumptions:

1. There exist # > 0 with R, bounded on [0,#] and
(1 — 5,1] and also four strictly positive real values
Co. Cy 00 < 1 and o, < 1 such that
|Rs(x) — Rs(y)] < Colx — y* and
[Rs(x) — Re(y)| < Ci|x — y|™ respectively on
[0,1] x [0,4] and {1 —y,1] x [1 —n,1].

2. fIRY(x)\/%(1 — x)dx and f) [R(x)|dx exist.

3. ¥x€|0,1] there exist 0 < y, < Min(l —x,x),C; > 0
and 0 < ¢, < 1 such that Vy € [x — n,, x + #,] then
[R(y) = Ro(x)| < Culy — x|™.

In this paper we need to solve the following integral
equation

1

1 fg(x)dx

m x—x
0

for s € Ep,) and unknown function g not only obeying

above assumption 3 (hélder and local condition on |0, 1]

which give a sense to the integral on the left-hand side of

Eq. (7.1)) but also such that f; g?(x)/x(1 — x)dx exists.
For s € Ejp it is not legitimate to apply the results ex-
hibited by standard textbooks (see Muskhelishvili 1958;
Kanwal 1971; Zabreyko 1975) since given function s does
not fulfill a Lipschitz condition on [0,1] and “good” be-
haviors at end points 0 and 1. However, Schréder (1938)
and Sohngen (1939) provided solutions when s obeys
weaker assumptions which are true for s € Ejgy). Appli-
cation of a result derived by Schréder (1938, p 347) indeed
yields the following solution

1
(1 =
1/2:PV].%S(X) al x)dx+c ;
X — X

=s(x}) forO0<x <1 (7.1)

ng(x1)
{x1(1 —x1)}

(7.2)

C= fg(x)dx .

0

(7.3)

For s; = 0, we seek a solution g such that [g(1)| < oco. If
I{x)) denotes the first integral arising on the right-hand
side of Eq. (7.2) then I{x;} = J(x1) + K[s(x)](x,) with

B s(x)/xdx
*) = ,/\/1mx+\/1—x1 74
[(lx)_](xl)zpvfsilx)__\/jdx_ (7.5)

After some elementary algebra, one can prove (for s; = 0}
that

linll_ K[s{x)](x;) =0 , (7.6)
C=-— hm Jix) = ] s(x (7.7}
Accordingly, the solution (7.2) is given by
rvEgln) _ f [ x  s(x)

This form (7.8} does not impiy that g(1) = 0!. For
instance, observe that

1
dx l—xl
pvfx_XI —log[T] = 8§(x;)

0

with § € Ep ;) and §] = 0. The reader may separately check
that

pvf\/:log[ill :i)/x 2

Thus, if s = § the formula (7.8) indeed gives the constant
solution g(x) = . Thereafler, it seems quite useful to

determine what kind of condition bearing on s of Ejg ) with
s) = 0 makes the solution (7.8) vanish at the end point 1.
In previous property 1, assume that @, > 1/2. The relation

Oxl [S] =

(7.9)

X1
1——x1 '

(7.10)

[Rs(x1) + (s0 + 51) log 21| Oy, [1]

I x
+ nzs; !
1-— X1

where the operator O,, is given by Eq. (7.8) and

)l (7.11)

X3 7(

= Ry(x) — Ry(x1) + (50 + 51} log(x/x1) ,

(7.12)

S(JC] ’ JC)

clearly shows that the solution (7.8} is such that

g(1) = ms;. Thus, the value of g(1) is only governed by the
logarithmic term s, log(1 — x) of the given function s

(as soon as s) = 0 and o > 1/2.)
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