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This paper presents a systematic slender-body theory for a slender particle embedded
in an arbitrary Stokes flow. Contrary to previous works, the body is not necessarily of
revolution. The approach consists of gaining the surface stress acting on the particle
by asymptotically solving, with respect to a slenderness ratio, a Fredholm boundary
integral equation of the first kind. The procedure approximates integrals depending
upon a small parameter by invoking a systematic formula. Special attention is paid
to particles of elliptical cross-section and term-to-term comparisons are given for a
slender ellipsoid embedded in a rather simple Stokes flow.
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1. Introduction

In predicting the main rheological properties of dilute suspensions (see, for example,
Happel & Brenner 1973; Kim & Karrila 1991) it is of prime importance to consider
the low-Reynolds-number flow about a single particle. As the particle is sometimes
slender (for instance, a slender stiff fibre) many works expand, in terms of the small
slenderness ratio ¢, the physical quantities of interest such as drag force or torque
acting on the body.

Some studies (see Cox 1970, 1971; Keller & Rubinow 1976; Johnson & Wu 1979;
Johnson 1980) deal, by applying the method of matched asymptotic expansions (Van
Dyke 1975), with a slender body of circular cross-section and of curved centreline
(the line to which the body collapses as € goes to zero). Most of the available studies
address slender bodies of revolution by employing a method pioneered by Landwe-
ber {1951, 1959) and also applied in other fields (see Moran 1963; Handelsman &
Keller 1967b; Geer 1974, 1975). This method consists of asymptotically solving, for
unknown singularities {such as Stokeslets, rotlets) put on the centreline, the bound-
ary integral equation imposed by the no-slip condition. This integral equation is
expanded either by applying the method of matched asymptotic expansions or by
invoking the treatment of Handelsman & Keller (1967a). For a slender body of revo-
lution this procedure has been carried out for a uniform external flow (see Tuck 1964;
Tillett 1970), for an external shear flow (see Cox 1971) and for a general external
flow (see Geer 1976). At least for the inviscid flow about a particle, Cade (1994)
recently proved that the derived boundary integral equation may be ill-posed. This
feature casts some doubt on the validity of the procedure. To the author’s knowledge,
only Batchelor (1970) considers a straight (i.e. of straight centreline) slender body
of arbitrary cross-section but for uniform or linear external flows. His work, which
only gives the first-order solution, was extended to the motion of a slender particle
near a plane fluid—fluid interface by Yang & Leal {1983).
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Clx3)
Figure 1.

This work presents a general theory valid, up to high orders, for a straight slender
body of arbitrary cross-section embedded in a general Stokes flow. It rests on the
asymptotic solution of a boundary integral that governs the surface stress exerted
by the fluid on the particle. The ‘boundary integral method’ for linearized viscous
flow was, for instance, employed by Youngren & Acrivos (1975) for the numerical
calcuiation of the Stokes flow past a cylindrical or a spheroidal body, by Rallison &
Acrivos (1978) for the prediction of the deformation and condition of break-up in
shear of a liquid drop lying in a liquid of different viscosity and by Pozrikidis (1990)
for the axisymmetric deformation of a red blood cell in uniaxial straining Stokes flow.
This approach is free from the objections Cade (1994) alluded to.

The paper is organized as follows. The boundary integral equation is addressed in
§2. By using a systematic formula established in Sellier {1996}, we asymptotically
expand this integral equation in §3. The asymptotic solution is built in §4 while
comparisons both with exact solutions and other works are given in § 5 for a slender
body of elliptical cross-section. Finally, concluding remarks close the paper in §6.

2. The boundary integral equation

The motionless, straight and rigid slender body A’ (see figure 1} admits a smooth
boundary 8.4" whose rounded ends are O’ and E'. We adopt Cartesian coordinates
(O, z}, b, x%) with eg := O'E'/JO'E’.

This body disturbs the steady and smooth ambient Stokes flow (4, p®) with u
and p denoting the velocity and pressure disturbances. Under the tensor summation
convention and the notation a == a;e;, these Stokes flows (u®,p*) and (u,p) obey
{see Happel & Brenner 1973)

H*u p™=  Qug°
P = =0 R 2.1
Yorow,  ox’ ox o TSN @1)
Fui _ Op Ou

2™ _ T — 3 ! I
“8:63-8:6;- % s 0, zeR’\ (A UaAd), (2.2)
|[u| >0 and |p|—=0 aslz/|—= oo, (2.3)
[u™ +u](M)=0 for M €A, (2.4)

where u denotes the fluid viscosity and (2.4) is the no-slip boundary condition.
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Stokes flow past a slender particle 2977

If f = fie; designates the surface force exerted by the fluid on 8.4, the following
integral representations hold (see Kim & Karrila 1991; Pozrikidis 1992):

u (M) = Sﬁpf fi{(P)Gij PM)dSPv (2.5)

1 fi (P)PM e;

M) =
p( ) 4:71' aAr PM3

ds, (2.6)

where the fundamental Oseen tensor, {G;;), reads
Gij(P,M) =6;;/PM + [PM - &;||[PM - e;]/PM>. (2.7)

Thus, equations (2.2) and (2.3) are satisfied. As the field u given by (2.5) is continu-
ous across 0.A" (see Pozrikidis 1992), the no-slip condition (2.4) yields the following
Fredholm integral equation of the first kind:

1
8y Jour

Note that (2.8) is a Fredholm integral equation of the first kind for the unknown
density f and a given ambient flow u*. For any point P (see Pozrikidis 1992),
the Oseen tensor satisfies f; ,, Gi;(P, M)n;(M) dS}, = 0 where (see figure 1) n(M)
denotes the outward unit normal. Accordingly, the two following remarks arise.

(i) The left-hand side u* of (2.8) must satisfy the compatibility relation

f u™(M) - n(M)dS,, = 0. (2.9)
8.4’

This is indeed the case (see (2.1)).

(ii) If #°° = 0 then f = n is the solution to (2.8).

Thus, under the compatibility condition (2.9) the integral equation (2.8) may ad-
mit several solutions. More precisely {(see Dautray & Lions 1988), if H*(9.4") denotes
the usual Sobolev space then as soon as the restriction ufs ” of u™ to 8.4" belongs to
(H'/2(8.A"))® and obeys (2.9), then (2.8) admits a solution in (H~/2(8.A’))3 unique
up to any constant multiple of the normal . The proof and additional information
are available in Ladyzhenskaya (1969), Kress (1989) and Pozrikidis {1992). Hence,
the integral equation (2.8) admits a general solution of the form

F(P) = f:(P) + An(P), (2.10)

where f; indicates any special solution and A is an arbitrary real number. However,
we retrieve the physical solution by taking into account the linearity of the problem:
we set A to zero in (2.10) and select the solution linear in our data (4, p®) provided
the associated incoming pressure p™ is also linegr in 4™

u (M) = £(P)Gi;(P,M)dSh, Medd, ic{l,2,3}. (28)

3. Asymptotic expansion of the boundary-integral system

(a) Dimensionless variables and general assumptions

The typical length L and ‘radius’ e of our slender body A’ read L = O'E’ and

&= max [(3)° + (29)’)
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2978 A. Sellier

and the slenderness ratio is ¢ := e/L < 1. We introduce non-dimensional coor-
dinates (z1,z2,z3) = (z}/e,z5/e,x5/L) and assume that the velocity u™ writes
u™(x], x4, x5) = U;{ex1, €x2, z3)e; in a neighbourhood of 8.4'. More precisely, there
exist two integers NV 2 1, R 2 0 and a real number § > 1 such that the derivatives

JitkETy,

T rri.k
& U (.X Y.’L‘g) —BX-?aYka r(

r U X,Y,xza), i€{1,2,3}, (3.1)
exist for positive integers j, k and r obeying 0 < j+E< N+ 1,07 < AR+ 1and
with (X, Y, 23) belonging to the open set

O ={(X,Y,22); X*+ Y% < 6% and 1 - 6 < 73 < 6}.

Since {2.8) is linear we restrict our attention to a velocity »* such that in O}, and
for 07T+ < N+1,

UP*(X,Y,z3) = O(1), ie{1,2,3}. (3.2)

In order to specify the surface J.A" we also employ non-dimensional cylindrical coor-
dinates (7,8, z3) with r2 = 22 + 2. Then 8.4’ is described by a positive single-valued
and smooth-enough shape function f(@,z3) that vanishes for z3(1 — 23) = 0 and
such that r = f(6,z3) = O(1) for M(r,8,z3) € OA'. For almost any § in [0, 27] we
also Tequire the square of the function f, denoted by f2(#,x3), to be analytic with
respect to 23 in [0, 1] and to admit the behaviours

FP0,23) = enl0)73, 2ffi =D nen(@)ai™t, 23— 0%, (3.3)
nzl nzl
fz(gax?o Zb 1_553 ) 2ff;3 =_ann(9)(1_$3)ﬂ_lr $3_>1_3
nzl nzl
(3.4)

where 0 < ¢1(8) = O(1), 0 < b1(8) = O(1) and &2 f := & f/8v7 for v € {6, z3}.

(b) The asymptotic form of the integral system

By using the previous assumptions and expanding «$° (M) in its Taylor polynomial
expansion of order N, the left-hand side of (2.8) becomes

o) = Y | Y altedaf|e £ 0@, e a3 69

0<ngN ~j+k=n
where the new functions a2”*(z3) obey
al* (3) = U{*(0,0,25)/[j'K!] = O(1). (36)

By invoking the continuity equation (2.1) we deduce the following relations:

(p+ 1)ab%(z3) + (g + D)a§ ™ (ws) + 8}, a5 (z3) = 0,
for0<p+g=nsN-1 (3.7)
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Stokes flow past o slender particle 2979

Since the integral occurring on the right-hand side, rh;(M), of (2.8) is regular we
can apply to it the change of variables

P(a:f,:t:g,%) ( (9131'753) tp, P)
and Fubini’s theorem (see Rudin 1966). If the functions s and H obey

se= {1+ {f7 )2 + (efa,*Y?, dSp =eL[fs](6p,25)d0pdz},  (3.8)
H(bp,x% 0, 23) = {f2(0p,25) + f2(8.23) — 2cos(8p — 0) f (8, 23) f(8p, 25 )},
(3.9

it follows, for x3 €]0,1{ and 6 € [0,2x] (see {2.7)), that

e 2 1 6
hi (0 i
rhi(0,23) = 8 u] [fo {[(mg — x3)2 +62H2(9p,m3,9 x3)]1/2

+ (2—8ia—d53 ("sz - 5'32)( Ty — xj)
(@ — z3)2 + 2H2(8p, 2%, 0, 23)]3/2

s 15(0r.5) et |08, (310

with, for M € 8.4/, the links x; = f(6,23)cosd and =3 = (8, 73)sinf. Note that
rh;(M) depends upon € via f = f;e;, ¢H and also the function s,. Under the intro-
duction of the functions d, & and linear operators A 3 and B 3 as

d(P) :=e[ffs|(P}/[8nu], h(u) = H(Gp,xg +u, 6, z3), (3.11}

l—zg l-xa
w3 11 g(xs +ujdu o g(zs +u)du
ASilgl = f ot ERaE Bealdl= f ey e 619

—x3 —x3

we obtain, for cc3P = x3 + u,
2
rhi(0, z3) = i {AZ 1] + 7% % BB [(xf — 2)(2f — 2;)d,]}dop.  (3.13)

Thus, the asymptotic behaviour of rh;(6, z3) is deduced from the asymptotic esti-
mates of the integrals A7 [g] and B3 [g]. By virtue of (3.9), & > 0 for §p # 8. Accord-
ingly, A7%,[g] and BT}  [g] are regular integrals for € > 0 while AZ3[g] and By, lgl
become hypersmgular integrals {unless g vanishes together with certaln derivatives
at u = z3). Hence, the asymptotic approximation of A7} [g] and B73 [g] with respect
to € is singular. Thls asymptotic behaviour cannot be obtained by the usual meth-
ods (see Bleistein & Handelsman 19753; Wong 1989; Estrada & Kanwal 1994), which
address integrals such as

b
[ o(2)f(x/e) dz

For AZ3lg] a possible procedure has been used by Handelsman & Keller (1967a, b)
but its extension to the present cases seems tedious. Here we employ a systematic
formula whose establishment (see Sellier 1996) rests on the concept of integration in
the finite-part sense of Hadamard (see Hadamard 1932; Schwartz 1966; Sellier 1994).
This formula circumvents the tremendous matching rules required by the method
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2980 A. Sellier

of matched asymptotic expansions. It may also provide the asymptotic behaviour of
A7 lgl and B7}[g] up to higher orders for smooth-enough functions g and h. Here,
we restrict ourselves to the following estimates (see Appendix A):

A% [g] = AZ®[g]log e + AT g]

+ Ag’“ [g]e* log e + Ag"”e' [g]e? + O(Mg)e* log e), (3.14)
BZlg) = By ™ [g)/€ + BY™[g)log e + By ™ [g] + O(M[g]e* loge),  (3.15)
where
Mlg| = = max gl

and the new linear operators A”*® or Bf *3 are given in Appendix A. Motivated by
(3.13), we rather detail the operators

27 2
I™g) = fo A7 (glddp and JP(g)= | BI™[gld6p.

These quantities read

Bli=-2 [ oora)a, Rol=2 [ AIIBe g
ol = S [ e sy el = Ll a7
2og) =~{ilogz+ip [ 19 g [TIEH ORI b1 gy 1
J3%g] =—fp/01§§'£§%‘ 0277 ;1:2 [(1+1og(%H(9p,t,9,9:3)))9(9&7«‘)]?::1—2:?;
oy o ]01 { o g(ep,t;ﬁﬂ_(aaz,;,e,xg)dep} N

+ %25 UO% 9(8p, 5 H"(6p,t,6,23)(3 +log(3H(8p, ¢,6, 23))) dfp —
(3.20)

The symbol fp [ denotes an integral in the finite-part sense of Hadamard. In (3.20) we
switched the 1ntegrat10n on # and the derivation with respect to £. This is not possible
for the operator J5'** (see (3.19)). For 0 < z3 < 1, we introduce the non-dimensional
cross-section Cs(z3) = {P € A’ zf = z3} and the closed path C{z3) := 9 Cs(z3).
The quantities IZ*[g] and J&"™[g] only involve the functlon g on Cs{zz) and are
thereafter two-dimensional terms. The operators I5™® and J¥* are weakly three
dimensional in the sense that they require the values of g 1n a neighbourhood of
the cross-section Cs{x3). Finally, the terms I1 Je ** and 13 T3 are strongly three
dimensional (the function ¢ is taken on the whole surface §.4"). By virtue of our
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Stokes flow past a slender particle 2981
previous results the integral system (2.8) reads
Z [ Z al k(ﬂ?g).’b‘{ﬂ')g] € + O(eMT) = O(Dye* log e; Dye* log e; D3e® log €)
0gnEN Yi+k=n
+ I (di]loge + IT™ dy] + JE=2[(2F — 20)2dy + (2f — 21)(af — z2)do)
+ I (o] — 21)(f — zs)ds]eloge + J5 = [(f — 21)(af ~ z5)ds]e

L] + I (2] - 21)%d] + TP (@D - 21)(2f - 22)da] e loge

+ {Ig’xs [dl] + Jé,x3 [(:7!3‘11D - 55‘1)20’.1 + (Ilp — .’1?1)(322}) - $2)d2]}€2, (3.21)
Z [ Z al (.7;3):4: mQ}e + O(eN*Y) = O(D1et log e; Dye log €; Dae® loge)
0<ngN Litk=n

+ I5%[da] log € + 17" [da] + T [(d — 2)2da + (aF — 21) (2] — w2)d4]
+ Jye [(IL‘ZP - .L‘"z)(.’.l.'BP — z3}dsleloge + Jg’”[(acé3 — a:g)(xf; — z3)dse
+ {1570 da] + TP [(2F — w2)?de] + JD™[(2F — 21)(2F — 2a)di]}e loge

+ {573 dg) + JE=* (2 — 29)%dy + (27 — 21)(5f — z2)d1]}¢2, (3.22)
Z [ Z ag’k(mg)m{mg] €" + O(eV ) = O(D1 B log ; Dye® log €; D3e? log e)
0KngN Lj+k=n

+ {I53[ds] + JPo[(xf — 23)2ds]} log € + 1973 (da)] + J5 ™0 [(ad — 23)2d]
IR ((@f — z3){da(zf — z1) + da(zf — 22))]eloge
+ I3 (2 — wa)(dh (2 — 1) + dalzf — z2))]e, (3.23)

where D; = maxg 4 [d;],2f = f(0p, zp)cosdp and 5 = F(8p, zp)sinbp.

4. Asymptotic solution

This section asymptotically inverts the previous system (3.21)—(3.23).

(a) General properties of two basic integral problems

If M(xy,z2,73) € A" we denote by n®(M) the outward unit normal C(x3) at M
and such that n°(M) - e3 = 0. For M € C(x3) it is useful to address the integral
equations

LIP3 [ug] 1= — f us(P)log[PM] dlp = bs(M), (4.1)
Clzs)

S0 (g ) jg(mZG (P, M)uy(P)dlp = b(M), i€{1,2}, (42)
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2982 A. Sellier

for given functions b1, by and b3 and unknown functions ug and (uy, ug). In (4.2), the
notation (G?j) denctes the free-space but two-dimensional Oseen tensor defined, for
PM - €3 = 0, by
Gy (P, M) = ~5;;1og[PM] + [PM - &;|[PM - e;]/PM?, (i,5) € {1,2} x {1,2}.
(4.3)
The boundary-integral equations of the first kind (4.1} and (4.2) are closely connected

to the boundary integral formulation associated, respectively, to an exterior Dirichlet
problem for the Laplace equation in the plane and to an exterior two-dimensional
and Dirichlet—Stokes problem (Sf "3 (u1;ug), which is indeed proportional to the
component v;(A) of the velocity induced at M(8,z3) € C(z3) by a distribution
of two-dimensional Stokeslets over C'(z3} and of density (u1,u2)). For mathematical
aspects pertaining to these integral equations, the reader is directed to Fichera {1961)
and to Hsiao & MacCamy (1973). Note that if C'(z3) = {P(z1,z2); 22 +3 = 1} then
L9®3[1] = 0. However, if the cross-section diameter &(z3) := max{PM for P,M &
Cs(z3)} is small enough (this is true for an adequate choice of ‘radius’ ¢), then (4.1}
admits a unique solution v = {L%=3}~1[b] € H~Y?(C(z3)) when b € HY?(C(z3))
(see Hsiao & Wendland 1977}. According to Giroire (1987), if the operator K2 obeys

K% [u] := 5‘2 » u(P)dlp, (4.4)

then ep(zs) := K= ({L%**}~[1]) # 0. Moreover, the counterpart of the property of
(G;) reads, for M € Cs(zs),

f Gy (P, M)nd(Pydip =0, i€ {1,2}, (4.5)
Clzs)
and (4.2) admits a sense only if (b1, b2) satisfies
f (0179 + banl) (M) dias = 0. (4.6)
Clxz)

In addition, n° obeys {4.2) for (b1,b2) = (0,0). However, under the condition (4.6)
the problem (4.2) admits a unique solution u® linear upon the data (by,b3) denoted
u® = (uf;uf) = {S%*3}1[b1;b2). Throughout the paper we assume, for any cross-
section Cs(z3), that if

= (1)) = (S5} L0l £ = (8,8) = (ST} o), (4T)
then A(zs) := K= [t1]|K=3[t3] — K*3[t3]K*3[tl] # 0.
(b) Asymptotic behaviour of density d
In usual circumstances the flow u* often admits a non-zero family

(al* (23))ogs+rsa
and the system (3.21)—(3.23} clearly suggests that d = d;e; reads

d;(8,23) = Z i di,m(t?,mg,)e"[log e ™™+ O(eloge), i€{1,2,3}. (4.8

n=0m=1l—-n
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Stokes flow past a slender particle 2083

Since dlp = [fs0](P) dép (see {3.8)) it follows that, for g = fsou,

JT (2] — 2a)?d) = IS [d] + &;21072(d), i€ {1,2}, (4.9)
I3[g) = —2K%[u), 177%[g] = 208" [u] + 2V, {K*[u)}, (4.10)
where the operator V; obeys, for z3 €]0,1[ and a function «(t) defined on |0, 1],
1
Vi [a(t)] i= o(z3) log 2 +fp/ _at)dt (4.11)
o 2t — z3

Accordingly, by setting df, ,,, = fsoti, ,, and substituting (4.8) into {3.21)-(3.23), we
obtain, for the first-order terms,

K®[ty,] = —3a7"(zs),  K™[t51] = -3a3(@a), K™[§1] = —1a§ (za),
(4.12)
S7 % s o) = K>t man] = Ve ([t ]} = ¥ 2)s § € {1,2} and > 1
(4.13)
L] ) = K2 U nia] = Wao K B} = W m(za), m 21, (414)
with W, [a(t)] := Vo, [a(t)] — 3a{z3) and for the second-order approximation {under
the definitions d§ o := 0 and for m 2= 0)
K™ty o] = K™ ] = K[t} 5] = 0, {4.15)
877 (s ) = K™ (6] ] = Voo LT ]} + 3 {0m 005 (3) 1 + 6m 007 (w5)z2

— I (=] -z} (25 — 23)dy ]
— (1= dm0) I3 % [(x] — z;)(28 — 23)d} ]}
=b . (8,23), F{1,2}, (4.16)
Loos[ed ] = K0 ] = W {K e L1} + {0,005 (23)21 + 6m 008 (23) 7o
~ JP((z§ - m3)(d(),m+1(-735D —z1) + @"U,m-;-1(ﬂ"2jD — 13))]
— (1= 80} T3 (25 — 23)(d} (=] — 1) + d] (af — 22))]}
=5} (6, 23). (4.17)

Hence, at each order n € {0,1}, the functions tn m and {t} .; nm) respectively,
obey a ‘Laplace-type’ integral equation (4.1} and a two—dlmensmnal ‘Stokes-type’
integral system (4.2) with data b;(M) depending, through {a?*(z3)), on the external
flow and also on the previous orders. If (4.6) holds for any couple [b} ;b ’m] the
system (4.12)—(4.17) can be progressively solved from top to bottom. This task may
be numerically achieved (with especial care for stability reasons (see Hsiao 1986)).
However, we calculate the terms b, , in order to check the condition (4.6) and to
give, in §5 analytical comparisons.

Owing to the definitions of operators K*2 V and W, each term b} ., indeed
only depends on x3. Thus, (4.6} holds for [béj m] and the solution (2§ ;%3 ) of
(4.13) writes, for m > 1,

th (8, 3) = by (3)t(8, 23) + B2 (23)t3(8,23), 7€ {1,2}. (4.18)
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Th1s latter equality gives K*3 [t‘é m) in terms of [bg ,,; ;b2 ... By replacing each bé’m
n (4.13), we not only deduce the link between K* 3[t0.m +1} and K*#3[ty ] but also,
since co(xz) # 0, the couple [bj ;b5 ,,,]. More precisely, the solution reads

(K™t )i K21 ml) = =3B M0 (0;02°(8), m21,  (4.19)
(00,1 (€3); 0 1 (%3)) = Ay (K[t ); K'[t5,0)), m 21, (4.20)
with
B (o1(t); 02(t) := (an(z3); a2(ws)), BE, := By, o BE!
if £ = 1, and for
(v1(z3); v2(23)) = Az (a1(t);02(t)) and  (wi(zs);wa(zs)) = Byy(ea(t), ax(t)),
then
A(za)oi(z3) = K2 [t5lan (z3) — K™ [t]oz(2s),  wilza) = vi(zs) + Viy[0a(B)],

(4.21)
Alzg)va(zs) = K™ [ton(zs) — K™ [t3]aa(zs),  wa(zs) = va(zs) + Vay[ea(t)].
(4.22)
If g := {L%=3} (1] recall that cq(x3) = K*3[ug] # 0. Consequently, £3 ,,, = b3
and K%t} ] = by ,,co(z3). Thanks to (4.14) it follows that, for T2, [a(t)] = a(:r;g)
3 17,,0,0 3 K= [5 m]
K=o ml = —3Tm Hag " (1)),  t4..(0,23) = —ug(f,23), mz1, (4.23)
’ ’ co(z3)
1 Lot dt
zg|(t)] = 4 1o 2—1+—}am +f/—. 4.24
[ ()] { g P CO(:CS) ( 3) p o 2|t—$3| ( )
In view of (4.18)(4.24) the first-order functions ¢ ,, are inductively deduced by

inverting for any cross-section Cs(zs) the three integral problems
L%l =1, 8" (i8] = [1;0], §%*[t}; 5] = [0 1]. (4.25)

Note that Vi, [a(t)], Wy, [a(t)] or Ty, [a(t)] involve the values of a throughout ]0,1[.
Hence, except for
(té,l;tg,l) and tggl,

which are solely respectively related to
(a1(z3);05°(23)) and  ag®(z3),

each function té’m(g,mg) is a fully three-dimensional correction of the cross-section
approximation but depends on each other’s cross-section Cs(t) only via a global
quantity: K[ty .]-

The previous first-order solution authorizes us to handle the equations (4.15)-
(4.17). For brevity we only report the solution (see Appendix B for details). For
(1 0512 0: 13 o) one has to solve, for any cross-section Cs(z3), the following well-posed
pure shear-flow problems:

Loms[uy] = 21 = f(f,z3)cosf, 7' = (rf;73) = {S%"2} Lay; 0] (4.26)
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L% ) = 23 = f(6,23)sin8, 2= (rf;75) = {897} 710; 2], (4.27)
and the ‘extensional-type’ problem
% = (r3,73) = {8925} [z ; —z4). (4.28)

Under the notation d,{«(t)} := [da/dt](z)}, we obtain

th 9 $3) ZFD Ig t (9 .’1'3)

+Cz o(T3)7; i (0, x3) +Cl ol{z3)7; 20, 23) + C1 olza)T -3(9,$3), (4.29}

K*s [t{,l} = Fg ($3) - xs{Kt[xftO,l s 3 S {1,2}, (4'30)
tio(e, .“L‘3) = Fg(mg)uo(f) .’L’3) =+ C3 (333)11,1(9 2:‘3) + 023’0(333)%52(9, :1’33), (431)
K™t} 1] = F5(23) — 8x, 5{K (2] tg, + 25 1511}, (4.32)

where the functions Cf,o only depend upon the family (ag 'k(mg)) j+k=1 and the first-
order solution (5 ,;¢3 15t3 1) in the following way:

2011,0(1'3) = a’l (933) - 2853{Kt[t371]},} (4.33)
203 o(z3) = az H(x3) — 200, {K[£5.4]}
20T o(ws) = ay”(za),  4CF o(23) = a3 (z3) — 20, {K*[t5,1]}, (4.34)
203 o(®3) = ay (z3), 408 4(x3) = ag™ (w3) — 205, {K*[154]}, (4.35)
while the remaining functions F!, obey
(Fg (23); F§ (23)) = = Ay (Ca 0 (K [r]] + CF o (1) K*[r7] + C1lo(f K'[ri);

021 oK [r3] + CTo () K [r3] + CLo () K*[73)), (4.36)

co(z3) F3(zs) = Z olza) K3 uy]. (4.37)

=1

For m > 1 the determination of ¢ requlres additional efforts since each term b
111v01ves for j € {1,2} the new operator L] 922 defined as
27 d
LI y] = i 5 [(Fs0u) (6. 1) log H(0p, £, 6, 33))e=s, d6p. (4.38)

More precisely, for m > 1 and j € {1,2} we obtain

2
B (0, 23) = Fl(z3) + a2, (8, m3), af, =Y Cf,.(za)m + L] {af — 2)8 ),
i=1

(4.39)
O] (23) = 85180, {S K] o) + WA KV [ )} — K183 ]} (4.40)
Thus, we write, for m = 1,
2
=" Fl(za)th +79™(8,25), je{1,2}, (4.41)
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2
13 = Fa(@s)uo + 3 _{CF . (23)w + 110s5bh 1 + by (23)wr}, (4.42)
=1

where the occurring functions vy, w; and Cfm obey, for [ € {1,2},

2L%%s (| = —L9% [Z T — :.sj)t;], QL83 o)) = '9 w2 [Z(:c —z;)t ]
(4.43)
QCEm(Ig,) = 65'53{%[[(“ [tlﬁ m” - K* [th,m+1]} = _a&“sbf),m (444)
and the function r9™ = (r>™;73™) obeys (use (4.5) and the link K= [t3 1] =

Te {K* {5 ml})

T3 LT, m 1 »T
S_;?’ [T? 0 ] = aJ = 6593{ |:% - Co(t)] Kt[tg,m]mj} + Lg 3[(3:35’ - xj)tg,m]‘
(4.45)

Finally (see Appendix B for details), the terms F}, and K*s[t] ] are inductively
obtained by invoking conditions (4.30), (4.31) and the relations, for j € {1,2} and
m 2z 1,

co(zs) F3(xs) = K™8[t] ]

2
— > AC n(za) K™ ] + K [01]0s;bh,m + bb o (z3) K™ [wi]},  (4.46)
=1

P i {C},(23) K™ [ug] + K= 1) 8, bf , + bh o (w3} K2 [wy]}
1,m+1] —

= 60(933)
+ T {K 8 0]} = Oy 3{VA (K (27 85 1 + 25 15 )
+ KMaft) ys + 25t m1l}s (4.47)
(Fr(x3); F2(z3)) = A, (K'[t] ] — K' /Y™ K[t ] — K rg ™)), (4.48)
K] o yq] = F(z3) + Voo {K'[t] ]}
— 8y (K a2l 8] ] = V(K (2783 L)) ) (4.49)

The equalities (4.45)—(4.49) outline the efforts spent in getting the second-order
solutions % . It sometimes occurs that ( “(z3)) = (0). In such circumstances, the
first-order solutlons t8 ., vanish and many 51mp11ﬁcat1ons occur in (4.46)-(4.49). More
precisely, we obtain, for m2>=1and j € {1,2},

KZ*s3 [tS

t] (0, 25) = Z m(23)t5(0,23), 1] (0, 23) = —?O@i;n—]w(e,xa), (4.50)
wei ) = - { e Bl ey
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(K** {t%,m-t-ll; K* [tim-o-l]) = B:?:(Kt[t%,l]; Kt[tslz,l]): (4.52)
(Fr(2s); Fa(23)) = Agy (K[t m]; K*[H 1m]): (4.53)

with
K*[t] |] = Fj(xs)

given by (4.36), (4.37). The above solution (4.50)—(4.53) is similar to the general
first-order solution (4. 18) (4.23) with (b ,,; 85 ,,) replaced by (Fg i F§.,)-

(¢) The next order estimate in specific cases

Throughout this subsection (a{"®(x3)) = (0). Since the leading solution (4.50)-
(4.53) may vanish (think about a quadratic velocity ™) it is worth giving the
higher corrections. These are achieved by detailing the term O{D3c?loge) on the
right-hand side of (3.23). By invoking our systematic formula (see equation (A1) in
Appendix A) the remainder O(M|gle? loge) in (3.15) reads

O(M|[gle? loge) = Lig]e? loge + O(M([g]e®), (4.54)
where £ denotes a linear operator. Thus, the system (3.21)—(3.23) suggests setting

2 o0
i(0,x3) :Z Z [Fsoth ) (0, z3)e™ loge] ™™ + O(e*log?e), i€ {1,2,3}.

(4.55)
For dil”,_l := 0 one deduces, for j € {1,2} and m > —1,
Kot ) = K*[8_] = K*[8_,] =0, (1.56)
SIS th it m)
= K[ 1] = Ve (K1) ]}
+ %(6171,0 Z a;k(l‘B)xlxz TP (] = 25)(@f — 23)d] ]
I+k=2
- U - 2)ef - 2] ) = b (0,2), (457)
L=

= K* [tg,m-i-l:[ - Wma{Kt [tg,m]}
+ i(am,o IRACIEE

I+k=2

T [(33 - a:;:,)(d m+1($f —x1) + aﬁ,mﬂ(i‘?zJP — 72))]
= (1= 8, ) =N(0F = )] = 1) + (o —22)])
=05 (0, z3). (4.58)
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The equations (4.56)— (4 58) are similar to (4.15)-(4.17) with functions b} ; involving

uadratic terms ztz?~!, I € {1,2}. Thus, the treatment looks like the approach
q 142

detailed in Appendix B. If _
(@l (23))j4x=1 = (0)

the solutions (¢} ,,,) take a simple form:

(ti,m) = (0)= té,—l = tg,—l = tg,—l =0

2

and, if the new functions u3,us, us, 7', 72,7 and r* obey the integral equations

Lo [ys) =22, LP%™([uy) = 2120, LO%[ug] = 2%, 8%°[r};r3] = [2%;0], (4.59)

§93[r2 r2] = [0;22], 8933 r3] = (2% — 22425;0], 893t rd] = [—2z170; 2],
1372 i 1:72 1 1:72 (4260)

then the solution is given, for m = 0, by

2
t§,0=ZGB($3)t;+%{a?’ (z3)r} + a2 (ws)r? + a?®(za)rd + a3 *(xs)ri}, (4.61)
=1

(Gé(ms)-G2(m3)) = (K“ [t3,1); K= [t31]) = — Az, (% (£); (1)), (4.62)
295(t) = a?* (K r}] + a3 YO K [rZ] + o} (YK [r3] + o PO K P[], (4.63)
t2’0 = Go(mg)uo + Z{a%’o(xg)u;g + aé’l(mg)m + ag’2($3)’tl,5} (4.64)
deo(z3)G3(xs) = — (a2 (x3) K™ Jug) + a3 (z3) K** fug) + a3 (23) K% [us]), (4.65)
and, for m = 1, by the following equations, similar to (4.50)-(4.533):
g (43
n(6,25) = Y Ghlat6,25), 000,20 = " el 1) as6)
=1

23 [+3 _ _lpm-1 {'Ll.g] 2 ,0 K* [ud K' [U5} ,
Ko [i3,] = 1T { e+ a0+ T (t)} (467)
(K*s [t%,m-»-lJ;sz [tg,m-b-l] Bm Kt[tz ik Kt[t?. 1) (4.68)
(G (23); G2, (23)) = Agy (KP[t5 )i KU[t5,,)). (4.69)

(d) Asymptotic behaviour of global quantities

Global quantities of interest are the following moments:
MMy, 1o, 0l3) = f F M)y ) [zh) 2 [2h)2 A8y, Li+la+la=n2=0. (4.70)
oA’
In contrast to other studies (see Geer 1976) we directly gain the asymptotic behaviour

of M(l1,l2,13) by using the solutions (4.8) or (4.55). For instance, the total force F
acting on the body reads, for the usual case handied in §45,

F = SW,uLZ{Z Z (/ K'[t}, ]dt)e”/[loge]m+O(6210ge}}ei, (4.71)

n=0m=1l-n
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and, for the exotic circumstances addressed in §4c,

F =38rul i{i i (fol KMt ) dt) €"/[log €)™ + O(e log? e)}ei. (4.72)
i1

n=1m=1l—n

Observe that for a?’o non-zero the leading term arising in the asymptotic estimate
of F; (see (4.71)) becomes

1
—22_‘5’--3,uﬂLf a?’o(t) dt/loge,
0

i.e. does not depend on the body shape once (L, ¢) is given.

5. Application to particles of elliptical cross-section

This whole section addresses analytical comparisons with previous works or exact
solutions. For a slender body the available estimates (except Batchelor 1970) con-
cern the circular cross-section case, whereas analytical results exist for the elliptical
particle embedded in a uniform or linear external flow (see Jeffery 1922). Thus, we
restrict ourselves to a body of elliptical cross-section: the boundary C(z3) of the
non-dimensional cross-section Cs(xz3) is an ellipse, £(z3), of equation

2 -T% 2

where h is a smooth function such that A(0) = A(1) = 0 and 7 is constant. By
replacing (77, e1,e2) by (1/7, es,e1) it is possible to assume that 0 < n < 1. In this
case, we obtain f(6,xs) = h(z3)g,(#) with

(0) = 1 +tan2g 1/? [Fso](6,zs) {1+ tan8/n*}'/?
I\ =\ T+ tant 8/n? R(z3)(1+tan?8) {1+ tan®8/n2}3/2’

The elliptical cross-section authorizes us to invert the encountered boundary integral
equations and to recover the circular cross-section by setting n = 1.

(5.2)

(a) First-order solution

We apply (4.18)—(4.24) with solutions ug,t* and ¢ given in Appendix D. If a; =
1/(n+ 1), a2 = na1, a3 = —% and the new operator O, (a) obeys

Loaft)dt
Oy, (a)[a(t)] = {a - log[%(n + Dh{zs)]}a(zs) + fpf0 2|t(+a:3’ (5.3)
then the solution dg,m = fsoth ,, reads, for i € {1,2,3} and m > 1,
- ACA g(6) 1
i __ <7 T3 [t 7N m—1¢ 1,00 .
bin0,20) = LK ] = ~E D On @l 0), (54)
if we set O2 (a) = id. As soon as a?’o (t} = U;t™ with n € {0,1}, this result becomes
2 2
; 9,(0) Uiz ® U .
do1 =~ 2, dyy=—T— {23 W (z3) + ai] + 1,n(5 — 23)},  (5.5)

4wy 257 47 258
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. 2(g . l—x3 _
e O e e
(56)

2 l—z3
dé,a _ _QLEZ) 2(;:“"3 {ai -1+1 [W(mg) + f_ma W (zs + u) sgn(u) du]
1R W s + u) ~ W(zs)] du] }

+ X3 |:W($3) + (ai -1+ W($3))2 + /

—TIs3 glu‘l
n=1, (5.7)
where the function W depends on the shape function h and obeys
16&?3(1 - 563)
2 =log| ———5—"~|- 5.8
W) =g 1 s >5)
If a"°(t) = U;, the total force F reads (see (4.71)) as
_ 1
F, = —ilfg’(;—i—ljl{(log )7+ [ag- +f W (t) dt] (loge)~2
" 0
! Wt L AGIE
+ [/ {(W(t) +a) + f Wt~ U;M (B du } dt] (loge) ™% + O(log e)_4}.
0 —t
(5.9)
For a circular cross-section (n =1, a1 = a2 = —az = 5) the above behaviour agrees

with Geer (1976). Moreover for the ellipsoidal slender body h?(z3) = 4z3(1 — z3)
(see Appendix C) and for a>°(t) = U; or a3®(t) = wyt the results (5.4) and (5.5),
(5.7), respectively, become

2 m--1
: 9:(0) U 2
db = __an 26:3 {log(—n " 1) + ai} , formz1, (5.10)
2 2
5 g (Q)wezy ga{0)ws 2 1 )
= - — = - ) - — 1 11
dﬂ,l 471,” ? d0,2 47r7? log n + 1 n + 1 I3 + 2 (5 )

2 2
2 _ 90w 2.\ 1 2 n—1
dos = . { [log(-——77 e} TE1 z3 + log | + CEIE (5.12)

These results agree perfectly with estimates of the exact solution (see Appendix C)
when choosing po(e) = o(e) as € goes to zero, w = wy = wp = w3 = 0, for (5.10) and,
for (5.11), (5.12), Uh = =Us =w=uy = w3 = 0.

(b) Second-order solution

The use of {4.27)- (4 29) yields the solutions dj ,,, = fsot} ,,, and Appendix D pro-
vides the solutions 7%, 72 and 72. One obtains K 2 [t3,] = 0,

K*s [t%,l] = K" [tl,l] = zamaag’o
and
((1/n) + 2)al’ (z3) + ay®(z3)]zs + (1 + 5)2[ay®(xs) + 305,03 "]z},
(5.13)

g5(6)
87
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2 9 P
dio = g%ir){ ) (zs) + (1 + (2/n))az (z3)]z1 — [a7(23) + 0p,00° %@}
(5.14)
2
iy = M{[aé"(ms) + 82,0721 + (a5 (z3) + B, a3|za/m}. (5.15)

81y

The results {5.13)-(5.15) agree with the behaviour of the exact solution for given
(wi,ws) and Uy = Uy = Uz = we = 0 with py(e) = o(¢). After some algebra we get,
for the elliptical cross-section, K*3[t} , ] = F} (z3) = 0 and

¥
8[r™r "m]_am{[%—EHJK*[L‘W}%} je{1,2}, mz=1.  (5.16)

Thus, 2(n + l)r?’m = (= 1)d, { K'[t3 ,n]}7} and, form 2 1,

(=1 (1 = n*)g3(8)z;

Hm = gt Ou{K ML e {12} (5.17)
3 g5(6) t(,1 try2
dy = — 27 {2102, {K"[t5, ]} + 2200, { K" [t m]}}- (5.18)
Recall that K[t} ,,| depends on al through the relation (5.4). If a2 °(t) = U; and
w; = w =0, we get d) ,, = 0 for m = 0. This matches the a.symptotlc behaviour of
the exact solution d° prov1ded we choose this time po(e) = o(e). Since K*[t} ] =0,
oQ
Fi(e) = > F"[loge] ™ + O(e® loge).
m=1

For a circular cross-section, dl m vanishes. The author has also checked that the
asymptotic behaviour of the exact solution (handled in Appendix B for w # 0 and
w; = U; = 0) perfectly agrees with results (5.17) and (5.18) provided we take for
pol€) the following behaviour:

€Wt 9 1+ n? 1
=—11—- 2n — — 1} 5.19
Po(e) Qnal[ et en 2loge T loge (5.19)

6. Concluding remarks

The surface stress f may be split into its normal and tangential parts, respectively
denoted by f* and f*, with

AP =[£(P)-n[(P)n(F), F(P)=f(P)+ f(P). (6-1)
Under our notation the vector n(A) obeys
[fsen] (M) = [cosf +sin@f " fi,]er + [sinf —cos8f 7" fi. ez —efs,ea. (6.2)
Thus, the normal component f2(P) = [f".n](P) of the surface stress becomes
8rp{[cos @ +sin@f =1 f1 Jd1 + [sin® — cos O~ f1 |da — ef; da}

fn(P): €[fSE]2

(6.3)
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Accordingly, the term fs. f* does not admit a uniform asymptotic estimate for z3 €
|0, 1[. The same remark also holds for the tangential counterpart fs.f*.

By re-introducing the solution (4.8) into (2.5), (2.6) one may deduce asymptotic
estimates of the flow (u,p) outside the body.

The present theory applies to the case of a non-circular cross-section and, if neces-
sary, up to high orders with respect to €. It thereafter requires calculations that may
appear somewhat cumbersome. However, recall that the method of ‘matched asymp-
totic expansions’ is likely to induce much more tedious calculations when enforcing,
for high orders, the matching rules.

Appendix A. Getting asymptotic estimates (3.14) and (3.15)

ThIS appendix presents our systematic formula and details the operators A #5 and

B3 According to Sellier (1996, theorem 16) if x5 €]0,1[ and K(w,v) is a ‘Q
pseudo—homogeneous kernel such that K(ou,cv) = sgn(o)|e|9K (u,v) with Q a
strictly negative integer, then for g and h smooth enough, respectively, near z3 and
zero and a positive integer N the following asymptotic estimate holds, as € — 07

l—xza
fp/; g(zs + w) K [u, eh(u)] du
N BpK(1,0) =25 son(u)g{zs + u)du] ,

=S E e [ B

—x3

S5 it [ gk o e

N e
—ZZ Z Z Ma _0—;-105K(1,0)" loge + o(e™),

Ititg!

(A1)
where fp [ denotes an integration in the finite-part sense of Hadamard,
oK dg
K (u,v) = — g™ (t) =
2 (u U) Sun ’ ( ) dtn
and the coefficients a; obey a,g =dp0 and fori 2 1
{{h(uw) — RO)]/u}* = atuP, asu— 0. (A2)
P

By applying (A1) successively to
K(u,v) = [u? 4+ 02 71/2 with Q = —1,
or

K(u,v) = [u? 40?73/ with @ = -3,
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we build the required behaviours (3.14), (3.15). In computing the right-hand side of
{A 1), note that the change of scale t = h(0)z may induce extra terms when handling

fpf K[, h(O))t™ dt

{see Sellier 1996). For instance, if K (u, v) = [u?+v? 732 (4,m) = (0,2) and 2(0) > 0
we obtain

oo 12 dt o 2d
fp/_mmzfp[mﬁ—mog[h@)]. {A3)
Finally, (A1) yields (3.14), (3.15) with the following definitions:
ASlg) = —2g(z3),  By™[g] = 29(23)/R*(0), (A4)
2 2
ATl = Tloles + AR Wheos BYlgl =~ lg(os +wlumo,  (AS)
1
41g] = 2{log2 ~ log hO)}olas) + 1p [ LI, (A6)
2
sl =t [ 208 L s oghetes + o (A7)
2y _ 2
aegl = —ip [ AR08 L a4 + o (30 s

(A8)

Appendix B.

In calculating the terms bﬁ,m(e,mg) and bglm(ﬁ,xg), respectively, for m > 0 and
m 2 —1 we remark that, if g = fsou and j € {1,2}, then

JP (el — z5)(@h — 23)g] = —205, { K [zF u]} + 27,00, { K" [u]}, (B1)
I35 (2 — ;)28 — 23)g] = 20, [Vi{ K" [aPu]}] — 22,0, [V {K*[u]}]
2m
-2 Bas[(af — 25)g(8p,t) log H(Bp,t,0,x3)] dOp.
’ (B2)

Here 8,{a(t)} := [de/dt]:=, and it has been noticed that

f] t}sin_tm;ms)df_ { +fp/ v—tl} (B3)

Thus, if one sets dy , = di _; := 0 it follows, for i € {1,2,3}, that

2
bim = Fin(zs) + Y Cl(ms)a + RdS 5 d8 i 8 ), (B4)
=1
i a‘:’k(ﬂf?’) ik il
b =G ZD,m 23)01+ 0mo Y g, 0105 + R i df idd ),
= ]+k=2
(B5)
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with functions C},, or Dj,, given by (4.33)-(4.35), (4.42) and (4.43) or (B15) and
(B 16), functions F, and G%, to be determined and the remaining terms

I 3
R[ 4,m> J'mﬂdjm]

being available from the previous order solution and such that

2
) d
R [ur; ugi ug) = E[(Sﬂf — z;)us(fp, 1)
0
x log H(6p,t,0,23)|t=2, d8p, J € {1,2}, (B6)

2

27
2R3[U1;U2;U3] =f d {|:
0

The compatibility relation (4.6) requires

'ULJ(GP, )} IOgH(BP,t,B, :’33)} ng

J:]- t=x3

Tym(x3) = jf [b}!mng+b?,mng](M) dipr =0 for j € {1,2}.
Clz3)

Case j =1, m = 0. If Ej(xs) = Fj(zs) — K™[t} ,], one finds that
2E3(23) = O0p {K' (27 51 + 256341}, Bilws) = O {K'[2t5 4]}, i€ {1,2}.

(B8)
If S(z3) denotes the area of the cross-section Cs(z3), (B4) yields
2
Tip(zs) = ZZ% o{z3)x; nd (P) dlp = S(x3)[Cio(xs) + CF (as)] = 0.
(B9)

The last equality is ensured by (4.33)—(4.35), the value of Ks[t3 |] given by (4.12)
and the basic link (3.7) for (p,q) = (0,0). Inspection of (B 4) suggests the intro-
duction of (see (4 26)-(4.28)) the functions uy,uz, 71, 72 or 7° and thereby to cast
(t] ;22 o) and £ o, respectively, into the forms (4.29) and (4.31). By combining (4. 29)
(4.31) with the condition K= [ti o] = 0 we deduce F¢ and also, through the previous
definition of E;, the value of K®3[ti 1] (see (4.30), (4.32) and results (4.36), (4.37)).

Case j = 1, m > 1. The reader may check that C3 . (x3) = C3 . (z3) = 0 and
Clon(@s) = CF n(@3) = =0, {K [t myn] = Wl KV [t5 1]} — K'[t5,,/21}. (B10)

By gathering (B4), (B5) and (B9) we obtain
2

T m(z3) = 28(x3)CL 1 (23) + By {d3 (0P, )(0p, 1,6, 25)} dbp, (B11)
0

with, for P(8p,t), M(6,23) = (z1,z2) € Cs(z3) and H = H{#p,t,0, z3),

¢ = f%a Z” (M)(zF — z;) log[H] dlyy = —S(z3) — 2 [C log[H] dShr.

s5{z3)

(B12)
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For (B 12) recall that z; = f(6,23) cos @, x2 = f(f,x3)siné. Accordingly,

d
T1,m($3) = 2S(.T,3)Cim(933) - S(xfi)ams{Kt[tg,m}} - zf (z3) a[wiM(dg,m)] dSM?
Cs(xs
{(B13)
with, for ¢ near xy, if M (6, z3) is inside Cs(z3) then M is inside Cs(t) and
r
g m) = / d3.m(Bp,t)log H(Bp,t,0,23) d8p = —b3 (1), (B14)
0

The last equality holds because the function ¥ is harmonic in R?\ C(t), of constant
value —b3 . (t) over this path C(t) (see equation (4.14)) and thereafter equal to
—b3.m (t) everywhere in the closed set Cs(t). Inspection of (4.14), (B9) and (B 13),
(B14) finally ensures that T .,(z3) = 0. By introducing the functions v, w; and
O™ = ()7 r0™) (see (4.45) and (4.43)) one deduces from (B 4) the forms (4.41),
(4.42) for ] . and after some algebra the results (4.42), (4.43) and (4.46)(4.49).
If t{ _, :=0 then, for m > -1,
D_;,m($3) = _6:",'581‘3 {Kt [tim—t—l] - Wf{Kv [ti’,m]} - %Kt [t:;,m]}ﬂ (B 15)

2D} (#3) = ~Ouy { K] pns) = VALK (], 13} (B16)
The results (B5), (B15), (B16) and also K*[t§ ;] = 0 immediately yield
T, —1(z3) = S(z3)[D] _y (23) + D3 _(3)] = 0
and, for m > 0 (see the definition (B 14), of ¥} (u))
Tym(ws) = 28(23) D1 (23) — S(23)00, (K*[8] 1]} — 2./0 ( )ch{%béM(d?,m)}dSM
S(Ta
+ 26m.0 ﬁ ( )[(af‘o(:r;;):cf + apt (z3)ziag + 0y (x3)x2)nd
Clzxa

+ (ag’o(xg)scf + aé’l(:c3)a:13:2 + ag’z(m3)$%)ng] dig, (B17)

with t§ ,, = 0 since (a?%(z3)) = (0) and consequently {see {4.17)), for m > 0,

Lﬁ',a:a [tila,m] = K" [t:f,m+1] - Wﬂ?s{Kt [t:f,m]} + %6m,0(aé’0($3)$1 + a'gyl(x:?')x?) =€m.
(B18)

Since e, (¢, 23) is a sum of a function of z3 and a linear function of (1, x2) it is clear
that

W (d] ) = —em (6, 23)

for M inside Cs(z3). This remark and property (3.7} applied to (p,q) = (1,0) and
(p.q) = (0, 1) show that T m(23) = 0. The solution ¢}, is deduced after introducing
the functions wus, ug, us by (4.59) and

o, who e =0rn™)
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(for m = 0) by the well-posed integral equations

2 2
2Ly S [Z — ;)T ] . 2L [l L‘9 w3 [Z 59;,)7';] ,

=1 =1

(B19)

59 3[7‘ ’ ] = 8333{ |:§ - Co(t)]Kt[tg,m]mj} + ng 3[(_:(:3’:’ - xj)t:]?..,m]u mzl,
(B 20)
2
259 “[rl ; 2 9 = Z G?’£($3)$k$g - QBxs{Kt[t 1+ L [Z D — tl 0]

k+i=2 j=1

(B21)

Thus t; ;=15 _, =0 and since t] ; =t} _; =0 then, for j € {1,2} and m > 0
the quantities ¢}, obey

1) (6, 23) ZG’ 23)t(0,23) + (1 — Sm o)™ (8, 23) + Smor;°(6,23), (B22)
i=1
K8 11] = G () + Ve { K[t} ]} (B23)
— Oy, {Kt [:"‘Pftim+l] = (1= 0, —1) VK" [xft;{'mﬂ},
(Crla); Or(€3)) = Agy (K83 1n) — v (1) K15 1] — 72 (8), (B24)
() = (1 = 8m o) K r; ™) + S0 K [r} ), (B25)
and for m > —1 then K*3[t3 ;] =0 and
2
t3 m = Go (z3)ug + Z D}, (z3)ur + L80,m (a2 (zs)us + az (z3)uy + ag (z3)us)
=1

1 Z{v¢8w3 et Fpun} + 6 0[0]02,C3 o + C o (@3 )w)

+v38,,CF o + 01,0(1‘3)102 +v30:,C1 ¢ + Cl o(z3)wy], (B 26)
co(ws) G2 (x3)
2

= K*[t, ] = 3 D} (23 K u]
=1
— L60m {02 (23) K™ [ua] + ab (2) K™ ug] + 032 (w5} K™ [us])
2

—(1- 5m,—1) Z{@x:apjnKma [’U,g] + anKms [w;}}

=1
+ 6m,0(Kx3 [UH&M 021,0 + C%,OKxﬂ [w%]
+ K*v3]02,C1 o + C3 o K* [wh] + K™ [v3]02,C1 o + C1 o K= [wi)]),
(B27)
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Kxa {tg,m+1]

2
= Toy (K18 W} = Y D} (@s) K™ fusl/eo(23)

I=1
— O K 2 t] gy + 288 0] = KO [2T 8+ 2fed 11} [200(23)]
— im0z (23 ) B [ua] + a3 (23) K [ua] + a3 (23) K2 [uz])/ [co(23)]
2 3 x3
+ (6m=_1 _ ]_)Z{@:ESF;LK [UJJ + Fl: K [wl]}

ot colzs) ™ eo(z3)

Krswl] | K*[)

3;.02
co(rs) colws) 0P

K73yl
= 5m,0{ Co(igﬁ] 825C30 + C3,0(73)

K=(wl] | K=o

* Ci?’O(xg’) co(z3) co(z3)

1 1 K3 [wg]
3“6'1]0 + CI’O($3)—CO($3) . (B28)

Appendix C. The exact solution for an ellipsoidal particle

This appendix gives the solution d® (see (3.11)) for an ellipsoidal particle embedded
in a simple external Stokes flow u.,. More precisely, the ellipsoid and the external
flow are, respectively, defined by

X2 X2 X2
a—21+a—22+a—23=1, e=ay, az=nmna, L=2a3, (Cl)
1 2 3
Xo —wX
’U,OO(M)= [Ul-F—wl 27 W 1:|81
2033
we X wz X1+ wX
+ [Uz +dwp + — 3}92 + [Us+ #]63
2(13 2(13
= [U1 — ewxy + €’£U]_CC2]€1 + [U2 + 'LU2.’L‘3]62 + [U3 + ’w(.’lig - %) + 6w3$1}63.
(C2)
Under our notation, the following links hold:
€ a1 ! ! !
€= = = —, Xl =, =a171, X2 =Ty = Q1T2, X3 =1I3— Gz = a3(2$3 - 1).
L 2(13
(C3)

The above external flow wuy satisfies the Stokes equations and will permit us to
recover as special cases the uniform or pure shear flows. The form (C2) suggests
that to obtain the surface force f® = ¢ - n only for the uniform flow u$°® := Ujey,
the pure shear flow us® := V Xse; and the extensional-type flow

ugo = W(Xgel - X]Eg).

We denote by f* the solution pertaining to the flow uw$°. The solutions f? and f*
are given by Jeffery (1922). Note that the results {26} of this latter paper suffer from
misprints (o to be replaced by 7{ in the numerators of # and H' and similar remarks
for above coefficients F, F',G and G’). The solution f! is available in Oberbeck
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(1876) (see also Lamb 1932). If we discard the constant pressure term, the solutions

F*¥ = fle; become

1 4,uU1 63'1 Xi? X% X32

1_ , O N(X1, X0, X3) = =k + =2 + =2, C4
Y a1asasxo + efao] N (1, X2, Xa) aj  ef a3 (©4)
2 _ _ 2uVXslag + adyg] 2 2V Xalf —afy] =0
! alaga;;\/lv'yﬁa?ao +a280) adazazVNyhlalag + a3fo) ’ '
(C5)
4,£LWX]_[(2 - CED)A - 60B — ’}’QC}
3 _ BA = —20! —~! C6
L Sl 5 + o+ VY " o)
4uW Xo[—apA + (2 — 80) B — 1 C]
3 _ . 6B = "o_ II, Q7
5 s G + QT+ GBIV %0 =% e
4uW X3 —agA — BoB + (2 — %0)C)
f§’= 3 A1 [T AN C=*A"B1 (08)
azaza[B5g + oo + By V.
with, for
AW = (G + 0@ + 0@+ 01 xo= [ ayA
0
and
. f°° dt s /"" (a? +¢)" dt e f°° (a? +t) " 1tdt
T L @EE0ae Tk @r0ar” T (@ rnam
(C9)
with symmetrical integrals for ag, ap, of, 5o, 35 and 5j. For the ellipsoid we get
14 tan?d
_ 2 _ 200
f(g, $3) = h(ﬂ’};g)g:,r(g), h (fL’g) = 435'3(1 - 553), g??(g) = m, (C 10)
f2s2 1+tan®d/n* | 2_ 1.2
163(6) z3( I3)1+tan29/7]2 +€°(1 — 2z3)° = a1 N(X1, X2, X3).  (C11)

Accordingly, definition (3.11) becomes 8mud; = aiFigZ(0) where F; = V' Nf;. By
operating as many times as necessary cyclical changes of indices, we deduce the
density d® = dfe; associated to the external low u*. Curtailing the details, we thus
obtain, up to a constant pressure pg(e),

270 € /1€ - € /Te

VT T \TE+ I +Is | "W T %
EWNTL |1 pe € 2 re 1 1 17e € 2 re Ig € 2 re
atlnt P Pt Y el | — 2 (r_
E(E) |:3I3(2I9+€ I7)+6€2 |:(7] 211) (Ig+2€ I7) 2’,]2( g—¢€ I7) (C, )
12
2
e 92(8) [2Uz +ws —1+1I5/IS o [1HI35/18]  pole)ay za
Al R T TR e I S Y by oy % 7
_6w$2 17e ¢ 2 re L E_i € __ 27en] pesye 2 7e
nE(e) [313(219+6 5z K?? ot ) e~ T3 155 +€°17) ,(C )
1

Proc. R. Soc. Lond. A (1999)



Stokes flow past a slender particle 2999

2
g:(8) [ 2U, T4 IS IS —14+7I5/1Ig]  2epo(e)ay
d¢ = 21 3/%5 3/°6 | _ _1
47y {I€+I§ S T I ewas Is+ 15 nez=3)

1 <
+ %—) [ TG +205) 4 2505 = 2T+ ; (% 262 IE(2I +e2I§))] }
(C14)
with E(e IQ(I7 + I§) + 2 ISIE, quantities I? dependmg upon (¢,n) and such that
(t+4n2e2)" 12 ¢ 4e2(t +4e2) 32 dt (1)
{(E+1)(t + 4€2)}1727 {t+1)t+4n €2)}1/2’
F:f 4n2e?(t + dn?e?) 32 dt (t+1)=3/24dt (C16)
R A T TR NEVER {(t +4e2)(t + 42e2) } 172
I f°° 1602t (t + 1)1/ dt It =/°° 4e2(t + 4n??)~1/2 4t (©17)
e {2+ 42320 5T fo {4 1)(t + 4€2)}3/2°
e f” dn?e?(t + 4€2)" V2 4t o f°° t(t 4+ 4€2)~1/2 e (C18)
¢ Jo {t+ PRt + 1) TS {10+ 42}
e ® (t+4n2e?)~1/2dt e_ [T Stt+1)"1%dt (C19)
57 Jo {44t + 1)}/ T Jo {(E+ 4t + 4n2e2)}3/2

We deduce the asymptotic behaviour of d® by expanding the integrals If. By invoking
Sellier (1994) we get, for 0 < n < 1 and as € goes to zero,

IS(e) = —210g6+210g[2/ n+ 1] = 2(1 + n%)e?log e + O(2), (C20)
tle) = —— +46 loge + O(€?), ISfe) = % + 4 loge + O(%), (C21)
Ii(e) = —2 loge +2logf2/(n+1)] — 2 — 6(1 + n?)e log e + O(?), (C22)
If(e) = m—y 1) +0(e?), If(e) = —1 + 1262 log e + O(€2), (C23)
It(e) = 2— + 122 loge + O(e?), I§(e) = __1 +e*loge + O(%), (C24)
TR A AT !

I5(e) = —2log e + 2log(2/(n + 1)] — 2 — i—”n + 02, (C25)
Ig(e):—210ge+210g[2/(77+1)]—2—%%—0( )- (C26)

Appendix D.

This appendix derives the solutions wug,u1,us,t!,t? for the elliptical cross-section
whose boundary £(z3) obeys (5.1). Each point P(0p, z3) of £(z3) is identified by its
elliptical angle ¢p such that

xp = h(zs)cos®¥p, yp =nh(xzs)sinyp, tanfp =rntanp. (D1)
This choice allows us to derive the basic relations
2
T
dlp = nh*(x3)6(P)dp, [fso](P) = h*(x3)ga(0)6(P), h*(23)8*(M) =] + n_i
(D2)
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2 27
LM%P-W%@ASWMMWWMR1mM=M%@£SWMWR
(D3)
2log[PM] = log{h*(z3)[1 — cos(uip — W)][L + 7 + (1 — ) cos(ép + )]}, (D4)

with s(¢¥p} = u(P)6(P). Accordingly, it is straightforward to obtain

-1
— CO(‘/‘ES) —_ Pk ] — l
ot 23) = s cafas) = K*¥[un] = ~{log 3+ Dzl
(Ds)
K#3[t}] 1 7!
1 1 _ 1 warl) 1 _
G0 B0~ Sy K=~ (sl Dhtenl -
(D6)
a_ 2 _ K*3[t3] ®a[42] _ 1 __"n -
t1=0, t3(0,z3)= 2mnh2(zs)6( M)’ K™ [ty] = 10g[2(7)+ 1)h(23)] =+ 1 '
(D7)
(T,T + l)ﬂi‘j 3 .
. = 23My.] = D
u; (6, z3) S TRz )S D) K®u;) =0 forje{l,2}, (D8)
1 (1 +2n)z 1 _ Ty 37 17 _
(0, 23) = 4mn2h2(z3)6(M)’ 7o (0, z3) = AT (23)3(M) K {Tj] =0, (D9)
2 _ T2 2 _ n+2)m Z3(2] _
1 (Ba$3) _ 4’.71'7]2}12(533)5(M)’ Tq (91333) - 47Tnh2($3)6(M), K [Tj] - Oa
(D 10)
3 (49’ 3 (1 +n)ia 3 3] _
70, 23) = 2nh2(z3)0 (M) 2 (. 25) = PR ) =0
(D11}
Those solutions (7}, ;74) have been sought under the form
73 (M) = 7} (v, x3) = [Al cosy + B} siny]/6(M), je{1,2}. (D12)
For 73, we are led (see Gradshteyn & Ryzhik 1965) to
AY =B} = (1+n)*/[2nh(zs)], B} = A3 =0, (D 13)

and the solution (D 11} is selected by imposing the solution independent of the choice
of directions e; and ey (replace (e1,ez) by (e3,e1)).

Our assumptions imply that 0 < h(z3) < 1 for 3 €)0,1{ and 0 < 5 < 1. This
justifies the existence of K®3[ug], K*2[t{] and K=*[t3] for z3 €]0,1]. By using the
link (combine (5.2) and (D 2))

_ [fsol(M) 1 f1+tan8/y* M
o(M) = h?(z3)g2(0) h(-”«‘s){1+tan2 9/772} :

(D 14)

We may detail the dependence upon (8, z3) of the solutions given by (D 5)—(D 10).
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