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This paper deals with the electrostatic field around a slender, conducting body, not
necessarily of revolution, embedded in an applied potential. In contrast to previous works
devoted to a body of revolution we do not place scurces on a segment inside the body.
Instead we spread a source density on the boundary of the body in order to obtain a
well-posed problem. More precisely, the source strength satisfies a well-known Fredholm
integral equation of the first kind. This latter is asymptotically inverted with respect to
the slenderness ratio by invoking a systematic formula which provides, to any order, the
asymptotic estimate of certain integrals. Several comparisons with the behaviour of exact
solutions are also proposed.

1. Introduction

Handelsman & Keller (1967b) obtained the electrostatic field around a slender and
axisymmetric conducting body by placing inside the body an unknown source density
along a part of the axis of revolution. The source’s strength and its extent are gauged
by solving asymptotically with respect to a slenderness parameter the integral equation
imposed by the boundary condition. In view of its advantages this method has been
further employed for slender bodies (see Handelsman & Keller (1967a), Moran (1963)
or Geer (1974, 1975) for the potential flow around a two-dimensional or three-dimensional
slender body and Barshinger and Geer (1987) for the electrostatic field around a slender
dielectric body) and also extended to the case of a thin cblate body of revolution by
distributing singularitics along a disk inside the body (see (Barshinger & Geer 1983) for the
potential flow, (Barshinger & Geer 1981, Homentcovschi 1982) for the electrostatic field,
(Homentcovschi 1983} for the scattering of a scalar wave and (Barshinger & Geer 1984) for
a low-Reynolds-number flow about the thin oblate body). Except for the two-dimensional
case (see Geer (1974)), these works only consider a body of revolution. Moreover, Cade
{1994) recently highlighted that the associated integral equation may be sometimes ill-
posed (the answer also depends on the applied potential and the global analyticity of the
surface, as assumed for instance by Moran (1963), is not a sufficient condition for this
integral equation to have a solution). In order to avoid these drawbacks and to deal with a
slender body which is not necessarily of revolution we spread a source distribution on the
boundary of the body. This point of view not only leads to a well-known Fredholm integral
equation of the first kind but also to a well-posed problem. The price to pay seems to be
the derivation of the asymptotic estimate (up to high orders) of a specific kind of integrals.
This task is indeed not at all trivial but this key step is treated by applying a powerful and
systematic formula derived in Sellier (1996).
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FiG. 1. A slender conducting body with an indication of the coordinate sytem

This paper is organized as follows. The notation and the boundary integral equation are
proposed in Section 2. The asymptotic expansion of this integral equation is established
in Section 3 by using a general result proved in Sellier (1996) and briefly reported in
Appendix A. The asymptotic solution is thereafter derived in two different cases: a body
kept at a fixed potential (sce Section 4) and a body isolated with a given totaf charge (see
Section 5). In order to discuss the validity of the proposed method the whole of Section
6 is devoted to several comparisons with the behaviour of the exact solution for a slender
ellipsoid (in this case Appendix B and Appendix C exhibit the exact solution).

2. The governing boundary integral equation

Throughout this paper we consider a slender body A" which is an open, simply connected
and bounded subset of R*. The boundary 3.4’ of A’ is assumed to be smooth enough except
possibly at its two end points O’ and E’ (see Fig. 1).

For convenience the set (O’,x’,3',z") of Cartesian coordinates such that e, =
O'E'/O'E’ and the set of cylindrical coordinates {r', 8, z') are introduced. By setting
L = O'E’ and e := Max(r’) for M < 3.4, which is the maximum ‘radius’ of the body,
the slenderness ratio ¢ is written € = e¢/L < 1. The slender body is ‘straight’ in the sense
that it collapses, as the slendemness ratio goes to zero, to the straight segment O'E’.

By now A’ is a perfectly conducting slender body embedded in a given and applied
electrostatic potential ¢y which is induced by electrostatic sources lying outside A’ U 3.A'
(g is actually supposed to be harmonic in a neighbourhood of A’ Ud.A"). The introduction
of A’ disturbs the applied potential ¢ and gives rise to a new potential ¢ = ¢g + Py
such that, since perfectly conducting, the body A’ becomes a domain where the total
electrostatic field vanishes, that is, a domain of constant potential ¢¢. Hence, A¢ = A¢gp =
Agga = 0in A'U3.A" and the potential function ¢ _4- is indeed only due to the occurrence
of free electrostatic sources on the boundary 3.4’ (see Jackson (1975)). Consequently if ey
and g respectively designate the free space permittivity and the free surface-charge density
arising on 3.4’, the potential function ¢ and the electrostatic field E = ~grad[¢] are written
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for M ¢ R\ 8.4’

- _ath) ¢ _ q(P)PM
o0 =gwon+ [[ Lo as, Bon —Boon + [[ AT s,
(2.1)

where Eg := —grad[dg). Observe that whereas ¢p does not necessarily satify Agg = 0
everywhere in R? (there may exist outside A’ U 8.4’ electrostatic sources creating ¢)
the potential function ¢, := ¢34 is smooth in R3 \ 84" with APy = —q/epdsu
(if 85,4 designates the Dirac distribution on boundary 9.4") and vanishes together with
E; = —gradl@,] far from A'. In view of (2.1} the electrostatic problem reduces to the
determination of the unknown density g. Once this is achieved one can derive ¢ and E in R?
but also get without too much algebra the total charge Q on the body and the electrostatic
field on 3.A’ (outside A4"). An application of the well-known Gauss theorem (see Jackson
(1975) or Sommerfeld (1952)) indeed provides the link between g(M) and E{M) which is
normal to 8.4’ for M € d.A\{O', E’}. More precisely, if n(M stands for the unit, outward
normal vector at M € 34"\ {0, E'} (see Fig. 1) then

g(M)
€0

n(M), M ecdA\{O E}) (22)

Q=ff q(P)dS'(P); EM) =
aA

Recall that E = 0 inside A" and in (2.2) E(M) is the limit of the field E(P) as P €
R\ (A’ Ud.4") goes to M. Of course if n{M) admits a sense at O’ or E' the previous link
between g and E remains valid there.

In this paper we address two different circumstances for the electrostatic potential. In
case 1, the constant value of the function ¢ in A’ and denoted by 4 is known. Thereafter
the source density g obeys the following boundary integral equation:

q(P)
dregPM

Thus, ¢ is the solution to a Fredholm integral equation of the first kind. According to
the usual results (see for instance Dautray & Lions (1988a)) such a problem may also
be seen as the determination of a harmenic function ¢, € R? \ 8.4’ solution to outer and
inner Dirichlet boundary-value problems, vanishing at infinity and admitting a simple-layer
representation (of density ¢). If H*/2(8.A4"y and H*/2(3.4’) denote for real s the usual
dual Sobolev spaces, this point of view ensures that (consult Dautray & Lions (1988b,
Chapter XI) if @oja4, the restriction of ¢y to the boundary 3.4’, belongs to H'/2(3 A’)
then the integral equation (2.3) admits a unique solution, denoted by L7Vd — ¢g], in the
space H~'/2(3.4’). Consequently, and under the assumption that ¢gjp.4 € H'/2(3.A"), the
problem of finding the unknown source density ¢ satisfying (2.3) is a well-posed problem.

In case 2, the perfectly-conducting body is isolated with a given and not necessarily
zero total charge Q. Equation (2.3) holds once again but the value of the constant d is
determined by enforcing the condition for . This leads also to a well-posed problem and
for ¢ojaa € HY2(8.4") the condition bearing on the total charge ( takes, thanks to (2.2),
the form

d — (M) = Llgl(M) = f] y dsp, MedA. (2.3)
a ’

dff LK PYdS, = Q+ff L7 [gol(P) dSh. (2.4)
DA 2A"
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Thus, once 4 has been provided by using (2.4), the treatment of case 2 reduces to that of
case 1. As seen later the constant d wilt depend upon ¢ for the slender body. Hence, we
write d, in equation (2.3). For instance case 2 will permit us (see Sections 4 and 3) to
give the polarizability of an uncharged (Q = 0) slender body A’ embedded in a uniform
applied electrostatic field Egp.

To conclude this section we remark that the outer Dirichlet boundary-value problem
(with ¢ vanishing at infinity)

Apr=0 in R3\ (4 VA, pr(M)=d - ¢o(M), MecdA (2.5)

may be tackled by using a source distribution of unknown density f in A". For a
body of revolution and an axisymmetric applied flow or potential ¢p such a method has
actually been employed by many authors (see (Barshinger & Geer 1987; Geer 1974, 1975;
Handelsman & Keller 1967a,b) and also (Moran 1963)) by spreading sources only on a
part of the axis of the body. Unfortunately, this approach presents several drawbacks. First
the new density f does not possess a physical sense and subsequent efforts are required
in obtaining the physical free source density ¢ through the relation ¢ = —eol[d¢y/0nl,
where [[a]] := at —a if a* and a™ respectively designate the limit values of function a
obtained on §.4" from outside A’ and from inside. Moreover, Cade (1994) has shown that
the new associated integral equation of the first kind imposed on the density f does not in
general admit solutions. In contrast to these objections the method here proposed consists
this time in asymptotically expanding and inverting the well-posed integral equation (2.3)
with tespect to the small slenderness parameter €. This method is valid for a body not
necessarily of revolution and without any restrictions regarding the applied potential ¢y.

3. Asymptotic expansion of the integral equation

In this key section we establish the asymptotic behaviour of the Fredholm integral equation
of the first kind (2.3), with respect to the small slenderness parameter € of the problem.
The first step consists in rewriting (2.3) in terms of ¢ through the choice of a set of
non-dimensional coordinates. If the left-hand side, d, — ¢o(M), of (2.3) is thereafter
easily expanded, the asymptotic behaviour of the term L[g](M) comes, under specific
assumptions on the shape of the body especially at its end points O’ and E’, from the
application of a systematic method valid for a large class of integrals depending upon a
small parameter.

Let us define the new non-dimensional coordinates (x, v, z, ) and the positive and
single-valued body-shape function f(8,z) by x'/x = ¥'/y = e,/ = r'/r = L and
also if M € 3.4 then M{r',8,2") = M(cf(8,2),8,7) = M(®,z) with f(8,2) = O(1)
for € [0,2r] and 0 € z < 1 and also f(8,0) = f(#,1) = 0. For convenience we
also set f¥ := a* f/3v* for k € Nand v € {8, z). Moreover, we note that ¢o(x’, y', 2') =
¢o(x,y,2) = ¢o(r.0,z) and for M € 34" we have do(M)} = ¢olef(6,2),0,z]). The
property 0 € ef (0, z) = O(¢) « 1 for M € 3.4 makes it possible to expand the left-hand
side of (2.3), denoted by a(M) = a(8, z), under the form

o0
a(M) = a(®,2) =de —ao(2) = Y_an(6,2)€"  for M(8,2) € 3A', 3.1

n=l1
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where the new functions a, obey for n > O and r := r’/L the definitions
8.2 (3"¢0
n! ar"

According to Geer (1975), being harmonic in a neighbourhood of the body, the applied
potential ¢g(r, 8, z) indeed presents for small values of the new non-dimensional variable
r the following behaviour:

ap(z) = ¢o(r, 0, 2)r=0, an(0,2) = )(0,6,2) forn>1. (3.2)

o0
Po(r, 0,2) = Ap(r?, 2) + Z{rkAk(rz, 2)coskB + r*Bp(r?, z) sin k9], (3.3)
k=1

where Ay and By are regular functions of r? and z near r = 0 for 0 £ z £ 1. Because
dolr, 8, 2)r=0 = Ao(0, 2), ap now depends indeed on the angular variable 8.

As regards the right-hand side of (2.3) if one introduces the new source density A by
4megh(P) = eq(P) and the functions 5. and H(8p, zp, 8, 7) such that

se = {1+ D+ @D dSh = eLfsc)@p, zp) d6p dzp, (3.4)
H(@p,zp.0,2) := | f*(0p. 2p) + fH(8,2) — 2cos(8p — 0) (6, 2) f (Bp, ZP)}UZ, (3.5)
then the linear operator £[g] becomes, for M (0, z) € 5.4/,

e [ fl [AfsBp.zp)dzp } &
o [(zp —2)* +€2H2(Bp, zp, 0, 2)]1/2 P
(3.6)

LIGIM) = LIAfs)6. 2) = f

0

In view of (3.6) the term L[g](M) depends upon the small parameter € via the product
€H, the solution A whose asymptotic estimate with respect to € is sought and also the
function s¢ depending on the angular and axial variations of the body-shape function f.
At this stage one may be tempted to expand s, first. If the body has pointed ends @' and
E’ with fZ‘ = O(1) everywhere on d.A’ it is indeed possible to build a uniform expansion
of 5.(6p, zp) on [0, 1]. Unfortunately, this procedure breaks down for rounded ends. In
these circumstances and for almost each @ of [0, 2r] we demand the function £2(8, ) to
be analytic in [0, 1] with the following behaviours respectively near zero on the right and
near one on the left:

F20,0=3 @z, 2Aff0,20=) ncy(@2"!  asz— 0% 37
nzl nzl

0. =) bu()1 - 2", 2AfF0, ) == nbp(@ (1 —2)" " asz—> 17,3.8)
nzl nzl

with 0 < ¢){#) = O(l) and 0 < by(§) = O(1). Such requirements actually extend
the assumptions proposed for a body of revolution in other works (see (Barshing & Geer
1974; Geer 1974, 1975; Handelsman & Keller 1967a,b; Moran 1963)) and makes analytic
in [0, 1] the area A(z) of the non-dimensional cross-section C5{z) such that

2w f8.2) In
AD) = f [ [ rdr]d@ = [ [£%(8, 2))/2 8. (3.9)
1] 0 0
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For instance for strictly positive and small enough values of z one obtains (¢f, 12 ~
€2c1(0)/[4z]. Accordingly 1 + (f~ fo )2 > (ef, 142 is not true any more for 0 < z <
@ = O0(€%). However, for z = 0(e?), fse ~ ec1(9)/2 and these remarks clearly
suggest we keep together the terms f and 5. We therefore introduce the unknown function
ve(@p, zp) := [Af5:1(Bp, zp) and such a procedure remains adequate both for pointed and
for rounded ends. Observe that, when rewritten in terms of the non-dimensional variables
(r,6, z), the formulae (2.1), (2.2) naturally involve this new unknown function v,. If the
function & and the linear operator [7, are defined for z €]0, 1{ as

I-z
o 210l e glu+2)du
h(u) A H(@P,Z‘l'u, 9; Z), Ie'h[g] b ./;Z [u2+62h2(u)]1/2 (310)

then, by using for £[v,] the change of variable 4 := zp — z, one immediately finds

2
L[vd(&,z):/ IZ,[v]dop for M(8,7) € DA (3.11)
0

Note that the definition (3.5) of the positive function H(@p, zp,&,z) shows that H
vanishes if and only if #p = @ and zp = z. Hence, for 8p € [0, 2] \ {6) the above form
of L[v:1(8, z) involves for almost each p a strictly positive function £(x) (depending also
on (Bp, A, 2)). This justifies why such an integral [ ¢ nlvel is sual (in the Lebesgue sense).
The next step consists in building for smooth-enough functions & and g the asymptotic
expansion of 17, [g] with respect to the small parameter €. For ¢ set to zero the integral
1§ ;g1 turns out to be singular (except possibly if g(z) = 0). This feature is typical of
the existence of a singular expansion of /7, [g] with respect to €. Among usual methods
available in such a case one may think about the method of matched asymptotic expansions
(see (Van Dyke 1975)) which leads to tedious algebra. Other classical procedures (see
(Bleistein & Handelsman 1975, Estrada & Kanwal 1994, Van Dyke 1975)) unfortunately
fail. In their approach Handelsman & Keller (1967) were led to consider the asymptotic

estimate of
1 -
; g(v)dv / ¢ _glutz)du
J ! = —_—— n - --—e—s—e e .
le] /(; w—22+eS@IV2 |, [u2+eS@)) 72 (3.12)

and they provided in this case the asymptotic behaviour of 5[], formally up to any order,
by using a large amount of algebra, with intricate formulae for the coefficients of this
estimate. Note that J%|g] is a particular case of [ 1 (8] with ¢ = €2 and this time h? =
S(z) with no dependcnce on variable #. For our more general case the treatment proposed
by Handelsman and Keller could perhaps work but undoubtedly with much algebra. Instead
of employing this method we treat 17 ,[¢] as a particular case of a larger class of possibly
hypersingular integrals handled in Selher (1996). Not only does this approach based on
the use of the concept of integration in the finite-part sense of Hadamard (see (Hadamard
1932, Schwartz 1966, Sellier 1994)) authorize us to deal with many cases encountered but
it provides the sought expansion up to any order and in a simple form. For the present
integral [ ¢ 118111 gm = Max,1jlg| and functions » and g are smooth enough near zero
the following behaviour holds for small enough ¢ (see Sellier (1994, 1996) and Appendix
A for further explanations)

I7,18) = lglloge + I7igl + Hlgletloge + IZ[gle® + O(gmet loge),  (3.13)
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where the new linear operators I Sand I, forn € {1, 2, 3}, admit the definitions

d2 h2
1Elgl = —2g(), gl = [( + )[ éu)}] . (3.14)
=0
' s
Fitg) = 2log2 ~logh ) (@) + fp [ £, (3.15)

h2(t — 42 B2
Klg) = —1p j AULRS %HF[M

2l —z? 2 (3 + log[%h(u)])} ,(3.16)

=0

with the symbol fp indicating an integration to hold in the finite-part sense of Hadamard.
Such a symbol allows us to propose a pleasant, since synthetic, form for the expansion of
I EZ rL£]. Observe that /5[g] is a two-dimensional term in the sense that it only involves g(z)
whereas I{[g] is a weakly three-dimensional correction (functions g and H are needed in a
neighbourhood of z). Since they take into account the values of the function g on the whole
set [0, 1] the remaining terms /{[g] and I{[g] are strongly three-dimensional terms. Results
(3.13) to (3.16) agree with those of Handelsman & Keller (1967b} in case A%(u) = $(z).
Although we restrict for this work our attention to the first orders for the behaviour (3.13),
the proposed method permits us to deal with higher orders. By combining the definition
of the function A(u), results (3.6) and (3.13) to (3.16) it is straightforward to express the
integral equation (2.3) as

o0
de — ap(z) — Y _an(0, 2)e* = Lifvelloge + L] [ue] + £57[v )’ loge

n=1

+L£5[ve]e? + O(veme* loge) for M(8,7) € 3A4', (3.17)

where the linear operators £f and E‘?‘Z follow from (3.14) to (3.16). More precisely, if the
linear operator 7, obeys

T:[e(0)] = a()log2+ fp f de, (3.18)

2|t—z|

then one gets the basic definitions

2 2 2 g2
d H(6p,zp, 8,2
6[31=—2f0 g0p,2)d0p, L5*[g)= UO ——(L)CWP} ,(3.19)
zp=2z

dzd 28~(8p. zp)
2r

E?'z[8]=—2f0 80p, 2)log[H®p,2,6,2)]d8p — T o (Lflel}, (320

d2 2n HZ 6p, .8,
L3181 = — U g(ep,zp)—%‘-’i(%+log[%H(ep,zp,e,z)1)d9p]

2n 9
—fp f { o &@p, 1)H(@p,1,0,2)d0p }dt. 321)
2t —z?

In order to sort the different terms arising in the asymptotic expansion of the integral
equation (3.18) it is assumed throughout this paper that for ecach n > 0 we have
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3" /ar" = O(1),a, = O(1). By superposition one will be able to build the asymptotic
solution as soon as each coefficient a, admits a decomposition in terms of a finite sequence
(eP),pe N

4. The asymptotic solution for case 1

In this section we build for case | the asymplotic behaviour of the unknewn function v,
governed by the boundary equation (3.17). In such circumstances d. = d does not depend
upon € and we set dpo = d. Inspection of equality (3.17), especially of its remainder
compared to the leading term L£j[vc]loge, suggests we seek, for a small slenderness
parameter ¢ and (6, z) € [0, 2r]x]0, 1[, the solution v¢ (€, 2) in the form

! 4

€

ve(8,2) = E ni(eyvi(@,2) + O (@) , po(e) > .. > uile) > pole)e loge.
iz0

.1)

When reintroducing such a formal behaviour into (3.17) one has to consider, for given
functions a{z)} and &(8, z), the basic problem

Ligl=a@), L37gl=5@.2) for (8.2) € [0,27]x]0, 1. (4.2)

Finding the function g for given (a, b) turns out to be of the utmost importance for this
work. In view of the definitions satisfied by the operators £f and L‘:‘z it is convenient to
set g = ufso (see (3.4) for the link between so and f). Thus, if the closed path C(z)
designates the boundary of the non-dimensional cross-section CS{z), after noting that
[fso](P)d8p = dlp and using the definition of the function H, one immediately obtains
for (8, z) € [0, 2m]x]0, 1]

K*[u] :=fé w(PYdlp = d'(z) :== —a(z)/2, 4.3)
(z)
L] == —fé w(P)log[PM1dlp = b'(8,2) = {b{(6,2) + Tla(0]}/2.  (4.4)
()

For data (@', #') and known cross-section CS(z), z €]0, 1[, inverting the problem (4.3),
(4.4) reduces it to a classical question. For given z the integral equation of the first kind
(4.4) bearing on the density u is indeed associated with interior and exterior Dirichlet
problems for the Laplace equation in the plane. For 5 = 0 it may present non-trivial
solutions (see for instance (Hsiao & MacCamy 1973; Hssiao & Wendland 1977, 1981;
Hsaio 1986)). Nevertheless, if this occurs for at least one value of z in JO, 1[ it always
remains possible, through an adequate choice of the radial length scale e (by choosing
e > 2Max(r’) instead of e := Max(r’)) to ensure that 0 < §(z) < 1forz €10, 1[if §(z) :=
Max{PM: for P, M € C(z)} designates the diameter of the non-dimensional cross-section
CS(z). Under such an assumption (see (Hsiao & Wendland 1981})), the operator L82[]is
a continuous, bijective mapping from H*(C(z)) cnto H s+1(C(z)) for all s € R and the

equation (4.4) admits a unique solution uy := {LG-Z}—I[b’] in H*(C(2)). Consequently,
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if for instance b € H1/2(C(z)) then the set (4.3), (4.4) possesses a unique solution in
H=Y2(C(2)) if and only if (a’, b') satisfies the basic and linear compatibility condition

E({LP ) = d' ). (4.5)

Of course when @' = b' = 0, equation (4.5) is true and, since unique, the solution
is # = 0. At this stage we also outline that the compatibility relation (4.5) never holds
(whatever cross-section C(z) is) if (a’, b") = (0, 1), that is, K2({L82}~1[1]) # O (see for
instance Giroire (1987)). Taking into account these properties of the basic system (4.3),
(4.4) it is thus possible to deduce inductively the sequence (¢} together with the links
between the associated functions v;. One actually finds that v (6, z) becomes, for (8, 2) €
[0, 271x]0, 1],

] o
ve(0,2) =) 3 vam(d 2)€"[logel™ + O(e* loge), 4.6)

n=0m=-1

with vg 1 = v —; = 0 and the following set of induction relations forn € {0, 1}:

L4n0) = dn—1, L3 [0n0] = a8, 2) — LE[va], (4.7)
L8 Wnm] = dnm — Ly[Vnmi1] for m 21, (4.8)

where eg(, 7) = 2p(z) = dpo — apfz); e1(f, 2) = d1,0 — a1(8, 2) and, for n € {2, 3},

Li[vn—11=0, L9y 1] = du_1 = L5 [05-2.0] — L3[vn.0], (4.9)
L upm] = dpm — 8m.0an (8, 2)
""['g‘z[vn—2,m+1] - Eg'z [Un-2.m] — Cf)[un,m+1]a for m > 0 (4.10)

with 8, = Ounless x = y when 8, , := 1 and for case 1, d; ,, := Gexceptthatdy o = d.
Since it will be useful when handling case 2, the real data d,; », have been introduced in the
above equalities (4.7} to (4.10). Observe that this set of equations is triangular with at each
approximation order an adequate right-hand side only depending on the previous orders.
Therefore this system can be progressively solved from top to bottom. This is actually
worked out by inverting for given functions 4, e and unknown functions u, w the equations
(for (8, z} € [0, 2m]%]0, z[)

L3(ufso] = alz) = —2K*[u] ¥z €10, 11, @10
L3 (ufs0] = e(6, 2) — Llwfsol = (9, 7) + 2K *[w). (4.12)

The unique solution # exists if and only if the function K*[w] is such that the compatibility
condition (4.5) holds. By introducing u (6, z) := {L%?}~![1] and ¢;(z) := K*[u1] # O,
one easily gets the useful relations

2] — 8t prroy . KAULS) D
Ky = (T + Zs K ) 2 @.13)
8.z21—1
L0t = — 2@ KLV (D) | e6,2) (4.14)

2c1(2) 2¢1(z) 2
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Note that results (4.12}, (4.13) take a simple form as soon as e = e(z). In such a case (4.14)
reduces to L??[u] = —a(z)/[2c1{z)]. For conventence we thus introduce the unknown
functions #, »; 1= vy m/[fso] forn € {0, 1,2, 3} and m > —1 and also, for each z €10, 1],
the linear operator S; by

a(t)dt
2t —

S;lea()] = ( ) [e(t)] = {log2+ —ta()+ fp f (4.15)

( )
We shall set So[a(t)] = a(z) and 87 1= S; 0 ST~ Lfor m > 1. By successively choosing
U =tymand w =t, ,4] these results 4.13), (4 14) authonze us to solve equations (4.7)
to (4.10) by induction with d,, , = 0 except possibly for dp o = d. If u; := {L%2}~![1]
and ug, 1= {L%2}1[4] the reader may check that equations (4.7), (4.8) yield ‘

K* [ua|]

vp0 =0, v 90,2} = ( ©

u1(6,2) — uq (8, z))[fSo](ﬁ. zh (4.16)

and also, form > 1,

_ m—1 —
KZ[zo,m]=8;”“{W], vo.m(9.z)=sz—;%—gzi—(”[u1f50](9&). @17
Kt a Sm le gt a
K7[t) ] = 87! (7%;—]) vim(8,2) = {26[1‘(;)]/61(0} (11 £501(6, ).
(4.18)

Regarding the remaining equations (4.9}, (4.10) it is now possible to calculate, for r €
{2, 3} and m = 0, the functions

€n—1 = _Eg'z[vn—l,ﬁ]a enm = —Opmpan(@,2) — Eg'z[vn—lm+l] - Eg'z[vn—Z,m]-
(4.19)

Accordingly, one obtains the induction relation, forn € {2, 3},

KL% epm—1]]
2c1(2)

Kitn,—11=0, Kltim] = SAK [tnm—11} — , om 20 (4.20)

and also the solutions forn € {2, 3} and m 2= —1

K[ty ml] Ev_tﬂ _ Kz[[LB't}_l[fn.m]]
c1(z) 2 2¢1(z)

Un.m (0, 2) = {L"’*}"[ }[st](G, ). (421)

Result (4.21) together with definition (4.19) of e, » shows that only v, o depends upon

ay(0, z). This dependence vanishes as soon as da, /98 = 0. It often happens that the

applied potential function ¢y(r, 8, z) obeys (3¢p/dr),—g = 0. In such circumstances
= 0, that is, according to (4.18), viy = Oform = —1,e3m = —dy0a3 and if
= {L" 2}1[as] the results (4.20), (4.21) also yield

z
b1 =0, v3o@2) = (L5 [g—{”—:‘] - a—3][fSo](9, o, @2
c1(z) 2
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andifm > 1

K'[tg;) K2[v3,m]
() c1(z)
Once the asymptotic scluticn v, is determined we can calculate global quantities such as
the total charge Q (see (2.2)) or the total moment (for instance with respect to the point
OHYM(0) = ffA,q(P)O’Pde, = M, (0")ey + M, (0")e, + M (O")e, of the slender

body A’. In terms of the functions #, ,, one gets (with vy m = t, m £50)

KZ[rs,m1=8;"“‘[ ] vs,m(e,z)={L"-2}“[ ][fSo}(G,z). (4.23)

oS 1 GH
Z 4 2
4K€0L ng()mgl {fo K [tn.m]dz] og ™ + O{" log* ¢), 4.24)
M(O) 1| ) o
dmegel. Z(:)mgl [f ([; cos Gty m f “50](6,2)d0 | dz o
+0(e*log? ), (4.25)
My(of) _ d = ! 2 . 2 "
4megel _:L:amgl [fo /0 SN &[4 m f “501(8, 2)d6 | dz og "
+O(e4 log? ¢), (4.26)
M,(0) . o .
47760[,2 HZOMZ_ZI [[ zK [tn,m]dZ] [Ioge}m + O(e log €). 4.27

Thus, relations (4.17), (4.18) and (4.20) for K?(¢, ] easily provide the asymptotic estimate
of Q and P,(0’). In usual case of a slender body in a free space without any applied
potential (¢o = 0) the solution v, is proportional to d = dp ¢ and thereafter ¢ = C 4d,
where C 4+ denotes the slender-body capacity. For dpg = 1 and @ = as = 0 we have
i =t3m = 0,090 =0, vom = ~S" [11u; fs0/2 for m > 1 and (4.24) yields, with
K*[f20] =

Ca = - I m—1 2 : z —m 4, 2
ZJTE()L__(Z Ifo Sy [ldz —2e j(; K[ty m]dz ¢ [logel™ + O(e* loge) | .

m=]
(4.28)

In view of the equalities (4.17), (4.18) the term KZ[#,1] only depends on the applied
potential ¢ via ap(z) and the potential 4. on the body. According to (4.24) and (4.27)
this property ensures that the terms associated with €© arising in the behaviour of the
total charge Q and M, (O’) are the same whatever the detailed body shape is for a
given slenderness parameter. Since Szo[l] = 1, the first term arising in (4.28) becomes
—2meplL/ log € and as previously announced only depends on the slenderness ratio.

5. The asymptotic solution for case 2

Now we turn to the case 2, that is, when the total charge @ is given and the constant
potential d. on the body must be determined thanks to condition (2.4). Observing that
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Ca=ff4 ﬁ“l[I](P)dS;) and ff 4 L7 [¢](P)dS), admit, according to the previous
section, behaviours respectively given by (4.28) and (4.24) it is thus straightforward to
derive for d, the following estimate:

I =
de=) Y dyme"lloge]™ -+ O(c* log*e) G5.1)
n=0m=—1
and also to check that v, satisfies (4.6) once again with vg —; = v|_—| = 0 and the inductive

relations (4.7) to (4.10). By solving this pyramidal system as explained in Section 4 one can
formally express each ¢, ., in terms of the family (d,, ). This latter is therafter determined
by enforcing, in view of equality (4.24), the conditions

1
4N€oj(; K*[tym]dz = 8,,08m 0 Q/L. (3.2)

The combination of (4.7) and (5.2) readily shows that dy _y = — Q/[2nepL] and d, _| =
0. Moreover for the new operator Z, such that I?[a(t)] = ¢(z) and

L
Iz[a(t)}=5z[a(t)]—f0 Sela()]dz, (5.3

with I :==7, 0 1';”‘1 for m 2z 1, the reader may successively check that

b K [ug] d

54
@ ©4

1
d0.0=[; {an(t) — do,—15: (11} d2, d1.0=f0

dt,
2¢1(1)

(5.5)

with vy g still given by (4.16), 2¢1(z)}v,0(8, z) = —do,—1[t1 f50](0, z) and for r € {0, 1}
and m 2 1 the relations

1
K(rg,y] = 2 —fo W@ g - D71, Kol =

Kug] f‘ K'[ua]
2 2 2 0

2¢1(2)

1
dpm = 2] &, OI;n_l[Kt[tn.l]}dZ: K[ty m] =I;"_1{K‘[t,,‘1]}, 5.6)
0

I:v_n_l{K,[tn,l]}
c1(z)

For n € {2, 3} if the functions e, ,, remain defined by (4.19) one also finds that (4.20) is
replaced by K*[#, 1] = 0 and for m = 0 the inductive relations

Vnm(0,2) = {1 f50(8, 2). (5.7

VLY enmatll ) KLY Menm]]

Kty m] = TAK ltnm— f
{ta.m] AK [t m—11} + A 2¢1(2) Z 2e1(2)
(5.8)
whereas (4.21) still holds and d, ,,, is given form > —1 by
1 K: Le.z -1
=2 [ (SZ{K'[t,,_mn ) [e"*'””)dz. 5.9)
0 2¢1(z)
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If Q is zeto then dy,| and .o vanish. In such circumstances M = M(0") does not
depend on (' and for a constant applied electrostatic field Eg the polarizability matrix
[P4] of the body, such that M = [P4].Ep, may be approximated by employing the
above forms of functions 1, ,, and estimates (4.25) to {4.28). For instance, if Ey = Ege,
then ¢o(r, 8,2) = —Eplz = ap(z) witha, = 0forn = 1 and vy, = v3,, = 0 for
m 2 —1. Hence, the derived behaviour of the vector M.e, only involves 2. Noting that
K*[t0.1] = —EoL(2z — 1)/4 the first term arising in the expansion of e,.[ P 4].€; is equal
to —wegL?/[6 log €] whatever the detailed shape of the body is.

Before closing this section we give some remarks valid for both cases 1 and 2. At
this order of estimation one needs coefficients @, (@, z) for n € {0, 1, 2, 3}. It is worth
expressing these quantities in terms of the body-shape function f and of the applied
potential ¢g. If the function C is smooth enough and C¥(x) := 3 C/[8x*] fori € N
one obtains

Yl Lt () n1C ()

. feo ok
w = a == T ifn=k+2m,meN otherwise g, = 0.
(5.1

For given ¢p and n € {0, 1, 2, 3} the derivatives k, (8, z} = [3"¢o/8r"](0, 8, ) may
be related to the functions Aj and Bj by combining the behaviour (3.3) with (5.10).
Accordingly, for n € {1, 2, 3} this ensures the links

2n ho (8
T (n _ 2(8, 2)
A0(0,2) = limo(r,6,2), AP0, 2) = [ HrE as, (5.11)
(@, o I (8, 7) sin nb
a0, = [ BB g9, g0, = [ DR g5 (s
0 sl 0 mmw
 pa (8, o 2 pa(o, in &
Agn(o,z)=/ __3_(3"")&(19, B{”(o,z)=f 8@ D0 49, (5.13)
0 far 0 3tm

and also the following useful forms for the coefficients a, (@, z):

ag(z) = Ap(0, 2); a1(8,z) = (8, 2{A1(0, 2)cos® + B1(0, z)sind}, (5.14)

a20.2) = 726, (AL (0, 2) + A2(0, 2) c0s 26 + B1(0, 7) sin 26}, (5.15)
a3(8,2) = 38, (AP (0, ) cos 8 + BV (0, z) sin 9
+A3(0, z)cos 36 + B3 (0, 2)sin 3681, (5.16)

where C1(0, z) = [9C/9r](0, 7). Hence, vpm = 0form 2 —1 as soon as k{6, 2)
admits no component of the first azimuthal mode. If in addition the modal analysis of
h3(#, z) reveals no contribution to modes ¢ or ¢3¢ then vs , = 0 form > —1.

6. Applications and comparisons

In view of the results derived in Sections 4 and 5 one basic step consists in inverting the
two integral equations of the first kind

LYl =1, L%ug,l=a16,2) (6.1)
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for z €]0, 1] and also the more general problem L%2[u] = a(8,2) in getting vp ,,; or
v3.m. For this purpose a numerical treatment seems quite adequate and the reader is for
instance referred to (Hsiao & MacCamy 1973; Hsiao & Wedland 1977, 1981) for detailed
explanations and also to Hsiao (1986) for the numerical stability. One can thereafter
build the asymptotic estimates (4.6}, (4.24) to (4.27) or (5.1} by computing the proposed
formulae. However, for a small slenderness ratio ¢, it remains somewhat difficult to sort the
different terms 7, €"/[log €]™ arising in the previous results for given » but varying m.
Thus it appears quite desirable to discuss comparisons when analytical results are available
both for asymptotic and exact solutions. Hence this section is restricted to such an example.
More precisely, we consider a body entirely described by the real value # > 0 and a
positive function & with h(0) = k(1) = 0 and such that each non-dimensionnal cross-
section C $(z) admits for boundary C(z) = £(z) an ellipse with axis of symmetry e, and
¢y and of equation (in dimensionless variables x, y and z)

2
e # = K(z). (6.2)

We report below the solutions obtained (additional details are available in Appendix C). In
these circumstances f(8, z) = h(z)g,(6) with

1/2 1+tan29 2
1+ tan®@ ) 7
&n(@) = T an’e . [fs50}(8, 2) = h(z)(1 + tan” G) T (6.3)

The function ) solution to L%2[u;] = 1 is easy to guess. More precisely, one finds

a 172
tan” @
c1(z) 1+ o 1

1) = Kz == .
c1{z) L1] log[$(n + DA(2)]
(6.4)

u(6,2) =

2 nh(z) 1+ tan’ @
n

By a suitable choice of directions e, and e, it remains always possible to restrict the study
to the case Max,epo,112(z) = 1 and 5 < 1. Hence, the relations (6.4) admit a sense for
almost each z in [0, 1]. The solution #,, such that L“{ual] = a1 (0, z) with a; defined by
(5.14) becomes {see Appendix C)

1/2
n+1 | 1+tan’6
27y

siné
Ug (6, 2) = 3 [A1(0.2)0059+B1(0. z)—], K*[ug ] =0.
1+ tal': n

(6.5)
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6.1 Casel

Here we obtain vp,—; = vy | = 0 and also, since K%[u,,] = 0, the results (4.17), (4.18)
become K*[t) ,] = 0 form 2 Qand

Fp(z) 1+ tan? @

UO.M(B! Z)- = 2 Wlth Kz[fﬁ.m] = Fm (Z); m 2 01 (6'6)
2y tan” 8
1+ 5
(n+ Dh(Dg (0 ing
V18, 2) = —bm o"—j;r(,y‘g#[m(o, 2)cos8 + By (0, Z)%] if m>0 (6.7)

with, for this case, functions F,, obeying

ap(z) —d

Fy =0, Fm(z)=sg"“[ >

] if m>21. (6.8)
Form 2 —1 and n € {2, 3} the definitions of e, _» proposed by (4.18) reduce to

er—1 = —Ly [vool, e20=—az — L3 ug11 — L [wo,0l, (6.9)
erm = =L 00n41] — L3 [vo,m] for m > 1, (6.10)
€3 = —Eg’z[vm], €30 = —dz — Cg‘zlvl,ol, e3m=0 for mz1 (6.1

Thanks to material provided by Appendix C the reader may check that v _| = 0 and, for
m 20,

vam(0,2) =

(+ 22O [ P41, 1472 th,flI
2mnr + )[(n+1)2K 2] + —5— | Oal Ful + —22L ) )

nz hZF(Z)
O3[Frl(2) — (OZ[Fm] + m“) (z)g )

2
-03[Fm](z)g§(9) cos 20
+ 72

+

+sm,o[ @A ©,2) + ~=L > 12 2 n0,2) - h*(2) A§ (0, 2)g2(6)

1 2
—h?A(0, 2)g2(6) cos 20 ~ %

h*(z) B2(0, 2)g2(8) sin 29] ] (6.12)

where 02, 05 (and also O for the incoming relation (6.13)} designate operators detailed in
Appendix C whereas (4.20) provides X*[f2 5] = 0 together with, for m = 1, the induction
relation
K t2ml =S K . m 1} + 30 + D{(R2F)? + 12 FP) @)

+idma {1+ IR AG 0, 2) + (1 — nHH (D) 420, D)

+5 (1= 85, D{201 1 Fr_11@) + (1 + 17) 02 Fu—11(2) + (1 — 72 03[ Fru11(2)}.
(6.13)
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Finally, (6.11) easily leads to
(n + 1%h(2)g3(9)

316, 2) = — [(h*41(0,2))@ cosé + (52 B4 (0, 2))@ sin 6]

16
(6.14)
and for v3,0(8, 2) detailed in Appendix C
K taml=0 form = —1, v3,5(0,2) = 8pmov30(0,2) form =0, (6.15)

For instance assume that ¢ = 0. If the new funtions W and S satisfy

162(1 —2) ] 2
W(z) =log| ———=——| =25;[1], S@x):=h forz €[0,1 6.16
@) Og[(n+ 5 A1l S@) i=h*2) forze[0,1]  (6.16)
one easily gets the general results
Up,—1 = V00 = V2] = V2,0 =V = V3;p =0form > —1, (6.17)
2 2
C)] &YW (z)
W16, 2) = —d5 2 up0.2) = ~aB 6.18)
4y 8mn

2 -
£,(6) Iz Sz +u)(l —z—u)
w30, 2) 16@{“’ @+ [, 8 seFuxi-2 | Tf 619

1210, 2= —d 0t l)zg%(e){(nz+ 1)25D(z)
S 4mn(n® +1) 8(n + 1)?
k] Pl @
1-2z+ 22 S(z) — (7? + I)S(Z)(Z) _ ?][h(l)]Z(Z) [SW(z)](z):l]
4z23(1 — z)? 4(1 + n)? a+1)? 7 ,

(6.20)

g 4 [1+ 1 Iw d 1 ! w?
4wegl ~  loge|2 4logef @ Z+8(1 og € )Zfo ( @
I-2 Sz +u)(1—z—u) 1
1 —_—
+f_z Og[ SG T wel —2) ]t l)d +O((loge)3)}

2 2 5 2¢()
_d( + De [S“)“)“Sm‘o)*lo;e[ ©) log[(1+n) s (0)]

16loge 2 16

s (1 +m?2s(1) HISWPI@) 1 8@) ~28D©)
- IOg[— 6 +f0 5 +5 2

— (1} 2
LS+ -2s (1)}+(1 ,_)[hhm(H[h ]ﬂ(Z)])dZ]

(1-—z)?

1
0 ((Iog_eﬂ)]' (62D



ASYMPTOTIC SOLUTION FOR THE ELECTROSTATIC FIELD 83

For nj = 1 the body is one of revolution with g, = 1, and several terms arising on the right-
hand side of equalities (6.20), (6.21) vanish. The asymptotic estimate of the body capacity
C o = @/d exactly agrees with the result of Handelsman & Kelter (1967b). Since the
source density o is placed on the exact boundary (not on a part of the axis of revolution)
the terms vz 9 and vy, differ from the second approximation given in this latter paper. If
the body is a slender ellipsoid with 0 < 5 < 1 we have $(z) = h%(z) = 4z(1 — z). Thus,
(6.18) to (6.20) immediately iead to

2 i) 2
U(G‘Z)=_d3n( ){ 1 [1+108[2/(ﬂ+1)]+(log[2/(r}+1)]) +O( 1 )]
4mn |loge loge loge (loge)?

LS PO OL” 6.22
e L7+ (g2 |} .

This result agrees perfectly with the asymptotic expansion of the exact solution proposed
in Appendix B (with (&, 8, ) = (0,0, 0)).

6.2 Case?

In this case we still obtain vy} = vy .| = v2_| = 0, results (6.6}, (6.7), (6.9} to (6.12)
and (6.14), (6.15) remain valid with definitions (6.8) here replaced by

Fo:—io—'z_—l; F, =I;"41{

ag(t) fl ap(t) dp,—1
—_ dr —
0

= 1. .
2 7 5 Iz[]]] form =1 (6.23)

This time K'%{f; ,,] is given by

2 1
K2lty0) = do_1 ng ! { fo 741D (z) dz — [hZ](Z)(z)} (6.24)

and the induction relation (5.8), expressed by using the link

_Kz[{Lg'z}_l[en,m]] . 1+ 772
c1(2) -4

1— 2
” 03[Fm](2)+50,m{

{202[Fm] + (W Fi)® + B2 F3 }(z)

l—n2

+O01lFml(2) + 7

h2A2(0, 2) + WAL (o, z)}. (6.25)

Finally dy;u = d3,m = 0, dy o is given by (5.4), don =2 f; S; 0 Fpdzifm > 1,

7?+1
8

1
doa=-TFy fo 1Dz de (6.26)
and d3 p,, is obtained for m > 0, by combining (5.9), (6.25), (6.26).

We detail the solution in three different cases.

Case 2.1. Here we choose a uniform and axial external field with ¢y = z and a body
of total charge @. Hence ag(z) = A¢(0,2) = z, A(()I)(O, z) = 0 and the results take the
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following form:

Vo1 = Up,—0 =tz | =0, Vg =8nov0, Vim =3 —1v3- for m= -1,
(6.27)
___¢© _r,_ ¢ |
do. -1 ——m, doo = 2 +4H€0L A W(z)dz, (6.28)
A 1C) @ DG iy o)
U0.0(9,Z)—4N€0Lm, dz_1 _W[S {1y -5}, (6.29)
2 1
g5 0
vp,1(8,2) = :7”7 [y z— %)+ ) I:W(z)—f0 Wi(z) dz:”, (6.30)
do = flm( —hd +—~9-- fIWZ()d - fIW()d 2
0.1—)’0 2 3)dz grel | o z)dz A 2)dz
Ly pl-z Sz +u¥(1 —z —u) 7 du
1 — 6.31
+fo ([—z og[ Sz +u)z(1 - z) jllwl)dZ ’ @30
vp,2(6,2) = gé(e)[r(z - DHIW(z) —2]+fl yW(2)(z - $)dz
,2(8, oo 3 A 3
2
Q f“z [S(z)(z+u)(1—z—u)] du f‘
1 — Wi(z)d
+4;regL[ 2 | T St -2 || M 0 @ dz
1
_ [ W) dz
0
! by gl S+ ul —z—u)
o v ([ |
(Z)j:, @A+ W@ = f AL, 8 T seri =D
%)dz], (6.32)
_ @ ('?+1)2g$(9) (n? + 1)? 2) n (n
vz.o(ﬂ,z)—4MOL TR+ D {8(n+1)2[s ()} + Y0y — SH (1))
n—1f1-n @ L+ [rhP](2)
——-—-q+1|: > gn(9)00329j|hh (z)+|:T—gn(9) —
=242 0P+ DSO@  nhDre) [Swﬂ)](z)]}
4z2(1 — 2)? 4(1 + n)? (1 + n)? 4 ’
(6.33)

withy =landvip=v3 -1 =0.

For ¢ = 0 and 5 = 1 these results agree with Handelsman & Keller (1967b). 1t is also
possible to express the total moment M(©Q’) depending for non-zero 0 upon the point ¢’
(see formulae (4.25) to (4.27)). For a slender ellipsoid with 0 < 57 £ 1, $(z) = 4z(1 — 2)
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many terms vanish for above results. One obtains v2,9 = 0 and

g ¢ z—1/2

V0.2 = e 3reL T 2loge
x| 1+ ! lo 2 1)+O ! (6.34)
loge \ & 7+1 toger? ) ||’ '
0 4 0 2 1
dy(e) = ——=— | L4 0
v(€) 2megl oge + 2 + 2mepl 10g[n+ l]+ ((loge)z)
2
2 "+ 10 1 .
—e”] Q thy =1, .
€ oge[ Freol (loge) with y {6.35)

These results agree perfectly with the asymptotic expansion of the exact solution (see
Appendix B with (e, 8, ¥) = (0,0, 1)),

Case 2.2. This is the case of a uniform and transverse external field with ¢ = x'/L =
ex. In this circumstance Aj(r?, z) = | is the unique non-zero function of (r2, z) arising
on the right-hand side of (3.3). For given total charge Q on the body our results (6.27) to
(6.33) remain valid with y = 0 and this time

(n+ Dh@e3®)cos8  g26) (g + Dx

v,06,2) = — = - , (6.36)
4nn 2ry 2
(n+D2SPDhgdO)cos8  g20) (n + D2SD()x
v3,—1{6,2) = — T6mn = "2 7 . (6.37)

Thus, for a slender ellipsoid one gets d(€) = dp(¢) (see (6.35)) and also

SO ¢ g+l
2nn |4megl 2

v(6,2) = ex + (0 + 1»2xe3loge + o(e? loge)}‘ (6.38)

Equality (6.38) quite agrees with the behaviour of the exact solution (see Appendix B with
(@, B,¥) =(£,0,0)).

Case 2.3, We finally address the case of a uniform and transverse external field with
do = y'/L = ey. Here B((r?, z) = 1 is non-zero. Formulae (6.27) to (6.33) are still valid
with ¥ = 0 and this time

£2(6) (n + 1)y £260) (n + 125D )y
—————, 0, 0=~ .
2ry n 2rn g
gO[ @  n+l
4megL 2n

v1,000,2) = {6.39)

v(f,z) = pr

ey+ (n+ l)zye3 loge + 0(63 loge)}, (6.40)

as Appendix B confirms (this time use (¢, 8, ¥) = (0, €, 0)).

7. Conclusion

By resorting to a well-posed boundary integral formulation we asymptotically built the
electrostatic source density g arising on the conductor surface. The derived results hold
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not only for an arbitrary imposed potential but also for a slender conducting body of
general cross-section. Accordingly, this work encompasses previous studies devoted to a
body of revolution. Term-by-term comparisons with the asymptotic behaviour of the exact
solutions clearly show the validity of the proposed approach. Finally, it is worth noting
that the estimate of the density ¢ would also easily provide asymptotic approximations of
the electrostatic potential and field, uniformly valid outside the body (invoke the relations

2.1).
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Appendix A

In this Appendix we givc the systematic formula here employed for the derivation of the
asymptotic estimate of 17, [g] (see (3.10)). For detailed explanations the reader is referred
to Sellier (1996, Theorem 3). Accordingly one obtains for a positive integer NV

f” gut+)du & a"K(l,O)[ fr f“z sgn(u)g(u + 2)
— -

[ h Hd n
. WRFeRWIR - &= al PR [A(w)] “}

N n n=l B i ) 00
+ZZZg—(Z)—‘.’"—“’—='-[fp f“w 3 K1, (O} dt]e”

1t
A=0 =0 i=0 it

N n n- 1 [h(O)]lg(j)(z)ai_.
=233 3% T TI3"K(1,0)¢" loge + 0"+ loge); (A1)

n=01=0 i=0 j=0

if K(x,y) := [x2+ y¥]~"2 for n € N then 3" K (x,y) := [a"K/ay 1(x, ¥), g<") is the
derivative of order # and for (7, p) € NxN the coefficients a, obey ag =1, a = 0 for
pzlandfori 21

= Za;u” as u — 0. (A.2)
P

[h(u) - h(O)]"
1
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If N = 2 a careful calculation of the integrals in the finite-part sense of Hadamard
arising on the right-hand side of (A.1) (see for instance Schwartz (1966) and Sellier
{1994)) yields result (3.14). Since °K(1,0) = Qand fori € {0, 1, 2, 3} each integral
fp ffooo 3 K [t, h(0)]¢" dr vanishes for symmetry reasons the remainder indeed becomes

O(e*loge).

Appendix B

By invoking the material available in Lamb (1945, pp.149-153) we give the exact solution
v(#, z) for the equipotential ellipsoid

X 2 e bega L2 e (®.1)
atmta=ha=e b=ns L=2 6—26, .
when the applied potential ¢g reads
o
boX. ¥, 2)= x4+ 8y X7, 2 (B.2)
a a 2¢ 2

We thus seek the total potential function ¢ outside the ellipsoid in the form

(X, Y, Z) = do(X, ¥, Z) + C fwd—"+c Xfw_L
R °h 2w ) @rwaw

+CYINL+cszd—“ (B.3)
L@ vwaw T ) @rwaw '

where A(x) := {(a® + u)(b? + u)(c? + u)}/2. The ellipsoid (B.1) is associated with A = 0
and if 4 and Q respectively denote its potential and total charge one obtains

=Lia [T 25 0= o [T
d= 3 +C0f0 A Q = 8BrepCy, - + Cl[0 YT 0, (B.4)
é ® d—u _r foo du B
a * szﬂ (B +waw) 2 +6 o (@ +wAw) 0, (B.5)

and the charge surface density o on A = 0 takes the following form:

2 Ci1X  GY G2
cX.12)= = 7 [C0+ Tt ot } (B.6)
x* y* 72 a b ¢
abc = + s + =
According to our notation X =x" =ax, Y =y =ay, Z + ¢ = 7’ = 2¢z and also
aofse 5 2 1+ tan? 6
8,2) = ——, h*(z)=4z(1—z), g2(0)= ————. B.7
(@, 2) P (2) =4z(1 —2), £,(® Ry (B.7)
It follows that
1+ tan?8/n* x2 y: 72
22 _ 4.4 oy TRenem 2 a2 24| AT YT 4T
f7se —437.'(9)[2(1 Z)l+lan29/q2 +e°(1 -22)" | =a’g, pr + W + (:4]

(B.8)
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Case 1
The potential value 4 is known. Previous equalitics immediately lead to
2 6 _ B
. 2rn | lole) Ii(e) Thie) Iie) | 4mel To(€)
(B.9)

if the quantities [;(¢) depending upon (¢, i) obey

™ AP 2 ar B f°° 4€2(t + 4€2)32 4
10(6)".[0 {( + D1 + 4172 hte= o {0+ D0 +an2e)}l2’ ®-10
e dne(t + 4ne) 2 e Y (t+1)72de
'2(6)'10 (¢ + D+ 4D "”““[ @+ 4e + apzerypr 1Y

Case 2
In this case Q is given and d is unknown. The results are

v(@,z) =

8%(9){ Q ax By v@z-— 1/2)}, d=Y 4 20O 5o

2nn |dmeol 1) he) Ix(€) T2 7 4meL

if I; (¢) remains defined by (B.10), (B.11).

Previous results (B.9) or (B.12) are exact solutions. When € goes to zero the asymptotic
estimate of u(f, z) comes from the asymptotic expansion of each integral [;(€). Such
behaviour comes from applying Sellier (1994, Theorem 3). Hence one may check that,
ase — 0,

Io(€) = —2log e + 2log[2/(n + 1)] — 2(1 + nH)e’loge + O(e?), (B.13)
2 2
1) = —— + 4e? log e + O(eD), () = — 1 + 42 loge + O(e?), (B.14)
n+1 n+1

Ii(e) = —2loge + 2log[2/(n + 1)1 — 2 — 6(1 + nH)e2 loge + O(e?). (B.15)

Appendix C
For given z €]0, 11 we introduce for each point P of £(z} its elliptical angle ¥p € [0, 27]
such that

xp =h(z)cosyp; yp=nh(z)sinyp;, tanfp=ntanyp, (€.

where the last equality outlines the link between the usual polar angle f#p and this
convenient elliptical angle ¥p associated with each point P of £(z). Hence f 2@p,2) =
3 +y: = hz(z)g%(Hp) where the function g, obeys (6.3) and

di P 1+ tan®6
L —dye LD g O (e
2 2 2 2 tan“ @
P + Yp ol + 7p I+—
i) 7ih () R4 z)  niht(2) 1
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For M € £(z) with polar angle 6 and elliptical angle v the following equality holds:
2log[ PM] = log{h*(2)[1 — cos(¥p — Y)[1 + n* + (n* = 1) cos(¥p + ¥)]).  (C.3)

When inverting the integral equation L%2[x] = a(@) the idea consists in writing the
operators L% Z[u], K%[u] and data a(6} in terms of elliptical angles ¥ and ¥ by invoking
refations (C.1) to (C.3). For s(¥p) = u(P){x3/h*(2) + y2 /n*h*(2)}1/? we have

2n 2
L% [u) = —ph’(z) fo s(¥p) logl PM1dyp; K¥[u] = nh(z) fo s(yp)dyrp.
(C4)

This remark (C.4) makes it possible to find the solution u for specific functions a(#) by
setting s(¥p) = 5(6p). As a result we present below several useful couples (s, @) with
the value of K*[«] only when it is non-zero. More precisely the reader may check (use for
instance Gradshteyn & Ryzhik (1965)) that

a=1s=5= 5;”'—’(;)(7); K*u] =ci(z) = —{1og[";” lh(z)]}_l, (C.5)
a=gp{f)cosh, s= @ +21:§Z(29(2;0S6; a=g,(@)sind, s= (7 Z;L‘i’;g}()zjmg JC.6)
a =gy s = bog%(?z:zg(; oh, k=70 o) (C.7)
a=g2(0)cos26; 5 = bog; (@) C;:;i:; Z()l — b, K=" 0w €
=gy, s - W DHOWE @ VoS
a=g (@)cosé; s = m{bzgg(ﬁ) cos & + bag,(8) cos}, (C.10)
a=g)®)sing; s = m{b4gg(a) sin + bsg,(0) sin8}, (C.11)
a =g ®)cos3p; s = W’lﬂ&;{bzgg(ﬂ) cos 36 + bsgy(8) cos 8}, (C.12)
a= g?,(G)sin36’; 5= m{m‘g;({)) sin30 + by g, (@) sinB}, (C.13)
where the quantities b; depend upon 7 in the following way:

0= %’%11—))2; 21 = 1) — by; by = 31“:3233; o=t +";3), (C.14)

by o 1)2((11: 3‘31?':2()3 t) 1);1( ; inge ™ cis)

bg = 3(n — D(n+ 1?1+ 3n) b, — 21— D + D33 + ) (C.16)

2(1 + 352) 77 2(n% + 3)
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Accordingly, one derives (6.4) to (6.7). Moreover by introducing for i € {0, 1} the new
operators

n 2” . . -
olw] = fo w(p)log'[PM]d8p, Eflw) = Ejfcos(a)gy(@)w(@)], (C.17)
Ejlw] = Eglsin(@)gy(@)w(@)], Eifw] = Ejlglw], (C.18)

one notes that E,?[w] does not depend on (6, z) and may easily deduce the following forms
for £3*[¢ (zp)w(®p)], k € {2, 3):

2L5%t (zp)w(6p)] = [K211P (2) EQ[w] + W12 Eflw]g?(6)
—2h(@)h11P (2)gy(0) {cos O EXw) + sin 0 EY[w]], (C.19)
L3t (2p)w@p)] = (4 — log LY [1(z2p)w(Bp)] — R @) Eglw]N,[11g2(6)
~EJTWIN,(K2H] + 2h(2)N,[ht1g, (6){cos O E[w] + sin 8EJw]}
+3d1 [t1(2) ES[w] — 362[£1(2)g4(6){cos 8 E¥w] + sin 0 E9[w])
+345[11(@) ETw] ~ dalt)(2)gy(60){cos O EL[w] + sin 9 E) [w]}
+30'PR)2)g2(0) Ef L] + 1) [ TLw), (C.20)
if the new operators d; for i € {1,2,3,4), N, or T satisfy the definitions Ny[u] =
£o J u()dx/21x — z*] and
di[t] =20 D 4 RR DD, dyir] < e D p2 42 OLD 4 @ (€.21
do[t)=hh Dt D L ehh @ ] = £ Dp2 L 4D 4 VITTASSION (C.22)
o] = fh gg(zep){gn(ep) — cos(Bp — 0)g,(6)Yw(@p) dop
0 8;©p) +g2(8) — 2cos(Bp — 6)g, (0p)g,(B)
P T fzﬂ sin’ (¥ — Y)w(@p)I1 + tan? Yp){1 + n? tan? Yp]~! dyrp

0 [l ~cos(¥p — W1+ 72+ (12 — Dcos(¥p + ¥))
(C23)

where the last form comes from the link (C.1) between dfp and dip. Inspection of
results (6.6), (6.7) suggests we usc three couples (¢, w) when calculating the terms
Eg"'[vo'm], Cg‘z[vo‘m], Cg“"[vlvo] and Cg‘z[vl‘o]. More precisely, we choose

1(2) = Fn(2) == K*[tom]; 12(2) = h(z)A1(0, 2); 13(2) = h(2)}B1(0, 2), (C.24)
29 Dg3(®) coso 1)g3(6) sin@

01 (6) = 32,,( ); w2(9)=_('7+ )8(8) cos ; w3(9)=_(n+ )g,,(z)sm (C25)
wn 4 4y

Accordingly, definitions (C.17), (C.18) immediately yield E}[wk] = 0 except for the
foliowing cases:

Elwil=1; Eflwi) =101+ n?); Efwal = ~3(n +1); ES[wsl = —Ln(y + 1),
(C.26)
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Observe that ford = x%/h“(z) + y%/q“h"‘(z), for any function y(P) = v{(¥rp),

n
Eglywal = [y wal(P)logl PM1d0p = —LO[ywn/ (2O @)/D).  (C27)

This yields the following relations:

Eglwa] = w: El[w2) = njl {COZ:w c1(z)} s Eqlwa] = ?12(;?—1211")[’
(C.28)
Ejlws] = w Els) = 282, i) - L ”{CIL) - °°"2"’} (C29)
EMw] = —"2;1 {2(11:_")(:0521# + —1-51 Elun] = —ﬁ, (C.30)
Eltun) = 3006080 = 2,0 cost Elfwn) = - 05E0, (©31)
E3[w3]— ntl gn(B)smB— :bdg,,(e)sinﬂ; EMw] = —%ﬂ. (C32)

Hence, for both cases 1 and 2 we deduce that

L8 wom] = 20 + DR Fu)P(2) + [RPFPN2)3820) form >0,  (C33)
L5 [vo,m] = O1[Fm] + O2[Fn)gl(0) + O3[Frlg2(6) cos20 form >0, (C34)
L8 v1,0)= 21 + D)8y @) {1221 (2) cos 8 + nlht3]P (2} sin 6}, (C.35)
L8 [u1,0] = C1lt2)gn () cos 8 + Silts1gy (6) sin 6 + C2[t2)g3(6) cos 0
+5[t3)g2(8) sin 6 + Ca[t21g3(6) cos 36 + $3[t31g;(0) sin 36, (C.36)

if the new operators O;, C; and §; are defined as

Ol =L(* + 1)[(% — log2)(hu)® — 2N, [h?u] + dy{u]

2
n“+1 n+1
+ |:2_(T)+—1)2 + log (—Z—h)] dau]

- .___4'72 (D42 ] C.37

+[2 (1+n2)(1+n)2][h uy (€37
2u(2) 5 n?+1 a'4[u]

Oalu]l = (5 —log2) — h"Nyfu] — md 3[u] -+

d4[u] (C.38)

n+1,\ k@ D2y, _
+log( 2 h) > T ax )2[h u;  Osfu] = 2(1 oo
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Cilul = —{( ~1og DAL — 2N, hu) + L4 ] ¢ ;432?)_5_3:)_2?72)d3[u]
+ [”1’ I og ("; lh) + "28*('”1;3"3] dalu] + 'f((l—BJ:ni))[h“)]zu, (C.39)
== 2’11[0 — log 2h[hu1® — 2N, [hu] + 2L } - ;4?172(3; P
+ [”: L iog (”42” lh) + ’:;;;1"1?] (4] + —2~—3(—H_—)[h("] u, (C.40)
Calul= 121(-1*.——;9-"7:72)2‘13[”] + 3 — 11;((:1-:-2;_ 2n'z)a"t[u]
+h23‘2) 311(18(—1 T;; %) (D2, can
$alu) = lzﬁ—iz)zda[u] J3 - :é(;i’i;r 27) 4t
"23(2) 3(;n_2(2n++1:)72) (RO u, (C42)
Calu) = = 11)6((1qtrn1;r 2"2)d4[u] + W;g—”ml[h“)]zu, (C.43)
ol = LTI 2 iy - SJ“("—JFS"[ B, (Ca4)

In view of these results both (4.20) and (5.8) ensure that K*[#3 9] = 0. Accordingly, (6.10)
and (4.21) yield (with £2(z) = h(2) A1{0, 2), 13(z) = h(z} B (0, 2)),

2
©) |
i:?rm {B2(h* 43 + Calt2])g3(6) cos 36 + (A By + Ssl12))g(6) sin 36

v300,2) = —
+h2 (K AL + Calta]) g (8) cos 6 + (h*B(" + Sy[31)g2(0) sin &
+H @+ DCill + b (P AP + Calta]) + be(h* A3 + C3l12)) )2, (0) cos &
+H(n + DSi[61+ bs (> B" + Sal3]) + br(h* Bs + S3[131)]2,(6) sin ). (C.45)





