A general and formal slender-body theory
in the non-lifting case

By A. SELLIER
LADHYX, Ecole polytechnique, 91128 Palaiseau Cedex, France

In this paper, an alternative and integral method is proposed in order to build a
formal slender-body theory valid up to high orders with respect to the slenderness
ratio € and for a non-lifting body which is not necessarily of circular cross-section.
The method consists of asymptotically expanding and inverting the Fredholm in-
tegral equation of the second kind bearing on the unknown source density, which
may be spread on the boundary of the body. For such a treatment, the concept of
integration in the finite-part sense of Hadamard is powerful. The source density is
then given up to order o(e®) and the pressure coefficient is provided on the body up
to order O(e? log €}. Throughout this paper, special attention is also paid to the main
considered case of the axially symmetric slender body.

1. Introduction

A few decades ago, slender-body theory was one of the most popular theories in aero-
dynamics. Such a success was, in part, explained by the poor abilities of computers
and also by the lack of analytical and exact solutions (except, possibly, for peculiar
shapes of the body}. Nowadays, the constant improvement of numerical tools allows
us to compute the flow around bodies of arbitrary form. Nevertheless, it remains
highly desirable to be able both to predict, and to explain, at a reasonable time cost,
the main features of a flow around a body; clearly the numerical way does not pro-
vide the whole answer. Hence, in the case of a slender body, a formal and asymptotic
theory remains quite useful.

For such a slender body, it is obviously possible to exhibit a small slenderness
ratio € (see § 2) and thereafter seek an asymptotic expansion of the flow with respect
to this small parameter. At leading order, it seems quite reasonable to claim that
the flow past any cross-section is independent of that past any other. Such an as-
sumption was applied by Munk (1924} to the lateral flow past elongated bodies of
revolution. Actually, for further orders or non-lateral flows, two different approaches
have been proposed. The first one consists of asymptotically solving the local and
differential problem of singular perturbation associated with the potential function.
This is achieved by applying the famous method of matched asymptotic expansions
{see Ashley & Landhal 1965; Cole & Kevorkian 1981; Van Dyke 1975). The solution
up to second order was proposed by Van Dyke (1959) for an axisymmetric flow and
by Euvrard (1983) for a non-lifting slender body, not necessarily of circular cross-
section. The second point of view is to spread unknown singularities on a subset
of the axis of the body. In the case of axisymmetric flow, one actually spreads a
source density whose adequate strength (per unit length) and support are obtained
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by solving the integral equation associated with the flow-tangency condition on the
boundary of the body. Such an approach has been pionereed by Landweber (1951,
1959) and also carried out by Moran (1963) and detailed by Handelsman & Keller
(1967). Recently, Cade (1994) cast some doubts on the legitimacy of such a method.
He actually proved that the integral equation successively handled by Moran (1963)
and Handelsman & Keller (1967) does not, in general, possess solutions.

As far as the author knows, the integral approach has only been applied to deal
with the axisymmetric low. Moreover, at the end of his paper devoted to analyti-
cal aspects of slender body theory, Tuck (1992) writes that the method of matched
asymptotic expansions seems to be ‘the only sensible way to discuss slender bod-
ies with a general cross-section’. The aim of this work is to present an alternative
treatment valid in the non-lifting case and for a body not necessarily of circular cross-
section and consisting in spreading this time a source density on the exact boundary.
The flow-tangency condition leads to a Fredholm integral equation of the second
kind for this unknown distribution. This equation is asymptotically expanded and
solved by using the basic concept of integration in the finite-part sense of Hadamard.
More precisely, this paper is organized as follows. After giving general assumptions,
the next section presents the basic integral equation bearing on the source density
to be spread on the boundary of the slender body. Such an integral equation is
asymptotically expanded with respect to the slenderness ratio €, which compares the
thickness of the body to its length, in §3. Such a step is achieved by invoking a
general formula, as detailed in Appendix A. The asymptotic estimate of the solu-
tion is thereafter given in §4, up to order o{e®), whereas § 5 exhibits the asymptotic
expansion of pressure coefficient on the body, up to order O{e*loge).

2. The governing integral equation

(a) General assumptions and notations

Throughout this paper we consider (see figure 1) a rigid and slender body A’ at
rest, which is actually an open and bounded subset of R*, such that there exist a
set of cylindrical coordinates (r', @, 2), with usual associated unit vectors (e,, eg, €;)
and a smooth and positive function F(6, 2}, fulfilling the following properties.

(i) For each point P = (r},0p,2}) belonging to the boundary 8.4’ of A’ then
0< 2, <L,0< 6p < 2rand v = Fp,2}), with F(8p,0) = F(fp, L) = 0.
The body may admit pointed ends O" and E’. Moreover, if 2% € [0, L]\ {0, L}, then
F(8p,2%) > 0 and F(0,2,) = F(2m, zp) for 0 € 25 € L.

(1) If e = max[F(0,2)] for (8,2') € [0,2n] x [0, L], then the slenderness ratio
e=e/Lobeys 0 <ex 1.

(iii) If non-dimensional coordinates (r,z) are introduced by M = (r',0,2") =
(er,8, Lz), then the new positive shape function f defined by F(0,z") = ef(8, z)
is such that |8%7(6,2) = O(1) for {6,2) € [0,27] x [0,1], v € {#,2}, i € N and
& f(8,z) == 8 f(H,2)/0v". Finally, A and .4, respectively, denote the new body
obeying r = f{#, z) and its boundary with associated end points O and E.

For further questions it is alsc worth intoducing the set of Cartesian coordinates
(O, 2',y,2'}, with M = (z',y',2") = (ex,ey, Lz) and unit vectors e,, e, and e,
directed as shown by figure 1.

For our non-lifting body .A’, the problem consists of studying the steady, incom-
pressible and irrotational flow of an inviscid, constant density {p..) fluid presenting
at infinity (when 2z’ — —oc) given velocity oo = Ua, cOS(@€)€, + Uo sin{ac)e, with
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Figure 1.

a = (1) and pressure p,,. For this irrotational flow, the fluid velocity w(M) writes
u(M) = uo +grad,,[¢], where potential function ¢ obeys the well-known differential
problem, noted (7),

A¢ = div[grad(¢)] =0, in R*\ (A UIA), (2.1)
grad[¢|(M) — 0, as z' — —o0, (2.2)
grad[¢](M) - n(M) = —uy -n(M), for M € A\ {0, E'}, (2.3)

where (see figure 1) n(M) designates the unit vector at point M of 84"\ {0/, E'},
which is directed outwards A’, and the equation (2.3) is the flow-tangency condition
u(M)-n(M) = 0 on the body. This equation (2.3) is imposed for M € A\{O', E'},
since the ends O’ or E’ may be pointed. Once the well-posed problem (P) is solved,
one is both eager and able to deduce quantities of physical interest such as pressure
coefficient C,, everywhere in the flow, especially on the body itself. By invoking the
usual Bernoulli’s theorem, one indeed obtains the following convenient link between
the pressure p and the field velocity u(M):

2[p(M) — pos M)\

Cy(M) = M =1- [M} , for M e R*\ A (2.4)
Poolle Uoc

Note that in the special case of an axially symmetric flow (obtained for an axi-

ally symmetric body and & = 0), one could also solve the problem bearing on the

associated stream function ¥ (see Handelsman & Keller 1967).

(b) A Fredholm integral equation of the second kind

If the unique solution of the well-posed problem (P) may be approximated, with
not so much additional effort, by available numerical methods, it remains quite im-
possible to analytically express this solution for such an arbitrary body shape. As
outlined in the introduction, the occurrence of the small slenderness ratio e, allows
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us to build an asymptotic estimate of the unknown potential ¢ by resorting to two
possible approaches: the method of matched asymptotic expansions; or the inversion
of an integral equation bearing on a source density to spread on the axis of the body.
Here we choose to spread singularities on the boundary 94’ itself. Thanks to the
third Green’s identity (see Kellogg 1953), it is indeed well known that any potential
function may be obtained by spreading on 8.A’ source and normal doublet distri-
butions. For our non-kfting body, we restrict this choice to a source distribution on
dA’. Accordingly, the potential function ¢ writes, for M € R\ A,

f/M a4P) s (2.5)

where the source density ¢(P) is unknown. Such a potential not only exists and is
smooth in R*\.4’, but also fulfils conditions (2.1) and (2.2). Thus, the source density
q is determined by imposing the flow-tangency condition (2.3). More precisely (see
Kellogg 1953), the equality (2.3) leads, for the unknown function g, to the following
Fredholm integral equation of the second kind:

PM n(M) ;o ! / !
M)+—ffm —a 48k = —ua - n(M), MeaA\{o,E(j.ﬁ)

If uoow(M) denotes the normal velocity induced at point M of dA\ {0, E} by the
perturbation potential ¢ (see (2.5)), and d(M) = —to. - n(M)/uy, then (2.6) writes
w(M) = d(M) for M € 0A'\ {O', E'}.

3. Asymptotic expansion of the integral equation

(a) An integral equation depending on a small parameter

In order to exhibit the small parameter ¢, we rewrite {2.6) in terms of the non-
dimensional variables (rp, zp, 7, 2). First, the reader may check that

n(M) = e — (f71f3) (B, 2)es — ef1(8, 2)e, dSP

= [fS }(P dgp de, (31)

s(M) '
if the basic function s, obeys the following definition:
se(M) = {14 (f71£5)%(0,2) + [ef2 (8, 2))*} /2. (3.2)

The integral arising on the left-hand side of (2.6} is regular. This feature justifies
the application of a change of variables (rp,8p, 25) = {erp,8p, Lzp) and of Fubini’s
theorem. Thus one obtains, after some algebra, and for (9, z) € [0, 27]x|0, 1],

g(M)s (M) e [ Alfp, zp, 8, 2)[afs.](P)
2t oe + AT Uy, / l:f [(zp —2)2+ iQHE(Gp,Zp,H,z)]3/2 dzp| dfp
= ccos(ae)f; (8, 2) —sin(ae)oos(0) +sm(@)(F ' )0 2),  (33)

where the new functions A and H depend on (6p, zp, 6, z} and obey

H = {f*0p,2p) + f2(0,2) — 2c0s(8p — 6)£(8, 2) f (8p, 2p) }/2,
A= (zp = 2)f;{8,2) + f(6,2) — f(8p,zp)[cos(8p — 8) —sin(Bp — O)(F 1 £1)(8, ).

Observe that H(fp, zp, 8, 2) is zero if and only if fp = # and f(Bp,ZP) = f(6,2).
Hence, the integral arising on the left-hand side of (3.3) rewrites fo B(6p,8,2)d8p,
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where B designates a regular integration for 8, € [0, 27]\ {#}. The Fredholm integral
equation (3.3) clearly depends on the slenderness parameter ¢ and the aim of this
study is to asymptotically invert this equation by taking into account not only the
basic assumption § < e < 1, but also additional conditions bearing on the boundary
0A of the non-dimensional slender body .A. As will be discussed, and for an asymp-
totic expansion of the unknown density ¢(#, z), with respect to €, up to order O(e"),
these new assumptions will deeply depend on order N but also on the subset of 0, 1],
where such an asymptotic solution holds. Clearly, inspection of equality (3.3) at least
suggests to ensure condition |f!_(8p, 2zp)| = O(1) and |(f =1 f2)(8, 2)| = O(1) in order
to sort the different terms for an asymptotic treatment. Usually, a slender-body the-
ory is said to be formal (see Tuck 1992) as soon as these conspicious restrictions are
disregarded. Of course, such a formal theory may present a lack of accuracy near the
points where restrictions break down, i.e. near the edges of the body. It remains of
interest to give examples for which the formal theory exactly applies up to the chosen
order of approximation since the needed improvements to formal theory require an
extensive and tedious study (especially for high orders) of the flow in the vincinity
of end points which is achieved by employing the matched asymptotic expansions
technique {see Van Dyke 1954). Despite its potential drawbacks, a formal theory
up to high orders for an arbitrary shape remains of interest and often allows us to
deduce good approximations of integrated quantities (see Tuck 1992).

{b) A systematic method for ezpanding the integrol equation

At a first stage, it is only assumed that |lep(9p,2p)\ = O(1) for (6p,2p) €
[0,27]x]0,1[ and a formal asymptotic expansion of equation (3.3) is thereafter
derived by disregarding the potential restrictions. Under this assumption, and if
|f~1£3(8,2)| = O(1) for the considered point M = (f{8,z),8,z) of DA, the intro-
duction of the new unknown A = u_'q and the use for function s.(P) of its Taylor
expansion, allows us to rewrite (3.3} as

H@ﬂ¢LHﬁ%WW@+/‘ﬁé“@wﬂ%@&%&ﬂwp

{ijnﬁ?zgw)+LwﬁéMwE@Mﬂ&z%Jﬁu+O&mM%}
9

= ecos{ae) f1(8, z) — sin{ae)[cos(8) + sin(){(F~1 (0, )] + O[A(8, 2)e?], (3.4)
where the new functions ¢y and g, obey
90(9= z,0p, ZP) = f(9P1 ZP)\/l + (f“lfép)z(ep, zp)A(6p, 2p,0, Z), (3~5)
(ep, ZP)[ ; (BP, ZP ]2-'4(9}’1 zZp, 9: Z)
20/1+ (F1£4,)Op, 20)

and the important linear operator I _ is defined for fp & [0,2n]\ {#} and satisfies

92(8,2,0p, 2p) =

(3.6)

€ v(zp)dzp
" 4x J, [(zP —2)2 + 2H%(0p, zp, 0, 2)]3/?
e 177 wlu+z)du

“w ). Eten@pr

175 [v(zp)]
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In this latter equality, the change of variable zp = 2 + u has been applied to the
regular integration over [0,1] (remember that H is non-zero for 8p # &) and clearly
h obeys h{u) :== H(fp,u+ 2,8, z).

The next key step consists in expanding the above quantity If.’;p [v(zp)] with re-
spect to the small slenderness parameter e. This task leads us to handle, for function
w(u), the new integral

J(e) = / T wludu 3.7)

. [w?+eh?2 ()32

-z

Since z € ]0,1[, then 0 € | — 2,1 — z[ and by setting, without any caution, ¢ = 0
in (3.7), one gets a hypersingular integral. Such a property is typical of a singular
expansion of J{€) with respect to ¢. Thereafter, it is not at all trivial to deal with J(¢)
and one may be tempted to derive the associated expansion by applying the method
of matched asymptotic expansions, i.e. by introducing two subsets of | — z,1 — z];
the inner one where u = O(e) (since h{0) > 0), the outer one where u = O(1),
and thereafter matching the associated expansions via adequate matching rules (see
Van Dyke 1975). Such a technique actually presents a substantial drawback since it
requires algebra of monumental complexity as the order of approximation increases.
Moreover, it is quite impossible to derive with this method a systematic formula, i.e.
valid up to any order provided that both functions w and k fulfil adequate smoothness
assumptions. It is worth noting that J(¢) is a special case of the next class of integrals

M (e) = fpfpw(u}K[u,eh(u)] du, (3.8)

where D denotes an open subset of R containing zero and K is a kernel function which
may be singular at (0,0) and satisfies, for the present work, a pseudo-homogeneous
property: K{au,av) = sgn(a)a® K (u,v), for a # 0, with sgn{a) = «/|a| and @ an
integer {positive or negative). Observe that the integration over D is to handle in
the finite-part sense of Hadamard (this explains the occurrence of the symbol fp)
and for detailed explanations regarding this basic concept the reader is referred to
Hadamard (1932}, Lavoine (1959), Schwartz {1966) and Sellier (1994). Such a notion
joins the usual Lebesgue’s integration as soon as the integrand is regular. For ¢ > 0,
the property of kernel K yields

M (e) = ¥ fp/Dw(u)K[e*lu,h(u)] du. (3.9)

Hence, one recognizes a specific integral depending on large parameter ¢ !. This
feature suggests the use of available methods such as integration by parts, Mellin’s
transform (see Bleistein & Handelsman 1975; Wong 1989), or the recent and powerful
distributional approach developed by Estrada & Kanwal (1990, 1894). Unfortunately,
none of these techniques apply to the present case. Thereafter, a systematic formula
has been derived (see Sellier 1996} in order to expand Mj(c). The result is obtained
by extending an earlier work (Sellier 1994) presenting a new method for expanding
a class of integrals by using the concept of integration in the finite-part sense of
Hadamard. One important feature of this method is to express the expansion in terms
of an asymptotic sequence €7 log™ ¢, whose associated coefficients may be integrals
in the sense of Hadamard, even if the initial integral Mj(¢) turns out to be a regular
integration. The general asymptotic formula, together with the conditions to be
checked by functions w and h, are presented in Appendix A. By the way, this result
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provides, for —co < @ < & < b < +oo, the asymptatic behaviour of the classical
integral

/’ " w(uta)du

/ _‘$)2+€2 ey  VUuZte |
which is obtained by choosing h(u) = 1, K(u,v) = [u? + v?~'/2. Integral MZ[w]
indeed plays a central role (see Tuck 1992) in a formal slender-body theory for a
body of revolution. Usually, such an expansion is derived by taking a Fourier (see
Thwaites 1960) or Laplace (see Ursell 1962; Tuck 1992} transform of M?Z[w] and
Inverting the associated transform term to term for the expansion of a transformed
integral. Such a method is restrictive since it makes assumptions for the coefficients

associated to the behaviour of the transform of MZ[w].
For 8p € [0, 27]\ {8}, the following asymptotic behaviour holds (see Appendix A):

175 Ww(ze)] = Ing [o(zp)] + I1E [v(zp)] € log e + I35 lo(zp)]€® + o(vpe?), (3.11)

with va; = max.¢ jo.17|v(2)| and the definitions

(3.10)

8,z _ ’U(Z) 8.z _ 1 d2
IU 9p[ ] - 27!.'H2(9p,2 9 z)’ Il,ﬁp [’U} - _Edz% [U(ZP)]ZP=Z’ (3']‘2)
2 )d d?
4rI%s o] = f f \zZP j«f I {1 +log[2H(Bp, 2p, 0, 2)]}v(2)]epms. (3.13)

Observe that the leading term IO o [v(zp)] is a local quantity since it only involves
functions v and H at point z. It is actua.lly a two—d:mensmna,l contribution of the
whole section zp = 2. Remaining terms Il 2, V(zp)] and I2 9, [U(2zp)] are, respec-
tively, weakly and strongly three-dimensional corrections because they require the
knowledge of the functions v or H, respectively, in a neighbourhood of z and on
10, 1[. Keeping in mind the assumption |(f~!f3)(#,z)| = O(1), (3.11) yields, for the
integral equation (3.4), the next asymptotic expansion

2m

27
%A(B,z)\/l+(f‘1f§)2(9,z)+/O Igjgp[)\go] d9p+{/0 Ifgp[)\go]dﬁp}ezloge

MO, 2)[71(6, )]
+{ Ar (0. -

= ef}8,2)[1 - %azez] — [cos(®) + sin(&)(f =1 £5)(8, 2)] [ae - C;—e ] + o(€%).

(3.14)

In view of (3.4), the left-hand side of (3.14} is actually the asymptotic expansion
of w(M)s. (M), whereas the right-hand side provides the behaviour of d{M)s.{M).
Hence, it is straightforward to derive the asymptotic expansion of relation w(M) =
d(MY}, for M € 84’ \ {O, E}. One immediately obtains

w(M) = w8, z) = Ly* [\ + LE*[Ne? log e + L5 [N + o[ A8, z)e?
=d,(6, z)e + d3(8, 2)e* + o(e®), (3.15)
if the functions dq(0, z) and da(@, z) obey
8, z) — ab8, z)
L+ (F71fe)%8, z)p7*
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d (9 ) _ b(ﬂ, 2)053 — 3f:}(91 z)az [le (97 z) — ab(@, Z)][le (0= z]2
E T (RO, T 2 (A8, 2

and, thanks to the above results (3.12)-(3.13), the new linear operators LY* are
defined for 7 € {0,1,2} as

(3.17)

1 Zm )\(BP: 2)90(91 Z, OP'; Z)
27r\/1 +{F-17H28,2) Jo H(0p,2,0,2)

LI\ = X8, 2) + dfp, (3.18)
27 d2

L?'z[/\] = a1z 2 [/\ ep,Zp)go(a, Z, 9p,Zp)]zP=z dgp,

47r\/1+ 1f9 2(, z)/

9.2 2“{ A(Op, 2p)go(8, 2,0p, 2p) dzp
LA = 47r\/1+{f Lfa )28, z)/ f |zp — 2|3

_Ez—z_[{l + log[%H(GPa zp, 9? z)]}A(QPa ZP)QO(Bﬁ Z, 9P1 zP}}zp:z
P

)\(BP,Z)A(QP,Z,B,Z) [le(ngzHQ _ [le(e,z)]z
T 20, 2,6,7) [+(f‘lfép)2(9p,2) 1+<f—lf;)2(e,z>] }def"

(3.19)

(3.20)

Observe that the last contribution on the right-hand side of (3.20) vanishes as soon
as the body is of revolution.

(¢) Physical interpretation of quantity Li*[)]
If P(2'} designates the plane 2’ = 2}, then, for 2’ € |0, L[, the closed path 8C'(z") =
HA ' NP(z') is the boundary of the cross-section C'(2’) of body A’ at 2’ (see figure 2).
In plane P{z"), the potential function ¢.p, due to a source distribution over 9C"(z")
and of lineic strength q(P) for P = (F(0p,2'),8p,2") € 8C'(2"), obeys

$op(M) = !

f q(PYlog[PM|dl,, for M =(r',82") e P() (3.21)
277 8c! (=)

and the associated induced velocity uan(M) = gradypigden(M)] satisfies, for M €
8C'(z") (and outside C’(z")),

1 PYPM -ngp(M) o
uyp (M) - nap (M) = 3q (M)+2_7r_?gcf( , () PM22D( )dlp, M e aC'(z),
(3.22)

where (see figure 2) nop (M) is the unit vector normal to 8C(z') and directed cutwards
C(%'). Use of new coordinates with P = (F'(0p, 2'),8p,2') = (ef(8p, z),8p, Lz) yields,
for wop (M) = u usp (M) nop (M) and A(P) = u'q(P), the relation

1 M8e,2)f (B, 2)y )1+ (F11),)*0p, 2) B
won (M) = A6, 2) + - f .
2r Jo  [A(fp,2,0,2) " H2(8p, 2,0, z)\/l + (f~1f3)%(8,=)
(3.23)
Clearly, definitions {3.5) and (3.18) show that wop(M) = LP*[A]. According to
Zabreyko (1975), the integral equation L5*[A] = 0 admits only the trivial solution
A=0
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"

Figure 2.

4. Asymptotic solution for potential function

(a) Building a formal asymptotic solution

The key equation (3.15) suggests we seck the following asymptotic estimate for
the unknown source distribution A:

AB,2) = A (0, 2)e + Aa(8, 2)e log e + As{8, 2)€® + o(€?), (4.1)

with |A (6, 2) = O(1) for ¢ € {1,2,3}. As outlined in the last subsection, the homo-
geneous integral equation L3 [v] = 0 admits only the zero solution and this justifies
why the first term on the right-hand side of (4.1) is of order e. Similar arguments,
combined with the form of equation (3.15), easily lead to sequence (4.1). Such a choice
is also consistent with the link between the remainders, i.e. o[A(f, z)€%] = o(¢®). By
reintroducing the behaviour {4.1) in equality (3.15}, one indeed easily deduces the
following set of two-dimensional problems:

L§* [\ = di(8, 2), (4.2)
LE* o] = —LT7[M], (4.3)
Ly ] = ds(6, 2) — Ly " [A]. (4.4)

Thus, the solution is built by successively inverting at each order the two-dimensional
operator Lg’z. The above system is actually triangular in the sense that it only
requires, at each order, to know the previous corrections. In view of this feature,
a crucial step consists in solving the two-dimensional problem Ly*[A] = d(8, z), for
given function d.
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(b) A general property and its consequences

Thanks to (3.21)—(3.22), the problem to solve for given functions f(#, z} and d(8, z)
is written

2 MO, 2)f (O, 2)4/1+ (£~ 14,20, 2)
27!' \/1+(f lfg) (953)

f(e Z) (9P= Z)[COS(HP - 9) - Sin(BP — 8)(f_1f£}){97 Z)] dép (4 5)
[£2(6p, 2) + f*(6, z) — 2cos{fp — 0)f(0,2)f(0p, 2)] S

One may always solve this Fredholm integral equation of the second kind by nu-
merical methods. Such a treatment presents no special difficulties. Despite the fact
that it remams impossible to derive a general formula in closed form for the solu-
tion A = {LU ~1d], it is easy to find a general property satisfied by A. For this
purpose we consider, in plane P(2'}, a circle ¢(r) (see figure 2) of radius r’ and cen-
tred at O, = P(2') NC'(2'). Remember {see §3 ¢} that the two-dimensional problem
Ly*[A] = d can be written as tgd(M) = usp (M) - nop (M) for M € OC'(2'), where
uzp is the two-dimensional velocity induced by potential function ¢up (see (3.21)).
Since this velocity field is solencidal, one gets

d(6,7) = 1A(0,2) +

’ 7 0’ '
f‘ uzD(P) . TLQD(P) dlp = um% d(P) le = fA UZD(P) O, dl
act(z") aci (=) c(r)

Moreover, application of the usual Gauss’s theorem to potential function ¢op yields
the relation

i
lim Uap (P) O

dl'—% Pydr; —uooj{ AMPYdls. (4.6
M otoo () O.l P P ac’(zl)Q( ) P BC7(21) ( ) P ( }

Thereafter, and by using non-dimensional variables, the next general property holds

SA(z)=fgc() dlM_f M6, 2)£(0,2)4/1 + (F-1£1)?(6, ) db

=}€ d(M) iy _/ 460, 2)£(8,2)y/ 1+ (F £)2(0,2)d6.  (47)
8c(z) 0
Observe that 5)(2) is the total strength of non-dimensional sources of lineic density
A(#, z) to spread on the boundary 0C(z) of non-dimensional cross-section C(z). As a
consequence, if S;(z) := S,,(z) for i € {1,2,3} then previous equations (4.2)—(4.4)
and definitions (3.16)-(3.17) allow us to give S;(z), whatever the shape of the non-
dimensional body .A. More precisely, and for i € {1,2}, one finds (see Appendix B
for details) that

Si(2) = 8(2),  Sxz) = (2m) 1 [S(2)SP(2)] M (2), (4.8)

where S(z) designates the non-dimensional area of eross-section C(z), i.e

5(z) :i( }dsp =/0 ﬂ%[f(@,z)g] dé.

These relations agree with usual results obtained by employing the method of
matched asymptotic expansions at this order (see Euvrard 1983). Unfortunately,
the part of d3(#, z) tnvolving [1 + (71 7})%(0, 2)]7*/? makes it impossible to derive
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a similar and general formula for §;(z} in terms of partial derivatives of function
f{6, z) when the shape of A is arbitrary.

(¢) Special case of a body of revolution

As far as the author knows, the available theoretical studies in the field only
consider an axially symmetric flow around a body of revolution (see Moran 1963;
Handelsman & Keller 1967). Hence, it is worth focusing in this subsection on the
case of a body of revolution. Nevertheless, we allow a non-zero incidence angle a,
i.e. the flow is not necessarily axially symmetric. As shown below, such assumptions
authorize an analytical treatment of the problem.

(i) Inversion of two-dimensional problem

In such circumstances, f(#,z) = f(z) and the integral equation (4.5) takes the
pleasant form

1 27
d(8,2) = §A(0,2) + - fo A8, 2) dfp. (4.9)

Application of property (4.7) vields

27 2m
] A(Bp,2)dfp = f d(0p, z) d6p.
0 0

Accordingly, the solution of the two-dimensional problem is
1 2
0

(ii) The asymptotic solution for source density A(6, z)
If functions Ci(z) and Cy(z) obey the following definitions:

Ci(2) = [fM ()P + F(2)F 7 (2), (4.11)
Co(2) = [fU )P + 320V (2)FD(=2) + 3£ ()P F¥a), (4.12)

then a careful combination of equations (4.2)—(4.4) and the above result (4.10) leads,
after some algebra, to

M(8,2) = fU(2) — 2acos(8), Ma(8,z) = Ca(z) + 2acos(8)C (), (4.13)
and, on the other hand, after noting that the last contribution to Lg’z vanishes, to

_ fpr1 {zp = 2fD() = SR D er)dzp |1y,

2izp — 2|3

AS(G, Z) =

+(log[f(2)/2] + )Ca(2) + F(2) f M (2) [P (2) — 0’37V (2)

+20 cos(B}{éaz + E[f(l)(z)]2 + (log[f(2)] + £ — 21og 2)C1(2)
ZP de

where f*1(z) := d*f/dz*, k € N. Note that when « is non-zero, each X;(8,z) for
i € {1,2} also depends on & via an additional term proportional to cosé.
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5. Estimate of the pressure coefficient on the body

The previous section allowed us to deduce the asymptotic expansion of potential
function, and thereafter of fluid velocity, u(M) everywhere in R®\ A’. For applica-
tions, it is also of prime interest to give the dynamic pressure p(M), especially on
the body itself. Unfortunately, not so many works in the field of slender bodies pro-
vide such a result. For instance, Tuck {1992) exhibits an asymptotic expansion for
pressure coefficient Cp, on a body of revolution (with & = 0) but Moran (1963) and
Handelsman & Keller (1967} disregarded this question even though they achieved
a beautiful piece of work. This section presents a method to build the asymptotic
expansion of pressure coeflicient on the body.

(a) A convenient form for the pressure coefficient on the body

For each point M of A" \ {O', E'}, we consider the set of three unit vectors
(1 (M), t2(M), n(M)) such that, if n{M) remains the normal vector already defined,
t1 (M) and ¢,(M) are tangential to surface 8.A" at point M with ¢, (M) - e, = 0,
ti(M)-ep >0 and t2(M) := n(M) At;(M). Under notation u;(M) = u(M) - ¢;(M)
for i € {1,2}, observe that, for M € .A"\ {0, E’}, combination of property t;(M) -
t;(M) = 6;; (where é;; denotes the Kronecker delta) and of flow-tangency condition
u(M) - n(M)} = 0 yields the following equality:

Co(M)=1— [”(M)} =1- [ﬂr - [3]2 (5.1)

Uoo

Keeping in mind that w(M) = u. + grad,,[¢] with ¢ given by (2.5), one easily
obtains

PM t;
w(M) = t;(M)+vp f]aw o Pﬁ;i‘ﬂ dSy, forie {1,2}, (5.2)

where the symbol vp indicates that the weakly singular integral arising on the right-
hand side of (5.2} is to handle in the principal value sense of Cauchy. More precisely,
if the kernel function g(M, P) is singular for P = M and S is a surface, then the
integral vp [ [ g(M, P)dSp is defined for M € S as

w ([ [oorpyas,= ym [[ gonpas, (5.3)
s e—0,e>0 S\D (M)

where D (M) = {P € 8§, MP < ¢} for ¢ > 0. Sufficient conditions for the existence
of the above integral are {consult, for instance, Kupradze 1963):

(1) g(M, P) = h{M, P}/M P2, with function % regular on S x &,

(2) h(M,P) = s(M,0), where 8 = MP/MP for P #+ M;

(3) foﬁ s(M,8)d6 = 0.

In the present case, one may actually write

pyPM ) (o PM (M) .,

Vp/ /:SA’ —amPME OoP _f aA,{Q(P )= a M — s 45k
PM - (M)

+Q(M) fo 54! 4WPM3

where the previous conditions are clearly satisfied for the second integral on the right-
hand side of (5.4) under choice g(M, P) = PM - t;(M)/PM?, whereas integration
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bearing on function ¢(P) — g(M) is regular as soon as density g obeys an Holder
condition in a neighbourhood of M, i.e. there exists (8,7, K) € R%* such that |¢(P) —
g(M)| < MP" for P € Ds(M). According to previous sectmns since ¢ is actually
assumed to be smooth enough in 84"\ {O’, E'}, this is indeed the case. As already
employed for the integral equation (2.6), the next step consists in applying a change
of variable P = (rp,0p,25) = (erp,0p, Lzp) to equation (5,2) in order to exhibit
the small slenderness parameter ¢. First, the reader may check that for a(8,2) =
sin(#) — cos(B}(f~1 f3)(8, ), and also b(B z) = cos(@) + sin(@)(f~* £1)(8, 2), vectors
t,(M) and ¢;(M, €) == vy - £:;(M) /un, (i € {1,2}) satisfy

a(9 z)E;E + b(6, z)ey sin{ae)a(8, z)

"D gpe e M= Ta e e ¢
£2(M) = cf; (8, 2){b(8, z)e. + a(f, 2)e,} + [1 + (F71£3)7(8, 2)]e. (5.6)

’ {1+ (F71 )20, )1 + (F1f3)%(0, 2) + [e£3 (8, 2)P1 /% '
e (M, €) = cos(ae)[1 + (f 1 £3)%(8, 2)] + esinfae) £1(0, 2)b(8, z) (5.7)

{1+ (11520, 2|1+ (£71£3)% (8, 2) + [ef18, ) PI} /2

Thus, a change of variables applied to relation (5.2) yields, for M € 8A\ {0, E} and
v (M, €) = (M) /oo,

27
vi(M,€) = es(M, €) + / TO(0p)d6p fori € {1,2), (5.8)
0

where the new functions Tff;z are given later. Consequently, the work reduces to the
establishment of the asymptotic expansion of v;(M, €). This is, once again, carried
out by employing the method explained in §3b.

(b) Treatment of term vi(M,€) up te order O(c*loge)
It is not difficult to get
T8%(g,p) = . /1 MOp, ze){1+ (f ' 5, )2 (Bp, 2p) + [efz, (Bp, 22 )P} /% dzp
Le WP} = iP o [91(8p,2p,8,2)] (2P — 2)2 + H?(8p, 2p, 8, 2)P3/2
where the new function g,(6p, 2p,8, z) obeys

£3(6,2) = J(Op, zp){sin(6p — 6) + cos(6p — O)(4 1 £3)(6,2)}
[£(8p, ze)l 1L + (f 72 f)2(0, )P ‘
Such a quantity is expanded with respect to the small parameter ¢ by taking into

account both basic result (3.11) and asymptotic solution (4.1). Consequently, one
easily obtains

(gp, zZp, 9 Z)

2m
| Tl 6r)dop = 78 + O oge)
1]
with (see (3.12))
o
T2 = / 157 M(8p, )1 (0r, 2,0, 2)[1 + (£ £3,)(6p, 2] dbp.  (5.9)
0

Using the expansion of ¢; (M, €), and if Vi{6, z) := —aa(8, 2)/[L + (F 1 f1)2(8, 2)]/2,
it follows that

vi(M,€) = {Vi(8,2) + T9*}2e% + O(e'logee). (5.10)
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(¢) Treatment of term vi(M,¢€) up to order O(e*loge)
First, the equality (5.7) readily leads to cz{M,e) = 1 + Va(0, z)e? + O(e*), with
fl(e? Z} 11
z b(#,z) — 3 f,(0,2)}
1+(f_1f91)2(9,2){a ( 12) sz( Z)}
On the other hand, 757 (fp) may be shared into two contributions Ug?(8p) and
Ufl‘: (6p) with, for ¢ € {0, 1}, the next definitions:

et ; /1 AMBp,ze){1 + (F7113,)%(0p, 2zp) + [ef1,(8p, 2p)?}/?dzp
4 o [G5iailbp,zp,0,2)] 7 (zp — 2)? + 2H?(Bp, 2p, 0, z)]3/2 7

and also, for functions G5 and G% depending on (6p, zp, 8, 2),

_{zp —2)f(8p,zp)[1 + (f~1f3)%(6, )2 (5.11)
1+ (f11)2(0,2) + [efHO, )17 7 '
_ fOp,2p) f(6,2)— f(Br,2p){cos(Bp —0) — sin(Bp — O)(F ™" £5)(6, 2)}
[£2(8,2)] 70 {[1+ (=1 £3)2(8, 2)][1 + (f 1 £3)2(0. 2) + [e£2(6, )P}/
{5.12)
Thanks to the systematic formula presented in Appendix A, it is easy to show that

the next term in asymptotic behaviour (3.11) is of order O(e* loge). Hence, another
careful application of result {3.11) respectively leads to
2
UsZ(6p)dbp = U loge + U#e? + Ul et log? e + O(e loge)
0

Va(6,z) = —%az +

ULl (8p) =

Gi =

G5

and
2m
f Uf,’:(Bp) dfp = UZ*e + O(c* loge),
0
with (see results (3.12) and (3.13)), for 7 € {0, 1},

2
Ul =f s M=i(0p, 2p)GY(Bp, 2p, 0, 2){1 + (£ £3,)?(Bp, zp) }/*] dbp,
]
(5.13)

21
U29,z :/ Ig:;‘p [)\1(9}3,ZP)G?(GP,ZP,Q,Z){]- + (.f_lf;p)Z(gP?zP)}I/2] ng’ (514)
0

27
U = f I8 Ma(6p, 20)G3(8p, 2, 8.2){1 + (F 7 £, ) (6p, )} /%) dp. (5.15)
L]

Accordingly,
v (M, €) = 142077 log e + 2[Va(h, 2) + Us® + Up*]e® + 2U5*c* log® € + O(e* log ).
{5.16)

(d) Asymptotic expansion of pressure coefficient up to order O(e*loge)

Gathering previous results, one easily obtains the following asymptotic expansion
of the pressure coefficient:

Co(M,€) = —2U e loge — {(Vi(8, z) + T{%)2 + 2V5(6, 2) + 2U27 + 2U)* } €2
—2U%* et 0g” € + O(et loge). (5.17)
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Thanks to the general property exhibited in §4 b, it is possible to rewrite terms Ulg z
U2* and U2 as follows:

U = 5(2)(2)/[%}» Us* = 8{(2)/[27] = [S(2)SD(2)|D(2)/[47%],  (5.18)
be " sgn(zp — 2)S™M (2p) 5@ (z)
0 = —fp./o dm(zp — 2)? 2
d[1 [* M\(8p,z2p)log[H(0p, zp,6,2)f(0p, zp)
& [_/ B At Ow i de”LFZ' (519)

dz | 2m
Observe that, according to (5.18), the leading term —2U19 *¢?loge arising in the
asymptotic estimate of C,(M) does not depend upon the angular coordinate & of
point M.

dzp + (1 —log2)

(e} Case of a body of revolution

In such circumstances S{z) = n[f(z)]* and, if R designates the last term on the
right-hand side of (5.19), then the result Ay (8p, zp} = (fV}(2p) — 20 cos(fp) ensures
the following equalities:

R=[ffMNV(2)log[f(2)] + 3£ (2)]* + arcos(8) f P (2), (5.20)
Vi{8,2) = —asin(@), T9% = — fu K );i[elp’_z():il(léip__ei) dfp = —asin(f), (5.21)

Va(6,2) = 50° + acos(8) f 1 (2) - VP, UPT = LAY (2)]P (5.22)
Consequently, (5.17) takes the form

Co(M,e) = =2[f FU) P (2)e? log e — {4a F(2) cos(8) + a?[4sin?(8) ~ 1]
—[FPE)) + 2[ff“)]“)(Z) log[3 f(2)]
—fp / E(zp — P f(ZP) FO (zp)dzp + 2[f f O] 1)(2)}

~[(f A2+ f3 f@](?)(z)e log®e 4+ O(e* loge). (5.23)

The reader may check that, for & = 0, such a result (5.23) agrees with the expansion
proposed by Tuck (1992) and, incidentally, gives the corrective term of order €* log .

6. Concluding remarks

In this work, an alternative approach has been proposed to deal with a non-lifting
and slender body which is not necessarily of circular cross-section. The employed
boundary integral equation is free from the mathematical problems emphasized by
Cade (1994). When expanding with respect to the small slenderness parameter ¢, this
integral equation—the concept of integration in the finite-part sense of Hadamard—
appears quite powerful and not only allows one to avoid tedious matching rules, but
also males it possible to build high order approximations without further difficulties.

In this asymptotic framework, the source’s density is found up to order o(¢®) by
successively solving bidimensional problems; special attention is also paid to the pres-
sure coefficient on the body. Such a physical quantity of prime interest is expanded
up to order O{elog€), whatever the shape of the body. Since it admits an analytical

Proc. R. Soc. Lond. A (1997)



1748 A. Sellier

treatment, the special case of a slender body of revolution (with potential non-zero
incidence) is detailed.

Appendix A.

This appendix briefly recalls the definition of an integration in the finite-part sense
of Hadamard and also provides a general formula for the asymptotic expansion of
the integral My(e) defined by (3.8).

A complex function f is of the first kind if and only if there exist 7 > 0, a positive
integer N, a family of positive integers (M(n)), two complex families (v,), (frm)
and a complex function F such that Re(yy) < -+ < Re(v) =0, foo=0if v =0,
lim g ¢»0 F(€) exists and Ve € ]0, §[ then

N M(n)
fle)= Z Z Fame™ log™ e + F(e).
n=0 m=0
Then fp[f(€)] = limc—g >0 F(€) is called the finite part in the Hadamard sense of the
quantity f(e). For D, a subset of R, and g € L, (D \ {zo},C) obeying an adequate
behaviour near potentlal singularity zo on the left and on the right (see Lavoine
1959; Schwartz 1966), it is possible to introduce the integral

fp/ g{u)du :=fp [f g(u)du|. (A1)
v D\|zo—e,zo+¢|

The above concept turns out to be very fruitful when expanding integrals with respect
to a small, or a large, parameter {see Sellier 1994). More precisely, if D is an open
subset of R containing zero, K is a kernel obeying K(az,ay) = sgn(a)a®K(z,y),
where () is an integer, and functions w and h are smooth enough that the following
result holds (for a derivation consult Sellier (1996, theorem 16}):

N
fp/Dw(u)K[u, eh(u)]du = Z &]—Kﬁg’—(& [fpfp sgn(w)w(uw)u? " [h(w)]" du] €"

n=0

N-Q-1 m w(J) m Jﬂ, »
+ > [Z mI fp / AK(t, h(O))tmdt] Q@tmtl

m=0 j=0 ! =0

[R] n—-Q-1n—-Q—i—1 n—i
L > RO w(0)
if{n — )11

n=max[0,@+1] =0 =0

xa‘ia—Q—[—i—lanK(la O)ER 10g €+ O(EN)v (A 2)

where N is an integer such that N 2> max(Q +1,0), 8,Ku,v] := 0" K/0v"[u, v] and
the coefficients a! are defined by a) :=1, @ := 0, for ¢ > 1, and, if [ > 1, then

[h(“—] % at', leN (A3)

Observe that the only difficulty in employing such a systematic formula consists
in carefully calculating the integrals I;,,[2(0)] = fp [ 8K (t, h(0))t™ dt arising on
the right-hand side of (A 2). Indeed, for these kind of integrals, the change of scale
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t = h(0)u may induce extra terms (see Sellier 1994, lemma 2). For instance, if
h(0) > 0,

2 dt ®  u2du
Toa[R(0)] = fp fm[t2+h2(0 T fpfmm—2log[h(0)]. (A4)

A careful application of general formula (A2) with D :=] — 2,1 — z[, K[u,v] :=
(u + y2)73/2, @ = -3 and h{u) > 0 for u € | — 2,1 — 2| allows us to expand
=fp f “wlu) du/[u? + 2h*(u)]?? up to large enough order. Hence, one ob-
tams
2uw(0) 1=
M. =
n(€) T

B 5 sgn(u)wl{u) du
(O)]ze Q—w()(O)loge—b—fp/_z T_A+O{1)’ (A5)

with the following relation:

(1) (1
hh(é;))w(n( )+ hh(é?)w(l)(o)

@) (1)
N { hh(é?) — A1) ?h(o()?g } w(0) = [w(u) log[h(w)](0). (A6)

A+ (log 2 — 1) (0) = log[h{0)Jw®(0) +

Appendix B.

In this appendix, results (4.8) are established by using for the area S(z) of the
non-dimensional cross-section C(z), the relation S{z) = fo [£(8,2)]*df and for-
mula (4.7):

S, (2) = Si(2) :=/O Trsz-(E),z)f(B,z)\/1+(f‘lfe})?((?,z)d@, (B1)

with s,(6, z) = d1(8, ), s2(6, 2) = —LE*[\;]. For convenience, the functions
E(8,z) = cos(8)f(8,2) + sin(8) f5 (6, z) = 9;[sin(8) (8, 2)],
F(8,2) = —sin(8) (8, 2) + cos(8) f4 (8, z) = B;[cos(6) (8, 2)],
are introduced. Since f(0,z) = f(2x, 2}, one finds that
o

2r
E(6,2)d6 = f F(6,2)dé =0.
0

o
For k € N, we set §(z) 1= d* S, /dz*.
{a) Treatment of 51(z)
Thanks to (3.16), one inmediately obtains

2 2m
z) = /0 FH8,2)f(6,2)d8 — & /D [£(8,2) cos(8) + f5(8, ) sin(8)]d6.  (B2)

Since [ E(8,2)d8 = 0, it follows that §,(z) = dS(z)/dz = SM(z).

(b) Treatment of Sz(2)
The introduction of a5(@, z) and af(@, z), such that

\/1 +(f7113)%(8,2) 52(0, 2) = [a3(0, 2} + a3(8, 2)] /[4],
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leads, when taking into account definitions (3.5) and (3.19), to the following relations:

d an )\1(9P; Zp)f(HP, ZP) 0A
o2(f,2) = dzPUo L+ (F~173,)%0p, 2p)] "/ Bzp

o= || St

(0, 25,8, 7) dop] , (B3)

Zp=z

1/2:| A(9P7 zp, 0, z) deP:|

zp=z
(B4)
According to the definitions of A(fp, 2p,0, 2) and S;(z), one finds that

d [ [ M(8e,2p)f(8p, 2p) ]
a5(8,2) = f1(8, Z)dzP [‘/0‘ 1+ (f‘lfép)2(9p,zp)]‘1/2 dés e
_E(9,z) d [fzn cos(8p) M (0p, zp) f (8P, zp) f,, (Bp, 2P)

£(8,2) dzp L+ (f~1f5,)%(0p, 2p)] 1/

z) d

( [/ Sin(ap))\l(ep,Zp)f(GP,Zp) (QP,ZP)
f(8,2) dzp 1+ (F1f )2 (0p, 2p) 172

dé p]

zp=x

as)
®
olar = L0250 ) = 16 2)51 c8eres

E((g j)) dzp [f WCOS(GP}f(BP,zp)

A [ Nr2e)f(Op,zr)

s dzp { 1+ (f_lfglp)z(9p, PRTEYE } déip} .
F(#,z) d 2

N f(8,2) dzp [/0 sin(6p) f(0p, zp)

i /\1(9P, zP)f(BP-: ZP)
“dep {[1 + (f‘lfép)z(ﬂp,zp)]‘”z} dg‘p] ipe

0’2(9, z) =

(B6)

z

When calculating

A 27
Sy(2) = [ &(0,2)f(6,2)d0 and Si(z) = [ a(8,2)1(6,2)d0

the properties o

27
E(f.z)d0 =0 and f F(8,2)d60 =0
0 0

again play a role and show that only the first term on the right-hand side of (B5) or
(B6) is non-zero. More precisely, one easily gets

5= [ 10,970,959 80 = SV (2)50(2 B7)
0
and also o
§1(z) = [ £160,2)55(2) + £(8,2)52(2)] £(6, 2) do
= 5W(2)8P(2) + 25(2)S3(2). (B8)
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Accordingly, Sa(z) = [S5(2) + S5 (2)]/[47] = [S(2)SP(2)]¥ (2)/[27].
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