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Abstract

This paper presents the asymptotic expansion, with respect to the large real
parameter A, of the singular Fourier integral

A =fp JbK(x, Az) e

where 0 < b € 4+ 00, the symbol fp designates an integration in the finite part sense
of Hadamard and complex funetion K(z,w) belongs to a specific set of pseudo-
functions which may present a singular behaviour of logarithmic nature at the
endpoints.

—i——

1. Introduction

For a real value 0 < b € 4+ o¢, the question of finding, as real parameter A tends to
infinity, the asymptotic behaviour of Lebesgue’s integral

/]
L) = f flx) H(Ax) €2 dz, (1-1)
1]

is widely encountered when solving problems arising in many fields of physics and
mechanics.

If H(u):=1 then L(A)} = _[:f(r) ¢"*dx, Le. it reduces to a Fourier integral. As soon
as fis analytic in an open subset of € (the set of complex numbers) containing [0, b},
combination of Cauchy’s theorem and results obtained for Laplace integrals (for
instance consult Bleistein & Handelsman[2], Estrada & Kanwal[8] and Wong[19])
leads to the sought asymptotic behaviour. Unfortunately, function f is often defined
only for real values in [0, b} and this method is not valid. In such circumstances, the
asymptotic expansion of L{A) is usually obtained for complex and measurable
functions f which are smooth enough in 0,56 and offer more or less restrictive
behaviours near zero on the right and near point b on the left. Among the methods
emploved, one may think not only of the integration by parts procedure (see
Erdelyi[5] and also the standard textbooks: Bleistein & Handelsman[2], Erdelyi[4])
but also of the summability method (see Wong & Lin[18, 19]) and of the
distributional approach developed by Estrada & Kanwal[6, 8)]. Finally, if fp denotes
an integration in the finite part sense of Hadamard (see Section 2), note that the
singular Fourier integral

FAy=fp be(:t:) e g, (12)
0
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has been briefly handled by Estrada & Kanwal[7] for 0 <& < + w0, f smooth in
10, [ and admitting a specific and singular behaviour near zero or b (see Proposition 3
with ¢ =0, J{i):=1, Yie{0,....I}) and K({) = 0, ¥le{0, ..., L}.

Armstrong & Bleistein[1] also dealt with the general case of L{A) when complex
kernel H{z) and function f(x) present respectively at infinity and near zero on the
right general expansions involving complex powers of x and log x. Unfortunately, the
case of singular integral

J(A) = fp f f() H(Ax) 22 da, (1-3)

was not investigated.
As an extension, consider the singular and Fourier integral

I\ =fp JDK(:L', Ax) e dz, (1-4)

which will be said to be general since it includes previous cases of F(A) and J(A)
{respectively obtained for K(z,u) = f(x) and K(x,u) = flx} H{x)). The aim of this
paper is to derive the asymptotic expansion of {{A) with respect to the large real
parameter A and for weak assumptions regarding complex pseudofunction Kz, u}.
Observe that the case of N(A):=fp f:K (z, Ax) e **dx may be deduced by replacing
throughout this study the complex number ¢ by —i. Actually, this work may be seen
as an extension to the case of oscillatory integrands of the approach developed by
Sellier[17] which yields to the asymptotic expansion of M(A) = fp | :K (x, Az} dx. More
precisely, the study is organized as follows. In Section 2 below, basic definitions and
results are presented. The asymptotic behaviour of #(A) is considered in Section 3
whereas Section 4 deals with the general case of I{(A). Finally, Section 5 exhibits
several examples or applications.

2. Definitions and mathematical framework

This section introduces two kinds of integrations for specific pseudofunctions and
also important and related results. For further details regarding the concept of
integration in the finite part sense of Hadamard the reader is referred to
Hadamard[9], Schwartz[16] and Sellier[17].

Definition 1. The complex function f belongs to the set 2(]0, + o[, C} if and only
if there exist positive reals 5, and 4, two functions F°eL{,([0,%,],C) and
Feel,([4; + o[, ), two families of positive integers (J(i)), (K(l})) and complex
families (e), (f3), (v2), (fix) such that feL[n,4,],C), (f}}=(0) otherwise
Vie{0,....JJ(@O)}: (fY) # (0); (fis) = 0 otherwise Yke{0,...,K(I)}: (fi2) + 0 and also

I J(

flz) = 2 X fhaxlog’ x4+ FO(x), ae. in 10, %],
=0 j=0 (2'1)
Re(a;) < Re(a;_,) < ... < Re(a,) < Refay) =—1;
L K{I)
fle) =2 X fraemloghx+F2(2), a.e. in [4,, + 0],
1=0 k=0 (2:2)

Re(y.) < Re(y,_,) < ... < Re(y,) < Re(y,) = 1.
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In this definition, ‘a.e.’ means almost everywhele Clearly, if feL*[0, +[,C)
then fe2(]0, +co[,C) with (f};) = (f) = (0). According to Definition 1, the set
210, + o[, €y also contains complex pseudofunctlons which are not measurable
on the sets 10,%,] or [4,, +co[. More precisely, if (%} # (0), f is singular at zero {on
the right) and Sy(f} = Re(a;} < —1 and if (f%) + (0) then fis singular at infinity and
S_.(f)= Rely,) < 1. Nevertheless, and for aeR*, it is both posmble and fruitful to
introduce the two particular integrals fp[” f(x)dx and fpk* [~ flx) e** di. This is
achieved by the following steps.

Definition 2. For r > 0, the complex function % is of the second kind on the set
10, [ if and only if there exist a complex function H, a family of positive integers
(M(n)), and two complex families (f,) and (%,,,) such that

N M(n)

VYec]0,r[, hle)=X X h,, e log™(e)+ He), (2:3)

n=0 m=K(n)

Re(ﬁN) < Re(ﬁNﬂ) < ... << Re(ﬁl) < Re(ﬂo) =0,
lim H(eye C and kg =0 for £, = 0.

€0

(2:4)

Extending Hadamard’s concept (see Hadamard (9], Schwartz[16]) the finite part in
the Hadamard sense of the quantity (¢}, noted fp[k(¢)], is the complex lim_,, H{e).

€—»0

ProrosiTioN 1. For je N, ae (' and two real values ¢ and d with 0 <c¢ < d, then

4
J 2*log! xdx = Pi(d)— Pi(c), (2'5)
J+1 i i R:
with Pty = lojfg+ 1(‘), else Pi(t) = (=1 2 Wlag"(t) (2:6)

Definition 3. If fe (10, + co[, €'}, then the integration in the finite part sense of
Hadamard of f is defined as

p fmf(:c) da = 1p [ J.Uﬁf(:c) dx] = faf(x) dx
[} &

© 1 Jw L K@
+[ oot [ Frwant 88 20~ L S aes,@. @
0 B i=0 j=0 1=0 k=0

for any pair (8, B) such that 0 <8 <9y and 4, € B < +c0.

For 0 < & < 9, and A; < B < + o0, the assumption fe L'([y,, 4,], ) and decompo-
sitions (21} and (2:2) ensure that fe L'([8, B], (). Equality (2-7) is thereafter obtained
by applying definition 2 to the complex function % defined for 0 < ¢ < Min{é, B™"}
as

= f flayde = Ff(:v) dx + rF“(a:) dx+ f Fo(x)da
£ & ¢ B

I Ju 3 L KO e !
+ Ef%f rlogl ade+ 3 2 ff,‘;f a " logh xdx,

=0 jm=0 € =0 k=0 B

which is indeed of the second kind, thanks to Proposition 1.
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Prorosition 2. Consider ae R, and fe #(]0, + o[, C). If a > 0 then

fp* Jmf(’r % da = lim [fpf fla) e“a_'u)xd'v] J‘mFm(m)emzdx
0

p0* B

y:] L KQ) L K@ _
+f;of [f )= 2 feanlogk r]e‘““dm+2 > e fp* f e loghk v e dx, (2:8)
0

I=0 k=0 =0 k=0

Jor any real value B> A; and if a 2 0 and ([) = (0) then

fp* jmf(x a2 dar = lim [fpj fl@) e(i“"f‘)”’dx] = fp joof(:c) €%z, (2'9)
0 0

‘uaD

For aeR, and fe2(J0, + w[, ) one has to justify the existence of the complex
fp*j':f(x) e“* dx, introduced by (2-8) or (29). If g > 0, then clearly

flzy el mre 2010, + oo, O)

and use of behaviours (2-1), (2:2) yields for0 < § < 9, B> A;and 0 < e < Min {8, B7"}

I J L K(l)
J f)etemedy = A%e)+ 3 3 LY )+ T B faLliu,e)

i=0 j=0 I=0 k=0
with the following definitions

Foxyetomedy + J Foo(x) eta=n2 dy,

B

B s
flayelte @7 gy + j
8

€

6-1

wilogl we N dy,  LS(u,€) = I v logh welemE dg,

B

3

ng(”’ E) = J

€

By means of Lebesgue’s theorem, it is straightforward to deduce that

B d w0
lim {fp[A%(e)]} = J flx) ei“xdx+j Fox) o dn:+f Fo(xyesde,  (2-10)
,rraﬂ & 0 B

If (f};) # (0), then Re(e;) € —1 and P, = [— Re(x;)] € N if [d] denotes the integer part
of real d Moreover, function RE(x, p) = a®log! afete0* — X8 (ia—p)P 2?/p!] is
bounded on [0,4] for 6 < g < g, with lim_, ;+ Bfj(x, 0),Vx€[0, 3] Hence

o Py (%a_ﬂ{)p & . . 3
L, €) = 3 o e Plog xda+ | R, p)de. {2:11)
p=0 ‘ 5 £

If Ly =1im,_ o+ {fpl L1, )]}, application of Lebesgue's theorem leads to
Pz

L‘i]:iz h

p=0

{(ic)?

3
fpj 4P Jog 1d1+J R¥(x,0)dx '—pr a*log wel®™*dx.  (2:12)

Combination of equalities (2-10) and (2-12) shows that for @ 2 0 and (f{2) = (0} then
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fo* |7 flz) € dx exists and is equal to fp I fix) et** dz. Assume now that (f53) = (0)
and a > 0. In such circumstances,

B o0
follEiu, e)]=—fp f vt logh xe" T da + fp f a " logh xet e M gy (2:13)
[\] 0

Noting that the function g defined by g(z) =z " logF(x) if 0 < & < B, else g(x) =
belongs to #(]0, + co[, C) with (gm) (0), the first integral on the rlght hand side of
(2'13) tends, as ,u—>0+ to —fpf x"7tlogk we'™ dx. Henee, lim, , +{fp[Li(p, €)]} exists
if and only if the complex

S (=, k) =fp* f x " logk(z) e d (2-14)

also exists for @ > 0. As shown in Lemma 2 below this is indeed the case and
fo* [ fz)e'"* dx admits a sense for fe 2(]0, + oo[, C) with (f2) # (0) and @ > 0.

These notions suggest some remarks.

(@) Of course, previous results ensure for fe L*{[0, + o[, () that f: flx) e da =
F0 1 ) e's® da = fp* [ fla) e'4® d.

(b) The introduction for e >0 and fe?(]0, + [,() of the new integration
fox| :0 Jflx) e dx is very important for this paper. It may be seen as an extension
to the integration in the finite part sense of Hadamard of the work developed
by Hardy([10, 11] and further employed by Olver[14]. Another point of view is to
consider this new integration as a generalization of the Abel limit of the function
flz) ' (see Wong[197]).

(¢) If Lemma 2 proves the existence of complex S,(x,7) (see (2'14)) for acR*,
aeC and jeN it is also worth giving the extra terms arising when applying changes
of variable for these two kinds of particular integrations. If any shift induces no
additional term, the case of change of scale x = wt with we R* is provided by Lemma 1
and Lemma 3.

Lemma 1. If fe 2(]0, + o[, C) and weRE, then (see Sellier[17])

J(0) j-Hw

fpf fleydz = fo [ s deun+ 3 5 wfo,—g—
(1] 0

Kt k+1

log
- kE (1, Y")f']k]c—-l-l’

(2:15)
=0.

where for complex values z and 2'; 8, ,,=14f 2 =2/, else §, "

LeMMA 2. For acR¥, acC and jeN complex S,{a,j) admits a sense and

Elo)(—1)™"

- N J+1 —imf2
(—a—Di(+1) 8 ]

[s.0]
S,(a,5) 3=fp*J x*log! 6™ dx ={
1]

b { it o0
+ 2 E O; Cic(_l)l—k (Zg) I:fpj u* logkueﬂt du)]log""(a)} ef%(aﬂ)a—(aﬂ), (2'16)
=0 k=0 0
where Oy i=m!/[nl(m—n)!] for integers 0 < n<m and Ela) =1 if —1—aecN, else
E(x)=0.

Progf. For real values aeR¥, 0 <e<1, p>0 and 4 = 1, we introduce w, =
(@®-+p*)'?, 8, €]1—m/2,0[ such that tan (6,) = —a/u and also the paths in complex set
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Fig. 1

C (see Fig. 1 above): £*,:={(zeC;z= temﬂ for e<t< A}, L4 =lim,_ L%,
Lr=lim,_, £ and also for be R}, B/(b) :={z€(, z = be'’ with 0, < 0 < 0}.

Since g >0, if st(x)=a*log! zetiew= then s£eP(]0, + o], O) iLe. Sie,j)=
fr f sh(x)dx admits a sense and according to Proposition 2 if lim, 4+ S%(«, ) exists
then§ (a 3)1sthehmlt Clearly, 8 € Lj,{[1, +cof, C)and 8%(e, 7) = lim , ,, . S%(x, 5, 4)
if §4(e,j, A): _fpf s(x)dx. After some algebra, one gets

St(e,§,A4) fpj a* log! x e 0T gy = galetD, E Ci—i6 Y EL \(w,), (2:17)
where each complex quantity EJ ,(w,) satisfies

|
Ef (w,) :=pr' (@ e log' [z €] e 2u"™ {3 €1%) fpf Zloglze ™t dz,  (2-18)
0 4
The next step consists in giving the link between EZ ;(w,) and fpf:x“log’ xe et da
(this latter integral admitting a sense even when 4 -+ oo since w, > 0). For any
€ > 0, observe that complex function F(z) = z*log’ z¢7* turns out to be analytic in
D, ,={zeC\R_,¢/2 < |2] < 24}. Thus, application of the usual Cauchy theorem
ensures that

h(e) :=J F(z)dz—fAF(x)dx = j Fiz) dz_J‘ F(z)dz. (2-19)
o, ¢ B'(a) BMA)

For given «, the first integral on the right-hand side of (2:19), denoted L#(¢), is treated
by introducing integer N = [—Re(a)] and function

Rt (z)=2*log'z [e‘wﬂ -3 (—w,)? z"/n!],

where it is understood that 2¥_ =0 for N < 0. Clearly, Bi ,(z) goes to zero with [2|

in C\R_. Thus,
N (_,w )n
Lie) = 3 ——#— 2" logl zdz+ O#(€) (2-20)
nmo BMe

with O¥(e}—>0, as ¢—0*. Each integration on the right-hand side of (2:20) is
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performed by using a legitimate extension of function P! in C\R_ (see (2-6)).

ath
Thereafter and by expanding P fee'%], one obtaing

‘6 I+1
| Eogtade = Pl Je— Pt = =8 S (201)
BYe) I+1

Combination of equalities (2:19), {2:20), (2:21} and application of definition 2 yield

(ieﬂ)Hl (_,w )ua—l

ya

(+1)(—a—1)

Ef (w,) —pr x*log' we n® dx— E(o) —j F(z)dz. (2:22)
B A4)

Since g > 0 then cos (6’) >0 for 6, <6 <0 and lim,_, ., [p4y Flz)de = 0. Note also
that & —hmA#wfpj‘ xloglxe i, IdzL —fpf z*log! x e7¥* dx becomes

!
E = e E,ﬂ CF log! *[w? pr x)*logH[w, ale “n* dw, ¥). (2-23)
Use of Lemma 1 to apply change of scale u = w, « leads to
4 o
EZw,) = lim B} (w,)=w "% Cck log”‘[w;l]pr. u*logFue ™ du
k=0 0

A-to0
_E(a) (_w )—m—l { O;”( _ 1)1—ch| N (%0 )Hl} .
(—a—1)i {[Eo s L O v SR

Observe that, in equality (2:24), Zi_,C¥(—1)"%/[k+1]= (—1))/(I+1). Thus,
after some algebra and by gathering the terms such as E(a)(10,) 7 log" ' [w ] for
—1 <1441, one gets

E{e)(—1)"

i+l i,
(—a—l)!(j+1)log [eo, €]

S, i) = lim S¥(et,j,4d) = (a+l) g ilar1o, {

A-+oo

+E Z CLOF(— 1) F (—d0, Y™ I[fjnj u*loghue™ du] log‘*’c(w’,)}.
1=0 k=0
(2:25)

Finally, result (2-16) is deduced by letting x# go to 0* in (2-25) with 8, ——n/2 and
W, — .

Observe that for #eC, keN and a function gf(v) := v log*(v)e™?, then ¢f e #(]0,
+oof, C) and thereafter Ny(f):=fp [ " gh(v) dv exists. If Re(f) > 0, Ny(f) = JTw e
dv = T'(#) where I' denotes the usual gamma function. Moreover, using integration
by parts {(always valid when dealing with an integration in the finite part sense of
Hadamard (see Schwartz[16])}, one obtains

BNo(B) = fpl/ e P IF + No(f+1) for f+0. (2:26)
= fplln{w)e™]7+A4 with A= f In{v)e ?dv=—0C,, {2-27)
o
where C, designates Euler’s constant. Here, fp(in(v)e™”]f = —fp[In(e)e] = 0 and
according to definition 2, fp[#?e ] = —fp[efe] = 0 if § is not a negative integer,
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else for § = —p with pe N*, fp[v Pe ] = (—1)P*1/p!. Consequently for Re(§) < 0, if
£ is not a negative integer Ny(8) = T +m)/[H(B+ 1) ... (+m—1)] where m is any
positive integer such that Re(ﬂ) > —m, else for peN the equality Ny(0)=—-C,
and induction relation (2:26), i.e. (p+1)N(—p—1)= (=17 /(p+ 1} —Ny(—p)}.
show that Ny(—p) = (—1)?¢(p+1)/p!, where yf(p-+1):= 2P I —(, is the usual
digamma function. For instance, if Re(a) > —1, j =0 then Lemma 2 leads to
lim, o+ j‘:e 2% e mT o = Do+ 1) eFatg=(erD)

LemMma 3. For (a,w)e R¥® and fe 2(]0, + o[, C) then
I J@)

iax _ aw )(ga) 17 lOgJHw
jf(a,)e dx = fp* J Flavt) ot d(wt) +§)j§%}f —a il

Proof. According to Proposition 2, I:=pf* [” f(x) ¢'** dx becomes for B > A,

L K()

B sl
I=pr f(;v)e"”drc-f-j Fo(zye®®da+ 3 Efmpf*j amlogFxedr. (2.28)
0 B =0 k=0
Lemma 1 provides the corrective terms arising for the first integral on the right
hand side of (2.28). If (a,8)eR¥:, acC with Re(a) =z —1, jeN and Lyp) =
f: a*log! x e~ * dx, then use of m = [Re(a)]+2 = 1 integrations by parts yields

m—1 p{¢ ({a—du) B 1+1 ] (ia—dp) x
f( )(B) € (= 1) J (m) e i
— _1\m M) [ : 2.9
Lyp) E) (fa—ouy ™ +{—1) . f () (i — o)™ dr, (229)

where f(x) = a*log’ x and fU"™ e LY([B, + o[, (). Application of the usual Lebesgue’s
theorem gives lim,_ o+ Ly(g) = 23"} fO(B) €28 (da ) +ima ™ [ f™(x) ' da for any
d > 0. Consequently, for we R¥

ol o0
: , _ o
fo* j e vloghxe™ dx = lim | anloghaele #%dy
B

,rt—»0+ B

= lim (wt)~ vt logh[wt] e d(aot)
.u—>|]+ Bw™!

=fp*f _(wt) 7 logFlwi] e d(wt),
B!

and this latter relation leads to the stated result. It is also easy to show that
definition (2-8) may be replaced by : fp* f:f(:c e dy = lim, g+ [ f Slx) et = dy] for
any de R,

3. Treatment of F(A)

Since it will be useful to tackle the general case of f{A), this section is restricted to
the establishing of the asymptotic expansion, with respect to the large and real
parameter A, of the singular Fourier integral

X :=fpfbfcrc> e de, 31)

for 0 < b < + 90 and complex pseudofunction f belonging to (10, 5[, (), a specific
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subset. of 2(]0, + o[, ('). By the way, the proposed results will also apply to the case
of pseudofunctions f admitting singular behaviour near a finite number of points in
[0,6] for b << + o0, else in [0, 4 c0].

Definition 4. For EeN, deR¥ the sets Z(d) and 2%(]0, + co[, ') are defined by:

(@) Fpld) =1{h, h{z) = 2°H(z) with s > E—l and H bounded in [0,d] and also if
E = | then ¥ e LY{[0,d],C) and Vee{0, ..., E—1}: lim,_ ,+ 29 (x) = 0},

() 2%(0, + o[, ) is the set of complex pseudofunctlons f such that

1. fe#(10, + o[, C) with, for expansion (2-2), fi% =0 if Re(y,) < 0;

2. decomposition (2-1) takes the form

T Jw
flzy=2 X fhaslog’ x4+ hix), in]0,7,] (3-2)
i=0 j—0
with he Z(y;) and Re(a) < ... < Re{a;) < E—1;
3. if £ =0 then fis contmuous on 10, + oof and I,(A) = [ flx)e**dx converges
uniformly for A large enough, else fis £ times continuously differentiable in J0, + oo/,

= :ﬂ S B (x)ei**dx converges uniformly for A large enough and Vg > 0,
Vee{l,...,E—1}:lim, e **fOx)=0.

Observe that in this definition, assumption 1 with fi; = 0 for Re(y,) < 0 implies
that I,(A) = f:c flx) €% da converges uniformly.

TuEOREM 1. If E€N and fe D%(|0, + oo, C} then F(A) = fp [ fix) ¢** du admits the
Jollowing asymptotic behaviour, as A—+ oo,

I J() E ‘“r'*‘f
PQ)= A PRz + 5 Zfﬁ{ (“‘)(1)!() D

i=0 §=0

i 1 J-I 4]
+ 2 2 CLOF(—1)* (i g) [pr uilogfue™ du] logh* A} eiftart) Q~(act) - (3.3)
0

1=0 k=0

logj+1 [/1 8—1’11/2]

where complex function Rg(A) = if f: hEY2) e dx = o(1), as A=+ 0.
Proof. Case 1: (f) = (0)

Since fe#(]0, +oo[,C) with f,k) (0), Proposition 2 yields to the important
relation: F(A) = lim "(A) if F(A)=fp [ flz) e % da. If the function A obeys

,(r»(]+

h(z) = fla) — 21_, Z/DfY a:“i log’ z for x> 0, then the new integral F (1) rewrites

I Jw
= Efijfpj "r:"‘!‘logj:re(“‘""xdx-l-j h{x) e 0% gy, (34)
i=0 j=0 0

where function A~FR&(A j hix) e medy exists because he LY [0,%,],C), & is

continuous in ]0, + oo[ &nd 1> 0. Moreover for £ = 1, & is E times continuously
differentiable in ]0, + co[ and thereafter applying £ times a legitimate integration by
parts procedure, one gets

NER ) = Ez:l h(e)( )e(m ,u)r( )e oo+ —1 1\ wh(E)(T)ei/\xe—ﬂxdT (3.5)
0= 3 S | s, | v (3¢
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Due to assumption 3 and since £ € %,(#) the sum on the right-hand side of {3-5) is zero
and if A% =k, this ensures for £ > 0,

AERE(A) = (n—1A) F f R O R (3-6)
0

Observe that gg(x) = A*F(x)e* is piecewise continuous in |0, + oo[. According to
Olver[14, lemma 2], Yim, o+ [ " gp(a) e " da = [ g,(x) da as soon as this latter integral
converges. Here, ™ e L'([0,9,], C') whereas near mﬁnlty

I Jgl)
B (x) = fP )= X fhag(j)a* Flog'x
i=0 1=0

with Re(a,—E) € Re(a;—#) £ 0. Thus, the integral I:D REYx) e¥* dr converges
uniformty for A large enough and lim, .+ Ri{A) = RBg(A) =£Efow hE) () e du.
Moreover, use of an extension of the Riemann—Lebesgue lemma (cf. Olver[14,
theorem 41, p. 73]) applied to the piecewise continuous function A ensures that
Rg(A) = o(l1), as A—>+o0. To conclude, each contribution 8)(«;,j) = lim,_ o+ fp j':c a
log? x e 1M dy, arising in relation (3-4) when g goes to 0%, is provided by equality
(2:16).

Case 2: {fi2) %+ (0)

In such a case, & :={I such that (fj;) # (0} # J and for le&: 0 < Re(y,) < 1. If
0 < B < 4w, thanks to Proposition 2 and Olver’s result [15, lemma 2], one gets

B [£e] o
Fa) = fpj fl@) e dx +J fl@) e da = lim [fp f flz)etidwa da:] .
0 B ‘u,—>l]
Moreover, the new pseudofunction u(z) := f(z) — X,_, LE® f@ x~nlog* 2 turns out to
belong to 2%(]0, + o[, €) with (%) = (0) and also for K)(A) = fp f:f(x) M= g

K
=/p J W) é0 0 dut 3 3 fitfp J Trlogtr Ty, (37)

le& k=0

Application of Lemma 2 and of previous treatment for case 1, leads to result (3:3).

It is worth noting that the asymptotic behaviour of F(—2) = fp [~ fla)e " du
may be obtained by replacing throughout this paper the complex number ¢
by —i. Observe also that Theorem 1 provides an explicit form for the remainder
A ER(A) = o(A"F) but assumes the smoothness of certain derivatives of pseudo-
function f everywhere in 10, 4+ cof. When these assumptions break down at a finite
number of points in [0, 4+ cof, the next extension is possible.

Definition 5. For NeN* and EeN, 2§(]0, +o[,C) is the set of complex
pseudo-functions f such that there exist a real family (x,),cq, . ye With
O=wy < < ... <axy <Xy, = +00,real values 0 < 5, < Min[(x,,, —2,)/2],4;,> 0
and F* e Li ([4;, +oo[, () such that:

1. assumptions 1 and 2 of definition 4 for 2%(]0, + o[, €) hold;
2. Vnefl,...,N} there exist positive integers I}, families of positive integers
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(J7 (i), complex families (f3*), (#;*) and complex functions k; € Z(y,) such that for
se{—, +}
I Ji
fla, +su) = DS Fruflog u+hi(u), for wuel0,n, (3-8)
i=0 j=0
Re(fy’y < ... <Re(fFy < E—1, (fif) = (0} elseS; =Re{fy"); (3'9)

3. for ne{0,..., N}, f' exists and is continuous on &, x,,,[;
4 Ig(A)=]" f‘E) e** da converges uniformly for A large enough and if £ > 1
then lim, e f"‘f“” =0, VYu >0, Vec{0,...,E—1}.

Since each element of Z¥(], + co[,C) may be singular at each point z, (as
soon as 87 < —1orS; < —1)one has to define the integral F(A) =fp I7 flxy e da.
For 0<e<b <+, geP(Jc,b[,C) if and only if Ge2(]0, + o[, C) where G(x) =

g(z) for ¢ <x < b, else G{x) =0 a.nd fpf g{x) dx —fp[ G2)dx. When eeR, and
fEDEQ0, + oo, ), observe that fp] f(:L “”dm exists and

glx) = flx) e z"""Eg’(]cL 12y [, €), Yrel0, ... N}

Consequently, it is legitimate to introduce

= fjn fwf(i) atAT fe '.=fp Jm f(’L) eAE foe
0 Ty

In+t"%n
7

Nl u+51: n
+ 3 erip [T fa b et dut gy |
(1} 0

n=0

flwy g —u)em ™ du} . (310)

Turorem 2. If NeN*, EeN and fe D}(]0, + o, C) then the integral F(A) above
presented, as A—+ o0, the following asymplotic expansion

(A)—oAF+i§)f{ ai)( 2 Joghipae-ine)

i=0 =0 =13+
i I o0 .
+¥ X COOH-1F (z E) [pr wiloghue ™ du} logt * A} glitarti) 3 =(artl)
=0 k=0
FEanat) B(a s _1 —gney
+3 B8 g BEED g oo
n=1se{—, +}i=0 =0 ( ﬂ ! )
o Pty 1
+2 X C{‘(Al)“‘(isé) [fpj W loghue™ alu]logI "A}
1=0 k=0
X ezs—(/i,"*ﬂ)/\ (ﬁ{“‘+1) (3-11)

Proof. For fe 25(]0, + oo[, C}, F(A), defined by (3:10), may be written
F(A) =fpj Sflx) e da+ 2 pr. f ) €A% da. (3:12)

Step 1. Introduction of function g such that g{u) = e"*~ flz,, +u) for u > 0, yields
=fpl f(m)e"‘r de = fp [ glu}ye™ du. Moreover, g€ 2%(10, + o[, ) sinee it
satlsﬁes the pmpe: ties (@) and (&) following.
(a) ge.@(]O +oo[ ) and

g 0 EK(E) k C}ffﬁ ei/\:rN u lOgm H’Hlkm(u_l) + eiz\auN FOO(.’EN + u)

m=0
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for ue[d;, + oo (see decomposition (2:2)) with 0 < Re(y;} <1 and each funetion
Hym®y={1+xy ) logh ™1 +xyt] is smooth near zero on the right. Hence,
Hypm™) = Hy (04w 1Ry, (1) with |R),,, (w)] bounded for « large enough. This
ensures that, near infinity,

L K(I) &k
gluy =2 2 3 OFfe Hpw(0) e~y vlog™ u+ G (u) (3:13)
1=0 k=0 m=0
where e Ly, ([4, + [, C).
{6) Decomposition (3-2) holds for g with A(z) =k} (x) and the reader may check
that property 3 of definition 4 is also fulfilled. Consequently, application of
Theorem 1 provides the asymptotic behaviour of integral A,{A), as A—+o0.

Step 2. For 0 < 8" < § < 7, consider a function v defined on [0, 4+ co[ and & times
continuously differentiable on [0, + 00] with p(x)=1 for 0 €2 £ ¢ and v(z) =0 if
& 2 4. Such a function exists and is called a neutralizer by Van der COI put [3] {see also
Erdelyi[4] and Jones[12]). For ne{0,...,N—1}, we introduce 4,,(A fpj' "“f ¢
dx and also the real functions vi(x):=vix—ux,), v, (@) =v(x,,, — 1:) and" yo=vi+

Var1- Noting that 1, . .= (1—»)+», one obtains 4,(A) = A{A) +45(A)+45(A)
with 4L(A) = j " (1 —p,) (x) flzx) e do and

=fpf ) flzy e de; AL = fp f @) f@) e, (314)
x’l xﬂ

If £ = 1, since (1—1,)® (2,) = (1—»,)9(2,,,) = 0 for e€{0, ..., E— 1}, application of
E times integrations by parts yields (thanks to the Riemann—Lebesgue lemma)

A;(A)=(m—l)Er"”[(l—w)f}‘E’(x)e“zda:=o(A—E), as A>+oo. (315)

Tn

Regarding integrals AZ(A) and A3(A), respectively, changes of variables » = x, +w or
T=x,,—U combmed with the definition of v} and of v, lead to

AXA) = e“"nfpf go(uyedu; A3(A) = ef"x"ﬂfpj ga(w)e % du  (3-16)
0 0
with g,(u) = v(u) flz, +u) and g,(u ufle, ., —u). For fe@2%(]0, + o[, ), then
g€ D%(10, + oo, C) and apphcatlon of TheOIem i gives the asymptotic expansion
of A%(A). Finally, the behaviour of A3(A) is obtained by replacing ¢ by —i in
Theorem 1 after noting that g, satisfies the associated and modified Definition 4.
Theorem 2 has many applications. For instance, it ensures:

Prorosition 3. For HelN and real values —o0 <a <b <+ 00, feD%a,b[,C) if
and only if pseudofunction f is K times continuously differentiable in la, b and there
exists 0 < 9, < b—a, h,€ L), hy€ Lp(;) such that for uel0, 5]

I J)

flatw) =2 X fhuvlogluth(u); Reloy) < ... < Re(e;) <E—1, (317)

i=0 j=0
L KW

fo—uw) =% 3 fhuloghuthy(u); ReB)<..<Re(f)<E—1 (318)

t=0 k=0
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For fe 2% a,b[, (), then L(A) :=fpj:f(a;) e dx exists and admits, as A—+ o0, the
Jfollowing expansion:

LAy =ofA"E) + EI} JE(?f ma{ Bla) ( )1() am)logf‘f‘[/\ e~/
i=0 j=0

i
+X Z CLOF(— 1) (zg) [ J w*loghue “du} log'~ "/\} f3a+1) )} —laitl)

I=0 k=0

L K ] E(ﬁ)(——])‘ﬂ(*‘k
b LiAb ! k+1 inf2
=¥t {<—ﬂ,—1)!(k+1)]°g (A

k L3 k—n o]
+ X X Cpom—1)p> (i g) [pr wilogmue ™ du] logh™ /\}
(1}

n=0m=0

X P A, (3:19)

Equality (3:19) is easily obtained by introducing pseudofunction g such that
glu) =" fla+u) for 0 <u <b—a, else gu):=0. Noting that ge D%L(]0, + |, ()
with x; = b—a, application of Theorem 2 indeed ensures expansion of L(A) =
Sol glu)e™ du.

H (10, + oo, €)= D50, +o0[,C) and for 0<b<+oo, 0,6 C)=
{fe 2%(10,b[, C) such that fe L*([b—,,b], C}} then use of Theorem 1 or Proposition 3
provides for 0 < b £ 4+ 00 and fe % (]0,b[,C) the asymptotic behaviour of #(A) =
fr j: fla)e** dx, where symbol fp is only needed for the potential singularity at zero.

Example 1. For KeN, —w <a < b <+ o0, (&, fYeC?, {J,K)eN? and a function ¢
which is £ times continuously differentiable in ]a, b[, N, (resp. &¥,) times continuously
differentiable in [a,a+7] (resp. in [b—#,b]) for some 0 <y <b—a if N,:=Max
{£,[E — Re(a)]} and N, = Max {¥, [E — Re(8)]} then (see Section 2 for definition of N.(#)
and 2 =0 if M < 0)

=fp fb (x—a)* (b—a)log’ (v —a) logh(b—x) g(x) e* dz = o(A"F)

Ny-1 t).a am

+ 3

??,
n—p P! dz

Bla+n)(—1)n+/

J+1 —inf2
Ca—n—D gD 8 A

[(b—x) log"(b—x) glx)| (w ){

Jo1 J=1

+3 3L CE(— 1y (q: g) Na+n+1)logh* A} eHlor D) = (ekntl)
=0 k=0
Ny—1 iAb

+ 3 e

W1
On’d

(B+n)(— 1) FHE
—f—n—1)[(K+1)

logKJrl[/‘l e'im'z]

[ x—a)log’(x—a)g(x)] (5){

+§ é Cr! Ctk —1 i—-k+n _izr_ K_EAI +n+1)1o sz/\ efig(ﬁJrnﬂ))((ﬁHz.H).
: kb 5 k g
1=0 k=0

(3-20)

Proof. Here, pseudofunction f(x) = (x—a)* (b —x)’log’ (x—a) logh(b—x)g(x) is E
times continuously differentiable in |a, ] and one has to check expansions (3-17) and
(3:18). For instance, if 2 > a* it is possible to write f(x) = (x —a)*log’ (z —a) w(z) with
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w(x) = (b—x)*log"(b—=x)g(x) and thanks to definition of N, to obtain, for u—0*,
(and 2Vapt =0 if N, < 1)

Ny-1 w"“(a)

fatw= & =

u***log’ u+h,(u); Re(a+n) < Re(x+N,— 1) < E—1,

—1 w(n) (a)

by
R (o) =u"‘I0g"u[w(a+u)— > ¥ "‘*"] [w*log7u]) W(u), u = 0.

=0

(3-21)

Forqe{0, ..., K}, since £ < N, function w'? is N, — g times continuously differentiable
for 0 < u < 7 and satisfies @ (a+u) = ZNa 172 [(g+m)!| L@ (g a)u™ +uNe R (u)
where R is bounded in [0,%]. Observe that this latter relation ensures W@ (y) =
u™e "R (u) if function W is introduced by (3-21). For ¢ = 0, this shows that A_(u) =
[u*t¥alog” u] Ry(w) with Re(a)+N, > E—1, i.e. hy(u) = w'H, (u) with s> E—1, H,
bounded in [0, #]. Moreover, il E = 1, then for ec{0, ..., E} and % > 0 there exists
complex @ (o) such that

e e
A (u) = X Cfu*log’ w] @ W (u) =3, 3, C¢ tggla) [u 4 log™ u] uNa 9 R, (u).
q=0 =0 m=0

Since N,+Re(a) > E—1 and R, bounded near zero, for ee{0,...,£—1} then
lim, o+ AP (w) = 0 and AL™ e LY([0, 5], ). Hence, k, e Z(y). For

U —

Ny—1

hy(u) = uflogk u[t(b—u)— > (a7t t(”’(b)(—l)”]
n=>o
if #{x) = (x—a)*log’(x—a)g(x), similar arguments lead to h,e.%(n). To conclude,
Proposition 3 yields (3-20).
For instance, if J =K =0, a=y—1, f=p—~1 with 0<y<1,0<pu<1 then
N,=N,=E, E(a+n)=E(f+n)=0, Na+n+1)=T(y+n) and it follows that

j b (—a) (b—a)y g(x) e da = Ez_‘al{e PWTH) - [{(b—ay *glx)](e)
a n=0 L3 da
T'{p+n) d*

13y +a) y—{y+n) iAb
X et? A +e :
nl  da® I

— a1 g(@)] (b) HRIAUH Y 4 o(AF),

i.e. it agrees (with the improved remainder o(A~F) instead of ((A~F)) with
Erdelyi[4, 5] and Bleistein & Handelsman[2].

4. Asymptotic behaviour of I(A)

Before dealing with I{A), it is convenient to introduce the set £72(]0,4[), C) and real
Solf)s Self) for 0 <b < 400, two real values 7,7, and pseudofunction f. More
plecisely

a) 672(]0,8(,C) —{pseudofunctlon S such that there exist (a;), (f7), (J(¢)) with
Re(ao) <. < Re(a;) < ... < Reer;) <7y, veal 5, > r, and functlon F“ bounded in a
neighbourhood of zero on the right where f(z) = 2., 22/ f% 2= log’ a,+181 F" () if
b < + o0 then fe Lj,.(]0,b], C) else fe LL,.(]0, ], C) and there exlst {v.), (fi2), (K (1)) such
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that Re(y,) < ... < Re(y,) < ... < Re(y;) €<r,, real s, > r, and function F7° bounded
in a neighbourhood of inﬁnity where f(z) = XF 250 f@ v logh :E+£L_82F°°( .

b) For f defined on ]0,7] and & (x) = f( x) if a,E]O 3], else F(x):=0 then if there
exist (r),7r,) with # €87:(]0, + o[, €') and ( (f4;) * (0) then Sy(f} = Re(a,).

(¢) For fdefined on [A + oo and Z{x) = f(x) 1f:r,e[A + o[, else & (x) =0 then if
there exist (r,,7,) with # e &1x(]0, +oc[, C) and (f5) + (0) then S (f) = Rely,).

The next definition presents a specific set of pseudofunctions K(x, %) for which the
asymptotic expansion of I(A) will be provided by Theorem 3.

Definition 6. For real values r,,7,,0 < b < + 00, pseudofunction K(z,u) belongs to
the set &/72(]0, b[, €) if and only if for A large enough f(x) .= K{(x, Ax) for 0 < x < b, else
flz)y=0 belongs to #(]0,+ o[, C) with for decomposwlon (2:2) fio =0if Re(y,) <0
and all the next assumptions are fulfilled:

1. There exist positive integers N, I, two complex families (y,), (®)c0, ..,y With
Re(y,) < ... < Re(yy)=r,, Re(a,) <...<Re{a;)=r,, two families of positive
integers (M(n)), (J(i))icq,. n and of complex pseudofunctions (K,,(x)), (A"(w)),
complex functions G, (x,u), H, (x,u) and real values s, > r,, 8, >, B, 20, B, 2 0,
0<p< A<+, W>0such that

N M(n)
K@uy=3 % Kynl@)w mlog"utu G, (xu), (v,u)e]0,b[x[y, +oof, (41)
n=0 m=0
I Jw
= 3, 3 hu)x*log x+atH, (x,w),  (w,u)e 0, W x]0, +oof, {4-2)
i=0 j=0

b 4
J 7% |G, (x, Ax)|dw € B) < + 00, j wi|H, (w/A,u)|du < By <+o. (43)
7 1}

. Iffornei{l, ..., N} positive integers £, V, and Vobey £,—1 < r,—Re(y,) < K,
Vn—l <K +Re(yﬂ) V, if Re{y,)>0, else V,:=E,, Vi=Max,.o  w{Vpr+1)

then there exist positive integer I’, family of positive integers (J(4});o. sy cOmplex

families (K%}, (o)cqo, .., 1 With Re(ap) < ... < Re(a;) =V —1 such that:
2-1. Forief0, ..., 1}, je{0, ..., J(i}} then hijeé””megar,( 10, + oo, €} and there exist
Atj >0, 7]2? > 0 t;; > —Re(a i)—i, complex families (H3), (§,) with Re(fy) <... <
Re(fip) € )—l and
_ P Q)
Miwy= Y X HY ufrlogtu-tuluRy{u); R, bounded in [0, 1], (4+4)
D=0 g=0
N M(n)
Riw) =3 X K9, u"log™u+u"0;u); Oy boundedin[4,, +w[. (45)
=0 m=0

2:2. Vre{0,... . N}, Vme{0,...,M(n)} there exist ,,, > 0 and k,,, € & (1,,) such
that if I, = Max {i€{0,....I'}; Re(a;) < V,,— 1} then

Iy Ji ]
Hym(®) = 2 X K, a%log a4 by (), 2€]0,7,,], (4-6)
=0 j=0
I J(i)
ﬂm Z Z K:gm % log r+at 'an("’) nm bounded in [O 7]] (4'7)
i=0 j=0

Moreover if b = +¢0 then VI€{0, ..., m} K, (¥)a "= log' ve Dg (10, + o[, ) else K,
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is £, times continuously differentiable in J0,b[ and there exist complex families
(BE"), (6g™) such that —1 < Re(83™) < ... < R(OF™) < B, —1, K}™ € Ly (9,,,) With
& S

K,plb—u) =X % B2 %" log® u+ K™(u), w0, n,,.]. (4-8)

e=0 5=0

3. Function W, ,r, auch that a®w™W, , (,u): =K(x,u)— 25_ZMW K (x)x
wrn Jog™ u— 2L ZJ“’ (A (u)y— 2N EM("’K” u nlog™u]a*log’x is bounded in

10, 9] % [4, +oo[.

For ne{0,...,N}, definition of ¥, yields V, = r, = Re(y,). Observe that relation
(46) implies an adequate behaviour near zero on the right for pseudofunction
K, n(x)a"=log™ ! (x). By the way, if V, > r +1 then (4-6) also ensures (4-7). By
now, if families of positive integers (M{xn)) and of complex («,), (a,,) are such that
mel{0, ..., M(n)}, Re(ay) < ... < Re(e,) < ... then for

N Min)
(7, )eREXRY, S,() = X a,,t=log™t=3%, 3 a,,t*™log™t,
m, Re(x) <r R=0m=0
where N = Sup{n, such that Re{x,) < r} and if v < » then Zm'r.<Re(a} <rOpp i log™t
= Sr(t) _Sr’(t)'
TreoreM 3. For reR and K{x,u)e/72(]0,b[, C) with r < Max {r, +1,r,} then, as
A=+ 00, I(A) admits the following asymptotiﬂ behaviour

I =prbK(:v,)(:c) My = 3 E Ci —l)l{fp J R (u) u™ log Hu) et du

i, Re(x) £r—11=0

P=0 g=0 (—1— ﬁp_ai)'1+-7+q
e . oAb gk .
+A() T X ) CnBes" T g G 1 0

m, Re(y) <r I=0 Re(d) ™ +y,+k) <r—1

X {z 3 CrCR(— 1)tk (zg) i N, (87" 4+ k+1)log"?A
=0 p=0
E((s;nn_l_k)(_ 1)—6,',""+8

o =D (5% 1)

logs-#l[ﬂei%]} e—ig(a;‘ "+E+1) A @y Rt T) 10gt A+ o()(—r)’

(4:9)
where A(b) =1 for 0 <b <+ o0, A(e) =0 and L(u) =w*logu for (a,j)eC x N.

Proof. According to Olver[15, lemma 2], for Re(y,) > 0 and also for d > 0 then
I anlogha et dy = limw,ﬁjwaf”* log* 2 e®™-#* dx Hence, combination of Proposi-
tion 2 and of property f(x) = K(x, Ax)e ()0, + o[, ) with % =0 if Re(y,) <0,
implies the basic relation

b
1(A)y=lim I (A} with I (A) '.=pr K(z, Az) eA=0% g, (4-10)
w0t 0
Thus, the question reduces to the derivation of the asymptotic behaviour of 7 {A) for
p > 0. Under the properties and notation proposed by definition 6, this is achieved
in several steps. For a sake of concision and since further explanations are available
in Sellier[17, theorem 1], the first part of the derivation will be briefly reported in
steps 1 and 2 whereas the second part will be detailed by step 3 and the Appendix.
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For large A, real & such that A™'y € 6 € is introduced in order to take into
account decmnposmons (4'1) and {42). Indeed one writes I, (A) = I {A) + (A}, where
f K(z, Ax) e 1% dg and I (A) : fpf Kz, Ax) - "‘“’d"c are tredted separately

1n Steps 1 and 2.

J.bAS’tep 1. Since /\;::'\2 Ad =y for [ (A), expansion (41) holds and if T (A):=
, (A2) =G (2, Ax) eP 1T d it yields

b s

= X% [fpj —pr ]Km(:c) (Az) 7 log™(Ax) €0 % da + T(A).  (4:11)
m,Re(yysr, 0 0

For 0 € 2 £ & < 9, relation (4:7) is valid for each pseudofunction K, and allows us

to cast [ (A) into the following form

I.:*()[) == 2 Z Knmfpj /\.’,t, T¥ng®i 10g ()l’L) log x el T o

m, Rely)<ry§, Re(a) <7,

+ X pr am(®) (A2) e log™ (Ax) e 7 da + T (A)+ Ui (D),  (4:12)
m, Re(y)<r, 0
where each mtegral occurring on the right-hand side of (4'12) and complex U (A) =
-2, Ret) <7, fpf a1 L, . () (Ax)y 7 logm()lx) e =M% dy admit a sense since, under
proposed assumptions 22, 1nteg1 al fp f glx) ¥ M2 dy exists for g(x) = a%log’a and
9(2) = K ()27 log" &

Step 2. Regarding I'(A), successive use of behaviours (4-2) and (4:5) for 4”7 easily
ensures that

LAy= X [fi’-”f f?—”J ]h” (Axya*ilog’ x e 0% da+ T (A)

j, Re(z)=r,

== X % Kﬁfmfpf (Az) 7 a™ log™(Ax) logl(z) e 0% da
&

m, Re(yy=r,j, Re(a) <1,
+ X fp f i (Ax) 27 log! w €02 d 4 T7(A) + U(A), (413)
i, Re(a) <) 0

where T7(A) = [ : a* H, (x, Ax) e ¥ % dx, each integral arising on the right-hand side of
(4:13) exists since 47 e ELIEH (10, + co[, C) and

Ui(A) = > (/Irc)*sz Oy Ax) atilog! w e 0% da:
jRel) <1y J
has a sense for g > 0.

Step 3. By adding equalities (4-12) and (4-13), one gets I,(A) = L(A)+13(A)+
A+ R (A) with R (A) = T} (A)+ T(A) + U, (A} + U (A) and the next definitions

DAy=— X% ) K,mfpj (Ax)~rna* log™(Ax) logh(x) e  do,  (4-14)
m, Rely)<r,j, Reladsr, 0
L= X fPJ nm{®) (A2) 77 log™(Ax) e 10% da, (4:15)
m, Re{y)sr, 0
LAy = ; RE fpf R (Ax) z* log! (@) P17 dy;, (4:16)
JRe(@<r, ¢
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For le{1,2,3}, the asymptotic behaviour of I*(A):=lim, ,
follows:

{e) Note that IP{A)= Ej_ﬂe(m)s,lZ; o CH— 1) DP(A) A=t logt A where DP(A):=
fp*f: F(Ax) (Axylog! H(Ax) e**d(Ax). Since h7e &L (10, + o[, C), change of
variable ¥ = Az is legitimate for each integral D¥(A). Taking into account expansion
(4'4), application of Lemma 3 immediately leads to

+1,(A) is obtained as

PAy= X ZOI {fp j A9 (u) utlog!~ (u) et du

F, Rela) <r 1=0

Py g1 a,Hij log1+j+q—l/\
=2 Y Ele,+B,) : }A‘ar“)logl/\. (4-17)
p=0 g=0 ‘ p ﬁp_az!l+j+q_l

{b) Thanks to Proposition 2 (see (2-8)) and Lemma 2, it is straightforward to cast
IYA) into the form

My=- X > Z CLKY S0 —v,.j+m—0) A nlogl A

m, Re(y) vy §, Re{a) <r | 1=0

longrm—Hl [). e—f;]

m
== X X XC.K,

m, Re(y) <ry §, Re(a) <1 I=0

{E(ai—yn)(— gyt
(¥,—o,— 1) (j+m—I+1)

j+m-l v lﬂj+mlv
+ X 2 Trm—t (7‘_) Nk(az‘_'}'n‘l'l)logv_k[’\_l]}

v=0 k=0 2
x ei%(ai_7r3+1)a_(ai+1) logl A. (4'18)

(¢) If b =400, remind that f, ,(x) =K, (&) 2" logm_’(a:)e@‘“g"(](), + oo[, ) for
{e{0,...,m}. Accordingly, each Fouuer integral F% (A) such that

(/] D
=fp* J (@) 20 log™ ) ¢ da = fip f K pp(@) 2 7nlog™ 4(a) € da,
1]

exists and thereafter I(A) = 2, Rety) <1, m Cb R (A) A log! A, Thanks to relation
{4-6), for xe€[0,%,,] it is possible to rewrite pseudofunction f,,., as f,..(x) =

J, Reta) < Byt Rey)-1 K m 2T logh* ™)+ H, (x) where the reader may check
that the assumption %, €%, (9,,) combined with definition of V, ensures that
Hnmz(x) = Ej,E"+Re(y,,) < Re(a)+1 <V, Kggm xHTn logﬂmil(x) a ¥ logmil(‘(r) + kmn(x) belongs
to F (,m)- At this stage, two cases arise regarding the asymptotic behaviour of
2

(i} Ifb = 4 o0, then previous remarks show that theorem 1 applies to #*,,(A). More
precisely, one gets F?, (A} = F% (A, 0)+o{A E») where complex F%, (A, 0) is related to
the behaviour of pseudofunction f,,,, near zero and oheys (see (3-3))

Fizm()t, 0) = 5 Kﬁim { Elo,—y,)(— 1-)7" atfrm logj+m—t+1[/1 efi;]
4. Re(@) S E,+Rely,) -1 (Ya—o,—DI(G+m—I+1)
jtm—1t v o Ftm—I-v
+ X kz C;J+m—l Cﬁ (i "2“) Ny(a;—y,+1) logvk[f\ul]}
v=0 k=0

X ei%(“!_}’u"'l)/\_(‘xr_yn"'n A
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(ii) b < + o0, f,..; is B, times continuously differentiable in ]0, 6 and behaviour
of f,(B—u) is needed for u—0". Assumption (48) with —1 < Re(d}™) < ... <
Re(83™} < E, —1and notations G ~!(x) := a7 log™ (), [G ' ]% (¥) = d¥[G7: ]/ [du*]
{x) indeed yleld for ueld,n,nl, Sfowlb—u)= ZS'0<RE(J;W+HUSER[L‘!]" x (—1)¥
By G ™ (b)w wle "t logtu+ 8 (u) where function f2 ,, satisfies

4 Se)
Pouil) = S EB;;"*uﬁ?’”““log*(u)[Gm (- u)—z (G4 (b) [k (— )ku’f}
e=0 s=0
_1 k n
+ K ) G (b= + > = B ) " logru,
5, Ey—1 <Re(§"™y+k <2E,—1 :

where for the last sum in the above equality: 0 < k< B,. It is thereafter easy to
check that f3,,,,€ % (9,.,). Consequently, proposition 3 applies to F1,,,(A) and allows
us to write Fﬁm(/\) FL (AL 0)+ F (A B)+o(AEn) with FY, (A, b) associated to the

behaviour of f,,,; near point b on the left and given by (see result (3-11))

et E(é‘"m+k)(— 1)76{,’”’“‘ .
Ft )t,b — Bnm Gm k) b 2 1 s+1 A i3
nm( ) s,Re(ag”’Ec)sE"—l I [ ] ( ){(—azlm—k— 1)! (S-I- 1) og [ € ]

& ki 8=
F3 T Crop(— 1y (zg) Nptazm+k+1)1ogv-m}e—isw:“’*+k+na—ws"*wm_
v=0 p—0
For the above sum it is important to note that Re(d7™ 4+ k) > — | becaunse Re{d]™) =
Re(d7™) > — 1. Hence, F!,_(A,b) = o(1), as A—>+ c0. Keeping in mind this property,
assumptlon r & Max {r1+1 ry} and definitions of integers E, and ¥, with ¥, —1 <
—Re{y,) < K, and V, =, clearly lead (after cancellation, up to order o()t ™,
of terms of I'(A) and of 2 Rety < 7, Dy Ol FL (A, 0) A0 log! A) b0 THA) +13(A) =
AB) T reiy < r 20 Oy Flpn(A, b, 1) A 70 log! A+ o(A ) if F,(A,b,7) is obtained by
replacing in above deﬁnltion of FL_(A,b) sum Es.ukmwgmw)sgn_l by the sum
5.-1 < Re(@™+k) < r-Rety,y-1+ L0 conclude, the appendix shows that in such circum-
stances B(A):=lim, 4+ R (A) = o(A™") and the asymptotic expansion of I*(A), up to
order o(A™"), turns out to be the first sum on the right-hand side of (4-9).

5. Applications

This last section exhibits a few applications or examples which are treated by the
proposed approach. Example 2 below consists in an application of Theorem 3.

Ezample 2, For Ne N* and 0 < b < + 00, assume that pseudofunction fand integer

N obey N = Max {1 +8,(f), 1}, fis N—1 times continuously differentiable in 10, 5[ and

there exist 4 > 0, complex families (8,), (#,) such that Sy(f) = Re(dy) < ... < Re(d;} <

S N-1, -1 <Re(ffy) < ... < Re(f,) <... < N—1 and functions f,, f, belonging to
Lo(m) with

fey= X = fhattlogatfyfw); wxel0.ql, (51)

o Re(8p < N—1

Jo—w)y= % wrlogiu+tfi(u); wel0,y). (52)

8, Re{fipysN—-1
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In such circumstances, one obtains:

f J‘ ) e dy

1+a+Ax

J oS J—m
= 3 syl [ T g,

P
i, Re(§p+k) S N—1 m=0 o (I+u)

—1-8;—k ( _ 1) (jU+ k)| ,i—l—&,w'cgplogHj—m A
— K8
@) E[, plE(—1—=38,—k—p)! 1+j—m

}A—w,wﬁ-n log™ A

+Niw,1 mg}n om(— )m+n+k(n+k) " i)‘b(l'l'b)n m -tk

28
n=0 5, Re(f,t mAntk+1) < N1 nlk!

x{z_; z_; OO0 CP(— )7 P+ (zg) ) N, (B, +m+k+1)log' A

B(f,+mk)(— 1) hms

Ly TP

logs”[)teig]} e*iﬁ(,ﬁ'ﬁm+k+1)/‘{—(ﬂg+m+k+u+2) +O(A—N)_

Proof. This result is provided by Theorem 3. Under the proposed assumptions
the reader may indeed check that K(z,u):=flx)/[1+x+u]e .9(%_1(]0,1)[,0) with

feliy(10,8], C) and for expansion (4'1): r, =N, s, =N+1, ¥rne{0,...,N—1} then
Mn) =m=0,K ,(x) = (—1)" fla)(1 + )", yn =nt+1,E,=N—n— l,Vn Nandalso
G, (@) = (— D)V flz)( 1+LL W /[1+u (1 +a)]. This shows that f x| @, (x, Ax) | dx

< + o0. Use of behaviour (5:1) ensures relation (4-2) with r, =N "1 and f01 x—0F,

J=)
—— = h Sl = DF (L u) 0 o8 Jogl w29 H, (0, ),
Ltatu ;s <remprren o=

where, if K = [N—8,(f)—1], then

ahH, (v, u) = X FhHl—= 1) (14 2y EH 0 g0tk |ogf o
1, N—1 < Re()+k € N+K—-1
+Lf0 _1 K+l(1+u) (K+1) K+lf ]/[l-l-:l}-l-u]
Thus, oy =8+k A% @) =(—1) "flj(1+u)“"‘“’ Accordingly, A%/ belongs to
SR (10, + oo ,0)  with f01 behaviour (44) Qp)=¢=0, f,=p, HE=

FH=0P"% (p+ £ /[p' k] and for relation (4-5) K =0 if 0 <n<k—1, else for
k<n<N—1, K¥ = fli(—1)"n!/[kl(n—k)!]. Definition of K, (x) and (51) yield
expansions (46) and (4-7) with

) = (— " (142" o) + ) e T
J, N-1<Re(+ky< N+n—1
ie. h,,€ %(n). Finally, for £, = N—na—1, assumption (5-2) provides for «— 0"

Kopolb—u) = > Co(=1)"F fo (L4 )" F wlet* log® u+ K0 (u),

5, Re(fo+h) S N—n—2

Kropgy = D" by CE(— 1)™* [ (14 bY*~* whetk logP u,
(14b—u)™ 5, Re(fi, k) > N—n—2 " *
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where it is easy to show that K% %, (7).

The case of singular integral J(A) (see (1'3)) is also widely encountered for
applications. The next theorem states, under specific assumptions, the asymptotic
behaviour of J(A), as A—+ 0.

THEOREM 4. For 0 < b € 4 o0 assume that real value t and pseudofunctions f and H
satisfy, for A large enough, f(x) H(Ax)e L}, (10, b[, C) and the following properties:

(a) t = Max [—Sy(H), 1+8,(f),S,,(H)], there exists w = Max[S,(H), —1—=8,(f)]
such that He & (10, + oof, ) with

Hu) = Y H urlog?ut+uHy(u), w' >w,u->0; (53)
g, Re(f) <w
Huy= Y HY,umlog"u+u *HP(u), & >tu—>+o0, (5-4)
m, Re(y)<t

where functions HY and HF are bounded, respectively near zero and at infinity;

(b) if Vnel0, ..., N} positive integers K., V,,, E and V obey E—1 <{—Re(y,) < K,
V,—1 < E,+Re(y,) <V, for Be(y,) > 0,else V, =E, F—1 <t—8_(H) < E and also
V=Max (V) then f is E times continuously differentiable in 10,b) and there exists
he % (n) with

foy= % fhasdoglx+hiz), wel0,yl; (55)

j.Re(a}<V-1

(€) moreover, if b < + 00, then for u near zero and also Re(8,}) > —1,

fo—uy= X s logiuthy(u), ke Lly) (56)

s, Re(d,) < E—-1

and if b=+400 then feSL 540, +o[,O), £ 2 1—=8_(f), SL{NH+S,(H) >0 and
Vel0,...,m} then flx)a 7=log™ H(x)e D% (10, + o[, ().
In such circumstances, the following asymptotic behaviour holds for any real » <t

fp be(x) H(Az) eV dzx

= 2 Zj: =1 [ {fp* J’“’ H(u) wlogH(u) e du
o

j,Reta) r—11=0

B § Qg) P HY E(f,+a,) 10g1.+j+q—!,1} A~ Jogh A
p=0 =0 (_l_ﬁp_ai)ll—i_j_i_q_l
n z‘Ab dk
+A(b) E Z H?m Z Oin es k' dat k ;’I:a I]
m, Re(y) <ri=0 8, —~1< Re(d,+k)<r—Re(y,)—-1

x {z S v Cr(— 1) P+’f(ﬂ) N,(8,+k+1)log"?A
v=0 p=0 2
B(d,+k)(—1) %
(—8,—k— 1) (s+1)

log“"“[/le"%]} efi’-,’wﬁkﬂ) A—(88+y,,+k+1) log’ A+ O(/\fr). (57)

Proof. Result (5:7) is obtained by applying Theorem 3 to K(x, «) = f{x) H(u) as soon
as it belongs to &7%_,(]0, b[, ). Due to definition of V, it is clear that V, = t, ie. V=t
and under the proposed assumptions the reader may check the following statements:
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(@} If g(x)=fla) H{Ax) for 0 <x < b, else g(x):=0 then ge#(J0, + o[, ) with
g =10 forRe(*yt) < O because f(z) H{Ax)e L], (]0, 4], C), near zero behaviours (5:3) and
(65} hold with w2 —1-8,(f), V-1+SH)=—1 (with V=t = —Sy{H)) and if
b=+ cc not only S_(f)+8,(H) > 0, t+8,(f) = 1 but also fe &5 5=7(]0, + o[, C}.

{6) Relations (41) and (4-2) are satisﬁed with r, =1, s, =1, G’,,zft,u) = flx) H(u),
K, (x) = Hy, fix), ry=t—1, Au):=f H(u) for i such that S,(f) < Re(a;) <t—1
and ﬂnally aH, (x,u) = F(') ( ) if F, (v)=fla)— Zj Ret <1 % logl 2. Note
that f x| G, (x, )lx Ida,—_f 7| fla) HE( )m: |dx is bounded since for b < + o0,
Fell ( [?;, b, )(asacontlnuous functlon on [#, b[ and, see expansion (56}, measurable
in a neighbourhood of & on the left), else —t'—8_(f)+1 <0 thanks to ¢ > >
1—8,(f). Moreover, (55) authorizes to write F, (x) = Z} t-1 < Re(w < v—1. 5 £ log?
-+ h(x) with A{x) = aF{x), s> V—1 and F bounded near zero on the right. If
8 =Min{Re{a;) for ¢ such that !(—1 < Re(a;) < V—1}, 5" =Min{s s} and
sp=t—1-+{s"+1—1t]/2, then H, (x,u) = F{_,(x) H(w) with

F@= B fhertlogla+a R

§.& s Rela) s V-1
is bounded near zero. Thus,

y
J | H, (u/A u)|du < AN sJAu‘"II*‘(fu,/A)H(u)Ial'u

0 0

4

+ Z Asi—Relzp f hieted |F u//\) H | di. (58)
&' SRe(o) £V -1 0

Finally, Min{s,s} > t—1 2 —8,(H)}—1 shows that (43) is true.

(¢) Since He &', (10, + o[, C) with w = —1—8,(f) and Sy(f) < Re(a,) <t—1 then
hic& l*lﬁﬁ?(g‘(a (10, + co[, €) and relations (4'4) and (4-5) are fulfilled with HY, = {3 H}
Kin _fij ms Oyyln) :=f?jH;D(u)-

{d} Because VZ={=r+¢ V=Max(V,)=Max(¥,,r;,+1) and behaviour (55)
ensures for K, (x)=H® flz) relations (4 6) and (47) with &, (x)=

[Zj Va1 < rew < v f prilog e+ h(x)) € &, (). If b <+co, (4:8) is provided by
a.ssumptlon (56). To conclude one finds that er,rz(x’ u) = I} (x) HF(u) is bounded
for (x,u)e]0,9)x[4, + o[

Example 3. Consider ae(C, R a real value such that R = Max {2 —Re(x), 2}, and
0 < b < 4+ 0. The following asymptotic behaviour holds

sin {x) e da
J=iees

»q’

(1 + (it A)
[R+Retayf2—1] ( _ 1)1 *e] u—a+2!+1 .
— * iu —(2I+2—x)
2z (2l+1)![f?’ J Auyr d“]"

[ee/2—1] e—2{1+1) ( - 1)£+p (p + 1) ?:af'pfz(l+1)

_P ){—(2“-2—:1) l A
(@) E, 2 @+ D) [a—p—2(+ 1)) o8
[R—2] __1y\ntm+k
+y oy &b (1) nm by A, (— —m—2) hmanm2h

n=0 m+k<R-nt2 mlk!
% (m+ k)[ e—ig(m+k+1) A—(m+k+n+3} +O(A_H),
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where sin™ (b) refers to the mth derivative of sin at point b, P(a) =1 if ae N\{0, 1},
else P(a)=0 and for (#,k)eCxN then A,f) =1, A,(f) =pF—1)...(F—k+1).
Thereafter the asymptotic expansion of (A} involves logarithmic sequence A~ 42
log A if and only if ae N\{0, 1}.

Proof. By choosing H{u)=wu"*(14+u)"* and f(x)=sin(z), then fpfbsin x) %
e da fx*(1 + x)?] = A%J(A) where integral J(A) = fp[ Sy H(Az) e dx 1s expanded
by applying Theorem 4 for t = R+ Re(x). More premsely, He&,(]0, + o[, 0} for any
real w and (53), (54) hold with Q(p)=¢=0, f,=p—a, H)y=(—1)?(p+1),
Sy(H) = —Re(a) and also ne€{0,...,. N}, N=[R-2], y,=a+n+2, H, =(—-1})"

(n+1). Moreover, for positive integer M, f is M times continuously differentiable in
[0,b] and its Taylor expansion at zero or at b provides relation (55) or (56).

Example 4. For (a,J)eCxN such that Refa)>—1, 0 <b<+cw and R>
Max {1 — Re{a), 0} one gets the following asymptotic expansion

blOg {x}arctan (/\LL) " g ® arctan (u) e dae
ot dx = EO](anHj *J s
e L d{l+w) 1< Re(a)+R—1 §=0 ! UV o Hogh Y (u)
"T_g jat- 2+ (1P
—Pla
® po (2p+1)[a—i=2(p+1)]!
10g1+.}—j,\

-2 |pgt
X 1+J—3}A og’ A

_iapye® TN S on0n(—1)rer

0<e<R—1 v=0 p=0
T J+1-v
X (z —) fO(bye eV ogh P A

2
. [[%]I J v
+A(b) Y > > X oser

n=0 etk R-2(n+1) v=0p=0

( —1 )J+n+k+e+17p

@n+ el &!

A (—2n—1)f(b)

T J—v
X {e+ k)l b1-2nk (7:5) e iiteriiy

% A—(e+k+2(n+1)) ]Og”flp)tJrO()l_R),

where notations P(a) and 4,(#) keep the meaning introduced by example 3 and
Ycecna =0ifR<1.

Proof. Here f(x) = x"*log’(z)/[1+x] and H(u)= arctan (u) = 7/2—aretan (»™")
for « = 0. Consequently, expansions (53) or (5+4) hold with t = R, @(p)=g=10,
Bp=2p+1, Hyy = (—1)?/(2p+1), S(H) = 1 and also HE = 7/2 with ¥, = 0 and for
nel{0,...,N} then y,=2n+1, HS =(-1*/2rn+1), S, (H)y=0. For VelN¥*,
L:=[V—-1+Re(a)] and x near zero, then (5-5) is true with

Sy = 3 (=1 2 log” (v) + h(x)
i=0
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where function A(x) = (—1)"*' i log’ (x) /{1 + )& £ (5). For b < + o, the same
argument shows that f satisfies (5:6). If b = + o0, S (f) = Re(a)+ 1 and for g,(z) =
x 7rf(x) introduction of L), .= [&,, + Re(a}+ Re(y,)— 1] leads, as u—+ o0, to g,(x) =
Dk, (— 1 a et log? (@) + k() where hy(z) = (— [)Eatt gma v mtlattjopd () /1 4 2]
€ %, (). To conclude, it is straightforward to prove that gn€ 2% (10, +oo[, C).

Appendix
The aim of this appendix is to show that for » < Max{r,+1,7,} and R(A) =
lim_ +[R,(A)] then B(A} = o{A™"), as A >+ 0.
Thanks to the definition of W, , and after some algebra R (A) = 17(A)+ T’ (A)
+ U (A)+ U (A) rewrites B (A) = R)(A)+ RYA) with (see (4-5))

BE)=— X (/\;L) 52 O(Az) a*log! (x) e % {59)

1 Re@<r, Jb

R2 /1) fpf 51 /\Q, —&,; W;..rz(ﬂ:’ /\CU) e(iz\—,u}g: de. (5‘10)

If b = + o0 then R}(A) = 0, else assumption A7 e 1175 (10, + oo[, C) guarantees the
existence of s;; > 1+ Re(a;) and of complex function V¥ bounded near infinity where
Pi(Ax) = Em Rety) < 1+ Retap D (A%) 0 log™(Ax) + (Az) %0 V9(Ax) with DY, =K%, for
Re(y,) <rp. If d)(A)= f (Ax) % O Ax) a*tlog/ (Ax) e P dx, two cases occur. If
Re{a;,) +1 < 7y < 8y, then lim, |, d9(A) = O(A7%) = o(A™") and if s;; > 1+ Re(a,) > 7,
one may write

,ual.‘i

A=A j Y Sy log/(x) V(Ax) e 1= gy

+ ¥ S ¢t pi JHA) AT logm A (511)

nmn
m,ry< Re(y) <1+ Re(xy) 1=0

with J2#(A) == [ " a# e logh(x) e* 1% du. Tf Re(a;) + 1 > Re(y,,), J2HA) is bounded and
if Re(ai)-l-l = Re(yn) one integration by part leads to lim 4+ J/3'(A) = o(1). Hence,
for 0 < b < 400, RY(A) =lim _g» RYA) = o(A™"2) = o(A™).

As far as R}(A) is concemed if g (A, x):=2* ()mc)"*'2 W, v (@, Ax) e three terms
are 1ntr0duced CMA fpj' 7,44 ;L)da: C3Ay= fp J':M g A x)dx and also C3(A)=
19, (A %) da.

( ) For A large enough, 4/A <  and combination of expansions (4-2), (4:7) and of
definition of x"u %W, , (x,u) ylelds C;(/\) Cl( y— Em Rety) <, b (A) with CY(A) =
f:laxslH,l(."c,/\a:) e(“‘_"”dﬁu Ay =fol " () (Azx) 7 log™ ()tx)e(“""“’dx. Due
to assumption (4-3), observe that

A/A A
eV < f .’csllﬂrl(:c,/\:c)ldrc=)t‘Sl“’f S| H, (/A0 du.

o 0

Thereafter, if C'(A):=1im, + C}(A), then CV(A) = QA *V] = o(A""}. Recall that
the definition of integer F, shows that in any case V, =7, = Re(y,) and if

8 >VF,—1 2 Re(y,)—1 then  |I7(A)] <A~ fn IﬁL"l“f”Lnm u/A)log™ (u)jdu =
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o[ A" D] = o(A7T), else use of expansion (4-6) for s, < ¥, —1 ensures that

ImmA) = ) 201 DEKY, AT A Dlogl A+el™(A),  (512)

nwm
.8, < Rela) S V =1 1=0

where 47'(A fpf " (Az)emralog™ it (Ax) e Mg (Ax) and also complex en™(A) obeys
en™A) = f:” by )(A;L) *rlog™ (Ax) A0 %dx. Observing that h,,,(x) = » Hnm(”*’) with

t>V,—1 > Max[Re(y,)—1,s,] and H,,, bounded near zero on the right, it follows
that

'AfA
lim [e"™(A)] = A~(+D J (Axy7n log™ (Ax) H , ,(x) e¥d(Ax)

1
;4%04r 0

A
= /\"‘“’j wtrnlog™ (u) H (/) etdu = o(A7"). (5.13)

0

Change of scale u = Ax is apphed to each term A7 (A):=lim,_ o+ [A7(A)] and leads (see
Lemma 3} to ATHA) = fp* j wsnlog™ i u) edu+ Clog™* i~ ”1(/1) where the latter
contribution is the potentlal corrective term. Thus, lim,_ o+ [[2™(A)] = ofA"" V] =
o{A™T).

(b) Since |W, , (x,u)l <D for (x,u)€]0,9]x[4, + [ JNCEA) < DA™ sf i,
ie. lim,_ 4+ C3A) = o(A™") for » < Max (r; +1, 7).

(¢) To conclude, use of behaviours (4:1) and (4:5) for u = Av 2 7 gives

ﬂ—»O

v
C3(A) = A‘”EJ ¥ G, (v, Az) et Ty
7
b ‘
- ¥ (Az) 52 O Ax) a*rlogl x e 2 dx. (514)

j,Re(@y<r, v

Assumption (4:3) and a treatment similar to the one employed for B}(A) if b < + o0
easily show that lim,_o C3(A) = ofA™").
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