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Abstract

Some usual and important operations: change of variables, application of Fubini’s
theorem and derivation with respect to the isolated singularity (in the present work
with respect to the origin of the spherical coordinates (r,#)) are studied for the
following singular integral

1, {a) ::pr a(@)r*log’ rdx,
v
where aeC, Re(a)<—n, jeN, ael}(Z,,C) and the symbol fp[, , means an
integration on the set Q in the finite part sense of Hadamard with respect to the
domain configuration U. Moreover, applications to integral operators are outlined.

1. Introduction

Consider Q an open, bounded and simply connected subset of R*(n = 2), O a point
belonging to Q and d((, dQ) the distance from O to its boundary ¢Q. Throughout this
paper M =x designates an arbitrary point of R”, dx stands for the associated
Lebesgue measure and (r,8,, ..., 6,_,) is a set of spherical coordinates of origin O with
r=0M and #:=(0,,...,0, ;) =x/r. Recall that dz =r""'drdo, where do, is
Lebesgue measure on T, = {M eR"”,r = 1}. The zero function on X, is designated by
0, . If C denotes the set of complex numbers, one often encounters (see Section 4) the
integral

1, ja) :=fpj a(8) r*log! r de, (1-1)

QU

where a€C, Re(a) < —n, jeN, a + 0; , aeLYZ,, () and the symbol fp [, , means
an integration on the set Q in the finite part of Hadamard with respect to the
domain configuration U (see next section for further explanations). Since Q is
bounded, Re(a) < —n and a + Oy , the complex function s ;, defined for M + O by
s3 (M) = afx/r)r*log’ r, is singular at origin O and the integral .7 ,(a) = f,s% ,(x)dx
is divergent. At this stage, many regularization methods are available to deal with
this divergent integral .7 (e} (see, for instance, Estrada and Kanwal[2]). The one
here employed is Hadamard’s finite part concept which leads to the quantity 7, ;(a)
and require a great care as soon as one is eager to perform a change of variables or
to apply usual Fubini’s theorem. Such operations may generate corrective terms and
the aim of this work is to derive those extra terms for the integral I, ,(a).
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This paper is divided into three sections. In Section 2, the meaning of the notation
fpJa v is introduced and the question of a change of variables is studied. An
associated ‘Fubini’s’ theorem is derived in Section 3. Finally, Section 4 is devoted
to the derivations of the integral I, ;(a) with respect to the isolated singularity 0 and
to application to integral operators.

2. The change of variables
First, the integration in the finite part sense of Hadamard is presented.
Definition 2-1. For a real § > 0, a complex function f defined on the open set [0, 8]

is of the first kind if and only if there exist a real 0 <7 < 4, a family of positive
integers (M(n})), two complex families (v, ), (f,,) and a complex function F such that

N M)
fley= 2 2 fame™log™e+Fle);in 0, 9],
=) m=0Q
Re(yy) € Re(yy_y} < ... < Re(y,) < Rely,) =0, (21)

limF(eyeC and f,,=0 if y,=0.
0

If there exists {n,m) with f,, = 0, then f(e) —F(e) is a sum of a finite number of
diverging terms as ¢ tends to zero. Following Hadamard[4] or Schwartz[8] the
complex lim,_, F{¢) is called the finite part in the Hadamard sense of f(e)} and noted
folfte)]

A closed surface U(0) is a domain configuration with respect to the origin O
if there exists a strictly positive and continuous function r, on X, such that
UG) ={PeR" OP = r,(#),0cZX,}. Observe that this function r, only needs to be
continuous. This property allows us to set dy =supiry(0),0eZ,} > 0. For a real
a>0, Bla)= {MGIR”’ 0M<a,} Z(a) = éB(a) ={MeR"*, OM =a} and DU(a)=
{MeR", OM < ar,(8),8 = x/r}. Moreover for & belongmg to L1, (Q\{0}, (), and ¢ such
that 0 < e < (0, 8Q)/d;; the complex function f} (e} is introduced as

fYe)= '[ h(x)dx = f hix)dz. (2-2)
QDU Q, Ute

The set #5(Q) and the transformation fp [, ,; on it are now defined.

=0

Definition 2:2. Given U(0) a domain configuration relatively to 0, #4(Q) is the set
of complex functions A belonging to L] ,(Q\{0}, C} and such that f}'(¢) is of the first
kind (for 0 < ¢ < d{0,0Q)/d;). Moreover, for he #5{Q)

pr‘Uh( s g =so| | arda] 239)

QDU

ProrosiTION 2:3. For reals ¢ and d with 0 <c < d, jeN and aeC

Jd x*logl xdax = Pl{d)— Pi(c), (2-4)

F+1 J —_ i—k 1
with PLt)= log (t), else Pi(t) =t 3] =y

- j+ 1 : owlogk(” (25)
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Consider the set of specific pseudofunctions &, = {s¢ ;; xeC, Re(a) € —n,jeN, and
aeLl(Z,, C)};. Observe that &, contains the zero function on Q. Proposition 23 easily
leads to the following theorem:.

THeEOREM 2-4. For U(0) a domain configuration with respect to O, if s €&, then
85 ,€£5(Q) and for any real 0 < 9 < d(0,0Q)/d,

fpf s:,j(x)dx:fp[f s:.j(x)dx]
Q.U Q, Ule)

=-[ 85 5(x) dx-i-j
AXDPUG) £

with s, =114 a=—mn; else s, =0.

_, Jog""ry(0))

W0) [P s0r(60) =, g,

(2:6}

't

Proof. Clearly, for 0 < e < d(0,0Q)/dy, f(e) = [qpue & ;(€)dx and consequently
fpJa vt (x)dz no depend on 4. We choose reals ¢ and 5 with

0 <e<n<d(0,00)/dy.
Then f(e) may be rewritten as

fle) = j 5% ;(x) dx-{-j 85 4(x) dex. (2-7)
DUy DUmNDULe)

Use of Proposition 2-3 ensures for the last integral on the right-hand side of (2:7)

w7 (8
gle) = j § (x)dex = J‘ a(6) [J T peney log/ rdr] do,
DU\DU () £

ery(6)
= f a(6) [Pi+n—1(7?rv(6))—Pg:+n—1(€'fU(6))] do,. (2-8)
b

"

"

From Definition 2-1 and relations (2-3} it follows that the complex functions g(e) and

Pl [lery(8)] are of the first kind. If o = —n, P! _ [ery(8)] = log? M er,(6)/(j+1)

@
and by means of the usual Newton binomial formula one gets either

SPIP s (ery(0))] = log M [ry BN/ (j+1)
or else one obtains fp[Pl ., _(ery(8))] = 0.

Usually a symmetric neighbourhood of O is removed from Q, ie. one chooses
DU(e) = B(e) which corresponds to r;{(f) =1 in the above theorem. Regarding

Theorem 2-4 it is also worth outlining the influence of the domain configuration U.

Proposirion 2:5. If (T(0), V(D)) is @ pair of domains configuration with respect to O
and 83 ;€ &, then

f?ﬂj 85 (@) de = fp J
QU

Q, ¥

88 {x)dx+ sm'[

Z

V(6
a{f) [f 7 log’ rdr] do,. (2'9)

{6
Proof. For given domain configurations with respect to O, U(0O) and V(0), if
0 < e < Min{d(0,0Q)/dy,d(0,0Q)/d,}
we consider the function

h{e) :=J. 85 ) dx—f 84 () de.
O\DT(&

mnvie)
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Use of Newton’s binomial formula with notation CF := jl/[k!(j— &)!] for j, k positive
integers (k < j) and change of variable r = ¢f makes it possible to put A(e) into the
following form

eryp(0)
hle) = f 85 (x)dx = J a(8) [f ra+n=l]gg! rdr] do,
DV (e\DU(e) b erplt)

n

j g

= é Oj‘{f a(ﬁ)[fV( )t""'”‘l logj"“tdt] dcrn} et logke. (2-10)
k=0 T, ry(t)

Thus, k(e) is of the first kind and fp[h(e)] =0 unless « = —= and £ =0 which

circumstances provide the additional term in (2-9).

We now consider the question of the change of variables x = T(x"), where the
transformation 7' is both differentiable and one-to-one with 2" = T-(x), 0’ = T-Y().
Since differentiable 7" is also continuous on Q and consequently Q" = T7(Q} is an
open subset of R®. Recall that if J.(2") denotes the Jacobian at point z’ of the
transformation T, dx = |[Jp(z")|dx’. Moreover {for instance see Rudin[7], for an
application of the usual change of variables), the transformation 77! is assumed
to be continuous on Q. If U/(0) is a domain configuration with respect to O and
he #5(Q), the problem consists in finding the Iink between the two integrals
I'=fp[o yh(x)de and I' = fp [ 1y yeon ko T(x) | Jp(x') | dx’, where U(0’) means the
domain conﬁgura,tlon with respect to O defined by

U0)={PeR",O'P=r,(6),0 =[xp—2,]/O'P}.
The answer is not trivial and deeply depends not only on functions 2 and 7 but
also on the domain configuration U(0). One may consult for partial results Di
Pasquantonio and Lavoine([1] or Schwartz[8] (those authors dealing only with the
case U = X)) and Jones[5].
Clearly, if T reduces to a shift, I’ = 1. Consequently the study is by now restricted
to transformations 7" belonging to the set
P(0,Q)={T; T is one-to-one and differentiable on O
with T(0) = O, T is continuous on " == T (Q)}.
Since 7! is one to one, for subsets 4 and B of R, if 4 = B then
THB\A) = T (B\T(4).

Thus, for 0 <e<d(0,0Q)/dy,, TeP(0,Q) and he FE(Q), application of the usual
change of Variab]es (Rudin[7]) ensures that if H(z'):=hoT(x")|Jp(z')] then

HeLl, (T"HQN\{0}, C). Moreover, it makes it possible to write
f¥e)= f A(x)dx = J hoT(x") |Jplx')| de’ +j h{x) da.
N\DU(e) T_I(Q)\DU(E) T(DU (DU}

{2:11)

As soon as f} is of the first kind, equality (2:11) shows that the function H belongs
to FZ(T7HQ)) if and only if the new function gf 4(¢) = {5 prinpUe #{%) dz is also of
the first kind. If He S E(T71Q}) the corrective term is thereafter given by

fo j h(m)dm—fpf ho T ) @)l de! = flgl (@) (212)
Q, U T, U
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Hence the work reduces to the study of the function g7 ». In this paper, this is
achieved for k€&, and for specific changes of variables 7" belonging to (0, Q). For
hedy and T a given element of 2(0,Q), observe that if there exists U(0) a domain
configuration with respect to O such that He #Y(T"1(Q)) then application of
Proposition 2-5 and equality (2-12} yield for any domain configuration V(0) with
respect to O

pr s:,,-(x)dx=fpj 0 T (&) ple? )| d
Qv YW, U

feati/] ]
a(6) [f lo‘tf]rdr] do,.
Sy i)

+/plgs r(€)]+ Saf

THEOREM 2-6. Given U(0) a domain configuration with respect to O, if T is a linear
and one-lo-one transformation with T(0) = O then Te P(0,Q) and for 2 €&,

fpj . Sz 5(x) dx =f10f

{6} F
8% yo T{a") [Jp{x)| d:c’+smj a{f) [ﬁ log Tdr] do,,
o, U Ta rpey
(2-13)

where V(0) is the domain configuration defined by V(0) = T[U(0)].

Proof. Such a change of variables belongs to 2(0,Q) and satisfies: |J,(z")] is
constant. Moreover, if xe R", T(ex) = ¢T'(x) so that if

V(0) = T[U(0)], TIDU(€)] = DV(e} for 0 < € < d{0, 8Q)/dy,.

Thus, the function g, becomes

ery (8)
g¥ r(e) = f 82 (w)dw = J a(6) [J. r"‘*”‘llogjrdfr] do,. (214)
DV(enDUAe) Z

n erglt

As a consequence, g7, is of the first kind and the value of fp[g¥ p(¢)] (which one is
already known, see Proposition 2-5) ensures the result.

A useful application is the change of scale x = Ax” with A real and non-zero. If
A >0, r,(6) = Ary(6), and for Q= {A7z; x€Q}, Theorem 2'6 provides the following
result for I, (a):=fp [, ;5% (@) dx

85 {Ax) A" da’ + s, f

Zn

A7 1(6) )
a(f) [j rtlog’ rdr] do,

TU(B)

Ia.,j(a) =fPJ ’

Q.U

J
=S 1ogf-m{m+" pr 52 () da’ + 5,282
Qv

= | a(f)logFr B)dc)'n}.
= ‘?+1_ka” () g U(

TueorEM 2-7. Consider U(0O) a domain configuration with respect to O and s2 ;€6,.
If [a] denotes the integer part of the real a, it is possible to define for ie N, the sets of
Sfunctions

Dy ={d{r.0); ¢ is a real, positive, one-to-one and differentiable
Junction on [0,d(0, Q)] x Z,,, a,(0)
=[¥p(r, 0)/0r%) (0, ) exists for 0 < k < 241 +[— (1 +14) (Re(x) +n)]
with a,(6) = 0 for 0 < k < iand a,,(6) > 0}.
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Assume that TeP(0,Q) is a change of variables such that xe(r,8) = T(x') = T(r', )
and that there exists pe D7 with v = @(r', 0), then

fpf # (w)de = fp f @ o T(@) gl dx' +EV (), (215)
QU ey, U7

where E7(s% ;) = 0 except if there exists a positive integer | with « = —n—1f(i+1), and
in these circumstances

Eiv(sg,j) = 3 1 acg:p [ng (‘%H(&)} [ai+2(g)]ml [M]mq do,,

oy Mgl .omy G+ G+2) (g+i+1)
m+1
H (X) Z CP 2 Plin-1.e Z O} Tlogh ™41, (0)] X**" log? X,
=0 k=0 qg=0

where the sum 2 Faa, and coefficients pT. ., . are defined below.
Proof. First, a useful lemma. is recalled.

Lemma 2:7. For functions f and ¢ admitting derivatives wp to order n respectively in
a netghbourhood V of x and a neighbourhood W= f(V) of fixx), then g o f admits derivatives
up fo order n in V and

7! (1) my f(Q)(.’L‘) g
—— g 2:16
where fO =d%/(dz') for ieN and the sum Z Fas,n Means a sum over all
families (m;);, . o of positive inlegers such that m,+2m,+...+qm,=n and
p=my+mi . +mg

Result (2-16) is known as the Faa de Bruno formula and the reader is referred to
Gradshteyn and Ryzhik{4]. For g,(t) = ¢{t, 8)/t, if ¢t > 0, the use both of change of
variables r = ery(f)v and of the Newton binomial formula ensures for g7 ,(¢) the
following form

gs T(E Z Cfmf H)Ea-i-n (6)a+n[f

1

Foler ()

vt log™y dv] log" ™ (ery(8)) do,,.

217
For t = er;(8), Proposition 2-3 allows us to write ( )

@4(t)
Pry = [ ot vds = PR 01— PRI, @19
1

where it is recalled (see equalities (2-5)) that PF(f)= 2l it log®t with
Pl =0 for 0Sk<m;p™ pyy=1/(m+1) and if f+—1;p7,.,=0 and for
0 <k <m;pfy=(— 1" m!/[RIF+ 1)1+ k],

Clearly, if d(e) .= P,_1[1] 5 a(6) €= " ™(6) log'™[ery(0)] dor,,, the function d2F is
of the first kind and for o with Re(a)+n < 0, fp[d™(e)] = 0 (since P™[1] = 0}). The
first contribution on the right-hand side of (2-18) associated to log/ ™{t) (see 2:17) is
treated by introducing the function Wj(t):=2i, o O PT L _ [ga(1)] 1=+ log?~™(1).
Consider I , =2 +i+[— (1 —14)(Re(a} +n)]. The assumptlons on function ¢ ensure in
a neighbourhood of zero (on the right) the form below for g,(t)

L, —i-1

g5t} = t‘{ Y G (O) 8/ (k+it1)! +fl="'“'"0(t)} = thy(t), (219)

k=0
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with %, > 0. Thus, definition of P7,, () allows us to cast Wy(t) into the form:

7 m+1
Wty = 2 CF 2 plvn-1k E Cfatmeglerm U Jogh=m+E=a(s) [hy(t)]*"" log?[hy(¢)].
m=Q k=0 g=0

(2-20)

Consider, for X > 0, the function A(X):=X*"1og?X. An expansion of A[kt)] is
sought for small values of t up to order {, ;—i—1. Since hyt) = X(t) +t%+""o(f) with
X(t) = Zleui5 ™™ 101 (0) £/ (ke + i+ 1)!, this development is supplied by the expansion
up to this order I, ;—i—1 of the function A[X(¢)]. Use of the Faa de Bruno formula
gives the derivatives dPA[X(0)]/dt? and ensures

Lo 71 gp v
Alhg®)] = 2 ﬁ[A(X(O))]%+t5*‘*“‘10(t). (2:21)

Consequently, Wy(er;{#)) is a linear combination terms such as

L1 dr [6?0(6)](a+n)(i+1)+p
A X O] 2

dyle) = log/ ™% er,(0)]

p=0
+erg(m Dt ofer (0], (2:22)

Since [, ;—i—1+{1+1%)[Re(a)+n] > 0, d,, is of the first kind and fp[d 4{¢)] = 0, unless
there exists a positive integer [ with 0 <1<, ,—i—2 = [~ (1+:)(Re{a) +n)] such
that (+#n)(1+d}+1 =10, ie. a = —n—1I/(1+1). In such a case, Definition 2-1 yieids

F—m-+ik— dl
Soldq(e)] = 28 ”q[" o)1 A O] (2:23)

Gathering the contributions associated to different values of positive integers m, k
and g for Wyer,(8)), it is useful to introduce for X > 0 the function

m+1
HY (X 2 O N AN 2 C3iF 9 logmth—e[r ()] X** " log? X, (224)
M= k=0 g=0

Application of the Faa de Bruno formula with this notation leads for
a=—n—1/{1+1), le N* to the additional term

o\ — 1 d* @i ()Y ]| ool O) ™ Cgiiri{0) |2
Eg(s“'j)—pizmll...mq!_[ (B)dxr[H ((i+1)!)][(@'+2)z] “'[(q+i+1)!] 4

(2-25)

Some remarks on Theorem 2-7 are in order.

The result depends on the domain configuration U/(0) and this dependence is
contained in the function HY,. When U(0) =2(1) ={PeR",OP =1}, H] ;= P],,,
(obtained with m = j, and ¢ = k in equality (2-24)).

If « = —n, then [ = 0 and the extra term is
i mil im+1_qj' a (6)
Ef(s%,, 2 X j a(@) log/ 19y lo Q[ i1 ]dcr
(0s) = 2 2 GGt 1=y )y, O8O )

(2:26)
Usually 4 = 0, i.e. the particular « are & = —n—I{, 1eN. In this case

o /(X)) = 2o O logh ™ [ry(0)] PT,_y(X)
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and
. ! @ a0 [aal®]"
Bty = 3 o | e gz mon |2 [fe0 ar,

(2-27)

For instance, if x = Axz" with A > 0, then @(r',6) = A with a,(0) = A >0 and
a,(6) = 0 for k > 2. Thus, equality (2-27) leads to E§{s? ;) = 0fora =—n—1[,I 2 1. If
a = —n, (2:26) is rewritten with ¢ = 0 as

K m+1
EY(st, )= % Cp l°g+ 1"” a(6) log! ™ r,,(6) daﬂ], (228)
mm0 i

which is relevant to previous result.

Consider 7T'e 2(0,Q) which is characterized by two functions B and ® with
Tley=T@"8)=2=(r,0) = (R(r',8),0(,8)). Whenever it is possible to find e N,
aeC, Re(a) € —n and ¢geP? such that r = R(r',6) = ¢(r', 0(+',&)), Theorem 2-7
applies to change of variables T for the pseudofunction s7 ;. Note that ¢ is assumed
to possess derivatives at r = 0% up to a specific order. The proposition below is
concerned with an example of function ¢ belonging to none of the sets 2.

Prorosrtion 29. For U(0) a domain configuration with respect to O and s3 €&, if
TeP{0,Q) is such that there exist a real y > 0 and a real and differentiable function
J0) > 0 with T(x') =T(r',6) =z = (r,0) = (+"f(0), 8) then

LA [ogd
o s geas=go | sf:,,-[T(x’n|JT(w')|dx'+saf o [ | as,
QU QU I, r(f) r

(2:29)
Proof. Here the function g¥ ;. is written as

e+ (6) F(6)
gy r(€) :=j 8% 4(x)da = j a(f) [j patn-l log*’rdr] da,. (2:30)
TDUI\DULe) Zn )
Hence, g7 = [z a(0){P.,— l[eVr“f, VA0 — P, lery(0)]}do,. Definition of the
function P4 ,,_, shows that g¥ 5. is of the first kind and leads to the announced extra
term.

3. Associated Fubini's theorem

For £ given, I, denotes its characteristic function and, for any real p > 1, the set
&% is defined as €3 :={sf;;aeC,Re(a) < —n,jeN,acL}Z,, C)nLP(Z,,O)}. Since
8z, 18 not measurable on Q, application of the usual Fubini’s theorem to the special
integral I ,(a) (see (1-1)) is not legitimate. Hence, it is necessary to derive an
adequate ‘Fubini’s theorem’ and this section studies the extra terms occurring.

First, some useful notation is introduced. For x = (x,, ..., z,) = (r, ) an arbitrary
point of R”, the set of angular coordinates 6:= (,,...,8,_,) is such that 8,€[0, 7] for
lsk<n—-2 6, ,€[0,2n] (if n =2, this reduces to §,_, = 6, €[0, 27]),

X, = rap isinf,,
and for 1 < j < n—1, z; = r[#}} sin 6] cos §;,. Moreover

do, = M7 }[sin 679+ 44,].
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Fig. 1

By now, we set y,(6) = z,/r and the point y = (y,,...,¥,) belongs to Z,. For
ie{l,...,n},
the subsets £} ; and X , of £, obey the definition
Tni == Yn) €25y, 2 0

and X, ;i ={y =(,....¥,)€Z,; —y, = O}

An important lemma is stated below,

LemMa 31. For ie{l, ... ,n} and reals p,u,t withp > 1,t >0, p > 0 if s ,€ £F and
for 0 <e<p/t;Af(p.te)={MeR" te<r < pand 0 < +x; < te} then

JEf VLl
fo [j 8% {z) dx] =5, > i 1’2 llogd t a{0) log" |y, (B do,. (31)
Af G the) k=0 + ot

.0

Proof. Observe that the result does not depend on u. For the given integer
te{l,...,n}, a new set of angular coordinates &:=(#,,6,,...,0, ,) is chosen such
that if x = (x;,...,x,) then z;, = rcos 8, with 8,€[0, (1+4,,) 7] (where & denotes the
Kroneker delta) and do, = [sin #*~2]df,do,,_, with da,_., = F(6,,...,68,_,)[1r21d6,
for n > 2; else do,:=1. The derivation is achieved for the set Af(u,t €)= Ae)
(the case of A7 (u,¢,¢) is left to the reader). For 0 < ¢ < u/t, the question consists
both in showing that the function g(e):=[, % (x)dx is of the first kind and
in calculating fp[g,(e})]. As illustrated by Fig. 1 above, the domain Ae) is
shared into the two subsets Z(¢) ={MecR"*;0 < cosf, <te/u and fe <7 < u} and
Dyle) ={MecR" te/u < cosf, <1 and te < r < te/cosd,}.

This division yields

s
g.le) = j a(f) [ J =t ol r dr] do,
0cosfyiefn te
e/cos 0, _
+ J a(f) { f r* oghr dr] do,
cosfy=te/u te
€/C088,
= J a(B)[f r"‘+”‘llongdr] do,

0cosd;€l te

#
+J a(9) [J rael]og! rdr] do,. (32)
Ocost;<te/u te/cos8;
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Note A(e), the first contribution on the right-hand side of equality (3-2). Taking
into account successively a change of variable r = efu, Proposition 2-3 and the
definition of functions P'f,,, one obtains

Ale) = E Cjlte]**" log/*[te] { - 1[1]J.

k=0

k+1

#3 phowan | al®)leos6 M 0g"(1/c0s0)do, | (3)
0gcosf; <1

m={
Asfor z > 0 and aeC, |2% = 2@ and do, = sin 87" 2df,ds,,_,, for any real ¢ > 0 if

Di, = [y < coss, <1 1[€08 6,17 log™[1 /cos #; )]0 de,,
then

mie
Di < [ J [cos 8,794 Be@+™) [lge [1 fcos 8,]|™4 [sin 4,]* 2 dﬁi] [ J do’n_l] . (34)
o

p¥

n—1

Since ¢ > 0 and Re(a)+n < 0, —g{Re(a)+n)+1 > 0 and it is easy to show that D9,
is bounded. Assumption aeL?(Z,,C), choice of ¢ such that 1/p+1/¢=1 and
application of Holder’s inequality prove that

J a(0) [cos 6,17 log™[1/cos §,] do

0gcost; <1

exists. Hence equality (3-3) ensures that the function 4 is of the first kind and
application of Definition 2-1 easily leads {since P%,[1] = 0) to

I CFlogitt

fold(e)] = s, EM )

a({d) log"*'[1/cos 8, do,,. (3:5)
.
3
The second integral on the right-hand side of (3-2) is

hi(e) = Pl 4] a(6) dor, — f a(6) PL,_te/c0s 0,]d
05 costd; <te/u scosd;stelp

(36)
The first contribution tends to zero with €. The second one is

i+l ) te x+ T
—= 2 e | w0 5| ogttie/eos0) iz, @)
=0 Aot <te/u cos 6;

For ¢ > 0, and E¢ = foscosﬂf
vield

f2 te q{Re(x)+n)
Bl < [f [ ] [log [te/cos 8,]1%9|sin 8,2 dé‘i] [J dan_l].
& Zn-—]

recos [fefp] cos Bi

<ol 6/ €08 8,14 " log*[te/cos §,]|%da,, above arguments

(3-8)

Change of variable cos @, = tev in the integration bearing on 6, in the last inequality

leads to
I
Ei < [tef p AR m)lo0 |k B, (€) dv] [J dcr,,_l] , (39)
1} z

n—1
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with B, =1, if n > 3, else H,(e) =[1—¢%*/p?|"/*. Moreover —g(Re(a)+n)+1 > 0.
Consequently, there exists a real B, > 0 such that for ¢ small enough Ef < tel,.
Application of Hilder's inequality for ¢ such that 1/p+1/¢ = 1 shows that

te e+ 72
alf log*[te/cos 6,1 do
J.Og_cosﬁts.zs,’,u ( )I:cosﬁi] g/ 140,

< el"q[tRk]Uq [ j

=

i/p

la{FY® do‘n] .

(3-10)

Since g > 1, (3-7) ensures that lim__,w,(¢) = 0. Thus the function g, is of the first kind
and fp|g,(€)] = fp[4(¢)] which is given by (3-5).

Consider two reals b and ¢ with b < 0 < ¢ and a function Ae L] (16, ¢[\{0}, C). Tt is
also convenient for V= (v_,v,) with v_ > 0, v, > 0 to introduce the integration in the
finite part sense of Hadamard of the function A on the open set b, ¢[ with respect to
V. More precisely, if the function f}(¢) = [j'b_w'+f; 1h{x) dx for

0 <e<Min(c/v,, —=b/v_))

is of the first kind then fp [}, . »R{x)dx = fp[f}(c)]. Observe that whenever
heL'(1b,cf, C), fp f1p, o, v M) dx = [3, v k() dix, for any V.

TreorREM 3-2. Given Ul0) a domain configuration with respect to O, V= (v_,v.) ard
te{l,....n}, if 8 ;€ 8L (with p > 1) then
pr 85 j(x)dx =fpf I:J () 8% 4(x) T1 dmk] da;+F7 Y (s2 ),
U R\[—ev_, ev, 3L J R?! ki

(3:11)
where the additional * Fubini’ term F7-7 (s2 ;) is

+ Y - J
FU-V(st ) = S"‘U a(ﬁ)[r log Tdr] da’n+f a(t?i)“m loﬂda’} de,
Ik, ol 7 b e ¥

i

j Oi_c(_l)lcﬂ )
+ 3 ST o) [ a0y 1ogoas,
E=0 k+1 b
+10g""‘(vk)J a(ﬁ)log"”lyi(ﬁ)ldan}}. (3:12)
Ina
Proof. If V= (v_,v,) we set dy=DMin(v7',¢7"). For given integer ie{l,...,n}

and 0 < ¢ < dy d(0,0Q) consider Qyle)={x = (x,,...,z,)EQ; 2, > v, or x; < —ev_}
and R_:=R\[—ev_, ev.]. Observe that the origin O does not belong to Q;(¢) and that
g o (x} = Hy(x) g (). Since s ;€ Ly, (Q\{0}, ), the integral

fliey= J.Qm 8% {x)dx = Jen r'[ﬂ‘(e)(x) se 4(x)dx

exists and consequently the usual Fubini’s theorem applies to it. Hence the function

f:’(e) = JR[J‘W‘" Hﬂi(sj () s () dx}

=f ” Hn(x)s:‘j(x)ndxk]dxi, (313)
R\[-ev_,e 1L JR™L

ki
PoOssesses a sense.
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B(x)

DU(e)

| |
Fig. 2

Given U(0) a domain configuration relative to O, reals 4 and ¢ are chosen such that
0<p<d0,0Q) and 0<e<Min(u/dy,pudy). For B(u)={MeR*;0M =r < u},
B(p) = Q and [Q\B()](e) :={x = (2,,...,2,) e Q\B(u),x; > ev, or x, < —ev}. This
notation and Fig. 2 above yield

frie)= J 82 (x)dx = J 8% {x) dx+j & dx)dz, (3-14)
e Qo) 1 B B (0

Joe)= J 5% fxydx = J 8% (x)dx +J % (z)dz. (3-15)
DU (&) B(u\DU{s QB ()

Since s% ;e Li, (Q\{0}, (), as € tends to zero

Fle) :=J. 52 4(x) da:—J sy s(x)dx
B () O\B(g)

tends to zero. Moreover, inspection of Fig. 2 leads to

K(e) :=f 8g 5(x) d:c—J. 82 [x)dx
BunDU(e) Q) N B ()

= f a(6) [ Jm "1 oglr d?] do, +J s {x)dx
h.e

er(6) A (v, €}

ev_

+f a(B)[j prtn-l logjfrdr] dO’.n-l-J 3% {xydxe.  (3:16)
ot ergr(6) A7, €}

Consequently use of Theorem 24, Lemma 32 and equalities (3-14), (3-15) ensures

that K(e) = fU{e)—f7 (e)+ Fle) = I(e) with lim__,F(e} = 0 and 7 function of the first

kind. Thus ,f&—f¥ is of the first kind and previous results provide the formula {3-12).
Usually v_ =», = v > 0. In such a case

F'y'v('g:,j) = Saf

b

i fﬂ+1
a(ﬁ)[f log’ 2T + E % (k log/~*(v) log"*'|y,(6) ]}
n TU(‘G) +

¥ k=0

(3-17)
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Moreover, if v = 1, this term reduces to

—— | a@)[logry(6)+(— 1) log™ |y, ()] do,. (3:18)
J+1)s,
Application of Theorem 3-2 leads to:

ProrposiTiON 3-3. Consider integers © and 1 belonging to {1,...,n} with i £ and
(v, 0%, 0h, vl ) e RY¥S. Then, if &2 ;€ &5 (with p > 1)

fp IIQ(-T) S, j(x) H dxk d.’Ei = D'b‘_%, vs-v‘v'!_.?)[( a j)
R\[ﬂw1 evi._] Rt ' P i, +{& i
fFJ : 1 ! J’ ][Q(-’L') Sa,j(x) H dxk dxz, (319)
R\f—ev, euy] =1 . |

i a(d) a(6) ;
D:;_,v+,vt_,vﬂ_ =—3 {j ( —log/(viVda +J —lo 441 Ci dO’n
: . Gl WH gt

_ a(6) 1 B sy C¥(— 1)F
L+J+llgj J hs lgj i +l§0 k+1

x [logf-’f(vi) f a(6) log"*y(0)] dor, +log! (v )
E+

n,t

| a(6)log* Iy 0) d,—log™*0h) | a(0)log?™
Lt

E;.z
X |y,(6)| do,, —log’ *(v )J &) log" |y, (6 |da’n]}. (3-20)

The case (v, 0%, v, v}) = (1,1,1,1) is often encountered. (3-19) leads to

1Y«

Dyt (se j)=(;.-—EU a(9)[IOg’“Iyi(ﬁ)l—log”’llyz(f’)l]d%}- (3-21)
' ’ i+1 I,

4. Dervvation with respect to the isolated singularity; applications

Consider ¥ = (y,, ..., ¥,), a point belonging to the open set Q. If x = (x,, ..., x,) e R*,
1t is understood that xty=(x,xy,,...,x,Ly,). By now, U, designates a domain
configuration with respect to y and defined by the function r, i.e.

U, ={zeR" 2~y = (ry(0),6) where 6:=(z—y)/lx—yl}.
Obviously for ¢ > 0,
DU, (¢) ={xeR™;x—y = (r,0), and r <ery{0)}.

Moreover for any integer 1€{l,...,n}, e; denotes the usual unit vector along the
direction ¢ and &, g(x) == dg(x)/ 69:

ProrosiTION 41, Consider y = (yy,...,4,)€Q, U, a domain configuration with
respect to y, an infeger i€{l,...,n} and s§ (X)=a(f)r*log’r (for X = (r,8)) with
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aeC, jeN and such that 0,55 ;(X) exists for X + 0. The function I(y) is defined by
y)=fplou, st lz—y)de. Then ifa+1—n

ollyy _ @ o g _ 0 .
ayi - a_y,i[fp J.Q' Uyscx,j(x y) dx] _fp J;] v, 6y [ &, J(x y)] dﬂ’: (4 1)
else T gy f % (55 Sz —y)]de—8, U a1 daﬂ], (42)

where & denotes Kronecker Delta, x—y = (r,6) and B, ={zeR": z—y = (1,0)}.
Proof. Note that if Re(a) > —n, I(y) turns out to be, for any U, a usual integral
= [o8% (x—y)dx. For ie{l, ..., n} and real % such that 0 <k < d(y, 0Q), the set
O, ={z—he,=(z,, ..., 2, 1. h s Eypts e T )i & = {2y, ..., 0, }EQ}  1s  introduced.
Observe that €2}, is open and chmce of & ensure ye€);,. Change of variable x = "4 ke,
(always valid without any corrective term since it reduces to a shift) allows us to
write

Iy +he,) fpf 88 fx—y—he)dx = fpj sy (2 —y)da
O,u

o, Uy,

=fpj s% (2’ —y) d:c’—i—J 82 (" —y) dx’—f % (" ~y)da’.
0,U, Qp\(QL N Q\L(SE, N §2

(4:3)
In fact the two last integrals on the right-hand side of equality (4:3) are usual
integrations (since y€Q,, it belongs neither to Q; \(Q N Q}, nor to Q\(Q’ nQ)). The
first integral on the right-hand side of (43} is I(y) = fp [, v, S« —y)dz’. The
assumption of the existence of 0,(s? ;) implies that the function s ¢ {x) is continuous
with respect to x,. Application of the usual mean theorem yields

I iy, Lyt he) = 1y) —J 0 (e—y)n.e,dS, (44)
9y, h e

where n is the unit vector on §Q directed outwards from Q. Note that the result
depends on U,. For ¢ > 0, consider B, (¢) ={xeR"; if x—y = (r,6), then r <¢}. As
0,55 ;(x—y)] exists in Q\B,(¢), application of Green’s theorem ensures

’ y+hes

o] i a-gde- | s e—yin.eads, (#5)
0Y; OBy le) ) )

with n directed outwards from B, (¢}, i.e. n = ¢,. The boundary integral occurring in
equality (4:5) is easy to transform. Indeed, use of spherical polar coordinates (r, &) of
origin ¥ (that is to say x—y = (r, 4)) leads to

die) = j 8% (x—y)n.edS = e+t logJe[J a(f) udo—n]. {4-6)
3B,,(€) Iy 4
Thereafter d is of the first kind and fp{d(e)] = 0, unless & = 1 —n and j = 0. Moreover,
combination of equalities (4-4), (4:5) and (4'6) proves that the function ¢ such that
g(e) = [ B, Oy 82 ;(x— y)] dx is of the first kind too. Consequently

29— f o= dz—gole-Hogel| |

Zn

a(6) @dan]. (47)
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Here (s ;(x—y)]/ 0y, = —&[s8 ;(X)]/0X,, if X =x—y = (r,0). The choice of a set of
spherical polar coordinates (7, #;) such that X; = r cos §, for the given integer z, yields
dlss (X))/0X; = cos@; x 8s% ;/Or—r~'sin 6, x 8s% ,/06,, i.e.

i[53 o] = r** [oca(@) cos B, —sin 8, g 7] ] {48)

0,52 )] = r"'log'r [oca( ) cos B, —sin 6, gf) ] +ja(f)ycos G, r* togtr, for j=1
Hence, if @ &= 1 —n, Proposition 2-5 gives (49)
|, Gt ie=p | i eyt (#10)

When & = 1—n, {(4-8), (49) and Proposition 2:5 allow us to give the link between the
two integrals above.

To conclude, the range of applications of this paper is outlined and some examples
are given. At first some definitions and usual notation are introduced. For
x={x;, ..., )eR*and = (f,,...,5,)eN" it is understood that

BI= Byt oot B fim ol Bl o = et

and DF = 08 /0l ... 0 falin = DF/0xfr ... Qacfin. Tf Q Is an open and bounded subset of
R", for Ne N a complex function ¢ belongs to the set 2%(Q) if and only if ¢ admits
derivatives up to order N+ 1 in Q with those of order N+ 1 bounded in Q U Q (which
for instance is satisfied as soon as those derivatives of order N+ 1 are continuous on
the compact QU3Q). Moreover, @5, and R}, respectively designate its Taylor
polynomial expansion of order N at point ¥ of & and the associated remainder. These
functions obey the well-known relations

N 1
Q) = I ZDy) =y, (4-11)
181=0
Ry (@)= () — QY ()
(z—y¥ *
=(N+1) I J(1—3)NDﬂ¢[y+t(x—y)]dt. (4-12)
|fl=N+1 B 0

Observe that if e 2"(Q) then RY (2)/[lx—y{"*" is bounded on Q. For £ an open
subset of R™ containing y, the set of pseudofunctions (%) is defined below.

Definition 4-2. A complex function % belongs to the set (%} if and only if there
exist Q < & an open, bounded and simply connected neighbourhood of i such that
he LNZ\Q, C) and also a positive integer 7, a family of positive integers {(J(¢)); . 1
a complex family (a;), a family of complex functions (a})}, a complex function R, ()
such that in spherical polar coordinates (r, 8) of origin ¥

I J()

MMy = hir,6) = 3 X ali(f)rlog’r+R,(x) ae. in,
=0 j=0
R,eLMQ,C); V(i.j)alkeL(E,,0),
Re(a;) < Re(a;_y) < ... < Re(a)) < Re(ay)=—n and 3(m, k), a), + Oy,

(4:13)

where @, is the zero function on X,
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It is understood that Q, 1, (J(4)), (a;) depend on the function % which is singular at
point y (since there exists (m, k), a,, + ©;_and Re(a,,) < —n}. Definition 42 ensures
for any element % of 24(%) and for any domain configuration U, with respect to y

I g
fpj ha)de =3, prf “!J (x )dx-f-j Rh(x)dx+f hix)dz, (4-14)
2,U, I=0 i Q,U, o] Z¥]
Equality (4-14) defines the quantity I = fp [, v, h(x)dx and results (as soon as the
required assumptions bearing on functions af; are satisfied) of Sections 2 and 3
provide the eventual corrective terms occurrmg when attempting on I the studied
operations: change of domain configuration U,, change of variables, application of
‘Fubini’s theorem .
Actually, one often deals with integral operators written as

T(y)=fp LZ . K(x—y) p(x)dz, (4-15)

where & is an open subset of R* containing y, U, is a domain configuration with
respect to y, K(X) is a kernel singular at X = O, ¢ a smooth enough and unknown
density and there exists  an open, bounded and simply connected neighbourhood
of ¥ such that k(x) = K(x—y) ¢(x) e LY D\, ). When there exist (a,7,N)e (' x N?
with Re(a) < —n,N'=[—Re(a)—n] and aeL'(Z,, () such that K(X):=s2 ,(X) and
¢e2V(Q), then the above-mentioned complex function  belongs to <£,(2). More
precisely, if x = y+(r, f) € Q, and 4,(6) = (x—y)*/r# then

[—Re{x)—-nl )8
he) = o2 (x—y) $(a) = g

1A=0 :

where the function R}, belonging to LY(Q,C) obeys (with N:=[—Re(a)—n]) the
relation

a(0) 4,6)r*"Alogl r+ RY (x), (4:18)

1
R} (x)=(N+1) X [M (1 —t)NDﬂ¢(y+t(x—y))dt] A logir.
A=A +1 A 0
(4-17)
Moreover, if for i€{L,...,n} the function ds? ,(X)/éX, exists at X # 0 (and is given
by equalities (4:8), (49)) and if H(x)= ¢(x)[s2 (x—y)]/dy,e LMD\Q,C) and for
N =[—Re(x)—n], p€DV3(Q) then

[-Re(a}—n)+1 Dﬂ¢ (y)

Tiy) = 7 fpf a(B) 44(6) rPlogl rdx
18=0 ! 0.U,

JRN“( )dx+J 82 {x—y) p(x)dz, (4:18)
20

with A(x) =57 (x—y) $(x), Ry 3 € LY(Q, C), ¢ 27*}Q) and equality (4-17) involving
that S[RJT!)/0y,eL'(Q, ). Derivation of (4 18) wn;h respect to y, with use of
Proposition 4'1 shows that é7(y)/0y, = fr ], v, 0185 {2 — )1/ 0y $(x) dx, except if
there exists keN, a =1—n—Fk. In such a case (see Proposition 4-1)

Digly) ;=Y

(4:19)
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Examples. For t€{l,...,n}, if ¢ is a function such that ¢ is Holder continuous at
¥, le. there exists (,B,y)eR¥ with |¢(x)—¢(y)| < Blz—y|” for |x—y| <% and
moreover if ¢ LY (Z\B, (), C) we consider

_ (x— BT (x—y)-e ]
Ty = — AN M
) vpj 2.5, l2— y|n+1¢ a: tﬁl[J@\Byte) |z —y|** () de
=¢(y)vpf €08 (61 4, +f‘ & g (2)— B(y)] d, (4-20)
I ooy

where z =y+(r,8) and z; = y,+rcos, with an appropriated choice of angular
coordinates (6,,...,6, ;). The concept of principal value of an integral (vp[) is
encountered when dealing with integral equations (the reader is, for instance,
referred to Mikhlin and Prossdorf[6]). The following results are obtained

(i) The change of variables z = T(2') such that Vke{l,...,n};z, = A, z, with
[Iz_ A, + 0 is treated by applying Theorem 2:6 to the first integral on the
right-hand side of (4-20) and V,:=T[B,] is an ellipsoid domain defined by r.(8).
{Its equation is zj/Ai+...+22/A2 =1.) Here a(f)=cosf,eL?Z,,C) for p=1,
«=—=n,7=0 and the additional term is — fﬁn cos 0, logrz(#)do,. For symmetry
reasons this term is zero.

(ii) Forle{l,...,n}, application of Theorem 3-2 to T(y) with »_ = v, = 1 gives no
additional term since [;_cos;logy,(#){do, = 0, and leads to

pegterie=p], ] mn (e 1]
Ydz = II dx, |dx;.
r J’za B, Ja—yI*? !J’|”+1 ¢ fp Ry, L &7 al®) | — g™ ¢ :cl;lz i

(i) Forle{l,...,n}, if there exists Q& Z an open, bounded and simply connected
neighbourhood of ¥ such that ¢ € 2*Q), and

H(x)=¢(x )a[s—n ke —9)]/0y, e L2\, C)

cosé

LLLLp E odly) cos&d

6:::,c o w(O)dx

T(y) = oly) ﬂpf
2,8,

+f Rl (w)da+ J XoY) &y de, (421)
e lz—yl
where A(z)=cos 6, ¢(z)/r", and R}, , is given by (4:17). Application of (419) leads to

2 (x—y).e, ] f 2 [(x—y)-ee}
i da| = O |X=y)e d
6%[”}"{9‘% [z — g™ (xydx|=fp B e d(x) dx

- 6?5 Ty =YX~ U Xy — Yy )
E " p” . do,. (422)
.rc-l E Jz,

For symmetry reasons, the last sum on the right-hand side of (4:22) is zero and
consequently there is no corrective term. If

¢ Z4Q,), H(z)= (x) d[le—y| "]/ 0y, e L 2\Q, )
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and U, is a domain configuration with respect to y, one obtains (with
[z, 4ide, = T(1/2)"/T(1+n/2))

0 P(x) ]__ J ¢ [ p(x) ] I'(1/2)* od(y) i
— de|= — _ .
ayl[prQ,Uylx_yln | =/ Q.Byayz oo —y|" d F(1+n/2} (423)
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