Asymptotic expansion of a general integral

By A. SELLIER
LADHYX, Ecole polytechnique, 91128 Palaiseau Cedex, France

For b € R%, a real function h(z) and also complex pseudo-functions f(z) and K (x,u)
obeying weak assumptions, an asymptotic expansion of the general integral

b
I(\) = fp/o f(@)K[h(x), Az] dz,

is proposed, with respect to the real and large parameter A, where the notation fp
designates an integration in the finite part sense of Hadamard.

1. Introduction

For ¢ > 0,—00 < a < 0 < b < +00 and also a smooth enough complex function f
and a real function A such that h(0) # 0 we consider the following integral:

Wi (e) =/ f(z) dz/ /a2 ¥ E12(a). (1.1)

Such an integral naturally arises in the well-known slender-body theory, in the case
of an axially symmetric flow, both for h =1 (see Tuck 1992) and also for A smooth
enough and related to the area of the cross section (consult Handelsman & Keller
(1967)). Actually the key step of this theory consists in expanding the quantity W, (e)
with respect to the positive and small slenderness parameter €. In this specific case,
Handelsman & Keller (1967) built up the expansion inductively by applying a tedious
method. Instead of W), (), one may also encounter the more general integral,

My(e) = fp / f(2)K [z, ch(z)] da, (12)

where the symbol fp means integration in the finite part sense of Hadamard (see §2).
The new kernel K is a ‘Q pseudo-homogeneous’ pseudo-function with @) an integer
(positive or negative), i.e. it obeys the following pseudo-homogenous property of
order Q:

K(tx,ty) =t9S(t)K(z,y), for (t,2,y) € R™, (1.3)
where S(t) := 1 for t € R* or S(t) := sgn(t) = t/|t| for t € R*. For instance,
the previous integral Wj,(e) is associated with K (z,y) = [2? + y?]~1/2, where Q =
—1,5(t) = sgn(t). The aim of this paper is in part to present a systematic formula
for the asymptotic expansion of M} (€) with respect to the small and strictly positive
parameter ¢, when weak assumptions are made concerning the behaviour of the
complex pseudo-functions f, K and the real function A in the neighbourhood of zero
and at infinity. Guermond (1987) has dealt with the case h = 1 for smooth enough
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2656 A. Sellier

functions f and K. The most general case of an arbitrary function i seems difficult
to tackle; the asymptotic expansion clearly involves the behaviour of f and h near
zero on the right (b > 0) and on the left (a < 0). Thus, here we study a class of
integrals, defined by the following integral:

Ju(€) == fp / f(@)Liz, eh(z)] dz, (1.4)

where b is positive real and, this time, L is a complex and ‘u homogeneous’ kernel,
i.e. it satisfies, for p real, the homogeneous property of order u:

L(tz,ty) =t"L(x,y), for teR}, zeRi, yeR" (1.5)
As a result of equality (1.5),

Jn(e) = e fp /0 F@) L /e, h(z)] dz = e T,(V),

with X := ¢! — 400 and for K(x,u) := L(u,z)

L\ = fp /0 F@) K h(z), \a] da. (1.6)

The objective of the analysis is to obtain the asymptotic expansion of I, () for large
values of the real parameter A. This will be achieved for the more general kernel K
which is not necessarily a ‘u homogeneous’ pseudo-function.

If h(z) = 1, by setting H(z) := K(1,z), this problem reduces to the study of
IL(N)=fp fob f(x)H(Az) dz. For such an integral, different points of view may be
adopted in order to deal with more or less restrictive assumptions on the behaviour
of both complex pseudo-functions f and H near zero and at infinity. The reader
is for instance referred to Bleistein & Handelsman (1975) and Wong (1989) for an
approach based on integration by parts or the notion of the Mellin transform, to
Estrada & Kanwal (1990, 1994) for an elegant distributional approach and to Sellier
(1994, theorem 3) for an alternative method based on the concept of integration in
the finite part sense of Hadamard.

Observe that the choice of a new pseudo-function Kj such that K,(z,u) =
K[h(x),u] allows us to write

L) = fp /0 (@)K (@, Az) da. (1.7)

When both pseudo-functions f(z) and K, (x,u) satisfy specific assumptions, it seems
possible to treat this last form of Iz(\) by applying the results of Sellier (1994,
theorem 1). It is clearly essential to relate the asymptotic expansion of I;(\) to the
particular behaviour of A and K. However, the properties of the pseudo-function
Kp(z,u) are not so easily deduced from those of the function h and of the pseudo-
function K (z,u) despite it is clearly essential to relate the asymptotic expansion of
I1(X) to the specific behaviours of h and of K. This study therefore deals with the
following general integral

b
I(\) = fp/0 f(@)Kh(x), \x] dz. (1.8)

An asymptotic expansion of I(\) for large A is obtained when the pseudo-functions

Proc. R. Soc. Lond. A (1996)



Asymptotic expansion of a general integral 2657

h, f and K fulfil adequate assumptions. This integral is said to be general in the
sense that it includes the following usual cases:

b

L\ = fp / o) HO)de, for f=g, h=1, H{u) = K[L,u;
b

b@)=nggM@%HO@d% for f=1, K(z,u) = g(x)H(u);

b
I;(\) = fp/0 f(@)K(z, \x)dz, for h=uz.

The paper is organized in the following manner. In §2, useful mathematical tools
are presented. A general theorem for the expansion of I(\) is derived in § 3. The cases
of a few ‘u homogeneous’ kernels and also of a more general kernel are investigated
in §4. Many examples are included, indicating the wide range of applications of the
results.

2. Mathematical concepts

Before stating the basic theorem yielding the asymptotic expansion of integral
I()), several useful mathematical tools and results are introduced. More precisely, the
basic concept of integration in the finite part of Hadamard is presented by definitions
9 and 10. This concept not only allows us to give a sense, for real value 0 < b < +o0
and the specific and complex pseudo-function f, to the integral

b
mlﬂmm

but also plays a central role in expanding a class of integrals with respect to a large
parameter A (see Sellier 1994). The other aim of this section is mainly to exhibit
sufficient assumptions for the real function A and complex pseudo-functions F' and
g which yield a good behaviour near zero (on the right) for the complex pseudo-
function f(x) := F(z)g[h(z)]. Consequently, many symbols are introduced in this
section to allow us to present a self-contained study and also to clearly define the
range of applications of the main theorems established in §3 and §4. The symbol C
designates the set of complex numbers and a is a real number.

Definition 1. A complex pseudo-function f belongs to the set D (a,C) if and only
if there exist a complex ay, real values n* > 0 and s* > Re(ay), a complex function
F* bounded in [0,n"], a positive integer J* and also a non-zero and complex family
(f}) such that

Jt
f(x) = |z - a["‘f{z fi log’ |z — a|} +lz—af" Ft(z—a|), ae in Ja,a+n'].
7j=0
(2.1)
To each element f of Dy (a,C) is associated the real S} (f) := Re(ay).

Definition 2. For any real r, D (a,C) is the set of complex pseudo-functions f
such that there exist real values n* > 0 and st > 7, a complex function F; bounded
in [0,7%], a positive integer I, a family of positive integers (J*(¢)) and also two
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complex families ("), (f;) such that

It )
Z Z |z — a|® log’ |z — a| + |z — a)*" EF(jz — al),
i=0 j5=0
a.e.in |a,a+nt], (2.2)
Re(af) < Re(af) < -+ <Re(af,) <,

V(i,5) ff =0 or Vie{0,...,I"} then (fy)# (0). )

For instance, if f € Dy(a,C) and 7 < S}(f) then f} = 0 for each (7). If
V(i,j) fif # 0, then f € Dy(a,C) with Sf(f) := Re(ag) < Re(ef) < -+ <
Re(af,) < r. For € > 0, the notation

Ale) = Z aije* log’ €

J,Re(a;)<r

means that there exist a positive integer I, a family of positive integers (J(i)) and
two complex families (c), (a;;) such that Re(ag) < Re(ay) < --- < Re(ay) < 7 and

I J@)

Ae) = ZZa” % Jog’ €.

1=0 j=0

For v’ < r, the notation

B(e) = Z aije* log’ e

7,7 <Re(o;)<r
is also introduced.

Definition 8. For k € N, C’jr(a, () is the set of complex functions f such that there
exists n* > 0 with f admitting up to order k continuous derivatives on [a,a + n*].

This definition means that, for 0 < i < k, f(!)(z) exists for z €]a, a+n*[ and that
the complex number f((a) and f (’)(a + n*) respectively designating derivatives of
order 7 at a on the right and at a +n* on the left exist. If £ € N*, the usual Taylor
formula applies to f and ensures (if f° := f) that the following useful relation holds
for t € [a,a+nT]:

® a ) —Qa k 1
Zf ( mat %ﬁ/o (1—w)* ' fPa+u(t—a)]du.  (2.3)

Since it is continuous, f*) is bounded on compact [a,a+7*]. Consequently, the last
term on the right-hand side of (2.3) may be rewritten as Ty (t) = (t — a)*P.(t — a)
with Py bounded on [a,a + nt]. If k = 0, Ty(t) := f(t) — f(a) is also bounded on
la,a +n*]. Hence, for real r < k € N, C¥(a,C) C D’ (a,C).
Observe that, if (f,g) € D% (a,C) x D7 (a,C) and (8,7) € C?, then B8f + vg €
D', (a,C) too. The short proposition below gives conditions regarding the complex
pseudo—functlons [, g which ensure that fg € D7 (a,C).

Proposition 4. Consider (f,g) € Dy (a,C) x D, (a,C),r a given real and r, :=
r—Sf(9), ro:=r—=SH(f). If f € D}*(a,C) and g € D'?(a,C) then fg € D’ (a,C).
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Proof. Two cases arise.

Case 1: v = SH(f)+ S+ (g9). In such circumstances, 1y > SF(f),r2 > S+ (g) and,
according to definition 2, it is possible to find real values > 0,57 > 71,83 > 75 and
complex functions F;f and G}, bounded in [0, 7] such that, for almost any = €]a, a+n),

.

f@= 3 Sle —al*! log’ |e — a] + [z - o " F{ (|2 - a]),
58T (£)<Re(af )<

g@)= Y ghle—al* log'z - a| + |z — a** G |z — a]).
1,8} (g)<Re ()<

Hence, the function fg admits for almost any  in |a, a + 7] the decomposition

5+ ;
f(x)g(x) = > ol — a]* P log |z — af + Q(|lx — al)
j,l,Re(aj+ﬁ:)<r

with
Qlz —a|) = > fiigmlz —a
j,l,r<Re(af+ﬁ:)<T1+rz

+lz — a2 Fl (|2 — a)G, (|2 — al)

+ > Hlo —a|* o2 log? | — a| G (|z — af)
5,83 (£)<Re(af )<

+ Z gl — a|ﬁ:+s1 log |& — alF(|z —al). (2.4)
L,SH(g)<Re(B)<ry

af+8¢ log/* |z — df

Here, s; + Re(8)) > r1 + 55 (9) = r, s2 + Re(af) > ro + SH(f) = r and s, + 55 >
Ty + 82 = SF(f) + s2 > r. Consequently, it is possible to find s > r and P bounded
in [0,7] such that Q(|z — a|) = |z — a|*P(|z — al).

Case 2: v < SH(f)+ SS(g). According to definition 1 there exist n > 0, vt > 0,
wt > 0, positive integers J*, Kt and complex functions F'*,; G* bounded in [0, 7]
such that f(z)g(z) = |z — a|"P(|z — a|), where the function

J+
+ +(g)—r ; ot
Plla = al) = o = 8050 {3 fhiogl o~ al + o ol P~ o)}

Jj=0

K+
X{Zg;: logh |z — a| + |z —al“Gﬂlx—aD}

k=0
is bounded in [0, 7). [ |

This derivation also shows that, if f € Dy (a,C) and the expansion of g near z = a*
reduces to g(z) = |z —al**G,,(|z —al), s2 > 79 :=7— ST (f), then fg € D (a,C). In
these circumstances g belongs to D’?(a,C) \ D4 (a,C), i.e. the real SJ(g) may not
exist.

At this stage it is both convenient and straightforward to define the sets D_(a,C)
and D" (a,C) by replacing in the associated definitions 1 and 2 concerning D (a,C)
and D', (a,C) each superscript 4+ by superscript — and also the condition a.e. in
la,a+n*] by a.e. in [a —n~,al. Note that for f € D’ (a,C) N D" (a,C), definition 2
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may introduce different behaviours (see (2.2)) of the function f near pomt a and
respectively for x > a and =z < aq, ie. different sets (I, (J*(z)) (o), (f5),nh)
and (I ,(J(9)), (e ), (fi;);n™). For k € N the definition of C¥(a,C) is obvious
and C* (a C) is the set of complex functions admitting up to order k continuous
derivatives on an open set containing a compact neighbourhood of a. Of course,
proposition 4 also applies to

feD_(a,0)nD %D C),  geD_(a,C)n D%V (a,C)
and then fg € D" (a,C).

Definition 5. For a given real value 7, (h, g) belongs either to II} (a,C) or
117%(a, C) if and only if the following properties are fulfilled:

1 h is a real function such that there exist ¢ € Ry € R%, 7 > 0 and a function h,
with h(z) — ¢ =% (z — a)"ha(z), ho(x) > 0 and

M
halw) = Y amlog™(z — a) +o( —a) in Ja,a+ ),
m=0
where M € N and ajs # 0.

2. For v’ i= y~'r, if h(z) = c+ (z — a)"hy(z) then g € D7 (¢, C), else if h(z) =
c— (x — a)”h (x) then g € D' (c, (). More precisely, there ex1st real values n > 0
and s’ > 7/, a positive integer I, a complex function G, bounded in [0, 7], a family
of positive integers (J(4)), two complex families (a;), (gi;) such that Re(ap) < - -+ <
Re(ay) < 7’ and in the adequate neighbourhood of ¢

I J(@)
9(X) =" " gijIX —c[*log? |X —c| + |X — ¢ G (IX — ¢]). (2.5)

i=0 j=0

3. (h,g) belongs to Hl’l(a, C) if the following assumptions 3.1 and 3.2 are true
3.1. The above decomposition (2.5) reduces to

I
9(X) =3 (X — o) + X — oG (1X — ), (2:6)
=0
with I := max(0, [r']) if [d] designates the integer part of real d.
3.2. For any i € {0,...,I} such that g; # 0, and h;(x) := [h(z) — ¢]* then h; €
D' (a,C) and for almost any z €]a,a + ;]

[h(z) — ] = Z Z ALz —a)T i log® (x—a)+ (z—a) Az —a), (2.7)

pi=0 ¢;=

where n; > 0, iy < Re(7}, ') <7, >r and the complex function A’ is bounded in
[0, 7:].

4. (h,g) € I}*(a,C) when decomposition (2.6) is not satisfied but (2.5) holds
with Sc(g) := Re(a),Vi € {0,...,I} then (g;;) # (0) and moreover h, € Ct(a,C)
with p := [r — vS.(g)] + 1.

Some properties stated in definition 5 require a few remarks.
The case of a function h constant in a neighbourhood on the right of a is excluded
by assumption 1.
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1

According to the assumptions s’ > 7’ := v~ !r and

M
ho(x) = Z am log™ (z — a) + o(xz — a),

it is possible to find R > r and a function H, bounded in a neighbourhood on the right
of zero and such that H(z) := |h(z) — c|* Gy (Jh(z) — ¢|) = (x — a)*H,.(z — a). First,
observe that lim, .+ (z — a)’he(z) = 0 for § € R?.. Moreover, if t := (s —1')/2 > 0
and z €]a,a + 7] then

H(z) = [(z — a)"ha(2)]* Go[(z — a) ha()]
= (2 — a)"" ) [(z — a)"hy(2)* )G [(z — a) ha(@)).

The form near z = a of h, shows that (2 — a)"h,(x)* is bounded near a for 4t > 0
and s’ € R. Consequently, the choice of R := v(r'+t) = r+~t > r and of H,(z—a) :=
(z — a)"ha(2)* G [(x — a) ha(z)] is approriate.

Expansion (2.6) includes the case g(X) = |X —¢|* G,»(|X —¢|) by choosing (g;) =
(0),1i.e. S.(g) > . In such circumstances, the previous remark ensures that g[h(x)] =
(x — a)®H,(z — a) with R > r and H, bounded in a neighbourhood on the right
of zero, i.e. that g o h € D’ (a,C). This also explains,why, for (h,g) € H£’2(a,C),
decomposition (2.5) is written with S.(9) = Re(ap) < -+ < Re(ay) < 7’ under
the assumption (g;;) # (0),Vi € {0,...,1}. In fact, (h,g) € I[*(a,C) implies that
r=~"1r > S.(9). )

According to definition 5 note that, for m € {1,2}, 7' > r then (h,g) € II] "™ (a,C)
implies that (h,g) € II7"(a, C).

For further applications, it is worth exhibiting a class of functions h obeying rela-
tions (2.7) for certain values of the positive integer i.

Proposition 6. Consider f € D(a,C) withy:= Sf(f) >0andr € R, L € N
such that r > Lvy. If t :=r — (L — 1) and f € D% (a,C) then f* € D’ (a,C) for
integers i > L.

Proof. Under these assumptions, it is possible to find n > 0 such that for z €
la,a+n], f(z) = (z —a)'g(z) with g(z) = B(z) + C(x) where

B(z) := Z A (z — @)™ log™ (z — a),
m,0<Re(ry)<r—~L
Re(m0) = 0, (aom) # (0) with C(z) := (z — a)"G(xz — a) with v > 7 —yL and G
bounded in [0, 7]. Use of the well-known multinomial formula

.
(b1+...+bj)k= Z mb’f ...b?, (28)

P1seP; 20
p1t+...tp;=k

and of assumption (ag,,) # (0) shows that B¥(z) € D% (a,C) N D4 (a,C) for k € N,
w € R with S} [B*(z)] = 0. Now, Newton binomial formula ensures that ¢*(z) =
S CUB(z))HC (2)) with CF := il/[I!(i — 1)Y]. Since S}[B*(z)] = 0 and v >
r — L, one clearly gets g'(x) € D:‘”L(a, (). Consequently v > 0 and ¢ > L lead to
iy +r — Ly > r and thereby f*(x) € D7, (a,C). |

For definition 5, if S := {i,0 < ¢ < I and g; # 0} two cases may arise. If S is the
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empty set, then the above remarks show that assumption

h(z) —c=* (z —a)” {Z a, log (w—a)-l—o(x—a)}

m=0

is adequate. Else, if L := min(S), then S.(g9) = L < v’ = y71r, i.e. r > yL with
v = S} (h—¢) and proposition 6 applies to f = h—c. Thus, each function A such that
h—c e D (a,C)ND,(a,C) with t := r—SF(h—c)[S.(g9)—1] satisfies decompositions
(2.7). Among these functions are the real functions h = ¢ + (x — a)"¢(x), where
¢(a) # 0, and there exists a positive integer k such that k& > r — vS.(g) > 0 and
¢ € Ch(a,C).

Proposition 7. For a real valuer, if (h,g) € II]" (a,C) or (h,g) € Hrz(a C) and
w(z) := g[h(x)] then w € D7 (a,C'). More prec1sely, there exist s > r, s’ > r' ==y 1,
complex families (A ), (7' ) and 1 > 0 such that for almost any x €la, a + n)

I J@E) P Qijps) _
w@) =YD Y gyAl, (@) logh( - a)
1=0 j=0p;=0 ¢i=0

I J@)
+D > gij(@—a) RY(z) + |h(z) = o G (|h(z) — o),  (2.9)

=0 7=0
where each quantity keeps the meaning introduced in definition 5, the complex func-

tions R* are bounded in an adequate neighbourhood of a and Re( )<

Proof. First recall that according to the second remark concerning definition 5,
the last term on the right-hand side of (2.9) may be rewritten as H(x) := |h(z) —
cl* G (|h(z) — ¢|) = (x — a)RH,(x — a) with R > r and H, bounded in a neighbour-
hood on the right of zero.

Case 1. The case of (h,g) € II}'(a,C). If (g;) = (0), then w(z) = H(z) €
D’ (a,C). If there exist 0 < ¢ < I with g; # 0, the combination of decomposition
(2.6) and expansion (2.7) immediately yields

P Qi(ps)

W) - HE) =330 D il (e — o) g (e

1=0 p;=0 ¢;=0

+ Zgl(;z: —a)%Al(x — a). (2.10)
=0
Thus, equality (2.9) holds with J(i) := 0,Qi(pi) = Qi(pi), 4, = A} ., s =

min{s;, if i is such that g; # 0}, R°(z) := (z — a)**Ai(z — a).
Case 2. The case of (h,g) € II*(a,C). Then y~'r > S.(g) and S.(g) = Re(ap) <
- < Re(ar) < v~ !r. First, a useful lemma is recalled.

Lemma 8. For complex functions f and g admitting derivatives up to order inte-
ger n respectively in V an open neighbourhood of x and W := f(V') a neighbourhood
of f(z), then g o f admits derivatives up to order n in V and

feloe o) = 32 o e[S [T e

I |
dx Faa,n 7
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where the sum Y Faa,n €ans a sum over all families (Mmy4)ieqa,....qy Of positive integers
such that m; +2mg + ... +qgmy=nand p :=m; + mg + ... + my.

Such a result (2.11) is known as the Faa de Bruno formula. Note that if f €
Ct(a,C) and g € C*(f(a),C) then this formula (2.11) also applies (by continuity of
derivatives of the function f at point a on the right) at point a and ensures that

go feCl(a,C).
Accordlng to decomposition (2.5), in a neighbourhood on the right of point a then
I J@) J
w(zx) : h(a:]—ZZg”Z VW (z) + H(x)
=0 7=0

with functions W}, defined by W}, := (z — a)" log’ ~(z — a)F}[ha(2)] if F}(X) =
X% log"(X) for X > 0. For each i € {0,...,I}, if k; := [r — yRe(a,)] + 1, then
k; € N* and k; < p := [r — yRe(ap)] + 1. Thus, the assumption h, € C (a,C) (see

definition 5, property 4) ensures that h, € C¥(a, C) and previous lemma 8 (since F}
is smooth at any X > 0 and h,(z) > 0) shows that Fj[h.(x)] € C}(a,C). Use of the
Taylor expansion (2.3) for this latter function leads to the form

Dl (pi)
pi!

ki—1

Wzlg(w) = Z

pi=0

(z — a)"*Pilog! ™ (z — a) + (z — a)"* % log "z — a) Py, (z),

(2.12)
where

1 aki i
Py, (z) == [(k; — D)1 /0 1- u)ki—lh—ﬁ[a +u(z — a)]du
is bounded in a neighbourhood on the right of zero and the complex
4P [F} o ha]
dyP:(a)
are obtained by applying the Faa de Bruno formula (2.11). Consequently, if ¢ := j—1,

J(i -1 J
I (3) ks —1 g”C’YD ( )

H@=YY Ty

1=0 j=0 p;=0 ¢g=0
I J()

+Zzgzg x — a)1*th {Z Civtlog(z — a) Py, (;z:)}. (2.13)

1=0 j=0

Dzi(Pi) =

(m _ a)’Yaz‘-f-:Di IOgQ(x _ CL)

This expansion agrees with (2.9) if one chooses P; := k; —1 = [r —vRe(a)], ¢ := q,
Qi (ps) =3, 75, = v +Dpi, AY = ClyED:_ (pi)/pi!, s := min{yRe(c;) +k;} >
r and

RY(z Z Ciyt a)1itki=s 1ogd(z — a) Py, (z — a).

Observe that the leadmg term arising on the right-hand side of (2.13) (obtained by
setting ¢ = p; = 0) is

J(0) J

)= g0 D O3 D;,(0)(x — 0" log(w — a).
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The definition of D}__(0) leads to

J(0) J
Ty (z) = ho(z)*(x — a)?*° Z 90; {Z Ciy?log’ [, (a)] log?(z — a)},
ie. to
J(0) '
Ti(z) = he(z)*(z — a)?™® [Z 9o; & (x — a)]

if d(x — a) = loglh,(a)(x — a)?]. Because (go;) # (0), it is easy to prove that
Ty (z) is not the zero function in a neighbourhood on the right of a. Consequently, if
(h,g) € II*(a,C) then Si(goh) =~ Re(ap). [ |

The reader may easily introduce the definitions of sets I1""(a,C), II"*(a, C) and
show that (h, g) € II"™(a,C) for m € {1,2} implies w(z) := g[h(z)] € D" (a,C).

Definition 9. For r > 0, the complex function h is of the second kind on the set
10,7[ if and only if there exist a complex function H, a family of positive integers
(M(n)), and two complex families (3,) and (h,,,) such that

N M(n)

Ve €]0, 7|, h(e) = Z Z B log™ (€) + H (¢), (2.14)

n=0m=K(n)

Re(Bn) < Re(fn-1) < ... < Re(f1) < Re(By) := 0, } (2.15)

lin(l) H(e)e C and hg:=0 for [y=0.

The above notation Re(fy) := 0 occurring in equation (2.14) means that complex
number 3, is such that Re(8;) = 0. Naturally the associated coefficients hq,, may be
Zero.

According to Hadamard’s concept (see Hadamard 1932; Gel’fand & Shilov 1964;
Schwartz 1966) the finite part in the Hadamard sense of the quantity h(e), noted
fplh(e)], is the complex lim,_,q H (e).

Definition 10. A complex function f belongs to the set P(]0,+oo[, C) if and only
if f € L}, (]0,+0c[,C) and there exist positive reals 7; and Ay, two functions
F° € L'([0,7¢],C) and F*>* € L'([A;,+o00[,C), two families of positive integers
(J(2)), (K (1)) and complex families (c;), (f5}), (1) and (f5°) such that

1 J()

flz) = ZZ]’%:U“@' log’ x + F°(z), ae.in ]0,7y],

=0 j=0
Re(ar) < Re(ar—1) < ... < Re(a;) < Re(ap) := —1;
L K()

fz) = Z Z fra " logh o + F°(2), ae. in [Af,+o0],

1=0 k=0
Re(yr) < Re(vr-1) < ... < Re(m) < Re(y) := 1.

Moreover, to each element f of P(]0, +o0[,C) is associated its integral in the finite

Proc. R. Soc. Lond. A (1996)



Asymptotic expansion of a general integral 2665

part sense of Hadamard

0 1/e
7 f<x>dx::fp[ f(x)dx]

B Py 50

_ 0
‘/5 fwar+ [ Fw) dx+/B
1 J() L K()

+3 S8R -3 fEPE,(B), (216)

=0 j=0 =0 k=0

where (4, B) is any pair such that 0 < é < 7y, Af B < 400 and also

log’ " (t) L

le(t) = —T—'_-_l——, else PQ( ) = ta+1 Z ]M+—Wlogk(t) (217)

For0<a<e, j€Nand a e C, use of the equality
/ z%log’ xdz = Pi(c) — Pi(a),

where the functions PJ are given by above definition (2.17), indeed ensures that the
function hy defined by
1
- [ s

is of the second kind as soon as f € P(]0, +oo[, C). Relation (2.16) offers no difficulties
and the proof is left to the reader. By the way, if f € Li (R, C) then

fp /0 f(z) da

reduces to the Lebesgue integration

/00 flx)dx

For 0 < b < 400, P(]0,b[,C) is the set of complex functions f such that if F(x) :=
H.(b— z)f(z) where H, designates the Heaviside function then F € P(]0, +o0[,C).
For instance, (D7, (0,C) N Lj,(]0,b[,C)) c P(]0,b[,C) for 0 < b < 400 and r > —1.

The two equalities,

lim f(@)= Y aya®log’z, lm f@x)= Y awnlz”!"log"a,
j,Re(a;)<r m,Re(yn)<r
(2.18)
mean that there exist a real s > r, a complex function F, bounded in a neighbourhood
respectively on the right of zero and on the left of infinity in which

f@y= > ayz®log’ z+a°F(z)
j7Re(ai)<T
or

f@= Y awml " log" e+ 2T Fy(x).

m,Re(vn)<r
Proc. R. Soc. Lond. A (1996)
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Finally for real values r; and rs, £72(]0,b[,C) is the set of complex functions such
that
lim f(z) = Z ai;x% log’ x

z—0 .
JrRe(as)<r1

and if 0 < b < +oo, f € L .(]0,b],0); else f € LL _(]0,b,C) and also
. _ —119n m
lm @)= Y awmla T log"a

m,Re(yn)<r2

Note that £72(]0,b[,C) c D*(0,C).

For detailed explanations regarding the use of the concept of Hadamard’s finite
part in obtaining asymptotic expansion of a class of integrals the reader is referred
to Sellier (1994).

3. A general theorem

This section presents, for 0 < b < +o00, the asymptotic expansion of

b
I(\) = ,fp/0 f(z)K[h(x), \z] dz, (3.1)

with respect to the large real parameter A\ when (f,h, K) belongs to a specific set
defined below.

Definition 11. For real values 0 < b < +o00,r; and 5 the triplet (f, h, K) belongs
to the set £72(]0,b[, C) if and only if the following properties are satisfied by the real
function h and complex pseudo-functions f and K(x,u) for X large enough

1. f € D4(0,C) with So(f) := S (f) and if gx(z) := f(z)K[h(z), \z] then g, €
P(]0,b],C) for X large enough.

2.If E := h(]0, b]) then there exist a positive integer N, a complex family (vy,,) with
Re(v) < -+ < Re(yn) := 72, families of positive integers (M (n)) and of complex
pseudo-functions (K, (X)), a real s > ry, a complex function V,,(X,u), a real
B > 0 and a real n > 0 such that for any (X,u) € E x [n, +00]

(a)
N M(n)
K(X,u) =) > Kun(X)u " log™ u + u™*2V,, (X, u), (3.2)
(b)
/  H@)e Vi [h(z). Aa] da| < B < 1o, (3.3)

(c) Yn € {0,...,N},Vm € {0,...,M(n)} if gpm(x) := f(z)Knm[h(x)] then g, €
L},.(]0,0],C) and for t, := max[r; — So(f), Re(vn) — 1 — So(f)] then (h, K,.,) €
(I (0,0) U IIi™?(0,0)) with relation h(z) — ¢ = 27ho(z) (see definition 5).
Moreover, there exist a positive integer I, a complex family (a;) with Re(ap) < -+ <
Re(ay) = t1 := v [r1 — So(f)], a family of positive integers (J(i)) and a complex
family (K}7,) such that Vn € {0,...,N},Vm € {0,..., M(n)} decomposition (2.5)
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on the appropriate neighbourhood of ¢ for K, takes the following form

I J@)

nm X) ZZ nm'X—C

1=0 j=0

“log’ [X —c| +|X — e[tV (IX —cl),  (3.4)

with ¢} > ¢; and the complex functions V,,,, bounded in a neighbourhood on the
right of zero.

3. There exist real values A > n > 0, B > 0, a family of complex pseudo-functions
(a¥(u)), a complex function Htl (z,u) such that

(a) for u >0
rJe '
u) = ZZ&” ()| X —c|*log’ | X —c| +|X — c|"" Hy, (X — ¢, u) (3.5)
1=0 7=0
in an adequate neighbourhood of ¢, i.e. on the right or on the left if respectively
h(z) — ¢ = 27ho(z) or h(z) — ¢ = —x"ho(x) near zero;
(b)
A/X )
| £@Ih@) = cff Halh(o) — e, Aa] do = o]a~ ) (3.6)
0

(c) if (a¥) = (0) then we set S = v~![r1 —So(f)]. When (a*) # (0) it is understood
that there exists j € {0,...,1(0)} such that % % 0 and this time S = Re(ag) <
y~1[ry — So(f)] with the new assumption: f € D}~ 7%(0,C);

(d) Vi € {0,...,I},Vj € {0,...,J(i)}, a¥ € D,(0,C) with Sy(a”) = Sg (a?) >
—r, — 1 and also a¥ € £ (]0, +o0,C) where R := max[—1 — 71, —~1 — S — Sy (f)]
and R’ := max(r; + 1,72). It is understood that

lim a(u) = Z A ufrlogiu
q,Re(Bp)<R

and that there exists a complex function O;; bounded in the neighbourhood of infinity
[A, +o00[ in which

N M(n)
= Z Z K9 uw " log™u+u=*20;;(u). (3.7)
n=0 m=0

4. The complex function wy; s, defined by

N M(n
u” 2wy 5, [X — ¢, u] i= Hy, (X z Z m (| X = c))u™" log™ u

is bounded for (X, u) € h([0,7]) x [A, +oo].

Assumption 2(d) means that there exist a real t > r; —+.5 and a complex function
F bounded in a neighbourhood on the right of zero in which

L K@)

fl@) =" fpatloghz +a'F(x), (3.8)

1=0 k=0
with Re(&y) < -+ < Re(6z) < r; —~S. Observe that 1 —vS > So(f). For given
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(¢,7) observe that according to expansion (3.9) if a”/ = 0 then (Ki,) = (0) and
(K% .) # (0) implies that a¥ # 0.
According to the above definition, the next basic theorem holds.

Theorem 12. For real values r and 0 < b < +oo, if there exist ry > r — 1 and
r2 2 1 such that (f,h, K) € £72(]0,b[,C) then the integral I()\) admits the following
expansion with respect to the large and real parameter \

I(\) = fp / (@)K [h(z), Aa] do

m b
SR DD DA F oy 0 o e e R PR

m,Re(yn)<r e=0

ki, 5,pisgs qitk

> ALY Cr (-
v=0

Re(TTi‘i +6)<r—1

0

Q(p) ij
_ Z Z Aqu 10g1+Q¢+k+q~v A
1+g+k+qg—v

{PiBp=—7f, —6—1} 9=0

n Z Z Ky, log otk M=y )
1+g+k+m—w

{nsyn=7} +6+1} m=0

) AT T Jo0v ) 4 o(A7"), (3.9)

where the meaning of each quantity is given by proposition 7 or definition 11, the
notation

1,k,1,9,04,9s

Re(r}, +6)<r~1

is explained below and }>(, ., A(p) means A(t) if there exists a positive integer p
such that p = t, else it equals zero.

For real values t1,t2,¢ > 0 and two functions A(l,k,1,j,p;,¢) and B(l,q;) the
complex

L,k,i,0,pi,: ,
Sty (6) = Z A(l, k,i, 7, ps, qi)eTzZ),:“L‘sl logB(l7Qi) €

Re(rf, +61)<ta

is the sum of terms of
I J@E) P . |
Z Al k,i, 5, pi, qi)eﬁ’ﬁ& logB(hai) ¢

which satisfy Re(r;, + &) < t. Naturally, if Re(7?, + ) > t, for any (i, p;,1) then
Proc. R. Soc. Lond. A (1996)
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St, (€) = 0. Morover for t1 < to,

lykyivjipiyqi .
Z A(l’ k? 7'.3 j’pi’ Qi)CT;i o IOgB(lyqi) €= Stz (6) - St1 (E)

t1 <Re(7‘;§i +6)<to

Note that expansion (3.9) involves coefficients of the sequence A°log® A which are
integrals in the finite part sense of Hadamard even if quantity I(\) reduces to a
Lebesgue integration.

Proof. Assume that (f,h, K) € £72(]0,b[,C) and also that each notation intro-
duced in definition 11 keeps its meamng A new complex pseudo-function K (x,u) is
defined as K(z,u) := f(z)K[h(z),u] for  €]0,b[ and v € R’ . Under the assump-
tions bearing on the real function h and on the complex pseudo—functions f and
K (z,u) then gy(z)K(x, \z) € P(]0,b],C) for X large enough so that I()\) exists and
the following properties are fulfilled.

1. Since if z €]0,b[ then X := h(z) € E, expansion (3.2) yields for (z,u) €
10,b[x]n, +o0]

(a)

N M(n)

K(z,u) = Z Z Kom(x)u™ " log™ u + u*2G,, (z,u), (3.10)
n=0m

with Kpm(z) = f(2)Kum[h )] = gum(z) € L (]0,b],C) and also G,,(x,u) =
(2)V,,[h(x), u]. Hence, inequality (3.3) may be rewritten as
b

< B < 4. (3.11)

b
/ x 2G,, (x, \x) dx
n

(¢) Vn € {0,...,N}, Vm € {0,...,M(n)} the fact that (h,K,,,) belongs to
I~ SolH, Ho,0) u I Solh):2 (g, C) authorizes us to apply proposition 7. Conse-

quently, K, [h(z)] € D}~ 5 (0,C) with the following expansion on the right of
Z€r0:

I J@) { P; Qij(pi)

Kpm ZZK}] Z Z AY xT;ilogqix+stij(x)}

? =0 j=0 =0 g¢;=
+[27ho ()] Vim [27 ho ()], (3.12)
where the positive integers P;, Qi;(p;), the complex families (A% ), (7 ) such that
Re(7i) < r1 — So(f), the complex functions R” bounded on the right of zero and

the real s > r; — So(f) have previously been defined. Recall that ¢} > t; := v~ [r; —
So(f)]. After observing that both real s and functions R¥ do not depend on (n,m)
two cases are considered.

If (K¥.) = (0) (i.e. V(i,j,n,m)K = 0), then on the right of zero

Kom() = f (@) Kpm[h(2)] = 27" f(2)ho(2)" Vi [@ o ()] = 2" P(x),
where t := [yt} —r1 + So(f)]/2 > 0 and the function
P(t) = [#'7%D f(2)]ho(2)" Vi 27 o ()]
turns out to be bounded on the right of zero.
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If (K9 ) # (0) then (a¥) # (0),S = Re(ap) < v ![r1 — So(f)] and also (see
proposition 7) Re(7) = vS. Moreover, the combmatlon of decomposition (3.8) for
the function f and equality (3.12) yields the following expansion near zero on the
right

L,k yi,g,pisgi
Kom(z) = Z K9 fh A4 2t loghth ¢ 4+ % Ly (), (3.13)

Piqi
Re(r} +6)<r1

where the last term x°! L, (z) may be rewritten as 2! L,,,,(x) = T (z) + T}, () +
TV (2) + T (x) with
Lk,i,J,pisq:
T () = > K (848, 2™ og™ . (3.14)
r1<Re(r} +61)<2r1—So(f)—vS

and also
I J6) P Qilpo) , )
. Z Z Z Z KJ,AY x i log x
1=0 j=0 p;=0 ¢;=0
I J@) (3.15)

T// — ZZ Kzg s Rz]( )

=0 j=0
Ti(2) = &% f(2)ho(2)"1 V27 ho ()],

where t > 7 — S and (see proposition 7 and definition of S) Re(7} ) > ~S.
For z given, observe that T, (z),T},,(x) and T (z) depend linearly on way of

family (K ). Therefore it is possible to define three operators T'[z, (F¥)], T'[x, (F7))
and T”[z,(F%)] which are linear with respect to the complex family (F%¥), i €

{0,...,I}, 7 €{0,...,J(i)} and satisfy

Tla, (K] = Tam(x),  T'[z, (K] = Thm(x),  T"[@, (K} = Thn(@). (3.16)
Note that w > 71 — So(f) ensures z¥ f(x) = 'V () with w’ > r1 and V bounded on
the right of zero. Moreover, t+Re(r, ) > 1 —vS+vS = ry so that T, (z) = 'V (x)
with ¢’ > r; and V'’ bounded near zero. Thus, it is legitimate to set Ty, (z)+T7,, () +

T (x) + T, () = 2°* Ly () with s; > 1 and Ly, bounded on the right of zero.
Hence, in any case, K, € D}'(0,C). The same arguments also show that

Kpm € D290 (0,C) for t, := max[r; — So(f), Re(7n) — 1 = So(f)]-
According to the assumption

Gnm = Knm € Li,.(]0,4],C) with 0 < b < 400,

it follows that
Kpm € 5,};Re(7")(]0,b[, C) if w,:=max|ry,Re(y,) —1].

This justifies the existence of each integral

m/f ()]~ log™*(z) dz

on the right-hand side of result (3.9).
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2. Application of decomposition (3.5) makes it possible to write for v > 0 and
O<ae<W<KDb

(a)
- l,kvi7j1pi,qi B B ;
K(z,u) = Z a* (u)chA;fiqinPiMl log?t* 2 + x57H,, (z,u), (3.17)
Re(r}, +61)<m1
with K (z,u) — 5Hy, (z,u) = 0 if (a’) = (0), else f € D}*"5(0,C) with this time
x5 Hy, (z,u) = S(z,u) + 5 (z,u) + 8" (z,u) + S"(z,u) where

l,k,i,j,piv‘h'

S(z,u) = Z at (u)f&quixTéi""S’ log%* ¢
1 <Re(r;;i+6l)<2r1-—5’0(f)—fys
= Tz, (B (u))] (3.18)
and also

I J@{) Py Qi(pi)

S'(z,u) = 2" F(z) ZZ Z Z u) A mT;i log% z = T'[z, (a¥ (u))], (3.19)

=0 j=0p;=0 ¢;=

I J()

S"(z,u) = ZZCL”(U )z® f(z)RY (z) = T [z, (a (u))], (3.20)
=0 j=0

§"(z,u) = f(z)|h(z) — | Hy, [h(z) — ¢,u]. (3.21)

(b)
A/
/ 2 Hy, (z, Ax) do = o[\~ V] (3.22)
0
Proof. As a result of assumption (3.6) and of the above definition of S”(z,u)
A/ A/ /
/ S (2, Az) de = / (@) (@) —c| o, [h(z)—c, Aa] dz = o[ A=T+D). (3.23)
0 0

Moreover, (3.20) leads to

A/X 1 J@)
/ S"(z, \z)dz = Z ZI"J'O‘)
0 ;
with complex
A/X
Ty(\) = / 0¥ () f(z)a* R (z) da
0
and s > r; — So(f). For t = [s —ry + So(f)]/2 > 0, a¥(Az)f(z)z*RY(z) =

a1t (\x) f(x) Fyj(x) where Fy;(z) := 2t~ f(z)RY (a:) is bounded on the right
of zero. The change of variable u = Ax yields

A/X -
I = /0 0 () f(z)2° RY (z) da

A
= [ / u e (u) Fij(u/X) du | A=, (3.24)
0
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Because Sp(a”’) > —1 — ry and Fj; is bounded near zero the last integration exists
and is bounded for large enough A. Finally, ¢ > 0 ensures that I;;(\) = o[A~("+1)]
and thereby that

A/x
/ 8" (x, Ax) dz = o[ A=Y,
0

If m € N and 8 € C with Re(8) > 7y, the choice of R (z) := 1 or RY(z) := F(x),
f(z) :=log™(z) with Sp(f) = 0 shows that

A/ B
Jgm(A) = / a’ (\z)z? log™ z dz = 0[)\_(”"'1)]
0
and
an
Jé,m(/\) = / a¥ ()\x)F(x)lﬂ log™ z dz = 0[/\_(”4.1)]'
0

As a finite sum of such integrals Jg ,,(\) or Jj,, () the contributions

A/X A/X
/ S(z,Ax)dz and / S'(z, Az) dx
0 0

are also equal to o[A~("+V]. Thus, relation (3.24) is proved.

(c) If (a¥) = (0) then the second sum on the right-hand side of (3.9) is zero.
Else for this sum So(f) +~vS < Re(7}, + &) < r —1 < 71 and the assumption
a € 51114’_175_50(!,)(]0, +oo[, C) ensures that

fp / 0" (u)u" " log® Y () du
0
is meaningful.
3. The complex function Wy, ,, defined by

Hy, [z, u] = Z Z Ly (z)u™" log™ u + u™*2 Wy, 4, (z,u)

n=0 m=0
is bounded for (z,u) € [0,7] x [A, +0o0].

Proof. As a result of expansion (3.7) for each function h* for u > A and of the
linearity with respect to (F¥) of operators Tz, (F")], T'[z, (F*)] and T" [z, (F")],
one obtains for (z,u) € [0,7] x [4, +oo|

2 Hy, [z, u] = Tz, (¥ ()] + T'[z, (a” (u))] + T"[z, (0" (u))]
+a" f () ho ()" Hy, [A(x) — ¢, u]

N M(n)
=SS T+ T+ Tz, (K32, bu~" log™ u
n=0 m=0

+u2{[T + T+ T"|[z, (07 (u))]} + 7 f () ho(x)"

N M(n)
X {Z > Vamla ho(z)Ju™" log™ u + u™*wy, ., [A(z) — ¢, u]}.

n=0 m=0
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Use of property 4 of definition 11 allows us to write for (z,u) € [0,7] X [A, +oo[
2 Hy, [h(z) — ¢, ul

N M(n)
=D D AT+ T + T, (K35,)] + 2% f(2)ho(2) Vi [27 ho ()] }u ™" log™ u
n=0 m=0

+u”{[T + T + Tz, (09 (u)] + & f(2)ho(x) 1wy o, [h(x) — ¢,ul}.

Each factor associated to u~7"log™ u turns out to be 2% L,,,(z) (see (3.13), (3.14),
(3.15)). Inspection of the definitions of

Tz, Oy@)),  Tle,Oy@),  T[z, (Oy(w)]
with the assumption O;; bounded for u > A ensures that
[T+ T +T"[z, (04(u)] = 2% R(x,u)
with R(z,u) bounded for (z,u) € [0,7n] X [A, +0o[. Moreover, one gets
" ho(x)"1 f(x) = 2" G(x)
with G bounded for z € [0,7]. Consequently, the complex function W,
Wy, 5o (z,u) = R(z,u) + G(2)wy, o [W(z) =, 1]

and is bounded for (z,u) € [0,7] x [A, +oo].

Gathering all the properties satisfied by pseudo-function K (z,u), it appears that
K € Fr2(]0,b[, C) where this set is defined in Sellier (1994). Application of theorem 1
of this latter paper allows us to expand

1,5, Satisfies

b
I(\) = fp/o K(z,\z)dx

and thereafter ensures the stated result. |

As outlined right after definition 5 the case of a function h which is constant in
a neighbourhood on the right of zero is not taken into account by definition 11 and
previous theorem 12. Assume that (f,h, K) obeys the next modified properties of
definition 11:

1. Property 1 is unchanged.

2. Properties 2a and 2b are unchanged with this time V,,(c,u) bounded near
infinity, property 2c replaced by: gnm(z) := f(2)Kum[h(z)] € L .(]0,8],C), h(z) = ¢
for z € [0,n] where n remains the real number introduced by properties 2a and 2b
and (3.5) is replaced by K,n[c] = Knnlc], i.e. i =0 = J(0), ap = 0, K%, = Kp[c]
and also V,,,, = 0. Note that these features agree with expansion (2.7) introduced in
definition 5 if pp = Qo(0) =0, A3, =1, A% = 0.

3. Expansion (3.6) and assumption (3.7) hold with a°(u) = K|c,u] and H;, = 0.
Finally, one assumes that

11Li_r_% Kle,u] = Z ApguP? log? u
qure(BP)SR

and (3.9) is deduced by applying (3.3) for X = ¢. Thus Oy(u) = V,, (¢, u), which is
bounded in a neighbourhood of infinity.
4. Naturally property 4 is true with wy; 5, = 0.
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Under this set of assumptions, one gets for r < max[r; + 1,73] the following
asymptotic expansion:

b
I(\) = fp/0 f(z)Kh(z), \z] dz

= Y S [ @Rl 08 ) aa] A0

m,Re(y,)<r e=0

+ Z ZC flk{fp/ Kle, uJu® log" ™" (u) du

k,Re(6;)<r—1 v=0
Q(p)
Apg
_ Z Z 1 + k + 1Og1+k+q—v )\
{p;Bp=—06:—1} q=0 a-v
M(n)

+ Z Z T k: + pe— Jog!Tktm=Y )\})\_(5”'1) log” A 4+ o(A77).
{'n 7n_5l+1} m=0
(3.25)

It is indeed possible to write I(\) = I1(\) + Iz(\), where

7 b
N = fp /0 F@)Ke Al dz; L) = / F@KR@) Az]de.  (3.26)

Note that, if n > b, then one sets I(\) = 0, else properties 2a and 2b ensure that

N M(n)

Y / F@) K [B(2)]O02) " log™ el dz + OA).  (3.27)

n=0 m=0

To conclude, application of theorem 12 to integral I;(A) with the above definitions
of Voo, He,, i, A;,{, . leads to the asymptotic expansion of I(X).

4. Application to a large class of complex kernels

At this stage, the properties required by definition 11 may appear strong and
thereby somewhat restrictive to the reader. Nevertheless, this section shows that
previous results apply to a large class of complex pseudo-functions K (z,u). Not only
the case of ‘i homogeneous’ kernel is included but also the case of other related
integrals. Finally, many examples are given in order to illustrate the expansions that
have been derived above.

Definition 13. For a real value ¢ and (N,I,M) € N3, DNIM) g the set of com-
plex functions L(z,y) such that if OFL(z,y) = OFL/0z*(x,y) and O5L(x,y) :=
OFL/0y* (x,y) for k € N then

L. If kpoy = max(N + 1,1 + 1), then Vk € {0, ..., kmaz}, O5L(1,y) exists and is
bounded in a neighbourhood of y = 0.

2. There exist A > 0 and U, a neighbourhood of point ¢ such that 9™ L(x,y)
exists and is bounded for (z,y) € [0, 4] x U..

3.Vi € {0,..., I}, the functions 9794 L(u, ¢) for 0 < m < M exist and are bounded
in a neighbourhood of u = 0.
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If the kernel L is singular at the point (0,0) then the above property 3 induces
that L cannot belong to ’D(()N’I’M). However, for ¢ # 0 it is often possible to find
(N, I, M) such that L € pMLM),

Theorem 14. Consider 0 < b < +oo, f € D, (0,C)NLL(]0,b],C) with So(f) :=
Sy (f), L(z,y) a complex and ‘i homogeneous’ kernel (see (1.2)) and h a real function

bounded in [0, ] with h(0) = ¢ and fulfilling property 1 of definition 5, i.e. such that
there exist v € R%, n > 0, ho with h(z) — ¢ =F 27ho(z), ho(z) > 0,

Zamlog +o(z) in ]0,7]

with ap # 0. Forr > 0, if r, f, h and L satisfy each of the fo]]owmg properties:
1. for X large enough ax(x) == f(z)L]\z, h(z)] € P(]0,b],C);

2. 7 > max[—p, 1 4+ So(f)] and lim, o+ f(Z) = 3 ) Re(s)<r—1 ac‘” log®(z);
3.if N:=[r+u], I :=[y*(r—1-5(f))] and M := max([-1 — So(f)] +1,0)
then L € DéN’I’M);
4Vi€{0,...,I}, [h(z) — ] € D:_l_som(O,C) with (see decomposition (2.7))
P Qi(ps)

[h(z) — ] Z Z Al acT:’i log® (z) + z°* A*(z) (4.1)

=0 ¢;=0

for z €]0,n;], iy < Re(7) <7 —1—8o(f), si > —1—So(f) and A* bounded;
then

fp/ f(@)LIAe, b)) da
_233“ 0) [ / F@) (@) 2" "dx}/\ (n)

1,k,i,pi,qs qi+k

+ Z fgc plqzz +k( 1

Re(v—zﬁi+6l)<r—1

© 0L i ke
X{fp/ (92 (U,C) qui+6l long-i-k U(u) du
0

7!

Z 8I0LL(0, c) log!tatr=v \
- TH ‘ —
{jsi=—7i, —6—1} vJ: 1+¢g+k—v

Z 078§+jL(1,0) log! k= \ }/\_(r;i+5,+1> log” A

+ a0 l+gitk—v

{gig=1—itpu+r}, +6i}
+o(A7"). (42)
Proof. The derivation consists in proving that under the proposed assumptions on
r, f,h and the kernel L then (f, h, K) € £12(]0,b[, C) where K (z,u) := L(u,z),m1 =

r—1 and ry := r. Property 1 of definition 11 naturally holds. Each remaining property
of this latter definition is carefully checked below.
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Relation K (z,u) = u*L(1, z/u) combined with the definition of integer N and the
assumption bearing on 85 L(1,y) for 0 < k < N+1 lead for (X, u) € h(]0,b[)x[n, +o0|
to

K(X,u) = ZmX" “nmw) o (NH= Y (X ) (4.3)
n=0 n!
with
1
Vi (X, u) = XN+1(N!)—1/ (1 -t NON T L(1,tX /u) dt
0
Thus decomposition (3.2) holds with v, = n—pu, M(n) =0, s, = N+1—pu>r
because N = [r + pu] and also K,,(X) = 97 L(1,0)X"™/n!.

Note that if 7 > b, the introduction of the function F(z) := H,(b— z)f (z) allows
us to write

I(\) = fp/ f(@)L[Ax, h(z)]dz = fp/ F(z)L[Az,h'(z)] dz

if A'(xz) = h(z) for 0 < & < b, else h'(z) = cste > 0. In such a case, b = n and
inequality (3.3) holds. If n < b, h bounded in [0,b] ensures that th(z)/(A\z) — 0 as
A — 400 for any (z,t) € [n,b] x [0,1]. Consequently,

1
Hy(z) := (N!)“l/ (1= t)YNONTIL[L, th(z)/(\x)] dt
0
is bounded for X large enough and z € [n, b]. Moreover, 2~ V+1=#)[h(z)]" turns out

to be bounded too on [n,b]. Therafter and since f € L (]0, ], C) there exists a real
B such that 0 < B < +o0 and

z)z” V., [h(z), Ar] dz| = a)e” N h(2)]" Hy(z) dz

< B < +00, (4.4)
i.e. inequality (3.3) is satisfied.
Recall that h is bounded in [0,b] and f € L} _(]0,b],C). As a consequence, Vn €
{0,..., N}, gn(x) = f(x)07L(1,0)[h(z)]"/n! € LL_(]0,b],C). Moreover,
t, == max[rl - SO(f)’ Re(’)’n) -1- So(f)] =r—1-— So(f) =0

For ty := 7', > 0 and I := [t;] > 0, then in a neighbourhood of ¢ expansion (3.4)
holds and
ZK’ — &) 4| X — [V, (X = 0), (4.5)

witht) =1T+1>t, o; =1, J(z) = 0 and also the two different cases below:
(i) if n < Tthen V,, =0, K} =0 for n <i < I and K} = 95 L(1,0)c” " /[i!(n — )]
for 0 <7 < n.

(ii) if n > I for 0 <4< I <n then K} —-82 L(1,0)c™ " /[i!/(n — 4)!] and here
X — V(X — ¢) = anf,((l ‘1)( p— /(l—t) le+t(X — )"~ "1dt, (4.6)

with #{ = I +1 > t;. Assumption 4 of theorem 14 guarantees that (h, K,) €
MU (Wl
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When X — ¢, formula (2.3) yields in a neighbourhood of ¢ to an expansion (3.5)

I .
K(X,u) = Z ———82LZ(,;LL’ )

=0
with ¢} = I +1, a’(u) = 94L(u, c)/i! and also

(X —¢)' + |X — ¢|"Hy (X — ¢, u), (4.7)

1

|X — ¢|'"Hy (X — c,u) = (IN)7HX — ) / (1 —t)'oi ™ Liu,c + (X — ¢)] dt.
0

For real A introduced by property 2 of definition 13, we consider

A/X /
E= / f(@)|h(z) — c|'* Hy, [h(z) — ¢, Ax] dz
0

A/X
=/ @)z T po(2) 18, (z) d (4.8)
0
if
Sx(z) == (1!)—1/ (1 =)' oI LAz, ¢ + tz"ho(z)] dt.

For \ large enough and (z,t) € [0,A/A] x [0,1] then t27ho(z) — O and since
O L(x,y) is bounded for (z,y) € [0, A] xU. then Sy is bounded too. Since y(I+1) >
r—1—8(f) then ' := [y(I + 1)+ 1+ So(f) —7]/3 >0 and

D(z) = f(x)2 T Vho(x) S () = 2" [27H 50 f(2)][7ho (2)] S ().

As limy g+ 27 50 f(z) = 0 = lim, o+ 2" ho(x) and Sy is bounded then there
exists C' > 0 such that, for X large,

A/ A/
D(x)dz / " de
0
i.e. property (3.6) is satisfied.

Here S > 0, 7, = r—1 > So(f) and 7o = 7 > 0. Thus, R := max[~1 —
ri,—1 —~8 — So(f)] < =1 — So(f) and R’ := max(r; + 1,72) = r. For a given
i €{0,...,I},85L(u,c) is bounded for u near zero so that Sp(a’) > 0 > —1—ry = —r.
If —1 — So(f) <0, then a’(u) = u =% Fj(u) with F;(u) = u**+5a’(u) bounded
near zero; else P :=[~1 — So(f)] =0, M := max([-1 - So(f)] +1,0)=P+1>R
and near zero

|E| = <C = o[\ = oA™Y}, (4.9)

P

4 OPOLL(0, ¢ uPtt ol ;
a'(u) = E L Zz'!p(! )up + P /0 (1—t)Port1oLL(tu,c)dt. (4.10)

p=0
The above expansion yields coefficients A% = 8795L(0, ¢)/[i'p!]. Since the new kernel
OLL(x,y) satisfies a ‘u — i homogeneous’ property: 03 L(tz,ty) = th=195 Lz, y) for
t € R, a’(u) may be rewritten as a'(u) = u~¢""05L(1, ¢/u)/i!. This latter form is
convenient to study the behaviour of a* near infinity. One obtains

N
a‘(u) = ZD;U_% +u"%20;(u), (4.11)
n=0
with O; bounded near infinity, v, = n — u, s2 = N +1— p > ry = r. More precisely,
two cases occur:
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(i)ifi>N+1,i—pu>N+1—pu=sy. Thus D! =0 and
Oi(u) = u=OF=DLL(1, c/u) /3!

is indeed bounded near infinity.
(i) if 0 < i < N, then J; := N — ¢ € N and formula (2.3) leads to

S et (1, 0)

a‘(u) = i

=0

u” T 20, (u) (4.12)

with
1
Os(u) = (Ji)~Le/+1 / (1= )70V L(1, te/u) dt
0
bounded near infinity. The change of index n =i + j yields

N
= Z Dy 420, (u)

n=0

with D! = 0if 0 <4 < m;else Di = 05 L(1,0)c™*/[i!(n—1)!] for i < n. These results
show that Vn € {0,...,N},Vi € {0,...,I} then D = K.
(iii) Finally the last property 4 of definition 11 is considered. Here ¢} = I + 1,
= N+ 1— u and also

, X — o)t~ U+l pl _
X — o Hy (X — eu] = X9 / (1- t)fag“L[L ﬂ)—(——c—)] d.
0 u

I
(4.13)

Two cases are discussed.
If I > N,thenVn €{0,...,N}, I > N > nand V, = 0. Hence, the function Wy, s
obeys

Wy 5, (X — ¢, u) =t (I!)_lu(N_I) /1(1 — )1l (c+t(X —c¢))/uldt

and is bounded for (X, u) € h([0,n]) x [A, +oo.
If I <N for J:=N—1-120, formula (2.3) yields

J
X — 't H, [X = D (X = un I Ly X — iy L, (X - e ),
7=0
(4.14)
where the function W s, defined as

w%aX—aw=iﬁﬁ/u—o%+uX—MJ
U (1— ) oV L1, (Eit—(i—{;i))]dv dt

is bounded for (X,u) € h([0,7]) x [A, +00[ and

di(X ~c) = (1) ', " L(1,0)(X - ¢)t / 1(1 —t)f e+ t(X — )} dt.
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With the new index n = I 4+ 1+ j, (4.14) may be rewritten as
N
X — A Hy, [X —cyu] = Y Wa(X =o)X —ftu™ ") 4y | X — oftay o, (X —c,u)
with W, (X —C)=0=V,(X —C) for 0 < n < [; else
X — ¢ w6, (X = c,u) = (X — )58 L(1,0)[1(n — T — 1)!] !
1
x/(l—ﬂﬂo+ﬂX—cW”“1&
0

=|X — "V (X —0).

Consequently, property 4 is satisfied.
To conclude, application of theorem 12 to

b
10) = fp [ f@)Lha,he)] do
0
ensures the stated asymptotic expansion (4.2). |

Ezxample 1. For g e N, f € C, 0 < b < 400 and 7 > max[1,1 — Re(f)] then

1 q Ir--1] 1
fp/ xﬁ(log (113) dz ) _ Eﬂ [fp/ [_1 _xex]nx—(ﬁ-i-n-i-l) logq(a:) dz /\—(n+1)
0 . 0

1+ ze® + Az —
I P q [ p— zcv( 1) oo (_1)1 p—p3
1 (75
+ fp —————1log? " (u) du
>3y e [T

—1)"9(i + j)! log! T A
-B@) ) ( )i!j! l+g—v
{4;j=—p+p-1}
~ (1) +5)! log' T A
E(I-B-1) z (-1 . ‘(Z+J) og A\~ (P—B+1) log” A
e ilj! 1+qg—w
{s;3=p-i—B}
+o(A7"), (4.15)
where I := [r — 1+ Re(8)] and for complex z, E(z) := 0 except if z € N\ {0}, then
E(z):=

Observe that expansion (4.15) contains logarithmic terms \° log® X if and only if

[ is a non-zero and positive integer.
For a given \, the functions Hy(z) = 1 + ze” + Az and g(X) = X! are smooth

respectively near zero and near H,(0) = 1. Thus, Faa de Bruno’s formula (2.11)

ensures that go Hy admits derivatives at zero up to any order. Consequently, gx(z) =
log?(z)[g o H)|(z) € P(]0,b],C) and

b
L(A) = fp/ gr(z) dz
Jo
exists. Moreover, theorem 14 applies to I;(\) with f(z) = z7Plog%(z), So(f) =
—Re(f), L(z,y) = (z+y) ', p= -1, h(z) = 1+ze”, c=1#0,7y=1, N =[r—1],
I=[r—1+Re()], M = max([-1+Re()] +1,0), L € D™ ¢, = 0= Qi(py),
pl—pz+z andA —sz/pll WlthP IIr_l""Re(ﬁ)_iII-

Proc. R. Soc. Lond. A (1996)




2680 A. Sellier

Ezample 2. If c € R*, 3 € C and r > max[1,1 — Re(3)] then
[r-1]

e e ?dx
fp/o 2P (ct T+ Ar) 2

[fp/ (=1)"[c + /z]"z~BtntDe=e qg | \=(n+D)
0

n=0
I e(d) i i) 24l—
(D f ) [T D0
LY e S
—-E(B—i/2-1) Z WC—(HJH) log A

Ty

{Gij=—i/2+B—1-1} v

1) (5 4+ ). ,

+E(+1-i/2-8) Y L.l,)'_(fiﬂcy log/\})\—(Z/2+l—,3+1)
{gid=—i/2—F+1} v

+o(A7"), (4.16)

where I := [2(r — 1+ Re(f)] and e(i) := [r — 1 + Re(B) —i/2].
This integral is in fact split into two terms

e dx e *dz

I,(\) :=fp/0 P Py vy and J(X) :=/1 et Vi) (4.17)

For N := [r — 1], expansion of J(\) with respect to X is obtained by expanding the
function [1 + (¢ + v/z)/Az]~!. One easily gets
[r-1] o)
J(\) = Z [/ (=1)"[c + ] "z~ BHntle= dx] A=) L R(N), (4.18)
1

n=0

where

0o -1
R(/\) — )\—(N+2)(_1>N+1/ e—arx—(B+N+1)[c+ \/:IJ]N+1 [1_'_ 04;\;‘/:13] da
1

= O(/\_T)a
since N + 2 > r. The remaining integral I5(\) is treated by application of theorem
14 with f(2) = 27 Pe™", So(f) = —Re(B), L(z,y) = (z +y)~", p= -1,
K

lim f(z) =Y (-1)'a"? /1,

z—0t
=0

where K = [r — 1+ Re(8)], h(z) = c+ vz, c # 0, v = 1/2, N = [r — 1],
I =[2(r=1+Re(B))], M = max([-1+Re(B)]+1,0), L € DI ¢, = 0 = Qi(p1),
[h(z) — ' = x?/2.

This result allows one to deal also with

I3(\) := / e "log(c+ vz + Az)dz
JO

for ¢ > 0. Use of an integration by parts indeed yields
oo e *dx 1 [® z=Y%e*dx
AITEREY s L e i S X
3(A) g(c) o (c+vzx+Ax) 2/, (c+Vx+ )
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Use of theorem 14 allows us to answer the question (see the introduction) of finding
the expansion of

b
Ju(e) = fp / f(z)Liz, eh(2)] dz

b
~ ¢ fp / (@)L, h(x)) dz
= e"I(e_l)

when weak assumptions are assumed for pseudo-functions f, h and L. In usual ap-
plications, the special case f(z) = z7Plog?(x)g(z) for ¢ € N, B € C and g and
h admitting derivatives up to a certain order near zero is often encountered. The
proposition below provides the expansion of Jj(e€) in such circumstances.

Proposition 15. Consider g € N, 5 € C, 0 < b < 400, L(z,y) a complex and ‘u
homogeneous’ kernel, g € D, (0,C) N L}, (]0,b],C) with Sy(g9) € N and h a real and
bounded function on [0, b] with h(0) = ¢ and fulfilling property 1 of definition 5 which
one introduces real y > 0. For real value R such that R > max(0, 1—Re(8)+u+So(g))
and

1. for X large enough, gx(z) := =P log?(z)g(z)L[\z, h(z)] € P(]0,b],C);

2. N :=[R], I :=[y*(R—u—1+Re(B)— So(g))] and M := max([-1 +
Re(8) — So(g)]] +1,0) then L € DM,

3. if K :== [R—pu—1+Re(8)] and P = =[R - p—1+Re(B) — So(g)] then
gE CK“(O C) and h(z) — h(0) = z¢(x), with ¢ € CE+(0,R); then

b
Na(e) = fp / P log"(2)g(z) L{z, eh(z)] dz
[R] ,,
-y 2 L0 1 [ o) tog e a4

[R—p—14+Re(B)] m

m—l g v
D INDY E:E: q' Ui

m=>5S0(g) 1=S5p(g) =0 v=

<o [ REED gt

Z 8105L(0,¢) log"* " (")

{jij=B—m—1} iyt 1+q—v
+ Z Cjaé+’j’l'/'(1, 0) 10g1+q_v(6_1) }GM—[H;L-H IOgU p
{Gsi+i=1+p—pB+m} v 1+qg—v
+o(ef), .19)
where the coefficients a!, are defined for 0 <14 < I by
[Lxh(gl] [¢(z) 3 la LaP + o(xP ), (4.20)

=0

iS]

and [(z)]° = 1,05 = 6,0
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Proof. By setting f(z) = 2~"log?(z)g(z), So(f) = —Re(B) + So(9), r = R — p,
application of theorem 14 to

I(e) :== fp/o f(z)Le 'z, h(z)]dz

leads to the expansion (4.19). The reader may check that the assumptions bearing
on f, h and L guarantee the equalities (4.20) and all the properties required for
this theorem. Observe that each expansion (4.20) may be obtained by using Faa de
Bruno’s formula for ¢(z) = z71[h(z) — h(0)]. [ ]

Ezample 3. Consider 0 < b < 400, g € D, (0,C) N LL_(]0,b],C) with Sp(g) € N

and h a real positive and bounded function on [0,b]. For real R > 1/2 + Sy(g),

= [R—1/2] and P := [R—1/2—Sy(g)] if g € C& +1(0, C) and h(x) —h(0) = zé(z)
with ¢ € C{ (0, R) then

/ob\/% EZRZ 2n:,b[ /Obg(a:)[h(x)]"x—(n+1/2)dx]en

[R—1/2] m m—l1 IS
(~1)'g' ()b [ [ ] s
+ Upii—5o— | P | 5 7mais | €
mzs;(g)l %:(g) 122 ! 2¢41]! o [u+ h(0)]i+1/2
o), (4.21)
where the real a; obeys definitions (4.20) and by := 1, b, := 1x3x...x[1+2(n—1)]

forn>1.
If h(0) # 0, application of proposition 15 with 8 = ¢ =0 and

L(z,y) = T M -1/2,
831—’(”?0) = %7 Y= SO(¢)1 N = IIR]]

I=[y ' (R-1/2=S(9)], M=0, LeDj"
leads to the result. If h(0) = 0, observe that

-1

fp/ w2 qu = pr ymi/2 du] =0
0 €

and for ef(x) — 0 use of the Taylor expansion (2.3)

1)"by ()" ep(@)]V+E (1 (L= )N (=1)N by, dt
\/1 + e¢> nZO ampl €+ N /o ONHL[] 4 te¢(x)]N:3/2

(4.22)
yields the first sum on the right-hand side of (4.21).

In the previous integral, no logarithmic term \° log’C A appears in the asymptotic
expansion. The next example exhibits a case where this is not true any more.
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Ezxample 4. For ¢ > 0,0 < b < 400, k € N\ {0} and real R > 0, then

fp/b cos(z) dx
o z3/2\/x + e(c+ xF)
[[R]] b
1 n
—Z Qn) 'b [ /cos(:c)[c+:ck]"a:_("“/2)dx]e"
[R+1] F(m) Y _
(—1)Z+l bi < um 3/2 du
APIDIEDY 2541(20)] fp/o [at it/

m=0 I'=0 {i;ik=m—2U'}

( 1)J C] . . m~—1

Z 21 —(20+1)(20 +3)... (26 + 1+ 25 —2)loge pe
{G:j=m—1-3}

+o(ef), (4.23)

where b, is defined in example 3 and for a positive integer m, F'(2m) = F(2m+1) :=

m’Hereg@):cos(x), So(g) =0, g@”():( 1Y, g@'+1(0) =0, B =3/2, ¢ = 0,

v=k N=[R],I=[k"'R],M=0,K =[R+1], P = [R],
1
L(z,y) = ——— € DWNIM)
=9) = gy € P

and a = 0 except if p = i(k — 1) then a} = 1. Note that if h(z) = ¢ +2° with s >0
and not a positive integer then h(z) — ¢ does not belong to

CE_R]H_l (0, C)

for [R] > s — 1. In such circumstances, the expansion of the integral up to order
o(e?) is supplied by the general theorem 14. Observe that each integral of the type

o0 ua
fp/o (u+c)? du,

arising on the right-hand side of (4.23), may be calculated by using Mellin transforms.

At this stage it is possible to handle the motivating case of integral M (e) (see
(1.2)). Since the change of scale ©’ = —z induces no corrective term for an integration
in the finite part sense of Hadamard (consult Sellier 1994, lemma 2) and under Q
pseudo-homogeneous property of kernel K one actually gets for —co <a <0< b <
400

_ fp / f(@) Kz, eh(z)] dz + (~1)°S(~1) fp / @)K eH (') do’

(4.24)
with g(z) = f(—z) and also H(z) = —h(—z). Application of general theorem 14
leads to the asymptotic expansion of M), (€) which is seen to involve the behaviour
of the pseudo-functions f and real function h at zero on the right and on the left.
These behaviours may be different. For the sake of simplicity we restrict the study
to the usual case of functions f and h which are smooth enough in a neighbourhood
of zero and other behaviours are left to the reader to examine.

Theorem 16. Consider —00 < a < 0 < b < +00,Q an integer, K a ‘QQ pseudo-
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homogeneous’ kernel, f € D(0,C) with Sy(f) € N and h a real and bounded function
on [a, b] such that Sp[h — h(0)] > 0. If R > max(0,1 4+ Q + So(f)) and
1. for X large enough then f(z)K[A\x, h(z)] € P(Ja,b[,C);
2.if N =[R], I = [Sg'[h— h(0O))(R = Q — 1 — So(f))] then K € Dyp;"";
3.ifE=[R-Q—-1], P = [R—Q —1— So(f)] then f € C¥**(0,C) and
h(z) = h(0) + z¢(z) with ¢ € CP+1(0,R) then

My(e) = fp / (@)K [z, eh(x)) da

[R] .,
_o(eR)+Za K{,0) [ / S(2)f (@) [h(@)]"2%~ ndx]

[[R—Q—l]] m

DRI (l;_(o [Z ot 1pr / O, (u, h(0)) ’“du] Gt

m=5So(f) 1=So(f)
Q-1l-1 ]n zf l)(O) )
Z ""“‘——an Q—l—i—1:|

[R] n

SEC DS )

n=max[0,S0(g9)+Q+1] I=So(g) =0
x0y3 K (1,0)e" loge, (4.25)

where the coefficients a!, are defined by relations (4.20).

1n—

il(n =)

Proof. First, application of proposition 15 with 4 = Q, ¢ = 0= fand L = K
immediately yields the asymptotic behaviour of the first integral, M} (e), arising on
the right-hand side of (4.24). More precisely, the reader may check that, under the
specified assumptions

=1 [ f@Kla,chio)]aa
_[[f%an__“[ /f )[h(2)]" 29~ "dx]

n=0
[R-Q-1] m

) m—l 4 o
DD f“(O)[‘ amz__!z—szp/o 8;L(u7h(0))umdu]662+m+1

m=38o(f) I=So(f)
[R] —-Q-1n—Q-1-1 i
1oy sy MO ]
| _ ' | n—Q—Il—i—1
n=max|[0,50(9)+Q+1] I=So(g) =0 v (n 2 it
x 05 L(1,0)e" log € + o(e®). (4.26)

The remaining integral M?(e) = My () — M} (e) is treated by taking into account
the above formula (4.26) and also definitions g(z) = f(—=z), H(z) = —h(—z) which
ensure g (0) = (~1)'f(0),

z ' [H(z) — H(0)] = Z_(—l)paf,x” + o(zP ™)
and also property 95 L[u, —h(0)] = (—1)27¢S(~1)04 L[—u, h(0)]. [ ]
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To conclude, a theorem extending the results proposed by theorem 14 is given.

Theorem 17. Consider 0 < b < +oo, f € D,(0,0) ﬂLlloc(]O,b], C) with So(f) :=
Sa(f), g € DL(0,C) N L ()0, +00[,C) with So(g) := Sy (g) = 0 and S..(g) :=
S (g1) if g1(z) := g(z~!) for > 0, L(z,y) a complex and ‘v homogeneous’ kernel
(see (1.2)). Moreover h is a real function bounded in [0,b] with h(0) = ¢ and fulfilling
property 1 of definition 5, i.e. such that there exist y € R% , n > 0, hg with h(z)—c ==
IL"YhQ(ZE), ho((l?) > 0,

M
hoe) = 3 alog™ () + ofa)

m=0

in |0,n] with apr # 0. Forr > 0, ifr, f, g, h and L satisfy each of the next properties:
1. for X\ large enough,

ux(z) = f(z)g(Az)L[Az, h(z)] € P(]0,b], C);
2. r 2 max[—p + Se(9),1 + So(f)],

dim fz)= Y 2" filog"(x)

k,Re(8,)<r—1
and also
0 :@p .
im g(z) = Yo g’ log"(@);
q,Re(Bp)<—1-S0(f)
3. if
=[r+u—S<(9)],
L=y (r=1=5(/))]
and
M :=max([-1 — So(f)] +1,0)

then L € DéN’I’M);

4. if there existsn € {0, ..., N} with 03 L(1,0) # 0 thenn; := min{n € {0,..., N},
O3 L(1,0) # 0} and g € 5_?‘5"(; (]0, +o0[, O) with T > 7+ —ny and G bounded
in a neighbourhood of infinity where

E M(e)

g(u) =D > gou " log™(e) +u7 TG (u), (4.27)

e=0 m=0

with Se(g9) = Re(4p) < --+ < Re(Ag) < T, else if 93 L(1,0) = 0, ¥n € {0,...,N}
then ny := N + 1 and

N
> F(n) :=0;
n=ni
5.¥i€{0,...,1}, [M(z) — di € DT Y(0,C) with (see (4.1))
P, Qi(pi) ; )
[h(z) - ] Z Z A g 27 log (z) + 2% A (a);
=0 g¢;i=
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then

~ fp / f(@)g(\x) LAz, h(z)] da

:O()\—T)+ Z Zc;; gfnw

m,Re(Ae)+n—p<r v=0

X [ fp /0 ’ f@)[h(z))"zt e log™ " () dx] AT (A=) [og? )

l,k,1,pi,qs qitk

+ Z flk Piqi z_% Cvi+k(_

Re(r;;i +6,)<r—1

X {fp/ wu"’;i*‘él logqi-}—k—v(u) du
0

7!

_ i & g° L0, c) loghtathta=v \
Pq 1151 1 ; k _
{Gid+Bp=—7},~61—1} a=0 - +at+k+q—v

l!]![l—i-qz—i-k—l-m—v]

{53+ Ae=1—itptri +6} m=0

SO CIRLARRIYLDY (4.28)

Note that this theorem allows us to treat also the case of Sy(g) # 0. This is
achieved by choosing G(u) = g(u)u=% and F(z) := 2% f(z). Hence,

b
~ fp / f(@)g(rx) LAz, h(x)) de

b
= 5@ fp / F(x)G(\z)L[\z, h(z)] dz
0

with So(G) = 0.

Proof. Naturally I(\) exists and it is now understood that each notation ry = r—1,
ro =1, K., Vi, t1, ty, Hy,, Sy, ', Wy 55, A (X —c) keeps its meaning as introduced for
the derivation of theorem 14, unless it is clearly modified. For K (z,u) := g(u)L(u,x)
the proof is similar to the one employed for theorem 14 and it is therefore only briefly
reported below. ]

If N :=[r+ p— Sx(g)], when u — 400, combination of expansion (4.27) for
function g and for ‘u homogeneous’ function L(u, X) of the following decomposition

N n
L(X, u) — Z a2 L(]‘?O)Xnu—(n—u)

|
neo n:

—(N+1—p) Yy N+1
Y X 1—)NONTIL(1,tX /u)dt  (4.29
N! 0 2
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yields the equality (3.2) in the form

M(e)
3”L 1,0
K(X,u) = Z Z S ( 9em %5 L(1,0) Xru~ (=i 1og™ o + A(X, u), (4.30)

Re(Ae)+n—pr m=0

where the complex function A(X,u) obeys

N+1 1
A, ) = glupu o X / (1 =)™ L(L, X /u)
. 0

+ i g;onagL(l? 0) Xnu—(n-i—/l

e H) log™ u
n!

Re(Ae)+n—pu>r

N
OL(L,0) o oo
+ Z i—#X u” TG (). (4.31)

n=nj;

By introducing successively real values s > r with s := inf{Re(A.) +n—u for (n,e) €
{n1, N} x{0,..., E} such that Re(Ae)+n—p > r}, t := [N+1—p+S.(g)—7]/2 > 0,
s = min(s,T + ny — p,v +t) > r and finally sy = r + (s —7)/2 > r then
r+1> sy and A(X,u) may be rewritten A(X,u) = u=*2V,,(X,u) with V,,(X,u) =
Vi(X,u) 4+ Vo (X, u) + V3(X, u) if u=*2V,(X, u) is the last sum on the right-hand side
of (4.31) and

Vi(X,u) = Z g(’mw)(nu—(nwle—u—n) log™ u,
Re(Ae)+n—p>r n!
X N+1 1
Va(X,u) = [g(u)us""(g)_t]u_(’“ﬁ_”)—J—v'—/ (1—t)Noy ™ L(1,tX /u) dt.(4.32)
- Jo

For n > b, (3.3) holds (see theorem 14). If n < b, the above decomposition of
A(X,u) and the choice of s, prove that (3.3) is true.

As a result of (4.30), Ype = n + Aec — p, Kpem(X) = ¢%5,03L(1,0)X"/n! and
nem(x) := f(2) Knem[h(z)] € Li,.(]0,b], C). For t, := max[r — 1 — Sy(f), Re(yne) —
1—=S8(f)] =7—1-=25(f) 2 0and I := [y 't,] > 0, (4.5) is replaced, in a

neighbourhood of ¢, for t} =T +1 > t; =y~ !¢, by
K’nem(X Z nem - C + IX - C| Vnem( - C), (433)
with K¢, = gemK}L nem(X —¢) = g2, Vo(X — ¢). Expansion (4.1) ensures that

(hy Kpem) € I 5010, ).
If X — ¢, expansion (4.7) of K(X,u) is replaced by

K(X,u) = g(u }“ ' +g(w)|X — o[ Hyy (X = c,u)

with a’(u) := g(u)95L(u, c)/i!.

Note that Dgy(z) := g(Az)f(z)|h(z) — [t Hy, [h(z) — ¢, A\x] = g(Az)z"~ 1+ B(z)
with the function B bounded near zero and o' := [y(I + 1) + 1 + So(f) — r]/3 > 0.
Moreover, Syo(g) = 0 and g € L{(]0,+00[,C) ensures that g € LL ([0, +o0],C).
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Thereafter, relation (3.6) is fulfilled because

ul—r—n’

A ! A u u u ’
./0 9O f(@) (@) — o Hyy [h(z) — ¢, \a] de| < [/O l9(w)Bw/N]du] |y

So(g) = 0 and the definition of a* show that Sy(a*) > 0 > —r = —r; — 1. Here
R =r, R=—1—.Su(f). Under the proposed assumptions it is possible to write near
Zero

P:9,7

d= D G MHOL0, A’ log!(@)/[il]!] + o(u")
Re(Bp)+i<—1-So(f)
with 0 < j < M = max([-1 = So(f)] +1,0). If i > N +1 then a’(u) = u™*0;(u)
with
104(u) = g(u)uS= N DAL, e uu~r+),
i.e. O; is bounded near infinity. For 0 < ¢ < N, introduction of the positive integer
J; = N — i leads to

ai(u) 8’+JL(1 0) (i) u~ (VH1I=m) J AN41
o D7l e [ a0 oL e

§=0
(4.34)
The above approach for the expansion of K (X, u) when u — +o00 (see (4.29), (4.30)
and (4.31)) and a change of index n = ¢ + j show that
) ~ g;onanL 170) n—i, —(n — m —s
dw= Y Ewﬁc ™ e og™ (u) +u 205 (u), (4.35)
Re(Ae)+n—p<r ’ ’

with O;(u) bounded near infinity and E(, ;) := 1 if n > 1, else E(, ;) := 0. Thus, (3.7)
is true.
Consider the new function

F(X,u) = glu)u=U+1- X = / (1= t)'oI L[, e+ t(X — ¢)/u] dt. (4.36)

If I > N, relation

gu)u=THI=1) = ()= NHL=) g =U=N) — gy =82 (3, S0 (9) =gy~ (rHt=s2)y =(I=N)

and Vpem = 0 show that Wy ., (X — ¢,u) = g(u)wy, 5,(X — ¢,u) is bounded for
(X, u) € h([0,n]) x [A, +00[.

If I < N —1, use of decomposition (4.14) ensures that this time with J := N —
I-1>20andn=I+1+4+m

_ —(I4+14+m—p) (N+1—p) (X )
g(u Zd c)u +u” T R(X,u)
N
2 dn11(X —c)u " B) 4 g (N+1= #)(—X—#—R(X u),
n=I+1 I
R(X,u)z/ (1—t)e+t(X —¢) {/ (1 —v)?05 T L[1,v(c +t(XT_C))]dv dt.
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Hence, it is possible to choose Wy, 5, bounded for (X, u) € h([0,7]) x [A, +oo[ and
such that

n,e,m

| X — c[t,th'l,s2 (X —cu) = Z 92, dn_1_1(X — c)u(mHAc—h=s2) [ogmy,
Re(Ae)+n—pu>r

N
+ 3 a1 (X — QumTEnsms) oy

n=I+1

- o (X =)t
+g(u) (N41—p— 2)'——I-'(—]"———_R()( — C, U)
Ezample 5. For g €N, 8 € C,c € R*, 0 < b < 400 and 7 > max([2,1 — Re(3)] then

f /1 log?(z) dx
P o 281+ Az)(c+ zlogx + \x)

= Z( 1)7 Z[fp./ [c + zlog 2]z~ B++2) Jog(z) dx] A~U+2)

j=0 n=0
I g+t +i—v
. (=)t =Plog?™* " (u) du
+7’Z;vz__:cq+l - {fp/ (1+u (u+c)z+l
N 10g1+q+7' Y ( ﬁ) o —il (Z _B-1-— 6)!C~ﬁ—-l—e
l+qg+i—-v i(-p—1-c¢)!

B—1—1

. -1 f—1-p)le?
REUCTDY i(!(ﬁ—l—pgip)!}}

x A=A og? X + 0o(A77), (4.37)
where I = [r — 1+ Re(f)] and for z € C, E(z) := 1 if 2 € N\ {0}, else E(z) := 0.
Here f(z) = 277 log?(z), So(f) = —Re(B), h(z) = c+zlogz, v =1, h(0) = ¢ # 0,
(h(z) = h(O)]" = a'log’ @, P =i, Qi(pi) =4, A}, = bpii)y Ty, = 10(pi,0), 9(u) =
1/[ +U], SO( ) - 0 6;0 =D Q(p) - 0 gp B (__1)17’ Ae = €+1, M(e) = 07
6 = (-1, L(z,y) = Yz +y, p= -1, N = [r =2}, I = [r = 1 + Re(d)],
M = max([-1+ Re(B)] + 1,0) and L € DNIM).

The author sincerely thanks one referee for helpful suggestions.
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