Transient Growth Before
Coupled-Mode Flutter

Transient growth of energy is known to occur even in stable dynamical systems due to the

non-normality of the underlying linear operator. This has been the object of growing
P.J Schmid1 attention in the field of hydrodynamic stability, where linearly stable flows may be found

e to be strongly nonlinearly unstable as a consequence of transient growth. We apply these

concepts to the generic case of coupled-mode flutter, which is a mechanism with important
applications in the field of fluid-structure interactions. Using numerical and analytical
approaches on a simple system with two degrees-of-freedom and antisymmetric coupling
we show that the energy of such a system may grow by a factor of more than 10, before
the threshold of coupled-mode flutter is crossed. This growth is a simple consequence of
the nonorthogonality of modes arising from the nonconservative forces. These general
results are then applied to three cases in the field of flow-induced vibrations: (a) panel
flutter (two-degrees-of-freedom model, as used by Dowell) (b) follower force (two-
degrees-of-freedom model, as used by Bamberger) and (c) fluid-conveying pipes (two-
degree-of-freedom model, as used by Benjamin andd®asis) for different mass ratios.
For these three cases we show that the magnitude of transient growth of mechanical
energy before the onset of coupled-mode flutter is substantial enough to cause a signifi-
cant discrepancy between the apparent threshold of instability and the one predicted by
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1 Introduction mode flutter. If this transient growth is sufficiently large, finite-

. I - amplitude effects can be triggered even though infinitesimal
Flow-induced vibration phenomena are a ubiquitous feature otion is asymptotically stable.

numerous engineering applications ranging from buffeting of air- | i the goal of this study to explore the potential of short-term
foils to deformation of building s_truct'ures and brldge_'s under W'”Qnergy growth at subcritical conditions for simple two-degrees-of-
loads. In most cases, these vibrations are undesirable, caugi@@dom approximations to technologically relevant configura-
material fatigue at best and catastrophic failure at worst. It is thygns.
not surprising that a substantial body of literature is devoted to theThe organization of the paper is as follows. We will first con-
analysis and control of flow-induced instabilities. Low-ider a simple undamped two-degrees-of-freedom model of
dimensional models are often used to approximate prohibitivetpupled-mode flutter and establish the mathematical framework
complex systems, and the critical parameters for the onset of flér stability calculations. Modal and nonmodal stability will be
ter are computed for a moderate number of degrees-of-freedatansidered, and asymptotic scalings as well as upper bounds on
The analysis follows a typical modal approach where the tempogisturbance growth will be presented. Effects of damping on the
motion of the structure is assumed to behave exponentially $tbility characteristics will be treated as well. Three classical ap-
time. In the very common mechanism of coupled-mode flutter twRjications then follow, namely, panel flutt¢®], follower-force,
(or more purely oscillatory states merge and produce exponekf): and fluid-conveying pipe.7], which will further exemplify
tially growing (and decayingmotion. For parameter values belowthe technques of the previous sections. Summarizing comments
this critical one, it is believed that stable motion prevails. conclude this paper.
A similar argument has been used for the onset of transition to
turbulence: As exponentially growing solutions of the linearized
fluids equations are encountered, the transition to turbulent fllidd Theoretical Framework
motion is expected. In recent years, however, it has been discov-
ered that short-term instabilities are present even at subcritica-1 General Undamped Two-Degrees-of-Freedom System
parameter values, and that these type of instabilities are a con@ Ny problems involving fde-str_ucture interactions can be mod-
quence of the nature of the underlying stability equatitsee, eled by a coupled system of oscillators of the form
e.g.,[1-4). X+x=ay (1)
The equations governing many cases of fluid-structure interac- . 2
tions are also of this type, and it therefore appears likely that the y+Q%=—ax (1b)
governing equations support transiently growing solutions for pdescribing the temporal evolution of the two degrees-of-freedom
rameter values below the critical one for the onset of coupledndy. The left-hand side describes harmonic oscillators of fre-
quencies 1 andl), while the right-hand side accounts for the cou-
*Permanent address: Department of Applied Mathematics, University of Washirghing of the two oscillators witha as the coupling coefficient.
ton, Box 352420, Seattle, WA 98195-2420. Systems of this form often arise when equations governing the
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0%2-1 stands for the condition number & and A is a diagonal & 4
(2) matrix containing the eigenvalues Af

We notice the following relation. For systems witliS) =1 the
For two oscillators with a supercritical coupling coefficient expodpper and lower bound coincide, and the temporal evolutio@ of
nentially growing solutions are encountered. For coupling coefil entirely governed by the real part of the least stable eigenvalue.
cients below the critical one, we observe purely oscillatory beha@ystems with«(S)=1 are known ashormal systems. On the
ior. The above critical coupling coefficient is a widely used angther hand, if«(S) is larger than 1, the discrepancy between lower
accepted tool for determining the onset of unstable motion. It &d upper bound allows for short-term effects before the exponen-
commonly believed that for coupling coefficients below the crititial behavior governed by prevails ast—o. Systems with

cal one no amplification of infinitesimal disturbances is possibles(S)>1 are categorized ason-normalsystems. Non-normal sys-
tems have a set of nonorthogonal eigenvectors and the source of

2.2 Transient Amplification of Disturbance Energy. The  gnhort-term energy growth lies in this nonorthogonality of the sys-
goal of this manuscript is to explore the potential for short-terigmy's eigenvectors. Even under subcritical conditions, i.e., for
linear instabilities in the absence of exponentially growing solyspypling coefficients below the critical one, a nonorthogonal su-
tions. To this end we treat the above system of equations apgposition of exponentially decaying eigensolutions can lead to

general initial value problem of the form substantial disturbance growth.
X 0 1 0 0, 2.3 Asymptotic Scalings. To further probe the solution be-
d | % -1 0 a 0 & d havior as we approach the pritical cqupling coefficiethe
_ = or —q=Aq. Laplace transform the governing equations to obtain
dt| y 0 O 0 11\ Yy dt ) _
y a0 —0? o \V (pe+1)X—aY=pxy+Xq (11a)
®3) (p?+Q%)Y—aX=py,+yo (11b)
The formal solution of this initial value problem can be writterwith X(p) and Y(p) as the Laplace transform of the dependent
in terms of the matrix exponential &. We obtain variablesx(t) andy(t), respectively. Solving foX(p) we obtain
the expression
q(t) =exp(tA)do 4 L
ith th tor of initial diti > dyg. = 2 3
with gy as the vector of initial conditiong,, Xg, Yo, andyg X(p) (p2+1)(p2+02)+a2[A+pB+p C+p°D] (12)

Using this formulation, we wish to compute the amplification of
disturbances by determining the ratio of the disturbance energygth A, B, C, and D determined from the initial conditions. An

a given timet to the initial energy of a general perturbation. Maxi-analogous expression can be derived¥ép). After inversion of
mizing this ratio over all possible initial conditions results in thehe Laplace transform we get the following expression for the
largest possible amplification of initial perturbations over a timgariablex(t):

span[0 t]. Mathematically, we define the largest possible energy

amplificationG(t) as ® 1 (A {+B' sinat+C’ cosBt
X(t) = ——— cosa sina cos
E® _ Jal?  JlexptA)q? 2a,V1-(afa)”
G(t)=ma,iE =max > =max > L
o EO) o laol® g ol +D’ sinpt] (13)
=|lexp(tA)? (5) Where

where we have assumed that taking the norm of the state wgctor 2 221 2 \/ﬁ
is equivalent to computing the energy of the state vector. We ap 2(1+Q N 1) -4a0 (14)

therefore define I . .
andA’, B’, C’, andD’ depend on initial conditions. This last

lall2=x2+ %2+ Q2y?+y? (6) expression yields the behavior aft) as the critical coupling
o ) ) coefficient is approached. We obtain
which is easily related to the standdrg-norm||-||, by introduc-

ing weight matrice$= according to

1
X(t) ~ —=. (15)
10 0 O J1-(alay)?
5 1 0 O The same holds true for(t), y(t), andy(t). Consequently, the
ldl>=[IFql3 F= 00 0 0 (7)  energyE of the coupled oscillators is expected to behave as
1
0 0 0 1 E~ TEPTENE (16)
Reformulating the energy amplificatio®(t) in terms of the - _ ¢ o
L,-norm results in as the stability boundary is approached, when time is fixed.
G(t):||Fexp(tA)F’1H§. @8) 2.4 Numerical Results. The quantityG(t), computed from

Eq. (8), represents the maximum possible energy amplification,
It is often desirable to bound the maximum amplification ofvhich for each instant in time is optimized over all possible initial
energy. Using the definition of the energy amplification it i€onditions of unit energy, as is apparent from E5). The specific
straightforward to derive lower and upper bounds as follows: initial condition that achieves an amplification &f(t) may be
B TP different for different times, an@&(t) should be thought of as the
exp2M) <G(1) =[SexpA)S H*<«*(S)exp2At)  (9)  envelope of the energy evolution of individual initial conditions of
unit energy. The energy amplificati@\(t) for the undamped gen-
eral system withQ?=1.1 anda/a,=0.9 is shown in Fig. (a)
together with the energy evolution of four randomly chosen initial
conditions of unit energy. We notice an amplification of energy of
«(S)=|l9Is Y (10) nearly twenty times the initial energy after approximately 150

whereN\ is the real part of the least stable eigenvaluépfndS
denotes the %4 matrix of normalized eigenvectors &f. The
symbol
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Fig. 1 General undamped system with Q2=1.1 and a/a,

=0.9. Optimal energy amplification versus time (top, solid line )

and energy amplification for four random initial conditions of

unit energy (top, dashed lines ). Maximum energy amplification

versus the coupling coefficient (bottom ). The dashed curve

(bottom ) represents the function 1 /(1—(al/a,)?). The continu-

ous curve (bottom ) represents both the maximum of  G(t) over

time and the upper bound given in Eq.  (9).

Fig. 2 General undamped system with  Q2=10 and a/a,=0.9.
Energy amplification versus time  (top) and maximum energy

amplification versus the coupling coefficient (bottom ). The
dashed curve represents the function 1 /(1—(a/a.)?). The con-
tinuous curve represents both the maximum of G(t) over time
and the upper bound given in Eq.  (9).

we observe a short-term amplification of initial energy of up to

time units. We like to emphasize that this amplification occurs atfiity times. The behavior 0, as the critical coupling coeffi-
value of the coupling coefficient that is below the critical one fogient is approached is displayed in Figbp together with the
the onset of couple-mode flutter. As the critical coupling coeffasymptotic behaviof16).
cient for this particular frequency ratid is approached we obtain 25 Effects of Damping. Damping is a naturally occuring
an even Largehr transient a_mglifri]cat_ion of initial er!er_gy,l as %epid%‘?fe'ct in many quid-structuré systems that has to be accounted for
ItrIleFlgc]i.ai(h()e. chir?/SeymAgO?hce ?:riét‘i\élglr gg’f&iﬁg@cgé%cduen? i:sa or modeled when ana_llyzi_ng the onset of coqpled-mode _flutter. In
proached, the maximum transient amplification of ene@jy Rhis paper, we are mainly interested how additional damping terms

| 2 modify the observations we made in the previous section. We

=max G(t) follows the correct asymptotic behavior. ain start by analyzing a simple two-degrees-of-freedom model,

The transient amplification of disturbance energy prevails al ) ) .
for a significantly larger frequency ratio. Figuréa® shows the %‘%t add a damping term proportional to the velocity. We get

temporal evolution ofG for a frequency ratio of)?=10. Again, X+bX+x=ay (17a)

896 / Vol. 70, NOVEMBER 2003 Transactions of the ASME



Fig. 3 General damped system with Q?=10and a/a,=0.9. For  Fig. 4 General damped system with Q2?=10 at criticality. En-

damping a coefficient of b=0.1, (top) and a damping coefficient ergy amplification versus time for ~ b=1 (top), and maximum
of b=1 (bottom ). energy amplification versus damping coefficient (bottom ). The
dashed curve represents the asymptotic behavior ~1/b2.
y+by+Q%y=—ax (17b) The above formula describes the modification of the critical cou-

pling coefficient when a velocity-dependent damping term is in-
with b as the damping coefficient. Traditional stability analysis dffoduced into the governing equations.
this problem follows along the same lines as for the undampedWwe are of course also interested in the effects of damping on the
case. Applying a Laplace transform to the initial value problemotential for transient amplification at subcritical values of the
results in the relation coupling constant. Modifying the system matéxto account for
the additional damping terms, we compute the amplification of
disturbance energé(t) as in the previous section.
=0 (18) The results in Fig. 3 demonstrate that the additional damping
terms exert a rather substantial—but not surprising—influence on

: : , —_ . the long-term behavior. The short-term amplification of energy, on
frc_)r_n Wh'Ch_.V'a Rou_ths criterion—we obtain a valge for thethe other hand, is only mildly influenced by damping. We still
critical coupling coefficient for the onset of flutter motion:

observe an energy amplification of approximately forty times the
initial energy for a damping coefficient df=0.1, and even for an

a.=a /172b2 0%+1 (19) excessively large damping @&f=1 we obtain an increase in en-
c e (Q%-1)% ergy of nearly one order of magnitude before strong decay sets in
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Fig. 5 Maximum energy amplification as a function of coupling and damping
coefficient for the general damped system at 02=10

(see Fig. 3 As the critical coupling parametét9) is approached, tem provides the mathematical tools as well as the motivation to
an oscillatory state is reached f@i(t) with a maximum amplifi- investigate more realistic models of fluid-structure interactions for
cation of more than forty times the initial energgee Fig. 4a)).  their potential to amplify energy in the subcritical parameter re-
A simple analysis shows that at the onset of instability, i.e., f@ime. To this end, we concentrate on three classical and well-
a=a., the solution to the damped system behaves like studied examples of two-degrees-of-freedom systdi@spanel
flutter, (b) follower-force, and(c) fluid-conveying pipegsee Fig.
6 for a sketch of the geometryFor each system we will compute
and similarly for they-component. For this solution behavior, theand present the amplification of energyt) over a range of gov-
maximum of the energy amplification is found to occurtat erning parameters.
~1/b and the maximum transient growth scales K&,y
~1/b?. This scaling is verified by numerical computations With
the results shown in Fig.(8). The asymptotic scaling is dISpI"’Iyeolnormal to the flow can lead to vibrational instabilities. This type

as the dashed curve. X T ; .
A two-dimensional parameter study of the maximum amplificaqf instabilities is prototypical and very important for many con

tion of initial disturbance energy is depicted in Fig. 5. We observe
a substantial amount of maximum transient growth as the stability U
boundary is approached.

The above analysis describes external damping that acts with I ——
equal magnitude on the two degrees-of-freedom. It is a well-
known fact(see[10,11) that a discrepancy between the damping
in the equations fox andy can have a stabilizing or destabilizing
effect and thus change the critical coupling constant. Following R} 9
Bolotin [10] and introducing a damping coefficient bfand zb
into thex andy-equation, respectively, the critical coupling coef-
ficient can be derived as

2\ \/ , (L Q%+t 7
1+9 (Q%-1)2

which represents the generalization of Etp) which is recovered

for »=1. Numerical experiments have revealed that the transient
effects observed for,=1 prevail qualitatively for the more gen-
eral case once the critical coupling coefficient has been redefined
according to Eq(21).

x~e P{(cosat+t cosat+:--) (20)

3.1 Panel Flutter. As high-speed flow passes a flat plate
ith clamped edges, the induced elastic bending in the direction

_ 50
¢ %

(1)

3 Applications

The strong short-term amplification of initial energy for param-
eters below the critical ones for the onset of coupled-mode flutter
can have significant consequences for the design of systems that
exhibit aeroelastic deformations or other fluid-structure phenorpig. 6 Geometry sketch for panel flutter  (top), follower force
ena. The above analysis of a simple two-degrees-of-freedom s§issttom left ), and fluid-conveying pipe  (bottom right )
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figurations in aerospace applicatiofssipersonic flow past an air- T T T T T T T "
foil) and has thus been studied extensively. In this paper we w : b ' 2 : : ‘ :
focus on a highly simplified, yet physically relevant, model whicl

will capture some of the main features of panel flutter instabililie:

The model under investigation is taken from Dowd]. Three

plates of length and massn are linked together and supported a ¢
each endsee Fig. 6a)) introducing two degrees-of-freedom for

the motion of the system. With, andq, as the vertical displace-

ment of the interior nodes, Dowdb] derives the following set of
equations

2 ml pU2 ©
§m|Q1+FQ2+kQ1+Z_QZ:0 (229)
m 2 p.UZ
FQ1+§m|Q2+kQ2—WQ1=O (22)

wherek denotes the spring constant, gnd, U.., andM., stand
for the freestream density, velocity, and Mach number, respe
tively. Nondimensionalizing the above equations using
=p,U2/2M_k and JmI/K as a characteristic time scale, we ob
tain

2 1
§Q1+ 6Q2+Q1:_7\QZ: (239)
12

g%* §Q2+Q2:>\Q1- (230)

We can further simplify the system by introducing new depende
variables defined ax=.5/3(q;+q,) and y=q;—q, which
yields *

X+x=ay (24a) ©
y+ Q2% =—ax (24b)

with Q?=5/3 anda= \/5/3\.

In this form, the reduced system resembles the undamped tv
degrees-of-freedom system of the previous section, and we sha
expect the existence of transient amplification of energy for su
critical coupling coefficienta.. The critical coupling coefficient is
a.=1/3, equivalent tox,=1/y/15 in [5]. Figure 1a) shows the 10°
maximum energy amplificatiois(t) as a function of time for 107
ala,=0.9 or, equivalently, J.,/U.)?>=0.9 whereU,, is the criti-
cal flow velocity. For this choice of parameter we observe aﬂg. 7 Energy amplification for undamped panel flutter with

amplification of 20 times the initial energy. As the critical COUZ/2.=0.9 versus time (top ), maximum energy amplification ver-

pling coefficient is approached, we again recover the propgis coupling coefficient  (bottom ). The dashed curve repre-

asymptotic scaling(dashed curvedas di5p|ay?d in Fig. (D). sents the asymptotic behavior 1 /(1—(a/a.)?). The continuous
These results clearly demonstrate that large disturbance growtlisse represents both the maximum of  G(t) over time and the

possible even before the coalescence of natural frequencies amger bound given in Eq.  (9).
thus, the onset of panel flutter.

-1

1
1-(a)

3.2 Follower Force. A slightly more complex two-degrees-
of-freedom model is sketched in Fig(b$ where two hinged rods

of lengthl are subject to a forcE acting on the bottom and in the { 4 3/2} _a

0 2 —1|[¢ 1 —-1[g

direction of the lower rod. The motion of the two rods is affected 32 1| ¢ + -1 1 H¢ 0 0 HA (25)
by a torsional spring acting at the hinge. The configuration of the
rods is described by the anglésaind ¢ measured with respect to with a=F/kl as the coupling coefficient.
the vertical axis. We will follow Bambergd6] in deriving the At a value ofa=0.1, we determine the two natural frequencies
system of equations governing the above configuration. Benjantihthe system as»;=0.337 andw,=2.243 which results in the
[7] has studied models of this type and the specific case illustrategliare of the frequency ratid?=44.4. Increasing the parameter
in Fig. 6(b) emerges as a particular case of a fluid-conveying pigebeyond this critical point, which Bamberggs] determined as
for zero mass ratig and infinite fluid velocityU, but constant a.=2.54, exponentially growing solutions are encountered.
JBU (see Paloussig12]). Again, we wish to probe the possibility and amount of short-term

According to Bambergel6], but using the dimensionless pa-energy growth for parameter valuaselow the critical one.
rameters of Benjamini7] for the sake of clarity, the governing In order to use the formalism introduced in this paper, we define
equations are given as the system matriA in (3) as
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Fig. 8 Energy amplification for undamped follower force prob-

lem with a/a,=0.9 versus time (top), maximum energy amplifi-
cation versus coupling coefficient (bottom ). The dashed curve
represents the asymptotic behavior 1 /(1—(al/a.)?). The con-
tinuous curve represents both the maximum of G(t) over time
and the upper bound given in Eq.  (9).

1 0 0 O, 0 1 o0 o0
0 0 32 [(@-2 0 (1-a o0
A%lo 0 1 o o o0 o0 1
0 32 0 1 1 0 -1 o0

(26)

Alternatively, using different dependent variables the governi

equations can be rewritten in the form
X+X=a(y—&X) (273)

y+Q%y=—a(x+Ly) (27)

900 / Vol. 70, NOVEMBER 2003
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Fig. 9 Energy amplification for the fluid-conveying pipe prob-

lem with a/a,=0.999 versus time (top), maximum energy am-
plification versus coupling coefficient (bottom ). The dashed
curve represents the asymptotic behavior 1 /(1—(al/a.)?). The
top curve represents the square of the condition number of the
eigenvector matrix and acts as an upper bound on the maxi-
mum energy amplification.

with Q?=44.4 anda proportional toa. Strictly speaking, due to
the different coupling term, the above system does not resemble
the general undamped system introduced previously. Neverthe-
less, the results of our analysis are similar to the ones found for
Eq. (3).

Indeed, computing the maximum energy amplification reveals
transient growth of more than one order of magnitude even though

Me coupling coefficient is only 90 percent of the critical dsee

Fig. 8@)). The asymptotic scaling as criticality is approached is
once again confirmed numericallifig. 8(b)).

3.3 Fluid-Conveying Pipe. As our last example we con-
sider the instability of an articulated fluid-conveying pigee Fig.

Transactions of the ASME



6(c)). Benjamin[7] and Padoussig 12] have studied the stability may give rise to an increase in transient energy growth. Neverthe-
and dynamics of this configuration in great depth. We will closelless, we believe that the simple two-degrees-of-freedom models
follow their derivation, nondimensionalization and choice of govpresented in this article capture the essential characteristics of this
erning parameters resulting in the following set of governinghenomenon.

equations: Three classical applications have been considered, and it has
. been demonstrated that significant amplification of energy before

4 3129 4 2t [ 9} the onset of coupled-mode flutter can occur. Whereas panel-flutter

32 1||¢] |-1 1]l¢ and follower-force computations showed substantial short-term

energy growth, the transient amplification of initial perturbation
- 0 was less marked in the case of a fluid-conveying pipe which can
= —3@0{ b 0 O} A (28)  pe attributed to the flow-induced damping present in the dynamics
of the pipe.
with B=myig /(Mpipet Miuia) as the mass ratio and as the  As initial perturbations are amplified, nonlinear effects will
nondimensional fluid velocity. We recover the follower-forceome into play, and a marked deviation from linear behavior

1 2||¢

_32
0 1 v

problem discussed in the previous section for the gas®. should be expected. Despite this effect, the underlying linear am-
We again define the system mat#xin (3) as plification process constitutes an important component in describ-
1 0 0 O\t 0 1 0 0 ing the onset of fIL_Jtter ingtabilities. For extensions of dyn_amical
systems that exhibit transient growth into the nonlinear regime the
0 0 3/2 (a—2) —b (1-a) -—-2b interested reader is referred [tb3] and references therein.
A= 0 0 1 0 0 0 0 1 The transient amplification of initial energy cannot be captured
by analyzing the eigenvalues of the system matrix. Instead, both
0 32 0 1 1 0 -1 -b eigenvalues and eigenvectors are needed to account for short-term
(29) instabilities. Since these type of instabilities are present before the
wherea=3v2 andb=3Bv. onset of flutter and show amplification rates of one to two orders

Evaluating the maximum energy growth versus time we noti magnitude, nonlinear flnllte.-amlplltUQe effects may be triggered
that the amplification is somewhat smaller than in the previot@"9 before the system exhibits vibrational instabilities. When de-
cases with energy growth of only about eight times the initigi9ning fde-s_tructure systems, an analysis of the type introduced
energy(Fig. %a)) for a coupling coefficiena=0.99%, . In addi- " this paper is recommended.
tion, flow-induced damping effects are clearly present acting
main!y_ on_the sepp_nd mode. Owing to this damping the ma_)(imu,mcknowledgments
amplification of initial energy does not follow the asymptotic be- ) .
havior (16) as the critical coupling coefficient is approaciege ~ PS Wishes to thank Patrick Huerre and the gentle people at
Fig. 9(b)). However, in the limit of3—0 we recover the correct LadHyX for making his sabbatical visit so enjoyable.
asymptotic behavior 06, asa—a..
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