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Transient Growth Before
Coupled-Mode Flutter
Transient growth of energy is known to occur even in stable dynamical systems due
non-normality of the underlying linear operator. This has been the object of grow
attention in the field of hydrodynamic stability, where linearly stable flows may be fo
to be strongly nonlinearly unstable as a consequence of transient growth. We apply
concepts to the generic case of coupled-mode flutter, which is a mechanism with imp
applications in the field of fluid-structure interactions. Using numerical and analyt
approaches on a simple system with two degrees-of-freedom and antisymmetric co
we show that the energy of such a system may grow by a factor of more than 10,
the threshold of coupled-mode flutter is crossed. This growth is a simple conseque
the nonorthogonality of modes arising from the nonconservative forces. These ge
results are then applied to three cases in the field of flow-induced vibrations: (a) p
flutter (two-degrees-of-freedom model, as used by Dowell) (b) follower force (
degrees-of-freedom model, as used by Bamberger) and (c) fluid-conveying pipes
degree-of-freedom model, as used by Benjamin and Paı¨doussis) for different mass ratios
For these three cases we show that the magnitude of transient growth of mech
energy before the onset of coupled-mode flutter is substantial enough to cause a s
cant discrepancy between the apparent threshold of instability and the one predict
linear stability theory.@DOI: 10.1115/1.1631591#
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1 Introduction

Flow-induced vibration phenomena are a ubiquitous featur
numerous engineering applications ranging from buffeting of
foils to deformation of building structures and bridges under w
loads. In most cases, these vibrations are undesirable, cau
material fatigue at best and catastrophic failure at worst. It is t
not surprising that a substantial body of literature is devoted to
analysis and control of flow-induced instabilities. Low
dimensional models are often used to approximate prohibitiv
complex systems, and the critical parameters for the onset of
ter are computed for a moderate number of degrees-of-freed
The analysis follows a typical modal approach where the temp
motion of the structure is assumed to behave exponentially
time. In the very common mechanism of coupled-mode flutter t
~or more! purely oscillatory states merge and produce expon
tially growing ~and decaying! motion. For parameter values belo
this critical one, it is believed that stable motion prevails.

A similar argument has been used for the onset of transitio
turbulence: As exponentially growing solutions of the lineariz
fluids equations are encountered, the transition to turbulent fl
motion is expected. In recent years, however, it has been dis
ered that short-term instabilities are present even at subcri
parameter values, and that these type of instabilities are a co
quence of the nature of the underlying stability equations~see,
e.g.,@1–4#!.

The equations governing many cases of fluid-structure inte
tions are also of this type, and it therefore appears likely that
governing equations support transiently growing solutions for
rameter values below the critical one for the onset of coupl
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mode flutter. If this transient growth is sufficiently large, finit
amplitude effects can be triggered even though infinitesim
motion is asymptotically stable.

It is the goal of this study to explore the potential of short-te
energy growth at subcritical conditions for simple two-degrees-
freedom approximations to technologically relevant configu
tions.

The organization of the paper is as follows. We will first co
sider a simple undamped two-degrees-of-freedom model
coupled-mode flutter and establish the mathematical framew
for stability calculations. Modal and nonmodal stability will b
considered, and asymptotic scalings as well as upper bound
disturbance growth will be presented. Effects of damping on
stability characteristics will be treated as well. Three classical
plications then follow, namely, panel flutter,@5#, follower-force,
@6#, and fluid-conveying pipes,@7#, which will further exemplify
the techniques of the previous sections. Summarizing comm
conclude this paper.

2 Theoretical Framework

2.1 General Undamped Two-Degrees-of-Freedom System
Many problems involving fluid-structure interactions can be mo
eled by a coupled system of oscillators of the form

ẍ1x5ay (1a)

ÿ1V2y52ax (1b)

describing the temporal evolution of the two degrees-of-freedox
and y. The left-hand side describes harmonic oscillators of f
quencies 1 andV, while the right-hand side accounts for the co
pling of the two oscillators witha as the coupling coefficient
Systems of this form often arise when equations governing
continuous deformation of flexible structures are approximated
a model capturing the two modes of deflection. This typica
applies to problems such as flutter of flexible airfoils, fluidelas
instability of tube arrays in cross flow or unstable whirl of rotatin
shafts in confined fluids~see, for instance,@5,8,9#!.

Traditional stability analysis of the above system is straightf
ward and leads to a critical coupling coefficientac of

ing-

st
on
art-

nta
our
2003 by ASME Transactions of the ASME



n

i

a

h

r

t

f
lue.

er
en-

-
ce of
ys-
for
su-

to

-

nt

the

t

on,
ial

of
-

ial
of

50
ac5
V221

2
. (2)

For two oscillators with a supercritical coupling coefficient exp
nentially growing solutions are encountered. For coupling coe
cients below the critical one, we observe purely oscillatory beh
ior. The above critical coupling coefficient is a widely used a
accepted tool for determining the onset of unstable motion. I
commonly believed that for coupling coefficients below the cr
cal one no amplification of infinitesimal disturbances is possib

2.2 Transient Amplification of Disturbance Energy. The
goal of this manuscript is to explore the potential for short-te
linear instabilities in the absence of exponentially growing so
tions. To this end we treat the above system of equations
general initial value problem of the form

d

dt S x
ẋ
y
ẏ
D 5S 0 1 0 0

21 0 a 0

0 0 0 1

2a 0 2V2 0

D S x
ẋ
y
ẏ
D or

d

dt
q5Aq.

(3)

The formal solution of this initial value problem can be writte
in terms of the matrix exponential ofA. We obtain

q~ t !5exp~ tA!q0 (4)

with q0 as the vector of initial conditionsx0 , ẋ0 , y0 , and ẏ0 .
Using this formulation, we wish to compute the amplification
disturbances by determining the ratio of the disturbance energ
a given timet to the initial energy of a general perturbation. Max
mizing this ratio over all possible initial conditions results in t
largest possible amplification of initial perturbations over a tim
span@0 t#. Mathematically, we define the largest possible ene
amplificationG(t) as

G~ t !5max
q0

E~ t !

E~0!
5max

q0

iq~ t !i2

iq0i2 5max
q0

iexp~ tA!q0i2

iq0i2

5iexp~ tA!i2 (5)

where we have assumed that taking the norm of the state vecq
is equivalent to computing the energy of the state vector.
therefore define

iqi25x21 ẋ21V2y21 ẏ2 (6)

which is easily related to the standardL2-norm i•i2 by introduc-
ing weight matricesF according to

iqi25iFqi2
2 F5S 1 0 0 0

0 1 0 0

0 0 V 0

0 0 0 1

D . (7)

Reformulating the energy amplificationG(t) in terms of the
L2-norm results in

G~ t !5iF exp~ tA!F21i2
2. (8)

It is often desirable to bound the maximum amplification
energy. Using the definition of the energy amplification it
straightforward to derive lower and upper bounds as follows:

exp~2lt !<G~ t !5iSexp~Lt !S21i2<k2~S!exp~2lt ! (9)

wherel is the real part of the least stable eigenvalue ofA, andS
denotes the 434 matrix of normalized eigenvectors ofA. The
symbol

k~S![iSiiS21i (10)
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stands for the condition number ofS, andL is a diagonal 434
matrix containing the eigenvalues ofA.

We notice the following relation. For systems withk(S)51 the
upper and lower bound coincide, and the temporal evolution oG
is entirely governed by the real part of the least stable eigenva
Systems withk(S)51 are known asnormal systems. On the
other hand, ifk~S! is larger than 1, the discrepancy between low
and upper bound allows for short-term effects before the expon
tial behavior governed byl prevails ast→`. Systems with
k(S).1 are categorized asnon-normalsystems. Non-normal sys
tems have a set of nonorthogonal eigenvectors and the sour
short-term energy growth lies in this nonorthogonality of the s
tem’s eigenvectors. Even under subcritical conditions, i.e.,
coupling coefficients below the critical one, a nonorthogonal
perposition of exponentially decaying eigensolutions can lead
substantial disturbance growth.

2.3 Asymptotic Scalings. To further probe the solution be
havior as we approach the critical coupling coefficientac we
Laplace transform the governing equations to obtain

~p211!X2aY5px01 ẋ0 (11a)

~p21V2!Y2aX5py01 ẏ0 (11b)

with X(p) and Y(p) as the Laplace transform of the depende
variablesx(t) andy(t), respectively. Solving forX(p) we obtain
the expression

X~p!5
1

~p211!~p21V2!1a2 @A1pB1p2C1p3D# (12)

with A, B, C, and D determined from the initial conditions. An
analogous expression can be derived forY(p). After inversion of
the Laplace transform we get the following expression for
variablex(t):

x~ t !5
1

2acA12~a/ac!
2

@A8 cosat1B8 sinat1C8 cosbt

1D8 sinbt# (13)

where

a2,b25
1

2
~11V26A~V221!224a2! (14)

and A8, B8, C8, and D8 depend on initial conditions. This las
expression yields the behavior ofx(t) as the critical coupling
coefficient is approached. We obtain

x~ t !;
1

A12~a/ac!
2

. (15)

The same holds true forẋ(t), y(t), and ẏ(t). Consequently, the
energyE of the coupled oscillators is expected to behave as

E;
1

12~a/ac!
2 (16)

as the stability boundary is approached, when time is fixed.

2.4 Numerical Results. The quantityG(t), computed from
Eq. ~8!, represents the maximum possible energy amplificati
which for each instant in time is optimized over all possible init
conditions of unit energy, as is apparent from Eq.~5!. The specific
initial condition that achieves an amplification ofG(t) may be
different for different times, andG(t) should be thought of as the
envelope of the energy evolution of individual initial conditions
unit energy. The energy amplificationG(t) for the undamped gen
eral system withV251.1 anda/ac50.9 is shown in Fig. 1~a!
together with the energy evolution of four randomly chosen init
conditions of unit energy. We notice an amplification of energy
nearly twenty times the initial energy after approximately 1
NOVEMBER 2003, Vol. 70 Õ 895
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time units. We like to emphasize that this amplification occurs
value of the coupling coefficient that is below the critical one
the onset of couple-mode flutter. As the critical coupling coe
cient for this particular frequency ratioV is approached we obtain
an even larger transient amplification of initial energy, as depic
in Fig. 1~b!. The asymptotic behavior given by~16! is included as
the dashed curve. As the critical coupling coefficient is a
proached, the maximum transient amplification of energyGmax
[maxt G(t) follows the correct asymptotic behavior.

The transient amplification of disturbance energy prevails a
for a significantly larger frequency ratio. Figure 2~a! shows the
temporal evolution ofG for a frequency ratio ofV2510. Again,

Fig. 1 General undamped system with V2Ä1.1 and aÕac
Ä0.9. Optimal energy amplification versus time „top, solid line …

and energy amplification for four random initial conditions of
unit energy „top, dashed lines …. Maximum energy amplification
versus the coupling coefficient „bottom …. The dashed curve
„bottom … represents the function 1 Õ„1À„aÕac…

2
…. The continu-

ous curve „bottom … represents both the maximum of G„t … over
time and the upper bound given in Eq. „9….
896 Õ Vol. 70, NOVEMBER 2003
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we observe a short-term amplification of initial energy of up
fifty times. The behavior ofGmax as the critical coupling coeffi-
cient is approached is displayed in Fig. 2~b! together with the
asymptotic behavior~16!.

2.5 Effects of Damping. Damping is a naturally occuring
effect in many fluid-structure systems that has to be accounted
or modeled when analyzing the onset of coupled-mode flutter
this paper, we are mainly interested how additional damping te
modify the observations we made in the previous section.
again start by analyzing a simple two-degrees-of-freedom mo
but add a damping term proportional to the velocity. We get

ẍ1bẋ1x5ay (17a)

Fig. 2 General undamped system with V2Ä10 and aÕacÄ0.9.
Energy amplification versus time „top … and maximum energy
amplification versus the coupling coefficient „bottom …. The
dashed curve represents the function 1 Õ„1À„aÕac…

2
…. The con-

tinuous curve represents both the maximum of G„t … over time
and the upper bound given in Eq. „9….
Transactions of the ASME
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ÿ1bẏ1V2y52ax (17b)

with b as the damping coefficient. Traditional stability analysis
this problem follows along the same lines as for the undam
case. Applying a Laplace transform to the initial value proble
results in the relation

detUp21bp11 2a

a p21bp1V2U50 (18)

from which—via Routh’s criterion—we obtain a value for th
critical coupling coefficient for the onset of flutter motion:

ac5ac
0A122b2

V211

~V221!2. (19)

Fig. 3 General damped system with V2Ä10 and aÕacÄ0.9. For
damping a coefficient of bÄ0.1, „top … and a damping coefficient
of bÄ1 „bottom ….
Journal of Applied Mechanics
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The above formula describes the modification of the critical c
pling coefficient when a velocity-dependent damping term is
troduced into the governing equations.

We are of course also interested in the effects of damping on
potential for transient amplification at subcritical values of t
coupling constant. Modifying the system matrixA to account for
the additional damping terms, we compute the amplification
disturbance energyG(t) as in the previous section.

The results in Fig. 3 demonstrate that the additional damp
terms exert a rather substantial—but not surprising—influence
the long-term behavior. The short-term amplification of energy,
the other hand, is only mildly influenced by damping. We s
observe an energy amplification of approximately forty times
initial energy for a damping coefficient ofb50.1, and even for an
excessively large damping ofb51 we obtain an increase in en
ergy of nearly one order of magnitude before strong decay se

Fig. 4 General damped system with V2Ä10 at criticality. En-
ergy amplification versus time for bÄ1 „top …, and maximum
energy amplification versus damping coefficient „bottom …. The
dashed curve represents the asymptotic behavior È1Õb 2.
NOVEMBER 2003, Vol. 70 Õ 897
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Fig. 5 Maximum energy amplification as a function of coupling and damping
coefficient for the general damped system at V2Ä10
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~see Fig. 3!. As the critical coupling parameter~19! is approached,
an oscillatory state is reached forG(t) with a maximum amplifi-
cation of more than forty times the initial energy~see Fig. 4~a!!.

A simple analysis shows that at the onset of instability, i.e.,
a5ac , the solution to the damped system behaves like

x;e2bt~cosat1t cosat1¯ ! (20)

and similarly for they-component. For this solution behavior, th
maximum of the energy amplification is found to occur att
'1/b and the maximum transient growth scales likeGmax

;1/b2. This scaling is verified by numerical computations wi
the results shown in Fig. 4~b!. The asymptotic scaling is displaye
as the dashed curve.

A two-dimensional parameter study of the maximum amplific
tion of initial disturbance energy is depicted in Fig. 5. We obse
a substantial amount of maximum transient growth as the stab
boundary is approached.

The above analysis describes external damping that acts
equal magnitude on the two degrees-of-freedom. It is a w
known fact~see@10,11#! that a discrepancy between the dampi
in the equations forx andy can have a stabilizing or destabilizin
effect and thus change the critical coupling constant. Follow
Bolotin @10# and introducing a damping coefficient ofb and hb
into thex andy-equation, respectively, the critical coupling coe
ficient can be derived as

ac5ac
0S 2Ah

11h DA11b2
~11h!V21h1h2

~V221!2 (21)

which represents the generalization of Eq.~19! which is recovered
for h51. Numerical experiments have revealed that the trans
effects observed forh51 prevail qualitatively for the more gen
eral case once the critical coupling coefficient has been redefi
according to Eq.~21!.

3 Applications
The strong short-term amplification of initial energy for para

eters below the critical ones for the onset of coupled-mode flu
can have significant consequences for the design of systems
exhibit aeroelastic deformations or other fluid-structure pheno
ena. The above analysis of a simple two-degrees-of-freedom
BER 2003
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tem provides the mathematical tools as well as the motivation
investigate more realistic models of fluid-structure interactions
their potential to amplify energy in the subcritical parameter
gime. To this end, we concentrate on three classical and w
studied examples of two-degrees-of-freedom systems:~a! panel
flutter, ~b! follower-force, and~c! fluid-conveying pipes~see Fig.
6 for a sketch of the geometry!. For each system we will comput
and present the amplification of energyG(t) over a range of gov-
erning parameters.

3.1 Panel Flutter. As high-speed flow passes a flat pla
with clamped edges, the induced elastic bending in the direc
normal to the flow can lead to vibrational instabilities. This ty
of instabilities is prototypical and very important for many co

Fig. 6 Geometry sketch for panel flutter „top …, follower force
„bottom left …, and fluid-conveying pipe „bottom right …
Transactions of the ASME
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figurations in aerospace applications~supersonic flow past an air
foil ! and has thus been studied extensively. In this paper we
focus on a highly simplified, yet physically relevant, model whi
will capture some of the main features of panel flutter instabilili
The model under investigation is taken from Dowell@5#. Three
plates of lengthl and massm are linked together and supported
each end~see Fig. 6~a!! introducing two degrees-of-freedom fo
the motion of the system. Withq1 andq2 as the vertical displace
ment of the interior nodes, Dowell@5# derives the following set of
equations

2

3
mlq̈11

ml

6
q̈21kq11

r`U`
2

2M`
q250 (22a)

ml

6
q̈11

2

3
mlq̈21kq22

r`U`
2

2M`
q150 (22b)

wherek denotes the spring constant, andr` , U` , andM` stand
for the freestream density, velocity, and Mach number, resp
tively. Nondimensionalizing the above equations usingl
5r`U`

2 /2M`k and Aml/k as a characteristic time scale, we o
tain

2

3
q̈11

1

6
q̈21q152lq2 , (23a)

1

6
q̈11

2

3
q̈21q25lq1 . (23b)

We can further simplify the system by introducing new depend
variables defined asx5A5/3(q11q2) and y5q12q2 which
yields

ẍ1x5ay (24a)

ÿ1V2y52ax (24b)

with V255/3 anda5A5/3l.
In this form, the reduced system resembles the undamped

degrees-of-freedom system of the previous section, and we sh
expect the existence of transient amplification of energy for s
critical coupling coefficientsl. The critical coupling coefficient is
ac51/3, equivalent tolc51/A15 in @5#. Figure 7~a! shows the
maximum energy amplificationG(t) as a function of time for
a/ac50.9 or, equivalently, (U` /Uc)

250.9 whereUc is the criti-
cal flow velocity. For this choice of parameter we observe
amplification of 20 times the initial energy. As the critical co
pling coefficient is approached, we again recover the pro
asymptotic scaling~dashed curved! as displayed in Fig. 7~b!.
These results clearly demonstrate that large disturbance grow
possible even before the coalescence of natural frequencies
thus, the onset of panel flutter.

3.2 Follower Force. A slightly more complex two-degrees
of-freedom model is sketched in Fig. 6~b! where two hinged rods
of lengthl are subject to a forceF acting on the bottom and in th
direction of the lower rod. The motion of the two rods is affect
by a torsional spring acting at the hinge. The configuration of
rods is described by the anglesu andf measured with respect t
the vertical axis. We will follow Bamberger@6# in deriving the
system of equations governing the above configuration. Benja
@7# has studied models of this type and the specific case illustr
in Fig. 6~b! emerges as a particular case of a fluid-conveying p
for zero mass ratiob and infinite fluid velocityU, but constant
AbU ~see Paı¨doussis@12#!.

According to Bamberger@6#, but using the dimensionless pa
rameters of Benjamin@7# for the sake of clarity, the governing
equations are given as
Journal of Applied Mechanics
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F 4 3/2

3/2 1 GF ü

f̈
G1F 2 21

21 1 G F u
f G5aF1 21

0 0 G F u
f G (25)

with a5F/kl as the coupling coefficient.
At a value ofa50.1, we determine the two natural frequenci

of the system asv150.337 andv252.243 which results in the
square of the frequency ratioV2544.4. Increasing the paramete
a beyond this critical point, which Bamberger@6# determined as
ac52.54, exponentially growing solutions are encounter
Again, we wish to probe the possibility and amount of short-te
energy growth for parameter valuesa below the critical one.

In order to use the formalism introduced in this paper, we defi
the system matrixA in ~3! as

Fig. 7 Energy amplification for undamped panel flutter with
aÕacÄ0.9 versus time „top …, maximum energy amplification ver-
sus coupling coefficient „bottom …. The dashed curve repre-
sents the asymptotic behavior 1 Õ„1À„aÕac…

2
…. The continuous

curve represents both the maximum of G„t … over time and the
upper bound given in Eq. „9….
NOVEMBER 2003, Vol. 70 Õ 899
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A5S 1 0 0 0

0 4 0 3/2

0 0 1 0

0 3/2 0 1

D 21S 0 1 0 0

~a22! 0 ~12a! 0

0 0 0 1

1 0 21 0

D .

(26)

Alternatively, using different dependent variables the govern
equations can be rewritten in the form

ẍ1x5a~y2jx! (27a)

ÿ1V2y52a~x1zy! (27b)

Fig. 8 Energy amplification for undamped follower force prob-
lem with aÕacÄ0.9 versus time „top …, maximum energy amplifi-
cation versus coupling coefficient „bottom …. The dashed curve
represents the asymptotic behavior 1 Õ„1À„aÕac…

2
…. The con-

tinuous curve represents both the maximum of G„t … over time
and the upper bound given in Eq. „9….
900 Õ Vol. 70, NOVEMBER 2003
ng

with V2544.4 anda proportional toa. Strictly speaking, due to
the different coupling term, the above system does not resem
the general undamped system introduced previously. Never
less, the results of our analysis are similar to the ones found
Eq. ~3!.

Indeed, computing the maximum energy amplification reve
transient growth of more than one order of magnitude even tho
the coupling coefficient is only 90 percent of the critical one~see
Fig. 8~a!!. The asymptotic scaling as criticality is approached
once again confirmed numerically~Fig. 8~b!!.

3.3 Fluid-Conveying Pipe. As our last example we con
sider the instability of an articulated fluid-conveying pipe~see Fig.

Fig. 9 Energy amplification for the fluid-conveying pipe prob-
lem with aÕacÄ0.999 versus time „top …, maximum energy am-
plification versus coupling coefficient „bottom …. The dashed
curve represents the asymptotic behavior 1 Õ„1À„aÕac…

2
…. The

top curve represents the square of the condition number of the
eigenvector matrix and acts as an upper bound on the maxi-
mum energy amplification.
Transactions of the ASME
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6~c!!. Benjamin@7# and Paı¨doussis@12# have studied the stability
and dynamics of this configuration in great depth. We will clos
follow their derivation, nondimensionalization and choice of go
erning parameters resulting in the following set of govern
equations:

F 4 3/2

3/2 1 GF ü

f̈
G1F 2 21

21 1 G F u
f G

523AbvF1 2

0 1GF u̇

ḟ
G23v2F21 1

0 0G F u
f G (28)

with b5mf luid /(mpipe1mf luid) as the mass ratio andv as the
nondimensional fluid velocity. We recover the follower-forc
problem discussed in the previous section for the caseb50.

We again define the system matrixA in ~3! as

A5S 1 0 0 0

0 4 0 3/2

0 0 1 0

0 3/2 0 1

D 21S 0 1 0 0

~a22! 2b ~12a! 22b

0 0 0 1

1 0 21 2b

D
(29)

wherea53v2 andb53Abv.
Evaluating the maximum energy growth versus time we no

that the amplification is somewhat smaller than in the previ
cases with energy growth of only about eight times the ini
energy~Fig. 9~a!! for a coupling coefficienta50.999ac . In addi-
tion, flow-induced damping effects are clearly present act
mainly on the second mode. Owing to this damping the maxim
amplification of initial energy does not follow the asymptotic b
havior ~16! as the critical coupling coefficient is approached~see
Fig. 9~b!!. However, in the limit ofb→0 we recover the correc
asymptotic behavior ofGmax asa→ac .

Included in Fig. 9~b! is the upper bound based on the conditi
numberk~S! as introduced in~9!. Although the condition numbe
provides a simple estimate, the actual maximum energy grow
one order of magnitude smaller. In all previous cases, the estim
of maximum energy growth~9! based on the condition numbe
was within plotting accuracy of the computedGmax.

4 Conclusions
We studied simple two-degrees-of-freedom systems arising

variety of applications and investigated the potential for sho
term amplification of initial energy under subcritical condition
This amplification is due to the nonorthogonal superposition
modal solutions which in turn is a consequence of the non-nor
nature of the underlying system matrix. The maximum achieva
growth can be significant and scales like;1/(12(a/ac)

2) as the
critical coupling coefficientac is approached in the absence
damping. For damped systems, the maximum growth scales
versely to the square of the damping constant.

Since the nonorthogonality of the leading eigenfunctions is p
served as more modes are included in an attempt to mode
continuous system, we expect transient amplification of energ
discrete models of high degrees-of-freedom as well as in cont
ous models. In fact, the inclusion of more nonorthogonal mo
Journal of Applied Mechanics
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may give rise to an increase in transient energy growth. Never
less, we believe that the simple two-degrees-of-freedom mo
presented in this article capture the essential characteristics o
phenomenon.

Three classical applications have been considered, and it
been demonstrated that significant amplification of energy be
the onset of coupled-mode flutter can occur. Whereas panel-flu
and follower-force computations showed substantial short-te
energy growth, the transient amplification of initial perturbati
was less marked in the case of a fluid-conveying pipe which
be attributed to the flow-induced damping present in the dynam
of the pipe.

As initial perturbations are amplified, nonlinear effects w
come into play, and a marked deviation from linear behav
should be expected. Despite this effect, the underlying linear
plification process constitutes an important component in desc
ing the onset of flutter instabilities. For extensions of dynami
systems that exhibit transient growth into the nonlinear regime
interested reader is referred to@13# and references therein.

The transient amplification of initial energy cannot be captu
by analyzing the eigenvalues of the system matrix. Instead, b
eigenvalues and eigenvectors are needed to account for short
instabilities. Since these type of instabilities are present before
onset of flutter and show amplification rates of one to two ord
of magnitude, nonlinear finite-amplitude effects may be trigge
long before the system exhibits vibrational instabilities. When
signing fluid-structure systems, an analysis of the type introdu
in this paper is recommended.
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