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Abstract. Plane Couette flow, the flow between two parallel planes moving in opposite directions, is an
example of wall-bounded flow experiencing a transition to turbulence with an ordered coexistence of
turbulent and laminar domains in some range of Reynolds numbers [Rg, Rt]. When the aspect-ratio is
sufficiently large, this coexistence occurs in the form of alternately turbulent and laminar oblique bands.
As R goes up trough the upper threshold Rt, the bands disappear progressively to leave room to a uniform
regime of featureless turbulence. This continuous transition is studied here by means of under-resolved
numerical simulations understood as a modelling approach adapted to the long time, large aspect-ratio
limit. The state of the system is quantitatively characterised using standard observables (turbulent fraction
and turbulence intensity inside the bands). A pair of complex order parameters is defined for the pattern
which is further analysed within a standard Ginzburg–Landau formalism. Coefficients of the model turn
out to be comparable to those experimentally determined for cylindrical Couette flow.

1 Introduction

In their way to turbulence, wall-bounded shear flows
display cohabiting turbulent and laminar regions. This
striking phenomenon can even be statistically perma-
nent and spatially organised, as for the flow between
counter-rotating cylinders (cylindrical Couette flow, CCF)
or counter-translating plates (plane Couette flow, PCF,
Fig. 1, top-left). Cohabitation then takes the form of al-
ternately turbulent and laminar oblique bands. This pe-
culiar pattern was first discovered by Coles and Van Atta
in CCF (barber-pole or spiral turbulence) [1–3], the cor-
responding domain in the control parameter space being
next charted by Andereck et al. [4,5]. These experiments
were restricted to the observation of a single spiral arm
due to limited aspect-ratio (the ratio of the gap between
the cylinders to the perimeter).

Later on, Prigent et al. [6–8] performed studies at
larger aspect-ratios, which allowed them to observe several
intertwined spiral arms and to show that the oblique bands
in plane Couette flow (Fig. 1, bottom-left) were, qualita-
tively and quantitatively, the zero curvature limit of the
spirals: upon appropriate definition of a Reynolds number
R based on the nominal shear rate, (i) these patterns bifur-
cate continuously at similar values of a well-defined upper
threshold Rt above which turbulence is featureless, (ii) the
spirals/bands are observed upon decreasing R down to
comparable values of a lower stability threshold Rg be-
low which laminar flow eventually prevails, and (iii) the
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streamwise and spanwise wavelengths are similar [9]. Fig-
ure 1 (top-right) recapitulates the experimental findings
for PCF.

Direct numerical simulations (DNS) of the
Navier–Stokes equations for PCF were performed
by Barkley and Tuckerman [10,11] who could obtain the
band patterns in fully resolved, elongated but narrow,
tilted domains. Their choice of boundary conditions how-
ever precluded the occurrence of patterns with defects
or orientation changes inside the flow. This was not the
case of the DNS by Duguet et al. [12] who recovered the
experimental findings of Prigent et al. in fully resolved
very large aspect ratio domains. Similarly, the spiral
regime was numerically obtained by Meseguer et al. [13]
and Dong [14] in CCF and the oblique band pattern in
plane channel flow by Tsukahara et al. [15].

Up to now, there is no clear physical explanation for
the formation of the spirals/bands from the featureless
turbulent regime when R is decreased below Rt [16]. We
however do have a consistent phenomenological descrip-
tion of the transition in CCF by Prigent et al. [6–8] in
terms of two coupled Ginzburg–Landau equations with
(strong) external noise added, introducing two complex
amplitudes, one for each possible pattern orientation.
Most of the coefficients introduced in these equations
could be fitted against the experiments. In a similar vein,
Barkley et al. [16,17] introduced the phase-averaged am-
plitude of the dominant Fourier mode of the turbulent
mean flow modulation [11] as an order parameter for the
PCF transition. The emergence of the bands was then
identified from the position of the peak in the probability
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Fig. 1. (Color online) Top-left: geometry of the plane Couette flow experiment, 2h is the gap, Lx and Lz, the streamwise and
spanwise dimensions, +U and −U the wall speeds. The Reynolds number is defined as R = Uh/ν where ν is the kinematic
viscosity. Top-right: experimental bifurcation diagram after Prigent [6]. Bottom: picture of experimental banded turbulence in
plane Couette flow apparatus with Lx = 770h, Lz = 340h at R = 358 (courtesy Prigent) and colour level representation of the
perturbation energy averaged over y in our under-resolved ChannelFlow simulations with periodic boundary conditions at
Lx = 432, Lz = 256, R = 290 and t = 18 000. The two pictures are at roughly the same scale and similar Reynolds numbers
after correction for the transitional range R-shift due to numerical under-resolution [20].

distribution function (PDF) of this order parameter, shift-
ing from zero in the featureless regime to a nonzero value
in the banded regime.

In the present article, we come back to the quanti-
tative characterisation of the patterns in terms of order
parameters. In contrast with [10,11,16,17] we consider a
configuration that does not freeze the orientation and al-
lows for defective patterns. We keep the general noisy
Ginzburg–Landau framework introduced in [6–8] for CCF
and validate the approach in terms of amplitude equations
at a quantitative level for PCF by means of numerical ex-
periments. We take advantage of our previous work where
the recourse to under-resolved DNS using Gibson’s pub-
lic domain code ChannelFlow [18] was introduced [19].
In [20] we brought evidence that this procedure could
be viewed as a consistent systematic modelling strategy
permitting simulations in wide domains during long time
lapses at moderate numerical load. We indeed showed that
all qualitative aspects of the transitional range are pre-
served at the recommended resolution (Fig. 1, bottom-
right) and that, in the (slightly better) numerical condi-
tions chosen here, the resolution lowering amounts to a
15–20% downward shift of [Rg, Rt] from the experimental
findings. This resolution reduction will allow us to accu-
mulate statistics on moderate aspect ratio systems during
very long times. We surmise that our results can be car-
ried over to the realistic case of fully resolved simulations
or experiments up to an appropriate adaptation of the
Reynolds scale. We shall support this point of view briefly
in Section 3.4.

We first recall the numerical procedure in Section 2.1,
next we turn to the extraction of the turbulent fraction
and the turbulence intensity (Sect. 2.2) and to the def-

inition of order parameters able to include information
about the spatial organisation, Section 2.3. Results are
then analysed in the successive subsections of Section 3
devoted to the determination of the phenomenological pa-
rameters introduced by the Ginzburg–Landau formalism
and accounting for the spanwise, streamwise and R depen-
dence of the pattern. Section 4 summarises our findings.

2 Simulations and data processing

2.1 Numerical implementation

The geometry of the experiment is described in Figure 1
top-left. The Navier–Stokes equations are written in a
reference frame where x, y, z are the streamwise, wall-
normal, and spanwise directions respectively. Velocities
are made dimensionless with U the absolute value of the
speed at the boundaries y = ±h. Lengths are rescaled by
h and time by h/U . The main control parameter is the
Reynolds number R = Uh/ν, where ν is the kinematic
viscosity but the flow regime also depends on the aspect
ratios defined as Γx,z = Lx,z/2h, where Lx,z are the lat-
eral streamwise and spanwise dimensions. In the numerics,
h = 1 and the aspect ratios are Γx,z = Lx,z/2. The base
flow is independent of R : vb = y ex. Written for the per-
turbation to the base flow u = v − vb, the Navier–Stokes
equations read:

∂tui + ∂j(uiuj) + y∂xui + uyδi,x = − ∂ip + R−1∂2
jjui,

∂juj = 0,

with no slip boundary conditions at the plates, ui(y =
±1) = 0, and periodic boundary conditions at distances
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Fig. 2. (Color online) Top: u2
x in an x, y plane, Lx = 128 and in a z, y plane, Lz = 180. Bottom: from left to right, u2 in the

y = −ym plane, coarse-grained u2 in the y < 0 domain, resulting B/W discrimination, and W/G/B discrimination (see text).
Lx × Lz = 128 × 180, R = 315.

Lx and Lz in the streamwise and spanwise directions, re-
spectively.

ChannelFlow [18] implements the Navier–Stokes
equations using a standard pseudo-spectral scheme with
Fourier transforms involving (Nx, Nz) de-aliased modes in
the streamwise and spanwise directions and Ny Chebyshev
polynomials in the wall-normal direction. As discussed
in [20], our numerical simulations are deliberately under-
resolved: we use Ny = 15, and Nx,z/Lx,z = 8/3, which
preserves all the qualitative features of the flow at a semi-
quantitative level, just shifting the bifurcation thresholds
down to Rg = 275 ± 5 and Rt = 345 ± 5, to be com-
pared with experimental or fully resolved numerical val-
ues, Rg ≃ 325 and Rt ≃ 415 [6–8,12].

In PCF, Prigent et al. experimentally found oblique
turbulent bands with streamwise period λx ≃ 110 and
variable spanwise period λz from 85 around Rg to 45
close to Rt. The sizes of our numerical domains range
from Lz = 24 to 192 and from Lx = 80 to 170. Our
domains hence remain rather small since they can contain
one to three such spanwise wavelengths but they are much
larger than the minimal flow unit [21] of size ℓx ≈ 6 and
ℓz ≈ 4, below which turbulence cannot self-sustain. They
are also much longer in the streamwise direction than the
tilted domains considered by Barkley et al. [10,11,16,17]
but remain smaller than the largest domains considered by
Duguet et al. [12] or in our preliminary studies [20] which
went up to Lx = 800 and Lz = 356 but at a much lower
resolution, or the latest experiments by Prigent et al. with
Lx = 770 and Lz = 340 [6–8].

2.2 Local averaging and related quantities

The square of the perturbation velocity u2 is a good in-
dicator of the local state of the flow. Figure 2 (top) dis-

plays colour level representations of that quantity in typ-
ical wall-normal planes, streamwise (x, y) with height 2
and length Lx = 128, and spanwise (z, y) with height 2
and width Lz = 180, for R = 315. The pattern seen from
above in the (x, z) plane at a given wall-normal coordi-
nate y = −0.57 = −ym is displayed in Figure 2 (bottom,
left), the other panels represent the same image after ad-
ditional post-treatment to be discussed below. The value
ym = 0.57 roughly corresponds to the place where u2 is
statistically the largest in the range of Reynolds numbers
of interest (see Fig. 5 in [20]).

The simplified representations shown in the centre and
right panels of Figure 2 rest on the coarse-graining of the
u2 field introduced in [19]. This procedure directly stems
from the general organisation of the flow in the band
regime already identified in previous studies [1–3,10,11]
and clearly visible in the side and front views of the
flow in Figure 2 (top). These pictures suggest to aver-
age over the upper layer of the flow (y > 0) and its lower
layer (y < 0) separately. Typical experimental observa-
tions [4–8,22], film and pictures, yield an information inte-
grated over the whole gap, which motivates us to compute
comparable quantities. As shown in Figure 3, the compu-
tational domain is divided in small stacked boxes of size
lx×ly×lz = 2×1×2. This size is slightly smaller than (but
related to) that of the minimal flow unit. The width lz = 2
approximately corresponds to the spanwise size of a tur-
bulent streak. By contrast, lx = 2 is much smaller than the
typical length of a turbulent streak, l̃ ≃ 40, so that the tur-
bulent intensity variations along a streak can be captured.
Quantity u2, henceforth called ‘energy’ by a small abuse
of language, is then averaged in each of these cells and a
threshold c is chosen according to which it is laminar or
turbulent. The turbulent fraction f is then the proportion
of turbulent cells, and the turbulent energy et is the energy
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Fig. 3. Sketch of the averaging boxes from the side and from
above.

conditionally averaged in space over the turbulent zone.
Conditional averaging of any field can easily be performed
in the same way. The reduction procedure is expected to
depend on the value of c. As seen in Figure 4 which dis-
plays the profile of the coarse-grained energy through the
band pattern, the locally turbulent flow has typical en-
ergy higher than 0.1 and locally laminar flow less than
0.05. The computation of the time-averaged1 turbulent
fraction F and the time-averaged turbulent energy Et for
values of c ranging from 0.005 to 0.13 did not pointed to
an optimal value for c, as expected from a flow displaying
a smooth modulation of turbulence, and c = 0.025 was
eventually chosen with little consequence on the quanti-
tative information drawn from the procedure.

A typical example of this thresholding is given in Fig-
ure 2, bottom line: from a realisation of the flow at y =
−ym (left) we compute the coarse-grained energy for y < 0
(centre-left) and apply the criterion to obtain a black-and-
white (B = laminar, W = turbulent) representation of
the flow, still for y < 0 (centre-right). Distinguishing the
y > 0 layer from the y < 0 layers allows a refined repre-
sentation of the flow as shown in the bottom-right panel of
Figure 2 which displays the turbulent and laminar areas
using a black/gray/white code: “black” represents lami-
nar cells of top of each other, “white” turbulent cells on
top of each other, “light grey” y > 0 turbulent cells on top
of y < 0 laminar cells, and “dark grey” y < 0 turbulent
cells of top of y > 0 laminar cells [19]. As already seen
in the top panels, the streamwise direction going from
left to right, turbulence is to the right of the band for
y > 0 and to its left for y < 0, in agreement with previous

1 On general grounds, lower case letters will denote instan-
taneous values and upper case letters the corresponding time
averages.
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Fig. 4. (Color online) Coarse-grained u2-profile projected
along the direction of the turbulent band (Lx ×Lz = 128×64,
R = 315, y < 0).

findings [1–3,10,11]. This fact could be used to compute
properties at the edge of the bands, for instance velocity
or energy profiles. A quantitative comparison to results
of Barkley and Tuckerman [11] has not been attempted
since the differences in geometry and resolution shift the
Reynolds number correspondence.

The procedure has been implemented on-line to allow
the computation of time series of the turbulent quantities.
Since these quantities fluctuate, we compute their time-
averages E, Et, and F as

E =
1
T

∫ T0+T

T0

e(t) dt ,

where T0 is introduced to take into account the transient
necessary for the flow to reach its permanent regime, and
T is taken sufficiently large (typically, over 5000) to keep
the relative fluctuations of E(T ) within 0.5%. The cut-off c
being appropriately chosen, the energy content of the lam-
inar part is negligible so that we have e ≃ f × et, which
means that the average energy of the flow is positively cor-
related to the changes of turbulence intensity in the bands
measured by et, as well as to the fractional area f occupied
by the bands. On the other hand, quantities et and f do
not show much correlation. This can be seen in Figure 5 in
which normalised quantities, ē = (e − E)/(⟨e2⟩ − E2)1/2,
etc., are displayed. Computation of the correlation of ē
and f̄ , as well as ē and ēt yields 0.5 ± 0.1, on average
over all experiments, whereas ēt and f̄ are not correlated,
yielding 0 ± 0.1. Owing to small relative fluctuations, the
relation e ≃ f × et implies a similar relation, E ≃ F ×Et,
for the averaged quantities.

It turns out that e(t), et(t), and f(t) are little affected
by the orientation fluctuations: even when the pattern
presents defects, the surface occupied by turbulence and
the turbulence intensity in the bands remains essentially
unchanged. This allows us to perform averaging regardless
of the orientation, but E, Et, and F remain sensitive to the
value of the bands’ wavelength imposed by the periodic
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Fig. 5. (Color online) Time series of the normalised average
energy ē, turbulent energy ēt and the turbulent fraction f̄ in
a typical numerical experiment for Lx × Lz = 110 × 48 and
R = 315.

boundary conditions fixing the in-plane dimensions Lx,z,
as discussed below.

2.3 Order parameter

2.3.1 Conceptual framework and operational definitions

In the theory of phase transitions, an order parameter is
an observable which, at the thermodynamic limit (perma-
nent state at infinite size), is zero in the non-bifurcated
state, here the featureless turbulent regime, and non-zero
in the bifurcated state, here measuring the amount of co-
existing laminar and turbulent domains. The turbulent
fraction F (introduced in [22] at a time when the spa-
tially organised character of the banded regime was not
yet recognised) or rather the laminar fraction 1 − F , par-
tially fulfils this condition but remains of limited value
since it does not account for the space periodicity of the
pattern explicitly, which is what we want to overcome,
inspired by previous work [6–8,16,17]. In pattern-forming
systems, the bifurcation is generally characterised by the
amplitude of the relevant bifurcating mode and, especially
in extended systems, by the amplitudes of the modes en-
tering the Fourier decomposition of the structure that de-
velops from the instability mechanism. When fitting the
pattern-forming problem into the phase transition formal-
ism, these amplitudes are the natural order parameters.

Figure 6 illustrates the result of a Fourier analysis
of patterns with three bands fitting a domain of size
Lx × Lz = 128 × 180. Symmetries in the spectrum allow

Fig. 6. (Color online) Color plots of patterns and natural loga-
rithm of the corresponding spectra averaged over y as explained
in the text for a well-formed pattern (top) and for a pattern
with defects (bottom). In the spectra, ûx(0, y, 0) is set to zero,
which yields a black dot in the spectra; normalisation by the
maximum value makes its position appear the peak as a white
dot. Lx × Lz = 128 × 180, R = 315.

us to consider wave numbers such that 0 ≤ nx ≤ Nx/2,
−Nz/2 + 1 ≤ nz ≤ Nz/22. The figure displays (x, z)-plots
of u2 at y = −ym (left) and corresponding spectra aver-
aged over the wall-normal direction (right). The top panels
correspond to an ideally formed pattern and the bottom
panels to a defective one. For both flows, the wave num-
bers corresponding to the peak are nx = 1 and |nz| = 3.
The spectra are zoomed on the smallest wave numbers so
that modulations at the scale of the streaks are outside the
reframed graphs. When the pattern is well formed, a sin-
gle mode corresponding to the fundamental of the modula-
tion clearly emerges, about two orders of magnitude larger
than the other modes. These background modes account
for small irregularities at a given time and not to steady

2 Strictly speaking only 0 ≤ nx ≤ Nx/3 and −Nz/3 + 1 ≤
nz ≤ Nz/3 since Nx,z are the numbers of de-aliased modes
so that, the 3/2-rule being used, the number of modes truly
involved in the dynamics is 2Nx,z/3 and the corresponding
bounds (2Nx,z/3)/2 = Nx,z/3. This proviso is however not
essential since we are only interested in centre of the spectrum
with nx,z small.
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anharmonic corrections to a basically sinusoidal profile:
the average ratios mnz ̸=3/mnz=3 are at most 0.1 and the
harmonics have no definite phase relation with the fun-
damental, corroborating the observation by Barkley and
Tuckerman that the modulation is quasi-sinusoidal [11].
In the defective case (Fig. 6, bottom), two peaks emerge,
corresponding to the two orientations. Their amplitude is
smaller, and other harmonics have non negligible ampli-
tudes, accounting for the spatial modulations of the pat-
tern. Envelopes can be defined, one for each orientation,
obtained by standard demodulation.

The picture shown corresponds to a case with three
bands, showing that there is enough room for a grain
boundary. For smaller systems with one or two bands,
defects correspond to the coexistence of laminar and tur-
bulent regions without conspicuous organisation. In fact,
the pattern can be observed only when the domain is
above some minimal size Lmin

x,z . Our simulations suggest
Lmin

z ∼ 24 and Lmin
x ∼ 70 (a precise determination of the

minimal size is still under study). This is much smaller
than in experiments because periodic boundary conditions
tend to stabilise the pattern: only a tendency to form
oblique turbulent patches was observed in laboratory ex-
periments with Lx × Lz = 280 × 72 [22], where the ideal
simple shear flow was achieved with sufficient accuracy
only in the centre of the set-up due to lateral boundary
effects.

Following Prigent et al. [8], both orientations being
equivalent, we expect that the pattern can be charac-
terised by two complex quantities A±:

ux =
∑

±
A±

(
x̃, z̃, t̃

)
exp i(kc

xx ± kc
zz) + c.c. , (1)

where A± ∈ C describe slow modulations at scales much
larger than λc

x,z = 2π/kc
x,z, the “optimal” streamwise and

spanwise wavelengths. Variables x̃ and z̃ denote the corre-
sponding space coordinates. Despite the highly fluctuat-
ing nature of the turbulent flow, the pattern being time-
independent, there is just a possible slow evolution at an
effective time t̃ linked to wavelength selection and defect
dynamics. The modulus of A± gives the amplitude of the
turbulent intensity modulation, and the phase fixes the
absolute position of the pattern in the domain.

Near the threshold Rt, introducing ϵ = (Rt − R)/Rt,
A± are guessed to fulfil Ginzburg–Landau–Langevin equa-
tions in the form [6–8]:

τ0∂t̃A± =
(
ϵ + ξ2

x∂2
x̃x̃ + ξ2

z∂2
z̃z̃

)
A±

− g1|A±|2A± − g2|A∓|2A± + αζ± (2)

where the αζ± are additive noise terms expressing the
local fluctuations caused by intense small scale turbu-
lence, α being the strength of the physical noise. Though
this noise is both more intense than thermal fluctuations
(see [23] and references therein) and much more correlated
since the featureless turbulent state is not without struc-
ture [24], terms ζ± are tacitly taken as independent nor-
malised delta-correlated Gaussian white noise processes
(⟨ζ±(t)ζ±(t′)⟩ = δ(t − t′)).

Periodic boundary conditions determine accessible
wavelengths in a given domain: λx,z = Lx,z/nx,z, where
the integers nx,z are the wave numbers. In the computa-
tional domains considered here, with Lx,z not so large, it
turns out that states with nx = 1 or 2 and nz = ±1 up to
nz = ±3 can be observed, depending on the precise value
of Lx and Lz. When the wavenumbers are small enough,
the partial differential model (2) can be reduced to a set
of ordinary differential equations for scalar complex am-
plitudes, and when there is no wavelength competition
but only an orientation competition playing with the ±,
just by two amplitudes A±,nx,nz corresponding to a spe-
cific pair of wavenumbers (nx,±nz). These amplitudes are
then governed by:

τ0∂t̃A±,nx,nz = ϵ̃nx,nzA±,nx,nz −
(
g1|A±,nx,nz |2

+g2|A∓,nx,nz |2
)
A±,nx,nz + αζ± (3)

with ϵ̃nx,nz = ϵ − ξ2
xδk2

x − ξ2
zδk2

z , δkx,z = kx,z − kc
x,z, and

kx,z = 2πnx,z/Lx,z, so that the dependence of the pattern
on the value of the wavevectors can be studied by changing
the size of the domain.

When a single wavelength and a single orientation are
selected, a single complex amplitude can serve to char-
acterise the corresponding pattern. This was precisely the
case considered by Barkley and Tuckerman [10,11] who de-
fined the order parameter from a single Fourier amplitude
by sampling its probability distribution function (PDF)
and averaging over its phase [16,17]. So doing, they were
able to detect the bifurcation to the band regime from the
change in the PDF as Rt was crossed. In our simulations a
single orientation is selected only deep enough in the band
regime, i.e. sufficiently below Rt but above Rg. The pat-
tern is then well installed and its orientation remains fixed
but its lateral position in the domain can fluctuate, which
strictly corresponds to the phase fluctuations alluded to
above. When this is the case, symmetry considerations
underlying (3) imply that the phase is dynamically neu-
tral, hence constant in a deterministic context, while it
is expected to evolve as a random walk in a noisy con-
text [16,17]. Figure 7 shows that this is indeed the case.
The top panel illustrates the variations of the phase of
the Fourier amplitude ûx of the streamwise velocity com-
ponent at y = −ym for R = 290 in a domain of size
Lx × Lz = 110 × 48. The expected property is illustrated
in the bottom panel which displays the linear growth of
the variance of the phase fluctuations as a function of time
after appropriate ensemble averaging: from the initial time
series we define an ensemble of Ne successive sub-series of
duration Te as:

φi(t) = φ(t + (i − 1)Te) − φ ((i − 1)Te) , t ∈ [0, Te]

for i = 1 . . .Ne. We next define the ensemble average:

⟨φ⟩(t) =
1

Ne

Ne∑

i=1

φi(t) , t ∈ [0, Te] .
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Fig. 7. (Color online) Top: variation with time of the phase of
the main Fourier component of ûx for Lx = 110, Lz = 48, R =
290. Bottom: growth of the variance of the ensemble-averaged
fluctuations as a function of time (Te = 130, Ne = 1000), with
linear fit.

which always remains of order 10−3, while the variance:

σ2
φ(t) =

1
Ne

Ne∑

i=1

(φi(t) − ⟨φ⟩(t))2 , t ∈ [0, Te]

is indeed seen to grow linearly with time (Fig. 7).
When the wavelength and/or the orientation can fluc-

tuate, as is now the case of interest, the practical defi-
nition of an order parameter is less straightforward since
a single complex amplitude is not enough. Here, we for-
get about the information contained in the phase of the
relevant complex amplitudes and focus on their modu-
lus. We then define the instantaneous order parameter
mnx,nz(t) as the modulus at time t of the fundamental
Fourier mode (nx, nz) accounting for the pattern as fea-
tured by the streamwise velocity field ux averaged along
the wall-normal direction:

mnx,nz(t) =
(

1
2

∫ 1

−1
|ûx(nx, y, nz, t)|2 dy

)1/2

(4)
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Fig. 8. (Color online) Time series of turbulent quantities (left)
and m (right) during the initial stage of a typical experiment.
Here, for Lx × Lz = 110 × 48, R is initially set at 450 and
switched to 315 at t = 500.

but equivalent results are obtained from the other velocity
components, with or without wall-normal averaging.

2.3.2 Typical experiments and the order-parameter
time-averaging issue

Owing to the linear stability of the laminar flow, turbu-
lence has to be triggered by finite amplitude disturbances.
A typical experiment consists of creating a random initial
condition and evolving it at a Reynolds number for which
uniform turbulence is expected, here R = 450 (≫Rt ≃ 345
at the resolution chosen in the present work). That state
is next used as an initial condition for a simulation at
the targeted value of R for which the pattern of interest
is expected, hence Rg < R < Rt. Such experiments were
named quench in [22,25]. Variations of turbulent quantities
e(t), et(t), f(t) and of the order parameters m(t) at the
beginning of a typical experiment are shown in Figure 8:
the stabilisation of the featureless regime at R = 450 is
clearly visible with e ≃ et, f/10 ≃ 0.1 (left), and m ∼ 0
(right). The subsequent quench at t = 500, R = 315 is
seen to produce some undershoot of e, et and f , while
m grows slowly, which corresponds to the formation of
bands. After a short period of exponential growth, the or-
der parameters saturate as shown in Figure 9 for a series
of 6 independent runs in the same conditions where a band
is expected, pointing out the selection of the orientation,
with one of the order parameters larger than the other by
typically one to two orders of magnitude. The simulation
is continued during at least 5000 time units in order to
ensure good convergence of the time averages E, Et, F
and M . The same procedure is repeated for all the values
of Lx, Lz, and R considered, except in Section 3.4 where
an adiabatic procedure is adopted to vary R.
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Fig. 10. (Color online) Time series of m2 for Lx × Lz = 128 × 84 at R = 315. Well-formed patterns with nz = +1 appear for
t ∈ [43, 51], nz = −1 for t ∈ [22, 37] and t > 52, nz = +2 for t ∈ [3, 11], and nz = −2 for t ∈ [14, 16]. Defective patterns are
obtained for t ∈ [18, 22] or [38, 43]. (All times to be multiplied by 103).

Like the turbulent quantities e, et and f , order pa-
rameters mnx,nz fluctuate in time but, since orientation
changes are now of interest, care is required when com-
puting their averages. Figure 10 displays a typical example
of long-lasting time series of m2 for Lx = 128, Lz = 84,
and R = 315, which produces patterns with nx = 1 and
|nz| = 1 and 2, so that modes nz = ±1 and ±2 dominate
in turn. As long as the instantaneous state of the sys-
tem is close to ideal, m fluctuates around a specific mean
value which depend only on |nz| as expected from sym-
metry considerations. Defects may appear and disappear,
involving several modes with similar amplitudes. For the
data in Figure 10, Lz = 84 lies in a range Lz ∈]80, 96[
where the competition between different values of |nz| is
particularly intense (see below). When it is the case, a
proper definition of order parameters implies conditional
averaging over periods during which the pattern is well
formed with the chosen value of |nz|. For example, in Fig-
ure 10, |nz| = 1 is present during about 3/4 of the time
window and |nz| = 2 less than 1/4 of it. Since m±2 > m±1

when the corresponding modes dominate the pattern, one
gets M2 > M1, but it would be meaningless to make a
blend of the two and define a single order parameter for
the system. A detailed study of this special case is deferred
to [26].

However, outside cases of strong wavelength competi-
tion, a single value of |nz| is selected, which makes things
somewhat easier and allows us to simplify the notation:
mnx,±nz +→ m±. An example is displayed in Figure 11 for
Lz = 32 where only |nz| = 1 shows up. Averaging can
then be performed from two-dimensional probability dis-
tribution functions (PDF) Πe(m+, m−), where subscript
“e” means “empirical”3. Far away from Rt the orientation

3 In contrast with what was defined by Barkley et al. [16,17]
who chose to scale out the pre-exponential factor, having
dP (a) = ada ρ(a), where a is the modulus of the domi-
nant Fourier mode, corresponding to one of our m±, we have
here dΠ(m+, m−) = dm+dm− Π(m+, m−), as a consequence:
Π(0,m−) = Π(m+, 0) = 0.
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Fig. 11. (Color online) Time serie of m2(t) for Lx × Lz = 110 × 32, R = 330.

Fig. 12. (Color online) PDF of m for Lx × Lz = 110 × 32, R = 290 (left), R = 330 (centre-left), R = 330, symmetrised
(centre-right), R = 337, symmetrised (right).

does not fluctuates and the pattern remains without de-
fects, which yields a one-hump PDF such as the one in Fig-
ure 12 (left) for R = 290, but closer to Rt the orientation
fluctuates and defects are present. Two humps are then
obtained as in Figure 12 (centre-left) which derives from
the time series for R = 330 shown in Figure 11. Due to the
finite length of the time series, the PDF is not symmetrical
with respect to the diagonal but since, for symmetry rea-
sons, the two orientations should be present with the same
weight, one may improve the statistics by constructing
Πe,s(m+, m−) = 1

2 (Πe(m+, m−) + Πe(m−, m+)), where
the additional subscript “s” means “symmetrised”, which
is done in Figure 12 (centre-right). Averages can then be
extracted from the “symmetrised” PDF, which works fine
as long as the orientation fluctuates but neither the wave
numbers nx nor |nz|. We thus define:

M = 2
∫

m′′<m′
m′Πe,s(m′, m′′) dm′dm′′.

The right panel in Figure 12 displays the (symmetrised)
PDF for R = 337, when re-entrant featureless turbulence
intermittently bursts in, which manifests itself as a sec-
ondary hump close to the origin, see below Section 3.4,
and especially the discussion related to Figure 17.

3 Results

3.1 Theoretical expectations

The statistically steady states (permanent regimes) ob-
tained in the DNS and characterised by the time-averaged

empirical order parameters mnx,nz defined through (4)
can then be compared to the equilibrium states predicted
by model (3), the deterministic part of which can be writ-
ten as deriving from the potential:

V = − 1
2 ϵ̃

(
|A+|2 + |A−|2

)
+ 1

4g1

(
|A+|4 + |A−|4

)

+ 1
2g2|A+|2|A−|2, (5)

where ϵ̃ is a short hand notation for ϵ̃nx,nz , computed from
the values of nx and ±nz relevant to the pattern of in-
terest, again with a single pair of modes present in the
system.

Assuming Gaussian noises of strength α, the theoreti-
cal expression of the PDF reads [27]:

Πt(m+, m−) = Z−1 m+m− exp(−2V/α2) ,

where subscript “t” means “theoretic” and

Z =
∫ ∞

0

∫ ∞

0
m+m− exp(−2V/α2) dm+dm−

is a normalisation factor called the partition function in
statistical physics. For values of ϵ̃ that are not too small,
the most probable values m0

± corresponding to the max-
ima of Πt give a good estimate of expected mean values
⟨m±⟩ (mean-field approximation). They are given by the
solutions to:

0 = −ϵ̃m2
± + g1m

4
± + g2m

2
±m2

∓ − α2/2 .

At lowest non-trivial order in α2, we have:

m0
± ∝ α

|ϵ̃| , (6)
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which corresponds to the trivial solution of the determin-
istic problem, just shifted by the effects of noise. The non-
trivial solutions read:

m0
+ = m0

− =
√

ϵ̃/(g1 + g2) (7)

and

m0
± =

√
ϵ̃/g1 , m0

∓ =
α√

2ϵ̃(g2 − g1)/g1

. (8)

For ϵ̃ < 0, solution (6) is stable and the other solutions
do not exist. For ϵ̃ > 0, solution (6) is unstable and the
symmetric solution (7) is a saddle point since, in order
to get a stripe pattern we assume g2 > g1; otherwise a
stable rhombic pattern would be obtained but is observed
neither in the experiments nor the numerical simulations.
This solution lies on the boundary of the attraction basins
of solutions (8), which exist for ϵ̃ > 0 and are stable. They
represent the amplitude of the turbulence modulation for
R < Rt. The mean amplitude of the installed mode varies
as

√
ϵ̃ as is typical of a supercritical bifurcation. The other

mode, expected to be zero in the deterministic case, is
present with small amplitude due to noise. Noise is also
responsible for a switch from the “±” situation to the
“∓” one when fluctuations make the system leave the well
corresponding to an installed “+” mode to reach the other
one where the “−” mode is installed and vice versa, going
through the potential barrier at the saddle solution (7).
The asymptotic expressions above agree with the values
computed from the PDFs obtained by direct simulations
of model (3) and will be plotted together with our results
in Figures 19 and 21. When ϵ̃ is very small, fluctuations
around the most probable values have to be taken into
account. The mean field approximation is no longer valid
and a behaviour in the form ⟨m±⟩ ∝ |ϵ̃|β is expected,
where β is the critical exponent describing the variations
of the order parameter with the control parameter in the
theory of phase transitions. We shall restrict to the mean-
field approximation as a first guess since the nature and
extent of this specific regime, called critical in statistical
physics, are not yet clearly characterised in the present
case (see [23] and references therein for examples where
fluctuations have thermal origin).

The deterministic part of model (3) is invariant
against phase changes of the complex amplitudes A± =
m± exp(iφ±), implying that the φ± are dynamically neu-
tral. They are indeed governed by:

τ0∂t̃φ± = Im [exp(−iφ±)αζ±] /m± , (9)

i.e. a stochastic process, the strength of which depends
on the instantaneous value of m±. In fact, the right hand
side of (9) is another random Gaussian process ζ̃(t)α/m(t)
with zero mean and variance α2δ(t−t′)/(⟨m⟩2+σ2

m) where
σ2

m is the variance of m(t), which can be checked numer-
ically using model (3). Results in Figure 7 above can be
quantitatively rendered by taking α/τ0 = 4 × 10−4.

Coherence lengths ξx and ξz in (3) control how strictly
the wavevectors kx and kz are bound to their optimal val-
ues kc

x and kc
z. The anisotropy of the base flow leads to ex-

pect different values for ξx and ξz . For PCF, experimental

data [6–8] suggests that λx and therefore kx do not de-
pend on the Reynolds number, whereas λz decreases with
R. Prigent et al. also report a decrease of the effective
value of ξz as R is increased but the experiment did not
give access to ξx. In the following, we determine most of
coefficients in model (3) from the dependence of E, Et,
F and M on kz , kx, by varying Lx, Lz and R using the
quench protocol explained above. The dependence upon
the Reynolds number analysed next is obtained from sim-
ulations in which R is varied adiabatically.

3.2 Dependence on kz

We fix R = 315, in the middle of the range where bands are
expected at the resolution that we consider [20], and Lx =
128 so that a single streamwise period is obtained (nx = 1,
kx = 2π/Lx). We take values of Lz ranging from 24 to 192.
Taking the number |nz| of spanwise periods into account,
we have kz = 2π|nz|/Lz. Figure 13 displays E, Et, and
F as functions of Lz, showing that |nz| increases with Lz:
one band for 24 ≤ Lz ≤ 80, two bands for 96 ≤ Lz ≤ 144
and three bands for 156 ≤ Lz ≤ 192. In these ranges, |nz |
stays fixed during the simulation. In contrast, patterns
with |nz| = 1 and |nz| = 2 alternate in time for 80 <
Lz < 96, here for Lz = 84 (see Fig. 10) and Lz = 90. This
special case is studied more thoroughly in [26]. A similar
competition between |nz| = 2 and |nz| = 3 is expected to
occur for 144 ! Lz ! 150. Taken together, the results in
Figure 13 illustrate confinement effects when Lz is small.
Turbulence is featureless for Lz < 24 and the turbulent
fraction F (central panel) rapidly decreases from 1 down
to ≃0.63 which therefore represents some kind of optimum
at R = 315.

The results also suggest to check cases with nz > 1
against case nz = 1. Figure 14 (top) displays M2 as a
function of kz = 2πnz/Lz and nz = 1 as a full line.
Data obtained with two and three bands are also shown
as dashed and dash-dotted lines, respectively. For them no
points at large wavevectors are obtained because the cor-
responding patterns are not stable enough to be observed.
The parabolic shape expected from the theory (Sect. 3.1)
is reasonably well reproduced by the data. The maximum
is reached at kc

z ≃ 0.16, that is λc
z = 2π/kc

z ≃ 39, as de-
termined from a fit against a parabola. The so-obtained
value of kc

z can next be used to determine ξ2
z from the

slope of a linear fit of M2 against (kz − kc
z)2. The result is

displayed in Figure 14 (bottom) where data correspond-
ing to one band are shown with “+” signs. From it one
derives ξ2

z/g1 = 0.1. In turn, the constant term in the fit
is a compound accounting for the dependence on R and
kx, namely (ϵ−ξ2

xδk2
x)/g1 = 0.002. Data for two and three

bands, respectively shown with “◦” and “×” symbols, are
seen to be consistent with these estimates. Here a single
value of R has been considered. In the CCF case, Prigent
et al. found for ξ2

z/g1 values of the same order of magni-
tude, decreasing with R from 0.5 to 0.1 [8].
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Fig. 13. (Color online) Perturbation energy E (left), turbulent fraction F (center) and turbulent energy Et (right) as functions
of Lz for Lx = 128 and R = 315.
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2 (bottom) for Lx = 128 and

R = 315.

3.3 Dependence on kx

The dependence of the pattern’s characteristics on kx is
studied for R = 315, Lz = 48, and Lx ∈ [80, 170]. In this
range, only nx = 1 is obtained, except for Lx = 170 where

nx = 2 can also be observed. Figure 15 shows that, as
a function of kx (top), M2 displays a maximum at kc

x =
0.058, hence λc

x = 110, whereas fitting M2 against (kx −
kc

x)2 (bottom) yields ξ2
x/g1 = 2.7. The same study at R =

330 (closer to Rt = 345) gives λc
x = 110 and ξ2

x/g1 = 3.9,
while at R = 290 (closer to Rg = 275) we get λc

x = 125
and ξ2

x/g1 = 2.2, which is a rough estimate since the lack
of symmetry in the exchange δkx ↔ −δkx visible in the
top panel of Figure 15 has not been taken into account.

The variation of λc
x with R that we obtain here is not

observed in the the plane Couette flow experiments but
remains compatible with the trend seen in CCF case [6].
Rather than to the role of rotation or curvature, this ob-
servation points to the role of streamwise periodic bound-
ary conditions enforced by the cylindrical geometry or the
numerical implementation.

3.4 Dependence on R

Variations of E, F , Et, and M against R are studied using
a different protocol. Two sizes are considered: Lx × Lz =
128×64 and 110×32. From the study in previous sections,
both domains are expected to fit one elementary band
λx × λz . The pattern should feel “at ease” in the first
domain and more “spanwise-confined” in the second one.
A first simulation at R0 = 315 serves to prepare initial
conditions for simulations at higher and lower Reynolds
numbers by increasing or decreasing R by steps ∆R = 5.
The flow is integrated over 5000 time units at each value of
R and the so-obtained state is used as an initial condition
for the next value of R in the range [260, 350]. Additional
values R = 333, 336, 337, and R = 370 and 390 outside the
interval are also considered. At given R statistical results
involve time integration over at least 1.5× 104 time units.

The main effect of increasing R seems to be an ex-
pansion of the turbulent part of the band pattern as il-
lustrated in Figure 16. When R is close enough to Rt the
orientation of the pattern fluctuates: destroying a well-
established ideal pattern, turbulence invades the laminar
band, stays featureless for a while, before another pat-
tern grows, which may or may not have the same orienta-
tion. Figure 17 displays a featureless turbulent episode for
Lx×Lz = 110×32 and R = 335, during which m(t) stays
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Fig. 15. (Color online) Order parameter squared M2 as a
function of kx (top) and of (kx − kc

x)2 (bottom) for Lz = 48
and R = 315.

close to 0 (left panel), the turbulent fraction approaches
one, indicating the decrease of the size of the laminar do-
main and commanding the variation of the total energy
(central panel), while the intensity of turbulence inside
the turbulent domain does not changes (right panel). Such
events cannot be mistaken with the transient occurrence
of a defect in the pattern since both m+1 and m−1 remain
simultaneously close to zero for a relatively long period of
time, which is characteristic of the featureless state. They
are not observed for R ≤ 333, and go from extremely rare
at R = 335 and 337 to common at R = 340, to the most
common state at R = 345 (though a trace of modulation
persists).

Since it is a three-state jump process instead of a two-
state one, this feature should be treated appropriately fol-
lowing the same procedure as for orientation fluctuations.
However, it cannot be accounted for by the plain model (3)
since empirical PDFs for R = 337 (Fig. 12, right) and
higher clearly present three maxima, one of which is close
to the origin (m+ ≃ 0 ≃ m−). The phenomenon can how-

Fig. 16. (Color online) Colour plot of u2, from top to bottom:
R = 280, R = 300 and R = 330. Lx × Lz = 128 × 64.

ever be treated within the same conceptual framework by
assuming a slightly modified potential with an additional
relative minimum at the origin separated by saddles from
the main minima corresponding to the pattern installed in
one or the other orientation, justified by the appearance
of a third maximum in the PDFs. The splitting probabil-
ity between the featureless regime and the pattern would
then be controlled by the relative depths of the three
wells [27], which could be studied by following the pro-
cedure for orientation fluctuations [26]. This complication
has however not been explored further because the phe-
nomenon is likely a size effect: in the upper transitional
regime at large aspect-ratio, bands form out of scattered
elongated regions where turbulence is depleted, see Fig-
ure 18. The computational domains considered here are
just sufficient to contain a pattern cell of size λx × λz .
It is therefore not surprising that the spatiotemporal in-
termittence of laminar troughs comparable in size to that
cell be turned into temporal intermittence of well-formed
laminar bands recurrently destroyed by featureless tur-
bulence. The improved modelling suggested above would
transform the supercritical bifurcation into a slightly sub-
critical one, with associated coexistence of featureless and
patterned states, as expected from system where a spatial
and temporal cohabitation of different states is possible.
This would explain the shape of the PDFs once noise is in-
troduced as for the original model. The same explanation,
if correct, would explain the presence of the “intermit-
tent regime” described, although not fully investigated,
by Barkley and Tuckerman [10,11,16,17] since turbulence
modulations around Rt are also much longer than the
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Fig. 17. (Color online) Time series of m (left), e and f/10 (center) and et (right) zoomed on the appearance and disappearance
on an uniformly turbulent flow for Lx × Lz = 110 × 32 and R = 335.

Fig. 18. (Color online) Snapshot of the numerical solution
for R = 340 at t = 20 000; same simulation conditions as in
Figure 1 (bottom-right), in particular Lx = 432, Lz = 256.

width of the oblique computational domain they consid-
ered.

Figure 19 displays the variations of the different ob-
servables of interest with R. The growth of the width of
the turbulent domain illustrated in Figure 17 is clearly re-
flected by the increase of F with R in Figure 19b. Quantity
F varies roughly linearly with R for R < Rt, and with a
much smaller slope above. This increase mostly explains
the growth of the perturbation energy since the turbulent
energy depends more weakly on R, with no singular be-
haviour visible at Rt (Fig. 19a): the intensity of turbulence
inside the turbulent domains does not seem sensitive to
the global organisation in an oblique pattern. The slope
discontinuity at Rt ≃ 350 marking the bifurcation was
used as a criterion in our previous study [20]. Values ob-
tained for E, Et, and F are slightly different for the two
sizes considered, which is related to lateral confinement
effects already illustrated in Figure 13 (left) for R = 315.

In Figure 19c, it can be seen the order parameter M de-
parts from the expected classical ϵ̃1/2 behaviour and tends
to saturate in the lowest part of the transitional range. For
Lx ×Lz = 110× 32, it even decreases as R is lowered fur-
ther, which is again a confinement effect since, from the
experiments [6–8] as well as from our earlier (less well re-
solved) numerical results [20], the spanwise wavelength λz

is expected to increase up to about 80 as R decreases:
this implies a less optimal pattern and a weaker modu-
lation for Lz = 32, while for Lx × Lz = 128 × 64, with
a more favourable λz, M continues to increase as R is
lowered in agreement with the Ginzburg–Landau picture.
In the upper part of the transitional range, M decreases
quickly as R increases. The decay of the modulation cor-
responds to the increase of the width of the turbulent do-
main. Again in line with the Ginzburg–Landau interpreta-
tion, the variation of M2 with R (Fig. 19d) appears to be
linear with a slope 1/(g1Rt) ≃ −5.3 × 10−5. Meanwhile,
the extrapolation of M2 to zero gives a value of Rt ≈ 355
or 348 depending on whether one takes the data from case
Lx × Lz = 110 × 32 or 128 × 64, respectively. In contrast
with what happens for R ∼ Rg, here the estimate with
Lz = 32 is likely the best one since experiments suggest
λz ≃ 37.5 either by extrapolation for plane Couette flow
or from measurements in the CCF [6–8]. Taking Rt ≃ 355,
we get g1 ≃ 55, which is consistent with Prigent’s value
g1 ∼ 100 in the CCF case. This value of g1 further yields
ξz ≃ 2.3 (measured values for CCF range between 0.9 and
3.2) and ξx ≃ 11 for R = 315.

In Figure 19c, it can be noticed that M remains fi-
nite for R > Rt, as the result of intrinsic fluctuations in
the featureless turbulent regime, in contrast with what
would happen in the deterministic case. Fluctuations in-
deed gives a finite background level to modes m±, a fact
which is well accounted for by the model in the mean-
field approximation represented by dash-dotted line in
Figure 19c.

These result are not qualitatively affected by the in-
crease of resolution from Ny = 15 and Nx,z/Lx,z = 8/3
to Ny = 27 and Nx,z/Lx,z = 4 as can be seen in Fig-
ure 20 which compares the results for both resolutions at
size Lx × Lz = 110 × 32. The quantitative change is mi-
nor and in the expected fashion [20]. The thresholds Rg

and Rt move to approximately 321 and 390. The square
of the perturbation undergoes an increase of about 10%.
Apart from the threshold shift, the turbulent fraction F
is little affected by the resolution change. Both E and
F display the expected slope break. Given the uncer-
tainty on the values of M near Rt, the value g1 ≃ 30
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Fig. 19. (Color online) Variation with R of the different averaged quantities for domains Lx ×Lz = 110× 32 (blue on line) and
128 × 64 (red on line): (a) Perturbation energy E (full line) and turbulent energy Et (dashed line). (b) Turbulent fraction F .
(c) Order parameter M and corresponding values from the model (dash-dotted line, g1 = 55, g2 = 250, α = 0.002, Rt = 355).
(d) Square of the order parameter M2, observations (◦ : 128 × 64 and + : 110 × 32) and linear fits (lines).

at Ny = 27 is acceptable. This reassert the validity of our
semi-quantitative approach.

Parameter g2 has little influence and reasonable re-
sults are obtained from 0.001 ! α ! 0.003. This estimate
is consistent with the value obtained from the fit of the
phase dynamics fit α/τ0 ∼ 4 × 10−4, (Fig. 7) if we accept
Prigent’s finding τ0 ∼ 30 h/U [6,8]. The variance of the
fluctuations of m in the vicinity of Rt is also of interest.
Let us define:

S2 = 2
∫

m′′<m′
(m′ − M)2Π(m′, m′′) dm′dm′′.

Figure 21 displays the variation of S as a function of R.
Fluctuations appear to be strongly enhanced in the vicin-
ity of Rt, due to orientation changes and re-entrance of
featureless turbulence. Though model (3) does not ac-
count for the latter phenomenon, it already explains a
large part of the enhancement. Its parameter g2 controls
the amplitude of fluctuations that bring about orientation

changes. The position of the maximum of S(R) strongly
depends on it. With g1 = 55, satisfactory agreement is
found for g2 " 120. Results obtained with g2 = 250 are
represented as a dash-dotted line in Figure 21. Including
the re-entrance of featureless turbulence would certainly
increase the variability but this would still not be the
whole story since, like for second order phase transitions,
one would expect a divergence of S in the form S ∝ |ϵ̃|γ ,
γ being the critical exponent attached to the susceptibil-
ity of the order parameter, just rounded off by finite-size
effects. Even at reduced numerical resolution, improving
the statistics to study the pattern’s fluctuations in the
simulations seems presently out of reach.

4 Summary and conclusion

Prigent et al. [6–8] have put the problem of the emer-
gence of turbulent bands in wall-bounded flows within
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Fig. 20. (Color online) Turbulent quantities E, Et (top) and
F (center), order parameter M as function of R for a domain of
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Nx,z/Lx,z = 6 (circles) and Ny = 15, Nx,z/Lx,z = 4 (crosses).

the Ginzburg–Landau framework of pattern formation,
adding noise to account for background turbulence. Doing
so, they were able to extract most of the coefficients in the
model equation from laboratory experiments in the case
of circular Couette flow, while restricting themselves to
threshold localisation and wavelength measurements for
PCF. In a similar vein, Barkley et al. [16,17] later per-
formed simulations of PCF, detecting the formation of
bands from Fourier analysis of the pattern. They consid-
ered a quasi-one-dimensional configuration excluding ori-
entation fluctuations expected to play a role close to Rt

for symmetry reasons. Though having the model in mind,
they did not attempt any quantitative fit. Our work has
been mostly devoted to overcome these two limitations, to

300 350 400 450
0

0.002

0.004

0.006

0.008

0.010

0.012

R

S

 

 

110x32
128x64
model

Fig. 21. (Color online) Average root-mean-square fluctuation
of m as a function of R for Lx × Lz = 110 × 32 (full line),
128 × 64 (dashed), and the model with g1 = 55, g2 = 250,
Rt = 355, α = 0.002 (dash-dotted).

check the validity of the noisy Ginzburg–Landau frame-
work, and to compare finding for PCF to those for CCF.
Previous results [20] were reasserted, showing that con-
trolled under-resolution gives excellent qualitative agree-
ment with experiments and good quantitative results once
corrected for a general shift of the range [Rg, Rt] where the
bands are present. We performed numerical experiments
in domains of sizes able to contain one to three bands in
the spanwise direction and one or two bands in the stream-
wise direction, while letting the pattern’s orientation fluc-
tuate. Under-resolution reducing the computational load,
we could carry out long duration simulations in order to
accumulate reliable statistics.

The emergence of bands was first quantitatively char-
acterised using standard statistical quantities such as the
total perturbation energy E, the turbulent fraction F ,
and the average energy contained in turbulent domains
Et. These quantities quickly converge to their steady-
state values but do not give information on orientation
or wavelength fluctuations. This limitation has been next
overcome by defining order parameters measuring the
amplitude of the modes involved in the Fourier series
decomposition of the patterns, appropriately amending
the Barkley et al. definitions and procedure. The full
nonlinear dispersion relation describing the formation of
bands could be studied by varying the Reynolds number
and the size of the computational domain which controls
the allowed wavevectors. The coefficients of the relevant
Ginzburg–Landau equation and the intensity of the noise
were estimated, showing the overall consistency of the ap-
proach. In particular, two coherence lengths, spanwise and
streamwise, were evaluated and the square of the modu-
lation amplitude was shown to vary linearly with R far
enough from Rt, while its fluctuations and the intermit-
tent re-entrance of featureless turbulence were strongly en-
hanced close to Rt. It has been argued that the re-entrance
of featureless turbulence was a side effect of the limited
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size of the system, probably explaining the “intermittent
regime” of Barkley and Tuckerman [10,11] by the same to-
ken, and that this observation should be better replaced
on a spatiotemporal footing in more extended domain,
in relation to patterns with mixed orientations observed
near Rt in CCF experiments [6–8] or PCF simulations in
Figure 18. Finally, comparing our results with those ob-
tained in CCF we obtain satisfactory general agreement,
but with the supplementary information that the stream-
wise coherence length ξx is significantly larger than the
spanwise coherence length ξz indicating that the selection
of the streamwise wavelength λx is more effective than
that of the spanwise wavelength λz .

As a whole, the emergence of oblique bands from fea-
tureless turbulence upon decreasing R has been seen to fit
the conventional framework of a pattern-forming instabil-
ity. However, the very fact that the base state is turbulent
calls for the introduction of a large noise in the picture.
These numerical studies are performed with the hope that
they will contribute to the understanding of the cohabi-
tation of turbulent and laminar flow typical of the tran-
sition to/from turbulence in wall-bounded flows, the de-
tailed mechanism of which is still largely unknown.
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