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Hydrochemical interactions of phoretic particles:
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Chemically active colloids modify the concentration of chemical solutes surrounding them
in order to self-propel. In doing so, they generate long-ranged hydrodynamic flows and
chemical gradients that modify the trajectories of other particles. As a result, the dynamics
of reactive suspensions is fundamentally governed by hydro-chemical interactions. A full
solution of the detailed hydro-chemical problem with many particles is challenging and
computationally expensive. Most current methods rely on the Green’s functions of the
Laplace and Stokes operators to approximate the particle signatures in the far field, an
approach which is only valid in the very dilute limit in simple geometries. To overcome
these limitations, we propose a regularized multipole framework, directly inspired by
the force coupling method (FCM), to model phoretic suspensions. Our approach, called
diffusio-phoretic FCM (DFCM), relies on grid-based volume averages of the concentration
field to compute the particle surface concentration moments. These moments define the
chemical multipoles of the diffusion (Laplace) problem and provide the swimming forcing
of the Stokes equations. Unlike far-field models based on singularity superposition, DFCM
accounts for mutually induced dipoles. The accuracy of the method is evaluated against
exact and accurate numerical solutions for a few canonical cases. We also quantify its
improvements over far-field approximations for a wide range of inter-particle distances.
The resulting framework can readily be implemented into efficient solvers, allowing for
large scale simulations of semi-dilute diffusio-phoretic suspensions.

Key words: active matter, micro-organism dynamics

1. Introduction

Many microscopic organisms and colloidal particles swim by exerting active stresses
on the surrounding fluid in order to overcome its viscous resistance. In doing so, they
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set their fluid environment into motion and modify the dynamics of their neighbours
(Lauga & Powers 2009; Elgeti, Winkler & Gompper 2015). Large scale collective
behaviour can emerge from the resulting long-ranged interactions between individual
agents (Pedley & Kessler 1992; Zöttl & Stark 2016), but also profound modifications of
the effective macroscopic rheological and transport properties of such active suspensions
(Saintillan & Shelley 2013; Saintillan 2018). These have recently become a major focus
to study a broader class of systems that are fundamentally out of thermodynamic
equilibrium, broadly referred to as active matter systems, which comprise large assemblies
of individually active agents that convert locally stored energy into mechanical actuation
resulting in non-trivial effective macroscopic properties (Marchetti et al. 2013; Bechinger
et al. 2016).

Most biological swimmers apply such active stresses to the fluid through sequences of
shape changes, or swimming strokes, commonly through the flapping of slender flexible
appendages such as flagella or cilia (Brennen & Winet 1977; Lauga & Powers 2009; Lauga
2016). Such cell motility in viscous fluids plays a critical role in a diversity of biological
processes including mammal fertility (Fauci & Dillon 2006) and the balance of marine
life ecosystems (Guasto, Rusconi & Stocker 2012). Inspired by these biological examples
and many promising applications in various fields such as biomedicine or biochemical
reactors, researchers and engineers across disciplines have focused on the design of
microscopic self-propelled systems (Ebbens & Howse 2010). Many earlier designs were
directly inspired by the rotation of the helical flagella of bacteria or the flapping of
flexible cilia (Dreyfus et al. 2005; Zhang et al. 2009; Babataheri et al. 2011), but rely
on complex miniaturization processes of moving parts or a macroscopic actuation (e.g.
magnetic fields).

A fundamentally different route, explored more recently, exploits interfacial processes
to generate fluid flow from local physico-chemical gradients (e.g. temperature, chemical
potential, electric potential or solute concentration), resulting directly from a chemical
activity of the particle surface itself (e.g. catalytic reactions) (Yadav et al. 2015; Moran
& Posner 2017). The most famous and commonly used design is that of Janus nano- or
micro-particles with two different catalytic or physical properties (Paxton et al. 2004;
Perro et al. 2005). In dilute suspensions, these colloids exhibit short-term ballistic
behaviour (with velocities reaching a few μm s−1) but their long-time dynamics is more
diffusive as the result of thermal fluctuations (Howse et al. 2007). In contrast, complex
collective behaviour is observed in denser suspensions with the coexistence of cluster and
gas-like phases (Theurkauff et al. 2012; Ginot et al. 2018). Understanding the emergence
of such phase separation is currently a leading challenge in active matter physics (Cates
& Tailleur 2015). Beyond their fundamental interest and the puzzling details of their
individual and collective self-propulsions, these active colloids are already considered
for various engineering or biomedical applications, including drug delivery (Kagan et al.
2010), micro-surgery (Shao et al. 2018), intelligent cargo delivery (Sundararajan et al.
2008), self-healing microchips (Li et al. 2015), chemical analysis (Duan et al. 2015) and
sensing (Yi et al. 2016).

To generate autonomous propulsion, chemically active colloids exploit a combination
of two different physico-chemical properties (Golestanian, Liverpool & Ajdari 2007;
Moran & Posner 2017). The first one is a phoretic mobility, namely the ability to generate
slip flow along the boundary of a colloidal particle in response to gradients of a solute
(diffusio-phoresis), temperature (thermophoresis) or electric potential (electrophoresis)
(Anderson 1989), resulting in a net drift of this particle. The second one is the ability
of the particle itself to generate the local gradients through a surface activity, e.g.
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surface catalysis of chemical reactions (Wang et al. 2006) or heat release (Bregulla &
Cichos 2015). The combination of these two generic properties, or self-phoresis, provides
the colloid with the ability to swim (Golestanian et al. 2007). Other self-propulsion
mechanisms also share important similarities with self-phoresis, including the propulsion
of active droplets (Maass et al. 2016) or of light-illuminated colloids in binary mixtures
(Buttinoni et al. 2012). For simplicity, we focus on self-diffusio-phoresis of particles
absorbing or releasing neutral chemical solutes (Córdova-Figueroa & Brady 2008;
Popescu, Uspal & Dietrich 2016), keeping in mind that the approach and framework
presented here can be applied or generalized to account for more generic self-phoretic
systems (Moran & Posner 2011; Yariv 2011; Ibrahim, Golestanian & Liverpool 2017).

Symmetry breaking is an intrinsic requirement for directed motion in viscous flows;
for self-phoretic colloids, this requires the colloid to create or sustain a chemical surface
polarity. As a result, strictly isotropic colloids cannot self-propel individually, although
they may do so by self-assembling into geometrically or chemically asymmetric structures
(Soto & Golestanian 2014, 2015; Varma, Montenegro-Johnson & Michelin 2018; Schmidt
et al. 2019). In practice, most chemically active colloids thus exhibit an intrinsic chemical
asymmetry, where the two sides of a Janus colloid capture or release solutes of different
natures or at different rates (Moran & Posner 2017). Geometrically asymmetric colloids
also break the symmetry of their chemical environment and may thus self-propel (Kümmel
et al. 2013; Shklyaev, Brady & Córdova-Figueroa 2014; Michelin & Lauga 2015). A third
route to symmetry breaking, based on an instability, arises for isotropic colloids when
the chemical solutes diffuse sufficiently slowly for the nonlinear convective coupling of
phoretic flows and chemical transport to become significant (Michelin, Lauga & Bartolo
2013; Izri et al. 2014; Hu et al. 2019).

Like all microswimmers, Janus phoretic particles self-propel by stirring the fluid around
them, thus modifying the trajectory and speed of their neighbours. Due to their chemical
activity, they also alter their chemical environment and thus also drive an additional
phoretic motion of the surrounding particles. In most experiments on chemically active
particles, the diffusing solutes are small (e.g. dissolved gas) and chemical transport
is dominated by diffusion. Such micron-size colloids typically propel with velocities
U ≈1–10 μm s−1 and consume or release solutes of diffusivity D ≈ 103 μm2 s−1, so
that the relevant Péclet number Pe is always small (Pe ≈ 10−3–10−2) (Paxton et al.
2004; Howse et al. 2007; Theurkauff et al. 2012; Brown & Poon 2014). Obtaining
the swimming velocity of phoretic Janus particles therefore requires the solution of
two different problems sequentially, namely (i) a diffusion (Laplace) problem for the
solute concentration around the colloids and (ii) a hydrodynamic (Stokes) problem for
the fluid flow around them. Analytical solution is in general amenable only for single
particles (Golestanian et al. 2007), although determining the coupled motion of two Janus
colloids is also possible semi-analytically (Sharifi-Mood, Mozzafari & Córdova-Figueroa
2016; Varma & Michelin 2019; Nasouri & Golestanian 2020a). For more than two
particles, a complete description of the phoretic motion requires numerical treatment
(Montenegro-Johnson, Michelin & Lauga 2015) but with a computational cost that
increases rapidly with the number of particles, motivating the use of reduced models for
the particles’ interactions.

In dilute suspensions, i.e. when particles are far apart from each other, their
hydro-chemical interactions can be accounted for through the slowest-decaying chemical
and hydrodynamic signatures of individual particles and their effect on their neighbours
(Saha, Golestanian & Ramaswamy 2014; Varma & Michelin 2019). Due to their simplicity,
small computational cost for a large number of particles and ability to handle the effect
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of confinements through image systems, far-field models have been extensively used to
analyse the motion of active suspensions (see e.g. Ibrahim & Liverpool 2016; Thutupalli
et al. 2018; Kanso & Michelin 2019; Liebchen & Löwen 2019). An alternative mean-field
approach describes the particles’ motion in the ambient chemical and hydrodynamic fields
generated by the superposition of their individual far-field signatures (Liebchen et al. 2015;
Traverso & Michelin 2020).

For more concentrated suspensions, i.e. when the inter-particle distance is reduced,
far-field models are not accurate as finite-size effects of the particles are no longer
negligible. Although it is possible to include higher-order corrections using the method
of reflections (Varma & Michelin 2019), more complex numerical models are in general
required to solve the dual hydro-chemical problem accurately within not-so-dilute
suspensions. Due to the mathematical similarities between the Laplace and Stokes
problems, it is possible to draw inspiration from and build upon a large variety of methods
already used in recent years for the numerical modelling of passive and active suspensions.
A popular example is the Stokesian dynamics and its more recent extensions (Brady &
Bossis 1988; Sierou & Brady 2001; Swan, Brady & Moore 2011; Fiore & Swan 2019),
from which an analogous approach was proposed to solve for diffusion problems (Yan &
Brady 2016). A similar approach relies on a truncated spectral expansion of the integral
formulation of the Laplace and Stokes equations with tensorial spherical harmonics on
the particle’s surface (Singh & Adhikari 2019; Singh, Adhikari & Cates 2019). But
the possible routes also include boundary element methods (Ishikawa, Simmonds &
Pedley 2006; Montenegro-Johnson et al. 2015; Uspal et al. 2015), immersed boundary
methods (Bhalla et al. 2013; Lambert et al. 2013; Lushi & Peskin 2013), lattice-Boltzmann
approaches (Ladd & Verberg 2001; Alarcón & Pagonabarraga 2013), multi-particle
collision dynamics (Yang, Wysocki & Ripoll 2014; Zöttl & Stark 2014; Colberg & Kapral
2017; Zöttl & Stark 2018) and the force coupling method (Maxey & Patel 2001; Delmotte
et al. 2015).

The objective of the present work is to extend the fundamental idea and framework of
the latter to establish and validate a unified method that accounts for both chemical and
hydrodynamic interactions between phoretic particles. The force coupling method (FCM),
used to solve for the hydrodynamic interactions of particles in a fluid, relies on the classical
multipolar expansion of the solution for Stokes’ equation (Saffman 1973), but proposes a
regularized alternative to the singular Green’s function in the form of smoothed Gaussian
kernels. Beyond the obvious numerical advantage of such a regularization, it also provides
an indirect route to account for the finite size of the particles through the finite support of
these kernels. The FCM framework was initially proposed twenty years ago by Maxey and
coworkers (Maxey & Patel 2001; Lomholt & Maxey 2003) to analyse the joint dynamics of
passive spherical particles sedimenting in a viscous fluid. It has since then been extended
to account for finite inertia (Xu, Maxey & Karniadakis 2002), lubrication effects (Dance
& Maxey 2003) and non-sphericity of the particles (Liu et al. 2009), leading to a powerful
method to study the hydrodynamic interactions of large suspensions. More recently, FCM
was also adapted to account for the activity of the colloids and enabled the analysis of
microswimmer suspensions (Delmotte et al. 2015).

In this work, an FCM-based method is presented to solve the Laplace problem for the
concentration field in phoretic suspensions of spherical Janus particles, using a regularized
multipole representation of the concentration based on smoothed kernels instead of the
classical singular monopole and dipole singularities. This provides the phoretic forcing
introduced by the local inhomogeneity of the concentration field on each particle, from
which the hydrodynamic problem can be solved using the existing FCM approach for
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active suspensions (Delmotte et al. 2015). Taken together, this provides an integrated
framework to solve for the complete diffusio-phoretic problem, or diffusio-phoretic FCM,
whose fundamental justification and validation is the main objective of the present work.

The rest of the paper is organized as follows. The governing equations for the collective
motion of phoretic particles are first recalled in § 2. The diffusio-phoretic FCM (DFCM)
is then presented in detail in § 3. More specifically, the new solution framework for the
Laplace problem is first presented in § 3.1. Section 3.2 summarizes the main elements
of the classical hydrodynamic FCM method and its extension to active particles, and
§ 3.3 finally presents how the two steps are conveniently coupled to solve successively
the chemical and hydrodynamic problems. In order to validate the approach and compare
its accuracy to existing methods, § 4 considers a series of canonical configurations for
pairwise interactions of two Janus particles, for which an analytical or numerical solution
of the full problem is available for any inter-particle distance. The results of DFCM are
compared to this benchmark but also to the far-field estimation of the particles’ velocities.
This provides further insight into the improvement brought by this approach and its
range of validity, which will be critical information for future use in larger suspension
simulations. Finally, § 5 summarizes the findings of the paper, the constraints and
advantages of the method and discusses some perspectives for its future implementation
in studying large phoretic suspensions.

2. Modelling reactive suspensions

Reactive suspensions consist of large sets of micro-particles that are able to self-propel in a
viscous fluid by exploiting the chemical activity of their surface and its ability to generate
an effective hydrodynamic slip in response to gradients of the solute species they produce
or consume. As a result, these particles react to the chemical and hydrodynamic forcing
exerted by their neighbours, introducing a coupling that may lead to modified effective
properties at the scale of the suspensions. For purely diffusive solute species, determining
their individual dynamics requires solving successively for two different problems, namely
a Laplace problem for the solute concentration distribution, followed by a Stokes problem
for the hydrodynamic fields and particle velocities (translation and rotation) in response to
the solute gradients at their surface (Golestanian et al. 2007). The corresponding equations
of motion are recalled in detail below.

2.1. Governing equations for self-diffusio-phoresis of N micro-particles
The coupled motion of N identical and spherical phoretic particles of equal radius a is
considered within a viscous fluid of density ρ and viscosity μ. Particle n occupies a volume
Vn bounded by its surface Sn and centred at Y n(t), and has orientation pn; Un and Ωn are
its translation and rotation velocities. The fluid domain is denoted Vf and may be bounded
or unbounded (figure 1a).

Each particle emits a chemical solute of diffusivity D on the catalytic parts of its surface
with a fixed spatially dependent rate, of characteristic magnitude α0, and is able to generate
a slip flow in response to a surface concentration gradient, with a characteristic phoretic
mobility M0. In the following, all variables and equations are made dimensionless using
a, U0 = α0M0/D and aα0/D as characteristic length, velocity and concentration scales.

As a result of its surface activity, the dimensionless relative concentration c (with respect
to its background value far from the particles) satisfies the following Neumann condition
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Vf

pn
pn Vn

Sn

F

B
a

p2

p1

Y2

O
Y1

Yn

(a)

(b)

Figure 1. (a) Geometric description and parameter definition for (a) a reactive suspension system and (b)
an individual active particle including the fluid domain Vf , as well the phoretic particle’s position Y n and
orientation pn, for radius a. The particle’s orientation pn, allows for the definition of its front caps (noted F and
B respectively). The different colours of the caps (white or grey) illustrate their different chemical activities,
while their patterns (striped and solid) illustrate their different mobilities.

on the surface of particle n:

−n · ∇c = αn(n) on Sn, (2.1)

where αn(n) is the dimensionless activity distribution (i.e. emission rate) and n is the
outward normal unit vector on Sn. For sufficiently small particles, the solute’s dynamics
is purely diffusive, i.e. the relevant Péclet number Pe = aU0/D � 1, so that c obeys
Laplace’s equation outside the particles,

∇2c = 0 in Vf . (2.2)

Together with an appropriate boundary conditions at the external boundary of Vf (e.g.
c → 0 for |r| → ∞ in unbounded domains), these equations form a well-posed problem
for the distribution of solute in the fluid domain Vf .

In response to a non-uniform solute distribution at the particles’ surface, a phoretic slip
flow us

n develops outside a thin interaction layer (Anderson 1989) so that, effectively, the
hydrodynamic boundary condition on Sn becomes

u = Un + Ωn × rn + us
n, with us

n = Mn(n)∇‖c on Sn. (2.3)

In the previous equation, ∇‖ = (I − nn) · ∇ is the tangential gradient on the particle’s
surface, rn = r − Y n is the generic position relative to the centre of particle n and Mn(n)

denotes the dimensionless and spatially dependent phoretic mobility of the surface of
particle n. For small particles, inertial effects are negligible (i.e. the relevant Reynolds
number Re = ρU0a/μ � 1), and the dimensionless fluid’s velocity and pressure (u, p)
satisfy the Stokes equations

∇p = ∇2u, ∇ · u = 0 in Vf , (2.4a,b)

with an appropriate condition at the outer boundary of Vf (e.g. u → 0 for |r| → ∞).
Neglecting any outer forcing, such as gravity, each particle is hydrodynamically force and
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torque free (Popescu et al. 2016) at all times,

F n =
∫

Sn

σ · n dS = 0, T n =
∫

Sn

rn × (σ · n) dS = 0, (2.5a,b)

with σ = −pI + (∇u + ∇uT) the dimensionless Newtonian stress tensor, and their
dominant hydrodynamic signature is therefore that of a force dipole or stresslet Sn
(Batchelor 1970).

For a given concentration distribution c, (2.3)–(2.5a,b) form a well-posed problem for
the fluid velocity and pressure, and particle velocities, so that, at a given time t, and
for given particle positions and orientations, Y n(t) and pn(t), the successive Laplace and
Stokes problems presented above uniquely determine the instantaneous particle velocities
Un(t) and Ωn(t), from which the motion of the particles is obtained

dY n

dt
= Un,

dpn

dt
= Ωn × pn. (2.6a,b)

For a single isolated particle, the Lorentz reciprocal theorem to Stokes flows provides
the particle’s translation and rotation velocities directly in terms of the phoretic slip (Stone
& Samuel 1996)

U = −〈us〉, Ω = − 3
2a

〈n × us〉, (2.7a,b)

where 〈·〉 is the spatial average over the particle’s surface. Similarly, the stresslet S of the
particle is obtained as (Lauga & Michelin 2016),

S = −10πa2〈nus + usn〉. (2.8)

2.2. Hemispheric Janus phoretic particles
Most phoretic particles have a Janus-type surface consisting of two different materials
or surface coatings with distinct physico-chemical properties (e.g. a catalytic side and
a passive one) (Paxton et al. 2004; Howse et al. 2007; Theurkauff et al. 2012). These
provide the particles with a built-in chemical asymmetry that triggers the inhomogeneity
of the concentration distribution at their surface at the heart of their self-propulsion. In
the following, we thus consider such hemispheric Janus particles with uniform but distinct
mobilities (MF

n , MB
n ) and activities (αF

n , αB
n ) on their front (F) and back (B) hemispheres,

as defined with respect to their orientation pn (figure 1b), e.g. the surface mobility of
particle n writes

Mn(n) = M̄n + M∗
n sign(pn · n), (2.9)

with M̄n = (MF
n + MB

n )/2 and M∗
n = (MF

n − MB
n )/2 the mean mobility and mobility

contrast, and a similar definition for the spatially dependent activity αn(n) at the particle’s
surface. The special case of a particle with uniform mobility thus corresponds to M̄n = M0

n
and M∗

n = 0.

3. An FCM-based method for phoretic suspensions

In the purely diffusive and viscous limit, solving for the particles’ dynamics therefore
amounts to solving sequentially two linear problems, namely a Laplace problem for
c and a Stokes swimming problem for the hydrodynamic field and particles’ velocity.
Although the exact solution to this joint problem can be obtained analytically for the
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single- and two-particle cases (Golestanian et al. 2007; Sharifi-Mood et al. 2016; Varma
& Michelin 2019), analytical treatment becomes intractable beyond N ≥ 3 due to the
geometric complexity of the fluid domain, despite the problem’s linearity. Numerical
simulations are therefore critically needed, and several numerical strategies have been
proposed recently and briefly reviewed in the introduction. In order to analyse accurately
the collective dynamics of in a suspension of Janus phoretic particles, such a method must
combine an efficient solution of the Laplace and Stokes problems outside a large number
of finite-size objects, while providing accurate representation of the coupling at the surface
of each particle between chemical and hydrodynamic fields.

With that double objective in mind, we propose and present here a novel numerical
framework to solve for the reactive suspension problem presented in § 2, based on
the classical FCM used for pure hydrodynamic simulations of passive particles or
microswimmers, thereby generalizing its application to the solution of the chemical
diffusion problem and its coupling with the already-established hydrodynamic FCM
(Maxey & Patel 2001; Lomholt & Maxey 2003; Yeo & Maxey 2010; Delmotte et al. 2015).
Section 3.1 develops the regularized Laplace problem and associated reactive FCM, while
§ 3.2 presents a brief review of the existing hydrodynamic FCM and § 3.3 combines both
to obtain a new DFCM approach.

The fundamental idea of the FCM is to replace a solution of the Stokes equations
only within the fluid domain Vf outside the forcing particles, by a solution of these
equations over the entire domain VF = Vf ∪ V1 ∪ · · · ∪ VN (i.e. both outside and inside the
particles), replacing the surface boundary conditions with a distributed regularized forcing
over a compact envelope calibrated so as to reproduce certain physical features of the
problem and account for a weak form of the surface boundary conditions (figure 2). Doing
so, the costly discrete resolution and time-dependent meshing of the particles is no longer
necessary, so that efficient (e.g. spectral) Laplace and Stokes solvers on a fixed regular
grid may be used at all times, offering significant performance and scalability advantages
with respect to other approaches (e.g. boundary element methods). More specifically, FCM
associates with each particle a finite set of regularized hydrodynamic singularities (force
monopoles, dipoles and so on) chosen so as to satisfy a weak form of the surface boundary
conditions.

3.1. Reactive FCM
We extend here this approach to the solution of the Laplace problem for c in (2.1) and
(2.2). Replacing each particle by a distributed forcing modifies Laplace’s equations into a
Poisson equation over the entire domain VF (including both fluid and particles),

∇2c = −g(r, t) in VF, (3.1)

where the function g(r, t) includes the source terms accounting for the presence of each
particle.

3.1.1. Standard multipole expansion for Laplace problem
The exact solution of the Laplace problems can in fact be recovered from (3.1), when the
function g(r, t) is taken as a (possibly infinite) set of singularities centred on each particle
(Saffman 1973),

g(r, t) =
N∑

n=1

[qM
n δ(rn)−qD

n · ∇δ(rn) + · · · ], (3.2)
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a

pn pn

Yn
Y2

Y1

p2

O p1

VF

VF

(a)

(b)

Figure 2. Regularized representation of (a) the reactive suspension system and (b) individual particles in
the DFCM framework. The chemical and hydrodynamic fields are now defined over the entire domain with
distributed forcings defined relative to each particle’s position Y n and orientation pn. The boundary Sn of the
real particle (dashed) and its radius a are plotted only as reference.

where δ(rn) is the Dirac delta distribution, and (qM
n , qD

n , . . .) are the intensities of the
singularities associated with particle n, and are constant tensors of increasing order. Note
that ∇ denotes here the gradient with respect to the observation position r and rn = r −
Y n. This equation can be solved explicitly for the concentration field c as a multipole
expansion for each particle in terms of source monopoles, dipoles, etc. . .

c(r, t) =
N∑

n=1

[qM
n GM(rn) + qD

n · GD(rn) + · · · ], (3.3)

where GM and GD are the monopole and dipole Green’s functions and satisfy

∇2GM = −δ(rn), ∇2GD = ∇δ(rn), (3.4a,b)

together with appropriate decay or boundary conditions on the domain’s outer boundary.
For unbounded domains with decaying conditions in the far field, the singular monopole
and dipole Green’s functions are simply

GM(rn) = 1
4πrn

and GD(rn) = −∇GM = rn

4πr3
n

· . (3.5a,b)

The concentration distributions associated with these singular Green’s functions are
displayed in figure 3. Higher-order derivatives of GM(r), (3.5a,b), are also solutions of
Laplace’s equation, leading to singularities of increasing order (quadrupole, octupole,. . . ).

3.1.2. Truncated regularized multipole expansion
The previous approach, based on an infinite set of singular sources, is known as
the standard multipole expansion of the Laplace problem. Although satisfying from a
theoretical point of view, since it is able to recover an accurate representation of the
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1 2 30

1

2

3(a) (b)

0

1

r/a
1 2 3

r/a

c

Figure 3. Singular (dotted lines, (3.5a,b)) and regularized (solid lines, (3.10)–(3.11)) concentration
distributions along the axial polar direction associated with the Greens’ functions for the Laplace equation
for (a) monopole terms and (b) dipole terms. The line r/a = 1 represents the particle surface.

analytical solution outside the particles for a large enough number of singular multipoles,
it is not well suited for a versatile numerical implementation because of (i) the singular
behaviour of the forcing terms in the modified Laplace equation, (3.1), and (ii) the a priori
infinite set of singularities required for each particle.

To avoid the latter issue, the infinite expansion is truncated here after the first two
terms, thus retaining the monopole and dipole contributions only. Physically, this amounts
to retaining the two leading physical effects of the particle on the concentration field,
i.e. a net emission with a front–back asymmetric distribution. In order to overcome the
former problem, the standard FCM replaces the singular Dirac distributions δ(r) by regular
Gaussian spreading functions Δ(r):


(r) = (2πσ 2)−3/2 exp
(

− r2

2σ 2

)
, (3.6)

where σ denotes the finite-size support of this envelop and acts as a smoothing parameter
of the method, thus eliminating the singular behaviour of the delta distribution δ(r) near
the origin, thereby allowing for a more accurate numerical treatment. The original singular
distribution is recovered when σ � r, i.e. the solution of the regularized problem is an
accurate representation of the true solution away from the particle. This approach using
regular distributions allows for a more versatile and robust numerical solution of the
physical equations than their singular counterparts (Maxey & Patel 2001; Lomholt &
Maxey 2003).

Combining these two approximations, we therefore consider a truncated regularized
expansion including only the monopole and the dipole terms as

g(r, t) =
N∑

n=1

[qM
n ΔM(rn)−qD

n · ∇ΔD(rn)], (3.7)

with the Gaussian spreading operators ΔM and ΔD defined as

ΔM(r) = (2πσ 2
M)−3/2 exp

(
− r2

2σ 2
M

)
, ΔD(r) = (2πσ 2

D)−3/2 exp

(
− r2

2σ 2
D

)
, (3.8a,b)
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Hydrochemical interactions of phoretic particles

where M and D once again denote monopole and dipole, and σM and σD are the finite
support of each regularized distribution and are free numerical parameters of the method
that need to be calibrated. Note that, in general, these do not need to be identical (Lomholt
& Maxey 2003).

The corresponding truncated regularized solution for c is then finally obtained as

c(r, t) =
N∑

n=1

[qM
n GM(rn) + qD

n · GD(rn)], (3.9)

with the regularized monopole and dipole Green’s functions

GM(r) = 1
4πr

erf
(

r

σM
√

2

)
, (3.10)

GD(r) = r
4πr3

[
erf
(

r

σD
√

2

)
−
√

2
π

(
r

σD

)
exp

(
− r2

2σ 2
D

)]
. (3.11)

These clearly match the behaviour of their singular counterpart, (3.5a,b), when r is greater
than a few σM or σD, respectively, while still maintaining finite values within the particle
(figure 3), e.g. GD(r = 0) = 0.

3.1.3. Finding the intensity of the singularities
Up to this point, no information was implemented regarding the surface boundary
conditions on c in (2.1). We now present how to determine the intensities of the monopole
and dipole distributions associated with each particle, qM

n and qD
n , so as to satisfy a weak

form of the Neuman boundary condition, (2.1), i.e. its first two moments over the particle’s
surface. Using the multipole expansion of the fundamental integral representation of the
concentration (see Appendix A), the monopole and dipole intensities of particle n, qM

n and
qD

n , are obtained as (Yan & Brady 2016)

qM
n =

∫
Sn

αndS, qD
n = a

∫
Sn

αnn dS + 4πa2〈cn〉n, (3.12a,b)

where the second term in qD
n is proportional to the concentration polarity at the surface of

particle n, i.e. its first moment 〈cn〉n, and is defined using the surface average operator 〈·〉n
over the surface of particle n. Note that the activity distribution at the particle’s surface is
known, and thus (2.9) explicitly provides the monopole intensity and the first term in the
dipole intensity. The second contribution to the latter requires, however, knowledge of the
solution on the particle’s surface – which is not explicitly represented in the present FCM
approach. This term therefore requires to be solved for as part of the general problem. In the
previous equation, it should be noted that the dimensionless particle radius is a = 1, but
will be kept in the equations to emphasize the relative scaling of the numerical spreading
envelopes (e.g. σM and σD) with respect to the particle size.

Here, we use an iterative approach to solve this linear joint problem for the
dipole intensity and concentration field, solving alternatively (3.7) and (3.12a,b) until
convergence is reached, as defined by the following criterion between two successive
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iterations: ∥∥∥∥ 〈cn〉k+1 − 〈cn〉k

〈cn〉k+1

∥∥∥∥∞
< ε, (3.13)

where 〈cn〉k is the vector collecting the polarities of the N particles at iteration k. For the
results presented in this work, we set the tolerance to ε = 10−10 in our calculations.

3.1.4. Regularized moments of the concentration distribution
Finding the dipole intensity, qD

n , requires computing the polarity 〈cn〉n, which is in
principle defined at the particle’s surface. To follow the spirit of FCM, and allow for
efficient numerical treatment, this surface projection is replaced by a weighted projection
over the entire volume VF

〈cn〉n = 1
4πa2

∫
Sn

cndS −→ {cn}n =
∫

VF

cnnΔ
P(rn) dV, (3.14)

with nn now defined as nn = rn/rn, and the regular averaging kernel ΔP for the polarity
as

ΔP(r) = r

8πσ 4
P

exp

(
− r2

2σ 2
P

)
. (3.15)

Beyond its importance for determining the dipole intensity associated with a given particle,
we will later show that the polarity of the concentration at the surface of particle n
is directly related to its self-induced phoretic velocity, (2.7a,b), and that, similarly, the
self-induced hydrodynamic stresslet signature of the particle is in general associated with
the first two moments of the surface concentration. Similarly to the polarity, the second
surface moment, 〈c(nn − I/3)〉n will be replaced in our implementation by a weighted
volume projection {c(nn − I/3)}n

〈c(nn − I/3)〉n = 1
4πa2

∫
Sn

c
(

nn − I

3

)
dS → {c(nn − I/3)}n

=
∫

VF

c
(

nnnn − I

3

)
ΔS(rn) dV, (3.16)

where the projection kernel for the second moment of concentration, ΔS, is defined as

ΔS(r) = r2

3(2π)3/2σ 5
S

exp

(
− r2

2σ 2
S

)
. (3.17)

The envelopes σP and σS are free parameters in the method that need to be calibrated.
In our reactive FCM formulation, we use modified forms of the Gaussian operator Δ as
projection operators, (3.15) and (3.17), in order to ensure a fast numerical convergence of
the integration for the first and second moment calculations, (3.14) and (3.16) respectively.
The integrals over the entire volume VF of these averaging functions is still equal to one,
and their weight is shifted from the particle centre toward the particle surface (figure 4),
which is both numerically more accurate and more intuitive physically as these operators
are used to obtain the properties of the particle on its surface.
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1 2 30

0.06

0.12

0.18

r/a

Δ

Figure 4. Averaging envelopes for the first and second moments of concentration, ΔP (solid, (3.15)) and ΔS

(dashed, (3.17)) respectively. The numerical values for σP and σS are set from (3.21a,b) and (3.24).

3.1.5. Calibrating the spreading/averaging envelopes
Our method relies on four numerical parameters (σM , σD, σP, σS) that we choose
to calibrate so as to ensure that several key results in reference configurations are
obtained exactly. In particular, to properly account for the phoretic drift induced by the
other particles, we ensure that the polarity 〈cn〉 of an isolated particle placed in an
externally imposed uniform gradient of concentration can be exactly recovered using the
regular representation and averaging operators. A similar approach is then followed for
the particle’s second moment of concentration 〈c(nn − I/3)〉 in a quadratic externally
imposed field.

Isolated passive particle in an external linear field – We first consider a single particle
placed at the origin in an externally imposed linear concentration field so that for r � a,
c ≈ cE with

cE = LE · r, (3.18)

where LE is the externally imposed uniform gradient. For a passive particle (i.e. α = 0),
satisfying the boundary condition, (2.1), at the surface of the particle imposes that the exact
concentration distribution around the particle is c = cE + co

I , with co
I (r) = a3LE · r/(2r3)

a singular dipole-induced field. The polarity of the external and induced parts, cE and cI ,
can be obtained analytically as

〈cEn〉 = a
3

LE, 〈co
I n〉 = a

6
LE. (3.19a,b)

Following the framework presented above, the regularized solution can be written c =
cE + cr

I with cr
i a regularized dipole, and the corresponding regularized-volume moments

based on (3.14) are obtained using (3.11), as

{cEn} =
√

π

8
σPLE, {cr

In} = a3σP

12(σ 2
D + σ 2

P)3/2
LE. (3.20a,b)

Identification of the regularized result (3.20a,b) with the true solution (3.19a,b),
determines σP and σD uniquely as

σP

a
= 1

3

√
8
π

≈ 0.5319,
σD

a
=
√(σP

2a

)2/3 −
(σP

a

)2 ≈ 0.3614. (3.21a,b)
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Isolated passive particle in an external quadratic field – Similarly, in an external
quadratic field cE of the form

cE(r) = r · QE · r, (3.22)

with QE a second-order symmetric and traceless tensor, the concentration distribution
around a passive particle (α = 0) takes the form c = cE + co

I with co
I (r) an induced

singular quadrupole. The exact and regularized second moments of the external field cE at
the particle surface are equal to

〈cE(nn − I/3)〉 = 2a2

15
QE, {cE(nn − I/3)} = 2σ 2

S
3

QE. (3.23a,b)

Identifying both results determines the size of the averaging envelope for the second
moment uniquely, as

σS

a
=
√

1
5

≈ 0.4472. (3.24)

Note that we do not enforce here a constraint on the representation of the second moment
of the induced field cI , since the particles’ representations do not include a regularized
quadrupole in our method.

The value σM remains as a free parameter at this point and cannot be calibrated with a
similar approach. In the following, in order to minimize the number of distinct numerical
parameters and to minimize the departure of the regularized solution from its singular
counterpart, we set its value equal to the smallest envelope size, namely σM = σD. These
specific values of the parameters were used in figures 3 and 4.

3.2. Hydrodynamic FCM
To compute the hydrodynamic interactions between phoretic particles, we rely on the
FCM. This section briefly describes the existing FCM framework developed for the
simulation of passive and active suspensions in Stokes flow.

3.2.1. FCM for passive suspensions
With hydrodynamic FCM, the effect of the particles on the fluid is accounted for through
a forcing term f applied to the dimensionless Stokes equations

∇p − ∇2u = f (r, t) in VF. (3.25)

As for reactive FCM, this forcing arises from a truncated regularized multipolar expansion
up to the dipole level

f (r, t) =
N∑

n=1

[F nΔ(rn) + Dn · ∇Δ∗(rn)], (3.26)

where the spreading envelopes are defined by

Δ(r) = (2πσ 2)−3/2 exp
(

− r2

2σ 2

)
, Δ∗(r) = (2πσ 2

∗ )−3/2 exp
(

− r2

2σ 2∗

)
. (3.27a,b)

Here, F n and Dn are the force monopole and dipole applied to particle n. The force dipole
can be split into a symmetric part, the stresslet S, and an antisymmetric one related to the
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Hydrochemical interactions of phoretic particles

external torque T

Dn = Sn + 1
2ε · T n, (3.28)

with ε the third-order permutation tensor. The corresponding regularized solution for the
fluid velocity u is then obtained as

u = u(r) =
N∑

n=1

[F n · J(rn) + Dn : R∗(rn)]. (3.29)

For unbounded domains with vanishing perturbations in the far field (i.e. ‖u‖ → 0 when
r → ∞), the regularized Green’s function J(r) reads

J(r) = 1
8πr

(
A(r)I + B(r)

rr
r2

)
, (3.30)

with

A(r) =
(

1 + σ 2

r2

)
erf
(

r

σ
√

2

)
− σ

r

√
2
π

exp
(

− r2

2σ 2

)
, (3.31)

B(r) =
(

1 − 3σ 2

r2

)
erf
(

r

σ
√

2

)
+ 3σ

r

√
2
π

exp
(

− r2

2σ 2

)
, (3.32)

and R∗ = ∇J∗ is the FCM dipole Green’s function evaluated with the parameter σ∗.
The particle’s translational and angular velocities, Un and Ωn, are obtained from a

volume-weighted average of the local fluid velocity and vorticity

Un =
∫

VF

uΔ(rn) dV, Ωn = 1
2

∫
VF

[∇ × u]Δ∗(rn) dV. (3.33a,b)

The Gaussian parameters, σ and σ ∗, are calibrated to recover the correct Stokes drag,
F = 6πaμU , and viscous torque, T = 8πa3μΩ , of an isolated particle (Maxey & Patel
2001; Lomholt & Maxey 2003), leading to

σ

a
= 1√

π
≈ 0.5641,

σ∗
a

= 1
(6

√
π)1/3 ≈ 0.4547. (3.34a,b)

The rigidity of the particle is similarly weakly enforced by imposing that the
volume-averaged strain rate En over the envelope of particle n vanishes

En = 1
2

∫
VF

[∇u + (∇u)T]Δ∗(rn) dV = 0, (3.35)

which determines the stresslet Sn induced by particle n. Note that, unlike forces and
torques which are typically set by external or inter-particle potentials, the stresslets result
from the constraint on the flow given by (3.35) and, consequently, need to be solved
for as part of the general flow problem. The resulting linear system for the unknown
stresslet coefficients is solved directly or iteratively, with the conjugate gradients method,
depending on the number of particles considered (Lomholt & Maxey 2003; Yeo & Maxey
2010). In the following, we consider pairs of particles (see § 4) and therefore use direct
inversion.

Note that the averaging envelopes used to recover the translational and rotational
velocities, 
n and 
∗

n, are exactly the same as the spreading operators in (3.26),
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all of them Gaussian functions. As a result, the spreading and averaging operators are
adjoints to one another. Also note that only two envelope lengths are required for the
hydrodynamic problem: σ and σ∗. In contrast, the new reactive FCM extension presented
in § 3.1 uses spreading and averaging operators that are not adjoint. To recover the first
(3.14) and second (3.16) moments of concentration we have two non-Gaussian averaging
envelopes (ΔP and ΔS), that differ from the Gaussian spreading envelopes (ΔM and ΔD)
in (3.7). While having adjoint operators is crucial in hydrodynamic FCM to satisfy the
fluctuation–dissipation balance, the lack of adjoint properties for the Laplace problem
does not raise any issue in the deterministic setting.

3.2.2. Active hydrodynamic FCM
In recent years, FCM has been extended to handle suspensions of active particles, such as
microswimmers. In addition to undergoing rigid body motion in the absence of applied
forces or torques, active and self-propelled particles are also characterized by the flows
they generate. These flows can be incorporated into FCM by adding an appropriate set of
regularized multipoles to the Stokes equations. This problem was solved previously for
the classical squirmer model (Delmotte et al. 2015), a spherical self-propelled particle that
swims using prescribed distortions of its surface. In the most common case where radial
distortions are ignored, the squirmer generates a tangential slip velocity on its surface,
just like phoretic particles, which can be expanded into spherical harmonics modes (Blake
1971; Pak & Lauga 2014). Consistently with the phoretic problem presented above, only
the first two modes are included in the following.

The FCM force distribution produced by N microswimmers self-propelling with a
surface slip velocity is given by

f (r, t) =
N∑

n=1

[Sn · ∇Δ∗(rn) + Sa
n · ∇Δ(rn) + Ha

n∇2Δ∗(rn)], (3.36)

where Sa
n is the active stresslet and Ha

n is the active potential dipole associated with the
swimming disturbances of swimmer n. The latter is defined as

Ha
n = −2πa3Ua

n, (3.37)

where Ua
n is the swimming velocity arising from the slip velocity on the swimmer surface

us (2.7a,b). Note that the rigidity stresslet Sn is included in (3.36) to enforce the absence
of deformation of the swimmers, (3.35). The resulting velocity field reads

u(r, t) =
N∑

n=1

[Sn : R∗(rn) + Sa
n : R(rn) + Ha

n · A∗(rn)], (3.38)

where R is the FCM dipole Green’s function evaluated with the parameter σ instead of σ∗.
The second-order tensor A∗ is the FCM Green’s function for the potential dipole

A∗(r) = 1
4πr3

[
I − 3rr

r2

]
erf
(

r

σ∗
√

2

)
− 1

μ

[(
I − rr

r2

)
+
(

I − 3rr
r2

)(σ∗
r

)2
]

Δ∗(r).

(3.39)
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The particles’ velocity, angular velocity and mean strain rate are then computed as

Un = Ua
n − W n +

∫
VF

uΔ(rn) dV, (3.40)

Ωn = Ωa
n + 1

2

∫
VF

[∇ × u]Δ∗(rn) dV, (3.41)

En = −Kn + 1
2

∫
VF

[∇u + (∇u)T]Δ∗(rn) dV = 0, (3.42)

where the active swimming velocities Ua
n and rotation rates Ωa

n correspond to the intrinsic
velocities of particle n, if it was alone (i.e. in the absence of external flows or other
particles), and W n and Kn are defined as

W n =
∫

VF

[Ha
n · A∗(rn)]Δ(rn) dV, (3.43)

Kn = 1
2

∫
VF

[Sa
n : ∇R(rn) + (Sa

n : ∇R(rn))
T]Δ∗(rn) dV, (3.44)

and are included to subtract away the spurious self-induced velocities and local rates of
strain arising from the integration of the full velocity field u, which already includes the
contribution of Ha

n and Sa
n (Delmotte et al. 2015).

3.3. Diffusio-phoretic FCM
At this point, we have described our new reactive FCM framework and have reviewed
the key aspects of the existing active hydrodynamic FCM. These two steps provide
respectively the solution (i) for the concentration field and its moments at the surface
of each particle in terms of their position and orientation, and (ii) the particles’ velocity
in terms of their active hydrodynamic characteristics, i.e. their intrinsic velocities and
stresslet, Ua

n, Ωa
n and Sa

n. To solve for the full diffusio-phoretic problem (i.e. obtain the
velocity of the particle in terms of their position and orientation), these quantities must be
determined from the chemical environment of the particles. The following section details
how to obtain these active characteristics from the output of the reactive problem and
provides algorithmic details on the numerical implementation. This new diffusio-phoretic
framework based on the FCM is referred to as DFCM hereafter.

3.3.1. DFCM: coupling reactive and hydrodynamic FCM
The active swimming speed Ua

n involved in the potential dipole Ha
n, (3.37), is the phoretic

response of particle n to the chemical field, if it was hydrodynamically isolated (i.e.
neglecting the presence of other particles in solving the swimming problem). It thus
includes its self-induced velocity (i.e. the response to the concentration contrasts induced
by its own activity) and the drift velocity induced by the activity of the other particles.
The swimming problem for a hydrodynamically isolated particle in unbounded flows can
be solved directly using the reciprocal theorem (Stone & Samuel 1996), and using the
definition of the phoretic slip flow

Ua
n = −〈us〉n = −〈M∇‖c〉n. (3.45)

After substitution of the mobility distribution at the surface of particle n, (2.9), using
a truncated multipolar expansion of the surface concentration on particle n (up to
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its second-order moment) and integration by parts, the intrinsic swimming velocity is
obtained in terms of the first two surface concentration moments (see Appendix B for
more details)

Ua
n = −2M̄n

a
〈cn〉n − 15M∗

n

8a
[2〈c(nn − I/3)〉n · pn + (〈c(nn − I/3)〉n : pnpn

)
pn]. (3.46)

Similarly, the active stresslet Sa
n, is defined as in (2.8),

Sa
n = −10πa2〈nus + usn〉n = −10πa2〈M(n∇‖c + (∇‖c)n)〉n, (3.47)

and rewrites in terms of the moments of concentration (see Appendix B for more details)

Sa
n = −60πaM̄n〈c(nn − I/3)〉n + 15πaM∗

n

2
[(〈cn〉n · pn)(I − pnpn) − 〈cn〉npn − pn〈cn〉n].

(3.48)

Finally, the active rotation Ωa
n, (2.7a,b), is obtained in terms of the moments of

concentration and the mobility contrast (see Appendix B)

Ωa
n = −9M∗

n

4a2 pn × 〈cn〉n. (3.49)

For uniform mobility, the swimming velocity and stresslet are directly related to the first
and second of surface concentrations, but non-uniform mobility introduces a coupling of
the different concentration moments. Here, the surface concentration is expanded up to its
second-order moment only.

In our regularized approach, the surface concentration moments appearing in the
previous equations will conveniently be computed as weighted volume averages over the
entire domain VF as detailed in (3.14) and (3.16).

Computing the second moment of concentration, however, requires an additional step: as
detailed in § 3.1.5, the second moment of concentration in an external field arises from the
second gradient of that external field, and includes both an externally induced component
〈cE(nn − I/3)〉n (i.e. the moment of that externally imposed field) and a self-induced
component which corresponds to the second moment of the induced field generated by
the particle to ensure that the correct flux boundary condition is satisfied at the particles’
surface. For a chemically inert particle (α = 0), the self-induced contribution is obtained
exactly as 〈co

I (nn − I/3)〉n = 2
3 〈cE(nn − I/3)〉.

Our representation of the particles in the chemical problem is, however, truncated at the
dipole level, (3.9), and as a result, the quadrupolar response of the particle to the external
field cannot be accounted for directly. To correct for this shortcoming, we first compute
the external second moment produced by the other particles on particle n using (3.16)
and (3.9), and multiply the resulting value by 5/3 to account for the full second moment
induced by the concentration field indirectly.

Finally, the particles are themselves active and may generate an intrinsic quadrupole. Its
effect on the second surface concentration moment can be added explicitly in terms of the
second activity moment, so that the total second moment on particle n is finally evaluated
as

〈c(nn − I/3)〉n = 5
3
{cE(nn − I/3)}n + a

D
〈α(nn − I/3)〉n. (3.50)

In summary, at a given time step, the particles’ velocities are obtained from their
instantaneous position and orientation as follows. The first two surface concentration
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(a) y y y

x
p2 p1

p1

p2

x

xd d

d

(b) (c)

#2 #2

#2

#1 #1

#1

Figure 5. Validation cases considered. (a) Case A, isotropic particles with uniform mobility, (b) Case B,
hemispheric Janus particles with uniform mobility, (c) Case C, hemispheric Janus particles with non-uniform
mobility. In each case, both particles have exactly the same orientation and phoretic properties and their
dimensionless separation is denoted by d.

moments are first obtained using our new reactive FCM framework by solving the Poisson
problem (3.7). These moments are then used to compute the phoretic intrinsic translation
and rotation velocities (3.46) and (3.49), as well as the active stresslets and potential
dipoles (3.48) and (3.37). The Stokes equations forced by the swimming singularities
(3.36), and subject to the particle rigidity constraint (3.42), are finally solved to obtain
the total particle velocities (3.40) and (3.41).

3.3.2. Numerical details
The volume integrals required to compute the concentration moments and the
hydrodynamic quantities are performed with a Riemann sum on Cartesian grids centred
at each particle position. To ensure a sufficient resolution, the grid size, Δx, is chosen so
that the smallest envelope size σD satisfies σD = 1.5Δx = 0.3614a, which corresponds
to approximately 4 grid points per radius. Owing to the fast decay of the envelopes,
the integration domain is truncated so that the widest envelope (that with the largest σ )
essentially vanishes on the boundary of the domain, Δ(r) < γ = 10−16, which, given the
grid resolution, requires 39 integration points in each direction. Doing so, the numerical
integrals yield spectral accuracy. Setting instead γ = ε = 10−10, where ε is the relative
tolerance for the polarity in the iterative procedure (3.13), reduces that number to 31
integration points along each axis while maintaining spectral convergence.

4. Results

In this section, we evaluate the accuracy of the present novel DFCM framework in three
different canonical or more generic configurations involving pairs of isotropic and Janus
phoretic particles, as shown in figure 5. The particles’ motions are restricted to a plane
within a three-dimensional unbounded domain for the sake of clarity in visualizing the
results.

In this validation process, DFCM is compared to three existing methods providing
either a complete or approximate solution of the problem. The simplest one, the far-field
approximation model (Soto & Golestanian 2014; Varma & Michelin 2019), relies on a
multipolar expansion of the reactive and hydrodynamic singularities up to the dipole
level generated by each particle, but neglects the finite size of the particles (i.e. without
reflections on the polarity and rigidity stresslet). Our results are also compared to the
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complete (exact) solution of the problem (i.e. solving the complete hydrodynamic and
chemical fields regardless of the particles’ distance, accounting for their finite size). For
axisymmetric problems, this solution is obtained semi-analytically using the bi-spherical
coordinates approach (Michelin & Lauga 2015; Reigh & Kapral 2015), whose accuracy
is only limited by the number of Legendre modes used to represent the solution. For
non-axisymmetric configurations, the complete solution is obtained numerically using the
regularized boundary element method (Montenegro-Johnson et al. 2015). These reference
solutions are referred to in the following, as FFA, BSC and BEM respectively.

4.1. Isotropic particles – axisymmetric configuration
The first configuration, Case A (figure 5a), consists of two identical isotropic particles with
uniform activity and mobility (αF

n = αB
n = 1, MF

n = MB
n = 1) separated by a distance d

along the x-axis (Varma et al. 2018; Nasouri & Golestanian 2020b). Phoretic particles
require an asymmetry in their surface concentration to self-propel (Golestanian et al.
2007), so that an isolated isotropic particle cannot swim. In the configuration considered
here, however, the concentration gradient produced by a second isotropic particle
introduces the required asymmetry to generate motion along the x-axis.

Figure 6(a) shows the concentration field induced by two isotropic particles for d = 1.
The DFCM solution (upper half) is in good agreement with BSC (lower half), except near
the particles’ boundaries in the gap, where the low-order multipolar expansion of DFCM
and inaccurate resolution of the particle’s surface underestimate the concentration field.
The increase in concentration between the particles is a direct result of the confinement
between their active surfaces. It produces a surface concentration gradient and phoretic slip
flow on each particle’s boundary that pumps the fluid toward this high concentration zone
and thus drives the particles away from each other (figure 6d). This effect is magnified as
d is reduced, leading to higher particle velocities and higher moments of concentration for
shorter distances.

The evolution with interparticle distance of the particles’ polarity, a measure of the net
concentration gradient over their surface, is shown on figure 6(b) as obtained with the
DFCM, BSC and FFA approaches. While both FFA and DFCM are in good agreement
with the exact solution (BSC) even for relatively small distances, the DFCM approach
provides a noticeable improvement over the cruder representation of FFA in the near field
(d < 1), where the iterative corrections for the mutually induced polarity (3.13) contribute
significantly. The expected decay of the polarity as 1/d2 is recovered (figure 6(b), inset) in
all three cases as the dominant contribution to the polarity is proportional to the gradient
of the leading-order monopolar concentration field. Similar results are obtained for the
second moment of concentration (figure 6c), with an expected 1/d3-decay proportional
to the second gradient of the leading order concentration field. We note that isotropic
particles do not drive any flow when isolated (and therefore do not have any hydrodynamic
signature), but acquire a net stresslet as a result of their chemical interactions, behaving as
pusher swimmers.

The resulting translational velocities are shown in figure 6(d) where, again, DFCM
performs better than FFA in the range d < 2 since it additionally considers the
hydrodynamic interactions of the particles (e.g. the effect of the rigidity constraint through
the rigidity stresslet, see (3.36)), in addition to the active flows, while FFA does not. Such
discrepancy arises from the accumulated errors in the successive truncated multipolar
expansions; using the BSC solution as a reference, we can determine that for near-field
interactions of the two particles, approximately 25 %–30 % of the DFCM error comes
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Figure 6. Case A. (a) Concentration field for d = 1 (upper half: DFCM, lower half: BSC), (b) first moment
of concentration 〈cn〉x, (c) second moment of concentration 〈c(nn − I/3)〉xx, (d) velocity Ux. The black lines
(and markers) correspond to particle 1 and the light green ones to particle 2. The triangle markers correspond
to DFCM, the solid lines correspond to BSC, while the dashed lines to FFA. The inset shows the absolute
values in logarithmic scale and the corresponding decay. The surface averages 〈· · · 〉 were used for BSC and
FFA, while the volume average {· · · } was used for DFCM. All the omitted components of 〈cn〉, 〈c(nn − I/3)〉
and U are zero.

from the reactive FCM approximation (3.7), while the other 70 %–75 % comes from the
hydrodynamical FCM approximation (3.36). As expected, in the far-field limit, the velocity
decays as 1/d2 since it is proportional to the polarity to leading order and this dominant
contribution does not involve any hydrodynamic interactions; these would correspond at
leading order to the contribution of the stresslet generated by the presence of the other
particles and decay as 1/d5 (Varma & Michelin 2019).

4.2. Janus particles – axisymmetric configuration
Our second configuration of interest, Case B (figure 5b), focuses on Janus particles,
which are currently the most commonly used configuration for self-propelled phoretic
particle in both experiments and theoretical models. Their motion stems from the
self-induced concentration gradients produced by the difference in activity between their
two hemispheres. Here, we consider two identical Janus particles with uniform mobility
(MF

n = MB
n = 1), a passive front cap (αF

n = 0) and an active back cap (αB
n = 1), leading to

a self-propulsion velocity of U∞ = 1
4 ex (Golestanian et al. 2007). We further focus here on

an axisymmetric setting where the particles’ orientation coincides with the line connecting
their centres, for which an exact semi-analytic solution of the complete hydrochemical
problem is available using bispherical coordinates (BSC) as exploited in several recent
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Figure 7. Case B. (a) Concentration field for d = 1 (upper half: DFCM, lower half: BSC), (b) first moment
of concentration 〈cn〉x, (c) second moment of concentration 〈c(nn − I/3)〉xx, (d) velocity Ux. The black lines
(and markers) correspond to particle 1 and the light green ones to particle 2. The triangle markers correspond
to DFCM, the solid lines correspond to BSC, while the dashed lines to FFA. The inset shows the absolute
values in logarithmic scale and the corresponding decay. The surface averages 〈· · · 〉 were used for BSC and
FFA, while the volume average {· · · } was used for DFCM. All the omitted components of 〈cn〉, 〈c(nn − I/3)〉
and U are zero.

studies (Varma & Michelin 2019; Nasouri & Golestanian 2020a). Furthermore, both
particles point in the same direction so that, when far enough apart, they swim at the
same velocity in the same direction.

Figure 7(a) shows the concentration field for d = 1: again, DFCM closely matches the
BSC predictions. Here, both particles pump fluid from their front toward their active back
cap where an excess solute concentration is produced, and therefore move along the +ex
direction. As the interparticle distance shortens, the concentration increases in the gap,
leading to enhanced (respectively decreased) surface gradients on the leading (respectively
trailing) particle.

This physical intuition is confirmed by the evolution of the concentration polarity with
the interparticle distance (figure 7b). The polarity matches that of an isolated particle
〈cn〉∞ = −1

8 ex for large distances d � 1, and is increased in magnitude for particle 1
(leader) while its magnitude decreases for particle 2 (follower) as d is reduced. The DFCM
solution remains in close agreement with BSC for all distances (even down to a tenth
of a radius), in particular capturing the asymmetric effect of the interaction on the two
particles. In contrast, FFA predicts a symmetric progression of the polarity, leading to
large discrepancies for d < 3. A similar behaviour is observed for the second moment
(figure 7c), except for particle 1 for which it is underestimated by DFCM in the near field
(d < 1). We note that although isolated Janus particles with uniform mobility behave as

919 A22-22

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 P
ol

yt
ec

hn
iq

ue
, o

n 
26

 M
ay

 2
02

1 
at

 1
5:

33
:0

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

38
7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.387


Hydrochemical interactions of phoretic particles

neutral swimmers (exerting no force dipole or active stresslet on the fluid), their interaction
leads to both of them acting as effective pushers on the fluid (negative stresslet, see (2.8)).

The velocity matches that of an isolated particle when d � 1, and the corrections
introduced by the particles’ interaction scale as 1/d2, as a result of the dominant phoretic
repulsion (as for Case A); all three methods are able to capture this property (see
figure 7(b,d), inset). Similarly, the second moment of surface concentration decreases as
1/d3 (figure 7c). As d is reduced, the combined effects of strong phoretic repulsion and
hydrodynamic coupling (including the repulsion by the active stresslet) slow down and
may even eventually reverse the swimming direction of particle 2 (figure 7d). Both our
FCM solution and the FFA prediction show a qualitative agreement with the full solution
(BSC) and predict the increase in velocity for the leading particle, while the trailing
particle is slowed down. However, they fail to predict the reversal of the velocity of particle
2 observed in the full solution, although DFCM exhibits an appreciable improvement
over FFA in the near field. A possible reason for this may be found in a dominant
role of the lubrication layer separating the particles which is not well resolved in either
approximation.

4.3. Janus particles – asymmetric configuration
Case B was still highly symmetric and further considered only uniform mobility, which
is known to affect the hydrodynamic signature of the particle significantly (Lauga &
Michelin 2016). In our third and final configuration, Case C (figure 5c), we consider
a more generic interaction of two identical Janus particles with non-uniform mobility
(αF

n = 0, αB
n = 1, MF

n = 0, MB
n = 1) positioned at an angle π/4 relative to the x-axis.

Surface mobility results from the differential short-range interaction of solute and solvent
molecules with the particle surface and, as such, is an intrinsic property of the particle’s
surface coating and may thus differ between the two caps of a Janus particle. For
these particles, when isolated, the non-dimensional self-propulsion velocity is given
by U∞ = 1

8 ex (Golestanian et al. 2007). The convenient BSC approach is not usable
in this non-axisymmetric setting, and although an extension to generic interactions of
Janus particles is possible using full bispherical harmonics (Sharifi-Mood et al. 2016),
it is sufficiently complex that direct numerical simulations using BEM proves in general
more convenient, although the discontinuity of the mobility at the equator may introduce
numerical errors, due to the singularity of the surface concentration gradient for a Janus
particle (Michelin & Lauga 2014). In the following, we therefore compare our DFCM
predictions to the solution obtained using BEM and the prediction of the far-field analysis
(FFA).

The asymmetric concentration field obtained with DFCM in this configuration for d = 1
is shown on figure 8(a). Besides their intrinsic self-propulsion along +ex due to their
self-generated surface chemical polarity, the accumulation of solute in the confined space
between the particles introduces a phoretic repulsion along their line of centres (as for
Case B), leading to an enhancement (respectively reduction) of both components of the
velocity (Ux and Uy) for particle 1 (respectively particle 2). This behaviour is well captured
by all three methods (figure 8b,c). Additionally, in the present configuration (Case C), the
mobility is non-uniform: specifically here, we consider the case where the surface mobility
of the front hemisphere is zero, so that only the back hemisphere generates a phoretic slip.
As a result of the arrangement of the particles, the dominant slip along the surface of
particle 1 (respectively particle 2) is therefore counter-clockwise (respectively clockwise)
leading to a negative (respectively positive) rotation velocity Ωz for that particle.
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Figure 8. Case C. (a) DFCM concentration field for d = 1, (b) velocity Ux, (c) velocity Uy, (d) angular velocity
Ωz. The black lines (and markers) correspond to particle 1 and the light green ones to particle 2. The triangle
markers correspond to DFCM, the solid lines correspond to BEM and the dashed lines to FFA. The inset shows
the absolute values in logarithmic scale and the corresponding decay.

This rotation rate is proportional to the polarity, and therefore decays as 1/d2 in the
far field. These intuitive trends are confirmed by the results of all three methods in
figure 8(b–d).

As for Case B, when the interparticle distance d is reduced, these effects become more
pronounced and the results obtained with DFCM for the translation velocity are in that
regard slightly better than the predictions of FFA. However, FFA predicts a symmetric
evolution of Ωz with distance, while BEM, the most accurate solution, shows that particle
1 rotates slower than particle 2 for d < 10, and changes direction in the near field d < 0.2.
DFCM is able to capture this non-trivial and asymmetric evolution of the rotation velocity,
but fails to capture the direction reversal of particle 1; as for Case B, this may stem from
the inability of DFCM to resolve correctly the lubrication flows within the thin fluid gap
between the particles.

Nevertheless, over all three cases considered and in particular in the most generic setting
of Janus particles with non-uniform mobility in non-axisymmetric settings, our results
show the importance of the proper resolution of higher-order hydro-chemical multipolar
signatures (e.g. induced polarities and rigidity stresslets) in order to capture accurately
non-trivial feature of the hydro-chemical interactions between particles. DFCM may not
be able to resolve the details of the chemical and hydrodynamic fields in the gap between
the surface of the particles when they are close to each other (e.g. d � 0.5) as it does
not actually represent the exact position of the surface. Yet, this new numerical approach

919 A22-24

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 P
ol

yt
ec

hn
iq

ue
, o

n 
26

 M
ay

 2
02

1 
at

 1
5:

33
:0

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

38
7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.387


Hydrochemical interactions of phoretic particles

offers significant improvements in capturing such complex effects both qualitatively and
quantitatively in comparison with simpler analytical or numerical models, while providing
a significant reduction in complexity in comparison with detailed numerical simulations
such as BEM, opening significant opportunities for the numerical analysis of larger
number of particles and suspension dynamics.

5. Discussion

In this work, we presented a generalization called DFCM of the approach of hydrodynamic
FCM in order to compute hydro-chemical interactions within reactive suspensions of
Janus particles with non-uniform surface activity and mobility. Following the standard
hydrodynamic FCM, we rely on a truncated regularized multipolar expansion at the dipole
level to solve the Laplace problem for the reactant concentration field, and its moments at
the particle surface. While the monopole is directly obtained from the prescribed fluxes on
the swimmer surface, the dipole is found iteratively by accounting for the effect of other
particles on their polarity. Instead of using surface operators, which are difficult to handle
on Eulerian grids, our method relies on spectrally convergent weighted volume averages
to compute successive concentration moments. Unlike standard FCM, the averaging
envelopes are non-Gaussian as their weight is shifted toward the particle’s surface and
thus differ from the Gaussian spreading envelopes associated with each singularity. The
first two moments of concentration around the particle are directly related to the intrinsic
phoretic velocity and rotation of the particles (i.e. those obtained for an isolated particle
experiencing the same hydrodynamic surface slip in an unbounded domain) but also
to the singularities characterizing their hydrodynamic signatures, i.e. an intrinsic active
stresslet and a potential dipole. These multipoles are then used as inputs for the solution
of the hydrodynamic (swimming) problem, solved using the existing hydrodynamic FCM
framework to obtain the total particle velocities.

Even though our approximate method does not resolve the particle surface exactly (and
is as such unable to capture lubrication or strong confinement effects), its predictions
for the dynamics of two particles compare well with analytical or accurate numerical
solutions for distances larger than half a radius (d � 0.5), which is relevant for dilute
and semi-dilute suspensions. Most importantly, in all the results presented above, DFCM
provides significant improvements over far-field models that neglect mutually induced
polarities and rigidity stresslets. Our case study has shown the importance of properly
resolving these dipolar singularities to capture non-trivial hydro-chemical interactions
between particles.

Although the present work purposely focuses on the presentation of the framework and
detailed validation on pairwise interactions of phoretic particles, our diffusio-phoretic
framework readily generalizes to N particles. A remarkable feature of FCM is that the
spreading and averaging operations are volume based and independent of the Stokes and
Laplace solvers. Instead of using Green’s functions for specific geometries, the reactant
concentration c and fluid velocity u can be solved for with any numerical method (e.g.
finite volume, spectral methods) on an arbitrary domain where the FCM spreading and
averaging operations are performed on the fixed computational grid (Maxey & Patel 2001;
Liu et al. 2009; Yeo & Maxey 2010). As shown in previous work (Delmotte et al. 2015),
the corresponding cost scales linearly with the particle number O(N), while Green’s
function-based methods, such as Stokesian dynamics (Brady & Bossis 1988) and the
method of reflections (Varma & Michelin 2019), are restricted to simple geometries and
require sophisticated techniques to achieve similar performances instead of their intrinsic
quadratic scaling O(N2) (Liang et al. 2013; Fiore & Swan 2019; Yan & Blackwell 2020).
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In addition to improving far-field models, our method therefore offers a scalable framework
for large scale simulations of reactive particles. We will use these capacities to study their
collective motion and characterize their macroscopic rheological response.

Despite its specific focus on the modelling of hydrochemical interactions within phoretic
suspensions, the present analysis demonstrates how the fundamental idea of the original
FCM can be extended and applied to other fields of physics. In such an approach the elliptic
Stokes equations are solved over the entire domain (instead of the multiply connected
fluid domain outside the particles) by introducing regularized forcings whose support
is calibrated to account for the particle finite size and whose intensity is determined
to account for a weak form of the boundary condition. For the chemical diffusion
problem considered here, this amounts to (i) replacing a Laplace problem by a Poisson
equation, (ii) calibrating the support of the spreading operators to match benchmark
properties for a single particle and (iii) determining the forcing intensity by projecting
the Neumann-type boundary condition on the particle surface onto a localized support
function of appropriate shape (e.g. Gaussian or annular). This approach can readily be
adapted for solving diffusion problems with more general (Dirichlet or mixed) boundary
conditions, as encountered for more detailed chemical activity of reactive particles
(Michelin & Lauga 2014; Tatulea-Codrean & Lauga 2018) or in bubble growth/dissolution
problems (Michelin, Guérin & Lauga 2019), but also to other physical phenomena driven
by elliptic equations, such as electromagnetic interactions of particles (Keaveny & Maxey
2008).
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Appendix A. Determining the source intensities

We consider here a single active particle bounded by a surface S. The concentration field
outside S (in the fluid) satisfies Laplace’s equation, and its value anywhere in the fluid
domain can therefore be obtained in terms of its value and normal flux on S as

c(r) = 1
4π

∫
S

[
c(s)n · (r − s)

|r − s|3 +
(

−∂c(s)
∂n

)
1

|r − s|
]

dS, (A1)

where s = an and r are measured from the centre of the particle. Far from the particle (i.e.
|r| � |s|), and using the following Taylor expansion for |r − s|−n,

1
|r − s|n ≈ 1

rn

[
1 + n

( s · r
r2

)
+ n

(n
2

+ 1
) ( s · r

r2

)2 + · · ·
]

, (A2)

the concentration field can be expanded in terms of a series of singular multipoles, namely
a monopole of intensity qM , a dipole of intensity qD (and up to the desired order of
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approximation)

c(r) = qM

4πr
+ qD · r

4πr3 + · · · , (A3)

where the intensities are obtained as

qM =
∫

S

(
−∂c(s)

∂n

)
dS, (A4)

qD = a
∫

S

(
−∂c(s)

∂n
n
)

dS +
∫

S
c(s)n dS. (A5)

Substitution of the boundary condition (2.1) leads to the result in (3.12a,b).

Appendix B. Intrinsic phoretic velocities and stresslet

The intrinsic phoretic velocity of a particle (i.e. its swimming speed in the absence of any
hydrodynamic interactions or outer flow) is defined in (2.7a,b). Using the slip velocity
definition in (2.3) and the mobility distribution as in (2.9), we obtain

Ua
n = −〈us〉n = −M̄n〈∇‖c〉n − M∗

n〈sign(p · n)∇‖c〉n. (B1)

Integrating by parts the surface averaging operators we arrive at

Ua
n = −2M̄n

a
〈cn〉n + M∗

npn

a
〈c〉eq

n − M∗
n

a

(〈cn〉+n −〈cn〉−n
)
, (B2)

where the operators 〈· · · 〉±n refer to the mean value over the front and back caps of particle
n, respectively, and 〈· · · 〉eq

n is the line average over the equator of particle n. To compute
these particular averages, we expand the surface concentration c(n) in terms of its surface
moments and truncate the expansion to the first three terms

c(n) = 〈c〉n + 3〈cn〉n · n + 15
2 〈c(nn − I/3)〉n : nn. (B3)

Substitution in (B1) then finally provides

Ua
n = −2M̄n

a
〈cn〉n − 15M∗

n

8a
〈c(nn − I/3)〉n : [pnI + (pnI)T12 + pnpnpn], (B4)

which can be simplified into (3.46) using the symmetry and traceless property of nn − I/3.
Following a similar procedure, the intrinsic phoretic angular velocity can be expanded

from (2.3), (2.7a,b) and (2.9) as

Ωa
n = − 3

2a
〈n × M∇‖c〉n = − 3

2a
M̄n〈n × ∇‖c〉n − 3

2a
M∗

n〈sign(p · n)n × ∇‖c〉n, (B5)

and after integration by parts simplifies to

Ωa
n = −3M∗

n

2a2

(
pn × 〈cn〉eq

n
)
. (B6)

Substitution of (B3) provides the desired expression, (3.49).
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The same method can also be applied to determine the intrinsic phoretic stresslet Sa
n.

From its definition in (2.8) and using (2.3) and (2.9), we obtain

Sa
n = −10πa2M̄n〈(n∇‖c + (∇‖c)n)〉n − 10πa2M∗

n〈sign(p · n)(n∇‖c + (∇‖c)n)〉n. (B7)

Integrating by parts the surface averaging operators provides

Sa
n = −60πaM̄n〈c(nn − I/3)〉n

+ 10πaM∗
n [〈cn〉eq

n pn + pn〈cn〉eq
n − 3

(〈c(nn − I/3)〉+n −〈c(nn − I/3)〉−n
)
]. (B8)

Substitution of (B3) provides finally

Sa
n = −60πaM̄n〈c(nn − I/3)〉n + 15

2 πaM∗
n [(〈cn〉n · pn)(I − pnpn) − 〈cn〉npn − pn〈cn〉n].

(B9)
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