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Abstract Several studies have shown the existence of a critical latitude where the dissipation of internal
tides is strongly enhanced. Internal tides are internal waves generated by barotropic tidal currents impinging
rough topography at the seafloor. Their dissipation and concomitant diapycnal mixing are believed to be
important for water masses and the large-scale ocean circulation. The purpose of this study is to clarify the
physical processes at the origin of this strong latitudinal dependence of tidal energy dissipation. We find that
different mechanisms are involved equatorward and poleward of the critical latitude. Triadic resonant
instabilities are responsible for the dissipation of internal tides equatorward of the critical latitude. In
particular, a dominant triad involving the primary internal tide and near-inertial waves is key. At the critical
latitude, the peak of energy dissipation is explained by both increased instability growth rates, and smaller
scales of secondary waves thus more prone to break and dissipate their energy. Surprisingly, poleward of the
critical latitude, the generation of evanescent waves appears to be crucial. Triadic instabilities have been
widely studied, but the transfer of energy to evanescent waves has received comparatively little attention.
Our work suggests that the nonlinear transfer of energy from the internal tide to evanescent waves
(corresponding to the 2f-pump mechanism described by Young et al., 2008, https://doi.org/10.1017/
S0022112008001742) is an efficient mechanism to dissipate internal tide energy near and poleward of the
critical latitude. The theoretical results are confirmed in idealized high-resolution numerical simulations of a
barotropic M2 tide impinging sinusoidal topography in a linearly stratified fluid.

1. Introduction

Internal waves are ubiquitous in the ocean and they play a key role in the circulation and the stratification of
the ocean (Garrett & Munk, 1979). They permit energy transfer from mesoscale flows to small spatial scales,
where they are dissipated and induce diapycnal mixing (Munk & Wunsch, 1998; Wunsch & Ferrari, 2004).
Interest in internal waves dynamics has been enhanced in the last decades with parametrization of internal
waves-driven mixing in the global climate models, and its impact on the large-scale ocean properties (Ferrari
et al., 2016; Melet et al., 2016; Talley, 2013). Far from the Antarctic Circumpolar Current (ACC), diapycnal mix-
ing is primarily induced by abyssal internal tides (De Lavergne et al., 2016a, 2016b; Nikurashin & Ferrari, 2013),
which are internal waves generated by barotropic tide current impinging rough topography (Garrett & Kunze,
2007).

For the purpose of understanding the dynamics of internal tides, several numerical studies considered the
dissipation of semidiurnal internal tide (generated by topography interacting with the semidiurnal barotropic
M2 tide) (Gerkema et al., 2006; Hibiya et al., 2002; MacKinnon &Winters, 2005; Nikurashin & Legg, 2011; Richet
et al., 2017). They showed a strong latitudinal distribution and the existence of a critical latitude where dissi-
pation is strongly enhanced. This critical latitude exhibits enhanced dissipation of both low-mode
(MacKinnon & Winters, 2005) and high-mode internal tide (Nikurashin & Legg, 2011; Richet et al., 2017).
The critical latitude corresponds to the latitude where the Coriolis frequency fmatches half the tidal semidiur-
nal frequency ω0: f≈ω0=2 and is approximately equal to 29°. Observations confirm the enhancement of dis-
sipation near the critical latitude, albeit with weaker amplitude than expected from numerical studies (Alford
et al., 2007; MacKinnon et al., 2013). One possible explanation for this amplitude discrepancy is the Doppler
effect due to background oceanic currents, which spreads the dissipation over a wider range of critical lati-
tudes (Richet et al., 2017). Apart from this consideration, MacKinnon and Winters (2005), Hazewinkel and
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Winters (2011), and Nikurashin and Legg (2011) showed that one mechanism to explain the latitudinal
dependence of internal tide dissipation (without a background current) is the Parametric Subharmonic
Instability (PSI). In this paper, we propose to complete Nikurashin and Legg’s (2011) numerical study on
high-mode internal tide and investigate in detail (theoretically and numerically) two physical processes lead-
ing to the distribution of M2 internal tide dissipation with latitude: the triadic resonant instability equator-
ward and the 2f-pump mechanism (Young et al., 2008) poleward of the critical latitude.

PSI is a weakly nonlinear resonant phenomenon (e.g., McComas & Bretherton, 1977; Young et al., 2008) in
which the energy is transferred from the primary internal tide to two secondary waves at approximately half
the tidal frequency. These secondary waves have smaller wavelength than the primary wave, they reach large
amplitude through the energy transfer, break and dissipate their energy under shear instability, yielding the
mixing ultimately relevant to the large-scale ocean circulation (Staquet & Sommeria, 2002). Thereby PSI is an
efficient mechanism promoting shear instability and breaking, transferring energy to smaller vertical scales.
More generally, the instability of a primary wave producing two secondary waves which match resonant con-
ditions is named a triadic resonant instability (TRI).

Equatorward of the critical latitude, we investigate whether TRI is the most efficient mechanism that dissi-
pates internal tide energy, and which triads are involved in these energy transfers (see section 4 for more
details on the TRI). Two candidates in the literature are triads with secondary waves at frequencies ω1¼ω2¼
ω0=2(MacKinnon &Winters, 2005), orω1¼f andω2¼ω0 � f (Nikurashin & Legg, 2011). Note that in both cases,
these secondary waves satisfy the resonance conditions ω0¼ω1þω2. Poleward of the critical latitude, one of
the waves would have a frequency below f for both of those triads, which is impossible since it would be then
not within the range of internal wave frequencies (internal waves have frequencies between f and the stra-
tification frequency N), so there is no resonant triad. Another dissipation mechanism has been proposed and
will be investigated here, the “2f-pump” (Korobov & Lamb, 2008; Young et al., 2008). The 2f-pump is an exten-
sion of PSI in a rotating frame, with the generation of near-inertial secondary waves which are evanescent.
This physical process can extract energy from the primary internal tide at ω0 to evanescent secondary waves
at ω0=2. We will investigate whether this process plays a role in our simulations and whether it can lead to
strong dissipation poleward of the critical latitude.

The purpose of this study is to explain the physical mechanisms behind the latitudinal distribution of internal
tide energy dissipation by confronting theoretical results with numerical simulations. Section 2 of the paper
describes the equations governing the motion of internal waves and the setup of the numerical simulations.
Section 3 is an overview of the numerical results, where we split the latitudinal dynamics of internal tides into
two parts: part I, equatorward of the critical latitude, where internal tides are propagating waves and transfer
their energy through triadic resonant instabilities, and part II, poleward of the critical latitude, where there is
the possibility of energy transfer to secondary evanescent waves via the 2f-pump. Sections 4 and 5 investi-
gate in detail the mechanisms of dissipation in these two parts. Results are summarized and conclusions
are offered in section 6.

2. Methods
2.1. Theoretical Background: Equations of Motion

Internal waves are waves found in stratified fluids. In this section, we derive their dispersion relation from a
simplified set of equations, namely the Boussinesq equations on the f-plane assuming constant stratification.
Under the Boussinesq approximation, the total density is ρðx; z; tÞ¼ρ0þρsðzÞþσðx; z; tÞ, where ρ0 is assumed
constant, and ρs is linked to the background vertical stratification corresponding to the Brunt-Väisälä fre-

quency N satisfyingN2¼� ðg=ρ0Þðdρs=dzÞassumed constant. We introduce the buoyancy related to the den-
sity perturbation b¼� ðg=ρ0Þσ . Internal waves are governed by the nonlinear Boussinesq equations of
motion on the f-plane:

D
Dt

uþf ẑ�u¼� 1
ρ0

∇pþbẑþν∇2u; (1)

D
Dt

bþN2w¼κ∇2b; (2)
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∇·u¼0: (3)

We reduce the set of equations to the 2-D case (x, z), considering ∂=∂y
≡0. Nevertheless, we allow for a velocity v in the y direction. The model
is a 2-D model with three components. This assumption is relevant if we
consider that roughness of ridges is nearly two-dimensional. D/Dt
denotes the Lagrangian derivative, and we solve the equations for flow
velocity u¼ðu; v;wÞ and buoyancy b. ν denotes the viscosity and κ
denotes the diffusivity. For simplicity, we assume that the diffusion term
is negligible.

If we linearize this set of equations about a state of rest neglecting viscos-

ity, and look for wave solutions of the form∝eiðkxþmz�ωtÞ, we obtain the dis-
persion relation of internal waves:

ω2¼N2sin2θþf 2cos2θ¼N2k2þf 2m2

K2 ; (4)

with ω the frequency of the internal wave, θ is the angle of energy propa-
gation with the horizontal such that k¼ðk; 0;mÞ¼Kðsinθ; 0; cosθÞ where K
is themagnitude of the wave vector k. We see that propagating waves (i.e.,
with real ω; k and m), necessarily have their frequency ω∈½f ;N� (f<N typi-
cally in the ocean).

2.2. Numerical Simulations Configuration

For the numerical simulations, we use the Massachusetts Institute of
Technology Global Circulation Model (MITgcm; Marshall et al., 1997), a
high-resolution numerical model in nonhydrostatic configuration. The
nonhydrostatic configuration allows the explicit representation of
processes such as hydraulic jumps or Kelvin-Helmholtz instabilities.

The model is developed with the finite-volume method to provide the treatment of irregular geometries
like the topography using the MITgcm partial cells’ architecture. The bottom boundary is treated with a
no-slip condition.

The main characteristics of the domain are summarized in Figure 1. The domain is two-dimensional and per-
iodic in the x direction. The horizontal size of the domain is 24 km with a uniform resolution of 30 m. The ver-
tical extent of the domain is equal to 7.5 km, organized in two layers: the 4.5 km bottom layer and the 3 km
sponge layer at the top. Indeed, the goal of this paper is to highlight the mechanisms by which internal tides
dissipate locally near their generation site. In fact, a major unknown is the fraction of internal waves that dis-
sipate locally near the seafloor and the fraction of internal tides that escape and dissipate remotely, which can
influence the upwelling of Antarctic Bottom Water, contributing to circulation values varying from 1 to 28 Sv

(1 Sv ¼106 m3 s�1) (De Lavergne et al., 2016a). A better understanding of the fraction of internal tides
which dissipate locally near their generation site is needed to evaluate the fraction of internal tides that
escape and are available to dissipate remotely. This is the question addressed here, namely what is the
fraction of internal tide energy dissipated locally. For practical reason, we neglect the reflection of the
waves at the ocean surface and their interactions with the thermocline. In other words, we consider a
semi infinite ocean, and for this purpose we impose a sponge layer at the top of the ocean interior to
absorb upward-propagating waves which are not dissipated locally. In the sponge layer, momentum
and buoyancy are damped with a linear drag with a time scale of 1 h. The bottom layer corresponding
to the ocean interior has a uniform resolution of 10 m. The resolution of the sponge layer is progressively
stretched from 10 m at the base of the layer to 70 m at the top. The model time step is 30 s. These
high-resolution idealized simulations are designed to allow the resolution of a wide range of spatial
and temporal scales of the turbulence.

In the simulations, the fluid is linearly stratified in the vertical with constant buoyancy frequencyN¼10�3 s�1,
representative of the deep ocean stratification. Following Richet et al. (2017), the viscosity (horizontal and

vertical) is equal to ν¼2�10�3 m2 s�1 and the diffusivity (horizontal and vertical) is set to κ¼10�4 m2 s�1.

Figure 1. Schematic of the numerical setup. The barotropic tidal current,
with amplitude U0 and frequency ω0 interacts with a one-dimension sinu-
soidal topography in a linearly stratified (N constant) and rotating (f constant)
fluid and generates internal tides (oblique dashed lines). The gray shaded
area at the top of the domain represents the sponge layer.
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The Coriolis frequency f is set to be constant for each given simulation. To
investigate the latitudinal variation of internal tide dissipation, we vary f
between simulations.

Internal tides are generated by the barotropic flow interacting with an
idealized sinusoidal topography. The simulations are initiated from a state
of rest and run for 30 days (a statistically steady state is reached in 5–10
days). The tidal barotropic flow is imposed by adding a body force to the
momentum equations, yielding a barotropic semidiurnal lunar M2 tide,
UðtÞ¼U0sinðω0tÞ with an amplitude U0¼2:5 cm s�1 and the tidal

frequency ω0¼1:4�10�4 s�1.

The choice of a simple idealized sinusoidal topography is motivated by
the fact that the dissipation profiles and magnitudes are found to be
similar to those obtained with a realistic topography spectrum, as long
as the vertical and horizontal Froude numbers are the same (Richet
et al., 2017). We therefore use the realistic horizontal and vertical

Froude numbers Fr h¼U0=ðN2π=k0Þ≈4�10�3 and Fr v¼U0=ðNhÞ≈10�1 ,

where k0¼8�10�4 m�1 is the horizontal wave number and h= 110 m
is the rms height of the sinusoidal topography. With this choice, the
sensitivity of dissipation to latitude and the physical processes involved
in our simulations is relevant, at least qualitatively, to more realistic con-
ditions representative of the deep ocean in the region of the Brazil
Basin (Nikurashin & Legg, 2011; Richet et al., 2017).

3. Overview of Numerical Results: Latitudinal Distribution of Tidal Dissipation and
Physical Processes Involved

The purpose of this study is to explain the physical mechanisms behind the latitudinal distribution of internal
tide energy dissipation. From numerical results, we give a first glimpse of possible mechanisms and their
repartition with latitude before studying them in detail and validating their existence and their efficiency
for the dissipation of internal tide energy in following sections.

Nikurashin and Legg (2011) and Richet et al. (2017) show a strong dependence of internal tide energy
dissipation with latitude. Figure 2 summarizes these results. From the equator toward the critical latitude,

the energy dissipation increases slowly at the beginning and strongly after ∼22° of latitude (f¼0:53�10�4

s�1). Poleward of the critical latitude, energy dissipation decreases and becomes constant after ∼35° of

latitude (f¼0:8�10�4 s�1). We divide the curve into two parts: part I equatorward of the critical latitude
where secondary waves, in particular at ω0=2 orω0 � f, are propagating, i.e., their frequency is in the inter-
nal wave range ½f ;N�, see equation (4); and part II poleward of the critical latitude where those secondary
waves are evanescent.

Figure 3 shows kinetic energy density spectra from simulations at f¼0:53�10�4 and f¼0:75�10�4 s�1 aver-
aged over 5–30 days. Equatorward of the critical latitude (Figure 3a), dominant frequencies in the domain are
ω0, the primary internal tide, but also waves at frequency f, i.e., inertial waves, and at frequencies (ω0 � f) (and
with smaller amplitudeω0þf ). These results suggest that the physical mechanism responsible for the energy
transfer from internal tides to smaller-scale secondary waves is the formation of resonant triads between the
primary internal tide, inertial waves and waves at frequencies (ω0 � f), and to a lesser extent (ω0þf). Poleward
of the critical latitude (Figure 3b), the dominant frequencies in the kinetic energy spectrum are the primary
internal tide at ω0 and the evanescent wave at ω0=2 (ω0=2 < f ). This result suggests the transfer of energy
to smaller-scale evanescent near-inertial waves as the dominant physical process leading to the dissipation
of the primary internal tide.

The latitudinal evolution of the amplitude of the main wave frequency peaks, measured on integrated spec-
tra like the one presented on Figure 3, are summarized in Figure 4. Equatorward of the critical latitude, the
enhancement of energy dissipation seems to be linked to a strong generation of inertial waves accompanied
by waves atω0 � f . The waves atω0þf do not play a leading-order role. It should be noted here and it will be

Figure 2. Energy dissipation rate integrated in the bottom 50 m (cross) and
between 50 m and 2 km (circle). The vertical black dotted line indicates the
critical latitude. Each point corresponds to a simulation at a given latitude
(f constant) and the viscous energy dissipation is averaged over x direction and
over the last 10 days of simulation, and integrated over 0–50m above topography
for the bottom boundary layer, and over 50 m to 2 km for the ocean interior.
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proved later that the triad involving ω0þf is not an unstable triad. Poleward of the critical latitude, the
dissipation seems to be dominated by energy transfers to secondary waves at ω0=2.

These results suggest two different mechanisms for internal tides dissipation in the two regions previously
defined: equatorward of the critical latitude (part I) and poleward of the critical latitude (part II).
Equatorward of the critical latitude, dissipation of internal tides seems to involve triadic resonant instabilities.
Poleward of the critical latitude, dissipation seems to be linked to the energy transfer to evanescent waves. In
the next sections, we investigate in detail those physical mechanisms and provide further evidence for their
key role in the dissipation of tidal energy.

4. Part I—Equatorward of the Critical Latitude: Triadic Resonant Instabilities (TRI)

In order to explain the latitudinal dependence of the energy dissipation equatorward of the critical lati-
tude, we investigate theoretically resonant triads. We will see that the energy transfers occur in three

stages. During the first stage, corresponding to the beginning of
the simulation, secondary waves with a wide range of frequencies
are generated by triadic resonant instability from the primary
internal tide. A second stage consists of an accumulation of iner-
tial waves close to topography. Finally, in a third stage, the domi-
nant triadic resonant instability appears between the primary
internal tide and the inertial waves, strengthening the generation
of waves at frequencies (ω0 � f ).

4.1. Triadic Resonant Instability Theory

The instability of a primary wave producing two secondary waves
which match the resonant conditions of triadic resonant instability
(TRI) has been confirmed experimentally in a rotating tank
(Maurer et al., 2016). However, the constraints associated with
laboratory experiments, in particular size constraints, imply that
the Reynolds number is low, in other words viscous effects are
much stronger than in the ocean, and this can impact energy trans-
fer in triads. Here we revisit and expand the generation of triads via
the TRI observed and studied theoretical in a rotating frame in
Maurer et al. (2016), in numerical simulations more representative
of the oceanic conditions.
4.1.1. Unstable Triads and Growth Rate
FollowingMaurer et al. (2016), we consider that only the primary wave
with stream function amplitude Ψ0 (see Appendix A for the stream

Figure 3. Kinetic energy density spectra from simulations at (a) f¼0:53�10�4 s�1 and (b) f¼0:75�10�4 s�1. Spectra are calculated over the period of 5–30 days and
averaged zonally and over the region 500 m above topography.

Figure 4. Latitudinal evolution of the kinetic energy density for the leading
frequencies in the domain: the primary internal tide ω0 (gray dashed), inertial
waves f (black plain) and waves at frequencies (ω0 � f) (gray point-dashed), (ω0þf)
(gray plain—here nearly indistinguishable from the axis), andω0=2 (black dashed).
The vertical black dotted line materializes the critical latitude. The amplitude of
the different frequencies is measured on integrated spectra like the one presented
in Figure 3.
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function form of equations 1–3) frequency s0ω0 (by convention, we
consider ω0 > 0 and s0 is its sign) wave vector k0¼ðk0;m0Þ is present
initially in the system. We impose m0 < 0 to match the numerical
simulation where the primary internal tide is generated at the topo-
graphy and propagates upward (i.e., has positive vertical group velo-
city, which for internal waves is equivalent to negative vertical phase
velocity). The secondary waves with amplitudes Ψ1;2 are present as
noise. The two secondary waves (s1;ω1; k1 ) and (s2;ω2; k2 ) form a
resonant triad with the primary wave, satisfying the spatial resonant
condition

k0¼k1þk2; (5)

and the temporal resonance condition

s0ω0¼s1ω1þs2ω2: (6)

In all calculations, we consider that wave frequencies ω0;1;2 are posi-
tive, while s0;1;2 are their signs. Using the dispersion relation for inter-
nal waves (equation (4)), the resonant conditions lead to

s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20N

2þm2
0f

2

κ20

s
¼s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21N

2þm2
1f

2

κ21

s
þs2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0 � k1Þ2N2þðm0 �m1Þ2f 2
ðk0 � k1Þ2þðm0 �m1Þ2

s
: (7)

Without loss of generality, we can set s0¼þ1. For a given primary wave (s0; k0;m0), the solution of this equa-
tion for each sign combination (s0¼þ1; s1; s2) is the curve in the (k1, m1)-plane shown in Figure 5 using the

stratification value N¼10�3 s�1 representative of the deep ocean, and a value of f equatorward of the critical

latitude f¼0:53�10�4 s�1. We use the same sign convention on wave frequencies as Bourget et al. (2013) and
Maurer et al. (2016), leading to similar results. But Figure 5 as well as the growth rates in Figure 6 show differ-
ences compared to these experimental studies. This is because of the oceanic parameter values used here,
while their values were constrained by the laboratory experiments. In particular, Maurer et al. (2016) are con-
strained by the limited spatial scales allowed in experiments, and have a Reynolds number Re∼200. In our

simulations, the Reynolds number is more turbulent and thus closer to the oceanic regime with a Re∼104.

As the sign of the primary wave is imposed, we have to consider four sign combinations for (s1, s2): (�,�),
(+,+), (�,+), and (+,�). First of all, no solution exists for the combination (�,�). To know which branch,
defined by the sign combination, is stable or unstable, we calculate the associated growth rate σ given
by (see full calculation and definition of coefficients I1 and I2 in Appendix A):

σ¼� ν
4

κ21þκ22þ
f 2m2

1

ω2
1

þ f 2m2
2

ω2
2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2

16
κ21 � κ22þ

f 2m2
1

ω2
1

� f 2m2
2

ω2
2

� �2

þI1I2jΨ0j2
s

: (8)

A negative growth rate corresponds to a stable branch (dashed curves in Figure 5) and is not relevant for this study,
which is the case for combinations (+,�) and (�,+). The study will focus only on the (+,+) combination which has a
positive growth rate and hence corresponds to an unstable branch (plain curves in Figure 5). In the simulations, we
expect to observe a transfer of energy to the most unstable secondary waves (i.e., with the largest growth rate).

Without loss of generality, we can limit our analysis to the upper branch: the upper and lower branches (+,+)
correspond to exchanging the labels 1 and 2 between (ω1; k1) and (ω2; k2), and thus show the same triad (ω0

primary wave yieldsω1 andω2 secondary waves). It follows from equation (5) that they are obtained from one
another by symmetry with respect to k0=2.

Figure 6 shows the growth rate σ associated with the upper unstable branch as a function of the secondary
waves frequencies (ω1 or ω2), calculated for each point of the upper branch of Figure 5. Despite a weak max-
imum growth rate σmax, we see that the temporal growth rate is roughly constant over a wide range of

Figure 5. The curves represent the location of (k1, m1) satisfying equation (7) at
f¼0:53�10�4 s�1 for the three possible combinations of signs and for the
realistic parameter values used in our simulations. Plain lines represent unstable
branches associated to (+,+) combination signs, while dashed lines correspond
to neutrally stable cases.
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frequencies (between f and ω0 � f ). In other words, no specific triad is
selected. We therefore expect in the simulations that TRIs generate, from
the primary internal tide, secondary waves with a wide range of
frequencies.

It should be noted that as f is increased toward ω0=2 the unstable branch
gets more and more folded with a cusp moving to infinite vertical wave
number when approaching ω0=2 (see Figure 7a). No triadic instability is
possible after the critical latitude f¼ω0=2. We will come back to internal
tide dissipation poleward of the critical latitude in section 5.

Hence, the theory of TRI, applied with oceanic parameters, predicts the
generation, from the primary tide, of secondary waves with a wide range
of frequencies. In section 4.2, this theoretical result is compared to numer-
ical simulations to validate TRI as the principal mechanism in internal tide
dissipation equatorward of the critical latitude.
4.1.2. Evolution of Dissipation From the Equator Toward the
Critical Latitude
Internal tide energy dissipation increases significantly as the critical lati-
tude is reached (see Figure 2). In this section, we investigate the effect of
the latitude on TRI growth rate and secondary waves, in order to explore
the reason behind the increase of dissipation at the critical latitude.

Figure 7 shows for different latitudes the loci of TRI and the associated growth rate of the unstable branches
as a function of the frequency of secondary waves. From the equator (f= 0 s�1) toward the critical latitude,
the unstable branch goes to infinite vertical wave numbers and tightens. The growth rate curve becomes
sharper close to the critical latitude, tending to only generate inertial waves (waves at half the primary tide
frequency). In fact, at the critical latitude, only one resonant triad exists and both secondary waves have their
frequencies equal toω0=2. We call this specific TRI, the Parametric Subharmonic Instability (PSI) (Bourget et al.,
2013; Bouruet-Aubertot et al., 1995; Staquet & Sommeria, 2002). The sharp increase as f approaches the cri-
tical latitude in Figure 2 is not explained by a change in the maximum growth rate, which remains roughly
constant with f (crosses in Figure 7b). We now investigate whether the growth rate of the other triad invol-
ving waves at f and ω0 � f can explain this sharp increase and whether changes in scales of the secondary
waves may also play a role, as waves with smaller scales are more prone to break and dissipate their energy.

Figure 8 represents the latitudinal evolution of growth rate, horizontal wave number and vertical wave num-
ber for the key frequencies. From the equator toward the critical latitude, we recover the fact that the

Figure 6. Growth rate σ as a function of the frequency of secondary waves asso-
ciated with the upper unstable branch (plain black line in Figure 5) for f¼0:53�
10�4 s�1. The plain curve represents the growth rate as a function of the
frequency of the first secondary wave ω1, and the dashed curve represents the
growth rate as a function of the frequency of the second secondary wave ω2.

Figure 7. (a) Location of (k1, m1) satisfying equation (7) for the three possible combinations of signs for different latitudes. Plain curves are unstable branches and
dashed lines are neutral branches. Symbols correspond to (k1, m1) associated with the main frequencies. (b) The associated growth rate as a function of the
secondary wave frequencies. Vertical plain lines correspond to ω¼f and vertical dashed lines to ω¼ω0 � f . Vertical black plain line indicates the critical latitude.
Colored cross marks denote maximum growth rate at each latitude.
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maximum growth rate is roughly constant, and even decreases. But the growth rate of inertial waves and
waves at ðω0 � f Þ increases. The horizontal scales of the waves seem to be almost constant with latitude.
On the other hand, the vertical wave number (vertical scale) increases (decreases) strongly getting closer
to the critical latitude. TRIs promote the generation of inertial waves and waves atω0 � f close to the critical
latitude, which have smaller and smaller vertical scales near the critical latitude promoting their dissipation.
These theoretical results suggest that the enhanced energy dissipation at the critical latitude is due to faster
generation (increased growth rate) of secondary waves with smaller vertical scales which are dissipated
quickly after their generation, leading to the strong energy dissipation seen in Figure 2.

In the next section, we compare the theoretical results at f¼0:53�10�4 s�1 to the numerical simulations for
the same latitude.

4.2. Numerical Results: Generation of Secondary Waves, Accumulation of Near-Inertial Waves, and
Dominant Triad
4.2.1. Stage I: Generation of Secondary Waves
The numerical simulation discussed here is at the same latitude as the theoretical case (f¼0:53�10�4 s�1).
Several snapshots of the wavefield (left column) and the wavefield without the primary internal tide signal
(right column) are shown in Figure 9 at (a) 1.5, (b) 3, (c) 5, and (d) 19 days. The wavefield is obtained by sub-
tracting the zonal mean flow. The primary internal tide has been removed by subtracting two snapshots at t
and at tþTtide , where Ttide is the tide period (2π=ω0∼12 h). Linear characteristics for given frequencies are
drawn on the snapshots at 5 and 19 days.

The transient phase lasts 3–5 days, corresponding to the development and the propagation of the primary
tide toward the sponge layer. As early as 1.5 days of simulation (Figure 9a), waves with smaller wavelengths
appear throughout the water depth, faster than expected from upward propagation from topography (the
group velocity of small-scale waves is slower than that of large-scale waves). This suggests that they are
not generated at the topography during the transient phase, but instead are generated by nonlinearities
at all heights. Figures 9a–9c visually confirm that a wide range of secondary waves are generated at the
beginning of the simulation by nonlinearities.

Figure 10 shows the time evolution of the kinetic energy of internal waves at f, ω0 � f , at the frequency cor-
responding to the maximum theoretical growth rate (see Figure 6) and ω0. The energy of the waves at ω0

(primary internal tide) remains constant which is coherent with our permanent forcing. For the other frequen-
cies, the kinetic energy grows exponentially in time before reaching nonlinear saturation and equilibrium in
10–20 days. The approximate time scale of energy transfer within the resonant triad, estimated as the e-
folding time scale from the kinetic energy evolution, is between 1.3 and 2.5 days. These simulated values
are in reasonable agreement with the ones found by Nikurashin and Legg (2011) with an approximate time
scale of 2–3 days forω0 � f . Our numerical growth rates are also broadly consistent with the theoretical esti-
mate of 0.86 days (Figure 6), albeit slightly slower. We interpret this slower simulated time scale as being the
consequence of the nonlinear saturation and subsequent slowdown of energy increase visible in Figure 10.

Figure 8. Latitudinal evolution of growth rate, horizontal wave number k1, vertical wave number m1 for different frequencies.
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Figure 9. Snapshots of (left) the horizontal velocity (u, m s�1) associated with the wavefield and (right) the wavefield without the primary internal tide signal at
(a) 1.5, (b) 3, (c) 5, and (d) 19 days, for f¼0:53�10�4 s�1. The wavefield is obtained by subtracting the zonal mean flow. The primary internal tide has been
removed by subtracting two snapshots at t and at tþTtide , where Ttide is the tide period (2π=ω0∼12 h). Dashed lines correspond to linear characteristics for waves
at ðω0 � f Þ (yellow dashed), ðω0þf Þ (yellow pointed dashed), ω1;σmax (purple dashed), ω2;σmax (purple pointed dashed), f (orange dashed), and for harmonics
(pink dashed).
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So overall, the simulations show growth rates at early times in good
agreement with the theoretical expectations. Furthermore, we see
that all triads exhibit similar rates of increase, consistent with the flat
theoretical growth rate curves in Figure 6 (similar growth rate for all
frequencies), and consistent with the wide range of wave frequencies
generated at early times in the simulations (as can be seen with the
wide range of wave slopes in Figure 9c).
4.2.2. Stage II: Accumulation of Near-Inertial Waves
Figure 11 shows the kinetic energy associated with the different fre-
quencies in the simulation over the period 1–15 days and 15–30 days.
During the first 15 days, the most energetic waves are associated with
frequencies ω0, the primary internal tide, f, the near-inertial wave and
ω0 � f . There is a signal at ω= 0 s�1, probably linked to a weak mean
flow induced by the waves (Grisouard & Bühler, 2012). During the sec-
ond period, near-inertial waves have more and more energy and
become stronger than the primary internal wave. The near-inertial
waves are present above topography until 2,500 m, and have signifi-
cant energy as high as 1,500 m above the bottom.

Near-inertial waves (i.e., with frequencies near f) are those with verti-
cal group velocity close to zero (in fact for inertial waves ω¼f ; kIW¼0
⇒cg;z¼∂ω=∂m¼0 and for this reason, they do not propagate, consis-
tent with the horizontal waves at the topography for instance,
Figure 9d). In the simulation, the magnitude of the vertical group

velocity of the near-inertial wave is of the order of 10�6 m s�1 (for

comparison the magnitude of the vertical group velocity for the waves atω0 � f is ∼10�3 m s�1). For this rea-
son, gradually, they accumulate near their generation site, growing to order one and cannot be considered as
noise anymore compared to the primary internal wave.

The sign of the vertical group velocity of internal waves,

Cgz¼�mk2ðN2 � f 2Þ
ωðk2þm2Þ2 ; (9)

is minus the sign of the vertical wave number m (ω is positive with our convention). Figure 12 shows the
kinetic energy of the waves as a function of vertical wave number and frequency over 1–15 days and 15–
30 days. As seen previously, near-inertial waves have more and more energy. The near-inertial waves are
associated with a vertical wave number positive which means that the energy goes toward the topography
and confirm the accumulation of near-inertial waves at the topography. After 15 days, near-inertial waves and
primary internal tide are of the same order.

Figure 10. Evolution of kinetic energy (in m2 s�2 cph�1 with a log10 scale) of
internal waves at frequency f (blue), ω0-f (orange), ω0 (yellow), and
corresponding to the maximum theoretical growth rate (light blue—see Figure 6),
computed as an integral of the time spectrum (see Figure 3a) in the frequency range
around ±10% of the frequencies on a 5 days window, at f¼0:53�10�4 s�1. Thin lines
represent the observed slopes s. The associated growth rate is σ¼slogð10Þ which
gives for f a growth rate of σf¼8:9�10�6 s�1 corresponding to a time scale for
energy transfer of 1.3 days, forω0 � f a growth rate ofσω0�f¼6:8�10�6 s�1 and a time
scale of 1.7 days, and forωσmax a growth rate ofσωσmax¼4:3�10�6 s�1 and a time scale of
2.5 days.

Figure 11. Kinetic energy spectrum in time (in m2 s�2 with a log10 scale) as a function of wave frequencyω and height above topography, and averaged zonally over
the time period of (left) 1–15 days and (right) 15–30 days, for f¼0:53�10�4 s�1. Vertical lines correspond to the main observed frequencies.
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4.2.3. Stage III: Dominant TRI
Consistent with the aforementioned accumulation of inertial waves, the wavefield in the numerical
simulation strongly evolves with time and the waves are very different after 19 days compared to ear-
lier times (see Figure 9d right plot, where the primary internal tide has been removed). The linear char-
acteristics highlight the waves at frequency ðω0 � f Þ which dominate in the whole domain at the end of
the simulation. The triad with waves at f and ω0 � f has become order one and clearly dominates the
wavefield.

In fact, if we come back to Figures 11 and 12, we can see that waves at ω0 � f have more and more energy
over time suggesting that their generation is linked to the strengthening of the near-inertial waves. Figure 12
also shows that waves at ω0 � f have a vertical wave number m< 0 implying that they propagate upward
and their energy, not dissipated locally, is dissipated in the sponge layer. This result is coherent with
Figure 11 where ω0 � f has homogeneous kinetic energy all over the water column above the maximum
of f.

Going back to the TRI theory and triad selection, Figure 12 gives one more information which is that the
selected triad is the triad ðω1¼ω0 � f ;m1 < 0Þ and ðω2¼f ;m2 > 0Þ. This triad is located on the right part
of the upper unstable branch (see Figure 5 as well as Figure 7a). Indeed, m1 < 0 (same sign as m0 on this
branch), thus the triad selected corresponds to ω1¼ω0 � f with m1 < 0, open circles on Figure 7. Note
that in that case m2 > 0 (since jm1=m0j > 1 see Figure 7) and the wave ω2¼f ; m2 > 0 thus propagates
downward consistent with Figure 12 and the aforementioned accumulation of inertial waves at the
topography.

The increase of energy in near-inertial waves, becoming order one compared to the primary tide, forces the
triad composed by the primary tide at ω0, the near-inertial at f and a third wave to grow. The third wave fre-
quency could be, with the combination of ω0 and f, ðω0 � f Þ or ðω0þf Þ. If we go back to the triadic relation
(equation (7)), the only unstable branch corresponds to sign combination ðs1¼þ; s2¼þÞ, yieldingω0¼ω1þω2,
withω0;1;2 positive. This result implies that the only unstable triad is between frequencies ω0, f andω0 � f . In
other words, the dominant TRI generates waves at frequency ðω0 � f Þ. This theoretical result is confirmed by
the numerical simulation in Figure 9d.

Thus, we conclude that in our simulations, equatorward of the critical latitude, the dissipation of internal tides
involves energy transfers to smaller scales (smaller frequencies) via TRI. More precisely, it occurs in three
stages: generation of new secondary waves via TRIs over a wide range of frequencies, accumulation of inertial
waves which cannot propagate vertically, and domination of a TRI between the primary internal tide and
inertial waves involving a third wave atω0 � f . This theoretical and numerical study of internal tide instability
and dissipation confirms the prediction that TRI is the main mechanism for internal tide dissipation in the
ocean. We note that in the ocean, assuming that a steady state with the barotropic tidal forcing is reached,
stages I and II are not relevant, and it is stage III, i.e., the strengthening of the dominant triad due to the order
one inertial waves, which dominates.

Figure 12. Kinetic energy spectrum in time and space (in m2 s�2 with a log10 scale) as a function of wave frequency ω and vertical wave numberm, and averaged
zonally over the time period of (right) 1–15 days and (left) 15–30 days, for f¼0:53�10�4 s�1. Vertical lines corresponds to the main observed frequencies.
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5. Part II—Poleward of the Critical Latitude: Evanescent Waves

Poleward of the critical latitude, TRI is not a possible mechanism for internal tide dissipation, since waves at
ω0 � f are not radiating internal waves anymore (see equation (4), the range of frequencies of propagating
internal waves is between f and N). But surprisingly, the dissipation does not decrease sharply. Instead, inter-
nal tides continue to dissipate for about 5° of latitude poleward (see Figure 2) and thus to participate in dia-
pycnal mixing. The energy dissipation seems to be associated with waves atω0=2 (see Figure 4) which are not
radiating either (ω0=2 < f ), but instead are evanescent. Young et al. (2008) propose a mechanism, the “2f-
pump,”which extends PSI theory poleward of the critical latitude. In Young et al.’s (2008) theory, the barotro-
pic tide atω0 is able to exchange energy with near-inertial waves, leading to its dissipation. Here we compare
expectations from this theory to our simulations.

5.1. Theory of PSI Extension

In Young et al.’s (2008) theory, internal tides can transfer energy to evanescent secondary waves atω0=2 via a
mechanism called the 2f-pump. As mentioned earlier, we refer to PSI as the specific TRI where resonant con-
ditions are

k0¼k1þk2; (10)

ω0¼ω1þω2¼ω0

2
þω0

2
: (11)

Young et al. (2008) studied near-inertial PSI which corresponds to a case where the primary wave has a fre-
quencyω0≈2f , where f is the local inertial frequency, inducing that secondary waves are near-inertial oscilla-
tions. Transfer of energy in this mechanism is particularly efficient because near-inertial oscillations are
almost stationary and therefore might dissipate locally.

Young et al. (2008) show that an infinite-plane wave at frequency ω0¼2fþε, (ε≪f and ε can be positive or
negative), extracts energy from the nongeostrophic part of the background flow then transferring to near-
inertial oscillations via near-inertial PSI. If the detuning frequency ε is negative, whichmeans secondary waves
atω0=2 fall outside the internal wave frequency band [f, N], Young et al. (2008) point that PSI can extend the
internal wave frequency band to slightly subinertial frequencies.

The growth rate of the near-inertial PSI of an infinite-plane internal wave ω0¼2fþε, on the f-plane, is:

σ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � N2

2f

� �2
k21
m2

1
þ k22
m2

2
� 2

εf
N2

� �2
s

; (12)

where

λ2¼U0h0k
2
0

2ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2 � ω2

0Þðω0þf Þ
ðω0 � f Þ

s
; (13)

see Appendix B for the full growth rate calculation and e.g., Muller and Buhler (2009) for polarization relations
(their equation (9)) used to determine the amplitude of the 2f-pump in our simulations.

Figure 13. Growth rate (in s�1) from (12) as a function of m1=m0 and k1=k0 for different latitudes: f¼0:7�10�4 s�1, f¼0:75�10�4 s�1, and f¼0:77�10�4 s�1.
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Figure 13 represents the growth rate from equation (12) for different
latitudes. The growth rate of near-inertial PSI is maximum at the criti-

cal latitude (f¼0:7�10�4 s�1) and decreases poleward of the critical
latitude. A second important point is that the instability is larger at
higher vertical wave number (small vertical scales). This last result is
consistent with the strong dissipation observed near and poleward
of the critical latitude (see Figure 2), since dissipation is favored by
smaller-scale waves. When m1=m0→∞ , the growth rate asymptotes

to 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � ε2

p
. From this result, we can evaluate εc when the growth

rate is zero. We obtain εc=f≈0:2 which extends the dissipation pole-

ward of the critical latitude to f≈0:77�10�4 s�1 (∼32°). This result is
in excellent quantitative agreement with the latitudinal extent of
enhanced dissipation poleward of the critical latitude found in our
simulations (Figure 2). Further comparison with our numerical results
are provided in the next section.

5.2. Numerical Results

Figure 14 is a snapshot of the wavefield at 19 days (primary internal tide removed) for a simulation poleward

of the critical latitude (f¼0:75�10�4 s�1). The near-inertial waves are confined to a few hundred meters from
topography, as expected since those waves are not propagating (frequency lower than f).

The time evolution of kinetic energy at ω0 and ω0=2 at f¼0:75�10�4 s�1 is shown in Figure 15. As we have

seen previous for the time evolution of kinetic energy for f¼0:53�10�4 s�1 (Figure 10), the energy remains
globally constant at ω0 due to the constant generation of the primary tide. For the waves atω0=2, the kinetic
energy grows exponentially in time reaching the equilibrium after the first 10–20 days of simulation. The
energy transfer atω0=2has a time scale of 1.4 days which is in good agreement with the theoretical time scale
of energy transfer of 2 days, obtained from Figure 13.

Consistent with Figure 2 and with the theoretical latitude of zero growth rate derived at the end of the previous

section, we find that those near-inertial waves atω0=2 are present approximately until f¼0:8�10�4 s�1. These
results suggest that poleward of the critical latitude, the dissipation of internal tides is dominated by this exten-
sion of PSI, namely the 2f-pump mechanism. In other words, we find that the generation of evanescent waves
via nonlinear energy transfers from the primary internal tide, is an efficient process to dissipate tidal energy.

Though PSI has been widely studied, the transfer of energy to evanescent
waves has not received as much attention, while our work suggests that it
could be an equally efficient mechanism to dissipate tidal energy near the
critical latitude.

6. Discussion and Conclusions

In this paper, we investigate the physical processes responsible for
the dissipation of internal tides. In particular, we want to determine
which physical process, if any, dominates in setting the latitudinal
distribution of tidal dissipation and the strong enhancement of

energy dissipation at the critical latitude f≈0:7�10�4 s�1 (Figure 2).
Our results suggest that the physical process behind the dissipation
of internal tides is different equatorward and poleward of the critical
latitude.

Equatorward of the critical latitude, triadic resonant instabilities (TRI) are
the most efficient mechanism to transfer energy from the primary wave,
i.e., the internal tide, to secondary waves. These secondary waves have
lower frequencies than the primary wave, hence smaller vertical scales,
and are more prone to dissipate. In our simulations, this mechanism
involves three stages after the generation of the primary internal tide.

Figure 14. Snapshot of the wavefield after removing the primary internal tide at 5
days, for f¼0:75�10�4 s�1. The wavefield is obtained by subtracting the zonal
mean flow.

Figure 15. Evolution of kinetic energy (in m2 s�2 cph�1 with a log10 scale)
of internal waves at frequency ω0 (yellow) and ω0=2 (green), computed as
an integral of the time spectrum (see Figure 3b) in the frequency range
around ±10% of the frequencies on a 5 days window, at f¼0:75�10�4 s�1.
Thin line represents the observed slopes s. The associated growth rate is
σ¼slogð10Þ which corresponds for ω0=2 to a growth rate of σω0=2¼3:7�10�6

s�1 and a time scale of energy transfer of 1.4 days.
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The two first stages correspond to the generation of secondary waves at various frequencies with a time
scale for energy transfer on the order of a few days via TRI, and then the accumulation of near-inertial
waves close to the topography because of their small vertical group velocity. Note that it is interesting
that near-inertial waves have a nonzero vertical group velocity permitting a slow propagation upward
or downward. In the numerical simulations, the dominant triad has a downward propagating near-inertial
wave and an upward-propagating wave at ω0 � f . The selection of the direction of propagation for the
secondary waves is not explained by the TRI theory which predicts the generation of both triads and this
observation in the simulation remains unclear. The third stage corresponds to the moment where inertial
waves become of the same order as the primary internal tide, and the triadic interaction between the pri-
mary wave at ω0 and inertial waves at f leads to the strengthening of waves at ω0 � f . This mechanism
leads to the dominant resonant triad composed by ω0, f and ω0 � f as proposed by Nikurashin and Legg
(2011). In the ocean only the last stage is relevant, if we consider that the ocean has reached a steady
state. Internal tides and inertial waves are of the same order, and they interact nonlinearly to generate
waves at ω0 � f . TRI is found to be a powerful mechanism to extract tidal energy. The increase of energy
dissipation from the equator toward the critical latitude is due to increased instability growth rates, as
well as to the smaller and smaller vertical scales of the secondary waves (Figure 8), hence more likely
to break and dissipate their energy.

Poleward of the critical latitude, the “2f-pump”mechanism described in Young et al. (2008) seems to be the
leading-order mechanism by which internal tides lose energy. In this case, the internal tide transfers energy
nonlinearly to evanescent waves at frequenciesω0=2, which dissipate internal tide energy as efficiently as PSI
equatorward of the critical latitude. In fact, the 2f-pump is an extension of PSI poleward of the critical latitude
when we consider near-inertial waves (fþε) for small values of ε. The dissipation poleward of the critical lati-
tude has implications for the possible consumption of AABW. These results suggest that evanescent waves
could play a leading-order role in the dissipation of tidal energy in the deep ocean poleward of the critical
latitude, and could contribute significantly to the diapycnal mixing relevant to the large-scale ocean circula-
tion and to water masses.

Appendix A: Growth Rate Calculations
In this section, we develop the full growth rate calculation for a triadic resonant instability in a rotating frame,
following Bourget et al. (2013) and Maurer et al. (2016).

Using equations (1), (2), and (3), and introducing the stream function ψ withu¼ð∂zψ; v;�∂xψÞ (recall that the
velocity v is constant in our setting), we obtain a new set of equations

∂∇2ψ
∂t

þJð∇2ψ;ψÞ � f
∂v
∂z

¼� ∂b
∂x

þνΔ2ψ; (A1)

∂v
∂t

þJðv;ψÞþf
∂ψ
∂z

¼νΔv; (A2)

∂b
∂t

þJðb;ψÞ¼N2 ∂ψ
∂x

; (A3)

where J is the Jacobian operator such as JðA; BÞ¼∂xA∂zB� ∂zA∂xB. We are interested in triadic interactions, so
we are looking for solutions of the form

ψ¼∑
2

j¼0
ΨjðtÞeiðkj ·r�ωj tÞþc:c:; (A4)

v¼∑
2

j¼0
VjðtÞeiðkj ·r�ωj tÞþc:c:; (A5)

b¼∑
2

j¼0
RjðtÞeiðkj ·r�ωj tÞþc:c:; (A6)

where kj¼ðk; 0;mÞ is the wave vector. Using these solutions in equations (A1), (A2), and (A3), we obtain
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∑
2

j¼0
½ � κ2j ð _Ψj � iωjΨjÞþikjRj � νκ4j Ψj � ifmjVj�eiðkj ·r�ωj tÞþc:c:¼� JðΔψ;ψÞ; (A7)

∑
2

j¼0
½ _Vj � iωjV jþνκ2j V jþifmjΨj�eiðkj ·r�ωj tÞþc:c:¼� Jðv;ψÞ; (A8)

∑
2

j¼0
½ _Rj � iωjRj � iN2kjΨj�eiðkj ·r�ωj tÞþc:c:¼� Jðb;ψÞ; (A9)

where κj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2j þm2

j

q
. The Jacobian terms on the right-hand side can be rearranged. The usual inviscid linear

dynamics of (A8) and (A9) provides the polarization relation

Rj¼� N2kj
ωj

Ψj; (A10)

Vj¼ fmj

ωj
Ψj: (A11)

After some calculations on equations (A7), (A8), and (A9), they become

JðΔψ;ψÞ¼∑
2

p¼0
∑
q≠p

½ðkpmq �mpkqÞκ2pΨpΨq�ei½ðkpþkqÞ·r�ðωpþωqÞt�

� ½ðkpmq �mpkqÞκ2pΨpΨ⋆
qe

i½ðkp�kqÞ·r�ðωp�ωqÞt��þc:c:

(A12)

Jðv;ψÞ¼∑
2

p¼0
∑
q≠p

½ð�kpmqþmpkqÞVpΨq�ei½ðkpþkqÞ·r�ðωpþωqÞt�

� ½ð�kpmqþmpkqÞVpΨ⋆
qe

i½ðkp�kqÞ·r�ðωp�ωqÞt��þc:c:

(A13)

Jðb;ψÞ¼∑
2

p¼0
∑
q≠p

½ðkpmq �mpkqÞRpΨq�ei½ðkpþkqÞ·r�ðωpþωqÞt�

� ½ð�kpmqþmpkqÞRpΨ⋆
qe

i½ðkp�kqÞ·r�ðωp�ωqÞt��þc:c:

(A14)

We now get the evolution of a particular wave number component (kr;ωr) associated with the stream func-
tion ψ, in which r=0, 1 or 2, by averaging both the left-hand and the right-hand side over the period of that
wave. The resonant terms on the right-hand side that balance the left-hand side correspond to the wave ful-
filling the resonant conditions 5 and 6.

Highlighting only the resonant terms and using the polarization relations (A10) and (A11), the Jacobian terms
can be rewritten as

Jð∇2ψ;ψÞ¼ðk1m2 �m1k2Þðκ21 � κ22ÞΨ1Ψ2e
iðk0 ·r�ω0tÞ

� ðk0m2 �m0k2Þðκ20 � κ22ÞΨ0Ψ⋆
2e

iðk1 ·r�ω1tÞ

� ðk0m1 �m0k1Þðκ20 � κ21ÞΨ0Ψ⋆
1e

iðk2 ·r�ω2tÞþNRT ;

(A15)

Jðv;ψÞ¼ � ðk1m2 �m1k2Þf m1

ω1
�m2

ω2

� �
Ψ1Ψ2e

iðk0 ·r�ω0tÞ

þðk0m2 �m0k2Þf m0

ω0
�m2

ω2

� �
Ψ0Ψ⋆

2e
iðk1 ·r�ω1tÞ

þðk0m1 �m0k1Þf m0

ω0
�m1

ω1

� �
Ψ0Ψ⋆

1e
iðk2 ·r�ω2tÞþNRT ;

(A16)
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Jðb;ψÞ¼ðk1m2 �m1k2ÞN2 k1
ω1

� k2
ω2

� �
Ψ1Ψ2e

iðk0 ·r�ω0tÞ

� ðk0m2 �m0k2ÞN2 k0
ω0

� k2
ω2

� �
Ψ0Ψ⋆

2e
iðk1 ·r�ω1tÞ

� ðk0m1 �m0k1ÞN2 k0
ω0

� k1
ω1

� �
Ψ0Ψ⋆

1e
iðk2 ·r�ω2tÞþNRT ;

(A17)

where NRT is the acronym for nonresonant terms and they are not relevant for this problem.

At the first order, we make the further assumption that the amplitudeΨj varies slowly with respect to the per-

iod of the wave. It is therefore appropriate to consider that _Ψj≪ωjΨj. Use of this assumption in the derivative
of (A10) and (A11) yields

_Vj¼ fmj

ωj

_Ψj; (A18)

_Rj¼� N2kj
ωj

_Ψj: (A19)

Using (A18) in resonant terms of equation (A8), we obtain

V0¼
�γ0β0Ψ1Ψ2þifm0Ψ0þf m0

ω0
∂tΨ0

iω0 � νκ20
; (A20)

V1¼
�γ1β1Ψ0Ψ⋆

2þifm1Ψ1þf m1
ω1

∂tΨ1

iω1 � νκ21
; (A21)

V2¼
�γ2β2Ψ0Ψ⋆

1þifm2Ψ2þf m2
ω2

∂tΨ2

iω2 � νκ22
; (A22)

where γ0¼1; γ1;2¼� 1 and

βr¼ðkpmq �mpkqÞ mp

ωp
�mq

ωq

� �
; (A23)

with ðp; q; rÞ¼ð0; 1; 2Þ or any circular permutation. Now, using (A19) in resonant terms of equation (A7)

R0¼� i
k0

κ20ð _Ψ0 � iω0Ψ0Þþνκ40Ψ0 � γ0α0Ψ1Ψ2þifm0V0
� �

; (A24)

R1¼� i
k1

κ21ð _Ψ1 � iω1Ψ1Þþνκ41Ψ1 � γ1α1Ψ0Ψ⋆
2þifm1V1

� �
; (A25)

R2¼� i
k2

κ22ð _Ψ2 � iω2Ψ2Þþνκ42Ψ2 � γ2α2Ψ0Ψ⋆
1þifm2V2

� �
; (A26)

where

αr¼ðkpmq �mpkqÞðκ2p � κ2qÞ; (A27)

with ðp; q; rÞ¼ð0; 1; 2Þ or any circular permutation. Therefore, using all the previous results in equation (A9)
leads to

N2k0
ω0

_Ψ0þiω0R0þiN2k0Ψ0¼γ0δ0N
2Ψ1Ψ2; (A28)

where

δr¼ðkpmq �mpkqÞ kp
ωp

� kq
ωq

� �
; (A29)

with ðp; q; rÞ¼ð0; 1; 2Þ or any circular permutation. Replacing R0 and V0 by their expression
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N2k20
ω2
0
_Ψ0

þκ20ð _Ψ0 � iω0Ψ0Þþνκ40Ψ0 � γ0α0Ψ1Ψ2

þifm0

�γ0fβ0Ψ1Ψ2þifm0Ψ0þf
m0

ω0

_Ψ0

iω0 � νκ20

0
B@

1
CAþi

N2k0
ω0

Ψ0¼γ0
k0
ω0

δ0N2Ψ1Ψ2;

(A30)

relating the time derivative of the wave amplitude, Ψ0, to the other wave amplitudes.

_Ψ0¼ γ0
2κ20

α0þ δ0N2k0
ω0

þ f 2m0β0
ω0

� �
Ψ1Ψ2 � 1

2
ν κ20þ

f 2m2
0

ω2
0

� �
Ψ0: (A31)

_Ψ0¼I0Ψ1Ψ2 � 1
2
νκ20 1þ f 2m2

0

κ20ω
2
0

� �
Ψ0; (A32)

_Ψ1¼I1Ψ0Ψ⋆
2 �

1
2
νκ21 1þ f 2m2

1

κ21ω
2
1

� �
Ψ1; (A33)

_Ψ2¼I2Ψ0Ψ⋆
1 �

1
2
νκ22 1þ f 2m2

2

κ22ω
2
2

� �
Ψ2; (A34)

where Ir is

Ir¼ γr
2κ2r

αrþδrN2kr
ωr

þf 2mrβr
ωr

� �

¼γr
kpmq �mpkq

2ωrκ2r
ωrðκ2p � κ2qÞþkrN

2 kp
ωp

� kq
ωq

� �
þmrf

2 mp

ωp
�mq

ωq

� �� �
:

(A35)

We considerΨ0 as the primary wave and it is constant in early times since amplitudes of the secondary waves,
Ψ1 and Ψ2 are negligible compare to the amplitude of Ψ0. Combining equations (A33) and (A34), we get

€Ψ1¼I1I2Ψ2
0Ψ1 � 1

4
ν2κ21κ

2
2 1þ f 2m2

1

κ21ω
2
1

� �
1þ f 2m2

2

κ22ω
2
2

� �
Ψ1 � 1

2
ν κ21þκ22þ

f 2m2
1

ω2
1

þ f 2m2
2

ω2
2

� �
_Ψ1: (A36)

The solution of equation (A36) is of the formΨ1;2¼A1;2eσþTþB1;2eσ�T ;where σ is the growth rate defined as (8).

Appendix B: PSI Extension Calculations
In this part, we give a brief description of the 2f-pump mechanism described in detail in Young et al. (2008).
Of particular interest is the derivation of the growth rate (equation (12)). We consider the interaction of a
background flow (U, V, W) with a pure inertial oscillation. W is a function of time t and depth z and is given
by the incompressibility condition UxþVyþWz¼0. For us, a pure inertial oscillation is a disturbance with infi-
nite horizontal spatial scales which implicates that the velocity is ðuðz; tÞ; vðz; tÞ; 0Þ. A pure inertial oscillation
has no pressure or buoyancy signal so that its dynamic is entirely governed by the horizontal momentum
equations, after removing second order terms,

utþWuzþuUxþvUy � f v¼0; (B1)

vtþWvzþuVxþvVyþf u¼0: (B2)

Rewriting equations (B1) and (B2) in term of the “back-rotated” velocity Ω≡ðuþivÞeif t , we obtain

ΩtþWΩzþ 1
2

UxþVy
	 
þiðVx � UyÞ
� �

Ωþ 1
2

Ux � Vy
	 
þi VxþUy

	 
� �
e2if tΩ⋆¼0: (B3)

We consider that the background flow and the near-inertial oscillation interact weakly so that the envelope of
Ωðz; tÞ is evolving slowly relative to the inertial time scale. The secular evolution ofΩðz; tÞ (evolution on really
long time period) is then obtained by time-averaging (denoted by an overbar) equation (B3) over an interval

which is long relative to f�1
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–Ωtþ 1
2
iζ–Ωþ 1

2
ϒ–Ω⋆¼0; (B4)

where

ζ≡
–
Vx � –

Uy ; (B5)

is the vertical velocity of the low-frequency part of the background flow, assuming that the low-frequency
part of the background flow is geostrophycally balanced so that ¯W¼¯Uxþ¯Vy¼0. The term involving 1

2 iζ in
equation (B4) corresponds to Kunze’s (1985) result that the effective inertial frequency is shifted away from
the local inertial frequency by half the relative vorticity of the low-frequency geostrophic background flow.
The second coefficient ϒ in equation (B4) is the amplitude of the 2f-pump

ϒ≡ Ux � Vy
	 
þi VxþUy

	 
� �
e2if t ; (B6)

which is nonzero if the background flow strain rates have spectral content at 2f.

Now we consider the propagation of near-inertial oscillations through a geostrophic flow which changes
slowly relative to the inertial period. The background flow has two components: a geostrophic component
(denoted by subscript g) and a 2f-pump flow (denoted by subscript p). There is no transfer of energy between
the geostrophic part of the background flow and the near-inertial waves (Young & Jelloul, 1997). Thus, the 2f-
pump part of the background flow plays the essential role of energizing the near-inertial oscillations. The
dynamics of the near-inertial field ðu; v;w; b; pÞ is given by the linearized Boussinesq equations around the
background flow ðU; V;W; B; PÞ

utþUuxþVuyþWuzþuUxþvUyþwUz � f vþpx¼0; (B7)

vtþUvxþVvyþWvzþuVxþvVyþwVzþf uþpy¼0; (B8)

�bþpz¼0; (B9)

uxþvyþwz¼0; (B10)

btþUbxþVbyþWbzþuBxþvByþwBzþwN2¼0: (B11)

We emphasize that PSI is driven solely and essentially by the pump component of the background flow.
Young et al. [2008]’s calculations lead to the evolution equation of near-inertial fields (f-plane, uniform
N, ∂y≡0 and magnitude of ϖ is too small to affect the solution (Young et al., 2008)

Azztþ 1
2
N2

f
iAxxþ 1

2
ϒA⋆

zz¼0; (B12)

Considering now the instability of an infinite-plane internal gravity wave with a uniform stratification on an
f-plane. Its pressure is given by

Pp¼acosϕ; (B13)

where ϕ¼kxþmz � ω0t and a¼ U0h0mðω2
0�f 2Þ

kω0
is the amplitude of the pump.

The frequency and the wave number are related by the nonhydrostatic dispersion relation (4). Since, we con-
sider ω0 close to 2f, we write

ω0¼2fþε; (B14)

with ε≪f , where the detunning frequency ε, might be either positive or negative; in our case, we consider a
negative detuning.

Substituting the pressure into the linearized Boussinesq equations, we obtain the other pump fields

Up¼ akω0

ðω2
0 � f 2Þ cosϕ; (B15)

Vp¼ afk

ðω2
0 � f 2Þ sinϕ; (B16)
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Wp¼� ak2ω0

mðω2
0 � f 2Þ cosϕ; (B17)

Bp¼� ak2N2

mðω2
0 � f 2Þ sinϕ: (B18)

From there, we want to calculate the amplitude of the 2f-pump from equation (B6), considering ∂y≡0. Thus

UpxþiVpx¼∂xReðUp

∼
eiϕÞþi∂xReðVp

∼
eiϕÞ¼ iak2eiϕ

2ðω0 � f Þ �
iak2e�iϕ

2ðω0þf Þ (B19)

and therefore

ϒ¼ðUpxþiVpxÞe2if t¼iλeiðkxþmz�εtÞ; (B20)

where

λ2¼U0h0k
2
0

2ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2 � ω2

0Þðω0þf Þ
ðω0 � f Þ

s
: (B21)

Replacing ϒ6 by its expression in equation (B12), we obtain

Azztþ 1
2
N2

f
iAxxþ 1

2
iλeiðkxþmz�εtÞA⋆zz¼0: (B22)

The solution of this equation is of the form

A¼e�iεt=2 A1ðtÞeiðk1xþm1zÞþA⋆
2ðtÞeiðk2xþm2zÞ

h i
: (B23)

Now, we use the spatial resonant condition (5) in equation (B23) leading to

A1tþi
N2k21
2fm2

1
� ε
2

� �
A1þ iλm2

2

2m2
1
A2¼0; (B24)

A2t � i
N2k22
2fm2

2
� ε
2

� �
A2 � iλm2

1

2m2
2
A1¼0: (B25)

Combining the two previous equations, we obtain a single equation for A1ðtÞ

A1ttþi
N2k21
2fm2

1
� N2k22
2fm2

2

� �
A1tþ N2k21

2fm2
1

N2k22
2fm2

2
� λ2

4

� �
A1¼0: (B26)

If A1¼Â1e
st then

s¼ 1
2

N2k21
2fm2

1
� N2k22
2fm2

2

� �
i±

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � N2k21

2fm2
1
þ N2k22
2fm2

2

� �2
s

: (B27)

Finally, the growth rate is σ¼Re(s), such as

σ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � N2

2f

� �2
k21
m2

1
þ k22
m2

2
� 2

εf
N2

� �2
s

: (B28)
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